1
|
Ren G, Zhong R, Zou G, Du H, Zhang Y. Presence and significance of telocytes in cholelithiasis and biliary dilatation in benign biliary disorders. Sci Rep 2024; 14:14904. [PMID: 38942924 PMCID: PMC11213881 DOI: 10.1038/s41598-024-65776-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2024] [Accepted: 06/24/2024] [Indexed: 06/30/2024] Open
Abstract
Telocytes are closely associated with the regulation of tissue smooth muscle dynamics in digestive system disorders. They are widely distributed in the biliary system and exert their influence on biliary motility through mechanisms such as the regulation of CCK and their electrophysiological effects on smooth muscle cells. To investigate the relationship between telocytes and benign biliary diseases,such as gallbladder stone disease and biliary dilation syndrome, we conducted histopathological analysis on tissues affected by these conditions. Additionally, we performed immunohistochemistry and immunofluorescence double staining experiments for telocytes. The results indicate that the quantity of telocytes in the gallbladder and bile duct is significantly lower in pathological conditions compared to the control group. This reveals a close association between the decrease in telocyte quantity and impaired gallbladder motility and biliary fibrosis. Furthermore, further investigations have shown a correlation between telocytes in cholesterol gallstones and cholecystokinin-A receptor (CCK-AR), suggesting that elevated cholesterol levels may impair telocytes, leading to a reduction in the quantity of CCK-AR and ultimately resulting in impaired gallbladder motility.Therefore, we hypothesize that telocytes may play a crucial role in maintaining biliary homeostasis, and their deficiency may be associated with the development of benign biliary diseases, including gallstone disease and biliary dilation.
Collapse
Affiliation(s)
- Gongqing Ren
- The Second Clinical Medical College, Jinan University, Shenzhen, China
| | - Ruizi Zhong
- The Second Clinical Medical College, Jinan University, Shenzhen, China
| | - Gang Zou
- Department of Burns and Plastic Surgery, Shenzhen People's Hospital, Shenzhen, China
| | - Hongling Du
- Department of Thyroid and Breast Surgery, The Second Affiliated Hospital of Guizhou Medical University, Kaili, China
| | - Yue Zhang
- Department of Hepatobiliary Pancreatic Surgery, Shenzhen People's Hospital, No.1017 Dongmen North Road, Shenzhen, 518020, Guangdong Province, China.
| |
Collapse
|
2
|
Kang H, Kim J, Park CH, Jeong B, So I. Direct modulation of TRPC ion channels by Gα proteins. Front Physiol 2024; 15:1362987. [PMID: 38384797 PMCID: PMC10880550 DOI: 10.3389/fphys.2024.1362987] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2023] [Accepted: 01/26/2024] [Indexed: 02/23/2024] Open
Abstract
GPCR-Gi protein pathways are involved in the regulation of vagus muscarinic pathway under physiological conditions and are closely associated with the regulation of internal visceral organs. The muscarinic receptor-operated cationic channel is important in GPCR-Gi protein signal transduction as it decreases heart rate and increases GI rhythm frequency. In the SA node of the heart, acetylcholine binds to the M2 receptor and the released Gβγ activates GIRK (I(K,ACh)) channel, inducing a negative chronotropic action. In gastric smooth muscle, there are two muscarinic acetylcholine receptor (mAChR) subtypes, M2 and M3. M2 receptor activates the muscarinic receptor-operated nonselective cationic current (mIcat, NSCC(ACh)) and induces positive chronotropic effect. Meanwhile, M3 receptor induces hydrolysis of PIP2 and releases DAG and IP3. This IP3 increases intracellular Ca2+ and then leads to contraction of GI smooth muscles. The activation of mIcat is inhibited by anti-Gi/o protein antibodies in GI smooth muscle, indicating the involvement of Gαi/o protein in the activation of mIcat. TRPC4 channel is a molecular candidate for mIcat and can be directly activated by constitutively active Gαi QL proteins. TRPC4 and TRPC5 belong to the same subfamily and both are activated by Gi/o proteins. Initial studies suggested that the binding sites for G protein exist at the rib helix or the CIRB domain of TRPC4/5 channels. However, recent cryo-EM structure showed that IYY58-60 amino acids at ARD of TRPC5 binds with Gi3 protein. Considering the expression of TRPC4/5 in the brain, the direct G protein activation on TRPC4/5 is important in terms of neurophysiology. TRPC4/5 channels are also suggested as a coincidence detector for Gi and Gq pathway as Gq pathway increases intracellular Ca2+ and the increased Ca2+ facilitates the activation of TRPC4/5 channels. More complicated situation would occur when GIRK, KCNQ2/3 (IM) and TRPC4/5 channels are co-activated by stimulation of muscarinic receptors at the acetylcholine-releasing nerve terminals. This review highlights the effects of GPCR-Gi protein pathway, including dopamine, μ-opioid, serotonin, glutamate, GABA, on various oragns, and it emphasizes the importance of considering TRPC4/5 channels as crucial players in the field of neuroscience.
Collapse
Affiliation(s)
- Hana Kang
- Department of Physiology, Seoul National University College of Medicine, Seoul, Republic of Korea
| | - Jinhyeong Kim
- Department of Physiology, Seoul National University College of Medicine, Seoul, Republic of Korea
| | - Christine Haewon Park
- Department of Physiology, University of California, San Francisco, San Francisco, CA, United States
| | - Byeongseok Jeong
- Department of Physiology, Seoul National University College of Medicine, Seoul, Republic of Korea
| | - Insuk So
- Department of Physiology, Seoul National University College of Medicine, Seoul, Republic of Korea
| |
Collapse
|
3
|
Xiao J, Meng X, Chen K, Wang J, Wu L, Chen Y, Yu X, Feng J, Li Z. Down-Regulation of Double C2 Domain Alpha Promotes the Formation of Hyperplastic Nerve Fibers in Aganglionic Segments of Hirschsprung’s Disease. Int J Mol Sci 2022; 23:ijms231810204. [PMID: 36142117 PMCID: PMC9499397 DOI: 10.3390/ijms231810204] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2022] [Revised: 08/30/2022] [Accepted: 09/01/2022] [Indexed: 11/22/2022] Open
Abstract
Hirschsprung’s disease (HSCR) is a common developmental anomaly of the gastrointestinal tract in children. The most significant characteristics of aganglionic segments in HSCR are hyperplastic extrinsic nerve fibers and the absence of endogenous ganglion plexus. Double C2 domain alpha (DOC2A) is mainly located in the nucleus and is involved in Ca2+-dependent neurotransmitter release. The loss function of DOC2A influences postsynaptic protein synthesis, dendrite morphology, postsynaptic receptor density and synaptic plasticity. It is still unknown why hyperplastic extrinsic nerve fibers grow into aganglionic segments in HSCR. We detected the expression of DOC2A in HSCR aganglionic segment colons and established three DOC2A-knockdown models in the Neuro-2a cell line, neural spheres and zebrafish separately. First, we detected the protein and mRNA expression of DOC2A and found that DOC2A was negatively correlated with AChE+ grades. Second, in the Neuro-2a cell lines, we found that the amount of neurite outgrowth and mean area per cell were significantly increased, which suggested that the inhibition of DOC2A promotes nerve fiber formation and the neuron’s polarity. In the neural spheres, we found that the DOC2A knockdown was manifested by a more obvious connection of nerve fibers in neural spheres. Then, we knocked down Doc2a in zebrafish and found that the down-regulation of Doc2a accelerates the formation of hyperplastic nerve fibers in aganglionic segments in zebrafish. Finally, we detected the expression of MUNC13-2 (UNC13B), which was obviously up-regulated in Grade3/4 (lower DOC2A expression) compared with Grade1/2 (higher DOC2A expression) in the circular muscle layer and longitudinal muscle layer. The expression of UNC13B was up-regulated with the knocking down of DOC2A, and there were protein interactions between DOC2A and UNC13B. The down-regulation of DOC2A may be an important factor leading to hyperplastic nerve fibers in aganglionic segments of HSCR. UNC13B seems to be a downstream molecule to DOC2A, which may participate in the spasm of aganglionic segments of HSCR patient colons.
Collapse
Affiliation(s)
- Jun Xiao
- Department of Pediatric Surgery, Tongji Hospital, Huazhong University of Science and Technology, Wuhan 430030, China
- Hubei Clinical Center of Hirschsprung’s Disease and Allied Disorders, Wuhan 430030, China
| | - Xinyao Meng
- Department of Pediatric Surgery, Tongji Hospital, Huazhong University of Science and Technology, Wuhan 430030, China
- Hubei Clinical Center of Hirschsprung’s Disease and Allied Disorders, Wuhan 430030, China
| | - Ke Chen
- Department of Pediatric Surgery, Tongji Hospital, Huazhong University of Science and Technology, Wuhan 430030, China
- Hubei Clinical Center of Hirschsprung’s Disease and Allied Disorders, Wuhan 430030, China
| | - Jing Wang
- Department of Pediatric Surgery, Tongji Hospital, Huazhong University of Science and Technology, Wuhan 430030, China
- Hubei Clinical Center of Hirschsprung’s Disease and Allied Disorders, Wuhan 430030, China
| | - Luyao Wu
- Department of Pediatric Surgery, Tongji Hospital, Huazhong University of Science and Technology, Wuhan 430030, China
- Hubei Clinical Center of Hirschsprung’s Disease and Allied Disorders, Wuhan 430030, China
| | - Yingjian Chen
- Department of Pediatric Surgery, Fujian Maternity and Child Health Hospital, Affiliated Hospital of Fujian Medical University, Fuzhou 350001, China
| | - Xiaosi Yu
- Department of Pediatric Surgery, Tongji Hospital, Huazhong University of Science and Technology, Wuhan 430030, China
- Hubei Clinical Center of Hirschsprung’s Disease and Allied Disorders, Wuhan 430030, China
| | - Jiexiong Feng
- Department of Pediatric Surgery, Tongji Hospital, Huazhong University of Science and Technology, Wuhan 430030, China
- Hubei Clinical Center of Hirschsprung’s Disease and Allied Disorders, Wuhan 430030, China
- Correspondence: (J.F.); (Z.L.)
