1
|
Qiu L, Chang A, Ma R, Strong TV, Okun MS, Foote KD, Wexler A, Gunduz A, Miller JL, Halpern CH. Neuromodulation for the treatment of Prader-Willi syndrome - A systematic review. Neurotherapeutics 2024; 21:e00339. [PMID: 38430811 PMCID: PMC10920723 DOI: 10.1016/j.neurot.2024.e00339] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2023] [Revised: 02/19/2024] [Accepted: 02/21/2024] [Indexed: 03/05/2024] Open
Abstract
Prader-Willi syndrome (PWS) is a complex, genetic disorder characterized by multisystem involvement, including hyperphagia, maladaptive behaviors and endocrinological derangements. Recent developments in advanced neuroimaging have led to a growing understanding of PWS as a neural circuit disorder, as well as subsequent interests in the application of neuromodulatory therapies. Various non-invasive and invasive device-based neuromodulation methods, including vagus nerve stimulation (VNS), transcranial direct current stimulation (tDCS), repetitive transcranial magnetic stimulation (rTMS), and deep brain stimulation (DBS) have all been reported to be potentially promising treatments for addressing the major symptoms of PWS. In this systematic literature review, we summarize the recent literature that investigated these therapies, discuss the underlying circuits which may underpin symptom manifestations, and cover future directions of the field. Through our comprehensive search, there were a total of 47 patients who had undergone device-based neuromodulation therapy for PWS. Two articles described VNS, 4 tDCS, 1 rTMS and 2 DBS, targeting different symptoms of PWS, including aberrant behavior, hyperphagia and weight. Multi-center and multi-country efforts will be required to advance the field given the low prevalence of PWS. Finally, given the potentially vulnerable population, neuroethical considerations and dialogue should guide the field.
Collapse
Affiliation(s)
- Liming Qiu
- Department of Neurosurgery, University of Pennsylvania Health System, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA
| | - Andrew Chang
- Department of Neurosurgery, University of Pennsylvania Health System, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA
| | - Ruoyu Ma
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | | | - Michael S Okun
- Department of Neurology, Norman Fixel Institute for Neurological Diseases, University of Florida, Gainesville, FL, USA
| | - Kelly D Foote
- Department of Neurosurgery, Norman Fixel Institute for Neurological Diseases, University of Florida, Gainesville, FL, USA
| | - Anna Wexler
- Department of Medical Ethics & Health Policy, University of Pennsylvania, Philadelphia, PA, USA
| | - Aysegul Gunduz
- J. Crayton Pruitt Family Department of Biomedical Engineering, University of Florida, Gainesville, FL, USA
| | - Jennifer L Miller
- Department of Pediatrics, University of Florida College of Medicine, Gainesville, FL, USA
| | - Casey H Halpern
- Department of Neurosurgery, University of Pennsylvania Health System, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA; Department of Surgery, Corporal Michael J. Crescenz Veterans Affairs Medical Center, Philadelphia, PA, USA.
| |
Collapse
|
2
|
Progress in Brain Magnetic Resonance Imaging of Individuals with Prader-Willi Syndrome. J Clin Med 2023; 12:jcm12031054. [PMID: 36769704 PMCID: PMC9917938 DOI: 10.3390/jcm12031054] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2022] [Revised: 01/24/2023] [Accepted: 01/27/2023] [Indexed: 01/31/2023] Open
Abstract
Prader-Willi syndrome (PWS), a rare epigenetic disease mapping the imprinted chromosomal domain of 15q11.2-q13.3, manifests a regular neurodevelopmental trajectory in different phases. The current multimodal magnetic resonance imaging (MRI) approach for PWS focues on morphological MRI (mMRI), diffusion MRI (dMRI) and functional MRI (fMRI) to uncover brain alterations. This technique offers another perspective to understand potential neurodevelopmental and neuropathological processes of PWS, in addition to specific molecular gene expression patterns, various clinical manifestations and metabolic phenotypes. Multimodal MRI studies of PWS patients demonstrated common brain changes in the volume of gray matter, the integrity of the fiber tracts and the activation and connectivity of some networks. These findings mainly showed that brain alterations in the frontal reward circuit and limbic system were related to molecular genetics and clinical manifestations (e.g., overwhelming eating, obsessive compulsive behaviors and skin picking). Further exploration using a large sample size and advanced MRI technologies, combined with artificial intelligence algorithms, will be the main research direction to study the structural and functional changes and potential pathogenesis of PWS.
Collapse
|
3
|
Brown SSG, Manning KE, Fletcher P, Holland A. In vivo neuroimaging evidence of hypothalamic alteration in Prader–Willi syndrome. Brain Commun 2022; 4:fcac229. [PMID: 36147452 PMCID: PMC9487704 DOI: 10.1093/braincomms/fcac229] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2022] [Revised: 06/27/2022] [Accepted: 09/07/2022] [Indexed: 11/27/2022] Open
Abstract
Prader–Willi syndrome is a genetic neurodevelopmental disorder with an early phenotype characterized by neonatal hypotonia, failure to thrive, and immature genitalia. The onset of hyperphagia in childhood and developmental, physical and neuropsychiatric characteristics indicate atypical brain development and specifically hypothalamic dysfunction. Whether the latter is a consequence of disruption of hypothalamic pathways for genetic reasons or due to a failure of hypothalamic development remains uncertain. Twenty participants with Prader–Willi syndrome, 40 age-matched controls and 42 obese participants underwent structural MRI scanning. The whole hypothalamus and its subnuclei were segmented from structural acquisitions. The Food-Related Problem Questionnaire was used to provide information relating to eating behaviour. All hypothalamic nuclei were significantly smaller in the Prader–Willi group, compared with age and gender matched controls (P < 0.01) with the exception of the right anterior–inferior nucleus (P = 0.07). Lower whole hypothalamus volume was significantly associated with higher body mass index in Prader–Willi syndrome (P < 0.05). Increased preoccupation with food was associated with lower volumes of the bilateral posterior nuclei and left tubular superior nucleus. The whole hypothalamus and all constituent nuclei were also smaller in Prader–Willi syndrome compared with obese participants (P < 0.001). Connectivity profiles of the hypothalamus revealed that fractional anisotropy was associated with impaired satiety in Prader–Willi syndrome (P < 0.05). We establish that hypothalamic structure is significantly altered in Prader–Willi syndrome, demonstrating that hypothalamic dysfunction linked to eating behaviour is likely neurodevelopmental in nature and furthermore, distinctive compared with obesity in the general population.
Collapse
Affiliation(s)
- Stephanie S G Brown
- Department of Psychiatry, University of Cambridge , Addenbrookes Hospital, Cambridge CB2 0QQ , UK
| | - Katherine E Manning
- Department of Psychiatry, University of Cambridge , Addenbrookes Hospital, Cambridge CB2 0QQ , UK
| | - Paul Fletcher
- Department of Psychiatry, University of Cambridge , Addenbrookes Hospital, Cambridge CB2 0QQ , UK
| | - Anthony Holland
- Department of Psychiatry, University of Cambridge , Addenbrookes Hospital, Cambridge CB2 0QQ , UK
| |
Collapse
|
4
|
Zheng L, Miao M, Gan Y. A systematic and meta-analytic review on the neural correlates of viewing high- and low-calorie foods among normal-weight adults. Neurosci Biobehav Rev 2022; 138:104721. [PMID: 35667634 DOI: 10.1016/j.neubiorev.2022.104721] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2022] [Revised: 05/12/2022] [Accepted: 05/30/2022] [Indexed: 11/30/2022]
Abstract
In the context of current-day online shopping, people select foods based on pictures and using their visual systems. Although there are some reviews of previous neuroimaging studies on appetitive behaviors, the findings on neural activation in response to pictures of high- and low-calorie foods seem inconsistent. This study aims to systematically review, integrate, and meta-analyze neuroimaging evidence of viewing high- and low-calorie foods. There were 25 samples from 24 studies, totalizing 489 normal-weight participants (311 female, 160 male, and 18 of unknown sex). We conducted a systematic review and Activation Likelihood Estimation (ALE) meta-analysis on viewing high-calorie foods (versus non-foods), low-calorie foods (versus non-foods), and high- versus low-calorie foods. In systematic review, several brain regions were shown to be activated when viewing high- or low-calorie foods (versus non-foods) and viewing high- versus low-calorie foods, including the prefrontal cortex, orbitofrontal cortex, amygdala, insula, ventral striatum, hippocampus, superior parietal lobe, and fusiform gyrus. However, the ALE meta-analysis showed that the left orbitofrontal cortex, left amygdala, insula, superior parietal lobe, and fusiform gyrus were activated when viewing high-calorie foods (versus non-foods); the left fusiform gyrus was activated when viewing low-calorie foods (versus non-foods); and no cluster was activated when viewing high- versus low-calorie foods. Our research suggests an appetitive brain network that includes visual perception and attentional processing, sensory input integration, subjective reward value encoding, decision-making, and top-down cognitive control. Future studies should control for the effects of methodological and physiological variables when examining the neural correlates of viewing high- and low-calorie foods.
Collapse
Affiliation(s)
- Lei Zheng
- School of Economics and Management, Fuzhou University, China; School of Psychological and Cognitive Sciences and Beijing Key Laboratory of Behavior and Mental Health, Peking University, China
| | - Miao Miao
- Department of Medical Psychology, School of Health Humanities, Peking University, China
| | - Yiqun Gan
- School of Psychological and Cognitive Sciences and Beijing Key Laboratory of Behavior and Mental Health, Peking University, China.
| |
Collapse
|
5
|
Dichter GS, Rodriguez-Romaguera J. Anhedonia and Hyperhedonia in Autism and Related Neurodevelopmental Disorders. Curr Top Behav Neurosci 2022; 58:237-254. [PMID: 35397066 DOI: 10.1007/7854_2022_312] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Although autism spectrum disorder (ASD) is defined by impaired social communication and restricted and repetitive behaviors and interests, ASD is also characterized by impaired motivational processes. The "social motivation theory of autism" describes how social motivation disruptions in ASD in early childhood may impede the drive to engage in reciprocal social behaviors and ultimately interfere with the development of neural networks critical for social communication (Chevallier et al., Trends Cogn Sci 16:231-239, 2012b). Importantly, clinical studies and preclinical research using model organisms for ASD indicate that motivational impairments in ASD are not constrained to social rewards but are evident in response to a range of nonsocial rewards as well. Additionally, translational studies on certain genetically defined neurodevelopmental disorders associated with ASD indicate that these syndromic forms of ASD are also characterized by motivational deficits and mesolimbic dopamine impairments. In this chapter we summarize clinical and preclinical research relevant to reward processing impairments in ASD and related neurodevelopmental disorders. We also propose a nosology to describe reward processing impairments in these disorders that uses a three-axes model. In this triaxial nosology, the first axis defines the direction of the reward response (i.e., anhedonic, hyperhedonic); the second axis defines the construct of the reward process (e.g., reward liking, reward wanting); and the third axis defines the context of the reward response (e.g., social, nonsocial). A more precise nosology for describing reward processing impairments in ASD and related neurodevelopmental disorders will aid in the translation of preclinical research to clinical investigations which will ultimately help to speed up the development of interventions that target motivational systems for ASD and related neurodevelopmental disorders.
Collapse
Affiliation(s)
- Gabriel S Dichter
- Carolina Institute for Developmental Disabilities, University of North Carolina at Chapel Hill School of Medicine, Chapel Hill, NC, USA.
- Department of Psychiatry, University of North Carolina at Chapel Hill School of Medicine, Chapel Hill, NC, USA.
- Department of Psychology and Neuroscience, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA.
| | - Jose Rodriguez-Romaguera
- Carolina Institute for Developmental Disabilities, University of North Carolina at Chapel Hill School of Medicine, Chapel Hill, NC, USA.
- Department of Psychiatry, University of North Carolina at Chapel Hill School of Medicine, Chapel Hill, NC, USA.
- Neuroscience Center, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA.
| |
Collapse
|
6
|
Reverse-translational identification of a cerebellar satiation network. Nature 2021; 600:269-273. [PMID: 34789878 DOI: 10.1038/s41586-021-04143-5] [Citation(s) in RCA: 56] [Impact Index Per Article: 18.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2021] [Accepted: 10/14/2021] [Indexed: 11/08/2022]
Abstract
The brain is the seat of body weight homeostasis. However, our inability to control the increasing prevalence of obesity highlights a need to look beyond canonical feeding pathways to broaden our understanding of body weight control1-3. Here we used a reverse-translational approach to identify and anatomically, molecularly and functionally characterize a neural ensemble that promotes satiation. Unbiased, task-based functional magnetic resonance imaging revealed marked differences in cerebellar responses to food in people with a genetic disorder characterized by insatiable appetite. Transcriptomic analyses in mice revealed molecularly and topographically -distinct neurons in the anterior deep cerebellar nuclei (aDCN) that are activated by feeding or nutrient infusion in the gut. Selective activation of aDCN neurons substantially decreased food intake by reducing meal size without compensatory changes to metabolic rate. We found that aDCN activity terminates food intake by increasing striatal dopamine levels and attenuating the phasic dopamine response to subsequent food consumption. Our study defines a conserved satiation centre that may represent a novel therapeutic target for the management of excessive eating, and underscores the utility of a 'bedside-to-bench' approach for the identification of neural circuits that influence behaviour.
