1
|
Calixto JB, dos Santos AA, Ferreira J, Souza AH, de Castro CJ, Gomez MV. Phα1β interaction with the Kv11.1 potassium channel in HEK293 cells transfected with the human ERG channel. J Venom Anim Toxins Incl Trop Dis 2025; 31:e20240039. [PMID: 39845806 PMCID: PMC11748958 DOI: 10.1590/1678-9199-jvatitd-2024-0039] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2024] [Accepted: 12/13/2024] [Indexed: 01/24/2025] Open
Abstract
Background This study examines the impact of Phα1β, a spider peptide derived from the venom of Phoneutria nigriventer, on the Kv11.1 potassium channel in HEK293 cells transfected with the human ERG potassium channel. Phα1β inhibits high-voltage calcium channels and acts as an antagonist of the TRPA1 receptor, both of which play crucial roles in pain transduction pathways. Over the past 15 years, our research has demonstrated the potential of Phα1β, in both its native and recombinant forms, as a promising analgesic drug through preclinical tests conducted on rodent pain models. Regulatory agencies require the evaluation of new drugs on human ERG channels. Methods To assess hERG potassium channel inhibition, we utilized the FLIPR® Potassium Assay, a commercially available kit. The assay involved testing the effects of Phα1β alongside the well-established hERG potassium channel blocker dofetilide, which served as a positive control. The viability of HEK-293 cells was assessed using the colorimetric MTT reduction test (3-(4, dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide), whereby viable cells reduce the MTT salt, forming a formazan complex within their mitochondria, as previously described. Results Phα1β was tested at concentrations of 56, 225, 450, and 900 pMol, resulting in a discreet inhibition of hERG potassium channel activity at higher concentrations, approximately 13.47%, with an IC50 value exceeding 900 pMol. Dofetilide, administered at concentrations ranging from 0.0001 to 10 µM, displayed a concentration-dependent inhibition of the hERG potassium channel, with a mean IC50 value of 0.1642 µM (0.1189-0.2282 µM). To evaluate cytotoxicity, HEK293-hERG cells were exposed to Phα1β concentrations of 56/900 pMol for 24 hours, resulting in no significant alteration in cell viability. Conclusion Our findings indicate that even at high concentrations, Phα1β does not impede the functionality of the hERG potassium channel nor affect cell viability.
Collapse
Affiliation(s)
- João B. Calixto
- Center for Innovation and Pre-Clinical Trials (CIEnP),
Florianópolis, SC, Brazil
| | | | - Juliano Ferreira
- Federal University of Santa Catarina (UFSC), Florianópolis, SC,
Brazil
| | | | | | | |
Collapse
|
2
|
de Melo Cardoso M, Scussel R, da Silva Abel J, Pereira FO, Cruz LA, da Costa Constante F, De Pieri E, Abelaira HM, Ferreira J, Gomez MV, Rigo FK, Machado-de-Ávila RA. Intravenous administration of recombinant Phα1β: Antinociceptive properties and morphine tolerance reversal in a cancer-associated pain model. Toxicon 2024; 243:107717. [PMID: 38614245 DOI: 10.1016/j.toxicon.2024.107717] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2024] [Revised: 03/12/2024] [Accepted: 04/10/2024] [Indexed: 04/15/2024]
Abstract
Cancer-related pain is considered one of the most prevalent symptoms for those affected by cancer, significantly influencing quality of life and treatment outcomes. Morphine is currently employed for analgesic treatment in this case, however, chronic use of this opioid is limited by the development of analgesic tolerance and adverse effects, such as digestive and neurological disorders. Alternative therapies, such as ion channel blockade, are explored. The toxin Phα1β has demonstrated efficacy in blocking calcium channels, making it a potential candidate for alleviating cancer-related pain. This study aims to assess the antinociceptive effects resulting from intravenous administration of the recombinant form of Phα1β (r-Phα1β) in an experimental model of cancer-related pain in mice, tolerant or not to morphine. The model of cancer-induced pain was used to evaluate these effects, with the injection of B16F10 cells, followed by the administration of the r-Phα1β, and evaluation of the mechanical threshold by the von Frey test. Also, adverse effects were assessed using a score scale, the rotarod, and open field tests. Results indicate that the administration of r-Phα1β provoked antinociception in animals with cancer-induced mechanical hyperalgesia, with or without morphine tolerance. Previous administration of r-Phα1β was able to recover the analgesic activity of morphine in animals tolerant to this opioid. r-Phα1β was proved safe for these parameters, as no adverse effects related to motor and behavioral activity were observed following intravenous administration. This study suggests that the concomitant use of morphine and r-Phα1β could be a viable strategy for pain modulation in cancer patients.
Collapse
Affiliation(s)
- Mariana de Melo Cardoso
- Laboratory of Experimental Pathophysiology, Postgraduate Program in Health Sciences, University of the Extreme South Catarinense (UNESC), Criciúma, SC, Brazil; Postgraduate Program in Health Sciences: Infectious Diseases and Tropical Medicine, Faculty of Medicine, Universidade Federal de Minas Gerais, Belo Horizonte, 30130-100, MG, Brazil
| | - Rahisa Scussel
- Laboratory of Experimental Pathophysiology, Postgraduate Program in Health Sciences, University of the Extreme South Catarinense (UNESC), Criciúma, SC, Brazil
| | - Jéssica da Silva Abel
- Laboratory of Experimental Pathophysiology, Postgraduate Program in Health Sciences, University of the Extreme South Catarinense (UNESC), Criciúma, SC, Brazil
| | - Fernando Oriques Pereira
- Laboratory of Experimental Pathophysiology, Postgraduate Program in Health Sciences, University of the Extreme South Catarinense (UNESC), Criciúma, SC, Brazil
| | - Lidiane Anastácio Cruz
- Laboratory of Experimental Pathophysiology, Postgraduate Program in Health Sciences, University of the Extreme South Catarinense (UNESC), Criciúma, SC, Brazil
| | - Franciane da Costa Constante
- Laboratory of Experimental Pathophysiology, Postgraduate Program in Health Sciences, University of the Extreme South Catarinense (UNESC), Criciúma, SC, Brazil
| | - Ellen De Pieri
- Laboratory of Experimental Pathophysiology, Postgraduate Program in Health Sciences, University of the Extreme South Catarinense (UNESC), Criciúma, SC, Brazil
| | - Helena Mendes Abelaira
- Laboratory of Experimental Pathophysiology, Postgraduate Program in Health Sciences, University of the Extreme South Catarinense (UNESC), Criciúma, SC, Brazil
| | - Juliano Ferreira
- Department of Pharmacology, Federal University of Santa Catarina, Florianópolis, SC, Brazil
| | - Marcus Vinícius Gomez
- Graduate Program in Health Sciences, Institute of Education and Research, Santa Casa de Belo Horizonte, Belo Horizonte, MG, Brazil; Center of Technology in Molecular Medicine, School of Medicine, Federal University of Minas Gerais (UFMG), Belo Horizonte, MG, Brazil
| | - Flávia Karine Rigo
- Laboratory of Experimental Pathophysiology, Postgraduate Program in Health Sciences, University of the Extreme South Catarinense (UNESC), Criciúma, SC, Brazil
| | - Ricardo Andrez Machado-de-Ávila
- Laboratory of Experimental Pathophysiology, Postgraduate Program in Health Sciences, University of the Extreme South Catarinense (UNESC), Criciúma, SC, Brazil.
| |
Collapse
|
3
|
Salib AMN, Crane MJ, Lee SH, Wainger BJ, Jamieson AM, Lipscombe D. Interleukin-1α links peripheral Ca V2.2 channel activation to rapid adaptive increases in heat sensitivity in skin. Sci Rep 2024; 14:9051. [PMID: 38643253 PMCID: PMC11032389 DOI: 10.1038/s41598-024-59424-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2023] [Accepted: 04/10/2024] [Indexed: 04/22/2024] Open
Abstract
Neurons have the unique capacity to adapt output in response to changes in their environment. Within seconds, sensory nerve endings can become hypersensitive to stimuli in response to potentially damaging events. The underlying behavioral response is well studied, but several of the key signaling molecules that mediate sensory hypersensitivity remain unknown. We previously discovered that peripheral voltage-gated CaV2.2 channels in nerve endings in skin are essential for the rapid, transient increase in sensitivity to heat, but not to mechanical stimuli, that accompanies intradermal capsaicin. Here we report that the cytokine interleukin-1α (IL-1α), an alarmin, is necessary and sufficient to trigger rapid heat and mechanical hypersensitivity in skin. Of 20 cytokines screened, only IL-1α was consistently detected in hind paw interstitial fluid in response to intradermal capsaicin and, similar to behavioral sensitivity to heat, IL-1α levels were also dependent on peripheral CaV2.2 channel activity. Neutralizing IL-1α in skin significantly reduced capsaicin-induced changes in hind paw sensitivity to radiant heat and mechanical stimulation. Intradermal IL-1α enhances behavioral responses to stimuli and, in culture, IL-1α enhances the responsiveness of Trpv1-expressing sensory neurons. Together, our data suggest that IL-1α is the key cytokine that underlies rapid and reversible neuroinflammatory responses in skin.
Collapse
Affiliation(s)
- Anne-Mary N Salib
- Department of Neuroscience, Carney Institute for Brain Science, Brown University, Providence, RI, 02912, USA
| | - Meredith J Crane
- Department of Molecular Microbiology and Immunology, Brown University, Providence, RI, 02912, USA
| | - Sang Hun Lee
- Department of Neurology, Massachusetts General Hospital, Boston, MA, 02114, USA
| | - Brian J Wainger
- Department of Neurology, Massachusetts General Hospital, Boston, MA, 02114, USA
| | - Amanda M Jamieson
- Department of Molecular Microbiology and Immunology, Brown University, Providence, RI, 02912, USA
| | - Diane Lipscombe
- Department of Neuroscience, Carney Institute for Brain Science, Brown University, Providence, RI, 02912, USA.
| |
Collapse
|
4
|
Salib AMN, Crane MJ, Lee SH, Wainger BJ, Jamieson AM, Lipscombe D. Interleukin-1α links peripheral Ca V2.2 channel activation to rapid adaptive increases in heat sensitivity in skin. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2023.12.17.572072. [PMID: 38585803 PMCID: PMC10996502 DOI: 10.1101/2023.12.17.572072] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/09/2024]
Abstract
Neurons have the unique capacity to adapt output in response to changes in their environment. Within seconds, sensory nerve endings can become hypersensitive to stimuli in response to potentially damaging events. The underlying behavioral response is well studied, but several of the key signaling molecules that mediate sensory hypersensitivity remain unknown. We previously discovered that peripheral voltage-gated CaV2.2 channels in nerve endings in skin are essential for the rapid, transient increase in sensitivity to heat, but not to mechanical stimuli, that accompanies intradermal capsaicin. Here we report that the cytokine interleukin-1α (IL-1α), an alarmin, is necessary and sufficient to trigger rapid heat and mechanical hypersensitivity in skin. Of 20 cytokines screened, only IL-1α was consistently detected in hind paw interstitial fluid in response to intradermal capsaicin and, similar to behavioral sensitivity to heat, IL-1α levels were also dependent on peripheral CaV2.2 channel activity. Neutralizing IL-1α in skin significantly reduced capsaicin-induced changes in hind paw sensitivity to radiant heat and mechanical stimulation. Intradermal IL-1α enhances behavioral responses to stimuli and, in culture, IL-1α enhances the responsiveness of Trpv1-expressing sensory neurons. Together, our data suggest that IL-1α is the key cytokine that underlies rapid and reversible neuroinflammatory responses in skin.
