1
|
Shiota Y, Nishiyama T, Yokoyama S, Yoshimura Y, Hasegawa C, Tanaka S, Iwasaki S, Kikuchi M. Association of genetic variants with autism spectrum disorder in Japanese children revealed by targeted sequencing. Front Genet 2024; 15:1352480. [PMID: 39280100 PMCID: PMC11395840 DOI: 10.3389/fgene.2024.1352480] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2023] [Accepted: 03/04/2024] [Indexed: 09/18/2024] Open
Abstract
Introduction Autism spectrum disorders (ASD) represent a heterogeneous group of neurodevelopmental disorders with strong genetic predispositions. Although an increasing number of genetic variants have been implicated in the pathogenesis of ASD, little is known about the relationship between ASD-associated genetic variants and individual ASD traits. Therefore, we aimed to investigate these relationships. Methods Here, we report a case-control association study of 32 Japanese children with ASD (mainly with high-functioning autism [HFA]) and 36 with typical development (TD). We explored previously established ASD-associated genes using a next-generation sequencing panel and determined the association between Social Responsiveness Scale (SRS) T-scores and intelligence quotient (IQ) scores. Results In the genotype-phenotype analyses, 40 variants of five genes (SCN1A, SHANK3, DYRK1A, CADPS, and SCN2A) were associated with ASD/TD phenotypes. In particular, 10 SCN1A variants passed permutation filtering (false discovery rate <0.05). In the quantitative association analyses, 49 variants of 12 genes (CHD8, SCN1A, SLC6A1, KMT5B, CNTNAP2, KCNQ3, SCN2A, ARID1B, SHANK3, DYRK1A, FOXP1, and GRIN2B) and 50 variants of 10 genes (DYRK1A, SCN2A, SLC6A1, ARID1B, CNTNAP2, SHANK3, FOXP1, PTEN, SCN1A, and CHD8) were associated with SRS T- and IQ-scores, respectively. Conclusion Our data suggest that these identified variants are essential for the genetic architecture of HFA.
Collapse
Affiliation(s)
- Yuka Shiota
- Japan Society for the Promotion of Science, Tokyo, Japan
- Research Center for Child Mental Development, Kanazawa University, Kanazawa, Japan
| | - Tomoaki Nishiyama
- Research Center for Experimental Modeling of Human Disease, Kanazawa University, Kanazawa, Japan
| | - Shigeru Yokoyama
- Research Center for Child Mental Development, Kanazawa University, Kanazawa, Japan
- United Graduate School of Child Development, Osaka University, Kanazawa University, Hamamatsu University School of Medicine, Chiba University, and University of Fukui, Kanazawa, Japan
| | - Yuko Yoshimura
- United Graduate School of Child Development, Osaka University, Kanazawa University, Hamamatsu University School of Medicine, Chiba University, and University of Fukui, Kanazawa, Japan
- Institute of Human and Social Sciences, Kanazawa University, Kanazawa, Japan
| | - Chiaki Hasegawa
- Research Center for Child Mental Development, Kanazawa University, Kanazawa, Japan
- United Graduate School of Child Development, Osaka University, Kanazawa University, Hamamatsu University School of Medicine, Chiba University, and University of Fukui, Kanazawa, Japan
| | - Sanae Tanaka
- Research Center for Child Mental Development, Kanazawa University, Kanazawa, Japan
- United Graduate School of Child Development, Osaka University, Kanazawa University, Hamamatsu University School of Medicine, Chiba University, and University of Fukui, Kanazawa, Japan
| | - Sumie Iwasaki
- Japan Society for the Promotion of Science, Tokyo, Japan
- Institute of Human and Social Sciences, Kanazawa University, Kanazawa, Japan
| | - Mitsuru Kikuchi
- United Graduate School of Child Development, Osaka University, Kanazawa University, Hamamatsu University School of Medicine, Chiba University, and University of Fukui, Kanazawa, Japan
- Department of Psychiatry and Neurobiology, Graduate School of Medical Science, Kanazawa University, Kanazawa, Japan
| |
Collapse
|
2
|
Danis AB, Gallagher AA, Anderson AN, Isakharov A, Beeson KA, Schnell E. Altered Hippocampal Activation in Seizure-Prone CACNA2D2 Knock-out Mice. eNeuro 2024; 11:ENEURO.0486-23.2024. [PMID: 38749701 PMCID: PMC11097259 DOI: 10.1523/eneuro.0486-23.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2023] [Revised: 04/08/2024] [Accepted: 04/10/2024] [Indexed: 05/18/2024] Open
Abstract
The voltage-gated calcium channel subunit α2δ-2 controls calcium-dependent signaling in neurons, and loss of this subunit causes epilepsy in both mice and humans. To determine whether mice without α2δ-2 demonstrate hippocampal activation or histopathological changes associated with seizure activity, we measured expression of the activity-dependent gene c-fos and various histopathological correlates of temporal lobe epilepsy (TLE) in hippocampal tissue from wild-type (WT) and α2δ-2 knock-out (CACNA2D2 KO) mice using immunohistochemical staining and confocal microscopy. Both genotypes demonstrated similarly sparse c-fos and ΔFosB expressions within the hippocampal dentate granule cell layer (GCL) at baseline, consistent with no difference in basal activity of granule cells between genotypes. Surprisingly, when mice were assayed 1 h after handling-associated convulsions, KO mice had fewer c-fos-positive cells but dramatically increased ΔFosB expression in the dentate gyrus compared with WT mice. After administration of a subthreshold pentylenetetrazol dose, however, KO mice dentate had significantly more c-fos expression compared with WT mice. Other histopathological markers of TLE in these mice, including markers of neurogenesis, glial activation, and mossy fiber sprouting, were similar between WT and KO mice, apart from a small but statistically significant increase in hilar mossy cell density, opposite to what is typically found in mice with TLE. This suggests that the differences in seizure-associated dentate gyrus function in the absence of α2δ-2 protein are likely due to altered functional properties of the network without associated structural changes in the hippocampus at the typical age of seizure onset.
Collapse
Affiliation(s)
- Alyssa B Danis
- Department of Anesthesiology and Perioperative Medicine, Oregon Health & Science University, Portland, Oregon 97239
- Research and Development Service, Portland VA Health Care System, Portland, Oregon 97239
| | - Ashlynn A Gallagher
- Department of Anesthesiology and Perioperative Medicine, Oregon Health & Science University, Portland, Oregon 97239
- Research and Development Service, Portland VA Health Care System, Portland, Oregon 97239
| | - Ashley N Anderson
- Department of Anesthesiology and Perioperative Medicine, Oregon Health & Science University, Portland, Oregon 97239
- Research and Development Service, Portland VA Health Care System, Portland, Oregon 97239
| | - Arielle Isakharov
- Neuroscience Graduate Program, Oregon Health & Science University, Portland, Oregon 97239
| | - Kathleen A Beeson
- Neuroscience Graduate Program, Oregon Health & Science University, Portland, Oregon 97239
| | - Eric Schnell
- Department of Anesthesiology and Perioperative Medicine, Oregon Health & Science University, Portland, Oregon 97239
- Research and Development Service, Portland VA Health Care System, Portland, Oregon 97239
- Neuroscience Graduate Program, Oregon Health & Science University, Portland, Oregon 97239
| |
Collapse
|
3
|
Danis A, Gallagher AA, Anderson AN, Isakharov A, Beeson KA, Schnell E. Altered hippocampal activation in seizure-prone CACNA2D2 knockout mice. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.11.08.565511. [PMID: 37986872 PMCID: PMC10659305 DOI: 10.1101/2023.11.08.565511] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/22/2023]
Abstract
The voltage-gated calcium channel subunit α2δ-2 controls calcium-dependent signaling in neurons, and loss of this subunit causes epilepsy in both mice and humans. To determine whether mice without α2δ-2 demonstrate hippocampal activation or histopathological changes associated with seizure activity, we measured expression of the activity-dependent gene c-fos and various histopathological correlates of temporal lobe epilepsy in hippocampal tissue from wildtype (WT) and α2δ-2 knockout (CACNA2D2 KO) mice using immunohistochemical staining and confocal microscopy. Both genotypes demonstrated similarly sparse c-fos expression within the hippocampal dentate granule cell layer (GCL) at baseline, consistent with no difference in basal activity of granule cells between genotypes. Surprisingly, when mice were assayed 1 hour after handling-associated convulsions, KO mice had fewer c-fos-positive cells in the dentate gyrus, indicating that activity in the dentate gyrus actually decreased. However, the dentate was significantly more active in KO mice compared to WT after administration of a subthreshold pentylenetetrazole dose, consistent with increased susceptibility to proconvulsant stimuli. Other histopathological markers of temporal lobe epilepsy in these mice, including markers of neurogenesis, glial activation, and mossy fiber sprouting, were similar in WT and KO mice, apart from a small but significant increase in hilar mossy cell density, opposite to what is typically found in mice with temporal lobe epilepsy. This suggests that the differences in seizure-associated hippocampal function in the absence of α2δ-2 protein are likely due to altered functional properties of the network without associated structural changes in the hippocampus at the typical age of seizure onset.
Collapse
Affiliation(s)
- Alyssa Danis
- Department of Anesthesiology and Perioperative Medicine, Oregon Health & Science University, Portland, OR, 97239
- Research and Development Service, Portland VA Health Care System, Portland, OR, 97239, Portland, OR, 97239
| | - Ashlynn A. Gallagher
- Department of Anesthesiology and Perioperative Medicine, Oregon Health & Science University, Portland, OR, 97239
- Research and Development Service, Portland VA Health Care System, Portland, OR, 97239, Portland, OR, 97239
| | - Ashley N. Anderson
- Department of Anesthesiology and Perioperative Medicine, Oregon Health & Science University, Portland, OR, 97239
- Research and Development Service, Portland VA Health Care System, Portland, OR, 97239, Portland, OR, 97239
| | - Arielle Isakharov
- Neuroscience Graduate Program, Oregon Health & Science University, Portland, OR, 97239
| | - Kathleen A. Beeson
- Neuroscience Graduate Program, Oregon Health & Science University, Portland, OR, 97239
| | - Eric Schnell
- Department of Anesthesiology and Perioperative Medicine, Oregon Health & Science University, Portland, OR, 97239
- Research and Development Service, Portland VA Health Care System, Portland, OR, 97239, Portland, OR, 97239
- Neuroscience Graduate Program, Oregon Health & Science University, Portland, OR, 97239
| |
Collapse
|
4
|
Chakraborty S, Parayil R, Mishra S, Nongthomba U, Clement JP. Epilepsy Characteristics in Neurodevelopmental Disorders: Research from Patient Cohorts and Animal Models Focusing on Autism Spectrum Disorder. Int J Mol Sci 2022; 23:ijms231810807. [PMID: 36142719 PMCID: PMC9501968 DOI: 10.3390/ijms231810807] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2022] [Revised: 08/31/2022] [Accepted: 09/05/2022] [Indexed: 11/24/2022] Open
Abstract
Epilepsy, a heterogeneous group of brain-related diseases, has continued to significantly burden society and families. Epilepsy comorbid with neurodevelopmental disorders (NDDs) is believed to occur due to multifaceted pathophysiological mechanisms involving disruptions in the excitation and inhibition (E/I) balance impeding widespread functional neuronal circuitry. Although the field has received much attention from the scientific community recently, the research has not yet translated into actionable therapeutics to completely cure epilepsy, particularly those comorbid with NDDs. In this review, we sought to elucidate the basic causes underlying epilepsy as well as those contributing to the association of epilepsy with NDDs. Comprehensive emphasis is put on some key neurodevelopmental genes implicated in epilepsy, such as MeCP2, SYNGAP1, FMR1, SHANK1-3 and TSC1, along with a few others, and the main electrophysiological and behavioral deficits are highlighted. For these genes, the progress made in developing appropriate and valid rodent models to accelerate basic research is also detailed. Further, we discuss the recent development in the therapeutic management of epilepsy and provide a briefing on the challenges and caveats in identifying and testing species-specific epilepsy models.