Collapse
|
7
|
Food-Related Brain Activation Measured by fMRI in Adults with Prader-Willi Syndrome. J Clin Med 2021; 10:jcm10215133. [PMID: 34768651 PMCID: PMC8584580 DOI: 10.3390/jcm10215133] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2021] [Revised: 10/24/2021] [Accepted: 10/29/2021] [Indexed: 11/16/2022] Open
Abstract
(1) Background: Prader–Willi syndrome (PWS) is characterized by hyperphagia, resulting in morbid obesity if not controlled. The primary aim of this study was to investigate whether PWS patients show altered activation of brain areas involved in hunger. As a secondary objective, we assessed whether there is an association between these brain areas and several endocrine and metabolic factors in the fasting state. (2) Methods: 12 PWS adults and 14 healthy controls (siblings) performed a food-related experimental task after an overnight fast while brain activation in regions of interest was measured by functional MRI. (3) Results: In controls, significantly more activation was found in the left insula (p = 0.004) and the bilateral fusiform gyrus (p = 0.003 and 0.013) when the individuals were watching food as compared to non-food pictures, which was absent in PWS patients. Moreover, in PWS adults watching food versus non-food pictures a significant negative correlation for glucose and right amygdala activation (p_fwe = 0.007) as well as a positive correlation for leptin and right anterior hippocampus/amygdala activation (p_fwe = 0.028) was demonstrated. No significant associations for the other hormonal and metabolic factors were found. (4) Conclusions: PWS individuals show aberrant food-related brain activation in the fasting state. Leptin is associated with activation within the neural motivation/reward circuitry, while the opposite is true for glucose.
Collapse
|
8
|
Key AP, Jones D, Zengin-Bolatkale H, Roof E, Hunt-Hawkins H. Visual food cue processing in children with Prader-Willi Syndrome. Physiol Behav 2021; 238:113492. [PMID: 34116052 DOI: 10.1016/j.physbeh.2021.113492] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2020] [Revised: 05/27/2021] [Accepted: 06/02/2021] [Indexed: 10/21/2022]
Abstract
Hyperphagia and the associated interest in food is a characteristic feature of Prader-Willi syndrome (PWS) that emerges during childhood and remains a life-long concern. This study examined neural responses reflecting food cue salience in children with PWS and typical controls, age 3-12 years. Visual event-related potentials were recorded while participants in satiated state passively viewed photographs of high- and low-calorie foods, animals, and neutral objects. Contrary to the prediction, children with PWS did not demonstrate greater than typical neural responses to food, suggesting that it is not an exceptionally motivationally salient stimulus in PWS. Caregiver reports of greater hyperphagia were associated with neural responses to low-calorie foods suggesting accelerated and more fine-grained visual stimulus categorization in terms of edibility and caloric content. Overall, the findings align more closely with the altered satiety rather than increased food reward models of hyperphagia in PWS.
Collapse
Affiliation(s)
- Alexandra P Key
- Vanderbilt Kennedy Center for Research on Human Development; Department of Hearing and Speech Sciences; Department of Psychiatry and Behavioral Sciences, Vanderbilt University Medical Center.
| | - Dorita Jones
- Vanderbilt Kennedy Center for Research on Human Development
| | | | - Elizabeth Roof
- Vanderbilt Kennedy Center for Research on Human Development
| | | |
Collapse
|
9
|
Obesity and Related Type 2 Diabetes: A Failure of the Autonomic Nervous System Controlling Gastrointestinal Function? GASTROINTESTINAL DISORDERS 2020. [DOI: 10.3390/gidisord2040039] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
The pandemic spread of obesity and type 2 diabetes is a serious health problem that cannot be contained with common therapies. At present, the most effective therapeutic tool is metabolic surgery, which substantially modifies the gastrointestinal anatomical structure. This review reflects the state of the art research in obesity and type 2 diabetes, describing the probable reason for their spread, how the various brain sectors are involved (with particular emphasis on the role of the vagal system controlling different digestive functions), and the possible mechanisms for the effectiveness of bariatric surgery. According to the writer’s interpretation, the identification of drugs that can modulate the activity of some receptor subunits of the vagal neurons and energy-controlling structures of the central nervous system (CNS), and/or specific physical treatment of cortical areas, could reproduce, non-surgically, the positive effects of metabolic surgery.
Collapse
|
10
|
Lizarbe B, Campillo B, Guadilla I, López-Larrubia P, Cerdán S. Magnetic resonance assessment of the cerebral alterations associated with obesity development. J Cereb Blood Flow Metab 2020; 40:2135-2151. [PMID: 32703110 PMCID: PMC7585928 DOI: 10.1177/0271678x20941263] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/05/2020] [Revised: 05/28/2020] [Accepted: 06/14/2020] [Indexed: 12/15/2022]
Abstract
Obesity is a current threat to health care systems, affecting approximately 13% of the world's adult population, and over 18% children and adolescents. The rise of obesity is fuelled by inadequate life style habits, as consumption of diets rich in fats and sugars which promote, additionally, the development of associated comorbidities. Obesity results from a neuroendocrine imbalance in the cerebral mechanisms controlling food intake and energy expenditure, including the hypothalamus and the reward and motivational centres. Specifically, high-fat diets are known to trigger an early inflammatory response in the hypothalamus that precedes weight gain, is time-dependent, and eventually extends to the remaining appetite regulating regions in the brain. Multiple magnetic resonance imaging (MRI) and spectroscopy (MRS) methods are currently available to characterize different features of cerebral obesity, including diffusion weighted, T2 and volumetric imaging and 1H and 13C spectroscopic evaluations. In particular, consistent evidences have revealed increased water diffusivity and T2 values, decreased grey matter volumes, and altered metabolic profiles and fluxes, in the brain of animal models and in obese humans. This review provides an integrative interpretation of the physio-pathological processes associated with obesity development in the brain, and the MRI and MRS methods implemented to characterize them.
Collapse
Affiliation(s)
- Blanca Lizarbe
- Instituto de Investigaciones Biomédicas “Alberto Sols” CSIC/UAM, Madrid, Spain
| | - Basilio Campillo
- Instituto de Investigaciones Biomédicas “Alberto Sols” CSIC/UAM, Madrid, Spain
| | - Irene Guadilla
- Instituto de Investigaciones Biomédicas “Alberto Sols” CSIC/UAM, Madrid, Spain
| | | | - Sebastián Cerdán
- Instituto de Investigaciones Biomédicas “Alberto Sols” CSIC/UAM, Madrid, Spain
| |
Collapse
|
11
|
The RDoC approach for translational psychiatry: Could a genetic disorder with psychiatric symptoms help fill the matrix? the example of Prader-Willi syndrome. Transl Psychiatry 2020; 10:274. [PMID: 32772048 PMCID: PMC7415132 DOI: 10.1038/s41398-020-00964-6] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/06/2020] [Revised: 07/20/2020] [Accepted: 07/24/2020] [Indexed: 12/11/2022] Open
Abstract
The Research Domain Criteria project (RDoc) proposes a new classification system based on information from several fields in order to encourage translational perspectives. Nevertheless, integrating genetic markers into this classification has remained difficult because of the lack of powerful associations between targeted genes and RDoC domains. We hypothesized that genetic diseases with psychiatric manifestations would be good models for RDoC gene investigations and would thereby extend the translational approach to involve targeted gene pathways. To explore this possibility, we reviewed the current knowledge on Prader-Willi syndrome, a genetic disorder caused by the absence of expression of some of the genes of the chromosome 15q11-13 region inherited from the father. Indeed, we found that the associations between genes of the PW locus and the modification identified in the relevant behavioral, physiological, and brain imaging studies followed the structure of the RDoC matrix and its six domains (positive valence, negative valence, social processing, cognitive systems, arousal/regulatory systems, and sensorimotor systems).
Collapse
|
12
|
Feighan SM, Hughes M, Maunder K, Roche E, Gallagher L. A profile of mental health and behaviour in Prader-Willi syndrome. JOURNAL OF INTELLECTUAL DISABILITY RESEARCH : JIDR 2020; 64:158-169. [PMID: 31849130 DOI: 10.1111/jir.12707] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/18/2019] [Revised: 11/01/2019] [Accepted: 11/13/2019] [Indexed: 06/10/2023]
Abstract
BACKGROUND Prader-Willi syndrome (PWS) is a neurogenetic syndrome with an associated behavioural phenotype and a high incidence of behaviours of concern and psychiatric co-morbidity. These associated behaviours and co-morbidities are not well addressed by existing interventions, and they impact significantly on affected individuals and their caregivers. METHODS We undertook a national survey of the needs of individuals with PWS and their families in Ireland. In this paper, we report on the parent/caregiver-reported mental health, behavioural and access to services. RESULTS Over 50% of individuals with PWS in this survey had at least one reported psychiatric diagnosis, the most common diagnosis was anxiety. The most commonly reported behaviours in children were skin picking, repetitive questioning, difficulty transitioning and non-compliance. The same four behaviours were reported by caregivers as being the most commonly occurring in adolescents and adults in addition to food-seeking behaviours. Increased needs for mental health services were also reported by caregivers. Individuals with PWS had an average wait of 22 months for an appointment with a psychologist and 4 months for an appointment with a psychiatrist. CONCLUSION This study highlighted high levels of psychiatric co-morbidities and behavioural concerns in individuals with PWS in Ireland. The findings of this study suggest that there is an urgent need to provide specialist psychiatric and behavioural interventions to manage complex mental health and behavioural needs to better support individuals with PWS and reduce caregiver burden.
Collapse
Affiliation(s)
- S-M Feighan
- Department of Psychiatry, Trinity College Dublin, Dublin, Ireland
| | - M Hughes
- Prader-Willi Syndrome Association of Ireland, Dublin, Ireland
| | - K Maunder
- Department of Psychiatry, Trinity College Dublin, Dublin, Ireland
| | - E Roche
- Department of Paediatrics, Trinity College Dublin, Dublin, Ireland
| | - L Gallagher
- Department of Psychiatry, Trinity College Dublin, Dublin, Ireland
| |
Collapse
|
13
|
|
14
|
Zhang D, Shi L, Song X, Shi C, Sun P, Lou W, Wang D, Luo L. Neuroimaging endophenotypes of type 2 diabetes mellitus: a discordant sibling pair study. Quant Imaging Med Surg 2019; 9:1000-1013. [PMID: 31367554 DOI: 10.21037/qims.2019.05.18] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Background Type 2 diabetes mellitus (T2DM) is characterized by notable familial aggregation involving common variants of many genes, and its heritability leads to a high prevalence in the siblings of affected individuals compared with the general population. Endophenotypes are objective, heritable, quantitative traits that appear to reflect the genetic risk for polygenic disorders at more biologically tractable levels. Based on a sibling pair design, we aimed to find the neuroimaging endophenotypes of T2DM and investigate the role of inherent neurological disorders in the pathogenesis and deterioration of T2DM. Methods Twenty-six pairs of diagnosed T2DM patients with unaffected siblings and 26 unrelated controls were included in this study. Both high-resolution structural MRI and three-dimensional pseudo-continuous arterial spin labelling (3D-pCASL) MRI data were acquired with a 3.0 T MRI system. Voxel-based morphometry (VBM) analysis was performed on the structural T1W images, and cerebral blood flow (CBF) maps were obtained. All data were processed with the SPM8 package under the MATLAB 7.6 operation environment. Results The T2DM patients and their unaffected siblings shared significant atrophy in the right inferior/middle temporal gyrus, and left insula, in addition to elevated CBF in the right prefrontal lobe. Several regions with abnormal CBF in siblings, including the right inferior/middle temporal gyrus, left insula, left operculum, right supramarginal gyrus, right prefrontal lobe, and bilateral anterior cingulate cortex, also presented significant atrophy in T2DM patients. Conclusions The shared brain regions with grey matter (GM) loss and CBF increases may serve as neuroimaging endophenotypes of T2DM, and the regions with abnormal CBF in siblings indicate an increased risk for T2DM.
Collapse
Affiliation(s)
- Dong Zhang
- Department of Medical Imaging Centre, the First Affiliated Hospital, Jinan University, Guangzhou 510630, China
| | - Lin Shi
- Research Centre for Medical Image Computing, Department of Imaging and Interventional Radiology, The Chinese University of Hong Kong, Hong Kong, China.,Chow Yuk Ho Technology Centre for Innovative Medicine, The Chinese University of Hong Kong, Hong Kong, China
| | - Xiubao Song
- Department of Rehabilitation, the First Affiliated Hospital, Jinan University, Guangzhou 510630, China
| | - Changzheng Shi
- Department of Medical Imaging Centre, the First Affiliated Hospital, Jinan University, Guangzhou 510630, China
| | - Pan Sun
- Department of Medicine and Therapeutics, The Chinese University of Hong Kong, Hong Kong, China
| | - Wutao Lou
- Department of Medicine and Therapeutics, The Chinese University of Hong Kong, Hong Kong, China
| | - Defeng Wang
- Research Centre for Medical Image Computing, Department of Imaging and Interventional Radiology, The Chinese University of Hong Kong, Hong Kong, China.,Beijing Advanced Innovation Center for Big Data-Based Precision Medicine, Beihang University, Beijing 100091, China.,School of Instrumentation Science and Opto-electronics Engineering, Beihang University, Beijing 100091, China.,Shenzhen SmartView MedTech Limited, Shenzhen 518000, China
| | - Liangping Luo
- Department of Medical Imaging Centre, the First Affiliated Hospital, Jinan University, Guangzhou 510630, China
| |
Collapse
|
15
|
Blanco-Hinojo L, Pujol J, Esteba-Castillo S, Martínez-Vilavella G, Giménez-Palop O, Gabau E, Casamitjana L, Deus J, Novell R, Caixàs A. Lack of response to disgusting food in the hypothalamus and related structures in Prader Willi syndrome. NEUROIMAGE-CLINICAL 2019; 21:101662. [PMID: 30639180 PMCID: PMC6412080 DOI: 10.1016/j.nicl.2019.101662] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/18/2018] [Revised: 11/22/2018] [Accepted: 01/04/2019] [Indexed: 12/31/2022]
Abstract
Objective To investigate, based on a putative abnormal neural processing of disgusting signals in Prader Willi syndrome (PWS) patients, the brain response to visual representations of disgusting food in PWS using functional MRI (fMRI). Methods Twenty-one genetically-confirmed PWS patients, 30 age- and sex-matched and 28 BMI-matched control subjects viewed a movie depicting disgusting food-related scenes interspersed with scenes of appetizing food while fMRI was acquired. Brain activation maps were compared between groups and correlated with disgust and hunger ratings. Results At the cortical level, the response to disgusting food representations in PWS patients was qualitatively similar to that of control subjects, albeit less extensive, and engaged brain regions typically related to visually-evoked disgust, such as the anterior insula/frontal operculum, the lateral frontal cortex and visual areas. By contrast, activation was almost absent in limbic structures directly concerned with the regulation of instinctive behavior robustly activated in control subjects, such as the hypothalamus, amygdala/hippocampus and periaqueductal gray. Conclusions Our study provides novel insights into the neural substrates of appetite control in a genetically-mediated cause of obesity. The presence of significant cortical changes further indicates that PWS patients consciously process disgusting stimuli, but the virtual absence of response in deep, limbic structures suggests that disgusting signals do not adequately reach the primary brain system for the appetite control. We report an abnormal pattern of brain response to images of disgusting food in PWS. The activation demonstrated by PWS patients was restricted to the cerebral cortex. Higher subjective disgust ratings were associated with greater insula activation. In contrast, the neural response was almost absent in deep subcortical structures. Disgusting signals may not adequately reach a main brain system for appetite control.