| | - Zhi Li
- Department of Pediatric Surgery, Tongji Hospital, Huazhong University of Science and Technology, Wuhan 430030, China
- Hubei Clinical Center of Hirschsprung’s Disease and Allied Disorders, Wuhan 430030, China
- Correspondence: (J.F.); (Z.L.)
| |
Collapse
|
4
|
Foong D, Liyanage L, Zhou J, Zarrouk A, Ho V, O'Connor MD. Single-cell RNA sequencing predicts motility networks in purified human gastric interstitial cells of Cajal. Neurogastroenterol Motil 2022; 34:e14303. [PMID: 34913225 DOI: 10.1111/nmo.14303] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/15/2021] [Revised: 10/25/2021] [Accepted: 11/17/2021] [Indexed: 01/19/2023]
Abstract
BACKGROUND Gastrointestinal (GI) motility disorders affect millions of people worldwide, yet they remain poorly treated in part due to insufficient knowledge of the molecular networks controlling GI motility. Interstitial cells of Cajal (ICC) are critical GI pacemaker cells, and abnormalities in ICC are implicated in GI motility disorders. Two cell surface proteins, KIT and ANO1, are used for identifying ICC. However, difficulties accessing human tissue and the low frequency of ICC in GI tissues have meant human ICC are insufficiently characterized. Here, a range of characterization assays including single-cell RNA sequencing (scRNA-seq) was performed using KIT+ CD45- CD11B- primary human gastric ICC to better understand networks controlling human ICC biology. METHODS Excess sleeve gastrectomy tissues were dissected; ICC were analyzed by immunofluorescence, fluorescence-activated cell sorting (FACSorting), real-time PCR, mass spectrometry, and scRNA-seq. KEY RESULTS Immunofluorescence identified ANO1+ /KIT+ cells throughout the gastric muscle. Compared to the FACSorted negative cells, PCR showed the KIT+ CD45- CD11B- ICC were enriched 28-fold in ANO1 expression (p < 0.01). scRNA-seq analysis of the KIT- CD45+ CD11B+ and KIT+ CD45- CD11B- ICC revealed separate clusters of immune cells and ICC (respectively); cells in the ICC cluster expressed critical GI motility genes (eg, CAV1 and PRKG1). The scRNA-seq data for these two cell clusters predicted protein interaction networks consistent with immune cell and ICC biology, respectively. CONCLUSIONS & INFERENCES The single-cell transcriptome of purified KIT+ CD45- CD11B- human gastric ICC presented here provides new molecular insights and hypotheses into evolving models of GI motility. This knowledge will provide an improved framework to investigate targeted therapies for GI motility disorders.
Collapse
Affiliation(s)
- Daphne Foong
- School of Medicine, Western Sydney University, Campbelltown, New South Wales, Australia
| | - Liwan Liyanage
- School of Computing, Data and Mathematical Sciences, Western Sydney University, Campbelltown, New South Wales, Australia
| | - Jerry Zhou
- School of Medicine, Western Sydney University, Campbelltown, New South Wales, Australia
| | - Ali Zarrouk
- Campbelltown Private Hospital, Campbelltown, New South Wales, Australia
| | - Vincent Ho
- School of Medicine, Western Sydney University, Campbelltown, New South Wales, Australia.,Campbelltown Private Hospital, Campbelltown, New South Wales, Australia
| | - Michael D O'Connor
- School of Medicine, Western Sydney University, Campbelltown, New South Wales, Australia
| |
Collapse
|
5
|
Liu G, Wang Z, Li X, Liu R, Li B, Huang L, Chen Y, Zhang C, Zhang H, Li Y, Chen Y, Yin H, Fang W. Total glucosides of paeony (TGP) alleviates constipation and intestinal inflammation in mice induced by Sjögren's syndrome. JOURNAL OF ETHNOPHARMACOLOGY 2020; 260:113056. [PMID: 32525066 DOI: 10.1016/j.jep.2020.113056] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/27/2020] [Revised: 05/15/2020] [Accepted: 05/30/2020] [Indexed: 06/11/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Sjögren's syndrome (SS) is an autoimmune disease and can cause gastrointestinal disorders such as constipation and intestinal inflammation. As a kind of medicinal material, Paeonia lactiflora Pall has a variety of pharmacological effects, and it is also an indispensable component in many pharmaceutical preparations, which has been widely concerned by the medical and pharmaceutical circles. Total glucosides of paeony (TGP) is a mixture of biologically active compounds extracted from the root of Paeonia lactiflora Pall and has therapeutic effects on a variety of autoimmune diseases. AIM OF THE STUDY To investigate the therapeutic effect of TGP on constipation and intestinal inflammation in mice modeled by SS, and to provide a basis for clinical research. MATERIALS AND METHODS The SS model was set up by submandibular gland (SMG) immune induction method and then treated with TGP for 24 weeks. The fecal characteristics were observed and the fecal number and moisture content were measured. Colonic pathology was observed by H&E staining. The levels of serum P substance (SP), vasoactive intestinal peptide (VIP), interleukin (IL)-1β, tumor necrosis factor (TNF)-α, nuclear factor (NF)-κB, nitric oxide (NO), and nitric oxide synthase (NOS) were determined by enzyme linked immunosorbent assay (ELISA) and microplate method, respectively. Reverse transcription polymerase chain reaction (RT-PCR) was employed to analyze the mRNA expression of c-kit and stem cell factor (SCF) in colon. RESULTS Compared with the model group, the dry and rough condition of the feces was improved, and the fecal gloss, number and moisture content significantly increased after the administration of TGP capsules. Meanwhile, TGP treatment improved colonic pathological damage, inhibited the serum concentrations of NO, NOS, IL-1β, TNF-α, NF-κB and SP, increased serum VIP concentration, and up-regulated mRNA expression of SCF and c-kit in colon. CONCLUSIONS TGP could obviously attenuate SS-mediated constipation and intestinal inflammation in mice by acting on some intestinal motility related factors and inflammatory factors.
Collapse
Affiliation(s)
- Ge Liu
- State Key Laboratory of Natural Medicines, School of Basic Medical Sciences and Clinical Pharmacy, China Pharmaceutical University, Nanjing, 210009, PR China.
| | - Ziyu Wang
- State Key Laboratory of Natural Medicines, School of Basic Medical Sciences and Clinical Pharmacy, China Pharmaceutical University, Nanjing, 210009, PR China.
| | - Xiang Li
- State Key Laboratory of Natural Medicines, School of Basic Medical Sciences and Clinical Pharmacy, China Pharmaceutical University, Nanjing, 210009, PR China.
| | - Rui Liu
- State Key Laboratory of Natural Medicines, School of Basic Medical Sciences and Clinical Pharmacy, China Pharmaceutical University, Nanjing, 210009, PR China.
| | - Binbin Li
- State Key Laboratory of Natural Medicines, School of Basic Medical Sciences and Clinical Pharmacy, China Pharmaceutical University, Nanjing, 210009, PR China.
| | - Liangliang Huang
- State Key Laboratory of Natural Medicines, School of Basic Medical Sciences and Clinical Pharmacy, China Pharmaceutical University, Nanjing, 210009, PR China.
| | - Yan Chen
- State Key Laboratory of Natural Medicines, School of Basic Medical Sciences and Clinical Pharmacy, China Pharmaceutical University, Nanjing, 210009, PR China.
| | - Chongxi Zhang
- State Key Laboratory of Natural Medicines, School of Basic Medical Sciences and Clinical Pharmacy, China Pharmaceutical University, Nanjing, 210009, PR China.
| | - Honghao Zhang
- State Key Laboratory of Natural Medicines, School of Basic Medical Sciences and Clinical Pharmacy, China Pharmaceutical University, Nanjing, 210009, PR China.
| | - Yunman Li
- State Key Laboratory of Natural Medicines, School of Basic Medical Sciences and Clinical Pharmacy, China Pharmaceutical University, Nanjing, 210009, PR China.
| | - Yongjian Chen
- Ningbo Liwah Pharmaceutical Co, Ningbo, 315174, PR China.
| | - Hong Yin
- Ningbo Liwah Pharmaceutical Co, Ningbo, 315174, PR China.
| | - Weirong Fang
- State Key Laboratory of Natural Medicines, School of Basic Medical Sciences and Clinical Pharmacy, China Pharmaceutical University, Nanjing, 210009, PR China.