Collapse
Affiliation(s)
- Sukanya Chakraborty
- Neuroscience Unit, Jawaharlal Nehru Centre for Advanced Scientific Research, Bengaluru 560064, India
| | - Rrejusha Parayil
- Neuroscience Unit, Jawaharlal Nehru Centre for Advanced Scientific Research, Bengaluru 560064, India
| | - Shefali Mishra
- Molecular Reproduction, Development and Genetics (MRDG), Indian Institute of Science, Bengaluru 560012, India
| | - Upendra Nongthomba
- Molecular Reproduction, Development and Genetics (MRDG), Indian Institute of Science, Bengaluru 560012, India
| | - James P. Clement
- Neuroscience Unit, Jawaharlal Nehru Centre for Advanced Scientific Research, Bengaluru 560064, India
- Correspondence: ; Tel.: +91-08-2208-2613
| |
Collapse
|
5
|
Pitzer EM, Williams MT, Vorhees CV. Effects of pyrethroids on brain development and behavior: Deltamethrin. Neurotoxicol Teratol 2021; 87:106983. [PMID: 33848594 PMCID: PMC8440325 DOI: 10.1016/j.ntt.2021.106983] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2020] [Revised: 02/09/2021] [Accepted: 04/05/2021] [Indexed: 12/12/2022]
Abstract
Deltamethrin (DLM) is a Type II pyrethroid pesticide widely used in agriculture, homes, public spaces, and medicine. Epidemiological studies report that increased pyrethroid exposure during development is associated with neurobehavioral disorders. This raises concern about the safety of these chemicals for children. Few animal studies have explored the long-term effects of developmental exposure to DLM on the brain. Here we review the CNS effects of pyrethroids, with emphasis on DLM. Current data on behavioral and cognitive effects after developmental exposure are emphasized. Although, the acute mechanisms of action of DLM are known, how these translate to long-term effects is only beginning to be understood. But existing data clearly show there are lasting effects on locomotor activity, acoustic startle, learning and memory, apoptosis, and dopamine in mice and rats after early exposure. The most consistent neurochemical findings are reductions in the dopamine transporter and the dopamine D1 receptor. The data show that DLM is developmentally neurotoxic but more research on its mechanisms of long-term effects is needed.
Collapse
Affiliation(s)
- Emily M Pitzer
- Dept. of Pediatrics, University of Cincinnati College of Medicine, Division of Neurology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH 45229, United States of America; Environmental Protection Agency, Office of Research and Development, Research Triangle Park, NC 27709, United States of America.
| | - Michael T Williams
- Dept. of Pediatrics, University of Cincinnati College of Medicine, Division of Neurology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH 45229, United States of America.
| | - Charles V Vorhees
- Dept. of Pediatrics, University of Cincinnati College of Medicine, Division of Neurology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH 45229, United States of America.
| |
Collapse
|
6
|
Ciccia LM, Scalia B, Venti V, Pizzo F, Pappalardo MG, La Mendola FMC, Falsaperla R, Praticò AD. CDKL5 Gene: Beyond Rett Syndrome. JOURNAL OF PEDIATRIC NEUROLOGY 2021. [DOI: 10.1055/s-0041-1727141] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Abstract
Abstract
CDKL5 is a gene located in the X-chromosome (Xp22) encoding a serine/threonine kinase involved in various signaling pathways, implicated in cell proliferation, axon development, dendrite growth, synapse formation, and maintenance. Mutations occurring in this gene have been associated with drug-resistant early-onset epilepsy, with multiple seizures type, and deep cognitive and motor development delay with poor or absent speech, ataxic gait or inability to walk, hand stereotypies and in a few cases decrement of head growth. Many aspects remain unclear about the CDKL5 deficiency disorders, research will be fundamental to better understand the pathogenesis of neurological damage and consequently developed more targeted and profitable therapies, as there is not, at the present, a gene-based treatment and the seizures are in most of the cases drug resistant. In this article, we summarize the actual knowledge about CDKL5 gene function and mostly the consequence given by its dysfunction, also examining the possible therapeutic approaches.
Collapse
Affiliation(s)
- Lina Maria Ciccia
- Pediatrics Postgraduate Residency Program, Section of Pediatrics and Child Neuropsychiatry, Department of Clinical and Experimental Medicine, University of Catania, Catania, Italy
| | - Bruna Scalia
- Pediatrics Postgraduate Residency Program, Section of Pediatrics and Child Neuropsychiatry, Department of Clinical and Experimental Medicine, University of Catania, Catania, Italy
| | - Valeria Venti
- Pediatrics Postgraduate Residency Program, Section of Pediatrics and Child Neuropsychiatry, Department of Clinical and Experimental Medicine, University of Catania, Catania, Italy
| | - Francesco Pizzo
- Pediatrics Postgraduate Residency Program, Section of Pediatrics and Child Neuropsychiatry, Department of Clinical and Experimental Medicine, University of Catania, Catania, Italy
| | - Maria Grazia Pappalardo
- Pediatrics Postgraduate Residency Program, Section of Pediatrics and Child Neuropsychiatry, Department of Clinical and Experimental Medicine, University of Catania, Catania, Italy
| | | | - Raffaele Falsaperla
- Unit of Pediatrics and Pediatric Emergency, University Hospital “Policlinico Rodolico-San Marco,” Catania, Italy
- Unit of Neonatal Intensive Care and Neonatology, University Hospital “Policlinico Rodolico-San Marco,” Catania, Italy
| | - Andrea D. Praticò
- Unit of Rare Diseases of the Nervous System in Childhood, Department of Clinical and Experimental Medicine, Section of Pediatrics and Child Neuropsychiatry, University of Catania, Catania, Italy
| |
Collapse
|
7
|
Mantegazza M, Cestèle S, Catterall WA. Sodium channelopathies of skeletal muscle and brain. Physiol Rev 2021; 101:1633-1689. [PMID: 33769100 DOI: 10.1152/physrev.00025.2020] [Citation(s) in RCA: 57] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Voltage-gated sodium channels initiate action potentials in nerve, skeletal muscle, and other electrically excitable cells. Mutations in them cause a wide range of diseases. These channelopathy mutations affect every aspect of sodium channel function, including voltage sensing, voltage-dependent activation, ion conductance, fast and slow inactivation, and both biosynthesis and assembly. Mutations that cause different forms of periodic paralysis in skeletal muscle were discovered first and have provided a template for understanding structure, function, and pathophysiology at the molecular level. More recent work has revealed multiple sodium channelopathies in the brain. Here we review the well-characterized genetics and pathophysiology of the periodic paralyses of skeletal muscle and then use this information as a foundation for advancing our understanding of mutations in the structurally homologous α-subunits of brain sodium channels that cause epilepsy, migraine, autism, and related comorbidities. We include studies based on molecular and structural biology, cell biology and physiology, pharmacology, and mouse genetics. Our review reveals unexpected connections among these different types of sodium channelopathies.
Collapse
Affiliation(s)
- Massimo Mantegazza
- Université Cote d'Azur, Valbonne-Sophia Antipolis, France.,CNRS UMR7275, Institut de Pharmacologie Moléculaire et Cellulaire, Valbonne-Sophia Antipolis, France.,INSERM, Valbonne-Sophia Antipolis, France
| | - Sandrine Cestèle
- Université Cote d'Azur, Valbonne-Sophia Antipolis, France.,CNRS UMR7275, Institut de Pharmacologie Moléculaire et Cellulaire, Valbonne-Sophia Antipolis, France
| | | |
Collapse
|
8
|
Wang W, Frankel WN. Overlaps, gaps, and complexities of mouse models of Developmental and Epileptic Encephalopathy. Neurobiol Dis 2021; 148:105220. [PMID: 33301879 PMCID: PMC8547712 DOI: 10.1016/j.nbd.2020.105220] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2020] [Revised: 11/17/2020] [Accepted: 12/04/2020] [Indexed: 11/28/2022] Open
Abstract
Mouse models have made innumerable contributions to understanding the genetic basis of neurological disease and pathogenic mechanisms and to therapy development. Here we consider the current state of mouse genetic models of Developmental and Epileptic Encephalopathy (DEE), representing a set of rare but devastating and largely intractable childhood epilepsies. By examining the range of mouse lines available in this rapidly moving field and by detailing both expected and unusual features in representative examples, we highlight lessons learned in an effort to maximize the full potential of this powerful resource for preclinical studies.
Collapse
Affiliation(s)
- Wanqi Wang
- Department of Genetics & Development, Institute for Genomic Medicine, Columbia University Irving Medical Center, New York, NY, United States of America.
| | - Wayne N Frankel
- Department of Genetics & Development, Institute for Genomic Medicine, Columbia University Irving Medical Center, New York, NY, United States of America.
| |
Collapse
|
9
|
Garcia-Rosa S, de Freitas Brenha B, Felipe da Rocha V, Goulart E, Araujo BHS. Personalized Medicine Using Cutting Edge Technologies for Genetic Epilepsies. Curr Neuropharmacol 2021; 19:813-831. [PMID: 32933463 PMCID: PMC8686309 DOI: 10.2174/1570159x18666200915151909] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2020] [Revised: 08/08/2020] [Accepted: 08/28/2020] [Indexed: 11/22/2022] Open
Abstract
Epilepsy is the most common chronic neurologic disorder in the world, affecting 1-2% of the population. Besides, 30% of epilepsy patients are drug-resistant. Genomic mutations seem to play a key role in its etiology and knowledge of strong effect mutations in protein structures might improve prediction and the development of efficacious drugs to treat epilepsy. Several genetic association studies have been undertaken to examine the effect of a range of candidate genes for resistance. Although, few studies have explored the effect of the mutations into protein structure and biophysics in the epilepsy field. Much work remains to be done, but the plans made for exciting developments will hold therapeutic potential for patients with drug-resistance. In summary, we provide a critical review of the perspectives for the development of individualized medicine for epilepsy based on genetic polymorphisms/mutations in light of core elements such as transcriptomics, structural biology, disease model, pharmacogenomics and pharmacokinetics in a manner to improve the success of trial designs of antiepileptic drugs.