Collapse
Affiliation(s)
- Laura Blanco-Hinojo
- MRI Research Unit, Department of Radiology, Hospital del Mar, 08003 Barcelona, Spain; Centro Investigación Biomédica en Red de Salud Mental, CIBERSAM G21, 08003 Barcelona, Spain
| | - Jesus Pujol
- MRI Research Unit, Department of Radiology, Hospital del Mar, 08003 Barcelona, Spain; Centro Investigación Biomédica en Red de Salud Mental, CIBERSAM G21, 08003 Barcelona, Spain.
| | - Susanna Esteba-Castillo
- Specialized Service in Mental Health and Intellectual Disability, Institut Assistència Sanitària (IAS), Parc Hospitalari Martí i Julià, 17190 Girona, Spain.
| | | | - Olga Giménez-Palop
- Endocrinology and Nutrition Department, Parc Taulí Hospital Universitari, Institut d'Investigació i Innovació Parc Taulí I3PT- UAB, 08208 Sabadell, Spain
| | - Elisabeth Gabau
- Clinical Genetics, Pediatrics Department, Parc Taulí Hospital Universitari, Institut d'Investigació i Innovació Parc Taulí I3PT- UAB, 08208 Sabadell, Spain.
| | - Laia Casamitjana
- Endocrinology and Nutrition Department, Parc Taulí Hospital Universitari, Institut d'Investigació i Innovació Parc Taulí I3PT- UAB, 08208 Sabadell, Spain.
| | - Joan Deus
- MRI Research Unit, Department of Radiology, Hospital del Mar, 08003 Barcelona, Spain; Department of Clinical and Health Psychology, Autonomous University of Barcelona, 08193 Barcelona, Spain.
| | - Ramón Novell
- Specialized Service in Mental Health and Intellectual Disability, Institut Assistència Sanitària (IAS), Parc Hospitalari Martí i Julià, 17190 Girona, Spain.
| | - Assumpta Caixàs
- Endocrinology and Nutrition Department, Parc Taulí Hospital Universitari, Institut d'Investigació i Innovació Parc Taulí I3PT- UAB, 08208 Sabadell, Spain
| |
Collapse
|
16
|
Franco RR, Fonoff ET, Alvarenga PG, Alho EJL, Lopes AC, Hoexter MQ, Batistuzzo MC, Paiva RR, Taub A, Shavitt RG, Miguel EC, Teixeira MJ, Damiani D, Hamani C. Assessment of Safety and Outcome of Lateral Hypothalamic Deep Brain Stimulation for Obesity in a Small Series of Patients With Prader-Willi Syndrome. JAMA Netw Open 2018; 1:e185275. [PMID: 30646396 PMCID: PMC6324383 DOI: 10.1001/jamanetworkopen.2018.5275] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
IMPORTANCE Deep brain stimulation (DBS) has been investigated for treatment of morbid obesity with variable results. Patients with Prader-Willi syndrome (PWS) present with obesity that is often difficult to treat. OBJECTIVE To test the safety and study the outcome of DBS in patients with PWS. DESIGN, SETTING, AND PARTICIPANTS This case series was conducted in the Hospital das Clínicas, University of São Paulo, Brazil. Four patients with genetically confirmed PWS presenting with severe obesity were included. EXPOSURE Deep brain stimulation electrodes were bilaterally implanted in the lateral hypothalamic area. After DBS implantation, the treatment included the following phases: titration (1-2 months), stimulation off (2 months), low-frequency DBS (40 Hz; 1 month), washout (15 days), high-frequency DBS (130 Hz; 1 month), and long-term follow-up (6 months). MAIN OUTCOMES AND MEASURES Primary outcome measures were adverse events recorded during stimulation and long-term DBS treatment. Secondary outcomes consisted of changes in anthropometric measures (weight, body mass index [calculated as weight in kilograms divided by height in meters squared], and abdominal and neck circumference), bioimpedanciometry, and calorimetry after 6 months of treatment compared with baseline. The following evaluations and measurements were conducted before and after DBS: clinical, neurological, psychiatric, neuropsychological, anthropometry, calorimetry, blood workup, hormonal levels, and sleep studies. Adverse effects were monitored during all follow-up visits. RESULTS Four patients with PWS were included (2 male and 2 female; ages 18-28 years). Baseline mean (SD) body mass index was 39.6 (11.1). Two patients had previous bariatric surgery, and all presented with psychiatric comorbidity, which was well controlled with the use of medications. At 6 months after long-term DBS, patients had a mean 9.6% increase in weight, 5.8% increase in body mass index, 8.4% increase in abdominal circumference, 4.2% increase in neck circumference, 5.3% increase in the percentage of body fat, and 0% change in calorimetry compared with baseline. Also unchanged were hormonal levels and results of blood workup, sleep studies, and neuropsychological evaluations. Two patients developed stimulation-induced manic symptoms. Discontinuation of DBS controlled this symptom in 1 patient. The other required adjustments in medication dosage. Two infections were documented, 1 associated with skin picking. CONCLUSIONS AND RELEVANCE Safety of lateral hypothalamic area stimulation was in the range of that demonstrated in patients with similar psychiatric conditions receiving DBS. In the small cohort of patients with PWS treated in our study, DBS was largely ineffective.
Collapse
Affiliation(s)
- Ruth R. Franco
- Children’s Institute, Division of Pediatric Endocrinology, University of São Paulo Medical School, São Paulo, Brazil
| | - Erich T. Fonoff
- Division of Functional Neurosurgery of Institute of Psychiatry, Department of Neurology, University of São Paulo Medical School, São Paulo, Brazil
| | - Pedro G. Alvarenga
- Institute of Psychiatry, Department of Psychiatry, University of São Paulo Medical School, São Paulo, Brazil
| | - Eduardo J. L. Alho
- Division of Functional Neurosurgery of Institute of Psychiatry, Department of Neurology, University of São Paulo Medical School, São Paulo, Brazil
| | - Antonio Carlos Lopes
- Institute of Psychiatry, Department of Psychiatry, University of São Paulo Medical School, São Paulo, Brazil
| | - Marcelo Q. Hoexter
- Institute of Psychiatry, Department of Psychiatry, University of São Paulo Medical School, São Paulo, Brazil
| | - Marcelo C. Batistuzzo
- Institute of Psychiatry, Department of Psychiatry, University of São Paulo Medical School, São Paulo, Brazil
| | - Raquel R. Paiva
- Institute of Psychiatry, Department of Psychiatry, University of São Paulo Medical School, São Paulo, Brazil
| | - Anita Taub
- Institute of Psychiatry, Department of Psychiatry, University of São Paulo Medical School, São Paulo, Brazil
| | - Roseli G. Shavitt
- Institute of Psychiatry, Department of Psychiatry, University of São Paulo Medical School, São Paulo, Brazil
| | - Euripides C. Miguel
- Institute of Psychiatry, Department of Psychiatry, University of São Paulo Medical School, São Paulo, Brazil
| | - Manoel J. Teixeira
- Division of Functional Neurosurgery of Institute of Psychiatry, Department of Neurology, University of São Paulo Medical School, São Paulo, Brazil
| | - Durval Damiani
- Children’s Institute, Division of Pediatric Endocrinology, University of São Paulo Medical School, São Paulo, Brazil
| | - Clement Hamani
- Division of Functional Neurosurgery of Institute of Psychiatry, Department of Neurology, University of São Paulo Medical School, São Paulo, Brazil
- Harquail Centre for Neuromodulation, Division of Neurosurgery, Sunnybrook Health Sciences Centre, University of Toronto, Toronto, Ontario, Canada
| |
Collapse
|
17
|
Kabasakalian A, Ferretti CJ, Hollander E. Oxytocin and Prader-Willi Syndrome. Curr Top Behav Neurosci 2018; 35:529-557. [PMID: 28956320 DOI: 10.1007/7854_2017_28] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
In the chapter, we explore the relationship between the peptide hormone, oxytocin (OT), and behavioral and metabolic disturbances observed in the genetic disorder Prader-Willi Syndrome (PWS). Phenotypic and genotypic characteristics of PWS are described, as are the potential implications of an abnormal OT system with respect to neural development including the possible effects of OT dysfunction on interactions with other regulatory mediators, including neurotransmitters, neuromodulators, and hormones. The major behavioral characteristics are explored in the context of OT dysfunction, including hyperphagia, impulsivity, anxiety and emotion dysregulation, sensory processing and interoception, repetitive and restrictive behaviors, and dysfunctional social cognition. Behavioral overlaps with autistic spectrum disorders are discussed. The implications of OT dysfunction on the mechanisms of reward and satiety and their possible role in informing behavioral characteristics are also discussed. Treatment implications and future directions for investigation are considered.
Collapse
Affiliation(s)
- Anahid Kabasakalian
- Albert Einstein College of Medicine, Montefiore Medical Center, Bronx, NY, USA
| | - Casara J Ferretti
- Ferkauf Graduate School of Psychology, Yeshiva University, Albert Einstein College of Medicine, Bronx, NY, USA
| | - Eric Hollander
- Albert Einstein College of Medicine, Montefiore Medical Center, Bronx, NY, USA.
| |
Collapse
|
18
|
Manning KE, Tait R, Suckling J, Holland AJ. Grey matter volume and cortical structure in Prader-Willi syndrome compared to typically developing young adults. NEUROIMAGE-CLINICAL 2017. [PMID: 29527494 PMCID: PMC5842730 DOI: 10.1016/j.nicl.2017.12.027] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
Prader-Willi syndrome (PWS) is a neurodevelopmental disorder of genomic imprinting, presenting with a characteristic overeating disorder, mild to moderate intellectual disability, and a variable range of social and behavioral difficulties. Consequently, widespread alterations in neural structure and developmental and maturational trajectory would be expected. To date, there have been few quantitative and systematic studies of brain morphology in PWS, although alterations of volume and of cortical organisation have been reported. This study aimed to investigate, in detail, the structure of grey matter and cortex in the brain in a sample of young adults with PWS in a well-matched case-controlled analysis. 20 young adults with PWS, aged 19–27 years, underwent multiparameter mapping magnetic resonance imaging sequences, from which measures of grey matter volume, cortical thickness and magnetisation transfer saturation, as a proxy measure of myelination, were examined. These variables were investigated in comparison to a control group of 40 typically developing young adults, matched for age and sex. A voxel-based morphometry analysis identified large and widespread bilateral clusters of both increased and decreased grey matter volume in the brain in PWS. In particular, widespread areas of increased volume encompassed parts of the prefrontal cortex, especially medially, the majority of the cingulate cortices, from anterior to posterior aspects, insula cortices, and areas of the parietal and temporal cortices. Increased volume was also reported in the caudate, putamen and thalamus. The most ventromedial prefrontal areas, in contrast, showed reduced volume, as did the parts of the medial temporal lobe, bilateral temporal poles, and a small cluster in the right lateral prefrontal cortex. Analysis of cortical structure revealed that areas of increased volume in the PWS group were largely driven by greater cortical thickness. Conversely, analysis of myelin content using magnetisation transfer saturation indicated that myelination of the cortex was broadly similar in the PWS and control groups, with the exception of highly localised areas, including the insula. The bilateral nature of these abnormalities suggests a systemic biological cause, with possible developmental and maturational mechanisms discussed, and may offer insight into the contribution of imprinted genes to neural development. Twenty young adults with PWS and forty age and sex-matched control participants underwent multiparameter mapping MRI. Large and widespread bilateral clusters of both increased and decreased grey matter volume were identified in PWS. Volumetric increases in PWS were largely driven by greater cortical thickness. Myelination of the cortex in PWS was broadly similar to the typically-developing control group. Potential developmental and maturational explanations are considered, including insights into the of the role of imprinted genes.