Collapse
Affiliation(s)
- Anne-Mary N Salib
- Department of Neuroscience, Carney Institute for Brain Science, Brown University, Providence, RI 02912, USA
| | - Meredith J Crane
- Department of Molecular Microbiology and Immunology, Brown University, Providence, RI 02912, USA
| | - Sang Hun Lee
- Department of Neurology, Massachusetts General Hospital, Boston, MA 02114, USA
| | - Brian J Wainger
- Department of Neurology, Massachusetts General Hospital, Boston, MA 02114, USA
| | - Amanda M Jamieson
- Department of Molecular Microbiology and Immunology, Brown University, Providence, RI 02912, USA
| | - Diane Lipscombe
- Department of Neuroscience, Carney Institute for Brain Science, Brown University, Providence, RI 02912, USA
| |
Collapse
|
5
|
Song K, Hao Y, Tan X, Huang H, Wang L, Zheng W. Microneedle-mediated delivery of Ziconotide-loaded liposomes fused with exosomes for analgesia. J Control Release 2023; 356:448-462. [PMID: 36898532 DOI: 10.1016/j.jconrel.2023.03.007] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2022] [Revised: 03/02/2023] [Accepted: 03/04/2023] [Indexed: 03/12/2023]
Abstract
Ziconotide (ZIC) is an N-type calcium channel antagonist for treating severe chronic pain that is intolerable, or responds poorly to the administration of other drugs, such as intrathecal morphine and systemic analgesics. As it can only work in the brain and cerebrospinal fluid, intrathecal injection is the only administration route for ZIC. In this study, borneol (BOR)-modified liposomes (LIPs) were fused with exosomes from mesenchymal stem cells (MSCs) and loaded with ZIC to prepare microneedles (MNs) to improve the efficiency of ZIC across the blood-brain barrier. To evaluate local analgesic effects of MNs, the sensitivity of behavioral pain to thermal and mechanical stimuli was tested in animal models of peripheral nerve injury, diabetes-induced neuropathy pain, chemotherapy-induced pain, and ultraviolet-B (UV-B) radiation-induced neurogenic inflammatory pain. BOR-modified LIPs loaded with ZIC were spherical or nearly spherical, with a particle size of about 95 nm and a Zeta potential of -7.8 mV. After fusion with MSC exosomes, the particle sizes of LIPs increased to 175 nm, and their Zeta potential increased to -3.8 mV. The nano-MNs constructed based on BOR-modified LIPs had good mechanical properties and could effectively penetrate the skin to release drugs. The results of analgesic experiments showed that ZIC had a significant analgesic effect in different pain models. In conclusion, the BOR-modified LIP membrane-fused exosome MNs constructed in this study for delivering ZIC provide a safe and effective administration for chronic pain treatment, as well as great potential for clinical application of ZIC.
Collapse
Affiliation(s)
- Kaichao Song
- Beijing Key Laboratory of Drug Delivery and Novel Formulation, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100050, China; Institute of Medicinal Biotechnology, Chinese Academy of Medical Science and Peking Union Medical College, Beijing 100050, China
| | - Yumei Hao
- Beijing Key Laboratory of Drug Delivery and Novel Formulation, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100050, China
| | - Xiaochuan Tan
- Beijing Key Laboratory of Drug Delivery and Novel Formulation, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100050, China
| | - Hongdong Huang
- Department of Nephrology, Beijing Friendship Hospital, Faculty of Kidney Diseases, Capital Medical University, Beijing 100050, China.
| | - Lulu Wang
- Institute of Medicinal Biotechnology, Chinese Academy of Medical Science and Peking Union Medical College, Beijing 100050, China.
| | - Wensheng Zheng
- Beijing Key Laboratory of Drug Delivery and Novel Formulation, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100050, China.
| |
Collapse
|
6
|
Choudhary S, Kaur R, Waziri A, Garg A, Kadian R, Alam MS. N-type calcium channel blockers: a new approach towards the treatment of chronic neuropathic pain. EXPLORATION OF MEDICINE 2023. [DOI: 10.37349/emed.2023.00126] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/04/2023] Open
Abstract
Neuropathic pain (NP) remains maltreated for a wide number of patients by the currently available treatments and little research has been done in finding new drugs for treating NP. Ziconotide (PrialtTM) had been developed as the new drug, which belongs to the class of ω-conotoxin MVIIA. It inhibits N-type calcium channels. Ziconotide is under the last phase of the clinical trial, a new non-narcotic drug for the management of NP. Synthetically it has shown the similarities with ω-conotoxin MVIIA, a constituent of poison found in fish hunting snails (Conus magus). Ziconotide acts by selectively blocking neural N-type voltage-sensitized Ca2+ channels (NVSCCs). Certain herbal drugs also have been studied but no clinical result is there and the study is only limited to preclinical data. This review emphasizes the N-type calcium channel inhibitors, and their mechanisms for blocking calcium channels with their remedial prospects for treating chronic NP.
Collapse
Affiliation(s)
- Shikha Choudhary
- School of Medical and Allied Sciences, K.R. Mangalam University, Gurugram 122103, Haryana, India
| | - Raminderjit Kaur
- School of Medical and Allied Sciences, K.R. Mangalam University, Gurugram 122103, Haryana, India
| | - Aafrin Waziri
- University School of Biotechnology, Guru Gobind Singh Indraprastha University, Delhi, 110078, India
| | - Arun Garg
- Department of Pharmacology, NIMS Institute of Pharmacy, NIMS University, Jaipur 303121, Rajasthan, India
| | - Renu Kadian
- Ram Gopal College of Pharmacy, Gurugram 122506, Haryana, India
| | - Md Sabir Alam
- SGT College of Pharmacy, SGT University, Gurugram 122505, Haryana, India
| |
Collapse
|
7
|
Vázquez-Vázquez H, Gonzalez-Sandoval C, Vega AV, Arias-Montaño JA, Barral J. Histamine H 3 Receptor Activation Modulates Glutamate Release in the Corticostriatal Synapse by Acting at Ca V2.1 (P/Q-Type) Calcium Channels and GIRK (K IR3) Potassium Channels. Cell Mol Neurobiol 2022; 42:817-828. [PMID: 33068216 PMCID: PMC11441178 DOI: 10.1007/s10571-020-00980-6] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2020] [Accepted: 10/06/2020] [Indexed: 01/24/2023]
Abstract
The striatum is innervated by histaminergic fibers and expresses a high density of histamine H3 receptors (H3Rs), present on medium spiny neurons (MSNs) and corticostriatal afferents. In this study, in sagittal slices from the rat dorsal striatum, excitatory postsynaptic potentials (EPSPs) were recorded in MSNs after electrical stimulation of corticostriatal axons. The effect of H3R activation and blockers of calcium and potassium channels was evaluated with the paired-pulse facilitation protocol. In the presence of the H3R antagonist/inverse agonist clobenpropit (1 μM), the H3R agonist immepip (1 μM) had no effect on the paired-pulse ratio (PPR), but in the absence of clobenpropit, immepip induced a significant increase in PPR, accompanied by a reduction in EPSP amplitude, suggesting presynaptic inhibition. The blockade of CaV2.1 (P/Q-type) channels with ω-agatoxin TK (400 nM) increased PPR and prevented the effect of immepip. The CaV2.2 (N-type) channel blocker ω-conotoxin GVIA (1 μM) also increased PPR, but did not occlude the immepip action. Functional KIR3 channels are present in corticostriatal terminals, and in experiments in which immepip increased PPR, the KIR3 blocker tertiapin-Q (30 nM) prevented the effect of the H3R agonist. These results indicate that the presynaptic modulation by H3Rs of corticostriatal synapses involves the inhibition of Cav2.1 calcium channels and the activation of KIR3 potassium channels.
Collapse
Affiliation(s)
- Héctor Vázquez-Vázquez
- Departamento de Neurociencias, UIICSE, Facultad de Estudios Superiores Iztacala, UNAM, Av. de los Barrios 1, Los Reyes Iztacala, Apartado Postal 314, 54090, Tlalnepantla, Estado de México, Mexico
| | - Carolina Gonzalez-Sandoval
- Departamento de Neurociencias, UIICSE, Facultad de Estudios Superiores Iztacala, UNAM, Av. de los Barrios 1, Los Reyes Iztacala, Apartado Postal 314, 54090, Tlalnepantla, Estado de México, Mexico
| | - Ana V Vega
- Carrera de Médico Cirujano, Facultad de Estudios Superiores Iztacala, UNAM, Av. de los Barrios 1, Los Reyes Iztacala, Apartado Postal 314, 54090, Tlalnepantla, Estado de México, Mexico
| | - José-Antonio Arias-Montaño
- Departamento de Fisiología, Biofísica y Neurociencias, Centro de Investigación Y de Estudios Avanzados (Cinvestav) del IPN, Av. IPN 2508, 07360, Zacatenco, Ciudad de México, Mexico
| | - Jaime Barral
- Departamento de Neurociencias, UIICSE, Facultad de Estudios Superiores Iztacala, UNAM, Av. de los Barrios 1, Los Reyes Iztacala, Apartado Postal 314, 54090, Tlalnepantla, Estado de México, Mexico.
| |
Collapse
|
8
|
Borowicz-Reutt KK. Effects of Antiarrhythmic Drugs on Antiepileptic Drug Action-A Critical Review of Experimental Findings. Int J Mol Sci 2022; 23:ijms23052891. [PMID: 35270033 PMCID: PMC8911389 DOI: 10.3390/ijms23052891] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2022] [Revised: 02/28/2022] [Accepted: 03/04/2022] [Indexed: 01/27/2023] Open
Abstract
Severe cardiac arrhythmias developing in the course of seizures increase the risk of SUDEP (sudden unexpected death in epilepsy). Hence, epilepsy patients with pre-existing arrhythmias should receive appropriate pharmacotherapy. Concomitant treatment with antiarrhythmic and antiseizure medications creates, however, the possibility of drug–drug interactions. This is due, among other reasons, to a similar mechanism of action. Both groups of drugs inhibit the conduction of electrical impulses in excitable tissues. The aim of this review was the analysis of such interactions in animal seizure models, including the maximal electroshock (MES) test in mice, a widely accepted screening test for antiepileptic drugs.
