1
|
Hightower LE. Introducing R. William (Bill) Currie as the new Editor-in-Chief of Cell Stress & Chaperones. Cell Stress Chaperones 2021; 26:283-284. [PMID: 33590441 PMCID: PMC7883959 DOI: 10.1007/s12192-021-01194-5] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/01/2021] [Indexed: 11/28/2022] Open
|
2
|
Perdrizet G, Hightower LE. On barring the vascular gateway against severe COVID-19 disease. Cell Stress Chaperones 2020; 25:721-723. [PMID: 32458383 PMCID: PMC7250245 DOI: 10.1007/s12192-020-01122-z] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Affiliation(s)
- George Perdrizet
- Advanced Wound Care and Hyperbaric Medicine, The Hospital of Central Connecticut, 5 Highland Street, New Britain, CT, 06052, USA
| | - Lawrence E Hightower
- Department of Molecular and Cell Biology, University of Connecticut, Storrs, CT, 06269, USA.
| |
Collapse
|
3
|
Fleischmann C, Bar-Ilan N, Horowitz M, Bruchim Y, Deuster P, Heled Y. Astaxanthin supplementation impacts the cellular HSP expression profile during passive heating. Cell Stress Chaperones 2020; 25:549-558. [PMID: 31970694 PMCID: PMC7192986 DOI: 10.1007/s12192-019-01061-4] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2019] [Revised: 12/09/2019] [Accepted: 12/12/2019] [Indexed: 12/26/2022] Open
Abstract
Astaxanthin is a powerful carotenoid antioxidant prevalent in marine organisms and approved as a food supplement. Recent studies have demonstrated Astaxanthin's beneficial attributes in various health states. Following initial reports of potential heat protective properties in Astaxanthin supplemented rats, we present here results of a novel study examining the effect of Astaxanthin supplementation on the heat shock response in rats in relation to core temperature (Tc) and the ensuing physiological strain. Two hours of heat stress at 41 °C during which rats developed their thermoregulatory hyperthermic plateau resulted in progressive increases in HSP72 and HSP27 in the Astaxanthin (Oleoresin)-treated group but not in the control (Olive oil) group. Enhanced elevation in HSPs suggests that Astaxanthin supplementation may augment the cellular stress protective response to heat stress.
Collapse
Affiliation(s)
- Chen Fleischmann
- The Institute of Military Physiology, IDF Medical Corps, Tel Hashomer, Israel.
- Heller Institute of Medical Research, Sheba Medical Center, Tel Hashomer, Israel.
- Laboratory of Environmental Physiology, The Hebrew University of Jerusalem, Jerusalem, Israel.
| | - Netta Bar-Ilan
- Laboratory of Environmental Physiology, The Hebrew University of Jerusalem, Jerusalem, Israel
| | - Michal Horowitz
- Laboratory of Environmental Physiology, The Hebrew University of Jerusalem, Jerusalem, Israel
| | - Yaron Bruchim
- Laboratory of Environmental Physiology, The Hebrew University of Jerusalem, Jerusalem, Israel
- Human Performance Resource Center, Uniformed Services University of the Health Sciences, Bethesda, MD, USA
| | - Patricia Deuster
- Emergency and Specialist Veterinary Center, Ben-Shemen Youth Village, Israel
| | - Yuval Heled
- Heller Institute of Medical Research, Sheba Medical Center, Tel Hashomer, Israel
- The Kibbutzim College, Tel Aviv, Israel
| |
Collapse
|
4
|
Miyazaki D, Nakamura A, Hineno A, Kobayashi C, Kinoshita T, Yoshida K, Ikeda SI. Elevation of serum heat-shock protein levels in amyotrophic lateral sclerosis. Neurol Sci 2016; 37:1277-81. [PMID: 27112486 DOI: 10.1007/s10072-016-2582-1] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2015] [Accepted: 04/13/2016] [Indexed: 01/08/2023]
Abstract
Heat-shock proteins (HSPs) have been implicated in the pathogenesis of amyotrophic lateral sclerosis (ALS). In this study, we aimed to examine whether the serum levels of HSPs (HSP27, HSP70, and HSP90) are altered in patients with ALS. We included 58 patients diagnosed with ALS and 85 control individuals. Serum HSP levels of patients and controls were determined using enzyme-linked immunosorbent assay. The serum levels of HSP70 and HSP90 were significantly higher in patients than in controls. In contrast, serum levels of HSP27 did not differ significantly between the patient and control groups. Moreover, serum levels of HSP70 and HSP90 in patients remained high throughout the duration of the disease. Taken together, our findings suggest that HSPs might have a role in ALS progression throughout the course of the disease. Further studies are needed to clarify the role of HSPs in the pathogenesis of ALS.
Collapse
Affiliation(s)
- Daigo Miyazaki
- Department of Medicine (Neurology and Rheumatology), Shinshu University School of Medicine, Asahi 3-1-1, Matsumoto, 390-8621, Japan.,Intractable Disease Care Center, Shinshu University Hospital, Asahi 3-1-1, Matsumoto, 390-8621, Japan
| | - Akinori Nakamura
- Department of Medicine (Neurology and Rheumatology), Shinshu University School of Medicine, Asahi 3-1-1, Matsumoto, 390-8621, Japan. .,Intractable Disease Care Center, Shinshu University Hospital, Asahi 3-1-1, Matsumoto, 390-8621, Japan.
| | - Akiyo Hineno
- Department of Medicine (Neurology and Rheumatology), Shinshu University School of Medicine, Asahi 3-1-1, Matsumoto, 390-8621, Japan
| | - Chinatsu Kobayashi
- Department of Medicine (Neurology and Rheumatology), Shinshu University School of Medicine, Asahi 3-1-1, Matsumoto, 390-8621, Japan
| | - Tomomi Kinoshita
- Department of Medicine (Neurology and Rheumatology), Shinshu University School of Medicine, Asahi 3-1-1, Matsumoto, 390-8621, Japan
| | - Kunihiro Yoshida
- Division of Neurogenetics, Department of Brain Disease Research, Shinshu University School of Medicine, Asahi 3-1-1, Matsumoto, 390-8621, Japan
| | - Shu-Ichi Ikeda
- Department of Medicine (Neurology and Rheumatology), Shinshu University School of Medicine, Asahi 3-1-1, Matsumoto, 390-8621, Japan
| |
Collapse
|
5
|
Mash DC. Commentary on: Johnson MM, David JA, Michelhaugh SK, Schmidt CJ, Bannon MJ. Increased heat shock protein 70 gene expression in the brains of cocaine-related fatalities may be reflective of postdrug survival and intervention rather than excited delirium. J. J Forensic Sci 2013; 58:559-61. [DOI: 10.1111/1556-4029.12081] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Deborah C. Mash
- University of Miami Miller School of Medicine; UM Life Science Park; 1951 NW 7th Ave, Suite 240; Miami; FL; 33136
| |
Collapse
|
6
|
Anticancer effects of 6-o-palmitoyl-ascorbate combined with a capacitive-resistive electric transfer hyperthermic apparatus as compared with ascorbate in relation to ascorbyl radical generation. Cytotechnology 2011; 63:425-35. [PMID: 21667158 DOI: 10.1007/s10616-011-9363-8] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2010] [Accepted: 05/06/2011] [Indexed: 10/18/2022] Open
Abstract
The aim of the present study is to determine the anti-proliferative activity of 6-o-palmitoyl-L: -ascorbic acid (Asc6Palm) that is a lipophilic derivative of L: -ascorbic acid (Asc), on human tongue squamous carcinoma HSC-4 cells by combined use of hyperthermia in comparison to Asc. Asc6Palm or Asc were administered to HSC-4 cells for 1 h, to which hyperthermia at 42 °C was applied for initial 15 min. After further 1-72 h incubation at 37 °C, cell proliferation was determined with Crystal Violet staining. Ascorbyl radical (AscR) in HSC-4 cell suspension was measured by electron spin resonance (ESR), and cell morphology was observed with scanning electron microscopy (SEM). At 37 °C, 4 mM Asc or 0.35 mM Asc6Palm were enough to suppress proliferation of HSC-4 cells. By combined use of hyperthermia at 42 °C, cell proliferation was decreased when compared to 37 °C. After Asc of 4 mM was incubated with HSC-4 cell suspensions at 37 °C or 42 °C for 0-180 min, the signal intensity of ascorbyl radical (AscR) by ESR was not different regardless of the presence or absence of cells at 37 °C, whereas AscR signal was enlarged in the presence of HSC-4 cells at 42 °C. It was suggested that oxidation of Asc occurred rapidly in HSC-4 cells by hyperthermia, and thereby enhanced the anti-proliferative activity. By SEM observation, the surface of HSC-4 cells treated with Asc6Palm revealed distinct morphological changes. Thus, the combined regimen of Asc6Palm and hyperthermia is expected to exert a marked antitumor activity.
Collapse
|
7
|
Abstract
Despite advances in treatment of patients who suffer from ischemic heart disease, morbidity related to myocardial infarction is increasing in Western societies. Acute and chronic immune responses elicited by myocardial ischemia have an important role in the functional deterioration of the heart. Research on modulation of the inflammatory responses was focused on effector mediators such as leukocytes. However, increasing evidence indicates that various endogenous ligands that act as 'danger signals', also called danger-associated molecular patterns (DAMPs), are released upon injury and modulate inflammation. Originally described as part of the first-line defense against invading microorganisms, several Toll-like receptors (TLRs) on leukocytes and parenchymal cells have now been shown to respond to such signals and to have a pivotal role in noninfectious pathological cardiovascular conditions, such as ischemia-reperfusion injury and heart failure. From a therapeutic perspective, DAMPs are attractive targets owing to their specific induction after injury. In this Review, we will discuss innate immune activation through TLRs in cardiac ischemia mediated by DAMPs.