Collapse
Affiliation(s)
- Sheila Garcia-Rosa
- Brazilian Biosciences National Laboratory (LNBio), Center for Research in Energy and Material (CNPEM), Campinas, SP, Brazil
| | - Bianca de Freitas Brenha
- Laboratory of Embryonic Genetic Regulation, Department of Biochemistry and Tissue Biology, Institute of Biology, University of Campinas, Campinas, SP, Brazil
| | - Vinicius Felipe da Rocha
- Brazilian Biosciences National Laboratory (LNBio), Center for Research in Energy and Material (CNPEM), Campinas, SP, Brazil
| | - Ernesto Goulart
- Human Genome and Stem-Cell Research Center (HUG-CEL), Department of Genetics and Evolutionary Biology, Institute of Biosciences, University of São Paulo, SP, Brazil
| | - Bruno Henrique Silva Araujo
- Brazilian Biosciences National Laboratory (LNBio), Center for Research in Energy and Material (CNPEM), Campinas, SP, Brazil
| |
Collapse
|
10
|
Brekke TD, Steele KA, Mulley JF. Inbred or Outbred? Genetic Diversity in Laboratory Rodent Colonies. G3 (BETHESDA, MD.) 2018; 8:679-686. [PMID: 29242387 PMCID: PMC5919727 DOI: 10.1534/g3.117.300495] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/09/2017] [Accepted: 12/12/2017] [Indexed: 12/15/2022]
Abstract
Nonmodel rodents are widely used as subjects for both basic and applied biological research, but the genetic diversity of the study individuals is rarely quantified. University-housed colonies tend to be small and subject to founder effects and genetic drift; so they may be highly inbred or show substantial genetic divergence from other colonies, even those derived from the same source. Disregard for the levels of genetic diversity in an animal colony may result in a failure to replicate results if a different colony is used to repeat an experiment, as different colonies may have fixed alternative variants. Here we use high throughput sequencing to demonstrate genetic divergence in three isolated colonies of Mongolian gerbil (Meriones unguiculatus) even though they were all established recently from the same source. We also show that genetic diversity in allegedly "outbred" colonies of nonmodel rodents (gerbils, hamsters, house mice, deer mice, and rats) varies considerably from nearly no segregating diversity to very high levels of polymorphism. We conclude that genetic divergence in isolated colonies may play an important role in the "replication crisis." In a more positive light, divergent rodent colonies represent an opportunity to leverage genetically distinct individuals in genetic crossing experiments. In sum, awareness of the genetic diversity of an animal colony is paramount as it allows researchers to properly replicate experiments and also to capitalize on other genetically distinct individuals to explore the genetic basis of a trait.
Collapse
Affiliation(s)
- Thomas D Brekke
- School of Biological Sciences, Bangor University, LL57 2DG, United Kingdom
| | - Katherine A Steele
- School of Environment, Natural Resources and Geography, Bangor University, LL57 2DG, United Kingdom
| | - John F Mulley
- School of Biological Sciences, Bangor University, LL57 2DG, United Kingdom
| |
Collapse
|
11
|
Watanabe S, Saito M, Soma M, Miyaoka H, Takahashi M. A novel device for continuous long-term electroencephalogram recording and drug administration in mice with a nice, powerful and sophisticated wired system. J Neurosci Methods 2017; 286:22-30. [PMID: 28433578 DOI: 10.1016/j.jneumeth.2017.04.005] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2017] [Revised: 04/10/2017] [Accepted: 04/11/2017] [Indexed: 01/08/2023]
Abstract
BACKGROUND To elucidate mechanisms of epileptogenesis and epileptic maturation, and to develop new AEDs, it is indispensable to administer various drugs and to examine their effects on EEG over a long period of observation. NEW METHOD We constructed a device for the continuous measurement of electroencephalography (EEG) and the infusion of anti-epileptic drugs over a prolonged period of time in moving mice. The system includes a slip ring and a swivel to prevent twisting of the recording cable and infusion tube, respectively. We introduced three arms, ball bearing, and stabilizing frame to rotate the slip ring and swivel with only a small applied force, and to facilitate the start of rotation of the slip ring and the swivel. RESULTS Continuous EEG recording was successfully performed for up to 63 days in 99 mice, for a total of 1872 days of EEG data. Continuous drug infusion with continuous EEG recording was successfully performed for up to 22 days. COMPARISON WITH EXISTING METHOD(S) Our system is superior to current system in continuous drug delivery during long-term EEG recording in moving mouse. CONCLUSIONS Our device will be quite useful for long-term EEG recording and drug application in moving mice.
Collapse
Affiliation(s)
- Shigeru Watanabe
- Department of Psychiatry, Kitasato University School of Medicine, 2-1-1 Asamizodai, Minami-ku, Sagamihara-shi, Kanagawa 252-0380, Japan.
| | - Masanori Saito
- Department of Psychiatry, Kitasato University School of Medicine, 2-1-1 Asamizodai, Minami-ku, Sagamihara-shi, Kanagawa 252-0380, Japan.
| | - Masaki Soma
- Department of Research & Development Center, Kitasato University School of Medicine, 1-15-1 Kitasato, Minami-ku, Sagamihara-shi, Kanagawa 252-0374, Japan.
| | - Hitoshi Miyaoka
- Department of Psychiatry, Kitasato University School of Medicine, 2-1-1 Asamizodai, Minami-ku, Sagamihara-shi, Kanagawa 252-0380, Japan.
| | - Masami Takahashi
- Department of Biochemistry, Kitasato University School of Medicine, 1-15-1 Kitasato, Minami-ku, Sagamihara-shi, Kanagawa 252-0374, Japan.
| |
Collapse
|
12
|
Hovey L, Fowler CA, Mahling R, Lin Z, Miller MS, Marx DC, Yoder JB, Kim EH, Tefft KM, Waite BC, Feldkamp MD, Yu L, Shea MA. Calcium triggers reversal of calmodulin on nested anti-parallel sites in the IQ motif of the neuronal voltage-dependent sodium channel Na V1.2. Biophys Chem 2017; 224:1-19. [PMID: 28343066 PMCID: PMC5503752 DOI: 10.1016/j.bpc.2017.02.006] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2017] [Revised: 02/23/2017] [Accepted: 02/23/2017] [Indexed: 01/26/2023]
Abstract
Several members of the voltage-gated sodium channel family are regulated by calmodulin (CaM) and ionic calcium. The neuronal voltage-gated sodium channel NaV1.2 contains binding sites for both apo (calcium-depleted) and calcium-saturated CaM. We have determined equilibrium dissociation constants for rat NaV1.2 IQ motif [IQRAYRRYLLK] binding to apo CaM (~3nM) and (Ca2+)4-CaM (~85nM), showing that apo CaM binding is favored by 30-fold. For both apo and (Ca2+)4-CaM, NMR demonstrated that NaV1.2 IQ motif peptide (NaV1.2IQp) exclusively made contacts with C-domain residues of CaM (CaMC). To understand how calcium triggers conformational change at the CaM-IQ interface, we determined a solution structure (2M5E.pdb) of (Ca2+)2-CaMC bound to NaV1.2IQp. The polarity of (Ca2+)2-CaMC relative to the IQ motif was opposite to that seen in apo CaMC-Nav1.2IQp (2KXW), revealing that CaMC recognizes nested, anti-parallel sites in Nav1.2IQp. Reversal of CaM may require transient release from the IQ motif during calcium binding, and facilitate a re-orientation of CaMN allowing interactions with non-IQ NaV1.2 residues or auxiliary regulatory proteins interacting in the vicinity of the IQ motif.
Collapse
Affiliation(s)
- Liam Hovey
- Department of Biochemistry, University of Iowa, 52242-1109 Iowa City, United States
| | - C Andrew Fowler
- NMR Facility, Roy J. and Lucille A. Carver College of Medicine, University of Iowa, 52242-1109 Iowa City, United States
| | - Ryan Mahling
- Department of Biochemistry, University of Iowa, 52242-1109 Iowa City, United States
| | - Zesen Lin
- Department of Biochemistry, University of Iowa, 52242-1109 Iowa City, United States
| | - Mark Stephen Miller
- Department of Biochemistry, University of Iowa, 52242-1109 Iowa City, United States
| | - Dagan C Marx
- Department of Biochemistry, University of Iowa, 52242-1109 Iowa City, United States
| | - Jesse B Yoder
- Department of Biochemistry, University of Iowa, 52242-1109 Iowa City, United States
| | - Elaine H Kim
- Department of Biochemistry, University of Iowa, 52242-1109 Iowa City, United States
| | - Kristin M Tefft
- Department of Biochemistry, University of Iowa, 52242-1109 Iowa City, United States
| | - Brett C Waite
- Department of Biochemistry, University of Iowa, 52242-1109 Iowa City, United States
| | - Michael D Feldkamp
- Department of Biochemistry, University of Iowa, 52242-1109 Iowa City, United States
| | - Liping Yu
- NMR Facility, Roy J. and Lucille A. Carver College of Medicine, University of Iowa, 52242-1109 Iowa City, United States
| | - Madeline A Shea
- Department of Biochemistry, University of Iowa, 52242-1109 Iowa City, United States.
| |
Collapse
|
13
|
Watanabe S, Yamamori S, Otsuka S, Saito M, Suzuki E, Kataoka M, Miyaoka H, Takahashi M. Epileptogenesis and epileptic maturation in phosphorylation site-specific SNAP-25 mutant mice. Epilepsy Res 2015. [DOI: 10.1016/j.eplepsyres.2015.05.004] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
|
14
|
Sha Z, Sha L, Li W, Dou W, Shen Y, Wu L, Xu Q. Exome sequencing identifies SUCO mutations in mesial temporal lobe epilepsy. Neurosci Lett 2015; 591:149-154. [PMID: 25668491 DOI: 10.1016/j.neulet.2015.02.009] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2015] [Revised: 02/05/2015] [Accepted: 02/06/2015] [Indexed: 11/16/2022]
Abstract
Mesial temporal lobe epilepsy (mTLE) is the main type and most common medically intractable form of epilepsy. Severity of disease-based stratified samples may help identify new disease-associated mutant genes. We analyzed mRNA expression profiles from patient hippocampal tissue. Three of the seven patients had severe mTLE with generalized-onset convulsions and consciousness loss that occurred over many years. We found that compared with other groups, patients with severe mTLE were classified into a distinct group. Whole-exome sequencing and Sanger sequencing validation in all seven patients identified three novel SUN domain-containing ossification factor (SUCO) mutations in severely affected patients. Furthermore, SUCO knock down significantly reduced dendritic length in vitro. Our results indicate that mTLE defects may affect neuronal development, and suggest that neurons have abnormal development due to lack of SUCO, which may be a generalized-onset epilepsy-related gene.