| |
Collapse
|
6
|
Liu JYH, Du P, Rudd JA. Acetylcholine exerts inhibitory and excitatory actions on mouse ileal pacemaker activity: role of muscarinic versus nicotinic receptors. Am J Physiol Gastrointest Liver Physiol 2020; 319:G97-G107. [PMID: 32475128 DOI: 10.1152/ajpgi.00003.2020] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
The effect of acetylcholine (ACh) on pacemaking and spontaneous contractions in the gastrointestinal tract is not well characterized. The current study aims to profile the effect of several muscarinic and nicotinic receptor agonists and antagonists on pacemaker potentials in the ICR mouse ileum. Pacemaker potentials of whole thickness mouse ileal segments were recorded extracellularly using a 60-channel microelectrode array (MEA) platform. A spatiotemporal analysis integrated the frequency, amplitude, and velocity measurements of pacemaker currents. Comparative data were obtained by recording spontaneous smooth muscle tone in a conventional organ bath. On the MEA, ACh (0.3-300 μM) and bethanechol (0.3-300 μM) significantly reduced ileal pacemaker potentials. The inhibitory effect of ACh was mimicked by donepezil (300 μM) but not nicotine (0.3-7 mM). Atropine (300 μM), but not hexamethonium (300 μM), reversed the inhibitory actions of ACh and bethanechol and revealed excitatory properties manifested as increases in pacemaker frequency. A spatial analysis also revealed that atropine, but not hexamethonium, reversed the ACh-induced distortion of pacemaker propagation activity. Atropine (0.001-3 mM) and hexamethonium (0.3-7 mM) alone were inactive. In the organ bath, ACh (300 nM) and bethanechol (30 μM) induced ileal tonic contractions, while inhibiting basal spontaneous contractions at 300 μM. Atropine (1 μM), but not hexamethonium (1-300 μM), reversed both the tonic contractions and the inhibition of the spontaneous contractions of ACh and bethanechol and revealed an excitatory effect manifested as an increasing in the frequency of contractions. Muscarinic, but not nicotinic, receptors appear to mediate the inhibitory actions of ACh on mouse ileal pacemaker potentials.NEW & NOTEWORTHY The study discovered an acute action of acetylcholine on pacemaker potentials that is mediated by muscarinic receptors on the mouse ileum. Bethanechol, but not nicotine, mimicked the inhibitory actions of acetylcholine on pacemaker potentials. Atropine, but not hexamethonium, reversed the inhibitory actions of acetylcholine. When introduced after acetylcholine, atropine exhibited excitatory actions that increased the pacemaker frequency. Acetylcholine and bethanechol distorted the propagation activity and pattern, and this was also reversed by atropine. These actions of acetylcholine on pacemaker potentials may contribute to pathophysiology in bowel diseases.
Collapse
Affiliation(s)
- Julia Yuen Hang Liu
- School of Biomedical Sciences, Faculty of Medicine, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong Special Administrative Region, People's Republic of China
| | - Peng Du
- Auckland Bioengineering Institute, University of Auckland, Auckland, New Zealand
| | - John Anthony Rudd
- School of Biomedical Sciences, Faculty of Medicine, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong Special Administrative Region, People's Republic of China
| |
Collapse
|
7
|
Foong D, Zhou J, Zarrouk A, Ho V, O’Connor MD. Understanding the Biology of Human Interstitial Cells of Cajal in Gastrointestinal Motility. Int J Mol Sci 2020; 21:ijms21124540. [PMID: 32630607 PMCID: PMC7352366 DOI: 10.3390/ijms21124540] [Citation(s) in RCA: 55] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2020] [Revised: 06/19/2020] [Accepted: 06/23/2020] [Indexed: 12/11/2022] Open
Abstract
Millions of patients worldwide suffer from gastrointestinal (GI) motility disorders such as gastroparesis. These disorders typically include debilitating symptoms, such as chronic nausea and vomiting. As no cures are currently available, clinical care is limited to symptom management, while the underlying causes of impaired GI motility remain unaddressed. The efficient movement of contents through the GI tract is facilitated by peristalsis. These rhythmic slow waves of GI muscle contraction are mediated by several cell types, including smooth muscle cells, enteric neurons, telocytes, and specialised gut pacemaker cells called interstitial cells of Cajal (ICC). As ICC dysfunction or loss has been implicated in several GI motility disorders, ICC represent a potentially valuable therapeutic target. Due to their availability, murine ICC have been extensively studied at the molecular level using both normal and diseased GI tissue. In contrast, relatively little is known about the biology of human ICC or their involvement in GI disease pathogenesis. Here, we demonstrate human gastric tissue as a source of primary human cells with ICC phenotype. Further characterisation of these cells will provide new insights into human GI biology, with the potential for developing novel therapies to address the fundamental causes of GI dysmotility.
Collapse
Affiliation(s)
- Daphne Foong
- School of Medicine, Western Sydney University, Campbelltown, NSW 2560, Australia; (D.F.); (J.Z.); (V.H.)
| | - Jerry Zhou
- School of Medicine, Western Sydney University, Campbelltown, NSW 2560, Australia; (D.F.); (J.Z.); (V.H.)
| | - Ali Zarrouk
- Campbelltown Private Hospital, Campbelltown, NSW 2560, Australia;
| | - Vincent Ho
- School of Medicine, Western Sydney University, Campbelltown, NSW 2560, Australia; (D.F.); (J.Z.); (V.H.)
- Campbelltown Private Hospital, Campbelltown, NSW 2560, Australia;
| | - Michael D. O’Connor
- School of Medicine, Western Sydney University, Campbelltown, NSW 2560, Australia; (D.F.); (J.Z.); (V.H.)
- Correspondence:
| |
Collapse
|
8
|
Hwang M, Kim JN, Kim BJ. Hesperidin depolarizes the pacemaker potentials through 5-HT 4 receptor in murine small intestinal interstitial cells of Cajal. Anim Cells Syst (Seoul) 2020; 24:84-90. [PMID: 32489687 PMCID: PMC7241530 DOI: 10.1080/19768354.2020.1746398] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2019] [Revised: 03/04/2020] [Accepted: 03/19/2020] [Indexed: 12/14/2022] Open
Abstract
Hesperidin, a citrus flavonoid, can exert numerous beneficial effects on human health. Interstitial cells of Cajal (ICC) are pacemaker cells in the gastrointestinal (GI) tract. In the present study, we investigated potential effects of hesperidin on pacemaker potential of ICC in murine small intestine and GI motility. A whole-cell patch-clamp configuration was used to record pacemaker potential in ICC, and GI motility was investigated in vivo by recording gastric emptying (GE) and intestinal transit rate (ITR). Hesperidin depolarized pacemaker potentials of ICC in a dose-dependent manner. Pre-treatment with methoctramine or 4-DAMP did not inhibit hesperidin-induced pacemaker potential depolarization. Neither a 5-HT3 receptor antagonist (Y25130) nor a 5-HT7 receptor antagonist (SB269970) reduced the effect of hesperidin on ICC pacemaker potential, whereas the 5-HT4 receptor antagonist RS39604 was found to inhibit this effect. In the presence of GDP–β–S, hesperidin-induced pacemaker potential depolarization was inhibited. Moreover, in the presence of U73122 and calphostin C, hesperidin did not depolarize pacemaker potentials. Furthermore, hesperidin accelerated GE and ITR in vivo. These results imply that hesperidin depolarized ICC pacemaker potential via 5-HT4 receptors, G protein, and PLC/PKC dependent pathways and that it increased GI motility. Therefore, hesperidin may be a promising novel drug to regulate GI motility.
Collapse
Affiliation(s)
- Minwoo Hwang
- Department of Sasang Constitutional Medicine, College of Korean Medicine, Kyung Hee University, Seoul, Republic of Korea
| | - Jeong Nam Kim
- Division of Longevity and Biofunctional Medicine, Pusan National University School of Korean Medicine, Yangsan, Republic of Korea
| | - Byung Joo Kim
- Division of Longevity and Biofunctional Medicine, Pusan National University School of Korean Medicine, Yangsan, Republic of Korea
| |
Collapse
|
9
|
Kim D, Kim JN, Nam JH, Lee JR, Kim SC, Kim BJ. Modulation of Pacemaker Potentials in Murine Small Intestinal Interstitial Cells of Cajal by Gamisoyo-San, a Traditional Chinese Herbal Medicine. Digestion 2018; 98:56-68. [PMID: 29672308 DOI: 10.1159/000487186] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/30/2017] [Accepted: 01/22/2018] [Indexed: 02/04/2023]
Abstract
BACKGROUND The Gamisoyo-san (GSS) has been used for -improving the gastrointestinal (GI) symptoms. The purpose of this study was to investigate the effects of GSS, a traditional Chinese herbal medicine, on the pacemaker potentials of mouse small intestinal interstitial cells of Cajal (ICCs). METHODS ICCs from the small intestines were dissociated and cultured. Whole-cell patch-clamp configuration was used to record pacemaker potentials and membrane currents. RESULTS GSS depolarized ICC pacemaker potentials in a dose-dependent manner. Pretreatment with 4-diphenylacetoxypiperidinium iodide completely inhibited GSS-induced pacemaker potential depolarizations. Intracellular GDP-β-S inhibited GSS-induced effects, and in the presence of U-73122, GSS-induced effects were inhibited. Also, GSS in the presence of a Ca2+-free solution or thapsigargin did not depolarize pacemaker potentials. However, in the presence of calphostin C, GSS slightly depolarized pacemaker potentials. Furthermore, GSS inhibited both transient receptor potential melastatin7 and Ca2+-activated Cl- channel (anoctamin1) currents. CONCLUSION GSS depolarized pacemaker potentials of ICCs via G protein and muscarinic M3 receptor signaling pathways and through internal or external Ca2+-, phospholipase C-, and protein kinase C-dependent and transient receptor potential melastatin 7-, and anoctamin 1-independent pathways. The study shows that GSS may regulate GI tract motility, suggesting that GSS could be a basis for developing novel prokinetic agents for treating GI motility dysfunctions.