Collapse
Affiliation(s)
- Fatih Arslan
- University Medical Center Utrecht, Laboratory of Experimental Cardiology, Heidelberglaan 100, 3584 CX Utrecht, The Netherlands
| | | | | |
Collapse
|
8
|
Heikkila JJ. Heat shock protein gene expression and function in amphibian model systems. Comp Biochem Physiol A Mol Integr Physiol 2010; 156:19-33. [DOI: 10.1016/j.cbpa.2010.01.024] [Citation(s) in RCA: 55] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2009] [Revised: 01/26/2010] [Accepted: 01/29/2010] [Indexed: 12/22/2022]
|
9
|
Wong CG, Bonakdar M, Kleinman MT, Chow J, Bhalla DK. Elevation of Stress-Inducible Heat Shock Protein 70 in the Rat Lung After Exposure to Ozone and Particle-Containing Atmospheres. Inhal Toxicol 2008. [DOI: 10.3109/08958379409040507] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
|
10
|
Bonakdar M, Rasmussen RE, Wong CG. Lack Of Effect On Rat Lung Stress-Inducible Heat Shock Protein 70 After Acute Tobacco Smoke Inhalation. Inhal Toxicol 2008. [DOI: 10.3109/08958379509029707] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
|
11
|
Wong CG, Rasmussen RE, Bonakdar M. Lack of Elevation of Stress-Inducible Heat-Shock Protein 70 in the Ferret Lung After Chronic Cigarette Smoke Inhalation. Inhal Toxicol 2008. [DOI: 10.3109/08958379509012811] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
|
12
|
Calabrese EJ. Converging concepts: adaptive response, preconditioning, and the Yerkes-Dodson Law are manifestations of hormesis. Ageing Res Rev 2008; 7:8-20. [PMID: 17768095 DOI: 10.1016/j.arr.2007.07.001] [Citation(s) in RCA: 110] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
The adaptive response in toxicology and environmental mutagenesis, preconditioning in biomedicine and the Yerkes-Dodson Law in psychology have dominating research themes with widespread and significant scientific and societal implications. This paper suggests that these apparently independent biological dose-response phenomena are manifestations of the common and more general biphasic dose-response relationship concept called hormesis. These three types of dose-response, as well as the hormesis concept, may represent the same general type of adaptation, which were discovered independently in different biological disciplines, amongst which there has been little communication. This intellectual isolation, due principally to progressively greater disciplinary specialization, resulted in the evolution of different terminologies for dose-response phenomena with strikingly similar quantitative features. This lack of recognition of converging dose-response concepts across disciplines has important implications since it limits the recognition of a common and basic biological concept while minimizing collaborations by investigators in related areas. The paper concludes that the broadly recognized biological adaptive responses, as described by the concepts of adaptive response, preconditioning and the Yerkes-Dodson Law, are special cases of the more general hormesis dose-response concept.
Collapse
Affiliation(s)
- Edward J Calabrese
- Department of Public Health, Environmental Health Sciences, Morrill I, N344, University of Massachusetts, Amherst, MA 01003, USA.
| |
Collapse
|
13
|
Mushtaq S, Naqvi ZA, Siddiqui AA, Palmberg C, Shafqat J, Ahmed N. Changes in albumin precursor and heat shock protein 70 expression and their potential role in response to corneal epithelial wound repair. Proteomics 2007; 7:463-8. [PMID: 17211826 DOI: 10.1002/pmic.200600446] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Many proteins displayed differential expression (either up- or down-regulation) when proteome of migrating and non-migrating epithelium was assessed using 2-DE and ESI-Q-TOF MS/MS. From the up-regulated set, we have identified for the first time a 69-kDa albumin precursor protein with four peptides sequences and 70-kDa heat shock protein (hsp70) with one peptide in the active phase of cell migration (48 h) during the healing process. Western blot analysis was used to further characterize these proteins at different phases (24, 48 and 72 h) of healing. An increase in the mRNA expression (measured using RT-PCR) in the active migration phase (48 h) for albumin precursor and hsp70 was also observed. Furthermore, co-immunoprecipitation studies with anti-albumin precursor and anti-hsp70 antibodies, followed by immunoblotting with anti-fibronectin antibody demonstrated a novel and biologically relevant interaction between albumin precursor protein and fibronectin in corneal epithelial wound healing but not with hsp70. The increased gene and protein expression of albumin and hsp70 during the active phase of cell migration (48 h) in the corneal epithelium suggests their possible role in corneal wound healing. These findings may have broader implications for developing therapeutic strategies for treating wound healing disorders.
Collapse
Affiliation(s)
- Shamim Mushtaq
- Neurochemistry Research Unit, Department of Biochemistry, University of Karachi, Karachi, Pakistan
| | | | | | | | | | | |
Collapse
|
14
|
Horowitz M, Robinson SDM. Heat shock proteins and the heat shock response during hyperthermia and its modulation by altered physiological conditions. PROGRESS IN BRAIN RESEARCH 2007; 162:433-46. [PMID: 17645931 DOI: 10.1016/s0079-6123(06)62021-9] [Citation(s) in RCA: 81] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/03/2022]
Abstract
The fundamental functions of heat shock proteins (HSPs) are molecular chaperoning and cellular repair. There is little literature on the association between the numerous functions of HSPs and systemic integrative responses, particularly those controlled by the central nervous system. This chapter focuses on the role played by members of the HSP70 superfamily, universally recognized as cytoprotectants during heat stress, within the physiological context of hyperthermia and with its superimposition on situations of chronic stress. In the nucleus tractus solitarius, HSP70 levels enhance the sensitivity of sympathetic and parasympathetic arms of the autonomic nervous system to attenuate heat stroke-induced cerebral ischemia and hypotension. Chronic stressors that alter the heat shock response may affect the physiological profile during hyperthermic conditions. Upon aging, significantly lower HSP70 production is noted in the ventral paraventricular and lateral magnocellular nuclei. Likewise, results from cultured cells suggest that the age-related decline in HSP70 expression is constitutive and is due to decreased binding of the heat shock factor 1 (HSF-1) to the heat shock element (HSE) and diminished HSP70 transcription. These changes may be associated with decreased thermotolerance upon aging, although HSP70 production in response to other stressors is not affected. Heat acclimation (AC), in contrast, increases tissue reserves of HSP70 and accelerates the heat shock response. AC protects epithelial integrity, vascular reactivity and interactions with cellular signaling networks, enhancing protection and delaying thermal injury. The link between HSP70 and the immune system is discussed with respect to exercise. Exercise enhances the immune response via production of HSP72 in central and peripheral structures. At least in part, the effects of HSP72 in the brain are mediated via eHSP72-circulating HSPs providing a "danger signal" to activate the immune response. In summary, HSPs are primarily cytoprotective components, the physiological situations described in this chapter infer their pivotal role in central control of integrative systems.
Collapse
Affiliation(s)
- Michal Horowitz
- Laboratory of Environmental Physiology, Faculty of Dental Medicine, The Hebrew University, POB 12272, Jerusalem 91120, Israel.
| | | |
Collapse
|
15
|
Imai Y, Sakurai M, Horinouchi T, Lee YS, Yamada A. Epithelial cells and adipose cells both have their own temporal profile in 72-kd heat-shock protein expression determining their tolerance for ischaemia. J Plast Reconstr Aesthet Surg 2006; 59:230-8. [PMID: 16676429 DOI: 10.1016/j.bjps.2005.09.007] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Seventy-two-kd heat-shock protein (HSP72) is one of the stress markers induced in cells under stress, such as in the case of ischaemia. Recent studies have suggested that HSP72 is a 'molecular chaperone' to protect cells from various kinds of stress, and that the temporal profile of HSP72 induction is related to ischaemic vulnerability. In this study, we attempted to analyse the temporal profiles of HSP72 induction in epithelial and adipose cells in skin flaps after various periods of transient ischaemia, and we investigated the reason why there were differences in ischaemic tolerance between these cells. We used the abdominal skin flap of Wister rats, which were divided into three groups: the sham control group (n=27), the 2-h ischaemia group (n=25), and the 8-h ischaemia group (n=25). At periods of 8, 24, 48, 96 h, and 7 days after reperfusion, we examined them for any histological changes and performed immunostaining for HSP72 (n=5, each time point). Two animals in the sham control group were sacrificed to harvest the samples immediately after the skin flaps were elevated. As a result, the epithelial cells in all groups revealed positive for HSP72 through the time course, regardless of the ischaemic stresses, and they were alive at 7 days. In the adipose cells, the cells in the sham control group revealed no immunoreactivity after the reperfusion, and they had no change at 7 days. In the 2-h ischaemia group, the adipose cells gradually increased the reactivity for HSP72; consequently they survived beyond 7 days. In the 8-h ischaemia group, the reactivity for HSP72 gradually decreased; consequently they played out a delayed cell death at 7 days. We concluded that these differences of HSP72 expression were related to the cellular vulnerability to ischaemia.