Collapse
Affiliation(s)
- Kinga K Borowicz-Reutt
- Independent Unit of Experimental Neuropathophysiology, Department of Toxicology, Medical University of Lublin, 20-090 Lublin, Poland
| |
Collapse
|
9
|
Lipscombe D, Lopez-Soto EJ. Epigenetic control of ion channel expression and cell-specific splicing in nociceptors: Chronic pain mechanisms and potential therapeutic targets. Channels (Austin) 2021; 15:156-164. [PMID: 33323031 PMCID: PMC7808434 DOI: 10.1080/19336950.2020.1860383] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2020] [Accepted: 12/03/2020] [Indexed: 12/17/2022] Open
Abstract
Ion channels underlie all forms for electrical signaling including the transmission of information about harmful events. Voltage-gated calcium ion channels have dual function, they support electrical signaling as well as intracellular calcium signaling through excitation-dependent calcium entry across the plasma membrane. Mechanisms that regulate ion channel forms and actions are essential for myriad cell functions and these are targeted by drugs and therapeutics. When disrupted, the cellular mechanisms that control ion channel activity can contribute to disease pathophysiology. For example, alternative pre-mRNA splicing is a major step in defining the precise composition of the transcriptome across different cell types from early cellular differentiation to programmed apoptosis. An estimated 30% of disease-causing mutations are associated with altered alternative splicing, and mis-splicing is a feature of numerous highly prevalent diseases including neurodegenerative, cancer, and chronic pain. Here we discuss the important role of epigenetic regulation of gene expression and cell-specific alternative splicing of calcium ion channels in nociceptors, with emphasis on how these processes are disrupted in chronic pain, the potential therapeutic benefit of correcting or compensating for aberrant ion channel splicing in chronic pain.
Collapse
Affiliation(s)
- Diane Lipscombe
- The Robert J and Nancy D Carney Institute for Brain Science & Department of Neuroscience, Brown University, Providence, RI, USA
| | - E. Javier Lopez-Soto
- The Robert J and Nancy D Carney Institute for Brain Science & Department of Neuroscience, Brown University, Providence, RI, USA
| |
Collapse
|
10
|
da Silva JF, Binda NS, Pereira EMR, de Lavor MSL, Vieira LB, de Souza AH, Rigo FK, Ferrer HT, de Castro CJ, Ferreira J, Gomez MV. Analgesic effects of Phα1β toxin: a review of mechanisms of action involving pain pathways. J Venom Anim Toxins Incl Trop Dis 2021; 27:e20210001. [PMID: 34868281 PMCID: PMC8610172 DOI: 10.1590/1678-9199-jvatitd-2021-0001] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2021] [Accepted: 03/26/2021] [Indexed: 01/01/2023] Open
Abstract
Phα1β is a neurotoxin purified from spider venom that acts as a high-voltage-activated (HVA) calcium channel blocker. This spider peptide has shown a high selectivity for N-type HVA calcium channels (NVACC) and an analgesic effect in several animal models of pain. Its activity was associated with a reduction in calcium transients, glutamate release, and reactive oxygen species production from the spinal cord tissue and dorsal ganglia root (DRG) in rats and mice. It has been reported that intrathecal (i.t.) administration of Phα1β to treat chronic pain reverted opioid tolerance with a safer profile than ω-conotoxin MVIIA, a highly selective NVACC blocker. Following a recent development of recombinant Phα1β (CTK 01512-2), a new molecular target, TRPA1, the structural arrangement of disulphide bridges, and an effect on glial plasticity have been identified. CTK 01512-2 reproduced the antinociceptive effects of the native toxin not only after the intrathecal but also after the intravenous administration. Herein, we review the Phα1β antinociceptive activity in the most relevant pain models and its mechanisms of action, highlighting the impact of CTK 01512-2 synthesis and its potential for multimodal analgesia.
Collapse
Affiliation(s)
- Juliana Figueira da Silva
- Laboratory of Pharmacology, Department of Pharmacy, Federal
University of Ouro Preto, Ouro Preto, MG, Brazil
| | - Nancy Scardua Binda
- Laboratory of Pharmacology, Department of Pharmacy, Federal
University of Ouro Preto, Ouro Preto, MG, Brazil
| | - Elizete Maria Rita Pereira
- Graduate Program in Health Sciences, Institute of Education and
Research, Santa Casa de Belo Horizonte, Belo Horizonte, MG, Brazil
| | | | - Luciene Bruno Vieira
- Department of Pharmacology, Institute of Biological Sciences (ICB),
Federal University of Minas Gerais (UFMG), Belo Horizonte, MG, Brazil
| | - Alessandra Hubner de Souza
- Graduate Program in Health Sciences, Institute of Education and
Research, Santa Casa de Belo Horizonte, Belo Horizonte, MG, Brazil
| | - Flávia Karine Rigo
- Graduate Program in Health Sciences, University of the Extreme South
of Santa Catarina (UNESC), Criciúma, SC, Brazil
| | - Hèlia Tenza Ferrer
- Center of Technology in Molecular Medicine, School of Medicine,
Federal University of Minas Gerais (UFMG), Belo Horizonte, MG, Brazil
| | - Célio José de Castro
- Graduate Program in Health Sciences, Institute of Education and
Research, Santa Casa de Belo Horizonte, Belo Horizonte, MG, Brazil
| | - Juliano Ferreira
- Department of Pharmacology, Federal University of Santa Catarina,
Florianópolis, SC, Brazil
| | - Marcus Vinicius Gomez
- Graduate Program in Health Sciences, Institute of Education and
Research, Santa Casa de Belo Horizonte, Belo Horizonte, MG, Brazil
- Center of Technology in Molecular Medicine, School of Medicine,
Federal University of Minas Gerais (UFMG), Belo Horizonte, MG, Brazil
| |
Collapse
|
11
|
Aridoss G, Kim D, Kim JI, Kang JE. Ziconotide (
ω‐conotoxin MVIIA
)—Efficient solid‐phase synthesis of a linear precursor peptide and its strategic native folding. Pept Sci (Hoboken) 2021. [DOI: 10.1002/pep2.24223] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Affiliation(s)
- Gopalakrishnan Aridoss
- Peptide Smart Process Department Anygen Co., Ltd Cheongju‐si Chungcheongbuk‐do South Korea
| | - Dong‐Min Kim
- Peptide Smart Process Department Anygen Co., Ltd Cheongju‐si Chungcheongbuk‐do South Korea
| | - Jae Il Kim
- Peptide Smart Process Department Anygen Co., Ltd Cheongju‐si Chungcheongbuk‐do South Korea
| | - Jae Eun Kang
- Peptide Smart Process Department Anygen Co., Ltd Cheongju‐si Chungcheongbuk‐do South Korea
| |
Collapse
|
12
|
Lozano Jiménez YY, Sánchez Mora RM. Canales de calcio como blanco de interés farmacológico. NOVA 2020. [DOI: 10.22490/24629448.3926] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
Los canales de calcio son proteínas de membrana que constituyen la vía más importante para el ingreso del ion calcio (Ca2+) a la célula. Al abrirse, permiten el ingreso selectivo del ion, iniciando una variedad de procesos como contracción muscular, secreción endocrina y liberación de neurotransmisores, entre otros. Estas proteínas se agrupan en tres categorías de acuerdo con sus propiedades estructurales y funcionales: (i) Canales de Ca2+ operados por interacción receptor-ligando (ROCC), (ii) Canales activados por parámetros físicos (Transient Receptor Potencial, TRP) y (iii) Canales de Calcio dependientes de voltaje (VDCCs), siendo estos últimos los más estudiados debido a su presencia en células excitables. Dada la importancia de Ca2+ en la fisiología celular, los canales de Ca2+ constituyen un punto de acción farmacológica importante para múltiples tratamientos y, por tanto, son objeto de estudio para el desarrollo de nuevos fármacos. El objetivo de esta revisión es explicar la importancia de los canales de Ca2+ desde una proyección farmacológica, a partir de la exploración documental de artículos publicados hasta la fecha teniendo en cuenta temas relacionados con la estructura de los canales Ca2+, sus propiedades biofísicas, localización celular, funcionamiento y su interacción farmacológica.
Collapse
|
13
|
Rigo FK, Rossato MF, Borges V, da Silva JF, Pereira EMR, de Ávila RAM, Trevisan G, Dos Santos DC, Diniz DM, Silva MAR, de Castro CJ, Cunha TM, Ferreira J, Gomez MV. Analgesic and side effects of intravenous recombinant Phα1β. J Venom Anim Toxins Incl Trop Dis 2020; 26:e20190070. [PMID: 32362927 PMCID: PMC7179342 DOI: 10.1590/1678-9199-jvatitd-2019-0070] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023] Open
Abstract
Background Intrathecal injection of voltage-sensitive calcium channel blocker peptide toxins exerts analgesic effect in several animal models of pain. Upon intrathecal administration, recombinant Phα1β exerts the same analgesic effects as the those of the native toxin. However, from a clinical perspective, the intrathecal administration limits the use of anesthetic drugs in patients. Therefore, this study aimed to investigate the possible antinociceptive effect of intravenous recombinant Phα1β in rat models of neuropathic pain, as well as its side effects on motor, cardiac (heart rate and blood pressure), and biochemical parameters. Methods Male Wistar rats and male Balb-C mice were used in this study. Giotto Biotech® synthesized the recombinant version of Phα1β using Escherichia coli expression. In rats, neuropathic pain was induced by chronic constriction of the sciatic nerve and paclitaxel-induced acute and chronic pain. Mechanical sensitivity was evaluated using von Frey filaments. A radiotelemeter transmitter (TA11PA-C10; Data Sciences, St. Paul, MN, USA) was placed on the left carotid of mice for investigation of cardiovascular side effects. Locomotor activity data were evaluated using the open-field paradigm, and serum CKMB, TGO, TGP, LDH, lactate, creatinine, and urea levels were examined. Results Intravenous administration of recombinant Phα1β toxin induced analgesia for up to 4 h, with ED50 of 0.02 (0.01-0.03) mg/kg, and reached the maximal effect (Emax = 100% antinociception) at a dose of 0.2 mg/kg. No significant changes were observed in any of the evaluated motor, cardiac or biochemical parameters. Conclusion Our data suggest that intravenous administration of recombinant Phα1β may be feasible for drug-induced analgesia, without causing any severe side effects.