Collapse
Affiliation(s)
- Doeun Kim
- Division of Longevity and Biofunctional Medicine, Yangsan, Republic of Korea
| | - Jung Nam Kim
- Division of Longevity and Biofunctional Medicine, Yangsan, Republic of Korea.,Healthy Aging Korean Medical Research Center (HAKMRC), Pusan National University School of Korean Medicine, Yangsan, Republic of Korea
| | - Joo Hyun Nam
- Department of Physiology, College of Medicine, Dongguk University, Kyungju, Republic of Korea
| | - Jong Rok Lee
- Department of Pharmaceutical Engineering, Daegu Haany University, Gyeongsan, Republic of Korea
| | - Sang Chan Kim
- College of Oriental Medicine, Daegu Haany University, Gyeongsan, Republic of Korea
| | - Byung Joo Kim
- Division of Longevity and Biofunctional Medicine, Yangsan, Republic of Korea.,Healthy Aging Korean Medical Research Center (HAKMRC), Pusan National University School of Korean Medicine, Yangsan, Republic of Korea
| |
Collapse
|
10
|
Wang B, Murakami Y, Ono M, Fujikawa S, Matsuyama H, Unno T, Naitou K, Tanahashi Y. Muscarinic suppression of ATP-sensitive K + channels mediated by the M 3/G q/11/phospholipase C pathway contributes to mouse ileal smooth muscle contractions. Am J Physiol Gastrointest Liver Physiol 2018; 315:G618-G630. [PMID: 30001145 DOI: 10.1152/ajpgi.00069.2018] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
ATP-sensitive K+ (KATP) channels are expressed in gastrointestinal smooth muscles, and their activity is regulated by muscarinic receptor stimulation. However, the physiological significance and mechanisms of muscarinic regulation of KATP channels are not fully understood. We examined the effects of the KATP channel opener cromakalim and the KATP channel blocker glibenclamide on electrical activity of single mouse ileal myocytes and on mechanical activity in ileal segment preparations. To explore muscarinic regulation of KATP channel activity and its underlying mechanisms, the effect of carbachol (CCh) on cromakalim-induced KATP channel currents ( IKATP) was studied in myocytes of M2 or M3 muscarinic receptor-knockout (KO) and wild-type (WT) mice. Cromakalim (10 µM) induced membrane hyperpolarization in single myocytes and relaxation in segment preparations from WT mice, whereas glibenclamide (10 µM) caused membrane depolarization and contraction. CCh (100 µM) induced sustained suppression of IKATP in cells from both WT and M2KO mice. However, CCh had a minimal effect on IKATP in M3KO and M2/M3 double-KO cells. The Gq/11 inhibitor YM-254890 (10 μM) and PLC inhibitor U73122 (1 μM), but not the PKC inhibitor calphostin C (1 μM), markedly decreased CCh-induced suppression of IKATP in WT cells. These results indicated that KATP channels are constitutively active and contribute to the setting of resting membrane potential in mouse ileal smooth muscles. M3 receptors inhibit the activity of these channels via a Gq/11/PLC-dependent but PKC-independent pathways, thereby contributing to membrane depolarization and contraction of smooth muscles. NEW & NOTEWORTHY We systematically investigated the regulation of ATP-sensitive K+ channels by muscarinic receptors expressed on mouse ileal smooth muscles. We found that M3 receptors inhibit the activity of ATP-sensitive K+ channels via a Gq/11/PLC-dependent, but PKC-independent, pathway. This muscarinic suppression of ATP-sensitive K+ channels contributes to membrane depolarization and contraction of smooth muscles.
Collapse
Affiliation(s)
- Ban Wang
- Department of Animal Medical Sciences, Faculty of Life Sciences, Kyoto Sangyo University , Kyoto , Japan
| | - Yuri Murakami
- Department of Animal Medical Sciences, Faculty of Life Sciences, Kyoto Sangyo University , Kyoto , Japan
| | - Maiki Ono
- Department of Animal Medical Sciences, Faculty of Life Sciences, Kyoto Sangyo University , Kyoto , Japan
| | - Saki Fujikawa
- Department of Animal Medical Sciences, Faculty of Life Sciences, Kyoto Sangyo University , Kyoto , Japan
| | - Hayato Matsuyama
- Laboratory of Pharmacology, Department of Veterinary Medicine, Gifu University , Gifu , Japan
| | - Toshihiro Unno
- Laboratory of Pharmacology, Department of Veterinary Medicine, Gifu University , Gifu , Japan
| | - Kiyotada Naitou
- Department of Basic Veterinary Science, Joint Faculty of Veterinary Medicine, Kagoshima University , Kagoshima , Japan
| | - Yasuyuki Tanahashi
- Department of Animal Medical Sciences, Faculty of Life Sciences, Kyoto Sangyo University , Kyoto , Japan
| |
Collapse
|
11
|
Genetic Polymorphisms Associated With Constipation and Anticholinergic Symptoms in Patients Receiving Clozapine. J Clin Psychopharmacol 2018; 38:193-199. [PMID: 29620694 DOI: 10.1097/jcp.0000000000000885] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
BACKGROUND Clozapine impairs gastrointestinal motility owing to its anticholinergic and antiserotonergic properties. This commonly leads to constipation and potentially to more severe complications such as bowel obstruction and ischemia. The aim of this study was to determine whether genetic variations in the genes encoding muscarinic and serotonergic receptors (CHRM2, CHRM3, HTR2, HTR3, HTR4, and HTR7) explain the variations in incidence of constipation and anticholinergic symptoms during clozapine treatment. Genes associated with opiate-induced constipation were also included in this analysis (TPH1, OPRM1, ABCB1, and COMT). PROCEDURES Blood samples from 176 clozapine-treated, Finnish, white patients with schizophrenia were genotyped. Constipation and anticholinergic symptoms were rated using the Liverpool University Neuroleptic Side Effect Rating Scale self-report questionnaire. In total, 192 single-nucleotide polymorphisms (SNPs) were detected and grouped to formulate a weighted genetic-risk score (GRS). RESULTS No significant associations between individual SNPs or GRSs and constipation or laxative use were observed. A GRS of 19 SNPs in CHRM2, CHRM3, HTR3C, HTR7, ABCB1, OPRM1, and TPH1 was associated with anticholinergic symptoms in a generalized linear univariate model, with body mass index, clozapine monotherapy, and GRS as explaining variables (permuted P = 0.014). Generalized linear univariate model analysis performed on the opiate-induced constipation-associated SNPs and a single CHRM3 SNP revealed an association between anticholinergic symptoms and a score of 8 SNPs (adjusted P = 0.038, permuted P = 0.002). CONCLUSIONS Two GRSs are able to predict the risk of anticholinergic symptoms in patients receiving clozapine and possibly an increased risk of gastrointestinal hypomotility.
Collapse
|
12
|
Sung TS, Hwang SJ, Koh SD, Bayguinov Y, Peri LE, Blair PJ, Webb TI, Pardo DM, Rock JR, Sanders KM, Ward SM. The cells and conductance mediating cholinergic neurotransmission in the murine proximal stomach. J Physiol 2018; 596:1549-1574. [PMID: 29430647 PMCID: PMC5924836 DOI: 10.1113/jp275478] [Citation(s) in RCA: 39] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2017] [Accepted: 01/26/2018] [Indexed: 12/23/2022] Open
Abstract
KEY POINTS Enteric neurotransmission is essential for gastrointestinal (GI) motility, although the cells and conductances responsible for post-junctional responses are controversial. The calcium-activated chloride conductance (CaCC), anoctamin-1 (Ano1), was expressed by intramuscular interstitial cells of Cajal (ICC-IM) in proximal stomach and not resolved in smooth muscle cells (SMCs). Cholinergic nerve fibres were closely apposed to ICC-IM. Conductances activated by cholinergic stimulation in isolated ICC-IM and SMCs were determined. A CaCC was activated by carbachol in ICC-IM and a non-selective cation conductance in SMCs. Responses to cholinergic nerve stimulation were studied. Excitatory junction potentials (EJPs) and mechanical responses were evoked in wild-type mice but absent or greatly reduced with knockout/down of Ano1. Drugs that block Ano1 inhibited the conductance activated by carbachol in ICC-IM and EJPs and mechanical responses in tissues. The data of the present study suggest that electrical and mechanical responses to cholinergic nerve stimulation are mediated by Ano1 expressed in ICC-IM and not SMCs. ABSTRACT Enteric motor neurotransmission is essential for normal gastrointestinal (GI) motility. Controversy exists regarding the cells and ionic conductance(s) that mediate post-junctional neuroeffector responses to motor neurotransmitters. Isolated intramuscular ICC (ICC-IM) and smooth muscle cells (SMCs) from murine fundus muscles were used to determine the conductances activated by carbachol (CCh) in each cell type. The calcium-activated chloride conductance (CaCC), anoctamin-1 (Ano1) is expressed by ICC-IM but not resolved in SMCs, and CCh activated a Cl- conductance in ICC-IM and a non-selective cation conductance in SMCs. We also studied responses to nerve stimulation using electrical-field stimulation (EFS) of intact fundus muscles from wild-type and Ano1 knockout mice. EFS activated excitatory junction potentials (EJPs) in wild-type mice, although EJPs were absent in mice with congenital deactivation of Ano1 and greatly reduced in animals in which the CaCC-Ano1 was knocked down using Cre/loxP technology. Contractions to cholinergic nerve stimulation were also greatly reduced in Ano1 knockouts. SMCs cells also have receptors and ion channels activated by muscarinic agonists. Blocking acetylcholine esterase with neostigmine revealed a slow depolarization that developed after EJPs in wild-type mice. This depolarization was still apparent in mice with genetic deactivation of Ano1. Pharmacological blockers of Ano1 also inhibited EJPs and contractile responses to muscarinic stimulation in fundus muscles. The data of the present study are consistent with the hypothesis that ACh released from motor nerves binds muscarinic receptors on ICC-IM with preference and activates Ano1. If metabolism of acetylcholine is inhibited, ACh overflows and binds to extrajunctional receptors on SMCs, eliciting a slower depolarization response.