Collapse
Affiliation(s)
- Yoshimichi Imai
- Department of Plastic and Reconstructive Surgery, Tohoku University Graduate School of Medicine, Sendai, Japan.
| | | | | | | | | |
Collapse
|
16
|
Franklin TB, Krueger-Naug AM, Clarke DB, Arrigo AP, Currie RW. The role of heat shock proteins Hsp70 and Hsp27 in cellular protection of the central nervous system. Int J Hyperthermia 2005; 21:379-92. [PMID: 16048836 DOI: 10.1080/02656730500069955] [Citation(s) in RCA: 151] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022] Open
Abstract
Heat shock proteins (Hsps) are highly conserved and under physiological conditions act as molecular chaperones and/or have anti-apoptotic activities. Expression in the brain of two heat shock proteins, the70 kDa Hsp (Hsp70) and the 27 kDa Hsp (Hsp27), is notable because both proteins are highly inducible in glial cells and neurons following a wide range of noxious stimuli including ischemia, epileptic seizure and hyperthermia. In the central nervous system, constitutive expression of Hsp27 is limited to many (but not all) sensory and motor neurons of the brain stem and spinal cord, while there is little or no constitutive expression of Hsp70. However, inducible expression of both Hsp70 and Hsp27 is present in many areas of the brain and retina and is associated with cellular resistance to a variety of insults. The potential for manipulating the expression levels of Hsps for therapeutic advantage in neurodegenerative diseases such as Alzheimer's disease, stroke and glaucoma will be explored.
Collapse
Affiliation(s)
- T B Franklin
- Laboratory of Molecular Neurobiology, Department of Anatomy and Neurobiology, Dalhousie University, Halifax, NS, Canada
| | | | | | | | | |
Collapse
|
17
|
Cvoro A, Korać A, Matić G. Intracellular localization of constitutive and inducible heat shock protein 70 in rat liver after in vivo heat stress. Mol Cell Biochem 2005; 265:27-35. [PMID: 15543931 DOI: 10.1023/b:mcbi.0000044312.59958.c8] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
The level and intracellular redistribution of the two nucleo-cytoplasmic members of 70 kDa heat shock protein family (constitutive, Hsc70 or Hsp73, and inducible, Hsp72) were studied in rat liver during a 24-h period after exposure of the animals to 41 degrees C whole body hyperthermic stress. The examined proteins were detected in the liver cytosol and nuclei by Western blotting and immunohistochemical staining of paraffin sections, as well as by immnocytochemical staining of isolated nuclear smears. All three techniques applied were based on the use of monoclonal antibodies recognizing both constitutive and inducible Hsp70 isoforms or only the inducible isoform, and gave consistent results. The exposure of the animals to in vivo heat stress was shown to induce the synthesis of otherwise non-existing Hsp72, rendering Hsc70 level unchanged in comparison to unstressed controls. However, immediately after the stress the intracellular redistribution of Hsc70, i.e. its nuclear accumulation, was observed. The maximal level of Hsp70 both in the cytoplasm and in the nuclei was registered 5 h after the stress, which coincided with the maximal level of Hsp72 induction. The alterations in the level and intracellular distribution of examined proteins were still noticeable 24 h after the stress. The results of this study could shed some more light on, as yet uncertain, differences between cellular functions of these two proteins, as well as on the role of the constitutive form under normal and stress conditions.
Collapse
Affiliation(s)
- Aleksandra Cvoro
- Department of Biochemistry, Institute for Biological Research, Belgrade, Serbia and Montenegro (Yugoslavia)
| | | | | |
Collapse
|
18
|
Sammut IA, Harrison JC. Cardiac mitochondrial complex activity is enhanced by heat shock proteins. Clin Exp Pharmacol Physiol 2003; 30:110-5. [PMID: 12542463 DOI: 10.1046/j.1440-1681.2003.03799.x] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
1. Prolonged ischaemia and reperfusion in heart transplantation results in mitochondrial dysfunction and loss of cardio-energetics. Improved myocardial tolerance to ischaemia-reperfusion can be increased by de novo synthesis of heat shock protein (Hsp) groups, transiently expressed following mild hyperthermic or oxidative stress. Consideration of the roles of various Hsp in ischaemic-reperfused myocardium can provide new insights into potential therapeutic adjuncts to cardiac surgery. 2. Several Hsp classes have been located within or in association with mitochondrial elements. Cardiac Hsp research has focused primarily on the 70 kDa group, involved in protein folding functions within the cytosol and matrix. Similarly, Hsp 60 and 10 have been shown to form a mitochondrial chaperonin complex conferring protection to ischaemia-challenged myocytes. Equally pertinent is Hsp 32, an isoform of the haem-metabolizing enzyme heme oxygenase. 3. Our studies have shown that mitochondrial respiratory enzyme activity can be protected by Hsp, affording protection to cardiac energetics during preservation for transplantation. Upregulation of Hsp 32, 60 and 72 in rats, achieved by mild hyperthermic stress, improved cardiac function, ultrastructure and mitochondrial respiratory and complex activities in ex vivo perfused hearts subjected to cold cardioplegic arrest and ischaemia-reperfusion. Pre-ischaemic mitochondrial complex activities were increased in heat stress versus sham-treated groups for complex I, IV and V. 4. Investigation of the direct effect of upregulation of Hsp 72 by gene transfection resulted in a similar pattern of response, with increased complex I activity and improved ventricular function. 5. These studies provide the first evidence of Hsp-mediated enhancement of mitochondrial energetic capacity. Enhanced protection of mitochondrial energetics, as a result of increased Hsp expression, contributes to the recovery of myocardial function in ischaemia-reperfusion.
Collapse
Affiliation(s)
- Ivan A Sammut
- Department of Pharmacology and Toxicology, University of Otago Faculty of Medicine, Dunedin, New Zealand.
| | | |
Collapse
|
19
|
Mulhall KJ, McLaughlin R, Kay E, Kiely P, Bouchier-Hayes D, Murray P. Thermal preconditioning prevents peritendinous adhesions and inflammation. Clin Orthop Relat Res 2002:258-66. [PMID: 12461382 DOI: 10.1097/00003086-200212000-00033] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
Adhesion formation is one of the foremost obstacles to a reliably good outcome in tendon and joint surgery. Thermal preconditioning has been found to reduce the inflammatory response through the induction of molecular chaperone expression, a recently described family of cytoprotective intracellular proteins. The authors analyzed the effect of thermal preconditioning on the inflammatory response to surgery, on tendon healing, and on the formation of peritendinous adhesions in 16 New Zealand White rabbits. Very significant decreases in adhesion formation and in the gliding and dimensions of tendons in animals that had thermal preconditioning were found. Tendons from these animals also showed a decreased level of adhesion formation and a significantly diminished inflammatory response on histologic examination with no biomechanically significant deleterious effect on the strength of tendon healing on testing load to failure. These findings are consistent with induction of heat shock proteins by hyperthermic pretreatment. Such prevention of peritendinous adhesions and the inflammatory response to injury and surgery without compromising healing are findings that have significant implications for tendon surgery and all surgery involving joints and soft tissues.
Collapse
Affiliation(s)
- Kevin J Mulhall
- Department of Orthopaedic Surgery, Beaumont and Cappagh Hospitals, Dublin, Ireland
| | | | | | | | | | | |
Collapse
|
20
|
Krueger-Naug AMR, Plumier JCL, Hopkins DA, Currie RW. Hsp27 in the nervous system: expression in pathophysiology and in the aging brain. PROGRESS IN MOLECULAR AND SUBCELLULAR BIOLOGY 2002; 28:235-51. [PMID: 11908063 DOI: 10.1007/978-3-642-56348-5_13] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Affiliation(s)
- A M R Krueger-Naug
- Laboratory of Molecular Neurobiology, Department of Anatomy and Neurobiology, Dalhousie University, Halifax, Nova Scotia, Canada B3H 4H7
| | | | | | | |
Collapse
|
21
|
Charriaut-Marlangue C, Pollard H, Kadri-Hassani N, Khrestchatisky M, Moreau J, Dessi F, Kang KI, Ben-Ari Y. Increase in Specific Proteins and mRNAs Following Transient Anoxia - Aglycaemia in Rat CA1 Hippocampal Slices. Eur J Neurosci 2002; 4:766-776. [PMID: 12106321 DOI: 10.1111/j.1460-9568.1992.tb00186.x] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
Incorporation of [35S]methionine into proteins and two-dimensional gel autoradiograms was used to characterize early post-anoxia - aglycaemia protein synthesis in the CA1 area of rat hippocampal slices maintained in vitro. We have compared the effects of 3 - 4 min and 5 - 10 min insults, since the former but not the latter produces a reversible block of synaptic transmission (see companion paper). An insult of between 3 min 30 s and 4 min induces a transient increase in the labelled proteins during the first hour of reoxygenation, as compared to control. The increase in protein synthesis is conspicuous for several proteins, including actin, alpha-tubulin and heat-shock proteins (hsp70c and hsp90), as determined by immunoblotting. In the case of alpha-tubulin, we show with in situ hybridization and polymerase chain reaction procedures that the increase in protein synthesis is associated with a marked increase in the expression of the corresponding messenger RNAs. The results demonstrate that, in addition to regulatory proteins such as hsps, the synthesis of several polypeptides, including those associated with the cytoskeleton, is altered in anoxic damage.