Collapse
Affiliation(s)
- Flavia Karine Rigo
- Graduate Program in Health Sciences, University of the Extreme South of Santa Catarina (UNESC), Criciúma, SC, Brazil
| | - Mateus Fortes Rossato
- Department of Pharmacology, Ribeirão Preto Medical School, University of São Paulo (USP), Ribeirão Preto, SP, Brazil
| | - Vanessa Borges
- Department of Pharmacology, Ribeirão Preto Medical School, University of São Paulo (USP), Ribeirão Preto, SP, Brazil
| | - Juliana Figueira da Silva
- Institute of Education and Research of Santa Casa Belo Horizonte, Santa Casa of Belo Horizonte Group, Belo Horizonte, MG, Brazil
| | - Elizete Maria Rita Pereira
- Institute of Education and Research of Santa Casa Belo Horizonte, Santa Casa of Belo Horizonte Group, Belo Horizonte, MG, Brazil
| | | | - Gabriela Trevisan
- Graduate Program in Health Sciences, University of the Extreme South of Santa Catarina (UNESC), Criciúma, SC, Brazil
| | - Duana Carvalho Dos Santos
- Institute of Education and Research of Santa Casa Belo Horizonte, Santa Casa of Belo Horizonte Group, Belo Horizonte, MG, Brazil
| | - Danuza Montijo Diniz
- Institute of Education and Research of Santa Casa Belo Horizonte, Santa Casa of Belo Horizonte Group, Belo Horizonte, MG, Brazil
| | - Marco Aurélio Romano Silva
- Department of Neurosciences, School of Medicine, Federal University of Minas Gerais (UFMG), Belo Horizonte, MG, Brazil
| | - Célio José de Castro
- Institute of Education and Research of Santa Casa Belo Horizonte, Santa Casa of Belo Horizonte Group, Belo Horizonte, MG, Brazil
| | - Thiago Mattar Cunha
- Department of Pharmacology, Ribeirão Preto Medical School, University of São Paulo (USP), Ribeirão Preto, SP, Brazil
| | - Juliano Ferreira
- Department of Pharmacology, Federal University of Santa Catarina, Florianópolis, SC, Brazil
| | - Marcus Vinicius Gomez
- Institute of Education and Research of Santa Casa Belo Horizonte, Santa Casa of Belo Horizonte Group, Belo Horizonte, MG, Brazil
| |
Collapse
|
14
|
Presynaptic Calcium Channels. Int J Mol Sci 2019; 20:ijms20092217. [PMID: 31064106 PMCID: PMC6539076 DOI: 10.3390/ijms20092217] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2019] [Revised: 04/22/2019] [Accepted: 04/26/2019] [Indexed: 12/27/2022] Open
Abstract
Presynaptic Ca2+ entry occurs through voltage-gated Ca2+ (CaV) channels which are activated by membrane depolarization. Depolarization accompanies neuronal firing and elevation of Ca2+ triggers neurotransmitter release from synaptic vesicles. For synchronization of efficient neurotransmitter release, synaptic vesicles are targeted by presynaptic Ca2+ channels forming a large signaling complex in the active zone. The presynaptic CaV2 channel gene family (comprising CaV2.1, CaV2.2, and CaV2.3 isoforms) encode the pore-forming α1 subunit. The cytoplasmic regions are responsible for channel modulation by interacting with regulatory proteins. This article overviews modulation of the activity of CaV2.1 and CaV2.2 channels in the control of synaptic strength and presynaptic plasticity.
Collapse
|
15
|
Zhang N, Chen CF. Clinical observation of the effect of prophylaxis on allodynia in patients with migraine. J Pain Res 2018; 11:2721-2728. [PMID: 30519076 PMCID: PMC6233946 DOI: 10.2147/jpr.s172976] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023] Open
Abstract
Objective The clinical characteristics of migraine with and without allodynia were compared to evaluate the risk factors of cutaneous allodynia in migraine. The effects of prophylactic therapy on allodynia in patients with migraine were assessed based on the change in pain threshold after therapy. Patients and methods A total of 71 patients with migraine admitted to the Department of Neurology of Shandong Provincial Hospital were recruited in this study. The included patients were aged 18–70 years and did not present positive symptoms according to the nervous system examination. The variation in cutaneous allodynia was assessed for the role of classic prophylactic therapy in migraine-related allodynia, also termed as central sensitization (CS). Patients with migraine were randomized into two groups (topiramate and flunarizine groups), and the effect of drugs was evaluated by the change in cutaneous pain threshold between the two groups. Fifty-five patients were tested for pain threshold due to instrument failure. Pressure allodynia was measured with a force gage, and pricking was measured with Electronic von Frey Anesthesiometer. The pain threshold was measured every 3 months for 6 months. The variations in pain threshold after treatment were compared using t-test and χ2 test. Results Allodynia was seen in 70.4% of the patients; of these, 76.3% were females. Female gender, duration of illness, and frequency of migraine attacks per month were significantly associated with allodynia. The rate of allodynia and frequency of headache declined significantly, the number of patients with allodynia was reduced, and the pain threshold improved dramatically after treatment. The composite adverse events were low after treatment with topiramate and flunarizine. Conclusion Allodynia was observed, especially in females who experienced frequent migraine attacks for a prolonged period. Gender, duration of illness, and number of migraine attacks per month were the major predictors of allodynia. Topiramate and flunarizine administered orally for a short duration can effectively improve the pain threshold and CS of patients with migraine, and efficiently relieve allodynia.
Collapse
Affiliation(s)
- Na Zhang
- Department of Emergency Medicine, Shandong Provincial Qianfoshan Hospital, Shandong University, Jinan 250014, China,
| | - Chun-Fu Chen
- Department of Neurology, Shandong Provincial Hospital, Shandong University, Jinan 250021, China,
| |
Collapse
|
16
|
Using Drosophila behavioral assays to characterize terebrid venom-peptide bioactivity. Sci Rep 2018; 8:15276. [PMID: 30323294 PMCID: PMC6189199 DOI: 10.1038/s41598-018-33215-2] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2018] [Accepted: 09/24/2018] [Indexed: 12/14/2022] Open
Abstract
The number of newly discovered peptides from the transcriptomes and proteomes of animal venom arsenals is rapidly increasing, resulting in an abundance of uncharacterized peptides. There is a pressing need for a systematic, cost effective, and scalable approach to identify physiological effects of venom peptides. To address this discovery-to-function gap, we developed a sequence driven:activity-based hybrid approach for screening venom peptides that is amenable to large-venom peptide libraries with minimal amounts of peptide. Using this approach, we characterized the physiological and behavioral phenotypes of two peptides from the venom of predatory terebrid marine snails, teretoxins Tv1 from Terebra variegata and Tsu1.1 from Terebra subulata. Our results indicate that Tv1 and Tsu1.1 have distinct bioactivity. Tv1 (100 µM) had an antinociceptive effect in adult Drosophila using a thermal nociception assay to measure heat avoidance. Alternatively, Tsu1.1 (100 µM) increased food intake. These findings describe the first functional bioactivity of terebrid venom peptides in relation to pain and diet and indicate that Tv1 and Tsu1.1 may, respectively, act as antinociceptive and orexigenic agents. Tv1 and Tsu1.1 are distinct from previously identified venom peptides, expanding the toolkit of peptides that can potentially be used to investigate the physiological mechanisms of pain and diet.
Collapse
|
17
|
Ahmad I, Ahmed MM, Ahsraf MF, Naeem A, Tasleem A, Ahmed M, Farooqi MS. Pain Management in Metastatic Bone Disease: A Literature Review. Cureus 2018; 10:e3286. [PMID: 30443456 PMCID: PMC6235631 DOI: 10.7759/cureus.3286] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2018] [Accepted: 09/11/2018] [Indexed: 11/29/2022] Open
Abstract
Cancer means an uncontrolled division of abnormal cells in the body. It is a leading cause of death today. Not only the disease itself but its complications are also adding to the increase in mortality rate. One of the major complications is the pain due to metastasis of cancer. Pain is a complex symptom which has physical, psychological, and emotional impacts that influence the daily activities as well as social life. Pain acts as an alarm sign, telling the body that something is wrong. Pain can manifest in a multitude fashion. Management of bone pain due to metastasis involves different modes with some specific treatments according to the type of primary cancer. Over the years various treatment modalities have been tried and tested to improve the pain management including the use of non-steroidal anti-inflammatory drugs (NSAIDs), opioids, bisphosphonates, tricyclic antidepressants, corticosteroids, growth factors and signaling molecules, ET-1 receptor antagonists, radiotherapy as well as surgical management. The topic of discussion will cover each one of these in detail.
Collapse
Affiliation(s)
- Imama Ahmad
- Internal Medicine, King Edward Medical University, Mayo Hospital, Lahore, PAK
| | - Munis M Ahmed
- Internal Medicine, King Edward Medical University, Mayo Hospital, Lahore, PAK
| | | | - Anika Naeem
- Graduate, Allama Iqbal Medical College, Lahore, Pakistan, Lahore, PAK
| | - Azka Tasleem
- Internal Medicine, King Edward Medical University, Lahore, PAK
| | - Moeed Ahmed
- Internal Medicine, King Edward Medical University, Mayo Hospital, Lahore, PAK
| | - Muhammad S Farooqi
- Internal Medicine, King Edward Medical University, Mayo Hospital, Lahore, PAK
| |
Collapse
|
18
|
Presynaptic calcium channels. Neurosci Res 2018; 127:33-44. [DOI: 10.1016/j.neures.2017.09.012] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2017] [Revised: 07/13/2017] [Accepted: 08/23/2017] [Indexed: 12/30/2022]
|
19
|
Kim JH, Keum G, Chung H, Nam G. Synthesis and T-type calcium channel-blocking effects of aryl(1,5-disubstituted-pyrazol-3-yl)methyl sulfonamides for neuropathic pain treatment. Eur J Med Chem 2016; 123:665-672. [DOI: 10.1016/j.ejmech.2016.07.032] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2016] [Revised: 07/14/2016] [Accepted: 07/18/2016] [Indexed: 11/16/2022]
|
20
|
Ebersberger A, Portz S, Meissner W, Schaible HG, Richter F. Effects of N-, P/Q- and L-type Calcium Channel Blockers on Nociceptive Neurones of the Trigeminal Nucleus with Input from the Dura. Cephalalgia 2016; 24:250-61. [PMID: 15030533 DOI: 10.1111/j.1468-2982.2004.00656.x] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
In anaesthetized rats, extracellular recordings were made from neurones of the spinal trigeminal nucleus, involved in the processing of nociceptive input from the dura. Blockers of voltage-gated calcium channels (VGCCs) were administered topically to the exposed brainstem. Blockade of N-type (CaV2.2) channels reduced spontaneous activity and responses of the neurones to cold and chemical stimuli applied to the dura, suggesting that N-type channels regulate excitatory synaptic activation. Blockade of L-type (CaV1) channels enhanced spontaneous discharges of the neurones. Blockade of P/Q-type (CaV2.1) channels slightly decreased responses to chemical and cold stimuli but markedly increased spontaneous activity, an effect which was absent during concomitant application of GABA to the brainstem. The data suggest that P/Q-type VGCCs regulate a tonic synaptic inhibitory control of the brainstem neurones. The risk of migraine by genetic modifications of P/Q-type channels may thus be sought in disturbed inhibition in the network that processes nociceptive dura input.
Collapse
Affiliation(s)
- A Ebersberger
- Department of Physiology, University of Jena, Jena, Germany
| | | | | | | | | |
Collapse
|
21
|
Dual Effect of Ziconotide in Primary Erythromelalgia. Case Rep Med 2015; 2015:592170. [PMID: 26609309 PMCID: PMC4644814 DOI: 10.1155/2015/592170] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2015] [Revised: 10/20/2015] [Accepted: 10/21/2015] [Indexed: 11/17/2022] Open
Abstract
Erythromelalgia (EM) is a rare disabling clinical syndrome more commonly known to affect the lower extremities. There is no single effective treatment for this disease that often requires a multidisciplinary approach. Herein, we report the case of a 31-year-old woman affected by primary erythromelalgia who was successfully treated with intrathecal Ziconotide. We also observed an unexpected result following therapy with Ziconotide. The legs and feet of the patient that at the time of admission were swollen and tumefied dramatically improved after one week of the drug administration.