Collapse
Affiliation(s)
- Tae Sik Sung
- Department of Physiology and Cell Biology, University of NevadaReno School of MedicineRenoNVUSA
| | - Sung Jin Hwang
- Department of Physiology and Cell Biology, University of NevadaReno School of MedicineRenoNVUSA
| | - Sang Don Koh
- Department of Physiology and Cell Biology, University of NevadaReno School of MedicineRenoNVUSA
| | - Yulia Bayguinov
- Department of Physiology and Cell Biology, University of NevadaReno School of MedicineRenoNVUSA
| | - Lauen E. Peri
- Department of Physiology and Cell Biology, University of NevadaReno School of MedicineRenoNVUSA
| | - Peter J. Blair
- Department of Physiology and Cell Biology, University of NevadaReno School of MedicineRenoNVUSA
| | - Timothy I. Webb
- Department of Physiology and Cell Biology, University of NevadaReno School of MedicineRenoNVUSA
| | - David M. Pardo
- Department of AnatomyUniversity of CaliforniaSan FranciscoCAUSA
| | - Jason R. Rock
- Center for Regenerative MedicineBoston University School of MedicineBostonMAUSA
| | - Kenton M. Sanders
- Department of Physiology and Cell Biology, University of NevadaReno School of MedicineRenoNVUSA
| | - Sean M. Ward
- Department of Physiology and Cell Biology, University of NevadaReno School of MedicineRenoNVUSA
| |
Collapse
|
13
|
Vieira C, Ferreirinha F, Magalhães-Cardoso MT, Silva I, Marques P, Correia-de-Sá P. Post-inflammatory Ileitis Induces Non-neuronal Purinergic Signaling Adjustments of Cholinergic Neurotransmission in the Myenteric Plexus. Front Pharmacol 2017; 8:811. [PMID: 29167643 PMCID: PMC5682326 DOI: 10.3389/fphar.2017.00811] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2017] [Accepted: 10/26/2017] [Indexed: 12/11/2022] Open
Abstract
Uncoupling between ATP overflow and extracellular adenosine formation changes purinergic signaling in post-inflammatory ileitis. Adenosine neuromodulation deficits were ascribed to feed-forward inhibition of ecto-5′-nucleotidase/CD73 by high extracellular adenine nucleotides in the inflamed ileum. Here, we hypothesized that inflammation-induced changes in cellular density may also account to unbalance the release of purines and their influence on [3H]acetylcholine release from longitudinal muscle-myenteric plexus preparations of the ileum of 2,4,6-trinitrobenzenesulfonic acid (TNBS)-treated rats. The population of S100β-positive glial cells increase, whereas Ano-1-positive interstitial cells of Cajal (ICCs) diminished, in the ileum 7-days after the inflammatory insult. In the absence of changes in the density of VAChT-positive cholinergic nerves detected by immunofluorescence confocal microscopy, the inflamed myenteric plexus released smaller amounts of [3H]acetylcholine which also became less sensitive to neuronal blockade by tetrodotoxin (1 μM). Instead, [3H]acetylcholine release was attenuated by sodium fluoroacetate (5 mM), carbenoxolone (10 μM) and A438079 (3 μM), which prevent activation of glial cells, pannexin-1 hemichannels and P2X7 receptors, respectively. Sodium fluoroacetate also decreased ATP overflow without significantly affecting the extracellular adenosine levels, thus indicating that surplus ATP release parallels reactive gliosis in post-inflammatory ileitis. Conversely, loss of ICCs may explain the lower amounts of adenosine detected in TNBS-treated preparations, since blockade of Cav3 (T-type) channels existing in ICCs with mibefradil (3 μM) or inhibition of the equilibrative nucleoside transporter 1 with dipyridamole (0.5 μM), both decreased extracellular adenosine. Data indicate that post-inflammatory ileitis operates a shift on purinergic neuromodulation reflecting the upregulation of ATP-releasing enteric glial cells and the depletion of ICCs accounting for decreased adenosine overflow via equilibrative nucleoside transporters.
Collapse
Affiliation(s)
- Cátia Vieira
- Laboratório de Farmacologia e Neurobiologia, Center for Drug Discovery and Innovative Medicines (MedInUP), Instituto de Ciências Biomédicas de Abel Salazar, Universidade do Porto, Porto, Portugal
| | - Fátima Ferreirinha
- Laboratório de Farmacologia e Neurobiologia, Center for Drug Discovery and Innovative Medicines (MedInUP), Instituto de Ciências Biomédicas de Abel Salazar, Universidade do Porto, Porto, Portugal
| | - Maria T Magalhães-Cardoso
- Laboratório de Farmacologia e Neurobiologia, Center for Drug Discovery and Innovative Medicines (MedInUP), Instituto de Ciências Biomédicas de Abel Salazar, Universidade do Porto, Porto, Portugal
| | - Isabel Silva
- Laboratório de Farmacologia e Neurobiologia, Center for Drug Discovery and Innovative Medicines (MedInUP), Instituto de Ciências Biomédicas de Abel Salazar, Universidade do Porto, Porto, Portugal
| | - Patrícia Marques
- Laboratório de Farmacologia e Neurobiologia, Center for Drug Discovery and Innovative Medicines (MedInUP), Instituto de Ciências Biomédicas de Abel Salazar, Universidade do Porto, Porto, Portugal
| | - Paulo Correia-de-Sá
- Laboratório de Farmacologia e Neurobiologia, Center for Drug Discovery and Innovative Medicines (MedInUP), Instituto de Ciências Biomédicas de Abel Salazar, Universidade do Porto, Porto, Portugal
| |
Collapse
|
14
|
Zhou J, O'Connor MD, Ho V. The Potential for Gut Organoid Derived Interstitial Cells of Cajal in Replacement Therapy. Int J Mol Sci 2017; 18:ijms18102059. [PMID: 28954442 PMCID: PMC5666741 DOI: 10.3390/ijms18102059] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2017] [Revised: 09/15/2017] [Accepted: 09/24/2017] [Indexed: 12/24/2022] Open
Abstract
Effective digestion requires propagation of food along the entire length of the gastrointestinal tract. This process involves coordinated waves of peristalsis produced by enteric neural cell types, including different categories of interstitial cells of Cajal (ICC). Impaired food transport along the gastrointestinal tract, either too fast or too slow, causes a range of gut motility disorders that affect millions of people worldwide. Notably, loss of ICC has been shown to affect gut motility. Patients that suffer from gut motility disorders regularly experience diarrhoea and/or constipation, insomnia, anxiety, attention lapses, irritability, dizziness, and headaches that greatly affect both physical and mental health. Limited treatment options are available for these patients, due to the scarcity of human gut tissue for research and transplantation. Recent advances in stem cell technology suggest that large amounts of rudimentary, yet functional, human gut tissue can be generated in vitro for research applications. Intriguingly, these stem cell-derived gut organoids appear to contain functional ICC, although their frequency and functional properties are yet to be fully characterised. By reviewing methods of gut organoid generation, together with what is known of the molecular and functional characteristics of ICC, this article highlights short- and long-term goals that need to be overcome in order to develop ICC-based therapies for gut motility disorders.
Collapse
Affiliation(s)
- Jerry Zhou
- School of Medicine, Western Sydney University, Campbelltown, NSW 2560, Australia.
- Medical Sciences Research Group, Western Sydney University, Campbelltown, NSW 2560, Australia.
| | - Michael D O'Connor
- School of Medicine, Western Sydney University, Campbelltown, NSW 2560, Australia.
- Medical Sciences Research Group, Western Sydney University, Campbelltown, NSW 2560, Australia.
| | - Vincent Ho
- School of Medicine, Western Sydney University, Campbelltown, NSW 2560, Australia.
- Medical Sciences Research Group, Western Sydney University, Campbelltown, NSW 2560, Australia.
| |
Collapse
|
15
|
Drumm BT, Baker SA. Teaching a changing paradigm in physiology: a historical perspective on gut interstitial cells. ADVANCES IN PHYSIOLOGY EDUCATION 2017; 41:100-109. [PMID: 28188197 DOI: 10.1152/advan.00154.2016] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/29/2016] [Revised: 11/11/2016] [Accepted: 12/27/2016] [Indexed: 06/06/2023]
Abstract
The study and teaching of gastrointestinal (GI) physiology necessitates an understanding of the cellular basis of contractile and electrical coupling behaviors in the muscle layers that comprise the gut wall. Our knowledge of the cellular origin of GI motility has drastically changed over the last 100 yr. While the pacing and coordination of GI contraction was once thought to be solely attributable to smooth muscle cells, it is now widely accepted that the motility patterns observed in the GI tract exist as a result of a multicellular system, consisting of not only smooth muscle cells but also enteric neurons and distinct populations of specialized interstitial cells that all work in concert to ensure proper GI functions. In this historical perspective, we focus on the emerging role of interstitial cells in GI motility and examine the key discoveries and experiments that led to a major shift in a paradigm of GI physiology regarding the role of interstitial cells in modulating GI contractile patterns. A review of these now classic experiments and papers will enable students and educators to fully appreciate the complex, multicellular nature of GI muscles as well as impart lessons on how shifting paradigms in physiology are fueled by new technologies that lead to new emerging discoveries.
Collapse
Affiliation(s)
- Bernard T Drumm
- Department of Physiology and Cell Biology, University of Nevada School of Medicine, Reno, Nevada
| | - Salah A Baker
- Department of Physiology and Cell Biology, University of Nevada School of Medicine, Reno, Nevada
| |
Collapse
|
16
|
Radu BM, Banciu A, Banciu DD, Radu M, Cretoiu D, Cretoiu SM. Calcium Signaling in Interstitial Cells: Focus on Telocytes. Int J Mol Sci 2017; 18:ijms18020397. [PMID: 28208829 PMCID: PMC5343932 DOI: 10.3390/ijms18020397] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2016] [Revised: 01/04/2017] [Accepted: 01/25/2017] [Indexed: 02/08/2023] Open
Abstract
In this review, we describe the current knowledge on calcium signaling pathways in interstitial cells with a special focus on interstitial cells of Cajal (ICCs), interstitial Cajal-like cells (ICLCs), and telocytes. In detail, we present the generation of Ca2+ oscillations, the inositol triphosphate (IP3)/Ca2+ signaling pathway and modulation exerted by cytokines and vasoactive agents on calcium signaling in interstitial cells. We discuss the physiology and alterations of calcium signaling in interstitial cells, and in particular in telocytes. We describe the physiological contribution of calcium signaling in interstitial cells to the pacemaking activity (e.g., intestinal, urinary, uterine or vascular pacemaking activity) and to the reproductive function. We also present the pathological contribution of calcium signaling in interstitial cells to the aortic valve calcification or intestinal inflammation. Moreover, we summarize the current knowledge of the role played by calcium signaling in telocytes in the uterine, cardiac and urinary physiology, and also in various pathologies, including immune response, uterine and cardiac pathologies.