Collapse
Affiliation(s)
- Zhiqiang Sha
- National Laboratory of Medical Molecular Biology, Institute of Basic Medical Sciences & Neuroscience Center, Chinese Academy of Medical Sciences and Peking Union Medical College, Tsinghua University, Beijing 10005, China
| | - Longze Sha
- National Laboratory of Medical Molecular Biology, Institute of Basic Medical Sciences & Neuroscience Center, Chinese Academy of Medical Sciences and Peking Union Medical College, Tsinghua University, Beijing 10005, China
| | - Wenting Li
- National Laboratory of Medical Molecular Biology, Institute of Basic Medical Sciences & Neuroscience Center, Chinese Academy of Medical Sciences and Peking Union Medical College, Tsinghua University, Beijing 10005, China
| | - Wanchen Dou
- Department of Neurology, Peking Union Medical College Hospital, Peking Union Medical College, Chinese Academy of Medical Science, Beijing 100730, China
| | - Yan Shen
- National Laboratory of Medical Molecular Biology, Institute of Basic Medical Sciences & Neuroscience Center, Chinese Academy of Medical Sciences and Peking Union Medical College, Tsinghua University, Beijing 10005, China
| | - Liwen Wu
- Department of Neurology, Peking Union Medical College Hospital, Peking Union Medical College, Chinese Academy of Medical Science, Beijing 100730, China.
| | - Qi Xu
- National Laboratory of Medical Molecular Biology, Institute of Basic Medical Sciences & Neuroscience Center, Chinese Academy of Medical Sciences and Peking Union Medical College, Tsinghua University, Beijing 10005, China.
| |
Collapse
|
15
|
Olson HE, Poduri A, Pearl PL. Genetic forms of epilepsies and other paroxysmal disorders. Semin Neurol 2014; 34:266-79. [PMID: 25192505 DOI: 10.1055/s-0034-1386765] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Genetic mechanisms explain the pathophysiology of many forms of epilepsy and other paroxysmal disorders, such as alternating hemiplegia of childhood, familial hemiplegic migraine, and paroxysmal dyskinesias. Epilepsy is a key feature of well-defined genetic syndromes including tuberous sclerosis complex, Rett syndrome, Angelman syndrome, and others. There is an increasing number of single-gene causes or susceptibility factors associated with several epilepsy syndromes, including the early-onset epileptic encephalopathies, benign neonatal/infantile seizures, progressive myoclonus epilepsies, genetic generalized and benign focal epilepsies, epileptic aphasias, and familial focal epilepsies. Molecular mechanisms are diverse, and a single gene can be associated with a broad range of phenotypes. Additional features, such as dysmorphisms, head size, movement disorders, and family history may provide clues to a genetic diagnosis. Genetic testing can impact medical care and counseling. We discuss genetic mechanisms of epilepsy and other paroxysmal disorders, tools and indications for genetic testing, known genotype-phenotype associations, the importance of genetic counseling, and a look toward the future of epilepsy genetics.
Collapse
Affiliation(s)
- Heather E Olson
- Division of Epilepsy, Department of Neurology, Boston Children's Hospital, Boston, Massachusetts
| | - Annapurna Poduri
- Division of Epilepsy, Department of Neurology, Boston Children's Hospital, Boston, Massachusetts
| | - Phillip L Pearl
- Division of Epilepsy, Department of Neurology, Boston Children's Hospital, Boston, Massachusetts
| |
Collapse
|
16
|
Ekenstedt KJ, Oberbauer AM. Inherited epilepsy in dogs. Top Companion Anim Med 2014; 28:51-8. [PMID: 24070682 DOI: 10.1053/j.tcam.2013.07.001] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2013] [Accepted: 07/01/2013] [Indexed: 12/15/2022]
Abstract
Epilepsy is the most common neurologic disease in dogs and many forms are considered to have a genetic basis. In contrast, some seizure disorders are also heritable, but are not technically defined as epilepsy. Investigation of true canine epilepsies has uncovered genetic associations in some cases, however, many remain unexplained. Gene mutations have been described for 2 forms of canine epilepsy: primary epilepsy (PE) and progressive myoclonic epilepsies. To date, 9 genes have been described to underlie progressive myoclonic epilepsies in several dog breeds. Investigations into genetic PE have been less successful, with only 1 causative gene described. Genetic testing as an aid to diagnosis, prognosis, and breeding decisions is available for these 10 forms. Additional studies utilizing genome-wide tools have identified PE loci of interest; however, specific genetic tests are not yet developed. Many studies of dog breeds with PE have failed to identify genes or loci of interest, suggesting that, similar to what is seen in many human genetic epilepsies, inheritance is likely complex, involving several or many genes, and reflective of environmental interactions. An individual dog's response to therapeutic intervention for epilepsy may also be genetically complex. Although the field of inherited epilepsy has faced challenges, particularly with PE, newer technologies contribute to further advances.
Collapse
Affiliation(s)
- Kari J Ekenstedt
- Department of Animal and Food Science, College of Agriculture, Food, and Environmental Sciences, University of Wisconsin - River Falls, River Falls, WI, USA.
| | | |
Collapse
|
17
|
Neuronal carbonic anhydrase VII provides GABAergic excitatory drive to exacerbate febrile seizures. EMBO J 2013; 32:2275-86. [PMID: 23881097 PMCID: PMC3746197 DOI: 10.1038/emboj.2013.160] [Citation(s) in RCA: 68] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2013] [Accepted: 06/20/2013] [Indexed: 11/08/2022] Open
Abstract
Brain carbonic anhydrases (CAs) are known to modulate neuronal signalling. Using a novel CA VII (Car7) knockout (KO) mouse as well as a CA II (Car2) KO and a CA II/VII double KO, we show that mature hippocampal pyramidal neurons are endowed with two cytosolic isoforms. CA VII is predominantly expressed by neurons starting around postnatal day 10 (P10). The ubiquitous isoform II is expressed in neurons at P20. Both isoforms enhance bicarbonate-driven GABAergic excitation during intense GABAA-receptor activation. P13-14 CA VII KO mice show behavioural manifestations atypical of experimental febrile seizures (eFS) and a complete absence of electrographic seizures. A low dose of diazepam promotes eFS in P13-P14 rat pups, whereas seizures are blocked at higher concentrations that suppress breathing. Thus, the respiratory alkalosis-dependent eFS are exacerbated by GABAergic excitation. We found that CA VII mRNA is expressed in the human cerebral cortex before the age when febrile seizures (FS) occur in children. Our data indicate that CA VII is a key molecule in age-dependent neuronal pH regulation with consequent effects on generation of FS.
Collapse
|
18
|
Bae YS, Chung W, Han K, Park KY, Kim H, Kim E, Kim MH. Down-regulation of RalBP1 expression reduces seizure threshold and synaptic inhibition in mice. Biochem Biophys Res Commun 2013; 433:175-80. [PMID: 23485460 DOI: 10.1016/j.bbrc.2013.02.056] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2013] [Accepted: 02/11/2013] [Indexed: 10/27/2022]
Abstract
Idiopathic epilepsy is characterized by seizures without a clear etiology and is believed to have a strong genetic component but exhibits a complex inheritance pattern. Genetic factors seem to confer a low seizure threshold to susceptible individuals and thereby enhance epileptogenesis. However, the identity of susceptibility genes and the mechanisms regulating seizure threshold are still poorly understood. Here, we describe that reduced expression of RalBP1, a downstream effector of the small GTPases RalA and RalB, lowers the seizure threshold in mice. The intraperitoneal injection of the chemoconvulsant pentylenetetrazol induced more severe seizures in RalBP1 hypomorphic mice than in their wild-type littermates. The reduction of RalBP1 in the brain has no effect on neuronal excitability, but does decrease the inhibitory synaptic transmission onto CA1 pyramidal neurons. This impaired synaptic inhibition was associated with the loss of GABAergic interneurons in the CA1 subfield of the hippocampus. The present study identifies RalBP1 as a gene regulating the seizure threshold in mice and provides direct evidence for the role of RalBP1 in synaptic inhibition in vivo.
Collapse
Affiliation(s)
- Young-Soo Bae
- Department of Physiology, Seoul National University College of Medicine, Seoul 110-799, Republic of Korea
| | | | | | | | | | | | | |
Collapse
|
19
|
Abstract
Epileptic myoclonus can be defined as an elementary electroclinical manifestation of epilepsy involving descending neurons, whose spatial (spread) or temporal (self-sustained repetition) amplification can trigger overt epileptic activity and can be classified as cortical (positive and negative), secondarily generalized, thalamo-cortical, and reticular. Cortical epileptic myoclonus represents a fragment of partial or symptomatic generalized epilepsy; thalamo-cortical epileptic myoclonus is a fragment of idiopathic generalized epilepsy. Reflex reticular myoclonus represents the clinical counterpart of fragments of hypersynchronous epileptic activity of neurons in the brainstem reticular formation. Epileptic myoclonus, in the setting of an epilepsy syndrome, can be only one component of a seizure, the only seizure manifestations, one of the multiple seizure types or a more stable condition that is manifested in a nonparoxysmal fashion and mimics a movement disorder. This complex correlation is more obvious in patients with epilepsia partialis continua in which cortical myoclonus and overt focal motor seizures usually start in the same somatic (and cortical) region. In patients with cortical tremor this correlation is less obvious and requires neurophysiological studies to be demonstrated.
Collapse
Affiliation(s)
- Renzo Guerrini
- Pediatric Neurology Unit and Laboratories, Children's Hospital A. Meyer - University of Florence, Florence, Italy.
| | | |
Collapse
|
20
|
Sun W, Wagnon JL, Mahaffey CL, Briese M, Ule J, Frankel WN. Aberrant sodium channel activity in the complex seizure disorder of Celf4 mutant mice. J Physiol 2012; 591:241-55. [PMID: 23090952 DOI: 10.1113/jphysiol.2012.240168] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023] Open
Abstract
Mice deficient for CELF4, a neuronal RNA-binding protein, have a complex seizure disorder that includes both convulsive and non-convulsive seizures, and is dependent upon Celf4 gene dosage and mouse strain background. It was previously shown that Celf4 is expressed predominantly in excitatory neurons, and that deficiency results in abnormal excitatory synaptic neurotransmission. To examine the physiological and molecular basis of this, we studied Celf4-deficient neurons in brain slices. Assessment of intrinsic properties of layer V cortical pyramidal neurons showed that neurons from mutant heterozygotes and homozygotes have a lower action potential (AP) initiation threshold and a larger AP gain when compared with wild-type neurons. Celf4 mutant neurons also demonstrate an increase in persistent sodium current (I(NaP)) and a hyperpolarizing shift in the voltage dependence of activation. As part of a related study, we find that CELF4 directly binds Scn8a mRNA, encoding sodium channel Na(v)1.6, the primary instigator of AP at the axon initial segment (AIS) and the main carrier of I(NaP). In the present study we find that CELF4 deficiency results in a dramatic elevation in the expression of Na(v)1.6 protein at the AIS in both null and heterozygous neurons. Together these results suggest that activation of Na(v)1.6 plays a crucial role in seizure generation in this complex model of neurological disease.