Collapse
|
22
|
Jarius S, Wildemann B. 'Medusa head ataxia': the expanding spectrum of Purkinje cell antibodies in autoimmune cerebellar ataxia. Part 2: Anti-PKC-gamma, anti-GluR-delta2, anti-Ca/ARHGAP26 and anti-VGCC. J Neuroinflammation 2015; 12:167. [PMID: 26377184 PMCID: PMC4574118 DOI: 10.1186/s12974-015-0357-x] [Citation(s) in RCA: 55] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2015] [Accepted: 07/02/2015] [Indexed: 01/18/2023] Open
Abstract
Serological testing for anti-neural autoantibodies is important in patients presenting with idiopathic cerebellar ataxia, since these autoantibodies may indicate cancer, determine treatment and predict prognosis. While some of them target nuclear antigens present in all or most CNS neurons (e.g. anti-Hu, anti-Ri), others more specifically target antigens present in the cytoplasm or plasma membrane of Purkinje cells (PC). In this series of articles, we provide a detailed review of the clinical and paraclinical features, oncological, therapeutic and prognostic implications, pathogenetic relevance, and differential laboratory diagnosis of the 12 most common PC autoantibodies (often referred to as 'Medusa head antibodies' due their characteristic somatodendritic binding pattern when tested by immunohistochemistry). To assist immunologists and neurologists in diagnosing these disorders, typical high-resolution immunohistochemical images of all 12 reactivities are presented, diagnostic pitfalls discussed and all currently available assays reviewed. Of note, most of these antibodies target antigens involved in the mGluR1/calcium pathway essential for PC function and survival. Many of the antigens also play a role in spinocerebellar ataxia. Part 1 focuses on anti-metabotropic glutamate receptor 1-, anti-Homer protein homolog 3-, anti-Sj/inositol 1,4,5-trisphosphate receptor- and anti-carbonic anhydrase-related protein VIII-associated autoimmune cerebellar ataxia (ACA); part 2 covers anti-protein kinase C gamma-, anti-glutamate receptor delta-2-, anti-Ca/RhoGTPase-activating protein 26- and anti-voltage-gated calcium channel-associated ACA; and part 3 reviews the current knowledge on anti-Tr/delta notch-like epidermal growth factor-related receptor-, anti-Nb/AP3B2-, anti-Yo/cerebellar degeneration-related protein 2- and Purkinje cell antibody 2-associated ACA, discusses differential diagnostic aspects, and provides a summary and outlook.
Collapse
Affiliation(s)
- S Jarius
- Molecular Neuroimmunology Group, Department of Neurology, University of Heidelberg, Otto Meyerhof Center, Im Neuenheimer Feld 350, D-69120, Heidelberg, Germany.
| | - B Wildemann
- Molecular Neuroimmunology Group, Department of Neurology, University of Heidelberg, Otto Meyerhof Center, Im Neuenheimer Feld 350, D-69120, Heidelberg, Germany.
| |
Collapse
|
23
|
Catterall WA, Swanson TM. Structural Basis for Pharmacology of Voltage-Gated Sodium and Calcium Channels. Mol Pharmacol 2015; 88:141-50. [PMID: 25848093 PMCID: PMC4468632 DOI: 10.1124/mol.114.097659] [Citation(s) in RCA: 119] [Impact Index Per Article: 11.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2015] [Accepted: 04/06/2015] [Indexed: 12/19/2022] Open
Abstract
Voltage-gated sodium channels initiate action potentials in nerve, muscle, and other electrically excitable cells. Voltage-gated calcium channels are activated by depolarization during action potentials, and calcium influx through them is the key second messenger of electrical signaling, initiating secretion, contraction, neurotransmission, gene transcription, and many other intracellular processes. Drugs that block sodium channels are used in local anesthesia and the treatment of epilepsy, bipolar disorder, chronic pain, and cardiac arrhythmia. Drugs that block calcium channels are used in the treatment of epilepsy, chronic pain, and cardiovascular disorders, including hypertension, angina pectoris, and cardiac arrhythmia. The principal pore-forming subunits of voltage-gated sodium and calcium channels are structurally related and likely to have evolved from ancestral voltage-gated sodium channels that are widely expressed in prokaryotes. Determination of the structure of a bacterial ancestor of voltage-gated sodium and calcium channels at high resolution now provides a three-dimensional view of the binding sites for drugs acting on sodium and calcium channels. In this minireview, we outline the different classes of sodium and calcium channel drugs, review studies that have identified amino acid residues that are required for their binding and therapeutic actions, and illustrate how the analogs of those key amino acid residues may form drug-binding sites in three-dimensional models derived from bacterial channels.
Collapse
Affiliation(s)
| | - Teresa M Swanson
- Department of Pharmacology, University of Washington, Seattle, Washington
| |
Collapse
|
24
|
Kumar PS, Kumar DS, Umamaheswari S. A perspective on toxicology of Conus venom peptides. ASIAN PAC J TROP MED 2015; 8:337-51. [PMID: 26003592 DOI: 10.1016/s1995-7645(14)60342-4] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
Abstract
The evolutionarily unique and ecologically diverse family Conidae presents fundamental opportunities for marine pharmacology research and drug discovery. The focus of this investigation is to summarize the worldwide distribution of Conus and their species diversity with special reference to the Indian coast. In addition, this study will contribute to understanding the structural properties of conotoxin and therapeutic application of Conus venom peptides. Cone snails can inject a mix of various conotoxins and these venoms are their major weapon for prey capture, and may also have other biological purposes, and some of these conotoxins fatal to humans. Conus venoms contain a remarkable diversity of pharmacologically active small peptides; their targets are an iron channel and receptors in the neuromuscular system. Interspecific divergence is pronounced in venom peptide genes, which is generally attributed to their species specific biotic interactions. There is a notable interspecific divergence observed in venom peptide genes, which can be justified as of biotic interactions that stipulate species peculiar habitat and ecology of cone snails. There are several conopeptides used in clinical trials and one peptide (Ziconotide) has received FDA approval for treatment of pain. This perspective provides a comprehensive overview of the distribution of cone shells and focus on the molecular approach in documenting their taxonomy and diversity with special reference to geographic distribution of Indian cone snails, structure and properties of conopeptide and their pharmacological targets and future directions.
Collapse
Affiliation(s)
| | - Dhanabalan Senthil Kumar
- Department of Zoology, Kandaswami Kandar College, Paramathi Velur-638 182, Namakkal, Tamil Nadu, India
| | - Sundaresan Umamaheswari
- Department of Environmental Biotechnology, Bharathidasan University, Tiruchurapalli, Tamil Nadu 620024, India
| |
Collapse
|
25
|
Rosa F, Trevisan G, Rigo FK, Tonello R, Andrade EL, do Nascimento Cordeiro M, Calixto JB, Gomez MV, Ferreira J. Phα1β, a peptide from the venom of the spider Phoneutria nigriventer shows antinociceptive effects after continuous infusion in a neuropathic pain model in rats. Anesth Analg 2014; 119:196-202. [PMID: 24836473 DOI: 10.1213/ane.0000000000000249] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
BACKGROUND Neuropathic pain is a severe painful pathology that is difficult to treat. One option for its management is the continuous intrathecal (i.t.) infusion of ziconotide (the Conus magnus peptide ω-conotoxin MVIIA), which, in addition to being effective, produces serious adverse effects at analgesic doses. Single i.t. administration of Phα1β, a peptide purified from the venom of the spider Phoneutria nigriventer, has antinociceptive effects with a greater therapeutic window than ziconotide in rodents. To further evaluate its analgesic potential, we investigated the antinociceptive and toxic effects of Phα1β after single or continuous i.t. infusion in a rat model of neuropathic pain. METHODS Adult male Wistar rats (200-300 g) bred in-house were used. Chronic constriction injury (CCI) of the sciatic nerve was used as the neuropathic pain model. Nociception was assessed by detecting mechanical hyperalgesia, considering a significant reduction in 50% paw withdrawal threshold values after CCI compared with baseline values. First, we assessed the antinociceptive effect of a single i.t. injection of Phα1β (10, 30, or 100 pmol/site) in a model of neuropathic pain 8 days after nerve injury. In a different experiment, we delivered Phα1β (60 pmol/μL/h) or vehicle (phosphate-buffered saline, 1.0 μL/h) through continuous infusion using an osmotic pump by spinal catheterization for 7 days in rats submitted to nerve injury. Behavioral adverse effects were evaluated after single or continuous Phα1β i.t. administration, and histopathological analysis of spinal cord, brainstem, and encephalon was performed after continuous Phα1β i.t. injection. RESULTS We observed that CCI of the sciatic nerve but not sham surgery caused intense (reduction of approximately 2.5 times in mechanical withdrawal threshold) and persistent (up to 14 days) nociception in rats. The single i.t. injection of Phα1β (30 or 100 pmol/site) reduced neuropathic nociception from 1 to 6 hours after administration, without showing detectable side effects. Similarly, the continuous infusion of Phα1β (60 pmol/μL/h for 7 days) was also able to reverse nerve injury-induced nociception from 1 to 7 days, but did not cause either behavioral side effects or histopathological changes in the central nervous system. CONCLUSIONS Thus, we have shown for the first time that the continuous i.t. delivery of Phα1β produces analgesia disconnected from toxicity in a relevant model of neuropathic pain, indicating that it is an effective and safe drug with a great potential to treat pain.
Collapse
Affiliation(s)
- Fernanda Rosa
- From the Graduate Program in Biological Sciences: Toxicological Biochemistry, Department of Chemistry, Center of Natural and Exact Sciences, Federal University of Santa Maria (UFSM), Santa Maria (RS); Laboratory of Molecular and Cellular Biology, Graduate Program of Health Sciences, Department of Health Sciences, University of Southern Santa Catarina (UNESC), Criciúma, SC, Brazil; Graduate Program in Health Sciences: Medicine and Biomedicine, Institute of Education and Research, Santa Casa de Belo Horizonte, Grupo Santa Casa de Belo Horizonte, Belo Horizonte (MG), Brazil; Department of Pharmacology, Biological Sciences Centre, Federal University of Santa Catarina, Florianópolis, Santa Catarina; and Ezequiel Dias Foundation, Belo Horizonte (MG), Brazil
| | | | | | | | | | | | | | | | | |
Collapse
|
26
|
Wei X, Sun H, Yan H, Zhang C, Zhang S, Liu X, Hua N, Ma X, Zheng J. ZC88, a novel 4-amino piperidine analog, inhibits the growth of neuroblastoma cells through blocking hERG potassium channel. Cancer Biol Ther 2014; 14:450-7. [PMID: 23917377 DOI: 10.4161/cbt.24423] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
Many studies have provided convincing evidence for hERG as an important diagnostic and prognostic factor in human cancers, as well as a useful target for antineoplastic therapy. Our previous study also revealed that knockdown of herg gene expression by shRNA interference inhibited the growth of neuroblastoma cells in vitro and in vivo. In the experiment, a novel 4-amino piperidine analog, ZC88, was examined for its effect on hERG potassium channels and its antitumor potency was observed in vitro and in vivo. The results showed that ZC88 could block hERG1 and hERG1b channels expressed in Xenopus oocytes in a concentration-dependent manner. ZC88 displayed significant antiproliferative activity in several tumor cell lines and the tumor cells with higher expression of hERG presented higher sensitivity to ZC88. The mitotic progression of tumor cells was markedly suppressed in the presence of ZC88 through arresting cells in G₀/G₁ phase. ZC88 significantly inhibited the tumor growth in nude mice at a dosage with slight influence on the cardiac QT interval. The antitumor effect of ZC88 was correlated at least partly with its blockage of hERG channels, which implicated a positive role of hERG potassium channel in tumor cell proliferation.