Collapse
Key Words
- ACC, anterior cingulate cortex
- ANTS, Advanced Normalisation Tools Software
- BMI, body mass index
- CamBA, Cambridge Brain Analysis software
- Cortical thickness
- FA, flip angle
- GLM, general linear model
- GM, grey matter
- Genomic imprinting
- Grey matter
- IQ, intelligence quotient
- MPM, multiparameter mapping
- MRI, magnetic resonance imaging
- MT, magnetisation transfer
- Multiparameter mapping
- Myelination
- NHS, National Health Service
- NSPN, NeuroScience in Psychiatry Network
- OFC, orbitofrontal cortex
- PD, proton density
- PFC, prefrontal cortex
- PWS, Prader-Willi syndrome
- PWSA UK, Prader-Willi Syndrome Association UK
- Prader-Willi syndrome
- TE, echo time
- TIV, total intracranial volume
- TR, repetition time
- UPD, uniparental disomy
- WM, white matter
Collapse
Affiliation(s)
| | - Roger Tait
- Department of Psychiatry, University of Cambridge, Cambridge, UK
| | - John Suckling
- Department of Psychiatry, University of Cambridge, Cambridge, UK
| | - Anthony J Holland
- Department of Psychiatry, University of Cambridge, Cambridge, UK; Cambridgeshire and Peterborough NHS Foundation Trust, UK; National Institute for Health Research (NIHR) Collaborations for Leadership in Applied Health Care Research and Care (CLAHRC), East of England, UK
| |
Collapse
|
19
|
Xu M, Zhang Y, von Deneen KM, Zhu H, Gao J. Brain structural alterations in obese children with and without Prader-Willi Syndrome. Hum Brain Mapp 2017; 38:4228-4238. [PMID: 28543989 PMCID: PMC6866858 DOI: 10.1002/hbm.23660] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2017] [Revised: 05/12/2017] [Accepted: 05/15/2017] [Indexed: 12/17/2022] Open
Abstract
Prader-Willi syndrome (PWS) is a genetic imprinting disorder that is mainly characterized by hyperphagia and childhood obesity. Previous neuroimaging studies revealed that there is a significant difference in brain activation patterns between obese children with and without PWS. However, whether there are differences in the brain structure of obese children with and without PWS remains elusive. In the current study, we used T1-weighted and diffusion tensor magnetic resonance imaging to investigate alterations in the brain structure, such as the cortical volume and white matter integrity, in relation to this eating disorder in 12 children with PWS, 18 obese children without PWS (OB) and 18 healthy controls. Compared with the controls, both the PWS and OB groups exhibited alterations in cortical volume, with similar deficit patterns in 10 co-varying brain regions in the bilateral dorsolateral and medial prefrontal cortices, right anterior cingulate cortex, and bilateral temporal lobe. The white matter integrities of the above regions were then examined with an analysis method based on probabilistic tractography. The PWS group exhibited distinct changes in the reduced fractional anisotropy of white matter fibers connected to the co-varying regions, whereas the OB group did not. Our findings indicated that PWS and OB share similar gray matter alterations that are responsible for the development of eating disorders. Additionally, the distinct white matter alterations might explain the symptoms associated with food intake in PWS, including excessive hyperphagia and constant hunger. Hum Brain Mapp 38:4228-4238, 2017. © 2017 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Mingze Xu
- Center for MRI Research, Academy for Advanced Interdisciplinary Studies, Peking UniversityBeijing100871China
- Department of Biomedical EngineeringPeking UniversityBeijing100871China
| | - Yi Zhang
- Center for Brain Imaging, Xidian UniversityXi'an710071China
- Department of Psychiatry & McKnight Brain InstituteUniversity of FloridaGainesvilleFlorida32610
| | - Karen M. von Deneen
- Center for Brain Imaging, Xidian UniversityXi'an710071China
- Department of Psychiatry & McKnight Brain InstituteUniversity of FloridaGainesvilleFlorida32610
| | - Huaiqiu Zhu
- Department of Biomedical EngineeringPeking UniversityBeijing100871China
| | - Jia‐Hong Gao
- Center for MRI Research, Academy for Advanced Interdisciplinary Studies, Peking UniversityBeijing100871China
- Beijing City Key Lab for Medical Physics and EngineeringInstitution of Heavy Ion Physics, School of Physics, Peking UniversityBeijing100871China
- McGovern Institute for Brian Research, Peking UniversityBeijing100871China
- Shenzhen Institute of NeuroscienceShenzhen518057China
| |
Collapse
|
20
|
Lukoshe A, van Dijk SE, van den Bosch GE, van der Lugt A, White T, Hokken-Koelega AC. Altered functional resting-state hypothalamic connectivity and abnormal pituitary morphology in children with Prader-Willi syndrome. J Neurodev Disord 2017; 9:12. [PMID: 28331554 PMCID: PMC5356363 DOI: 10.1186/s11689-017-9188-7] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/26/2016] [Accepted: 01/26/2017] [Indexed: 11/17/2022] Open
Abstract
Background Prader-Willi syndrome (PWS) is a complex neurodevelopmental disorder, characterized by endocrine problems and hyperphagia, indicating hypothalamic-pituitary dysfunction. However, few studies have explored the underlying neurobiology of the hypothalamus and its functional connectivity with other brain regions. Thus, the aim of this study was to examine the anatomical differences of the hypothalamus, mammillary bodies, and pituitary gland as well as resting state functional connectivity of the hypothalamus in children with PWS. Methods Twenty-seven children with PWS (13 DEL, 14 mUPD) and 28 typically developing children were included. Manual segmentations by a blinded investigator were performed to determine the volumes of the hypothalamus, mammillary bodies, and pituitary gland. In addition, brain-wide functional connectivity analysis was performed using the obtained masks of the hypothalamus. Results Children with PWS showed altered resting state functional connectivity between hypothalamus and right and left lateral occipital complex, compared to healthy controls. In addition, children with PWS had on average a 50% smaller pituitary volume, an irregular shape of the pituitary, and a longer pituitary stalk. Pituitary volume did not increase in volume during puberty in PWS. No volumetric differences in the hypothalamus and mammillary bodies were found. In all subjects, the posterior pituitary bright spot was observed. Conclusions We report altered functional hypothalamic connectivity with lateral occipital complexes in both hemispheres, which are implicated in response to food and reward system, and absence of connectivity might therefore at least partially contribute to the preoccupation with food in PWS.
Collapse
Affiliation(s)
- Akvile Lukoshe
- Dutch Growth Research Foundation, Postbus 23068, 3001 KB Rotterdam, The Netherlands.,Department of Pediatrics, Erasmus MC-Sophia Children's Hospital, Postbus 2060, 3000 CB Rotterdam, The Netherlands
| | - Suzanne E van Dijk
- Department of Child and Adolescent Psychiatry, Erasmus MC-Sophia Children's Hospital, Postbus 2060, 3000 CB Rotterdam, The Netherlands
| | - Gerbrich E van den Bosch
- Intensive Care and department of pediatric surgery, Erasmus MC-Sophia Children's Hospital, Postbus 2060, 3000 CB Rotterdam, The Netherlands
| | - Aad van der Lugt
- Department of Radiology, Erasmus Medical Centre-Sophia Children's Hospital, Postbus 2040, 3000 CA Rotterdam, The Netherlands
| | - Tonya White
- Department of Child and Adolescent Psychiatry, Erasmus MC-Sophia Children's Hospital, Postbus 2060, 3000 CB Rotterdam, The Netherlands.,Department of Radiology, Erasmus Medical Centre-Sophia Children's Hospital, Postbus 2040, 3000 CA Rotterdam, The Netherlands
| | - Anita C Hokken-Koelega
- Dutch Growth Research Foundation, Postbus 23068, 3001 KB Rotterdam, The Netherlands.,Department of Pediatrics, Erasmus MC-Sophia Children's Hospital, Postbus 2060, 3000 CB Rotterdam, The Netherlands
| |
Collapse
|
21
|
Rangwala SD, Tobin MK, Birk DM, Butts JT, Nikas DC, Hahn YS. Pica in a Child with Anterior Cingulate Gyrus Oligodendroglioma: Case Report. Pediatr Neurosurg 2017; 52:279-283. [PMID: 28704833 DOI: 10.1159/000477816] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/30/2016] [Accepted: 05/28/2017] [Indexed: 11/19/2022]
Abstract
The anterior cingulate gyrus (ACG) is a continued focus of research as its exact role in brain function and vast connections with other anatomical locations is not fully understood. A review of the literature illustrates the role the ACG likely plays in cognitive and emotional processing, as well as a modulating role in motor function and goal-oriented behaviors. While lesions of the cingulate gyrus are rare, each new case broadens our understanding of its role in cognitive neuroscience and higher order processing. The authors present the case of an 8-year-old boy with a 1-month history of staring spells, agitated personality, and hyperphagia notable for the consumption of paper, who was found to have a 3-cm tumor in the left ACG. Following surgical resection of the tumor, his aggressive behavior and pica were ameliorated and the patient made an uneventful recovery, with no evidence of recurrence over the last 6 years since surgical resection. Here we discuss a unique behavioral presentation of pica, along with a review of the current literature, to illustrate functions of the ACG relevant to the location of the lesion.
Collapse
Affiliation(s)
- Shivani D Rangwala
- Department of Pediatric Neurosurgery/Neurosurgery, University of Illinois at Chicago, Chicago, IL, USA
| | | | | | | | | | | |
Collapse
|
22
|
Schwartz L, Holland A, Dykens E, Strong T, Roof E, Bohonowych J. Prader-Willi syndrome mental health research strategy workshop proceedings: the state of the science and future directions. Orphanet J Rare Dis 2016; 11:131. [PMID: 27682995 PMCID: PMC5041278 DOI: 10.1186/s13023-016-0504-1] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2016] [Accepted: 08/17/2016] [Indexed: 01/02/2023] Open
Abstract
Abstract This paper reports on the ‘Prader-Willi Syndrome (PWS) Mental Health Research Strategy Workshop’ that took place in March 2015. PWS is characterized by a complex phenotype affecting multiple systems with a high prevalence of maladaptive behaviours, and neuropsychiatric illness. Prader Willi syndrome results from the absence of paternally derived alleles located at the imprinted chromosomal locus, 15q11–13. The goal of the workshop was to highlight the state of the science of the mental health of people with this rare neurodevelopmental disorder. Mental ill health and maladaptive behaviors significantly impact quality of life for persons with PWS and their caregivers. Effective treatments and further research into this area are critically needed. Methods A multidisciplinary group of scientists and health care professionals were brought together to discuss the mental health and behavioral needs of people with PWS. The workshop strategy was to integrate established work on PWS with other relevant areas of study. The meeting also focused on two neurobiological systems that research had suggested were relevant to understanding the broader mental health aspects of PWS: the autonomic nervous system and oxytocin/vasopressin pathways. Other relevant topics were considered and recommendations made. Results The workshop presentations and working group discussions revealed that no one approach was sufficient to fully conceptualize the mental health challenges in PWS. Workshop discussions pointed to the need for theoretically informed studies focused on clinical characterization, measurement, and the probing of specific neurobiological systems through pharmaceutical or other interventions. Future studies in this area should explore the use of advanced neuroimaging protocols, as well as molecular studies using iPS cells in order to create more informed theories. Conclusions Within this framework, workshop participants identified and prioritized key research questions, and highlighted current opportunities. Recommendations were made with respect to the development of specific resources and tools for furthering mental health research such as The Global PWS Registry, the development of effective endpoints, the use of animal models and iPS cells to aid understanding of the neurobiological underpinnings. Additionally, collaborative opportunities across disciplines and syndromes were highlighted and targeted research initiatives focused on psychological/behavioral interventions modified for use in PWS were recommended.
Collapse
Affiliation(s)
- Lauren Schwartz
- Department of Rehabilitation Medicine, University of Washington, 1959 N.E. Pacific St, Box 356490, Seattle, WA, 98195, USA.
| | - Anthony Holland
- Department of Psychiatry, Cambridge Intellectual and Developmental Disabilities Research Group, University of Cambridge, Cambridge, UK
| | - Elisabeth Dykens
- Vanderbilt Kennedy Center, Vanderbilt University, Nashville, TN, USA
| | - Theresa Strong
- Foundation for Prader-Willi Research, Los Angeles, CA, USA.,Department of Medicine, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Elizabeth Roof
- Vanderbilt Kennedy Center, Vanderbilt University, Nashville, TN, USA
| | | |
Collapse
|
23
|
Franco R, Fonoff ET, Alvarenga P, Lopes AC, Miguel EC, Teixeira MJ, Damiani D, Hamani C. DBS for Obesity. Brain Sci 2016; 6:brainsci6030021. [PMID: 27438859 PMCID: PMC5039450 DOI: 10.3390/brainsci6030021] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2016] [Revised: 07/09/2016] [Accepted: 07/12/2016] [Indexed: 12/11/2022] Open
Abstract
Obesity is a chronic, progressive and prevalent disorder. Morbid obesity, in particular, is associated with numerous comorbidities and early mortality. In patients with morbid obesity, pharmacological and behavioral approaches often have limited results. Bariatric surgery is quite effective but is associated with operative failures and a non-negligible incidence of side effects. In the last decades, deep brain stimulation (DBS) has been investigated as a neurosurgical modality to treat various neuropsychiatric disorders. In this article we review the rationale for selecting different brain targets, surgical results and future perspectives for the use of DBS in medically refractory obesity.
Collapse
Affiliation(s)
- Ruth Franco
- Division of Pediatric Endocrinology, Children's Hospital, University of São Paulo Medical School, São Paulo 05403-000, Brazil.
| | - Erich T Fonoff
- Division of Functional Neurosurgery of Institute of Psychiatry, Department of Neurology, University of São Paulo Medical School, São Paulo 01060-970, Brazil.
| | - Pedro Alvarenga
- Department of Psychiatry, Institute of Psychiatry, University of São Paulo Medical School, São Paulo 01060-970, Brazil.
| | - Antonio Carlos Lopes
- Department of Psychiatry, Institute of Psychiatry, University of São Paulo Medical School, São Paulo 01060-970, Brazil.
| | - Euripides C Miguel
- Department of Psychiatry, Institute of Psychiatry, University of São Paulo Medical School, São Paulo 01060-970, Brazil.
| | - Manoel J Teixeira
- Division of Functional Neurosurgery of Institute of Psychiatry, Department of Neurology, University of São Paulo Medical School, São Paulo 01060-970, Brazil.
| | - Durval Damiani
- Division of Pediatric Endocrinology, Children's Hospital, University of São Paulo Medical School, São Paulo 05403-000, Brazil.
| | - Clement Hamani
- Division of Functional Neurosurgery of Institute of Psychiatry, Department of Neurology, University of São Paulo Medical School, São Paulo 01060-970, Brazil.
- Division of Neurosurgery, Toronto Western Hospital, University of Toronto, Toronto, ON M5T 1R8, Canada.