Collapse
Affiliation(s)
- C. Charriaut-Marlangue
- INSERM U 29, Laboratoire de Neurobiologie et Physiopathologie du Développement, 123 Bld de Port-Royal, 75014 Paris, France
| | | | | | | | | | | | | | | |
Collapse
|
22
|
Lu K, Liang CL, Cho CL, Chen HJ, Hsu HC, Yiin SJ, Chern CL, Chen YC, Lee TC. Oxidative stress and heat shock protein response in human paraspinal muscles during retraction. J Neurosurg 2002; 97:75-81. [PMID: 12120656 DOI: 10.3171/spi.2002.97.1.0075] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
OBJECT The need for wide dissection and forceful retraction of paraspinal muscles often required for posterolateral lumbar fusion and fixation may severely jeopardize the muscles, structurally and functionally. The underlying pathophysiology of muscle damage may involve both mechanical and ischemic mechanisms. On the other hand, the surgery-related stress may trigger certain protective responses within the insulted paraspinal muscles. This study was conducted to assess the relationship between the oxidative stress and the stress response mediated by heat shock protein 70 (HSP70) induction within paraspinal muscles being retracted. METHODS Multifidus muscle specimens were surgically obtained before, during, and after retraction in patients with lumbar spondylolisthesis undergoing posterolateral lumbar fusion, pedicle fixation, and laminectomy. Muscle samples were analyzed to determine HSP70 and malondialdehyde (MDA) levels. Both HSP70 expression and MDA production within multifidus muscle cells were increased significantly by retraction. Expression of HSP70 then decreased after a peak at 1.5 hours of retraction, whereas MDA levels remained elevated even after release of retractors for reperfusion of the muscles. Analysis of histopathological and immunohistochemical evidence indicated that the decline of HSP70 synthesis within muscle cells after prolonged retraction was the result of severe muscle damage. CONCLUSIONS Results of this study highlight the deleterious effect of intraoperative retraction on human paraspinal muscles at the cellular and molecular levels. The authors also found that intraoperative maneuvers aimed at reducing the oxidative stress within the paraspinal muscles may help to attenuate surgery-related paraspinal muscle damage.
Collapse
Affiliation(s)
- Kang Lu
- Department of Neurosurgery, Chang Gung Memorial Hospital, Kaohsiung Medical Center, Kaohsiung Hsien, Taiwan.
| | | | | | | | | | | | | | | | | |
Collapse
|
23
|
Cvoro A, Matić G. Hyperthermic stress stimulates the association of both constitutive and inducible isoforms of 70 kDa heat shock protein with rat liver glucocorticoid receptor. Int J Biochem Cell Biol 2002; 34:279-85. [PMID: 11849995 DOI: 10.1016/s1357-2725(01)00117-0] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
Glucocorticoid hormone receptor exists in the cytoplasm of target cells in the form of dynamic multiprotein heterocomplexes with heat shock proteins Hsp90 and Hsp70, and additional components of the molecular chaperone machinery. Whole body hyperthermic stress was previously shown to induce alterations in protein composition of these complexes increasing the share of Hsp70, but participation of individual Hsp70 family members was not investigated. In the present study the association of glucocorticoid receptor with constitutive and inducible forms of Hsp70 in the liver cytosol of rats exposed to 41 degrees C whole body hyperthermic stress was examined. Immunoprecipitation of glucocorticoid receptor heterocomplexes by monoclonal anti-receptor antibody (BuGR2) followed by quantitative immunoblotting revealed the presence of both nucleocytoplasmic Hsp70 family members, constitutive--Hsc70 and inducible--Hsp72, within the complexes. Immediately after the stress only Hsc70 was found in association with glucocorticoid receptor. However, after the induction of Hsp72 by stress, its appearance within the glucocorticoid receptor heterocomplexes was also recorded and the presence of both Hsp70 forms within the heterocomplexes was evident by the end of examined 24h period after the stress. This study confirms that heat stress affects protein composition of rat liver glucocorticoid receptor heterocomplexes increasing the share of Hsp70 and shows that this increase could be equally ascribed to constitutive and inducible forms of Hsp70.
Collapse
Affiliation(s)
- Aleksandra Cvoro
- Department of Biochemistry, Institute for Biological Research, 29 Novembra 142, 11060, Belgrade, Yugoslavia
| | | |
Collapse
|
24
|
|
25
|
|
26
|
Ogita K, Takagi R, Oyama N, Okuda H, Ito F, Okui M, Shimizu N, Yoneda Y. Decrease in level of APG-2, a member of the heat shock protein 110 family, in murine brain following systemic administration of kainic acid. Neuropharmacology 2001; 41:285-93. [PMID: 11522319 DOI: 10.1016/s0028-3908(01)00081-8] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
APG-2 belongs to the heat shock protein 110 family. Although kainic acid (KA)-induced seizures are known to elicit expression of inducible heat shock protein 70 (HSP70) in the brain, no investigation has been carried out on the APG-2 level after excitatory amino acid-induced seizures. By means of an immunoblot assay, we determined the levels of HSP70 and APG-2 in discrete brain structures of mice after a single intraperitoneal injection of KA or N-methyl-D-aspartic acid (NMDA). APG-2 level was significantly decreased in frontal cortex, hippocampus, and striatum three days after the administration of KA, while HSP70 level was increased in these regions following the administration. In any of these regions, APG-2 levels were returned to the control levels 10 days after the administration. However, no significant changes were observed in levels of both HSP70 and APG-2 in hypothalamus, midbrain, medulla-pons, and cerebellum of the mice. By contrast, NMDA administration did not significantly affect both levels in any of the regions examined. These findings indicate that the transient decrease in APG-2 expression is one of the intracellular events elicited by signals peculiar to KA, but not by those peculiar to NMDA, in telencephalon of murine brain.
Collapse
Affiliation(s)
- K Ogita
- Department of Pharmacology, Faculty of Pharmaceutical Sciences, Setsunan University, 45-1 Nagaotoge-cho, Hirakata, Osaka 573-0101, Japan.
| | | | | | | | | | | | | | | |
Collapse
|
27
|
Motoyoshi N, Sakurai M, Hayashi T, Aoki M, Abe K, Itoyama Y, Tabayashi K. Establishment of a local cooling model against spinal cord ischemia representing prolonged induction of heat shock protein. J Thorac Cardiovasc Surg 2001; 122:351-7. [PMID: 11479509 DOI: 10.1067/mtc.2001.113935] [Citation(s) in RCA: 20] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
OBJECTIVES Paraplegia is one of the serious complications of thoracoabdominal aortic operations. Regional hypothermia protects against spinal cord ischemia although the protective mechanism remains unknown. We attempted to create a simple model of local cooling under transient spinal cord ischemia and evaluated the effect using functional and histologic findings. METHODS Male domesticated rabbits were divided into 3 groups: control, normothermic group (group N), and local hypothermic group (group H). A balloon catheter was used for spinal cord ischemia by abdominal aortic clamping. A cold pack attached to the lumbar region could lower the regional cord temperature initially. Neurologic function was evaluated by the Johnson score. Cell damage was analyzed by observing motor neurons with the use of hematoxylin and eosin staining, terminal deoxynucleotidyl transferase-mediated deoxy-uracil triphosphate biotin in situ nick end labeling (TUNEL), and immunoreactivity of heat shock protein. RESULTS Physiologic estimation showed that local hypothermia improved the functional deficits (group N, 1.3 +/- 0.9; group H, 4.9 +/- 0.3; P =.0020). Seven days after reperfusion, there was a significant difference in the motor neuron numbers between groups N and H (group N, 7.2 +/- 1.9; group H, 20.4 +/- 3.2; P =.0090). The number of TUNEL-positive motor neurons was reduced significantly (group N, 7.2 +/- 2.4; group H, 1.0 +/- 0.7; P =.0082). Heat shock protein immunoreactivity was prolonged up to 2 days after reperfusion in the hypothermic group. CONCLUSIONS These results suggest that local hypothermia extended the production of heat shock protein in spinal cord motor neurons after reperfusion and inhibited their apoptotic change.
Collapse
Affiliation(s)
- N Motoyoshi
- Departments of Cardiovascular Surgery and Neurology, Graduate School of Medicine, Tohoku University, Sendai, Japan
| | | | | | | | | | | | | |
Collapse
|
28
|
Allen GV, Chase T. Induction of heat shock proteins and motor function deficits after focal cerebellar injury. Neuroscience 2001; 102:603-14. [PMID: 11226697 DOI: 10.1016/s0306-4522(00)00519-4] [Citation(s) in RCA: 21] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
A weight drop model of focal cerebellar injury was used to identify heat shock protein induction and motor function deficits in the anesthetized, adult male, Sprague-Dawley rat. All animals were trained on a beam walking test prior to surgery. Groups of animals received severe, mild or sham weight drop injury to the lateral/paravermal region of the cerebellum. The mild and sham-injured animals showed no motor deficits in the beam walking test, whereas animals with severe cerebellar injury showed significant motor deficits in the beam walking test that approached recovery of motor function 20 days after injury. Following severe injury, induction of heat shock protein of 27kDa was observed in Purkinje cells and in neurons of the deep cerebellar nuclei, as well as Bergmann glial cells, glial cells located in the granule cell layer and the underlying white matter. Following mild injury, heat shock protein of 27kDa induction was observed in Purkinje cells and glial cells, but not in neurons of the deep cerebellar nuclei. The labeled Purkinje cells were widely distributed in the ipsilateral cerebellar cortex. Many of the glial cells that were immunostained with heat shock protein of 27kDa co-localized with cells immunoreactive for glial fibrillary acidic protein. After severe injury, heat shock protein of 72kDa was localized mainly in granule cells at the site of the trauma and in the ipsilateral deep cerebellar nuclei whereas, after mild injury, light labeling was observed only in the granule cell layer. The results demonstrate that focal cerebellar injury has profound effects on motor behavior and induces different families of heat shock proteins in specific groups of neurons and glial cells in the cerebellum.