Collapse
Affiliation(s)
- Xiaoli Wei
- Beijing Institute of Pharmacology and Toxicology, Beijing, China
| | | | | | | | | | | | | | | | | |
Collapse
|
27
|
Smyth CE, Jarvis V, Poulin P. Brief review: Neuraxial analgesia in refractory malignant pain. Can J Anaesth 2014; 61:141-53. [PMID: 24233771 DOI: 10.1007/s12630-013-0075-8] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2013] [Accepted: 10/31/2013] [Indexed: 11/30/2022] Open
Abstract
PURPOSE This narrative review aims to inform health care practitioners of the current literature surrounding the use of intrathecal (IT) and epidural analgesia in cancer patients with refractory pain at end of life. Topics discussed and reviewed include: patient selection, treatment planning, procedure, equipment, medications, complications, policies and procedures, as well as directions for future research. PRINCIPAL FINDINGS Cancer pain is inadequately treated in an estimated 10% of patients with malignant pain despite the implementation of the World Health Organization three-step analgesic ladder. This has prompted some to advocate for the addition of a fourth step that would include neuraxial interventions. There is moderate evidence supporting the safety and efficacy of IT drug therapy in cancer patients with refractory pain. A detailed assessment and interdisciplinary team approach is necessary to develop and implement care plans for patients requiring neuraxial analgesia. Neuraxial analgesia can significantly improve pain and reduce side effects, but this must be balanced against the increased complexity of care and the risk of uncommon but serious complications. CONCLUSION Neuraxial drug delivery gives clinicians more options to manage refractory pain at end of life and should be offered to patients with intractable cancer pain. Teams should be interprofessional with clear delineation of roles and responsibilities. They should discuss advanced discharge planning with the patient prior to implantation as well as provide on-call support.
Collapse
|
28
|
Wallace MS. Ziconotide: a new nonopioid intrathecal analgesic for the treatment of chronic pain. Expert Rev Neurother 2014; 6:1423-8. [PMID: 17078783 DOI: 10.1586/14737175.6.10.1423] [Citation(s) in RCA: 57] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Ziconotide is a new nonopioid intrathecal agent recently approved for the treatment of chronic pain. Ziconotide is indicated for the management of severe chronic pain in patients for whom intrathecal therapy is warranted and who are intolerant of or refractory to other treatment, such as systemic analgesics, adjunctive therapies or intrathecal morphine. Ziconotide blocks the N-type calcium channels located in the superficial dorsal horn of the spinal cord, resulting in potent analgesia. The efficacy of ziconotide has been demonstrated in three randomized, placebo-controlled trials in over 500 patients. In addition, its safety has been demonstrated in over 1200 subjects. Ziconotide is a potent analgesic with a narrow therapeutic window. The drug requires a slow titration in order to achieve analgesia while avoiding dose-limiting side effects. This review examines the currently available information on this new analgesic.
Collapse
Affiliation(s)
- Mark S Wallace
- Center for Pain Medicine, University of California, San Diego, 9500 Gilman Drive, 0924, San Diego, CA 92093, USA.
| |
Collapse
|
29
|
Abstract
Several classes of antihypertensive agents have been in clinical use, including diuretics, α-blockers, β-blockers, angiotensin converting enzyme (ACE) inhibitors, angiotensin II type 1 receptor blockers (ARB), and organic calcium channel blockers (CCBs). All these drugs are being currently used in the treatment of Hypertension & various disease conditions of the heart either alone or in combination. Cilnidipine is a new antihypertensive drug distinguished from other L-type Ca(2+) channel blockers or even other antihypertensives, which will be useful for selection of antihypertensive drugs according to the pathophysiological condition of a patient.
Collapse
Affiliation(s)
- K Sarat Chandra
- Hony. Editor - IHJ, Senior Consultant Cardiologist, Indo US Superspeciality Hospital, Hyderabad 500016, India.
| | - G Ramesh
- Assistant Professor, Department of Cardiology, Nizam's Institute of Medical Sciences, Hyderabad 500082, India
| |
Collapse
|
30
|
Evans-Illidge EA, Logan M, Doyle J, Fromont J, Battershill CN, Ericson G, Wolff CW, Muirhead A, Kearns P, Abdo D, Kininmonth S, Llewellyn L. Phylogeny drives large scale patterns in Australian marine bioactivity and provides a new chemical ecology rationale for future biodiscovery. PLoS One 2013; 8:e73800. [PMID: 24040076 PMCID: PMC3763996 DOI: 10.1371/journal.pone.0073800] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2012] [Accepted: 07/23/2013] [Indexed: 12/27/2022] Open
Abstract
Twenty-five years of Australian marine bioresources collecting and research by the Australian Institute of Marine Science (AIMS) has explored the breadth of latitudinally and longitudinally diverse marine habitats that comprise Australia's ocean territory. The resulting AIMS Bioresources Library and associated relational database integrate biodiversity with bioactivity data, and these resources were mined to retrospectively assess biogeographic, taxonomic and phylogenetic patterns in cytotoxic, antimicrobial, and central nervous system (CNS)-protective bioactivity. While the bioassays used were originally chosen to be indicative of pharmaceutically relevant bioactivity, the results have qualified ecological relevance regarding secondary metabolism. In general, metazoan phyla along the deuterostome phylogenetic pathway (eg to Chordata) and their ancestors (eg Porifera and Cnidaria) had higher percentages of bioactive samples in the assays examined. While taxonomy at the phylum level and higher-order phylogeny groupings helped account for observed trends, taxonomy to genus did not resolve the trends any further. In addition, the results did not identify any biogeographic bioactivity hotspots that correlated with biodiversity hotspots. We conclude with a hypothesis that high-level phylogeny, and therefore the metabolic machinery available to an organism, is a major determinant of bioactivity, while habitat diversity and ecological circumstance are possible drivers in the activation of this machinery and bioactive secondary metabolism. This study supports the strategy of targeting phyla from the deuterostome lineage (including ancestral phyla) from biodiverse marine habitats and ecological niches, in future biodiscovery, at least that which is focused on vertebrate (including human) health.
Collapse
Affiliation(s)
| | - Murray Logan
- Australian Institute of Marine Science, Townsville, Queensland, Australia
| | - Jason Doyle
- Australian Institute of Marine Science, Townsville, Queensland, Australia
| | - Jane Fromont
- Western Australian Museum, Welshpool, Western Australia, Australia
| | | | - Gavin Ericson
- Australian Institute of Marine Science, Townsville, Queensland, Australia
| | - Carsten W. Wolff
- Australian Institute of Marine Science, Townsville, Queensland, Australia
| | - Andrew Muirhead
- Australian Institute of Marine Science, Townsville, Queensland, Australia
| | - Phillip Kearns
- Australian Institute of Marine Science, Townsville, Queensland, Australia
| | - David Abdo
- Australian Institute of Marine Science, Townsville, Queensland, Australia
| | - Stuart Kininmonth
- Australian Institute of Marine Science, Townsville, Queensland, Australia
| | - Lyndon Llewellyn
- Australian Institute of Marine Science, Townsville, Queensland, Australia
| |
Collapse
|
31
|
Gurkoff G, Shahlaie K, Lyeth B, Berman R. Voltage-gated calcium channel antagonists and traumatic brain injury. Pharmaceuticals (Basel) 2013; 6:788-812. [PMID: 24276315 PMCID: PMC3816709 DOI: 10.3390/ph6070788] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2013] [Revised: 06/06/2013] [Accepted: 06/06/2013] [Indexed: 01/17/2023] Open
Abstract
Traumatic brain injury (TBI) is a leading cause of death and disability in the United States. Despite more than 30 years of research, no pharmacological agents have been identified that improve neurological function following TBI. However, several lines of research described in this review provide support for further development of voltage gated calcium channel (VGCC) antagonists as potential therapeutic agents. Following TBI, neurons and astrocytes experience a rapid and sometimes enduring increase in intracellular calcium ([Ca2+]i). These fluxes in [Ca2+]i drive not only apoptotic and necrotic cell death, but also can lead to long-term cell dysfunction in surviving cells. In a limited number of in vitro experiments, both L-type and N-type VGCC antagonists successfully reduced calcium loads as well as neuronal and astrocytic cell death following mechanical injury. In rodent models of TBI, administration of VGCC antagonists reduced cell death and improved cognitive function. It is clear that there is a critical need to find effective therapeutics and rational drug delivery strategies for the management and treatment of TBI, and we believe that further investigation of VGCC antagonists should be pursued before ruling out the possibility of successful translation to the clinic.
Collapse
Affiliation(s)
- Gene Gurkoff
- Department of Neurological Surgery, One Shields Avenue, University of California, Davis, CA 95616, USA; E-Mails: (K.S.); (B.L.); (R.B.)
- NSF Center for Biophotonics Science and Technology, Suite 2700 Stockton Blvd, Suite 1400, Sacramento, CA, 95817, USA
- Author to whom correspondence should be addressed; E-Mail: ; Tel.: +1-530-754-7501; Fax: +1-530-754-5125
| | - Kiarash Shahlaie
- Department of Neurological Surgery, One Shields Avenue, University of California, Davis, CA 95616, USA; E-Mails: (K.S.); (B.L.); (R.B.)
| | - Bruce Lyeth
- Department of Neurological Surgery, One Shields Avenue, University of California, Davis, CA 95616, USA; E-Mails: (K.S.); (B.L.); (R.B.)
| | - Robert Berman
- Department of Neurological Surgery, One Shields Avenue, University of California, Davis, CA 95616, USA; E-Mails: (K.S.); (B.L.); (R.B.)
| |
Collapse
|
32
|
Solution NMR studies on the orientation of membrane-bound peptides and proteins by paramagnetic probes. Molecules 2013; 18:7407-35. [PMID: 23799448 PMCID: PMC6269851 DOI: 10.3390/molecules18077407] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2013] [Revised: 06/13/2013] [Accepted: 06/20/2013] [Indexed: 12/24/2022] Open
Abstract
Many peptides and proteins are attached to or immersed in a biological membrane. In order to understand their function not only the structure but also their topology in the membrane is important. Solution NMR spectroscopy is one of the most often used approaches to determine the orientation and localization of membrane-bound peptides and proteins. Here we give an application-oriented overview on the use of paramagnetic probes for the investigation of membrane-bound peptides and proteins. The examples discussed range from the large pool of antimicrobial peptides, bacterial toxins, cell penetrating peptides to domains of larger proteins or the calcium regulating protein phospholamban. Topological information is obtained in all these examples by the use of either attached or freely mobile paramagnetic tags. For some examples information obtained from the paramagnetic probes was included in the structure determination.