Collapse
Affiliation(s)
- Wenzhi Sun
- The Jackson Laboratory, 600 Main Street, Bar Harbor, ME 04609-1500, USA
| | | | | | | | | | | |
Collapse
|
21
|
Schwartzer JJ, Koenig CM, Berman RF. Using mouse models of autism spectrum disorders to study the neurotoxicology of gene-environment interactions. Neurotoxicol Teratol 2012; 36:17-35. [PMID: 23010509 DOI: 10.1016/j.ntt.2012.08.007] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2012] [Revised: 08/28/2012] [Accepted: 08/30/2012] [Indexed: 10/27/2022]
Abstract
To better study the role of genetics in autism, mouse models have been developed which mimic the genetics of specific autism spectrum and related disorders. These models have facilitated research on the role genetic susceptibility factors in the pathogenesis of autism in the absence of environmental factors. Inbred mouse strains have been similarly studied to assess the role of environmental agents on neurodevelopment, typically without the complications of genetic heterogeneity of the human population. What has not been as actively pursued, however, is the methodical study of the interaction between these factors (e.g., gene and environmental interactions in neurodevelopment). This review suggests that a genetic predisposition paired with exposure to environmental toxicants plays an important role in the etiology of neurodevelopmental disorders including autism, and may contribute to the largely unexplained rise in the number of children diagnosed with autism worldwide. Specifically, descriptions of the major mouse models of autism and toxic mechanisms of prevalent environmental chemicals are provided followed by a discussion of current and future research strategies to evaluate the role of gene and environment interactions in neurodevelopmental disorders.
Collapse
Affiliation(s)
- Jared J Schwartzer
- Department of Psychiatry and Behavioral Sciences, MIND Institute, University of California, Davis, Davis, CA 95618, United States.
| | | | | |
Collapse
|
22
|
|
23
|
Boumil RM, Letts VA, Roberts MC, Lenz C, Mahaffey CL, Zhang ZW, Moser T, Frankel WN. A missense mutation in a highly conserved alternate exon of dynamin-1 causes epilepsy in fitful mice. PLoS Genet 2010; 6. [PMID: 20700442 PMCID: PMC2916854 DOI: 10.1371/journal.pgen.1001046] [Citation(s) in RCA: 81] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2009] [Accepted: 07/02/2010] [Indexed: 11/19/2022] Open
Abstract
Dynamin-1 (Dnm1) encodes a large multimeric GTPase necessary for activity-dependent membrane recycling in neurons, including synaptic vesicle endocytosis. Mice heterozygous for a novel spontaneous Dnm1 mutation—fitful—experience recurrent seizures, and homozygotes have more debilitating, often lethal seizures in addition to severe ataxia and neurosensory deficits. Fitful is a missense mutation in an exon that defines the DNM1a isoform, leaving intact the alternatively spliced exon that encodes DNM1b. The expression of the corresponding alternate transcripts is developmentally regulated, with DNM1b expression highest during early neuronal development and DNM1a expression increasing postnatally with synaptic maturation. Mutant DNM1a does not efficiently self-assemble into higher order complexes known to be necessary for proper dynamin function, and it also interferes with endocytic recycling in cell culture. In mice, the mutation results in defective synaptic transmission characterized by a slower recovery from depression after trains of stimulation. The DNM1a and DNM1b isoform pair is highly conserved in vertebrate evolution, whereas invertebrates have only one isoform. We speculate that the emergence of more specialized forms of DNM1 may be important in organisms with complex neuronal function. Epilepsy, a group of chronic disorders characterized by recurrent seizures, results from abnormal, synchronized neuronal activity in the brain. The mouse represents a powerful system to study novel mutations that model neurological disease, including epilepsy. Here we describe a new mouse mutation (“fitful”) in the gene encoding dynamin-1. Fitful mice have recurrent seizures and other neurological defects, including impaired hearing. Dynamin-1 is very well studied, but has yet to be linked to neurological disease. Dynamin-1 is a large multimeric enzyme that functions in membrane fission, primarily of vesicles after they release neurotransmitter at neuronal synapses. Fitful occurs in the region of dynamin-1 that is important for self-assembly of single dynamin subunits into the multimers required for enzymatic function. We show that fitful interferes with dynamin-1 self-assembly and with endocytosis. Moreover, the mutation resides in one of two alternate forms of dynamin-1 and affects what may be a necessary shift during brain development, with the expression of the mutated form being higher after maturation in fitful mice. This particular genetic specialization is unique to vertebrate dynamin. We speculate that specialized forms of dynamin-1 are important for modifying the self-assembly process to meet the demands complex brain activity in higher organisms.
Collapse
|
24
|
Nowakowska BA, Obersztyn E, Szymańska K, Bekiesińska-Figatowska M, Xia Z, Ricks CB, Bocian E, Stockton DW, Szczałuba K, Nawara M, Patel A, Scott DA, Cheung SW, Bohan TP, Stankiewicz P. Severe mental retardation, seizures, and hypotonia due to deletions of MEF2C. Am J Med Genet B Neuropsychiatr Genet 2010; 153B:1042-51. [PMID: 20333642 DOI: 10.1002/ajmg.b.31071] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
We present four patients, in whom we identified overlapping deletions in 5q14.3 involving MEF2C using a clinical oligonucleotide array comparative genomic hybridization (CGH) chromosomal microarray analysis (CMA). In case 1, CMA revealed an approximately 140 kb deletion encompassing the first three exons of MEF2C in a 3-year-old patient with severe psychomotor retardation, periodic tremor, and an abnormal motor pattern with mirror movement of the upper limbs observed during infancy, hypotonia, abnormal EEG, epilepsy, absence of speech, autistic behavior, bruxism, and mild dysmorphic features. MRI of the brain showed mild thinning of the corpus callosum and delay of white matter myelination in the occipital lobes. In case 2, an approximately 1.8 Mb deletion of TMEM161B and MEF2C was found in a child with severe developmental delay, hypotonia, and seizures. Patient 3 had epilepsy, hypotonia, thinning of the corpus callosum, and developmental delay associated with a de novo approximately 2.4 Mb deletion in 5q14.3 including MEF2C and five other genes. In case 4, a de novo approximately 5.7 Mb deletion of MEF2C and five other genes was found in a child with truncal hypotonia, intractable seizures, profound developmental delay, and shortening of the corpus callosum on brain MRI. These deletions further support that haploinsufficiency of MEF2C is responsible for severe mental retardation, seizures, and hypotonia. Our results, in combination with previous reports, imply that exon-targeted oligo array CGH, which is more efficient in identifying exonic copy number variants, should improve the detection of clinically significant deletions and duplications over arrays with probes spaced evenly throughout the genome.
Collapse
Affiliation(s)
- Beata A Nowakowska
- Department of Medical Genetics, Institute of Mother and Child, Warsaw, Poland
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
25
|
Lampert A, O'Reilly AO, Reeh P, Leffler A. Sodium channelopathies and pain. Pflugers Arch 2010; 460:249-63. [PMID: 20101409 DOI: 10.1007/s00424-009-0779-3] [Citation(s) in RCA: 90] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2009] [Revised: 12/13/2009] [Accepted: 12/18/2009] [Indexed: 12/19/2022]
Abstract
Chronic pain often represents a severe, debilitating condition. Up to 10% of the worldwide population are affected, and many patients are poorly responsive to current treatment strategies. Nociceptors detect noxious conditions to produce the sensation of pain, and this signal is conveyed to the CNS by means of action potentials. The fast upstroke of action potentials is mediated by voltage-gated sodium channels, of which nine pore-forming alpha-subunits (Nav1.1-1.9) have been identified. Heterogeneous functional properties and distinct expression patterns denote specialized functions of each subunit. The Nav1.7 and Nav1.8 subunits have emerged as key molecules involved in peripheral pain processing and in the development of an increased pain sensitivity associated with inflammation and tissue injury. Several mutations in the SCN9A gene encoding for Nav1.7 have been identified as important cellular substrates for different heritable pain syndromes. This review aims to cover recent progress on our understanding of how biophysical properties of mutant Nav1.7 translate into an aberrant electrogenesis of nociceptors. We also recapitulate the role of Nav1.8 for peripheral pain processing and of additional sodium channelopathies which have been linked to disorders with pain as a significant component.
Collapse
Affiliation(s)
- Angelika Lampert
- Department of Physiology and Pathophysiology, Friedrich-Alexander University Erlangen-Nuremberg, Universitätsstrasse 17, 91054, Erlangen, Germany.
| | | | | | | |
Collapse
|
26
|
Zamponi GW, Lory P, Perez-Reyes E. Role of voltage-gated calcium channels in epilepsy. Pflugers Arch 2009; 460:395-403. [PMID: 20091047 DOI: 10.1007/s00424-009-0772-x] [Citation(s) in RCA: 133] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2009] [Revised: 11/30/2009] [Accepted: 12/01/2009] [Indexed: 11/30/2022]
Abstract
It is well established that idiopathic generalized epilepsies (IGEs) show a polygenic origin and may arise from dysfunction of various types of voltage- and ligand-gated ion channels. There is an increasing body of literature implicating both high- and low-voltage-activated (HVA and LVA) calcium channels and their ancillary subunits in IGEs. Cav2.1 (P/Q-type) calcium channels control synaptic transmission at presynaptic nerve terminals, and mutations in the gene encoding the Cav2.1 alpha1 subunit (CACNA1A) have been linked to absence seizures in both humans and rodents. Similarly, mutations and loss of function mutations in ancillary HVA calcium channel subunits known to co-assemble with Cav2.1 result in IGE phenotypes in mice. It is important to note that in all these mouse models with mutations in HVA subunits, there is a compensatory increase in thalamic LVA currents which likely leads to the seizure phenotype. In fact, gain-of-function mutations have been identified in Cav3.2 (an LVA or T-type calcium channel encoded by the CACNA1H gene) in patients with congenital forms of IGEs, consistent with increased excitability of neurons as a result of enhanced T-type channel function. In this paper, we provide a broad overview of the roles of voltage-gated calcium channels, their mutations, and how they might contribute to the river that terminates in epilepsy.