Collapse
Affiliation(s)
- G V Allen
- Department of Anatomy & Neurobiology, Faculty of Medicine, Dalhousie University, Nova Scotia, B3H 4H7, Halifax, Canada.
| | | |
Collapse
|
29
|
House SD, Guidon PT, Perdrizet GA, Rewinski M, Kyriakos R, Bockman RS, Mistry T, Gallagher RA, Hightower LE. Effects of heat shock, stannous chloride, and gallium nitrate on the rat inflammatory response. Cell Stress Chaperones 2001; 6:164-71. [PMID: 11599578 PMCID: PMC434394 DOI: 10.1379/1466-1268(2001)006<0164:eohssc>2.0.co;2] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2000] [Revised: 02/16/2001] [Accepted: 02/20/2001] [Indexed: 11/24/2022] Open
Abstract
Heat and a variety of other stressors cause mammalian cells and tissues to acquire cytoprotection. This transient state of altered cellular physiology is nonproliferative and antiapoptotic. In this study, male Wistar rats were stress conditioned with either stannous chloride or gallium nitrate, which have immunosuppressive effects in vivo and in vitro, or heat shock, the most intensively studied inducer of cytoprotection. The early stages of inflammation in response to topical suffusion of mesentery tissue with formyl-methionyl-leucyl-phenylalanine (FMLP) were monitored using intravital microscopy. Microvascular hemodynamics (venular diameter, red blood cell velocity [Vrbc], white blood cell [WBC] flux, and leukocyte-endothelial adhesion [LEA]) were used as indicators of inflammation, and tissue levels of inducible Hsp70, determined using immunoblot assays, provided a marker of cytoprotection. None of the experimental treatments blocked decreases in WBC flux during FMLP suffusion, an indicator of increased low-affinity interactions between leukocytes and vascular endothelium known as rolling adhesion. During FMLP suffusion LEA, an indicator of firm attachment between leukocytes and vascular endothelial cells increased in placebo and gallium nitrate-treated animals but not in heat- and stannous chloride-treated animals, an anti-inflammatory effect. Hsp70 was not detected in aortic tissue from placebo and gallium nitrate-treated animals, indicating that Hsp70-dependent cytoprotection was not present. In contrast, Hsp70 was detected in aortic tissues from heat- and stannous chloride-treated animals, indicating that these tissues were in a cytoprotected state that was also an anti-inflammatory state.
Collapse
Affiliation(s)
- S D House
- Department of Biology, Seton Hall University, South Orange, NJ 07079, USA.
| | | | | | | | | | | | | | | | | |
Collapse
|
30
|
Abstract
Gun shot wounds to the brain are among the most devastating causes of morbidity and mortality in the civilian population. The majority of the victims will not survive and for a great number of survivors life becomes an uphill battle with permanent deficits and complications. While the fundamental surgical care of these patients is essentially unchanged, our scientific understanding of the pathophysiological changes and the post-injury care of the victims has been evolving. The purpose of this article is to provide an overview of the current clinical and laboratory advances in understanding and treating gun shot injuries to the brain.
Collapse
Affiliation(s)
- R M Abdolvahabi
- Department of Neurological Surgery, Wayne State University School of Medicine, Detroit, MI, USA.
| | | | | | | |
Collapse
|
31
|
Abstract
It has been established that following injury to the central nervous system two types of damage take place, the initial insult and the secondary response to injury. This review will focus on the secondary molecular aspects of neurotrauma. These responses may be either deleterious or have protective effects upon the injured cell population. Molecular responses include the regulation of genes which change cellular architecture, up-regulate of growth factors, induce reparative stress responses, influence apoptosis and regulate the transcriptional process. The purpose of this study is to provide the reader with a brief overview of some of the molecular mechanisms which are activated following a neurological insult.
Collapse
Affiliation(s)
- S A Dutcher
- Department of Neurological Surgery, Wayne State University School of Medicine, Detroit, MI, USA
| | | |
Collapse
|
32
|
Krueger-Naug AM, Hopkins DA, Armstrong JN, Plumier JC, Currie RW. Hyperthermic induction of the 27-kDa heat shock protein (Hsp27) in neuroglia and neurons of the rat central nervous system. J Comp Neurol 2000; 428:495-510. [PMID: 11074447 DOI: 10.1002/1096-9861(20001218)428:3<495::aid-cne7>3.0.co;2-4] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
The 27-kDa heat shock protein (Hsp27) is constitutively expressed in many neurons of the brainstem and spinal cord, is strongly induced in glial cells in response to ischemia, seizures, or spreading depression, and is selectively induced in neurons after axotomy. Here, the expression of Hsp27 was examined in brains of adult rats from 1.5 hours to 6 days after brief hyperthermic stress (core body temperature of 42 degrees C for 15 minutes). Twenty-four hours following hyperthermia, Western blot analysis showed that Hsp27 was elevated in the cerebral cortex, hippocampus, cerebellum, and brainstem. Immunohistochemistry for Hsp27 revealed a time-dependent, but transient, increase in the level of Hsp27 immunoreactivity (Hsp27 IR) in neuroglia and neurons. Hsp27 IR was detected in astrocytes throughout the brain and in Bergmann glia of the cerebellum from 3 hours to 6 days following heat shock. Peak levels were apparent at 24 hours, gradually declining thereafter. In addition, increases in Hsp27 IR were detected in the ependyma and choroid plexus. Hyperthermia induced Hsp27 IR in neurons of the subfornical organ and the area postrema within 3 hours and reached a maximum by 24 hours with a return to control levels 4-6 days after hyperthermia. Specific populations of hypothalamic neurons also showed Hsp27 IR after hyperthermia. These results demonstrate that hyperthermia induces transient expression of Hsp27 in several types of neuroglia and specific populations of neurons. The pattern of induced Hsp27 IR suggests that some of the activated cells are involved in physiological responses related to body fluid homeostasis and temperature regulation.
Collapse
Affiliation(s)
- A M Krueger-Naug
- Laboratory of Molecular Neurobiology, Dalhousie University, Halifax, Nova Scotia B3H 4H7, Canada
| | | | | | | | | |
Collapse
|
33
|
Allen GV, Gerami D, Esser MJ. Conditioning effects of repetitive mild neurotrauma on motor function in an animal model of focal brain injury. Neuroscience 2000; 99:93-105. [PMID: 10924955 DOI: 10.1016/s0306-4522(00)00185-8] [Citation(s) in RCA: 64] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A weight drop model of brain injury was used to determine the effects of repetitive mild brain injury on motor function, heat shock protein and glial fibrillary acidic protein expression in the anesthetized, adult male, Sprague-Dawley rat. Repetitive mild brain injury was produced when animals received a series of three mild injuries spaced three days apart. A separate group of repetitive mild injured animals also received a subsequent severe brain injury between three and five days after the last mild injury. All animals were trained on a beam-walking test prior to surgery. The mild, repetitive mild and repetitive mild plus severe brain injury groups showed no motor deficits in the beam-walking test, whereas the animals with only severe brain injury showed significant motor deficits (increase in number of footslips) in the beam-walking test that recovered within eight days after injury. Both repetitive mild plus severe injury and severe injury only animals had cortical necrotic cavities of similar size in the region of the hindlimb motor cortex. Both the repetitive mild and severe brain-injured animals had marked heat shock protein 27kDa and glial fibrillary acidic protein staining in the cerebral cortex. Fluoro-Jade, heat shock protein 27kDa and 72kDa labeling indicated that there were widespread effects on cortical, subcortical and spinal neurons and glial cells after repetitive mild brain injury. These results suggest that repetitive mild brain injury conditions the brain so that subsequent brain injury at the same site has no effect on motor function. Furthermore, repetitive mild injury-induced activation of processes distant to the primary injury site may have a role in activation of secondary sites involved in recovery of motor function.
Collapse
Affiliation(s)
- G V Allen
- Departments of Anatomy and Neurobiology, Faculty of Medicine, Dalhousie University, Nova Scotia, B3H 4H7, Halifax, Canada.
| | | | | |
Collapse
|
34
|
Currie RW, Ellison JA, White RF, Feuerstein GZ, Wang X, Barone FC. Benign focal ischemic preconditioning induces neuronal Hsp70 and prolonged astrogliosis with expression of Hsp27. Brain Res 2000; 863:169-81. [PMID: 10773205 DOI: 10.1016/s0006-8993(00)02133-8] [Citation(s) in RCA: 127] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
We have established a focal preconditioning (PC) paradigm that produces significant and prolonged ischemic tolerance (IT) of the brain to subsequent permanent middle cerebral artery occlusion (MCAO). PC using 10 min of MCAO induces brain tolerance at 1-7 days of reperfusion that requires active protein synthesis. The protective protein(s) involved are unknown. In these studies the increased transcription and translation of the inducible 70-kDa heat shock protein (Hsp70) and the 27-kDa heat shock protein (Hsp27), and astrogliosis/glial fibrillary acidic protein (GFAP) were determined by Northern analysis and immunohistochemistry following PC. Cellular localization of proteins was determined by double labeling. PC produced no brain injury but did increase Hsp70 mRNA transiently at 6 h and increased Hsp27 mRNA later at 24 h for at least 5 days. Protein expression induced by PC exhibited a similar profile. Hsp70 protein was primarily expressed in neurons from 1 to 5 days post-PC throughout the PC cortex. Hsp27 protein expression was initiated later for a much longer period of time. A remarkable astroglyosis was verified with increased astrocytic Hsp27 from 1 to 7 days after PC. Gliosis with increased Hsp27 in the PC cortex was still present but reduced 4 weeks after PC. Therefore, PC that results in brain tolerance/neuroprotection increases neuronal Hsp70 in the PC cortex and activated astrocytic Hsp27 in the PC cortex in a temporal fashion associated with developing IT. The short duration of benign ischemia (PC) that produces IT produces a robust, long-lived cellular and protein synthetic response that extends throughout the entire cortex (i.e. well beyond the MCA perfusion territory). The resulting IT is associated with changes in astrocyte-activation that might provide increased support and protection from injury. Although both Hsp70 and Hsp27 may participate in the neuroprotection/brain tolerance induced by PC, the temporal expression patterns of these proteins indicate that they are not solely responsible for the tolerance to brain injury.