Collapse
|
33
|
Rigo FK, Trevisan G, Rosa F, Dalmolin GD, Otuki MF, Cueto AP, de Castro Junior CJ, Romano-Silva MA, Cordeiro MDN, Richardson M, Ferreira J, Gomez MV. Spider peptide Phα1β induces analgesic effect in a model of cancer pain. Cancer Sci 2013; 104:1226-30. [PMID: 23718272 DOI: 10.1111/cas.12209] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2013] [Revised: 05/13/2013] [Accepted: 05/21/2013] [Indexed: 11/28/2022] Open
Abstract
The marine snail peptide ziconotide (ω-conotoxin MVIIA) is used as an analgesic in cancer patients refractory to opioids, but may induce severe adverse effects. Animal venoms represent a rich source of novel drugs, so we investigated the analgesic effects and the side-effects of spider peptide Phα1β in a model of cancer pain in mice with or without tolerance to morphine analgesia. Cancer pain was induced by the inoculation of melanoma B16-F10 cells into the hind paw of C57BL/6 mice. After 14 days, painful hypersensitivity was detected and Phα1β or ω-conotoxin MVIIA (10-100 pmol/site) was intrathecally injected to evaluate the development of antinociception and side-effects in control and morphine-tolerant mice. The treatment with Phα1β or ω-conotoxin MVIIA fully reversed cancer-related painful hypersensitivity, with long-lasting results, at effective doses 50% of 48 (32-72) or 33 (21-53) pmol/site, respectively. Phα1β produced only mild adverse effects, whereas ω-conotoxin MVIIA induced dose-related side-effects in mice at analgesic doses (estimated toxic dose 50% of 30 pmol/site). In addition, we observed that Phα1β was capable of controlling cancer-related pain even in mice tolerant to morphine antinociception (100% of inhibition) and was able to partially restore morphine analgesia in such animals (56 ± 5% of inhibition). In this study, Phα1β was as efficacious as ω-conotoxin MVIIA in inducing analgesia in a model of cancer pain without producing severe adverse effects or losing efficacy in opioid-tolerant mice, indicating that Phα1β has a good profile for the treatment of cancer pain in patients.
Collapse
Affiliation(s)
- Flavia Karine Rigo
- Graduate Program in Biochemistry and Molecular Pharmacology, Faculty of Medicine, Federal University of Minas Gerais, Belo Horizonte, Brazil
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
34
|
Abstract
Migraine headaches are among the most common headache disorders seen in various practices. The prevalence of migraine headaches is 18% in women and 6% in men. While millions of Americans suffer from migraine headaches, roughly 3%-13% of identified migraine patients are on preventive therapy, while an estimated 38% actually need a preventive agent. The challenge among physicians is not only when to start a daily preventive agent but which preventive agent to choose. Circumstances warranting prevention have been described in the past, and in 2012, a new set of guidelines with an evidence review on preventive medications was published. A second set of guidelines provided evidence on nonsteroidal anti-inflammatory drugs, herbs, minerals, and vitamins for prevention of episodic migraine. This article describes the updated US guidelines for the prevention of migraines and also outlines the major studies from which these guidelines were derived.
Collapse
Affiliation(s)
- E Estemalik
- Cleveland Clinic, Neurological Center for Pain, Cleveland, Ohio, USA
| | - S Tepper
- Cleveland Clinic, Neurological Center for Pain, Cleveland, Ohio, USA
| |
Collapse
|
35
|
Martín V, Vale C, Bondu S, Thomas OP, Vieytes MR, Botana LM. Differential effects of crambescins and crambescidin 816 in voltage-gated sodium, potassium and calcium channels in neurons. Chem Res Toxicol 2013; 26:169-78. [PMID: 23270282 DOI: 10.1021/tx3004483] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
Crambescins and crambescidins are two families of guanidine alkaloids from the marine sponge Crambe crambe. Although very little information about their biological effect has been reported, it is known that crambescidin 816 (Cramb816) blocks calcium channels in a neuroblastoma X glioma cell line. Taking this into account, and the fact that ion channels are frequent targets for natural toxins, we examined the effect of Cramb816 and three compounds from the crambescin family, norcrambescin A2 (NcrambA2), crambescin A2 (CrambA2), and crambescin C1 (CrambC1), in the main voltage-dependent ion channels in neurons: sodium, potassium, and calcium channels. Electrophysiological recordings of voltage gated sodium, potassium, and calcium currents, in the presence of these guanidine alkaloids, were performed in cortical neurons from embryonic mice. Different effects were discovered: crambescins inhibited K(+) currents with the following potency: NcrambA2 > CrambC1 > CrambA2, while Cramb816 lacked an effect. Only CrambC1 and Cramb816 partially blocked Na(+) total current. However, Cramb816 partially blocked Ca(2+) , while NcrambA2 did not. Since the blocking effect of Cramb816 on calcium currents has not been previously reported in detail, we further pharmacologically isolated the two main fractions of HVA Ca(2+) channels in neurons and investigated the Cramb816 effect on them. Here, we revealed that Cav1 or L-type calcium channels are the main target for Cramb816. These two families of guanidine alkaloids clearly showed a structure-activity relationship with the crambescins acting on voltage-gated potassium channels, while Cramb816 blocks the voltage-gated calcium channel Cav1 with higher potency than nifedipine. The novel evidence that Cramb816 partially blocked CaV and NaV channels in neurons suggests that this compound might be involved in decreasing the neurotransmitter release and synaptic transmission in the central nervous system. The findings presented here provide the first detailed approach on the different effects of crambescin and crambescidin compounds in voltage-gated sodium, potassium, and calcium channels in neurons and thus provide a basis for future studies.
Collapse
Affiliation(s)
- Víctor Martín
- Departamento de Farmacología, Facultad de Veterinaria, Universidad de Santiago de Compostela , Lugo, Spain
| | | | | | | | | | | |
Collapse
|
36
|
Abstract
Molecular pain research is a relatively new and rapidly expanding field that represents advancement in conventional pain research. One of the fundamentals of molecular pain involves the cloning of genes and especially the ion channels specifically involved in nociceptive processing at the periphery and centrally. A variety of approaches were used to isolate these critically important genes. Cloning of these genes involved innovative strategies based on existing molecular approaches. This review will discuss well-utilized cloning approaches and their exploitation in molecular pain research.
Collapse
Affiliation(s)
- Armen N Akopian
- Department of Endodontics, Dental School, University of Texas Health Science Center at San Antonio, San Antonio, TX, USA
| |
Collapse
|
37
|
de Souza AH, Castro CJ, Rigo FK, de Oliveira SM, Gomez RS, Diniz DM, Borges MH, Cordeiro MN, Silva MAR, Ferreira J, Gomez MV. An evaluation of the antinociceptive effects of Phα1β, a neurotoxin from the spider Phoneutria nigriventer, and ω-conotoxin MVIIA, a cone snail Conus magus toxin, in rat model of inflammatory and neuropathic pain. Cell Mol Neurobiol 2013; 33:59-67. [PMID: 22869352 PMCID: PMC11498001 DOI: 10.1007/s10571-012-9871-x] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2012] [Accepted: 07/25/2012] [Indexed: 11/26/2022]
Abstract
Voltage-sensitive calcium channels (VSCCs) underlie cell excitability and are involved in the mechanisms that generate and maintain neuropathic and inflammatory pain. We evaluated in rats the effects of two VSCC blockers, ω-conotoxin MVIIA and Phα1β, in models of inflammatory and neuropathic pain induced with complete Freund's adjuvant (CFA) and chronic constrictive injury (CCI), respectively. We also evaluated the effects of the toxins on capsaicin-induced Ca(2+) influx in dorsal root ganglion (DRG) neurons obtained from rats exposed to both models of pain. A single intrathecal injection of Phα1β reversibly inhibits CFA and CCI-induced mechanical hyperalgesia longer than a single injection of ω-conotoxin MVIIA. Phα1β and MVIIA also inhibited capsaicin-induced Ca(2+) influx in DRG neurons. The inhibitory effect of Phα1β on capsaicin-induced calcium transients in DRG neurons was greater in the CFA model of pain, while the inhibitory effect of ω-conotoxin MVIIA was greater in the CCI model. The management of chronic inflammatory and neuropathic pain is still a major challenge for clinicians. Phα1β, a reversible inhibitor of VSCCs with a preference for N-type Ca(2+) channels, has potential as a novel therapeutic agent for inflammatory and neuropathic pain. Clinical studies are necessary to establish the role of Phα1β in the treatment of chronic pain.
Collapse
Affiliation(s)
- Alessandra Hubner de Souza
- Programa de Pós-Graduação em Medicina Molecular, Universidade Federal de Minas Gerais, Belo Horizonte, MG Brazil
| | - Célio J. Castro
- Programa de Pós-Graduação em Medicina Molecular, Universidade Federal de Minas Gerais, Belo Horizonte, MG Brazil
- Programa de Pós-Graduação em Biomedicina, Santa Casa de Belo Horizonte, Belo Horizonte, Brazil
| | - Flavia Karine Rigo
- Programa de Pós-Graduação em Medicina Molecular, Universidade Federal de Minas Gerais, Belo Horizonte, MG Brazil
| | - Sara Marchesan de Oliveira
- Programa de Pós-Graduação em Ciências Biológicas: Bioquímica Toxicológica, Universidade Federal de Santa Maria, Santa Maria, RS Brazil
| | - Renato Santiago Gomez
- Programa de Pós-Graduação em Medicina Molecular, Universidade Federal de Minas Gerais, Belo Horizonte, MG Brazil
| | - Danuza Montijo Diniz
- Programa de Pós-Graduação em Biomedicina, Santa Casa de Belo Horizonte, Belo Horizonte, Brazil
| | | | | | - Marco Aurélio Romano Silva
- Programa de Pós-Graduação em Medicina Molecular, Universidade Federal de Minas Gerais, Belo Horizonte, MG Brazil
- Laboratório de Neurociência, Faculdade de Medicina, Universidade Federal de Minas Gerais, Av. Alfredo Balena, 190, Sala 114, Belo Horizonte, MG 31340-300 Brazil
| | - Juliano Ferreira
- Programa de Pós-Graduação em Ciências Biológicas: Bioquímica Toxicológica, Universidade Federal de Santa Maria, Santa Maria, RS Brazil
| | - Marcus Vinicius Gomez
- Programa de Pós-Graduação em Biomedicina, Santa Casa de Belo Horizonte, Belo Horizonte, Brazil
- Laboratório de Neurociência, Faculdade de Medicina, Universidade Federal de Minas Gerais, Av. Alfredo Balena, 190, Sala 114, Belo Horizonte, MG 31340-300 Brazil
| |
Collapse
|
38
|
Nikoletopoulou V, Tavernarakis N. Calcium homeostasis in aging neurons. Front Genet 2012; 3:200. [PMID: 23060904 PMCID: PMC3462315 DOI: 10.3389/fgene.2012.00200] [Citation(s) in RCA: 80] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2012] [Accepted: 09/19/2012] [Indexed: 11/13/2022] Open
Abstract
The nervous system becomes increasingly vulnerable to insults and prone to dysfunction during aging. Age-related decline of neuronal function is manifested by the late onset of many neurodegenerative disorders, as well as by reduced signaling and processing capacity of individual neuron populations. Recent findings indicate that impairment of Ca(2+) homeostasis underlies the increased susceptibility of neurons to damage, associated with the aging process. However, the impact of aging on Ca(2+) homeostasis in neurons remains largely unknown. Here, we survey the molecular mechanisms that mediate neuronal Ca(2+) homeostasis and discuss the impact of aging on their efficacy. To address the question of how aging impinges on Ca(2+) homeostasis, we consider potential nodes through which mechanisms regulating Ca(2+) levels interface with molecular pathways known to influence the process of aging and senescent decline. Delineation of this crosstalk would facilitate the development of interventions aiming to fortify neurons against age-associated functional deterioration and death by augmenting Ca(2+) homeostasis.