Collapse
Affiliation(s)
- Gerald W Zamponi
- Department of Physiology and Pharmacology, Hotchkiss Brain Institute, University of Calgary, Calgary, T2N 4N1, Canada
| | | | | |
Collapse
|
27
|
Wang J, Ou SW, Wang YJ, Zong ZH, Lin L, Kameyama M, Kameyama A. New Variants of Nav1.5/SCN5A Encode Na+Channels in the Brain. J Neurogenet 2009; 22:57-75. [DOI: 10.1080/01677060701672077] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
|
28
|
Gargus JJ. Genetic calcium signaling abnormalities in the central nervous system: seizures, migraine, and autism. Ann N Y Acad Sci 2009; 1151:133-56. [PMID: 19154521 DOI: 10.1111/j.1749-6632.2008.03572.x] [Citation(s) in RCA: 85] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
The calcium ion is one of the most versatile, ancient, and universal of biological signaling molecules, known to regulate physiological systems at every level from membrane potential and ion transporters to kinases and transcription factors. Disruptions of intracellular calcium homeostasis underlie a host of emerging diseases, the calciumopathies. Cytosolic calcium signals originate either as extracellular calcium enters through plasma membrane ion channels or from the release of an intracellular store in the endoplasmic reticulum (ER) via inositol triphosphate receptor and ryanodine receptor channels. Therefore, to a large extent, calciumopathies represent a subset of the channelopathies, but include regulatory pathways and the mitochondria, the major intracellular calcium repository that dynamically participates with the ER stores in calcium signaling, thereby integrating cellular energy metabolism into these pathways, a process of emerging importance in the analysis of the neurodegenerative and neuropsychiatric diseases. Many of the calciumopathies are common complex polygenic diseases, but leads to their understanding come most prominently from rare monogenic channelopathy paradigms. Monogenic forms of common neuronal disease phenotypes-such as seizures, ataxia, and migraine-produce a constitutionally hyperexcitable tissue that is susceptible to periodic decompensations. The gene families and genetic lesions underlying familial hemiplegic migraine, FHM1/CACNA1A, FHM2/ATP1A2, and FHM3/SCN1A, and monogenic mitochondrial migraine syndromes, provide a robust platform from which genes, such as CACNA1C, which encodes the calcium channel mutated in Timothy syndrome, can be evaluated for their role in autism and bipolar disease.
Collapse
Affiliation(s)
- J Jay Gargus
- Department of Physiology & Biophysics, Section of Human Genetics, School of Medicine, University of California-Irvine, Irvine, CA 92697, USA.
| |
Collapse
|
29
|
Lee CW, Yu ST, Choi HY, Koh BJ, Kwak YG. Proteomic analysis of human serum from patients with temporal lobe epilepsy. KOREAN JOURNAL OF PEDIATRICS 2009. [DOI: 10.3345/kjp.2009.52.5.567] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Affiliation(s)
- Chang Woo Lee
- Department of Pediatrics, Wonkwang University College of Medicine, Iksan, Korea
| | - Seung Taek Yu
- Department of Pediatrics, Wonkwang University College of Medicine, Iksan, Korea
| | - Ha Young Choi
- Department of Neurosurgery, Chonbuk National University Medical School, Jeonbuk, Korea
| | - Bun Jeong Koh
- Department of Neurosurgery, Chonbuk National University Medical School, Jeonbuk, Korea
| | - Yong Guen Kwak
- Department of Pharmacology, Chonbuk National University Medical School, Jeonbuk, Korea
| |
Collapse
|
30
|
Curatolo P, Moavero R, Castro AL, Cerminara C. Pharmacotherapy of idiopathic generalized epilepsies. Expert Opin Pharmacother 2008; 10:5-17. [DOI: 10.1517/14656560802618647] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
|
31
|
Patro N, Shrivastava M, Tripathi S, Patro IK. S100beta upregulation: a possible mechanism of deltamethrin toxicity and motor coordination deficits. Neurotoxicol Teratol 2008; 31:169-76. [PMID: 19118624 DOI: 10.1016/j.ntt.2008.12.001] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2008] [Revised: 11/04/2008] [Accepted: 12/01/2008] [Indexed: 11/19/2022]
Abstract
Deltamethrin (DLT) is a type II synthetic pyrethroid with insecticidal properties. It has been considered safe to humans. Excessive exposure of DLT is being variously reported, recently, to cause potential neurotoxicity in adults, as characterized by ataxia, loss of coordination, hyperexcitability, convulsions and paralysis. However, limited information is available on its impact at lower/safe to human doses during development. The present study was designed to assess the postnatal (P) exposure of DLT (as low as 0.7 mg/kg, i.p.) on S-100beta expression in developing rat cerebellum and its impact on Purkinje cell morphogenesis and dendritogenesis, and subsequent spontaneous motor activity (SMA) deficits. Wistar rat pups born to healthy mothers were injected with DLT (Sigma) at a dosage of 0.7 mg/kg body wt., i.p. dissolved in DMSO (Sigma) during P0-7th (DLT-I) and P9-13th day (DLT-II). The control pups were injected with equivalent volumes of DMSO. The pups of both the groups were used to assess the spontaneous motor activity P21 onwards. The cryocut sections (30 microm) of the cerebella were used for anti-S-100beta antibody labeling using streptavidin biotin HRP method. An upregulation of S-100beta expression in Bergmann glial fibers was recorded at P12 and P15 day preparations in both DLT-I and DLT-II treated groups. However, such upregulation of S-100beta was more prominent in DLT-II treated group animals with a large number of strongly S-100beta immunopositive astrocytes flanking around the Purkinje neurons. In Golgi preparation the Purkinje neurons in DLT treated groups had reduced dendritic arbor with short primary dendrites and much reduced dendritic branches which appeared stumpy and hypertrophied. The granule cell proliferation and migration as well as Purkinje cell morphogenesis and dendritogenesis are affected following DLT exposure in the present investigation. This may also affect the mossy fiber-granule cell-parallel pathway formation which in turn may decrease the firing of Purkinje cells (GABAergic inhibitory projections) and thus an increase in the output of the neurons in the deep cerebellar nuclei neurons and disturbed motor coordination.
Collapse
Affiliation(s)
- Nisha Patro
- School of Studies in Neuroscience, Jiwaji University, Gwalior 474 011, India.
| | | | | | | |
Collapse
|
32
|
Benuskova L, Kasabov N. Modeling brain dynamics using computational neurogenetic approach. Cogn Neurodyn 2008; 2:319-34. [PMID: 19003458 PMCID: PMC2585617 DOI: 10.1007/s11571-008-9061-1] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2007] [Revised: 08/19/2008] [Accepted: 08/19/2008] [Indexed: 01/10/2023] Open
Abstract
The paper introduces a novel computational approach to brain dynamics modeling that integrates dynamic gene-protein regulatory networks with a neural network model. Interaction of genes and proteins in neurons affects the dynamics of the whole neural network. Through tuning the gene-protein interaction network and the initial gene/protein expression values, different states of the neural network dynamics can be achieved. A generic computational neurogenetic model is introduced that implements this approach. It is illustrated by means of a simple neurogenetic model of a spiking neural network of the generation of local field potential. Our approach allows for investigation of how deleted or mutated genes can alter the dynamics of a model neural network. We conclude with the proposal how to extend this approach to model cognitive neurodynamics.
Collapse
Affiliation(s)
- Lubica Benuskova
- Department of Computer Science, University of Otago, 90 Union Place East, Dunedin, 9016 New Zealand
| | - Nikola Kasabov
- Knowledge Engineering and Discovery Research Institute, Auckland University of Technology, AUT Technology Park, 583-585 Great South Road, Penrose, Auckland, 1135 New Zealand
| |
Collapse
|
33
|
Bjørling-Poulsen M, Andersen HR, Grandjean P. Potential developmental neurotoxicity of pesticides used in Europe. Environ Health 2008; 7:50. [PMID: 18945337 PMCID: PMC2577708 DOI: 10.1186/1476-069x-7-50] [Citation(s) in RCA: 205] [Impact Index Per Article: 12.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2008] [Accepted: 10/22/2008] [Indexed: 05/18/2023]
Abstract
Pesticides used in agriculture are designed to protect crops against unwanted species, such as weeds, insects, and fungus. Many compounds target the nervous system of insect pests. Because of the similarity in brain biochemistry, such pesticides may also be neurotoxic to humans. Concerns have been raised that the developing brain may be particularly vulnerable to adverse effects of neurotoxic pesticides. Current requirements for safety testing do not include developmental neurotoxicity. We therefore undertook a systematic evaluation of published evidence on neurotoxicity of pesticides in current use, with specific emphasis on risks during early development. Epidemiologic studies show associations with neurodevelopmental deficits, but mainly deal with mixed exposures to pesticides. Laboratory experimental studies using model compounds suggest that many pesticides currently used in Europe--including organophosphates, carbamates, pyrethroids, ethylenebisdithiocarbamates, and chlorophenoxy herbicides--can cause neurodevelopmental toxicity. Adverse effects on brain development can be severe and irreversible. Prevention should therefore be a public health priority. The occurrence of residues in food and other types of human exposures should be prevented with regard to the pesticide groups that are known to be neurotoxic. For other substances, given their widespread use and the unique vulnerability of the developing brain, the general lack of data on developmental neurotoxicity calls for investment in targeted research. While awaiting more definite evidence, existing uncertainties should be considered in light of the need for precautionary action to protect brain development.
Collapse
Affiliation(s)
- Marina Bjørling-Poulsen
- Department of Environmental Medicine, University of Southern Denmark, Winslowparken 17, 5000 Odense, Denmark
| | - Helle Raun Andersen
- Department of Environmental Medicine, University of Southern Denmark, Winslowparken 17, 5000 Odense, Denmark
| | - Philippe Grandjean
- Department of Environmental Medicine, University of Southern Denmark, Winslowparken 17, 5000 Odense, Denmark
- Department of Environmental Health, Harvard School of Public Health, Landmark Building 3E-110, 401 Park Drive, Boston, MA 02215, USA
| |
Collapse
|
34
|
Abstract
Recent years have seen great advances in generating and analyzing data to identify the genetic architecture of biological traits. Human disease has understandably received intense research focus, and the genes responsible for most Mendelian diseases have successfully been identified. However, the same advances have shown a consistent if less satisfying pattern, in which complex traits are affected by variation in large numbers of genes, most of which have individually minor or statistically elusive effects, leaving the bulk of genetic etiology unaccounted for. This pattern applies to diverse and unrelated traits, not just disease, in basically all species, and is consistent with evolutionary expectations, raising challenging questions about the best way to approach and understand biological complexity.