Collapse
Affiliation(s)
- R W Currie
- Laboratory of Molecular Neurobiology, Department of Anatomy and Neurobiology, Faculty of Medicine, Dalhousie University, Halifax, Canada
| | | | | | | | | | | |
Collapse
|
35
|
Armstrong CL, Krueger-Naug AM, Currie RW, Hawkes R. Constitutive expression of the 25-kDa heat shock protein Hsp25 reveals novel parasagittal bands of purkinje cells in the adult mouse cerebellar cortex. J Comp Neurol 2000; 416:383-97. [PMID: 10602096 DOI: 10.1002/(sici)1096-9861(20000117)416:3<383::aid-cne9>3.0.co;2-m] [Citation(s) in RCA: 130] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Despite the reported absence of the 25-kDa heat shock protein Hsp25 in the rodent cerebellum, we have determined that Hsp25 is constitutively expressed in a subset of Purkinje cells in the adult cerebellum of the mouse. No other cerebellar neurons are Hsp25 immunoreactive, but there is weak staining associated with blood vessels. In the vermis, Hsp25-immunoreactive Purkinje cells are confined to two regions: one in lobules VI/VII, the other in lobules IX/X. In each region, only a subset of the Purkinje cells is immunoreactive. These cells are grouped in five parasagittal bands arranged symmetrically about the midline. The boundaries of these expression domains correspond to transverse zones previously inferred from other expression patterns. A third Hsp25-immunopositive domain is seen in the paraflocculus and flocculus. Again, only a subset of Purkinje cells within the paraflocculus and flocculus express Hsp25, revealing three distinct bands. Previous descriptions of compartmentation antigens have not differentiated between adult populations of Purkinje cells in these regions, suggesting that Hsp25 is a novel compartmentation antigen in the adult cerebellum.
Collapse
Affiliation(s)
- C L Armstrong
- Department of Cell Biology and Anatomy, and Genes and Development Research Group, Faculty of Medicine, The University of Calgary, Calgary, Alberta T2N 4N1, Canada
| | | | | | | |
Collapse
|
36
|
Krueger AM, Armstrong JN, Plumier J, Robertson HA, Currie RW. Cell specific expression of Hsp70 in neurons and glia of the rat hippocampus after hyperthermia and kainic acid-induced seizure activity. BRAIN RESEARCH. MOLECULAR BRAIN RESEARCH 1999; 71:265-78. [PMID: 10521581 DOI: 10.1016/s0169-328x(99)00198-9] [Citation(s) in RCA: 54] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
In this study we investigated the time course, cell-type and stress-specific expression of hsp70 mRNA and Hsp70 protein in glial cells and neurons in the rat brain following heat shock treatment and kainic acid-induced status epilepticus. Transcripts for hsp70 were detected in hippocampal homogenates from 1.5 to 6 h following hyperthermia and from 3 to 24 h following kainic acid-induced seizures. In situ hybridization revealed hsp70 mRNA to be region specific and time-dependent following hyperthermia and kainic acid-induced seizures. Western analysis indicated that Hsp70 reached maximal levels at 3 h after hyperthermia and 12 h after kainic acid-induced seizures. Immunohistochemistry revealed low level expression of Hsp70 protein in dentate granule cells at 1.5 and 3 h after hyperthermia. No Hsp70 protein was detected in neurons of the pyramidal cell layer or dentate hilus at any time following hyperthermia. Small Hsp70-immunoreactive cells were detected throughout the hippocampus following hyperthermia that, based on cell size, distribution, and double-labeling with vimentin, were considered to be glia. In contrast, high levels of Hsp70 protein were detected in neurons of the pyramidal cell layer and dentate hilus at 24 h after seizure-inducing kainic acid injection. These results suggest that expression of Hsp70 protein is cell-specific depending on the stressor. In addition, finding high levels of Hsp70 mRNA in the dentate granule cells after hyperthermia, but little or no Hsp70 protein, suggests that the synthesis of the protein is also regulated at the post-transcriptional level following hyperthermia.
Collapse
Affiliation(s)
- A M Krueger
- Laboratory of Molecular Neurobiology, Dalhousie University, Halifax, Nova Scotia, Canada
| | | | | | | | | |
Collapse
|
37
|
Abstract
Acute myocardial ischemia initiates a cascade of cellular events that lead to irreversible injury. We previously described the transient nature of heat-shock induced cardioprotection; treatment with a catalase inhibitor abolished the cytoprotective actions without affecting expression levels of HSP71. Repeated, transient ischemic episodes augment the ischemic tolerance of affected myocardium but the fundamental cytoprotective mechanism(s) for both "early" and "delayed" preconditioning remains unclear. Increased cellular induction of protooncogenes, heat shock genes, and downstream effector proteins might play critical roles in the cytoprotection afforded by delayed preconditioning. We measured c-fos, c-jun, c-myc, and hsp70 induction in preconditioned (2 x 5-min ischemia/10-min reperfusion) and control rabbit hearts that either underwent 30- or 120-min coronary occlusion and 60-min reperfusion, or did not undergo subsequent sustained ischemia; the latter hearts were allowed to recover for 0, 1, 3, 6, 24, 48, 72, or 96 hours. Both c-fos and c-jun in ischemic tissue were strongly induced by ischemia-reperfusion injury and preconditioning pretreatment. However, expression levels diminished significantly by 1-h reperfusion and remained depressed during the 96-h recovery period. Hsp70 (inducible) mRNA expression levels were highest primarily in ischemic myocardium after 6-h recovery post-preconditioning; Hsp70 levels in ischemic myocardium were slightly stronger after 48-h recovery but subsequently diminished to barely detectable levels by 96-h post-preconditioning. Induction of c-fos and c-jun preceded that of Hsp70. These findings support the concept that upregulation of immediate early genes and heat shock genes plays an important role in myocardial adaptation to acute ischemic stress.
Collapse
Affiliation(s)
- J G Kingma
- Department of Medicine, Faculty of Medicine, Laval University, Cité Universitaire, Ste.-Foy, Québec, Canada.
| |
Collapse
|
38
|
Xia XY, Ikeda T, Ota A, Xia YX, Sameshima H, Ikenoue T, Toshimori K. Heat shock protein 72 expression and microtubule-associated protein 2 disappearance after hypoxia-ischemia in the developing rat brain. Am J Obstet Gynecol 1999; 180:1254-62. [PMID: 10329886 DOI: 10.1016/s0002-9378(99)70625-3] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
OBJECTIVE This study was intended to investigate the temporal changes in heat shock protein 72 expression and microtubule-associated protein 2 disappearance in rat brain at 2 different ages after hypoxic-ischemic insult. STUDY DESIGN Both 5-day-old and 14-day-old Wistar rats were subjected to unilateral common carotid artery ligation and hypoxia in 8% oxygen for 2 hours at 33 degrees C. Brain sections were examined sequentially for heat shock protein 72 expression at 0.5, 3, 6, 12, 24, 48, and 72 hours of recovery after hypoxia-ischemia and for microtubule-associated protein 2 disappearance at 0, 24, 48, and 72 hours of recovery and at 7 days of recovery after hypoxia-ischemia. Results of immunohistochemical staining for heat shock protein 72 and microtubule-associated protein 2 were used as markers for detection of early hypoxic-ischemic brain damage. Permanent neuronal damage was assessed with hematoxylin and eosin staining at 7 days after hypoxia. RESULTS In 5-day-old rats microtubule-associated protein 2 expression was lost as early as 0 hours after hypoxia-ischemia in the cerebral cortex and hippocampus, with a peak at 48 hours after which expression recovered. Expression of heat shock protein 72 was detected in the ligated hemisphere at 0.5 hours after hypoxia-ischemia and peaked at 6 to 24 hours of recovery. In 14-day-old rats microtubule-associated protein 2 was stained in the cortex at 0 hours after hypoxia-ischemia but gradually disappeared in the cerebral cortex and hippocampus after 24 hours of recovery. The expression of heat shock protein 72 was not detected by 6 hours of recovery in the cerebral cortex and by 3 to 12 hours of recovery in the hippocampus, but heat shock protein 72 was persistently expressed in the cortex and hippocampus after 48 hours of recovery. Neuronal damage was significantly less in 5-day-old rats than in 14-day-old rats. CONCLUSION In 5-day-old rats hypoxia-ischemia causes earlier changes in heat shock protein 72 and microtubule-associated protein 2 immunostaining results and causes less severe brain damage than in 14-day-old rats.