- Division of Neuroimaging, Centre for Addiction and Mental Health, Toronto, ON M5T 1R8, Canada.
| |
Collapse
|
24
|
Pujol J, Blanco-Hinojo L, Esteba-Castillo S, Caixàs A, Harrison BJ, Bueno M, Deus J, Rigla M, Macià D, Llorente-Onaindia J, Novell-Alsina R. Anomalous basal ganglia connectivity and obsessive-compulsive behaviour in patients with Prader Willi syndrome. J Psychiatry Neurosci 2016; 41:261-71. [PMID: 26645739 PMCID: PMC4915935 DOI: 10.1503/jpn.140338] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
BACKGROUND Prader Willi syndrome is a genetic disorder with a behavioural expression characterized by the presence of obsessive-compulsive phenomena ranging from elaborate obsessive eating behaviour to repetitive skin picking. Obsessive-compulsive disorder (OCD) has been recently associated with abnormal functional coupling between the frontal cortex and basal ganglia. We have tested the potential association of functional connectivity anomalies in basal ganglia circuits with obsessive-compulsive behaviour in patients with Prader Willi syndrome. METHODS We analyzed resting-state functional MRI in adult patients and healthy controls. Whole-brain functional connectivity maps were generated for the dorsal and ventral aspects of the caudate nucleus and putamen. A selected obsessive-compulsive behaviour assessment included typical OCD compulsions, self picking and obsessive eating behaviour. RESULTS We included 24 adults with Prader Willi syndrome and 29 controls in our study. Patients with Prader Willi syndrome showed abnormal functional connectivity between the prefrontal cortex and basal ganglia and within subcortical structures that correlated with the presence and severity of obsessive-compulsive behaviours. In addition, abnormally heightened functional connectivity was identified in the primary sensorimotor cortex-putamen loop, which was strongly associated with self picking. Finally, obsessive eating behaviour correlated with abnormal functional connectivity both within the basal ganglia loops and between the striatum and the hypothalamus and the amygdala. LIMITATIONS Limitations of the study include the difficulty in evaluating the nature of content of obsessions in patients with Prader Willi Syndrome and the risk of excessive head motion artifact on brain imaging. CONCLUSION Patients with Prader Willi syndrome showed broad functional connectivity anomalies combining prefrontal loop alterations characteristic of OCD with 1) enhanced coupling in the primary sensorimotor loop that correlated with the most impulsive aspects of the behaviour and 2) reduced coupling of the ventral striatum with limbic structures for basic internal homeostasis that correlated with the obsession to eat.
Collapse
Affiliation(s)
- Jesus Pujol
- Correspondence to: J. Pujol, MRI Department, CRC-Mar, Hospital del Mar, Passeig Marítim 25–29. 08003, Barcelona;
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
25
|
Chen J, Papies EK, Barsalou LW. A core eating network and its modulations underlie diverse eating phenomena. Brain Cogn 2016; 110:20-42. [PMID: 27156016 DOI: 10.1016/j.bandc.2016.04.004] [Citation(s) in RCA: 81] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2015] [Revised: 01/03/2016] [Accepted: 04/15/2016] [Indexed: 12/20/2022]
Abstract
We propose that a core eating network and its modulations account for much of what is currently known about the neural activity underlying a wide range of eating phenomena in humans (excluding homeostasis and related phenomena). The core eating network is closely adapted from a network that Kaye, Fudge, and Paulus (2009) proposed to explain the neurocircuitry of eating, including a ventral reward pathway and a dorsal control pathway. In a review across multiple literatures that focuses on experiments using functional Magnetic Resonance Imaging (fMRI), we first show that neural responses to food cues, such as food pictures, utilize the same core eating network as eating. Consistent with the theoretical perspective of grounded cognition, food cues activate eating simulations that produce reward predictions about a perceived food and potentially motivate its consumption. Reviewing additional literatures, we then illustrate how various factors modulate the core eating network, increasing and/or decreasing activity in subsets of its neural areas. These modulating factors include food significance (palatability, hunger), body mass index (BMI, overweight/obesity), eating disorders (anorexia nervosa, bulimia nervosa, binge eating), and various eating goals (losing weight, hedonic pleasure, healthy living). By viewing all these phenomena as modulating a core eating network, it becomes possible to understand how they are related to one another within this common theoretical framework. Finally, we discuss future directions for better establishing the core eating network, its modulations, and their implications for behavior.
Collapse
Affiliation(s)
- Jing Chen
- Department of Psychology, Emory University, United States
| | - Esther K Papies
- Institute of Neuroscience and Psychology, University of Glasgow, UK; School of Psychology, University of Glasgow, UK
| | - Lawrence W Barsalou
- Institute of Neuroscience and Psychology, University of Glasgow, UK; School of Psychology, University of Glasgow, UK.
| |
Collapse
|
26
|
Ho AL, Sussman ES, Pendharkar AV, Azagury DE, Bohon C, Halpern CH. Deep brain stimulation for obesity: rationale and approach to trial design. Neurosurg Focus 2016; 38:E8. [PMID: 26030708 DOI: 10.3171/2015.3.focus1538] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
Obesity is one of the most serious public health concerns in the US. While bariatric surgery has been shown to be successful for treatment of morbid obesity for those who have undergone unsuccessful behavioral modification, its associated risks and rates of relapse are not insignificant. There exists a neurological basis for the binge-like feeding behavior observed in morbid obesity that is believed to be due to dysregulation of the reward circuitry. The authors present a review of the evidence of the neuroanatomical basis for obesity, the potential neural targets for deep brain stimulation (DBS), as well as a rationale for DBS and future trial design. Identification of an appropriate patient population that would most likely benefit from this type of therapy is essential. There are also significant cost and ethical considerations for such a neuromodulatory intervention designed to alter maladaptive behavior. Finally, the authors present a consolidated set of inclusion criteria and study end points that should serve as the basis for any trial of DBS for obesity.
Collapse
Affiliation(s)
| | | | | | | | - Cara Bohon
- 3Psychiatry and Behavioral Sciences, Stanford University School of Medicine, Stanford, California
| | - Casey H Halpern
- 1Departments of Neurosurgery.,3Psychiatry and Behavioral Sciences, Stanford University School of Medicine, Stanford, California
| |
Collapse
|
27
|
Standardized food images: A photographing protocol and image database. Appetite 2016; 96:166-173. [DOI: 10.1016/j.appet.2015.08.041] [Citation(s) in RCA: 95] [Impact Index Per Article: 11.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2014] [Revised: 08/28/2015] [Accepted: 08/31/2015] [Indexed: 11/18/2022]
|
28
|
Griggs JL, Su XQ, Mathai ML. Caralluma Fimbriata Supplementation Improves the Appetite Behavior of Children and Adolescents with Prader-Willi Syndrome. NORTH AMERICAN JOURNAL OF MEDICAL SCIENCES 2015; 7:509-16. [PMID: 26713299 PMCID: PMC4683806 DOI: 10.4103/1947-2714.170611] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
Background: Prader-Willi syndrome (PWS) results from a deletion of the paternal genes in the region of chromosome 15q11-q13. PWS develops hyperphagia, which when left unmanaged, leads to an excessive ingestion of food. To date there is inadequate pharmacological treatment or supplementation for modification of the PWS hyperphagia and/or the associated behaviors. Therefore, the best practice is familial supervision and restriction of diet and environment. Aim: We aimed to determine if the natural supplement of Caralluma fimbriata extract (CFE) could attenuate hyperphagia or the associated appetite behaviors in children and adolescents with PWS over the 4-week pilot trial period. Materials and Methods: We conducted a placebo-controlled, double-blind, randomized crossover trial over a 10-week period to investigate the effects of CFE on hunger control, in a cohort of children and adolescents with confirmed PWS (n =15, mean age 9.27 ± 3.16 years, body weight 43.98 ± 23.99 kg). Participants from Australia and New Zealand ingested CFE or a placebo of maltodextrin/cabbage leaf over a 4-week period, with a 2-week washout before the crossover to the other treatment. Weekly comparisons in appetite behavior, severity, and drive were recorded by parents, as scaled time-point measures on a hyperphagia questionnaire validated for PWS. Results: CFE administration was found to induce a significant accumulative easing of hyperphagia (P = 0.05), with decreases evident in one-third of the participants. Furthermore due to CFE supplementation, a significant decrease (P ≤ 0.05) was recorded in the category of behavior and a decrease in hyperphagia (n = 8, P = 0.009) was observed at the highest dose 1,000 mg/day (recommended adult dose). There were no reported adverse effects at any dose. Conclusion: We demonstrate that an extract of the Indian cactus succulent Caralluma fimbriata eases hyperphagic appetite behavior within a cohort of children and adolescents (n = 15) with PWS without notable adverse effects. The outcomes of this study will have a potential positive impact on PWS management.
Collapse
Affiliation(s)
- Joanne L Griggs
- Centre for Chronic Disease Prevention and Management, College of Health and Biomedicine, Victoria University, Melbourne, Victoria, Australia
| | - Xiao Q Su
- Centre for Chronic Disease Prevention and Management, College of Health and Biomedicine, Victoria University, Melbourne, Victoria, Australia
| | - Michael L Mathai
- Centre for Chronic Disease Prevention and Management, College of Health and Biomedicine, Victoria University, Melbourne, Victoria, Australia
| |
Collapse
|
29
|
Martínez Michel L, Haqq AM, Wismer WV. A review of chemosensory perceptions, food preferences and food-related behaviours in subjects with Prader-Willi Syndrome. Appetite 2015; 99:17-24. [PMID: 26713776 DOI: 10.1016/j.appet.2015.12.021] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2015] [Revised: 12/10/2015] [Accepted: 12/19/2015] [Indexed: 10/22/2022]
Abstract
Hyperphagia and obsessive preoccupation with food are hallmark characteristics of Prader-Willi Syndrome (PWS). Although hyperphagia in PWS is linked to hypothalamic dysfunction, the underlying mechanisms behind this problem are poorly understood. Moreover, our understanding of how chemosensory perceptions and food choice/preferences relate to hyperphagia in individuals with PWS is very limited. This narrative review synthesizes studies that assessed chemosensory perceptions, food choices and food-related behaviours in PWS individuals and highlights knowledge gaps in research for further exploration. Twenty seven publications from relevant databases met inclusion criteria and were organized thematically by study technique in the review. Results suggested that PWS individuals have consistent preferences for sweet tastes and in most studies have exhibited a preference for calorie-dense foods over lower calorie foods. No firm conclusions were drawn concerning the chemosensory perceptions of PWS individuals and their influence on food preferences or choices; chemosensation among PWS individuals is an understudied topic. Current evidence suggests that eating behaviour in PWS is a complex phenomenon that involves a dysfunctional satiation and not excessive hunger. Food preferences, choices, and related behaviours and the impact of these on obesity management in those with PWS remain poorly understood and require further study using validated tools and methodologies.
Collapse
Affiliation(s)
- Lorelei Martínez Michel
- Department of Agricultural, Food and Nutritional Science, 4-10 Agriculture Forestry Centre, University of Alberta, Edmonton, AB T6G 2P5, Canada
| | - Andrea M Haqq
- Department of Pediatrics, 4-511 Edmonton Clinic Health Academy, University of Alberta, Edmonton, AB T6G 1C9, Canada
| | - Wendy V Wismer
- Department of Agricultural, Food and Nutritional Science, 4-10 Agriculture Forestry Centre, University of Alberta, Edmonton, AB T6G 2P5, Canada.
| |
Collapse
|
30
|
Puzzle Pieces: Neural Structure and Function in Prader-Willi Syndrome. Diseases 2015; 3:382-415. [PMID: 28943631 PMCID: PMC5548261 DOI: 10.3390/diseases3040382] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2015] [Revised: 12/04/2015] [Accepted: 12/11/2015] [Indexed: 11/17/2022] Open
Abstract
Prader-Willi syndrome (PWS) is a neurodevelopmental disorder of genomic imprinting, presenting with a behavioural phenotype encompassing hyperphagia, intellectual disability, social and behavioural difficulties, and propensity to psychiatric illness. Research has tended to focus on the cognitive and behavioural investigation of these features, and, with the exception of eating behaviour, the neural physiology is currently less well understood. A systematic review was undertaken to explore findings relating to neural structure and function in PWS, using search terms designed to encompass all published articles concerning both in vivo and post-mortem studies of neural structure and function in PWS. This supported the general paucity of research in this area, with many articles reporting case studies and qualitative descriptions or focusing solely on the overeating behaviour, although a number of systematic investigations were also identified. Research to date implicates a combination of subcortical and higher order structures in PWS, including those involved in processing reward, motivation, affect and higher order cognitive functions, with both anatomical and functional investigations indicating abnormalities. It appears likely that PWS involves aberrant activity across distributed neural networks. The characterisation of neural structure and function warrants both replication and further systematic study.
Collapse
|
31
|
Griggs JL, Sinnayah P, Mathai ML. Prader–Willi syndrome: From genetics to behaviour, with special focus on appetite treatments. Neurosci Biobehav Rev 2015; 59:155-72. [DOI: 10.1016/j.neubiorev.2015.10.003] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2015] [Revised: 09/30/2015] [Accepted: 10/12/2015] [Indexed: 12/22/2022]
|
32
|
Iranpour J, Morrot G, Claise B, Jean B, Bonny JM. Using High Spatial Resolution to Improve BOLD fMRI Detection at 3T. PLoS One 2015; 10:e0141358. [PMID: 26550990 PMCID: PMC4638337 DOI: 10.1371/journal.pone.0141358] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2015] [Accepted: 10/07/2015] [Indexed: 11/19/2022] Open
Abstract
For different functional magnetic resonance imaging experiments using blood oxygenation level-dependent (BOLD) contrast, the acquisition of T2*-weighted scans at a high spatial resolution may be advantageous in terms of time-course signal-to-noise ratio and of BOLD sensitivity when the regions are prone to susceptibility artifacts. In this study, we explore this solution by examining how spatial resolution influences activations elicited when appetizing food pictures are viewed. Twenty subjects were imaged at 3 T with two different voxel volumes, 3.4 μl and 27 μl. Despite the diminution of brain coverage, we found that high-resolution acquisition led to a better detection of activations. Though known to suffer to different degrees from susceptibility artifacts, the activations detected by high spatial resolution were notably consistent with those reported in published activation likelihood estimation meta-analyses, corresponding to taste-responsive regions. Furthermore, these regions were found activated bilaterally, in contrast with previous findings. Both the reduction of partial volume effect, which improves BOLD contrast, and the mitigation of susceptibility artifact, which boosts the signal to noise ratio in certain regions, explained the better detection noted with high resolution. The present study provides further evidences that high spatial resolution is a valuable solution for human BOLD fMRI, especially for studying food-related stimuli.