Collapse
Affiliation(s)
- Kenneth M Weiss
- Department of Anthropology and Integrated Biosciences Genetics Program, Pennsylvania State University, University Park, Pennsylvania 16802, USA.
| |
Collapse
|
35
|
Hoda JC, Gu W, Friedli M, Phillips HA, Bertrand S, Antonarakis SE, Goudie D, Roberts R, Scheffer IE, Marini C, Patel J, Berkovic SF, Mulley JC, Steinlein OK, Bertrand D. Human nocturnal frontal lobe epilepsy: pharmocogenomic profiles of pathogenic nicotinic acetylcholine receptor beta-subunit mutations outside the ion channel pore. Mol Pharmacol 2008; 74:379-91. [PMID: 18456869 DOI: 10.1124/mol.107.044545] [Citation(s) in RCA: 49] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/14/2025] Open
Abstract
Certain mutations in specific parts of the neuronal nicotinic acetylcholine receptor (nAChR) subunit genes CHRNA4, CHRNB2, and probably CHRNA2, can cause autosomal dominant nocturnal frontal lobe epilepsy (ADNFLE). All but one of the known causative mutations are located in the second transmembrane region (TM2), which serves as the major ion poreforming domain of the receptor. Functional characterization of these ADNFLE mutations has shown that although each mutant exhibits specific properties, they all confer a gain of function with increased sensitivity to acetylcholine. In this work, we characterize the second and third ADNFLE-associated mutations that are external to TM2 but affect different amino acid residues within the third transmembrane region (TM3). The two new CHRNB2 mutations were identified in three families of Turkish Cypriot, Scottish, and English origin. These TM3 mutations elicit the same gain of function pathomechanism as observed for the TM2 mutations with enhanced acetylcholine sensitivity, despite their unusual localization within the gene. Electrophysiological experiments, including single channel measurements, revealed that incorporation of these new mutant subunits does not affect the conductance of the ionic pore but increases the probability of opening. Determination of the sensitivity to nicotine for nAChRs carrying mutations in TM2 and TM3 showed clear differences in the direction and the extent to which the window current for nicotine sensitivity was shifted for individual mutations, indicating differences in pharmacogenomic properties that are not readily correlated with increased ACh affinity.
Collapse
Affiliation(s)
- Jean-Charles Hoda
- Department of Neuroscience, University of Geneva, CMU, 1, rue M. Servet, CH-1211 Geneva 4, Switzerland
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
36
|
Chen Y, Yu FH, Sharp EM, Beacham D, Scheuer T, Catterall WA. Functional properties and differential neuromodulation of Na(v)1.6 channels. Mol Cell Neurosci 2008; 38:607-15. [PMID: 18599309 DOI: 10.1016/j.mcn.2008.05.009] [Citation(s) in RCA: 95] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2007] [Revised: 03/25/2008] [Accepted: 05/07/2008] [Indexed: 12/19/2022] Open
Abstract
The voltage-gated sodium channel Na(v)1.6 plays unique roles in the nervous system, but its functional properties and neuromodulation are not as well established as for Na(V)1.2 channels. We found no significant differences in voltage-dependent activation or fast inactivation between Na(V)1.6 and Na(V)1.2 channels expressed in non-excitable cells. In contrast, the voltage dependence of slow inactivation was more positive for Na(v)1.6 channels, they conducted substantially larger persistent sodium currents than Na(v)1.2 channels, and they were much less sensitive to inhibition by phosphorylation by cAMP-dependent protein kinase and protein kinase C. Resurgent sodium current, a hallmark of Na(v)1.6 channels in neurons, was not observed for Na(V)1.6 expressed alone or with the auxiliary beta(4) subunit. The unique properties of Na(V)1.6 channels, together with the resurgent currents that they conduct in neurons, make these channels well-suited to provide the driving force for sustained repetitive firing, a crucial property of neurons.
Collapse
Affiliation(s)
- Yuan Chen
- Department of Pharmacology, Mailstop 357280, University of Washington, Seattle, WA 98195, USA
| | | | | | | | | | | |
Collapse
|
37
|
|
38
|
Abstract
While the cause of autism remains unknown, the high concordance between monozygotic twins supports a strong genetic component. The importance of genetic factors in autism encourages the development of mutant mouse models, to advance our understanding of biological mechanisms underlying autistic behaviors. Mouse models of human neuropsychiatric diseases are designed to optimize (i) face validity (resemblance to the human symptoms) (ii) construct validity (similarity to the underlying causes of the disease) and (iii) predictive validity (expected responses to treatments that are effective in the human disease). There is a growing need for mouse behavioral tasks with all three types of validity, to define robust phenotypes in mouse models of autism. Ideal mouse models will incorporate analogies to the three diagnostic symptoms of autism: abnormal social interactions, deficits in communication and high levels of repetitive behaviors. Social approach is tested in an automated three chambered apparatus that offers the subject a choice between spending time with another mouse, with a novel object, or remaining in an empty familiar environment. Reciprocal social interaction is scored from videotapes of interactions between pairs of unfamiliar mice. Communication is evaluated by measuring emission and responses to vocalizations and olfactory cues. Repetitive behaviors are scored for measures of grooming, jumping, or stereotyped sniffing of one location or object. Insistence on sameness is modeled by scoring a change in habit, for example, reversal of the spatial location of a reinforcer in the Morris water maze or T-maze. Associated features of autism, for example, mouse phenotypes relevant to anxiety, seizures, sleep disturbances and sensory hypersensitivity, may be useful to include in a mouse model that meets some of the core diagnostic criteria. Applications of these assays include (i) behavioral phenotyping of transgenic and knockout mice with mutations in genes relevant to autism; (ii) characterization of inbred strains of mice; (iii) evaluation of environmental toxins; (iv) comparison of behavioral phenotypes with genetic factors, such as unusual expression patterns of genes or unusual single nucleotide polymorphisms; and (v) evaluation of proposed therapeutics for the treatment of autism.
Collapse
Affiliation(s)
- Jacqueline N Crawley
- Laboratory of Behavioral Neuroscience, Intramural Research Program, National Institute of Mental Health, Bethesda, MD 20892-3730. USA.
| |
Collapse
|
39
|
Abstract
Epilepsy is a complex disease with diverse clinical characteristics that preclude a singular mechanism. One way to gain insight into potential mechanisms is to reduce the features of epilepsy to its basic components: seizures, epileptogenesis, and the state of recurrent unprovoked seizures that defines epilepsy itself. A common way to explain seizures in a normal individual is that a disruption has occurred in the normal balance of excitation and inhibition. The fact that multiple mechanisms exist is not surprising given the varied ways the normal nervous system controls this balance. In contrast, understanding seizures in the brain of an individual with epilepsy is more difficult because seizures are typically superimposed on an altered nervous system. The different environment includes diverse changes, making mechanistic predictions a challenge. Understanding the mechanisms of seizures in an individual with epilepsy is also more complex than understanding the mechanisms of seizures in a normal individual because epilepsy is not necessarily a static condition but can continue to evolve over the lifespan. Using temporal lobe epilepsy as an example, it is clear that genes, developmental mechanisms, and neuronal plasticity play major roles in creating a state of underlying hyperexcitability. However, the critical control points for the emergence of chronic seizures in temporal lobe epilepsy, as well as their persistence, frequency, and severity, are questions that remain unresolved.
Collapse
Affiliation(s)
- Helen E Scharfman
- Nathan Kline Institute for Psychiatric Research, 140 Old Orangeburg Road, Building 35, Orangetown, NY 10962, USA.
| |
Collapse
|
40
|
Abstract
The rapid technical progress made in molecular genetics has provided new strategies to study the molecular pathogenesis of human epilepsy. In particular, the abilities to assay the expression of many thousands of genes simultaneously with cDNA or oligonucleotide arrays and to rapidly screen thousands of DNA basepairs permits exciting insights into how human epilepsy may result from alterations in gene transcription and sequence. These approaches can show how monogenic and even complex genetic disorders lead to network alterations and seizures. Most recently, investigation of single nucleotide polymorphisms (SNPs) has shown that even subtle alterations in gene sequence across the genome can raise or lower seizure threshold. Clearly, there is a complex interplay between gene expression, genetics, and genomics which ultimately leads to seizure onset and epilepsy. Identifying the contribution that each plays in epileptogenesis may help define new therapeutic targets.
Collapse
Affiliation(s)
- Peter B Crino
- Department of Neurology and PENN Epilepsy Center, University of Pennsylvania, 3 West Gates Bldg., 3400 Spruce St., Philadelphia, PA 19104, USA.
| |
Collapse
|
41
|
Kim DY, Carey BW, Wang H, Ingano LAM, Binshtok AM, Wertz MH, Pettingell WH, He P, Lee VMY, Woolf CJ, Kovacs DM. BACE1 regulates voltage-gated sodium channels and neuronal activity. Nat Cell Biol 2007; 9:755-64. [PMID: 17576410 PMCID: PMC2747787 DOI: 10.1038/ncb1602] [Citation(s) in RCA: 246] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2007] [Accepted: 05/30/2007] [Indexed: 02/08/2023]
Abstract
BACE1 activity is significantly increased in the brains of Alzheimer's disease patients, potentially contributing to neurodegeneration. The voltage-gated sodium channel (Na(v)1) beta2-subunit (beta2), a type I membrane protein that covalently binds to Na(v)1 alpha-subunits, is a substrate for BACE1 and gamma-secretase. Here, we find that BACE1-gamma-secretase cleavages release the intracellular domain of beta2, which increases mRNA and protein levels of the pore-forming Na(v)1.1 alpha-subunit in neuroblastoma cells. Similarly, endogenous beta2 processing and Na(v)1.1 protein levels are elevated in brains of BACE1-transgenic mice and Alzheimer's disease patients with high BACE1 levels. However, Na(v)1.1 is retained inside the cells and cell surface expression of the Na(v)1 alpha-subunits and sodium current densities are markedly reduced in both neuroblastoma cells and adult hippocampal neurons from BACE1-transgenic mice. BACE1, by cleaving beta2, thus regulates Na(v)1 alpha-subunit levels and controls cell-surface sodium current densities. BACE1 inhibitors may normalize membrane excitability in Alzheimer's disease patients with elevated BACE1 activity.
Collapse
Affiliation(s)
- Doo Yeon Kim
- Neurobiology of Disease Laboratory, Genetics and Aging Research Unit, MassGeneral Institute for Neurodegenerative Disease, Massachusetts General Hospital, Harvard Medical School, Charlestown, MA 02129, USA
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
42
|
Chai ZF, Bai ZT, Zhang XY, Liu T, Pang XY, Ji YH. Rat epileptic seizures evoked by BmK αIV and its possible mechanisms involved in sodium channels. Toxicol Appl Pharmacol 2007; 220:235-42. [PMID: 17320922 DOI: 10.1016/j.taap.2007.01.006] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2006] [Revised: 01/04/2007] [Accepted: 01/10/2007] [Indexed: 12/01/2022]
Abstract
This study showed that rat unilateral intracerebroventricular injection of BmK alphaIV, a sodium channel modulator derived from scorpion Buthus martensi Karsch, induced clusters of spikes, epileptic discharges and convulsion-related behavioral changes. BmK alphaIV potently promoted the release of endogenous glutamate from rat cerebrocortical synaptosomes. In vitro examination of the effect of BmK alphaIV on intrasynaptosomal free calcium concentration [Ca(2+)](i) and sodium concentration [Na(+)](i) revealed that BmK alphaIV-evoked glutamate release from synaptosomes was associated with an increase in Ca(2+) and Na(+) influx. Moreover, BmK alphaIV-mediated glutamate release and ion influx was completely blocked by tetrodotoxin, a blocker of sodium channel. Together, these results suggest that the induction of BmK alphaIV-evoked epileptic seizures may be involved in the modulation of BmK alphaIV on tetrodotoxin-sensitive sodium channels located on the nerve terminal, which subsequently enhances the Ca(2+) influx to cause an increase of glutamate release. These findings may provide some insight regarding the mechanism of neuronal action of BmK alphaIV in the central nervous system for understanding epileptogenesis involved in sodium channels.