Collapse
Affiliation(s)
- X Y Xia
- Department of Obstetrics, Miyazaki Medical College, Japan
| | | | | | | | | | | | | |
Collapse
|
39
|
|
40
|
Cvoro A, Dundjerski J, Trajković D, Matić G. Association of the rat liver glucocorticoid receptor with Hsp90 and Hsp70 upon whole body hyperthermic stress. J Steroid Biochem Mol Biol 1998; 67:319-25. [PMID: 9883988 DOI: 10.1016/s0960-0760(98)00103-4] [Citation(s) in RCA: 21] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/16/2022]
Abstract
The influence of whole body hyperthermic stress (41 degrees C, 15 min) on association of the glucocorticoid receptor (GR) with heat shock proteins Hsp90 and Hsp70 was followed in rat liver cytosol during a 24 h period after the stress. Total cytosolic concentration of the GR, Hsp90 and Hsp70 and the amounts of Hsp90 and Hsp70 co-immunopurified with the GR were determined by a quantitative Western blotting using appropriate monoclonal antibodies. A significant decrease in the cytosolic GR level in response to the stress was noticed. The ratio of the amount of the GR to Hsp90 recruited by the GR was found to be unaltered by hyperthermia, in spite of the stress-induced increase in the total Hsp90 concentration in the cytosol. Hsp70 was also found in association with the GR and its 2.5-fold induction by the stress was accompanied by about 3-fold increase in its relative amount that co-immunopurified with the GR. The results suggest that heat stress influences the interaction of the GR with Hsp70 through the mechanisms controlling the untransformed rat liver GR heterocomplexes assembly process.
Collapse
Affiliation(s)
- A Cvoro
- Department of Molecular Biology and Biochemistry, Institute for Biological Research, Belgrade, Serbia, Yugoslavia
| | | | | | | |
Collapse
|
41
|
Barone FC, White RF, Spera PA, Ellison J, Currie RW, Wang X, Feuerstein GZ. Ischemic preconditioning and brain tolerance: temporal histological and functional outcomes, protein synthesis requirement, and interleukin-1 receptor antagonist and early gene expression. Stroke 1998; 29:1937-50; discussion 1950-1. [PMID: 9731622 DOI: 10.1161/01.str.29.9.1937] [Citation(s) in RCA: 312] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
BACKGROUND AND PURPOSE A short duration of ischemia (ie, ischemic preconditioning [PC]) can provide significant brain protection to subsequent ischemic events (ie, ischemic tolerance [IT]). The present series of studies was conducted to characterize the temporal pattern of a PC paradigm, to systematically evaluate the importance of protein synthesis in PC-induced IT, and to explore candidate gene expression changes associated with IT. METHODS Temporary middle cerebral artery occlusion (MCAO) (10 minutes) was used for PC. Various periods of reperfusion (ie, 2, 6, and 12 hours and 1, 2, 7, 14, and 21 days) were allowed after PC and before permanent MCAO (PMCAO) (n=7 to 9 per group) to establish IT compared with non-PC (sham-operated) rats (n=22). Infarct size, forelimb and hindlimb motor function, and cortical perfusion (laser-Doppler flowmetry; n=9 per group) were measured after PMCAO. The effects of the protein synthesis inhibitor cycloheximide administered just before PC (n= 13 to 17) or administered long after PC but just before PMCAO (n=7 to 8) on IT were also determined. Interleukin- receptor antagonist mRNA (reverse transcriptase and polymerase chain reactions [n=20] and Northern analysis [n=50]) and protein expression (immunohistochemistry [n=16]) after PC and early response gene expression (Northern analysis [n=16]) after PMCAO in PC animals were determined. RESULTS Hemispheric infarct was significantly (P<0.01) reduced only if PC was performed 1 day (decreased 58.4%), 2 days (decreased 58.1%), or 7 days (decreased 59.4%) before PMCAO. PC significantly (P<0.01) reduced neurological deficits (similar to reductions in infarct size). Cycloheximide eliminated ischemic PC-induced IT effects on both brain injury and neurological deficits if administered before PC (P<0.05) but not if administered long after PC but before PMCAO. PC did not produce any significant brain injury, alter cortical blood flow after PMCAO, or produce contralateral cortical neuroprotection. Interleukin-1 receptor antagonist mRNA and protein expression were increased significantly (P<0.01) only during the IT period. PC rats also exhibited a significant (P<0.01) reduction in c-fos and zif268 mRNA expression after PMCAO. CONCLUSIONS PC is a powerful inducer of ischemic brain tolerance as reflected by preservation of brain tissue and motor function. PC induces IT that is dependent on de novo protein synthesis. New protein(s) that occurs at the PC brain site 1 to 7 days after PC contributes to the neuroprotection. Those proteins that are produced after the more severe PMCAO in PC animals apparently do not contribute to IT. The PC-induced IT is also associated with increased expression of the neuroprotective protein interleukin-1 receptor antagonist and a reduced postischemic expression of the early response genes c-fos and zif268. (Stroke. 1998;29:1937-1951.)
Collapse
Affiliation(s)
- F C Barone
- Department of Cardiovascular Pharmacology, SmithKline Beecham Pharmaceuticals, King of Prussia, PA 19406, USA. Frank
| | | | | | | | | | | | | |
Collapse
|
42
|
Aronson D, Wojtaszewski JF, Thorell A, Nygren J, Zangen D, Richter EA, Ljungqvist O, Fielding RA, Goodyear LJ. Extracellular-regulated protein kinase cascades are activated in response to injury in human skeletal muscle. THE AMERICAN JOURNAL OF PHYSIOLOGY 1998; 275:C555-61. [PMID: 9688610 DOI: 10.1152/ajpcell.1998.275.2.c555] [Citation(s) in RCA: 60] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
The mitogen-activated protein (MAP) kinase signaling pathways are believed to act as critical signal transducers between stress stimuli and transcriptional responses in mammalian cells. However, it is not known whether these signaling cascades also participate in the response to injury in human tissues. To determine whether injury to the vastus lateralis muscle activates MAP kinase signaling in human subjects, two needle biopsies or open muscle biopsies were taken from the same incision site 30-60 min apart. The muscle biopsy procedures resulted in striking increases in dual phosphorylation of the extracellular-regulated kinases (ERK1 and ERK2) and in activity of the downstream substrate, the p90 ribosomal S6 kinase. Raf-1 kinase and MAP kinase kinase, upstream activators of ERK, were also markedly stimulated in all subjects. In addition, c-Jun NH2-terminal kinase and p38 kinase, components of two parallel MAP kinase pathways, were activated following muscle injury. The stimulation of the three MAP kinase cascades was present only in the immediate vicinity of the injury, a finding consistent with a local rather than systemic activation of these signaling cascades in response to injury. These data demonstrate that muscle injury induces the stimulation of the three MAP kinase cascades in human skeletal muscle, suggesting a physiological relevance of these protein kinases in the immediate response to tissue injury and possibly in the initiation of wound healing.
Collapse
Affiliation(s)
- D Aronson
- Research Division, Joslin Diabetes Center, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, Massachusetts 02215, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
43
|
Dutcher SA, Underwood BD, Walker PD, Diaz FG, Michael DB. Patterns of heat-shock protein 70 biosynthesis following human traumatic brain injury. J Neurotrauma 1998; 15:411-20. [PMID: 9624626 DOI: 10.1089/neu.1998.15.411] [Citation(s) in RCA: 40] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Heat-shock protein 70 (hsp70) is activated upon cellular stress/injury and participates in the folding and intracellular transport of damaged proteins. The expression of hsp70 following CNS trauma has been speculated to be part of a cellular response which is involved in the repair of damaged proteins. In this study, we measured hsp70 mRNA and protein levels within human cerebral cortex subjected to traumatic brain injury. Specimens were obtained during routine neurosurgery for trauma and processed for Northern mRNA and Western protein analysis. The largest increase in hsp70 mRNA levels was detected in trauma tissue obtained 4-6 h following injury. By 24 h, hsp70 mRNA levels were similar to nontrauma comparison tissues. hsp70 protein expression exhibited its greatest increases at 12-20 h post-injury. Immunocytological techniques revealed hsp70 protein expression in cells with neuronal-like morphology at 12 h after injury. These results suggest a role for hsp70 in human cortex following TBI. Moreover, since the temporal induction pattern of hsp70 biosynthesis is similar to that reported in the rodent, our observations validate the importance of rodent brain injury models in providing useful information directly applicable to human brain injury.
Collapse
Affiliation(s)
- S A Dutcher
- Department of Neurological Surgery, Wayne State University School of Medicine, Detroit, Michigan 48201, USA
| | | | | | | | | |
Collapse
|
44
|
Sakurai M, Hayashi T, Abe K, Aoki M, Sadahiro M, Tabayashi K. Enhancement of heat shock protein expression after transient ischemia in the preconditioned spinal cord of rabbits. J Vasc Surg 1998; 27:720-5. [PMID: 9576086 DOI: 10.1016/s0741-5214(98)70238-1] [Citation(s) in RCA: 57] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
PURPOSE This investigation was designed to evaluate the mechanism used to acquire a tolerance to spinal ischemia. We investigated inductions of the heat shock protein (HSP) 70 gene and protein in rabbit spinal cord with or without preconditioning. METHODS Neurologic function, morphologic changes, and inductions of HSP70 messenger RNA (mRNA) and protein were compared in the cases of a 15-minute ischemia 2 days after sham treatment and a 15-minute ischemia 2 days after 10-minute preconditioning. RESULT HSP70 mRNA was induced at 8 hours of reperfusion after a 15-minute ischemia 2 days after sham treatment. HSP70 protein was induced slightly in selective motor neuron cells at 8 hours of reperfusion, and about 70% of motor neuron cells showed selective cell death after 7 days of reperfusion (p < 0.01). On the other hand, large populations of the motor neuron cells survived at 7 days after the 15-minute ischemia that was applied at 2 days after preconditioning (p < 0.01). HSP70 mRNA was induced persistently as compared with the case of a 15-minute ischemia 2 days after sham treatment. The motor neuron cells strongly produced immunoreactive HSP70 from 8 hours to 2 days. CONCLUSION Preconditioning with 10-minute ischemia enhanced and prolonged the HSP70 gene expression at both mRNA and protein levels and saved the motor neuron cells from subsequent lethal ischemia. These changes of HSP70 gene expression may play an important role in the acquisition of ischemic tolerance of motor neuron cells in rabbit spinal cord.