Collapse
Affiliation(s)
- Beatrice Mihaela Radu
- Department of Neuroscience, Biomedicine and Movement Sciences, University of Verona, Strada Le Grazie 8, Verona 37134, Italy.
- Department of Anatomy, Animal Physiology and Biophysics, Faculty of Biology, University of Bucharest, Splaiul Independentei 91-95, Bucharest 050095, Romania.
| | - Adela Banciu
- Department of Anatomy, Animal Physiology and Biophysics, Faculty of Biology, University of Bucharest, Splaiul Independentei 91-95, Bucharest 050095, Romania.
- Research Beyond Limits, Dimitrie Cantemir 15, Bucharest 040234, Romania.
- Engineering Faculty, Constantin Brancusi University, Calea Eroilor 30, Targu Jiu 210135, Romania.
| | - Daniel Dumitru Banciu
- Department of Anatomy, Animal Physiology and Biophysics, Faculty of Biology, University of Bucharest, Splaiul Independentei 91-95, Bucharest 050095, Romania.
- Research Beyond Limits, Dimitrie Cantemir 15, Bucharest 040234, Romania.
| | - Mihai Radu
- Department of Neuroscience, Biomedicine and Movement Sciences, University of Verona, Strada Le Grazie 8, Verona 37134, Italy.
- Department of Life and Environmental Physics, Horia Hulubei National Institute of Physics and Nuclear Engineering, Reactorului 30, P.O. Box MG-6, Magurele 077125, Romania.
| | - Dragos Cretoiu
- Division of Cell Biology and Histology, Carol Davila University of Medicine and Pharmacy, Bucharest 050474, Romania.
- Victor Babes National Institute of Pathology, Bucharest 050096, Romania.
| | - Sanda Maria Cretoiu
- Division of Cell Biology and Histology, Carol Davila University of Medicine and Pharmacy, Bucharest 050474, Romania.
- Victor Babes National Institute of Pathology, Bucharest 050096, Romania.
| |
Collapse
|
17
|
Kim H, Kim HJ, Yang D, Jung MH, Kim BJ. Depolarizing Effects of Daikenchuto on Interstitial Cells of Cajal from Mouse Small Intestine. Pharmacogn Mag 2017; 13:141-147. [PMID: 28216898 PMCID: PMC5307899 DOI: 10.4103/0973-1296.196312] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Background: Daikenchuto (DKT; TJ-100, TU-100), a traditional herbal medicineis used in modern medicine to treat gastrointestinal (GI) functional disorders. Interstitial cells of Cajal (ICCs) are the pacemaker cells of the GI tract and play important roles in the regulation of GI motility. Objective: The objective of this study was to investigate the effects of DKT on the pacemaker potentials (PPs) of cultured ICCs from murine small intestine. Materials and Methods: Enzymatic digestions were used to dissociate ICCs from mouse small intestine tissues. All experiments on ICCs were performed after 12 h of culture. The whole-cell patch-clamp configuration was used to record ICC PPs (current clamp mode). All experiments were performed at 30-32°C. Results: In current-clamp modeDKT depolarized and concentration-dependently decreased the amplitudes of PPs. Y25130 (a 5-HT3 receptor antagonist) or SB269970 (a 5-HT7 receptor antagonist) did not block DKT-induced PP depolarization, but RS39604 (a 5-HT4 receptor antagonist) did. Methoctramine (a muscarinic M2 receptor antagonist) failed to block DKT-induced PP depolarization, but pretreating 4-diphenylacetoxy-N-methylpiperidine methiodide (a muscarinic M3 receptor antagonist) facilitated blockade of DKT-induced PP depolarization. Pretreatment with an external Ca2+-free solution or thapsigargin abolished PPsand under these conditions, DKT did not induce PP depolarization. Furthermore Ginseng radix and Zingiberis rhizomes depolarized PPs, whereas Zanthoxyli fructus fruit (the third component of DKT) hyperpolarized PPs. Conclusion: These results suggest that DKT depolarizes ICC PPs in an internal or external Ca2+-dependent manner by stimulating 5-HT4 and M3 receptors. Furthermore, the authors suspect that the component in DKT largely responsible for depolarization is probably also a component of Ginseng radix and Zingiberis rhizomes. SUMMARY Daikenchuto (DKT) depolarized and concentration-dependently decreased the amplitudes of pacemaker potentials (PPs) Y25130 (a 5-HT3 receptor antagonist) or SB269970 (a 5-HT7 receptor antagonist) did not block DKT-induced PP depolarization, but RS39604 (a 5-HT4 receptor antagonist) did Methoctramine (a muscarinic M2 receptor antagonist) failed to block DKT-induced PP depolarization, but pretreating 4-DAMP (a muscarinic M3 receptor antagonist) facilitated blockade of DKT-induced PP depolarization Ginseng radix and Zingiberis rhizomes depolarized PPswhereas Zanthoxyli fructus fruit (the third component of DKT) hyperpolarized PPs.
Abbreviation used: DKT: Daikenchuto, GI: Gastrointestinal, ICCs: Interstitial cells of Cajal, PPs: Pacemaker Potentials.
Collapse
Affiliation(s)
- Hyungwoo Kim
- Division of Pharmacology, School of Korean Medicine, Pusan National University, Yangsan, Gyeongsangnam-do 50612, Republic of Korea
| | - Hyun Jung Kim
- Division of Longevity and Biofunctional Medicine and Healthy Aging Korean Medical Research Center, School of Korean Medicine, Pusan National University, Yangsan, Gyeongsangnam-do 50612, Republic of Korea
| | - Dongki Yang
- Department of Physiology, College of Medicine, Gachon University, Incheon, Republic of Korea
| | - Myeong Ho Jung
- Division of Longevity and Biofunctional Medicine and Healthy Aging Korean Medical Research Center, School of Korean Medicine, Pusan National University, Yangsan, Gyeongsangnam-do 50612, Republic of Korea
| | - Byung Joo Kim
- Division of Longevity and Biofunctional Medicine and Healthy Aging Korean Medical Research Center, School of Korean Medicine, Pusan National University, Yangsan, Gyeongsangnam-do 50612, Republic of Korea
| |
Collapse
|
18
|
Lee SW, Kim SJ, Kim H, Yang D, Kim HJ, Kim BJ. Effects of Prunus mume Siebold & Zucc. in the pacemaking activity of interstitial cells of Cajal in murine small intestine. Exp Ther Med 2016; 13:327-334. [PMID: 28123510 DOI: 10.3892/etm.2016.3963] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2015] [Accepted: 09/20/2016] [Indexed: 01/13/2023] Open
Abstract
Interstitial cells of Cajal (ICCs) function as pacemaker cells in the gastrointestinal (GI) tract and therefore, serve an important role in regulating GI motility. The effects of a species of plum (Prunus mume Siebold & Zucc.) on cultured ICC cluster-induced pacemaker potentials in the mouse small intestine were investigated, and the effects of a methanolic extract of Prunus mume (m-PM) on ICC pacemaker activities were examined using the whole-cell patch-clamp technique. ICC pacemaker membrane potentials were depolarized by m-PM in a concentration dependent manner in current clamp mode. 4-Diphenylacetoxy-N-methyl-piperidine methiodide, which is a muscarinic 3 (M3) receptor antagonist, was able to block m-PM-induced pacemaker potential increases, whereas methoctramine, which is a muscarinic 2 (M2) receptor antagonist, was not. When 1 mM guanosine diphosphate β-5 was present in the pipette solution, m-PM induced slight pacemaker depolarization. Following pretreatment in bath solution of Ca2+-free solution or a Ca2+-ATPase inhibitor in endoplasmic reticulum, the pacemaker currents were inhibited. Furthermore, pretreatment with PD98059, SB203580 or SP600125, which is a c-jun NH2-terminal kinase inhibitor, blocked m-PM-induced ICC potential depolarization. Furthermore, m-PM inhibited transient receptor potential melastatin (TRPM) 7 channels, but did not affect Ca2+-activated Cl- channels. These results suggest that m-PM is able to modulate pacemaker potentials through the muscarinic M3 receptor, via G-protein and external and internal Ca2+, in a mitogen-activated protein kinase and TRPM7-dependent manner. Therefore, m-PM may provide a basis for the development of a novel gastroprokinetic agent.