Collapse
Affiliation(s)
| | - Gil Morrot
- Laboratoire Charles Coulomb—UMR 5221 CNRS, Université des Sciences et Techniques—Montpellier 2, place Eugène-Bataillon, 34090, Montpellier, France
| | - Béatrice Claise
- Neuroradiologie A, Plateforme Recherche IRM—CHU Gabriel-Montpied, F63000, Clermont-Ferrand, France
| | - Betty Jean
- Neuroradiologie A, Plateforme Recherche IRM—CHU Gabriel-Montpied, F63000, Clermont-Ferrand, France
| | - Jean-Marie Bonny
- UR370 QuaPA—INRA, F-63122, Saint-Genès-Champanelle, France
- * E-mail:
| |
Collapse
|
33
|
Affiliation(s)
- Maïthé Tauber
- Centre de référence du SPW, unité d'endocrinologie, obésité, maladies osseuses, génétique et gynécologie médicale, hôpital des enfants, CHU de Toulouse, 330 avenue de Grande-Bretagne, TSA 70034, 31059 Toulouse Cedex 9, France
| | | | - Éric Bieth
- Génétique médicale, hôpital Purpan, CHU de Toulouse, France
| |
Collapse
|
34
|
Davies JR, Humby T, Dwyer DM, Garfield AS, Furby H, Wilkinson LS, Wells T, Isles AR. Calorie seeking, but not hedonic response, contributes to hyperphagia in a mouse model for Prader-Willi syndrome. Eur J Neurosci 2015; 42:2105-13. [PMID: 26040449 PMCID: PMC4949663 DOI: 10.1111/ejn.12972] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2015] [Revised: 05/29/2015] [Accepted: 05/29/2015] [Indexed: 12/25/2022]
Abstract
Prader–Willi syndrome (PWS) is a neurodevelopmental disorder caused by deletion or inactivation of paternally expressed imprinted genes on human chromosome 15q11‐q13, the most recognised feature of which is hyperphagia. This is thought to arise as a consequence of abnormalities in both the physiological drive for food and the rewarding properties of food. Although a number of mouse models for PWS exist, the underlying variables dictating maladaptive feeding remain unknown. Here, feeding behaviour in a mouse model in which the imprinting centre (IC) of the syntenic PWS interval has been deleted (PWSICdel mice) is characterised. It is demonstrated that PWSICdel mice show hyperghrelinaemia and increased consumption of food both following overnight fasting and when made more palatable with sucrose. However, hyperphagia in PWSICdel mice was not accompanied by any changes in reactivity to the hedonic properties of palatable food (sucrose or saccharin), as measured by lick‐cluster size. Nevertheless, overall consumption by PWSICdel mice for non‐caloric saccharin in the licking test was significantly reduced. Combined with converging findings from a continuous reinforcement schedule, these data indicate that PWSICdel mice show a marked heightened sensitivity to the calorific value of food. Overall, these data indicate that any impact of the rewarding properties of food on the hyperphagia seen in PWSICdel mice is driven primarily by calorie content and is unlikely to involve hedonic processes. This has important implications for understanding the neural systems underlying the feeding phenotype of PWS and the contribution of imprinted genes to abnormal feeding behaviour more generally.
Collapse
Affiliation(s)
- Jennifer R Davies
- Behavioural Genetics Group, MRC Centre for Neuropsychiatric Genetics and Genomics, Neuroscience and Mental Health Research Institute, Cardiff University, Hadyn Ellis Building, Cardiff, CF24 4HQ, UK.,School of Medicine, Cardiff University, Cardiff, UK
| | - Trevor Humby
- Behavioural Genetics Group, MRC Centre for Neuropsychiatric Genetics and Genomics, Neuroscience and Mental Health Research Institute, Cardiff University, Hadyn Ellis Building, Cardiff, CF24 4HQ, UK.,School of Psychology, Cardiff University, Cardiff, UK
| | - Dominic M Dwyer
- School of Psychology, Cardiff University, Cardiff, UK.,School of Psychology, University of New South Wales, Sydney, NSW, Australia
| | | | - Hannah Furby
- Behavioural Genetics Group, MRC Centre for Neuropsychiatric Genetics and Genomics, Neuroscience and Mental Health Research Institute, Cardiff University, Hadyn Ellis Building, Cardiff, CF24 4HQ, UK.,School of Medicine, Cardiff University, Cardiff, UK.,School of Biosciences, Cardiff University, Cardiff, UK
| | - Lawrence S Wilkinson
- Behavioural Genetics Group, MRC Centre for Neuropsychiatric Genetics and Genomics, Neuroscience and Mental Health Research Institute, Cardiff University, Hadyn Ellis Building, Cardiff, CF24 4HQ, UK.,School of Medicine, Cardiff University, Cardiff, UK.,School of Psychology, Cardiff University, Cardiff, UK
| | - Timothy Wells
- School of Biosciences, Cardiff University, Cardiff, UK
| | - Anthony R Isles
- Behavioural Genetics Group, MRC Centre for Neuropsychiatric Genetics and Genomics, Neuroscience and Mental Health Research Institute, Cardiff University, Hadyn Ellis Building, Cardiff, CF24 4HQ, UK.,School of Medicine, Cardiff University, Cardiff, UK
| |
Collapse
|
35
|
Zhang Y, Wang J, Zhang G, Zhu Q, Cai W, Tian J, Zhang YE, Miller JL, Wen X, Ding M, Gold MS, Liu Y. The neurobiological drive for overeating implicated in Prader-Willi syndrome. Brain Res 2015; 1620:72-80. [PMID: 25998539 DOI: 10.1016/j.brainres.2015.05.008] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2014] [Revised: 04/23/2015] [Accepted: 05/08/2015] [Indexed: 11/25/2022]
Abstract
Prader-Willi syndrome (PWS) is a genetic imprinting disorder characterized mainly by hyperphagia and early childhood obesity. Previous fMRI studies examined the activation of eating-related neural circuits in PWS patients with or without exposures to food cues and found an excessive eating motivation and a reduced inhibitory control of cognitive processing of food. However, the effective connectivity between various brain areas or neural circuitry critically implicated in both the biological and behavioral control of overeating in PWS is largely unexplored. The current study combined resting-state fMRI and Granger causality analysis (GCA) techniques to investigate interactive causal influences among key neural pathways underlying overeating in PWS. We first defined the regions of interest (ROIs) that demonstrated significant alterations of the baseline brain activity levels in children with PWS (n = 21) as compared to that of their normal siblings controls (n = 18), and then carried out GCA to characterize the region-to-region interactions among these ROIs. Our data revealed significantly enhanced causal influences from the amygdala to the hypothalamus and from both the medial prefrontal cortex and anterior cingulate cortex to the amygdala in patients with PWS (P < 0.001). These alterations offer new explanations for hypothalamic regulation of homeostatic energy intake and impairment in inhibitory control circuit. The deficits in these dual aspects may jointly contribute to the extreme hyperphagia in PWS. This study provides both a new methodological and a neurobiological perspective to aid in a better understanding of neural mechanisms underlying obesity in the general public. This article is part of a Special Issue entitled 1618.
Collapse
Affiliation(s)
- Yi Zhang
- School of Life Science and Technology, Xidian University, Xi'an 710071, Shaanxi, China; Department of Psychiatry & McKnight Brain Institute, University of Florida, Gainesville, FL 32610, USA.
| | - Jing Wang
- School of Life Science and Technology, Xidian University, Xi'an 710071, Shaanxi, China
| | - Guansheng Zhang
- School of Life Science and Technology, Xidian University, Xi'an 710071, Shaanxi, China
| | - Qiang Zhu
- School of Life Science and Technology, Xidian University, Xi'an 710071, Shaanxi, China
| | - Weiwei Cai
- School of Life Science and Technology, Xidian University, Xi'an 710071, Shaanxi, China
| | - Jie Tian
- School of Life Science and Technology, Xidian University, Xi'an 710071, Shaanxi, China; Institute of Automation, Chinese Academy of Sciences, Beijing 100190, China
| | - Yi Edi Zhang
- Department of Psychiatry & McKnight Brain Institute, University of Florida, Gainesville, FL 32610, USA; Malcom Randall Veterans Affairs Medical Center, Gainesville, FL 32608, USA
| | - Jennifer L Miller
- Department of Pediatrics, University of Florida, Gainesville, FL 32610, USA
| | - Xiaotong Wen
- Department of Psychology, Remin University of China, Beijing 100872, China
| | - Mingzhou Ding
- Department of Biomedical Engineering, University of Florida, Gainesville, FL 32610, USA
| | - Mark S Gold
- Department of Psychiatry & McKnight Brain Institute, University of Florida, Gainesville, FL 32610, USA
| | - Yijun Liu
- Department of Psychiatry & McKnight Brain Institute, University of Florida, Gainesville, FL 32610, USA; Department of Psychology, Southwest University, Chongqing 400715, China.
| |
Collapse
|
36
|
von Deneen KM, Qin W, Liu P, Dong M, Chen P, Xie H, Zhang Y, Gold MS, Liu Y, Tian J. Connectivity Study of the Neuromechanism of Acute Acupuncture Needling during fMRI in "Overweight" Subjects. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE : ECAM 2015; 2015:384389. [PMID: 25821486 PMCID: PMC4363637 DOI: 10.1155/2015/384389] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/19/2014] [Revised: 12/29/2014] [Accepted: 12/29/2014] [Indexed: 11/18/2022]
Abstract
This functional connectivity study depicts how acupoints ST 36 and SP 9 and their sham acupoints acutely act on blood glucose (GLU), core body temperature (CBT), hunger, and sensations pertaining to needling (De-qi) via the limbic system and dopamine (DA) to affect various brain areas in fasting, adult, and "overweight" Chinese males using functional magnetic resonance imaging. Functional connectivity (FC) analysis utilized the amygdala (AMY) and hypothalamus (HYP) as regions of interest (ROIs) in the discrete cosine transform and seed correlation analysis methods. There was a significant difference in the spatial patterns of the distinct brain regions between groups. Correlation results showed that increased HYP-hippocampus FC after ACU was positively correlated with ACU-induced change in CBT; increased HYP-putamen-insula FC after ACU was positively correlated with ACU-induced change in GLU; and increased HYP-anterior cingulate cortex FC after ACU was positively correlated with ACU-induced change in HUNGER suggesting that increased DA modulation during ACU was probably associated with increased poststimulation limbic system and spinothalamic tract connectivity. Decreased HYP-thalamus FC after ACU was negatively correlated or anticorrelated with ACU-induced change in HUNGER suggesting that increased DA modulation during ACU was possibly associated with decreased poststimulation limbic system and spinothalamic tract connectivity. No correlation was found for min SHAM. This was an important study in addressing acute acupuncture effects and neural pathways involving physiology and appetite regulation in overweight individuals.
Collapse
Affiliation(s)
- Karen M. von Deneen
- School of Life Science and Technology, Xidian University, Xi'an 710071, China
- Department of Psychiatry & McKnight Brain Institute, University of Florida, 1149 S. Newell Dr. L4-100K, Gainesville, FL 32610, USA
| | - Wei Qin
- School of Life Science and Technology, Xidian University, Xi'an 710071, China
| | - Peng Liu
- School of Life Science and Technology, Xidian University, Xi'an 710071, China
| | - Minghao Dong
- School of Life Science and Technology, Xidian University, Xi'an 710071, China
| | - Peng Chen
- Beijing University of Chinese Medicine, Beijing 100029, China
| | - Huisheng Xie
- Department of Small Animal Clinical Sciences, College of Veterinary Medicine, University of Florida, P.O. Box 100126 2015 SW 16th Avenue, Gainesville, FL 32610, USA
| | - Yi Zhang
- School of Life Science and Technology, Xidian University, Xi'an 710071, China
| | - Mark S. Gold
- Department of Psychiatry & McKnight Brain Institute, University of Florida, 1149 S. Newell Dr. L4-100K, Gainesville, FL 32610, USA
| | - Yijun Liu
- Department of Psychiatry & McKnight Brain Institute, University of Florida, 1149 S. Newell Dr. L4-100K, Gainesville, FL 32610, USA
| | - Jie Tian
- School of Life Science and Technology, Xidian University, Xi'an 710071, China
| |
Collapse
|
37
|
Ho AL, Sussman ES, Zhang M, Pendharkar AV, Azagury DE, Bohon C, Halpern CH. Deep Brain Stimulation for Obesity. Cureus 2015; 7:e259. [PMID: 26180683 PMCID: PMC4494510 DOI: 10.7759/cureus.259] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/25/2015] [Indexed: 12/20/2022] Open
Abstract
Obesity is now the third leading cause of preventable death in the US, accounting for 216,000 deaths annually and nearly 100 billion dollars in health care costs. Despite advancements in bariatric surgery, substantial weight regain and recurrence of the associated metabolic syndrome still occurs in almost 20-35% of patients over the long-term, necessitating the development of novel therapies. Our continually expanding knowledge of the neuroanatomic and neuropsychiatric underpinnings of obesity has led to increased interest in neuromodulation as a new treatment for obesity refractory to current medical, behavioral, and surgical therapies. Recent clinical trials of deep brain stimulation (DBS) in chronic cluster headache, Alzheimer's disease, and depression and obsessive-compulsive disorder have demonstrated the safety and efficacy of targeting the hypothalamus and reward circuitry of the brain with electrical stimulation, and thus provide the basis for a neuromodulatory approach to treatment-refractory obesity. In this study, we review the literature implicating these targets for DBS in the neural circuitry of obesity. We will also briefly review ethical considerations for such an intervention, and discuss genetic secondary-obesity syndromes that may also benefit from DBS. In short, we hope to provide the scientific foundation to justify trials of DBS for the treatment of obesity targeting these specific regions of the brain.