Collapse
Affiliation(s)
- Vassiliki Nikoletopoulou
- Institute of Molecular Biology and Biotechnology, Foundation for Research and Technology - Hellas Heraklion, Crete, Greece
| | | |
Collapse
|
39
|
Adams DJ, Callaghan B, Berecki G. Analgesic conotoxins: block and G protein-coupled receptor modulation of N-type (Ca(V) 2.2) calcium channels. Br J Pharmacol 2012; 166:486-500. [PMID: 22091786 DOI: 10.1111/j.1476-5381.2011.01781.x] [Citation(s) in RCA: 63] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Conotoxins (conopeptides) are small disulfide bonded peptides from the venom of marine cone snails. These peptides target a wide variety of membrane receptors, ion channels and transporters, and have enormous potential for a range of pharmaceutical applications. Structurally related ω-conotoxins bind directly to and selectively inhibit neuronal (N)-type voltage-gated calcium channels (VGCCs) of nociceptive primary afferent neurones. Among these, ω-conotoxin MVIIA (Prialt) is approved by the Food and Drug Administration (FDA) as an alternative intrathecal analgesic for the management of chronic intractable pain, particularly in patients refractory to opioids. A series of newly discovered ω-conotoxins from Conus catus, including CVID-F, are potent and selective antagonists of N-type VGCCs. In spinal cord slices, these peptides reversibly inhibit excitatory synaptic transmission between primary afferents and dorsal horn superficial lamina neurones, and in the rat partial sciatic nerve ligation model of neuropathic pain, significantly reduce allodynic behaviour. Another family of conotoxins, the α-conotoxins, are competitive antagonists of mammalian nicotinic acetylcholine receptors (nAChRs). α-Conotoxins Vc1.1 and RgIA possess two disulfide bonds and are currently in development as a treatment for neuropathic pain. It was initially proposed that the primary target of these peptides is the α9α10 neuronal nAChR. Surprisingly, however, α-conotoxins Vc1.1, RgIA and PeIA more potently inhibit N-type VGCC currents via a GABA(B) GPCR mechanism in rat sensory neurones. This inhibition is largely voltage-independent and involves complex intracellular signalling. Understanding the molecular mechanisms of conotoxin action will lead to new ways to regulate VGCC block and modulation in normal and diseased states of the nervous system.
Collapse
Affiliation(s)
- David J Adams
- Health Innovations Research Institute, RMIT University, Melbourne, Victoria, Australia.
| | | | | |
Collapse
|
40
|
|
41
|
Schroeder CI, Nielsen KJ, Adams DA, Loughnan M, Thomas L, Alewood PF, Lewis RJ, Craik DJ. Effects of Lys2 to Ala2 substitutions on the structure and potency of ω-conotoxins MVIIA and CVID. Biopolymers 2012. [DOI: 10.1002/bip.22031] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
|
42
|
de Souza A, Lima M, Drewes C, da Silva J, Torres K, Pereira E, de Castro C, Vieira L, Cordeiro M, Richardson M, Gomez R, Romano-Silva M, Ferreira J, Gomez M. Antiallodynic effect and side effects of Phα1β, a neurotoxin from the spider Phoneutria nigriventer: Comparison with ω-conotoxin MVIIA and morphine. Toxicon 2011; 58:626-33. [DOI: 10.1016/j.toxicon.2011.09.008] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2011] [Revised: 09/13/2011] [Accepted: 09/20/2011] [Indexed: 10/17/2022]
|
43
|
Choi SK, Lee GJ, Choi S, Kim YJ, Park HK, Park BJ. Neuroprotective effects by nimodipine treatment in the experimental global ischemic rat model : real time estimation of glutamate. J Korean Neurosurg Soc 2011; 49:1-7. [PMID: 21494355 DOI: 10.3340/jkns.2011.49.1.1] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2010] [Revised: 11/05/2010] [Accepted: 12/31/2010] [Indexed: 11/27/2022] Open
Abstract
OBJECTIVE Glutamate is a key excitatory neurotransmitter in the brain, and its excessive release plays a key role in the development of neuronal injury. In order to define the effect of nimodipine on glutamate release, we monitored extracellular glutamate release in real-time in a global ischemia rat model with eleven vessel occlusion. METHODS TWELVE RATS WERE RANDOMLY DIVIDED INTO TWO GROUPS: the ischemia group and the nimodipine treatment group. The changes of extracellular glutamate level were measured using microdialysis amperometric biosensor, in coincident with cerebral blood flow (CBF) and electroencephalogram. Nimodipine (0.025 µg/100 gm/min) was infused into lateral to the CBF probe, during the ischemic period. Also, we performed Nissl staining method to assess the neuroprotective effect of nimodipine. RESULTS During the ischemic period, the mean maximum change in glutamate concentration was 133.22±2.57 µM in the ischemia group and 75.42±4.22 µM (p<0.001) in the group treated with nimodipine. The total amount of glutamate released was significantly different (p<0.001) between groups during the ischemic period. The %cell viability in hippocampus was 47.50±5.64 (p<0.005) in ischemia group, compared with sham group. But, the %cell viability in nimodipine treatment group was 95.46±6.60 in hippocampus (p<0.005). CONCLUSION From the real-time monitoring and Nissl staining results, we suggest that the nimodipine treatment is responsible for the protection of the neuronal cell death through the suppression of extracellular glutamate release in the 11-VO global ischemia model of rat.
Collapse
Affiliation(s)
- Seok Keun Choi
- Department of Neurosurgery, School of Medicine, Kyung Hee University, Seoul, Korea
| | | | | | | | | | | |
Collapse
|
44
|
|
45
|
|
46
|
Jiang N, Ma J. Influence of Disulfide Connectivity, Electrostatics, and Hydrophobicity on the Conformational Variations of α-Conotoxin GI Single-Disulfide Analogues: Simulations with Polarizable Force Field. J Phys Chem B 2010; 114:11241-50. [DOI: 10.1021/jp102844h] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Nan Jiang
- School of Chemistry and Chemical Engineering, Institute of Theoretical and Computational Chemistry, Key Laboratory of Mesoscopic Chemistry of MOE, Nanjing University, Nanjing, 210093, People’s Republic of China
| | - Jing Ma
- School of Chemistry and Chemical Engineering, Institute of Theoretical and Computational Chemistry, Key Laboratory of Mesoscopic Chemistry of MOE, Nanjing University, Nanjing, 210093, People’s Republic of China
| |
Collapse
|
47
|
Kania BF, Sutiak V. Influence of centrally administered diltiazem on behavioural responses, clinical symptoms, reticulo-ruminal contractions and plasma catecholamine level after experimentally induced duodenal distension in sheep. Res Vet Sci 2010; 90:291-7. [PMID: 20630549 DOI: 10.1016/j.rvsc.2010.06.012] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2008] [Revised: 05/28/2010] [Accepted: 06/09/2010] [Indexed: 11/27/2022]
Abstract
A different role of L-type antagonists for voltage-gated calcium channels (VGCC) has been previously identified in different types of experimental and clinical pain in man and animals. Present study examined the role of VGCC blocker - diltiazem administered icv (0.25, 0.5, 1.0 and/or 2.0mg in toto) on the development of pain related symptoms, clinical signs, plasma catecholamine level and the inhibition of reticulo-rumen motility caused by 5min lasting mechanical duodenum distension (DD) in the sheep. Experimental DD was conducted by insertion (during surgery) of rubber balloon into the duodenum and the distension by 40ml of warm water. Duodenal distension resulted in a significant increase of behavioural pain responses, tachycardia, hyperventilation, inhibition of reticulo-rumen contractions rate (from 85% to 45% during 15-20min), an increase of plasma catecholamine concentration (over sevenfold increase of epinephrine during 2h following DD, two-times norepinephrine and 84% increase of dopamine). Diltiazem infusion given 10min before DD decreased intensity of visceral nocifensive responses such as: behavioural changes, tachycardia, hyperventilation, reticulo-rumen motility and efficiently prevented appearance of catecholamine release. These data demonstrated that the development and persistence of acute duodenal pain depends on the activation of Ca(2+) ion flux leading to neurotransmitters release and modulation of membrane excitability. It seems that diltiazem given icv 10min prior to DD (as a source of acute visceral pain), inhibited specific receptors α(1) subunits of VGCCs in target tissues, prevent depolarization of cell membranes and release of neurotransmitters responsible for pain sensitivity in sheep. The observed antinociceptive action of VGCCs type-L blockers suggests that these channels play a crucial role in the modulation of acute visceral pain in sheep.
Collapse
Affiliation(s)
- B F Kania
- Experimental and Clinical Physio-Pharmacological Laboratory, Department of Physiological Sciences, Faculty of Veterinary Medicine, Warsaw University of Life Sciences, Nowoursynowska 159, 02-776 Warsaw, Poland.
| | | |
Collapse
|
48
|
Yan LD, Liu YL, Zhang L, Dong HJ, Zhou PL, Su RB, Gong ZH, Huang PT. Spinal antinociception of synthetic omega-conotoxin SO-3, a selective N-type neuronal voltage-sensitive calcium channel blocker, and its effects on morphine analgesia in chemical stimulus tests in rodent. Eur J Pharmacol 2010; 636:73-81. [DOI: 10.1016/j.ejphar.2010.03.036] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2009] [Revised: 02/25/2010] [Accepted: 03/12/2010] [Indexed: 11/17/2022]
|
49
|
Avemary J, Diener M. Bradykinin-induced depolarisation and Ca2+ influx through voltage-gated Ca2+ channels in rat submucosal neurons. Eur J Pharmacol 2010; 635:87-95. [DOI: 10.1016/j.ejphar.2010.03.009] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2009] [Revised: 02/12/2010] [Accepted: 03/03/2010] [Indexed: 11/25/2022]
|
50
|
Abstract
Pharmacological management of severe chronic pain is difficult to achieve with currently available analgesic drugs, and remains a large unmet therapeutic need. The synthetic peptide ziconotide has been approved by the US Food and Drug Administration and the European Medicines Agency for intrathecal treatment of patients with severe chronic pain that is refractory to other treatment modalities. Ziconotide is the first member in the new drug class of selective N-type voltage-sensitive calcium-channel blockers. The ziconotide-induced blockade of N-type calcium channels in the spinal cord inhibits release of pain-relevant neurotransmitters from central terminals of primary afferent neurons. By this mechanism, ziconotide can effectively reduce pain. However, ziconotide has a narrow therapeutic window because of substantial CNS side-effects, and thus treatment with ziconotide is appropriate for only a small subset of patients with severe chronic pain. We provide an overview of the benefits and limitations of intrathecal ziconotide treatment and review potential future developments in this new drug class.
Collapse
Affiliation(s)
- Achim Schmidtko
- Pharmazentrum Frankfurt/ZAFES, Institut für Klinische Pharmakologie, Goethe-Universität, Frankfurt am Main, Germany
| | | | | | | |
Collapse
|