Collapse
Affiliation(s)
- Zhi-Fang Chai
- Graduate School of the Chinese Academy of Sciences, Shanghai Institute of Physiology, Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 200031, PR China
| | | | | | | | | | | |
Collapse
|
43
|
Abstract
Schizophrenia is widely held to stem from the combined effects of multiple common polymorphisms, each with a small impact on disease risk. We suggest an alternative view: that schizophrenia is highly heterogeneous genetically and that many predisposing mutations are highly penetrant and individually rare, even specific to single cases or families. This "common disease--rare alleles" hypothesis is supported by recent findings in human genomics and by allelic and locus heterogeneity for other complex traits. We review the implications of this model for gene discovery research in schizophrenia.
Collapse
Affiliation(s)
- Jon M McClellan
- Department of Psychiatry, University of Washington, Seattle, WA 98195, USA.
| | | | | |
Collapse
|
44
|
Temporal Lobe Epilepsy. Neurobiol Dis 2007. [DOI: 10.1016/b978-012088592-3/50035-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] Open
|
45
|
Lucarelli P, Rizzo R, Gagliano A, Palmarino M, Volzone A, Arpino C, Curatolo P. Association between D18S474 locus on chromosome 18q12 and idiopathic generalized epilepsy. Brain Dev 2007; 29:9-12. [PMID: 16790332 DOI: 10.1016/j.braindev.2006.05.005] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/29/2006] [Revised: 05/09/2006] [Accepted: 05/15/2006] [Indexed: 11/30/2022]
Abstract
Idiopathic generalized epilepsy is one of the most common forms of epilepsy. The aetiology of IGE is genetically determined, but the pattern of inheritance is still undefined. Recent studies in common IGE showed evidence for linkage on chromosome 18q12 at the D18S474 locus. The aim of our study was to compare the distribution of allelic variants of D18S474 locus in children affected by generalized tonic-clonic seizures and in healthy controls. We studied 295 children: 121 cases and 174 controls. We found that the D18S474(8) allele was significantly more frequent and D18S474(9) significantly less frequent in cases compared with controls (p<.001). In conclusions, our findings show the association between the D18S474 marker and IGE in which early onset GTCS represent the most prevalent seizure type.
Collapse
Affiliation(s)
- Paola Lucarelli
- Institute of Molecular Biology and Pathology, National Research Council, Rome, Italy
| | | | | | | | | | | | | |
Collapse
|
46
|
Gargus JJ. Ion channel functional candidate genes in multigenic neuropsychiatric disease. Biol Psychiatry 2006; 60:177-85. [PMID: 16497276 DOI: 10.1016/j.biopsych.2005.12.008] [Citation(s) in RCA: 73] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/10/2005] [Revised: 11/15/2005] [Accepted: 12/15/2005] [Indexed: 10/25/2022]
Abstract
Scores of monogenic Mendelian ion channel diseases serve to anchor the pathophysiology of the channelopathies, but there are also now clear examples of environmental, pharmacogenetic, and acquired channelopathy mechanisms. The cardinal feature of heritable ion channel disease is a periodic disturbance of rhythmic function in constitutionally hyperexcitable tissue. While the complexity of neuroanatomy obscures functional analysis of mutations causing monogenic seizure, ataxia, or migraine syndromes, extrapolation from the cardiac (Long QT [LQT]) and muscle (Periodic Paralysis) channelopathy syndromes provides a simplified predictive framework of molecular pathology: electrically stabilizing potassium ion (K(+)) and chloride ion (Cl(-)) channels, likely having lesions that diminish their current, and excitatory Na(+) channels, likely having gain-of-function lesions. The voltage-gated calcium channel gene family that contains CACNA1C, the newest LQT locus, causing Timothy Syndrome with a phenotype including autism, has proven to be particularly informative for its members' ability to tie the various central nervous system (CNS) phenotypes together in an interpretable fashion, now including direct extension to the classically multigenic neuropsychiatric phenotypes. Features of a promising ion channel candidate gene arise from its broad locus, gene family, nature of alleles, physiology and pharmacology, tissue expression profile, and phenotype in model organisms. KCNN3 is explored as a paradigm to consider.
Collapse
Affiliation(s)
- J Jay Gargus
- Department of Physiology, Section of Human Genetics, University of California, Irvine, California 92697-4034, USA.
| |
Collapse
|
47
|
Abstract
During the last 15 years, breeders have reported an increase in the proportion of Irish Wolfhounds with seizure disorders. Clinical data and pedigrees from closely related Irish Wolfhounds were collected retrospectively and analyzed. Idiopathic epilepsy was diagnosed, by exclusion of other causes for seizures, in 146 (18.3%) of 796 Irish Wolfhounds from 115 litters. The first seizure occurred by the age of 3 years in 73% of all dogs. Males were more commonly affected than females (61.6% versus 38.4%), with males having a later average age of seizure onset. The life expectancy of affected dogs was decreased by 2 years when compared with the average Irish Wolfhound population. The heritability index for the affected dogs, their littermates, and unaffected parents was 0.87. No simple mode of inheritance explains the pattern of affected dogs in pedigrees. Hallmarks of dominant and sex-linked inheritance were notably absent, and the segregation ratio was less than would be expected for simple autosomal recessive inheritance. Assuming all affected dogs have the same form of epilepsy, the simplest description of the complex pattern of inheritance observed is autosomal recessive, with incomplete penetrance and male dogs at increased risk.
Collapse
Affiliation(s)
- Margret L Casal
- Section of Medical Genetics, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, PA 19104-6010, USA.
| | | | | | | | | |
Collapse
|
48
|
Chen Y, Yu FH, Surmeier DJ, Scheuer T, Catterall WA. Neuromodulation of Na+ channel slow inactivation via cAMP-dependent protein kinase and protein kinase C. Neuron 2006; 49:409-20. [PMID: 16446144 DOI: 10.1016/j.neuron.2006.01.009] [Citation(s) in RCA: 114] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2005] [Revised: 10/07/2005] [Accepted: 01/05/2006] [Indexed: 12/14/2022]
Abstract
Neurotransmitters modulate sodium channel availability through activation of G protein-coupled receptors, cAMP-dependent protein kinase (PKA), and protein kinase C (PKC). Voltage-dependent slow inactivation also controls sodium channel availability, synaptic integration, and neuronal firing. Here we show by analysis of sodium channel mutants that neuromodulation via PKA and PKC enhances intrinsic slow inactivation of sodium channels, making them unavailable for activation. Mutations in the S6 segment in domain III (N1466A,D) either enhance or block slow inactivation, implicating S6 segments in the molecular pathway for slow inactivation. Modulation of N1466A channels by PKC or PKA is increased, whereas modulation of N1466D is nearly completely blocked. These results demonstrate that neuromodulation by PKA and PKC is caused by their enhancement of intrinsic slow inactivation gating. Modulation of slow inactivation by neurotransmitters acting through G protein-coupled receptors, PKA, and PKC is a flexible mechanism of cellular plasticity controlling the firing behavior of central neurons.
Collapse
Affiliation(s)
- Yuan Chen
- Department of Pharmacology, University of Washington, Seattle, Washington 98195, USA
| | | | | | | | | |
Collapse
|
49
|
Hentschke M, Wiemann M, Hentschke S, Kurth I, Hermans-Borgmeyer I, Seidenbecher T, Jentsch TJ, Gal A, Hübner CA. Mice with a targeted disruption of the Cl-/HCO3- exchanger AE3 display a reduced seizure threshold. Mol Cell Biol 2006; 26:182-91. [PMID: 16354689 PMCID: PMC1317631 DOI: 10.1128/mcb.26.1.182-191.2006] [Citation(s) in RCA: 94] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Neuronal activity results in significant pH shifts in neurons, glia, and interstitial space. Several transport mechanisms are involved in the fine-tuning and regulation of extra- and intracellular pH. The sodium-independent electroneutral anion exchangers (AEs) exchange intracellular bicarbonate for extracellular chloride and thereby lower the intracellular pH. Recently, a significant association was found with the variant Ala867Asp of the anion exchanger AE3, which is predominantly expressed in brain and heart, in a large cohort of patients with idiopathic generalized epilepsy. To analyze a possible involvement of AE3 dysfunction in the pathogenesis of seizures, we generated an AE3-knockout mouse model by targeted disruption of Slc4a3. AE3-knockout mice were apparently healthy, and neither displayed gross histological and behavioral abnormalities nor spontaneous seizures or spike wave complexes in electrocorticograms. However, the seizure threshold of AE3-knockout mice exposed to bicuculline, pentylenetetrazole, or pilocarpine was reduced, and seizure-induced mortality was significantly increased compared to wild-type littermates. In the pyramidal cell layer of the hippocampal CA3 region, where AE3 is strongly expressed, disruption of AE3 abolished sodium-independent chloride-bicarbonate exchange. These findings strongly support the hypothesis that AE3 modulates seizure susceptibility and, therefore, are of significance for understanding the role of intracellular pH in epilepsy.
Collapse
Affiliation(s)
- Moritz Hentschke
- Department of Human Genetics, UKE-Hamburg, Butenfeld 42, 22529 Hamburg, Germany
| | | | | | | | | | | | | | | | | |
Collapse
|
50
|
Abstract
10.5 million children worldwide are estimated to have active epilepsy. Over the past 15 years, syndrome-oriented clinical and EEG diagnosis, and better aetiological diagnosis, especially supported by neuroimaging, has helped to clarify the diversity of epilepsy in children, and has improved management. Perinatal and postinfective encephalopathy, cortical dysplasia, and hippocampal sclerosis account for the most severe symptomatic epilepsies. Ion channel defects can underlie both benign age-related disorders and severe epileptic encephalopathies with a progressive disturbance in cerebral function. However, the reasons for age-related expression in children are not understood. Neither are the mechanisms whereby an epileptic encephalopathy originates. Several new drugs have been recently introduced but have provided limited therapeutic benefits. However, treatment and quality of life have improved because the syndrome-specific efficacy profile of drugs is better known, and there is heightened awareness that compounds with severe cognitive side-effects and heavy polytherapies should be avoided. Epilepsy surgery is an important option for a few well-selected individuals, but should be considered with great caution when there is no apparent underlying brain lesion.
Collapse
Affiliation(s)
- Renzo Guerrini
- Department of Child Neurology and Psychiatry, University of Pisa and IRCCS Fondazione Stella Maris, 56018 Calambrone, Pisa, Italy.
| |
Collapse
|