Collapse
Affiliation(s)
- Sang Weon Lee
- Department of Neurosurgery, Pusan National University Yangsan Hospital, Yangsan, Gyeongsangnam 50612, Republic of Korea; Research Institute for Convergence of Biomedical Science and Technology, Pusan National University Yangsan Hospital, Yangsan, Gyeongsangnam 50612, Republic of Korea
| | - Sung Jin Kim
- Department of Neurosurgery, Pusan National University Yangsan Hospital, Yangsan, Gyeongsangnam 50612, Republic of Korea; Research Institute for Convergence of Biomedical Science and Technology, Pusan National University Yangsan Hospital, Yangsan, Gyeongsangnam 50612, Republic of Korea
| | - Hyungwoo Kim
- Division of Pharmacology, Pusan National University School of Korean Medicine, Yangsan, Gyeongsangnam 50612, Republic of Korea
| | - Dongki Yang
- Department of Physiology, Gachon University College of Medicine, Incheon, Gyeonggi 22332, Republic of Korea
| | - Hyun Jung Kim
- Division of Longevity and Biofunctional Medicine, Pusan National University School of Korean Medicine, Yangsan, Gyeongsangnam 50612, Republic of Korea
| | - Byung Joo Kim
- Division of Longevity and Biofunctional Medicine, Pusan National University School of Korean Medicine, Yangsan, Gyeongsangnam 50612, Republic of Korea
| |
Collapse
|
19
|
Shim JH, Lee SJ, Gim H, Kim HJ, Han T, Kim JG, Lim EY, Kim YT, Kim BJ. Regulation of the pacemaker activities in cultured interstitial cells of Cajal by Citrus unshiu peel extracts. Mol Med Rep 2016; 14:3908-16. [PMID: 27572234 DOI: 10.3892/mmr.2016.5689] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2015] [Accepted: 08/09/2016] [Indexed: 11/06/2022] Open
Abstract
The Citrus unshiu peel has been widely used for the treatment of gastrointestinal (GI) disorders in Eastern traditional medicine. The present study aimed to investigate the effects of Citrus unshiu peel extract (CPE) on the pacemaker activity of the GI tract in cultured interstitial cells of Cajal (ICCs) derived from the mouse small intestine. The whole‑cell patch‑clamp configuration was used to record pacemaker potentials. In current clamp mode, exposure to CPE caused membrane pacemaker depolarization in a concentration‑dependent manner. In the presence of the muscarinic M2 receptor antagonist, methoctramine, CPE induced membrane pacemaker depolarization, whereas treatment with the muscarinic M3 receptor antagonist, 1,1-dimethyl-4-diphenylacetoxypiperidinium iodide, inhibited CPE‑induced responses. When the pipette solution contained guanosine 5'-(β-thio) diphosphate trilithium salt (1 mM), CPE marginally induced membrane pacemaker depolarization. In addition, CPE‑induced membrane pacemaker depolarization was inhibited following exposure to the active phospholipase C (PLC) inhibitor U‑73122, but not the inactive PLC inhibitor U‑73343. In the presence of a p42/p44 mitogen‑activated protein kinase (MAPK) inhibitor (PD98059), a p38 MAPK inhibitor (SB203580) or a c‑jun NH2‑terminal kinase (JNK) II inhibitor, CPE failed to induce membrane pacemaker depolarization. These results suggest that CPE may affect GI motility through modulating ICC pacemaker activity by activating the muscarinic M3 receptor and inducing the G‑protein dependent PLC and MAPK signaling pathways.
Collapse
Affiliation(s)
- Ji Hwan Shim
- Division of Longevity and Biofunctional Medicine, School of Korean Medicine, Pusan National University, Yangsan, Gyeongsangnamdo 50612, Republic of Korea
| | - Soo Jin Lee
- Division of Longevity and Biofunctional Medicine, School of Korean Medicine, Pusan National University, Yangsan, Gyeongsangnamdo 50612, Republic of Korea
| | - Huijin Gim
- Division of Longevity and Biofunctional Medicine, School of Korean Medicine, Pusan National University, Yangsan, Gyeongsangnamdo 50612, Republic of Korea
| | - Hyun Jung Kim
- Division of Longevity and Biofunctional Medicine, School of Korean Medicine, Pusan National University, Yangsan, Gyeongsangnamdo 50612, Republic of Korea
| | - Taewon Han
- Research Group of Innovative Special Food, Korea Food Research Institute, Seongnam, Gyeonggi 13539, Republic of Korea
| | - Jae Goo Kim
- Research Group of Innovative Special Food, Korea Food Research Institute, Seongnam, Gyeonggi 13539, Republic of Korea
| | - Eun Yeong Lim
- Research Group of Innovative Special Food, Korea Food Research Institute, Seongnam, Gyeonggi 13539, Republic of Korea
| | - Yun Tai Kim
- Research Group of Innovative Special Food, Korea Food Research Institute, Seongnam, Gyeonggi 13539, Republic of Korea
| | - Byung Joo Kim
- Division of Longevity and Biofunctional Medicine, School of Korean Medicine, Pusan National University, Yangsan, Gyeongsangnamdo 50612, Republic of Korea
| |
Collapse
|
20
|
Kim HJ, Park SY, Kim DG, Park SH, Lee H, Hwang DY, Jung MH, Ha KT, Kim BJ. Effects of the roots of Liriope Platyphylla Wang Et tang on gastrointestinal motility function. JOURNAL OF ETHNOPHARMACOLOGY 2016; 184:144-153. [PMID: 26969403 DOI: 10.1016/j.jep.2016.03.012] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/19/2015] [Revised: 03/07/2016] [Accepted: 03/07/2016] [Indexed: 06/05/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Liriope platyphylla Wang et Tang continues to be used in Korea as a traditional medicine for the treatment of gastrointestinal (GI) disorders related to constipation and abnormal GI motility. AIM OF THE STUDY Because GI disorders, especially GI motility dysfunctions, are major lifelong problems, the authors investigated the effects of a water extract of the roots of L. platyphylla Wang et Tang (LPE) on the pacemaker potentials (PPTs) of interstitial cells of Cajal (ICCs) and on GI motility in male ICR mice. MATERIALS AND METHODS Enzymatic digestions were used to dissociate ICCs from small intestines, and the whole-cell patch-clamp configuration was used to record PPTs generated by cultured ICCs in vitro. In vivo effects of LPE on GI motility were investigated by measuring intestinal transit rates (ITRs) of Evans blue in normal mice and in acetic acid (AA) and streptozotocin (STZ)-induced diabetic mouse models of GI motility dysfunction. RESULTS LPE dose-dependently depolarized PPTs in ICCs. Pretreatment with methoctramine (a muscarinic M2 receptor antagonist) did not block LPE-induced PPT depolarization. However, pretreatment with 4-DAMP (a muscarinic M3 receptor antagonist) blocked LPE-induced PPT depolarization. In addition, treatment with LY294002 (a phosphoinositide 3-kinase (PI3K) inhibitor) also blocked LPE-induced PPT depolarization. Intracellular GDPβS inhibited LPE-induced PPT depolarization, and LPE-induced PPT depolarization was found to occur in a phospholipase C (PLC)- and a protein kinase C (PKC)-dependent manner. Pretreatment with Ca(2+)free solution or thapsigargin (a Ca(2+)-ATPase inhibitor in endoplasmic reticulum) abolished PPTs, and under these conditions, LPE did not depolarize ICC PPTs. In normal mice, ITRs were significantly and dose-dependently increased by LPE (0.01-1g/kg administered intragastrically (i.g.)). In addition, LPE (i.g.) significantly recovered GI motility dysfunctions in both animal models. CONCLUSION LPE dose-dependently depolarizes ICC PPTs through M3 receptors via external and internal Ca(2+)regulation and via G protein-, PI3K-, PLC- and PKC- dependent pathways in vitro. Also, in vivo, LPE increased ITRs in treatment naïve mice and our two mouse models of GI dysfunction. Therefore, this study shows that LPE offers a basis for the development of a prokinetic agent that prevents or alleviates GI motility dysfunctions.
Collapse
Affiliation(s)
- Hyun Jung Kim
- Division of Longevity and Biofunctional Medicine, Pusan National University School of Korean Medicine, Yangsan 50612, Republic of Korea; Healthy Aging Korean Medical Research Center, Pusan National University School of Korean Medicine, Yangsan 50612, Republic of Korea
| | - Sun Young Park
- Division of Longevity and Biofunctional Medicine, Pusan National University School of Korean Medicine, Yangsan 50612, Republic of Korea
| | - Dae Geon Kim
- Division of Longevity and Biofunctional Medicine, Pusan National University School of Korean Medicine, Yangsan 50612, Republic of Korea
| | - So-Hae Park
- College of Human Ecology, Pusan National University, Busan 609-735, Republic of Korea
| | - Heeseob Lee
- College of Human Ecology, Pusan National University, Busan 609-735, Republic of Korea
| | - Dae Youn Hwang
- College of Natural Resources and Life Science/Life and Industry Convergence Research Institute, Pusan National University, Miryang 627-706, Republic of Korea
| | - Myeong Ho Jung
- Division of Longevity and Biofunctional Medicine, Pusan National University School of Korean Medicine, Yangsan 50612, Republic of Korea; Healthy Aging Korean Medical Research Center, Pusan National University School of Korean Medicine, Yangsan 50612, Republic of Korea
| | - Ki-Tae Ha
- Healthy Aging Korean Medical Research Center, Pusan National University School of Korean Medicine, Yangsan 50612, Republic of Korea; Division of Applied Medicine, Pusan National University School of Korean Medicine, Yangsan 50612, Republic of Korea
| | - Byung Joo Kim
- Division of Longevity and Biofunctional Medicine, Pusan National University School of Korean Medicine, Yangsan 50612, Republic of Korea; Healthy Aging Korean Medical Research Center, Pusan National University School of Korean Medicine, Yangsan 50612, Republic of Korea.