Collapse
Affiliation(s)
- Allen L Ho
- Department of Neurosurgery, Stanford University School of Medicine
| | - Eric S Sussman
- Department of Neurosurgery, Stanford School of Medicine/Stanford University Medical Center
| | - Michael Zhang
- Department of Neurosurgery, Stanford University School of Medicine
| | | | - Dan E Azagury
- Department of Surgery, Stanford School of Medicine/Stanford University Medical Center
| | - Cara Bohon
- Department of Psychiatry and Behavioral Sciences, Stanford University School of Medicine
| | - Casey H Halpern
- Department of Neurosurgery, Stanford University Medical Center
| |
Collapse
|
38
|
van Meer F, van der Laan LN, Adan RA, Viergever MA, Smeets PA. What you see is what you eat: An ALE meta-analysis of the neural correlates of food viewing in children and adolescents. Neuroimage 2015; 104:35-43. [DOI: 10.1016/j.neuroimage.2014.09.069] [Citation(s) in RCA: 60] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2014] [Revised: 09/08/2014] [Accepted: 09/29/2014] [Indexed: 11/28/2022] Open
|
39
|
Zhang Y, Liu J, Yao J, Ji G, Qian L, Wang J, Zhang G, Tian J, Nie Y, Zhang YE, Gold MS, Liu Y. Obesity: pathophysiology and intervention. Nutrients 2014; 6:5153-83. [PMID: 25412152 PMCID: PMC4245585 DOI: 10.3390/nu6115153] [Citation(s) in RCA: 99] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2014] [Revised: 07/21/2014] [Accepted: 10/29/2014] [Indexed: 01/09/2023] Open
Abstract
Obesity presents a major health hazard of the 21st century. It promotes co-morbid diseases such as heart disease, type 2 diabetes, obstructive sleep apnea, certain types of cancer, and osteoarthritis. Excessive energy intake, physical inactivity, and genetic susceptibility are main causal factors for obesity, while gene mutations, endocrine disorders, medication, or psychiatric illnesses may be underlying causes in some cases. The development and maintenance of obesity may involve central pathophysiological mechanisms such as impaired brain circuit regulation and neuroendocrine hormone dysfunction. Dieting and physical exercise offer the mainstays of obesity treatment, and anti-obesity drugs may be taken in conjunction to reduce appetite or fat absorption. Bariatric surgeries may be performed in overtly obese patients to lessen stomach volume and nutrient absorption, and induce faster satiety. This review provides a summary of literature on the pathophysiological studies of obesity and discusses relevant therapeutic strategies for managing obesity.
Collapse
Affiliation(s)
- Yi Zhang
- School of Life Science and Technology, Xidian University, Xi'an, Shaanxi 710071, China.
| | - Ju Liu
- School of Life Science and Technology, Xidian University, Xi'an, Shaanxi 710071, China.
| | - Jianliang Yao
- School of Life Science and Technology, Xidian University, Xi'an, Shaanxi 710071, China.
| | - Gang Ji
- Xijing Gastrointestinal Hospital, the Fourth Military Medical University, Xi'an, Shaanxi 710032, China.
| | - Long Qian
- Department of Biomedical Engineering, Peking University, Beijing 100871, China.
| | - Jing Wang
- School of Life Science and Technology, Xidian University, Xi'an, Shaanxi 710071, China.
| | - Guansheng Zhang
- School of Life Science and Technology, Xidian University, Xi'an, Shaanxi 710071, China.
| | - Jie Tian
- School of Life Science and Technology, Xidian University, Xi'an, Shaanxi 710071, China.
| | - Yongzhan Nie
- Xijing Gastrointestinal Hospital, the Fourth Military Medical University, Xi'an, Shaanxi 710032, China.
| | - Yi Edi Zhang
- Department of Psychiatry & McKnight Brain Institute, University of Florida, 1149 South Newell Drive, Gainesville, FL 32610, USA.
| | - Mark S Gold
- Department of Psychiatry & McKnight Brain Institute, University of Florida, 1149 South Newell Drive, Gainesville, FL 32610, USA.
| | - Yijun Liu
- Department of Psychiatry & McKnight Brain Institute, University of Florida, 1149 South Newell Drive, Gainesville, FL 32610, USA.
| |
Collapse
|
40
|
Van Vugt DA, Krzemien A, Alsaadi H, Frank TC, Reid RL. Glucose-induced inhibition of the appetitive brain response to visual food cues in polycystic ovary syndrome patients. Brain Res 2014; 1558:44-56. [PMID: 24583185 DOI: 10.1016/j.brainres.2014.02.037] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2013] [Revised: 01/21/2014] [Accepted: 02/19/2014] [Indexed: 11/29/2022]
Abstract
We postulate that insulin regulation of food intake is compromised when insulin resistance is present. In order to investigate the effect of insulin sensitivity on appetitive brain responses, we conducted functional magnetic resonance imaging studies in a group of women diagnosed with polycystic ovary syndrome (PCOS) in which insulin sensitivity ranged from normal to resistant. Subjects (n=19) were imaged while viewing pictures of high calorie (HC) foods and low calorie (LC) foods after ingesting either 75 g glucose or an equivalent volume of water. The insulin sensitive group showed reduced blood oxygen level dependent (BOLD) signal in response to food pictures following glucose ingestion in numerous corticolimbic brain regions, whereas the insulin resistant group did not. There was a significant interaction between insulin sensitivity (sensitive vs resistant) and condition (water vs glucose). The largest clusters identified included the left insula, bilateral limbic/parahippocampal gyrus/culmen/midbrain, bilateral limbic lobe/precuneus, and left superior/mid temporal gyrus/parietal for HC and LC stimuli combined, the left parahippocampal gyrus/fusiform/pulvinar/midbrain for HC pictures, and the left superior/mid temporal gyrus/parietal and middle/inferior frontal gyrus/orbitofrontal cortex for LC pictures. Furthermore, BOLD signal in the anterior cingulate, medial frontal gyrus, posterior cingulate/precuneus, and parietal cortex during a glucose challenge correlated negatively with insulin sensitivity. We conclude the PCOS women with insulin resistance have an impaired brain response to a glucose challenge. The inability of postprandial hyperinsulinemia to inhibit brain responsiveness to food cues in insulin resistant subjects may lead to greater non-homeostatic eating.
Collapse
Affiliation(s)
- Dean A Van Vugt
- Department of Obstetrics & Gynaecology, Queen׳s University, Kingston, Canada; Department of Biomedical and Molecular Sciences, Queen׳s University, Kingston, Canada.
| | - Alicja Krzemien
- Department of Obstetrics & Gynaecology, Queen׳s University, Kingston, Canada
| | - Hanin Alsaadi
- Department of Biomedical and Molecular Sciences, Queen׳s University, Kingston, Canada
| | - Tamar C Frank
- Department of Biomedical and Molecular Sciences, Queen׳s University, Kingston, Canada
| | - Robert L Reid
- Department of Obstetrics & Gynaecology, Queen׳s University, Kingston, Canada
| |
Collapse
|
41
|
Miller JL, Linville TD, Dykens EM. Effects of metformin in children and adolescents with Prader-Willi syndrome and early-onset morbid obesity: a pilot study. J Pediatr Endocrinol Metab 2014; 27:23-9. [PMID: 23893676 PMCID: PMC3864175 DOI: 10.1515/jpem-2013-0116] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/22/2013] [Accepted: 06/03/2013] [Indexed: 12/14/2022]
Abstract
Prader-Willi syndrome (PWS) is one of the most commonly recognized causes of early-onset childhood obesity. Individuals with PWS have significant hyperphagia and decreased recognition of satiety. The exact etiology of the hyperphagia remains unknown and, therefore, untreatable. We conducted a pilot, open-label study of response to metformin in 21 children with PWS and six with early morbid obesity (EMO). Participants had significant insulin resistance and glucose intolerance on oral glucose tolerance testing (OGTT) and were started on metformin for these biochemical findings. We administered the Hyperphagia Questionnaire to parents of patients before and after starting metformin treatment. Both the PWS and EMO groups showed significant improvements in food-related distress, anxiety, and ability to be redirected away from food on the Hyperphagia Questionnaire. In the PWS group, improvements were predominantly seen in females. Within the PWS group, responders to metformin had higher 2-h glucose levels on OGTT (7.48 mmol/L vs. 4.235 mmol/L; p=0.003) and higher fasting insulin levels (116 pmol/L vs. 53.5 pmol/L; p=0.04). Additionally, parents of 5/13 individuals with PWS and 5/6 with EMO reported that their child was able to feel full while on metformin (for many this was the first time they had ever described a feeling of fullness). Metformin may improve sense of satiety and decrease anxiety about food in some individuals with PWS and EMO. Positive response to metformin may depend on the degree of hyperinsulinism and glucose intolerance. Nonetheless, the results of this pilot study bear further investigation.
Collapse
|
42
|
Emerick JE, Vogt KS. Endocrine manifestations and management of Prader-Willi syndrome. INTERNATIONAL JOURNAL OF PEDIATRIC ENDOCRINOLOGY 2013; 2013:14. [PMID: 23962041 PMCID: PMC3751775 DOI: 10.1186/1687-9856-2013-14] [Citation(s) in RCA: 71] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 07/29/2013] [Accepted: 07/30/2013] [Indexed: 01/05/2023]
Abstract
Prader-Willi syndrome (PWS) is a complex genetic disorder, caused by lack of expression of genes on the paternally inherited chromosome 15q11.2-q13. In infancy it is characterized by hypotonia with poor suck resulting in failure to thrive. As the child ages, other manifestations such as developmental delay, cognitive disability, and behavior problems become evident. Hypothalamic dysfunction has been implicated in many manifestations of this syndrome including hyperphagia, temperature instability, high pain threshold, sleep disordered breathing, and multiple endocrine abnormalities. These include growth hormone deficiency, central adrenal insufficiency, hypogonadism, hypothyroidism, and complications of obesity such as type 2 diabetes mellitus. This review summarizes the recent literature investigating optimal screening and treatment of endocrine abnormalities associated with PWS, and provides an update on nutrition and food-related behavioral intervention. The standard of care regarding growth hormone therapy and surveillance for potential side effects, the potential for central adrenal insufficiency, evaluation for and treatment of hypogonadism in males and females, and the prevalence and screening recommendations for hypothyroidism and diabetes are covered in detail. PWS is a genetic syndrome in which early diagnosis and careful attention to detail regarding all the potential endocrine and behavioral manifestations can lead to a significant improvement in health and developmental outcomes. Thus, the important role of the provider caring for the child with PWS cannot be overstated.
Collapse
Affiliation(s)
- Jill E Emerick
- Department of Pediatrics, Walter Reed National Military Medical Center Bethesda, 8901 Wisconsin Ave, Bethesda, MD 20889, USA.
| | | |
Collapse
|
43
|
Lizarbe B, Benitez A, Peláez Brioso GA, Sánchez-Montañés M, López-Larrubia P, Ballesteros P, Cerdán S. Hypothalamic metabolic compartmentation during appetite regulation as revealed by magnetic resonance imaging and spectroscopy methods. FRONTIERS IN NEUROENERGETICS 2013; 5:6. [PMID: 23781199 PMCID: PMC3680712 DOI: 10.3389/fnene.2013.00006] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/12/2013] [Accepted: 05/28/2013] [Indexed: 12/14/2022]
Abstract
We review the role of neuroglial compartmentation and transcellular neurotransmitter cycling during hypothalamic appetite regulation as detected by Magnetic Resonance Imaging (MRI) and Spectroscopy (MRS) methods. We address first the neurochemical basis of neuroendocrine regulation in the hypothalamus and the orexigenic and anorexigenic feed-back loops that control appetite. Then we examine the main MRI and MRS strategies that have been used to investigate appetite regulation. Manganese-enhanced magnetic resonance imaging (MEMRI), Blood oxygenation level-dependent contrast (BOLD), and Diffusion-weighted magnetic resonance imaging (DWI) have revealed Mn2+ accumulations, augmented oxygen consumptions, and astrocytic swelling in the hypothalamus under fasting conditions, respectively. High field 1H magnetic resonance in vivo, showed increased hypothalamic myo-inositol concentrations as compared to other cerebral structures. 1H and 13C high resolution magic angle spinning (HRMAS) revealed increased neuroglial oxidative and glycolytic metabolism, as well as increased hypothalamic glutamatergic and GABAergic neurotransmissions under orexigenic stimulation. We propose here an integrative interpretation of all these findings suggesting that the neuroendocrine regulation of appetite is supported by important ionic and metabolic transcellular fluxes which begin at the tripartite orexigenic clefts and become extended spatially in the hypothalamus through astrocytic networks becoming eventually MRI and MRS detectable.
Collapse
Affiliation(s)
- Blanca Lizarbe
- Department of Experimental Models of Human diseases, Laboratory of Imaging and Spectroscopy by Magnetic Resonance, Instituto de Investigaciones Biomédicas "Alberto Sols" CSIC/UAM Madrid, Spain
| | | | | | | | | | | | | |
Collapse
|
44
|
Zhang Y, Zhao H, Qiu S, Tian J, Wen X, Miller JL, von Deneen KM, Zhou Z, Gold MS, Liu Y. Altered functional brain networks in Prader-Willi syndrome. NMR IN BIOMEDICINE 2013; 26:622-9. [PMID: 23335390 PMCID: PMC3776442 DOI: 10.1002/nbm.2900] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/26/2012] [Revised: 11/05/2012] [Accepted: 11/06/2012] [Indexed: 05/26/2023]
Abstract
Prader-Willi syndrome (PWS) is a genetic imprinting disorder characterized mainly by hyperphagia and early childhood obesity. Previous functional neuroimaging studies used visual stimuli to examine abnormal activities in the eating-related neural circuitry of patients with PWS. It was found that patients with PWS exhibited both excessive hunger and hyperphagia consistently, even in situations without any food stimulation. In the present study, we employed resting-state functional MRI techniques to investigate abnormal brain networks related to eating disorders in children with PWS. First, we applied amplitude of low-frequency fluctuation analysis to define the regions of interest that showed significant alterations in resting-state brain activity levels in patients compared with their sibling control group. We then applied a functional connectivity (FC) analysis to these regions of interest in order to characterize interactions among the brain regions. Our results demonstrated that patients with PWS showed decreased FC strength in the medial prefrontal cortex (MPFC)/inferior parietal lobe (IPL), MPFC/precuneus, IPL/precuneus and IPL/hippocampus in the default mode network; decreased FC strength in the pre-/postcentral gyri and dorsolateral prefrontal cortex (DLPFC)/orbitofrontal cortex (OFC) in the motor sensory network and prefrontal cortex network, respectively; and increased FC strength in the anterior cingulate cortex/insula, ventrolateral prefrontal cortex (VLPFC)/OFC and DLPFC/VLPFC in the core network and prefrontal cortex network, respectively. These findings indicate that there are FC alterations among the brain regions implicated in eating as well as rewarding, even during the resting state, which may provide further evidence supporting the use of PWS as a model to study obesity and to provide information on potential neural targets for the medical treatment of overeating.