Collapse
Affiliation(s)
- M Sakurai
- Department of Thoracic and Cardiovascular Surgery, Tohoku University School of Medicine, Sendai, Japan
| | | | | | | | | | | |
Collapse
|
45
|
Chen M, Clark RS, Kochanek PM, Chen J, Schiding JK, Stetler RA, Simon RP, Graham SH. 72-kDa heat shock protein and mRNA expression after controlled cortical impact injury with hypoxemia in rats. J Neurotrauma 1998; 15:171-81. [PMID: 9528917 DOI: 10.1089/neu.1998.15.171] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
As part of the stress response, the 72 kDa heat shock protein (hsp72) is induced in neurons after ischemic and traumatic brain injury (TBI). To examine the stress response after TBI with secondary insult, we examined the regional and cellular expression of hsp72 mRNA and protein after controlled cortical impact (CCI) injury with secondary hypoxemia and mild hypotension in rats. Rats were killed at 6, 8, 24, 72, or 168 h after trauma. Naive and sham-operated rats were used as controls. Brains were removed, and in situ hybridization (n = 2/group), immunocytochemistry (n = 4/group), and Western blot analysis (n = 3 to 5/group) for hsp72 was performed. Hsp72 mRNA was expressed in neurons in the ipsilateral cortex, CA3 region of the hippocampus, hilus, and dentate gyrus at 6 h. Hsp72 mRNA was expressed primarily in the ipsilateral cortex, at 24 h, and by 72 h hsp72 mRNA expression returned to near basal levels. Hsp72 protein was seen in ipsilateral cortical neurons, hilar neurons, and neurons in the medial aspect of the CA3 region of the hippocampus (CA3-c) at 24 h. At 72 h, hsp72 immunoreactivity was reduced versus 24 h in these same regions, but it was increased versus baseline. Western blot analysis confirmed an increase in hsp72 protein in the ipsilateral cortex. The regional pattern of hsp72 mRNA induction in neurons was similar to the pattern of protein expression after CCI, with the exceptions that hsp72 mRNA, but not protein, was expressed in the dentate gyrus and the lateral aspect of the CA3 region of the hippocampus (CA3-a). The stress response, as detected by hsp72 expression, is induced in some neurons in some regions that are selectively vulnerable to delayed neuronal death in this model of TBI. The failure to translate some proteins including hsp72 may be associated with delayed neuronal death in certain hippocampal regions after TBI.
Collapse
Affiliation(s)
- M Chen
- Department of Anesthesiology and Critical Care Medicine, University of Pittsburgh, Safar Center for Resuscitation Research, Pennsylvania 15260, USA
| | | | | | | | | | | | | | | |
Collapse
|
46
|
The Heat Shock Response and Tissue Protection. DELAYED PRECONDITIONING AND ADAPTIVE CARDIOPROTECTION 1998. [DOI: 10.1007/978-94-011-5312-6_7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|
47
|
Meldrum DR, Cleveland JC, Moore EE, Partrick DA, Banerjee A, Harken AH. Adaptive and maladaptive mechanisms of cellular priming. Ann Surg 1997; 226:587-98. [PMID: 9389392 PMCID: PMC1191120 DOI: 10.1097/00000658-199711000-00003] [Citation(s) in RCA: 54] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
OBJECTIVE The mechanisms of cellular priming resulting in both adaptive and maladaptive responses to subsequent injury and strategies for manipulating this priming to constructive therapeutic advantage are explored. BACKGROUND DATA A cell is prepared or educated by an initial insult (priming stimulus). Investigations in both laboratory animals and humans indicate that cells, organs, and perhaps even whole patients respond differently to a proximal second insult ("second hit") by virtue of this prior environmental history. The opportunity to achieve the primed state appears to be conserved across almost all cell types. The initial stimulus transmits a message to the cellular machinery that influences the cell's response to a subsequent challenge. This response may result in an exaggerated inflammatory response in the case of the neutrophil (an often maladaptive process) or an improved tolerance to injury by the myocyte (adaptive response). Our global hypothesis is that cellular priming is a conserved, receptor-dependent process that invokes common intracellular targets across multiple cell types. We further postulate that these targets create a language based on the transient phosphorylation and dephosphorylation of intracellular enzymes that is therapeutically accessible. CONCLUSIONS Priming is a conserved, receptor-dependent process transduced by means of intracellular targets across multiple cell types. The potential therapeutic strategies outlined involve the receptor-mediated manipulation of cellular events. These events are transmitted through an intracellular language that instructs the cell regarding its behavior in response to subsequent stimulation. Understanding these intracellular events represents a realistic goal of priming and preconditioning biology and will likely lead to clinical control of the primed state.
Collapse
Affiliation(s)
- D R Meldrum
- Department of Surgery, University of Colorado Health Sciences Center and Denver General Hospital, 80262, USA
| | | | | | | | | | | |
Collapse
|
48
|
Plumier JCL, Hopkins DA, Robertson HA, Currie RW. Constitutive expression of the 27-kDa heat shock protein (Hsp27) in sensory and motor neurons of the rat nervous system. J Comp Neurol 1997. [DOI: 10.1002/(sici)1096-9861(19970804)384:3<409::aid-cne7>3.0.co;2-7] [Citation(s) in RCA: 82] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
|
49
|
Plumier JC, David JC, Robertson HA, Currie RW. Cortical application of potassium chloride induces the low-molecular weight heat shock protein (Hsp27) in astrocytes. J Cereb Blood Flow Metab 1997; 17:781-90. [PMID: 9270495 DOI: 10.1097/00004647-199707000-00008] [Citation(s) in RCA: 72] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Spreading depression induces tolerance to ischemic injury, and ischemic tolerance has been associated with expression of heat shock proteins (Hsp). Here we examine Hsp27 expression after KCl-induced spreading depression. Twenty-minute cortical KCl application induced Hsp27 immunoreactivity in glial fibrillary acidic protein-positive astrocytes of the ipsilateral neocortex. Systemic administration of MK-801 (3 mg/kg) suppressed KCl-induced Hsp27 expression in the parietal cortex. Astrocytes in the posterior cingulate and retrosplenial cortex did not express Hsp27 after KCl application but did express Hsp27 after systemic administration of high dose MK-801 (9 mg/kg). Whereas Hsp27 was usually observed in all layers of the parietal cortex after 5-minute application of KCl, in 2 of 6 rats, Hsp27 was seen in clusters of astrocytes or in astrocytes in the superficial layers I to III of the parietal cortex. We conclude that (1) cortical application of KCl triggered Hsp27 astrocytic expression; (2) astrocytes in the cingulate and retrosplenial cortex responded differently compared with astrocytes of the parietal cortex; (3) Hsp27 expression progressed from small clusters of astrocytes throughout superficial layers of the cortex that joined and recruited astrocytes in deeper layers; (4) several mechanisms induced Hsp27 astrocytic expression. We propose that Hsp27 is involved in spreading depression-induced ischemic tolerance through protection of astrocyte function.
Collapse
Affiliation(s)
- J C Plumier
- Laboratory of Molecular Neurobiology, Faculty of Medicine, Dalhousie University, Halifax, Nova Scotia, Canada
| | | | | | | |
Collapse
|
50
|
Plumier JC, Armstrong JN, Wood NI, Babity JM, Hamilton TC, Hunter AJ, Robertson HA, Currie RW. Differential expression of c-fos, Hsp70 and Hsp27 after photothrombotic injury in the rat brain. BRAIN RESEARCH. MOLECULAR BRAIN RESEARCH 1997; 45:239-46. [PMID: 9149098 DOI: 10.1016/s0169-328x(96)00255-0] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
In situ hybridization and immunohistochemistry were used to examine the expression of c-fos, Hsp70 and Hsp27 following photothrombotic injury in the right fronto-parietal cortex of the rat. C-fos mRNA and protein were detected in the entire cerebral cortex on the lesioned side. Hsp70 mRNA accumulation was observed only adjacent and peripheral to the site of the lesion. At 1 h after photothrombotic injury, Hsp70 expression delineates the area of necrosis at 24 h after photothrombotic injury. Hsp27 protein was observed in the ipsilateral cerebral cortex with the exception of the deep layers of the cingulate cortex. In addition, while c-Fos immunoreactivity was localized in cell nuclei, Hsp27 immunoreactivity was detected in the cytoplasm of astrocytes. These results demonstrate that unilateral cortical injury induces changes in gene expression that vary according to cell type and brain region.
Collapse
Affiliation(s)
- J C Plumier
- Department of Anatomy and Neurobiology, Faculty of Medicine, Dalhousie University, Halifax, Nova Scotia, Canada
| | | | | | | | | | | | | | | |
Collapse
|