Collapse
Affiliation(s)
- Yi Zhang
- Life Sciences Research Center, School of Life Sciences and Technology, Xidian University, Xi’an, Shaanxi, China
- Department of Psychiatry and McKnight Brain Institute, University of Florida, Gainesville, FL, USA
| | - Heng Zhao
- Life Sciences Research Center, School of Life Sciences and Technology, Xidian University, Xi’an, Shaanxi, China
| | - Siyou Qiu
- Life Sciences Research Center, School of Life Sciences and Technology, Xidian University, Xi’an, Shaanxi, China
| | - Jie Tian
- Life Sciences Research Center, School of Life Sciences and Technology, Xidian University, Xi’an, Shaanxi, China
- Institute of Automation, Chinese Academy of Sciences, Beijing, China
| | - Xiaotong Wen
- J. Crayton Pruitt Family Department of Biomedical Engineering, University of Florida, Gainesville, FL, USA
| | - Jennifer L. Miller
- Department of Pediatrics, College of Medicine, University of Florida, Gainesville, FL, USA
| | - Karen M. von Deneen
- Life Sciences Research Center, School of Life Sciences and Technology, Xidian University, Xi’an, Shaanxi, China
- Department of Psychiatry and McKnight Brain Institute, University of Florida, Gainesville, FL, USA
| | - Zhenyu Zhou
- Department of Biomedical Engineering, College of Engineering, Peking University, Beijing, China
| | - Mark S. Gold
- Department of Psychiatry and McKnight Brain Institute, University of Florida, Gainesville, FL, USA
| | - Yijun Liu
- Department of Psychiatry and McKnight Brain Institute, University of Florida, Gainesville, FL, USA
- Department of Biomedical Engineering, College of Engineering, Peking University, Beijing, China
| |
Collapse
|
45
|
Ogura K, Fujii T, Abe N, Hosokai Y, Shinohara M, Fukuda H, Mori E. Regional cerebral blood flow and abnormal eating behavior in Prader-Willi syndrome. Brain Dev 2013; 35:427-34. [PMID: 22921862 DOI: 10.1016/j.braindev.2012.07.013] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/14/2012] [Revised: 07/14/2012] [Accepted: 07/15/2012] [Indexed: 11/17/2022]
Abstract
BACKGROUND Prader-Willi syndrome (PWS) is a genetically determined neurodevelopmental disorder and is generally regarded as a genetic model of obesity. Individuals with PWS exhibit behavioral symptoms including temper tantrums, rigid thinking, and compulsive behavior. The most striking feature of PWS is abnormal eating behavior, including hyperphagia, intense preoccupation with food, and incessant food seeking. To explore brain regions associated with the behavioral symptoms of PWS, we investigated differences in resting-state regional cerebral blood flow (rCBF) between individuals with PWS and healthy controls. Correlation analyses were also performed to examine the relationship between rCBF and altered eating behavior in PWS individuals. METHODS Twelve adults with PWS and 13 age- and gender-matched controls underwent resting-state single photon emission computerized tomography (SPECT) with N-isopropyl-p-[(123)I] iodoamphetamine (IMP). The rCBF data were analyzed on a voxel-by-voxel basis using SPM5 software. RESULTS The results demonstrated that compared with controls, individuals with PWS had significantly lower rCBF in the right thalamus, left insular cortex, bilateral lingual gyrus, and bilateral cerebellum. They had significantly higher rCBF in the right inferior frontal gyrus, left middle/inferior frontal gyrus (anterior and posterior clusters), and bilateral angular gyrus. Additionally, rCBF in the left insula, which was significantly lower in PWS individuals, was negatively correlated with the eating behavior severity score. CONCLUSIONS These results suggest that specific brain regions, particularly the left insula, may be partly responsible for the behavioral symptoms in PWS.
Collapse
Affiliation(s)
- Kaeko Ogura
- Department of Behavioral Neurology and Cognitive Neuroscience, Tohoku University Graduate School of Medicine, Sendai, Japan.
| | | | | | | | | | | | | |
Collapse
|
46
|
Gearhardt AN, Yokum S, Stice E, Harris JL, Brownell KD. Relation of obesity to neural activation in response to food commercials. Soc Cogn Affect Neurosci 2013; 9:932-8. [PMID: 23576811 DOI: 10.1093/scan/nst059] [Citation(s) in RCA: 103] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
Adolescents view thousands of food commercials annually, but the neural response to food advertising and its association with obesity is largely unknown. This study is the first to examine how neural response to food commercials differs from other stimuli (e.g. non-food commercials and television show) and to explore how this response may differ by weight status. The blood oxygen level-dependent functional magnetic resonance imaging activation was measured in 30 adolescents ranging from lean to obese in response to food and non-food commercials imbedded in a television show. Adolescents exhibited greater activation in regions implicated in visual processing (e.g. occipital gyrus), attention (e.g. parietal lobes), cognition (e.g. temporal gyrus and posterior cerebellar lobe), movement (e.g. anterior cerebellar cortex), somatosensory response (e.g. postcentral gyrus) and reward [e.g. orbitofrontal cortex and anterior cingulate cortex (ACC)] during food commercials. Obese participants exhibited less activation during food relative to non-food commercials in neural regions implicated in visual processing (e.g. cuneus), attention (e.g. posterior cerebellar lobe), reward (e.g. ventromedial prefrontal cortex and ACC) and salience detection (e.g. precuneus). Obese participants did exhibit greater activation in a region implicated in semantic control (e.g. medial temporal gyrus). These findings may inform current policy debates regarding the impact of food advertising to minors.
Collapse
Affiliation(s)
- Ashley N Gearhardt
- University of Michigan, 2268 East Hall, 530 Church Street, Ann Arbor, MI 48109 Oregon Research Institute, 1776 Millrace, Dr Eugene, OR 97403 and Yale University, 309 Edwards Street, New Haven, CT 06511
| | - Sonja Yokum
- University of Michigan, 2268 East Hall, 530 Church Street, Ann Arbor, MI 48109 Oregon Research Institute, 1776 Millrace, Dr Eugene, OR 97403 and Yale University, 309 Edwards Street, New Haven, CT 06511
| | - Eric Stice
- University of Michigan, 2268 East Hall, 530 Church Street, Ann Arbor, MI 48109 Oregon Research Institute, 1776 Millrace, Dr Eugene, OR 97403 and Yale University, 309 Edwards Street, New Haven, CT 06511
| | - Jennifer L Harris
- University of Michigan, 2268 East Hall, 530 Church Street, Ann Arbor, MI 48109 Oregon Research Institute, 1776 Millrace, Dr Eugene, OR 97403 and Yale University, 309 Edwards Street, New Haven, CT 06511
| | - Kelly D Brownell
- University of Michigan, 2268 East Hall, 530 Church Street, Ann Arbor, MI 48109 Oregon Research Institute, 1776 Millrace, Dr Eugene, OR 97403 and Yale University, 309 Edwards Street, New Haven, CT 06511
| |
Collapse
|
47
|
Miller JL, Lynn CH, Shuster J, Driscoll DJ. A reduced-energy intake, well-balanced diet improves weight control in children with Prader-Willi syndrome. J Hum Nutr Diet 2012; 26:2-9. [PMID: 23078343 DOI: 10.1111/j.1365-277x.2012.01275.x] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
BACKGROUND Children with Prader-Willi syndrome (PWS) have a predictable pattern of weight gain, with obesity beginning in early childhood and worsening as they get older and hyperphagia increases. Data on the most effective dietary modifications are scant and primarily anecdotal. As part of a longitudinal study investigating the natural history of PWS, we evaluated the effect of a well-balanced, energy-restricted diet on body composition and weight in young children with PWS. METHODS Sixty-three children, aged 2-10 years, with genetically proven PWS participated in the present study. These children had measurements of body composition by dual-energy X-ray absorptiometry and resting energy expenditure (REE), as well as a 3-day diet history analysis both before and after intervention. Energy calculations were based on the individual's REE, with the recommendation that the macronutrients of the diet consist of 30% fat, 45% carbohydrates and 25% protein, with at least 20 g of fibre per day. RESULTS Thirty-three families adhered to our dietary recommendations for both energy intake and macronutrient distribution. Those 33 children had lower body fat (19.8% versus 41.9%; P < 0.001) and weight management (body mass index SD score 0.3 versus 2.23; P < 0.001) than those whose parents followed the energy intake recommendations but did not alter the macronutrient composition of the diet. Those who followed our recommendations also had a lower respiratory quotient (0.84 versus 0.95; P = 0.002). CONCLUSIONS Our recommendation for an energy-restricted diet with a well-balanced macronutrient composition and fibre intake improves both weight and body composition in children with PWS compared to a simple energy-restricted diet.
Collapse
Affiliation(s)
- J L Miller
- University of Florida, Department of Pediatrics, Gainesville, FL 32608, USA.
| | | | | | | |
Collapse
|
48
|
|
49
|
Dichter GS, Damiano CA, Allen JA. Reward circuitry dysfunction in psychiatric and neurodevelopmental disorders and genetic syndromes: animal models and clinical findings. J Neurodev Disord 2012; 4:19. [PMID: 22958744 PMCID: PMC3464940 DOI: 10.1186/1866-1955-4-19] [Citation(s) in RCA: 202] [Impact Index Per Article: 16.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/06/2012] [Accepted: 05/02/2012] [Indexed: 02/07/2023] Open
Abstract
This review summarizes evidence of dysregulated reward circuitry function in a range of neurodevelopmental and psychiatric disorders and genetic syndromes. First, the contribution of identifying a core mechanistic process across disparate disorders to disease classification is discussed, followed by a review of the neurobiology of reward circuitry. We next consider preclinical animal models and clinical evidence of reward-pathway dysfunction in a range of disorders, including psychiatric disorders (i.e., substance-use disorders, affective disorders, eating disorders, and obsessive compulsive disorders), neurodevelopmental disorders (i.e., schizophrenia, attention-deficit/hyperactivity disorder, autism spectrum disorders, Tourette's syndrome, conduct disorder/oppositional defiant disorder), and genetic syndromes (i.e., Fragile X syndrome, Prader-Willi syndrome, Williams syndrome, Angelman syndrome, and Rett syndrome). We also provide brief overviews of effective psychopharmacologic agents that have an effect on the dopamine system in these disorders. This review concludes with methodological considerations for future research designed to more clearly probe reward-circuitry dysfunction, with the ultimate goal of improved intervention strategies.
Collapse
Affiliation(s)
- Gabriel S Dichter
- Carolina Institute for Developmental Disabilities, University of North Carolina at Chapel Hill School of Medicine, Chapel Hill, NC, USA
- Department of Psychiatry, University of North Carolina at Chapel Hill School of Medicine, Chapel Hill, NC, USA
- Department of Psychology, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
- Department of Psychiatry, University of North Carolina School of Medicine, CB# 7255, 101 Manning Drive, Chapel Hill, NC, 275997255, USA
| | - Cara A Damiano
- Department of Psychology, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - John A Allen
- Neuroscience Research Unit Pfizer Global Research and Development, Groton, CT 06340, USA
| |
Collapse
|
50
|
Abstract
OBJECTIVE Prader-Willi syndrome (PWS) is a genetic neurodevelopmental disorder with several nutritional phases during childhood proceeding from poor feeding, through normal eating without and with obesity, to hyperphagia and life-threatening obesity, with variable ages of onset. We investigated whether differences in appetite hormones may explain the development of abnormal eating behaviour in young children with PWS. SUBJECTS In this cross-sectional study, children with PWS (n=42) and controls (n=9) aged 7 months-5 years were recruited. Mothers were interviewed regarding eating behaviour, and body mass index (BMI) was calculated. Fasting plasma samples were assayed for insulin, leptin, glucose, peptide YY (PYY), ghrelin and pancreatic polypeptide (PP). RESULTS There was no significant relationship between eating behaviour in PWS subjects and the levels of any hormones or insulin resistance, independent of age. Fasting plasma leptin levels were significantly higher (mean ± s.d.: 22.6 ± 12.5 vs 1.97 ± 0.79 ng ml(-1), P=0.005), and PP levels were significantly lower (22.6 ± 12.5 vs 69.8 ± 43.8 pmol l(-1), P<0.001) in the PWS group compared with the controls, and this was independent of age, BMI, insulin resistance or IGF-1 levels. However, there was no significant difference in plasma insulin, insulin resistance or ghrelin levels between groups, though PYY declined more rapidly with age but not BMI in PWS subjects. CONCLUSION Even under the age of 5 years, PWS is associated with low levels of anorexigenic PP, as in older children and adults. Hyperghrelinaemia or hypoinsulinaemia was not seen in these young children with PWS. Change in these appetite hormones was not associated with the timing of the transition to the characteristic hyperphagic phase. However, abnormal and/or delayed development or sensitivity of the effector pathways of these appetitive hormones (for example, parasympathetic and central nervous system) may interact with low PP levels, and later hyperghrelinaemia or hypoinsulinaemia, to contribute to hyperphagia in PWS.
Collapse
|