| |
Collapse
|
21
|
Sung SK, Kim SJ, Ahn TS, Hong NR, Park HS, Kwon YK, Kim BJ. Effects of Dangkwisoo‑san, a traditional herbal medicine for treating pain and blood stagnation, on the pacemaker activities of cultured interstitial cells of Cajal. Mol Med Rep 2015; 12:6370-6. [PMID: 26260469 DOI: 10.3892/mmr.2015.4203] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2014] [Accepted: 07/17/2015] [Indexed: 11/06/2022] Open
Abstract
The interstitial cells of Cajal (ICCs) are the pacemaker cells in the gastrointestinal (GI) tract. In the present study, the effects of Dangkwisoo‑san (DS) on pacemaker potentials in cultured ICCs from the small intestine of the mouse were investigated. The whole‑cell patch‑clamp configuration was used to record pacemaker potentials from cultured ICCs and the increase in intracellular Ca2+ concentration ([Ca2+i) was analyzed in cultured ICCs using fura‑2‑acetoxymethyl ester. The generation of pacemaker potentials in the ICCs was observed. DS produced pacemaker depolarizations in a concentration dependent manner in current clamp mode. The 4‑diphenylacetoxy‑N‑methyl‑piperidine methiodide muscarinic M3 receptor antagonist inhibited DS‑induced pacemaker depolarizations, whereas methoctramine, a muscarinic M2 receptor antagonist, did not. When guanosine 5'‑[β‑thio] diphosphate (GDP‑β‑S; 1 mM) was in the pipette solution, DS marginally induced pacemaker depolarizations, whereas low Na+ solution externally eliminated the generation of pacemaker potentials and inhibited the DS‑induced pacemaker depolarizations. Additionally, the nonselective cation channel blocker, flufenamic acid, inhibited the DS‑induced pacemaker depolarizations. Pretreatment with Ca2+‑free solution and thapsigargin, a Ca2+‑ATPase inhibitor in the endoplasmic reticulum, also eliminated the generation of pacemaker currents and suppressed the DS‑induced pacemaker depolarizations. In addition, [Ca2+]i analysis revealed that DS increased [Ca2+]i. These results suggested that DS modulates pacemaker potentials through muscarinic M3 receptor activation in ICCs by G protein‑dependent external and internal Ca2+ regulation and external Na+. Therefore, DS were observed to affect intestinal motility through ICCs.
Collapse
Affiliation(s)
- Soon-Ki Sung
- Department of Neurosurgery, Pusan National University, Yangsan Hospital, Yangsan, Gyeongsangnam-do 626‑870, Republic of Korea
| | - Sung Jin Kim
- Department of Neurosurgery, Pusan National University, Yangsan Hospital, Yangsan, Gyeongsangnam-do 626‑870, Republic of Korea
| | - Tae Seok Ahn
- Division of Longevity and Biofunctional Medicine, School of Korean Medicine, Pusan National University, Yangsan, Gyeongsangnam-do 626‑870, Republic of Korea
| | - Noo Ri Hong
- Division of Longevity and Biofunctional Medicine, School of Korean Medicine, Pusan National University, Yangsan, Gyeongsangnam-do 626‑870, Republic of Korea
| | - Hyun Soo Park
- Division of Longevity and Biofunctional Medicine, School of Korean Medicine, Pusan National University, Yangsan, Gyeongsangnam-do 626‑870, Republic of Korea
| | - Young Kyu Kwon
- Division of Longevity and Biofunctional Medicine, School of Korean Medicine, Pusan National University, Yangsan, Gyeongsangnam-do 626‑870, Republic of Korea
| | - Byung Joo Kim
- Division of Longevity and Biofunctional Medicine, School of Korean Medicine, Pusan National University, Yangsan, Gyeongsangnam-do 626‑870, Republic of Korea
| |
Collapse
|
22
|
Dodds KN, Staikopoulos V, Beckett EAH. Uterine Contractility in the Nonpregnant Mouse: Changes During the Estrous Cycle and Effects of Chloride Channel Blockade. Biol Reprod 2015; 92:141. [PMID: 25926436 DOI: 10.1095/biolreprod.115.129809] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2015] [Accepted: 04/22/2015] [Indexed: 11/01/2022] Open
Abstract
Mechanisms involved in the generation of spontaneous uterine contractions are not fully understood. Kit-expressing interstitial cells of Cajal are pacemakers of contractile rhythm in other visceral organs, and recent studies describe a role for Ca(2+)-activated Cl(-) currents as the initiating conductance in these cells. The existence and role of similar specialized pacemaker cells in the nonpregnant uterus remains undetermined. Spontaneous contractility patterns were characterized throughout the estrous cycle in isolated, nonpregnant mouse uteri using spatiotemporal mapping and tension recordings. During proestrus, estrus, and diestrus, contraction origin predominated in the oviduct end of the uterus, suggesting the existence of a dominant pacemaker site. Propagation speed of contractions during estrus and diestrus were significantly slower than in proestrus and metestrus. Five major patterns of activity were predominantly exhibited in particular stages: quiescent (diestrus), high-frequency phasic (proestrus), low-frequency phasic (estrus), multivariant (metestrus), and complex. Kit-immunopositive cells reminiscent of pacemaking ICCs were not consistently observed within the uterus. Niflumic acid (10 μM), anthracene-9-carboxylic acid (0.1-1 mM), and 5-nitro-2-(3-phenylpropylamino)benzoic acid (10 μM) each reduced the frequency of spontaneous contractions, suggesting involvement of Cl(-) channels in generating spontaneous uterine motor activity. It is unlikely that this conductance is generated by the Ca(2+)-activated Cl(-) channels, anoctamin-1 and CLCA4, as immunohistochemical labeling did not reveal protein expression within muscle or pacemaker cell networks. In summary, these results suggest that spontaneous uterine contractions may be generated by a Kit-negative pacemaker cell type or uterine myocytes, likely involving the activity of a yet-unidentified Cl(-) channel.
Collapse
Affiliation(s)
- Kelsi N Dodds
- Discipline of Physiology, School of Medical Sciences, University of Adelaide, Adelaide, South Australia, Australia
| | - Vasiliki Staikopoulos
- Discipline of Physiology, School of Medical Sciences, University of Adelaide, Adelaide, South Australia, Australia
| | - Elizabeth A H Beckett
- Discipline of Physiology, School of Medical Sciences, University of Adelaide, Adelaide, South Australia, Australia
| |
Collapse
|
23
|
Park JH, Kwon JG, Kim SJ, Song DK, Lee SG, Kim ES, Kim ES, Cho KB, Jang BI, Kim DH, Sin JI, Kim TW, Song IH, Park KS. Alterations of colonic contractility in an interleukin-10 knockout mouse model of inflammatory bowel disease. J Neurogastroenterol Motil 2015; 21:51-61. [PMID: 25537671 PMCID: PMC4288096 DOI: 10.5056/jnm14008] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/02/2014] [Revised: 09/25/2014] [Accepted: 09/27/2014] [Indexed: 12/18/2022] Open
Abstract
Background/Aims Inflammatory bowel disease is commonly accompanied by colonic dysmotility and causes changes in intestinal smooth muscle contractility. In this study, colonic smooth muscle contractility in a chronic inflammatory condition was investigated using smooth muscle tissues prepared from interleukin-10 knockout (IL-10−/−) mice. Methods Prepared smooth muscle sections were placed in an organ bath system. Cholinergic and nitrergic neuronal responses were observed using carbachol and electrical field stimulation with L-NG-nitroarginine methyl ester (L-NAME). The expression of interstitial cells of Cajal (ICC) networks, muscarinic receptors, neuronal nitric oxide synthase (nNOS) and inducible nitric oxide synthase (iNOS) was observed via immunofluorescent staining. Results The spontaneous contractility and expression of ICC networks in the proximal and distal colon was significantly decreased in IL-10−/− mice compared to IL-10+/+ mice. The contractility in response to carbachol was significantly decreased in the proximal colon of IL-10−/− mice compared to IL-10+/+ mice, but no significant difference was found in the distal colon. In addition, the expression of muscarinic receptor type 2 was reduced in the proximal colon of IL-10−/− mice. The nictric oxide-mediated relaxation after electrical field stimulation was significantly decreased in the proximal and distal colon of IL-10−/− mice. In inflamed colon, the expression of nNOS decreased, whereas the expression of iNOS increased. Conclusions These results suggest that damage to the ICC network and NOS system in the proximal and distal colon, as well as damage to the smooth muscle cholinergic receptor in the proximal colon may play an important role in the dysmotility of the inflamed colon.
Collapse
Affiliation(s)
- Jae Hyung Park
- Department of Physiology, Keimyung University School of Medicine, Daegu, Korea
| | - Joong Goo Kwon
- Department of Internal Medicine, Catholic University of Daegu School of Medicine, Daegu, Korea
| | - Sun Joo Kim
- Department of Physiology, Keimyung University School of Medicine, Daegu, Korea
| | - Dae Kyu Song
- Department of Physiology, Keimyung University School of Medicine, Daegu, Korea
| | - Seok Guen Lee
- Department of Internal Medicine, Keimyung University School of Medicine, Daegu, Korea
| | | | - Eun Su Kim
- Department of Internal Medicine, Keimyung University School of Medicine, Daegu, Korea
| | - Kwang Bum Cho
- Department of Internal Medicine, Keimyung University School of Medicine, Daegu, Korea
| | - Byung Ik Jang
- Department of Internal Medicine, Yeungnam University College of Medicine, Daegu, Korea
| | - Dae Hwan Kim
- Department of Internal Medicine, Yeungnam University College of Medicine, Daegu, Korea
| | - Jeong-Im Sin
- Department of Microbiology, Kangwon National University School of Medicine, Chuncheon, Korea
| | - Tae Wan Kim
- Department of Veterinary Physiology, College of Veterinary Medicine, Kyungpook National University, Daegu, Korea
| | - In Hwan Song
- Department of Anatomy, Yeungnam University College of Medicine, Daegu, Korea
| | - Kyung Sik Park
- Department of Internal Medicine, Keimyung University School of Medicine, Daegu, Korea
| |
Collapse
|
24
|
Effect of da-cheng-qi decoction on the repair of the injured enteric nerve-interstitial cells of cajal-smooth muscle cells network in multiple organ dysfunction syndrome. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2014; 2014:596723. [PMID: 25477993 PMCID: PMC4247919 DOI: 10.1155/2014/596723] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/27/2014] [Revised: 10/18/2014] [Accepted: 10/21/2014] [Indexed: 01/22/2023]
Abstract
Wistar rats were randomly divided into control group, multiple organ dysfunction syndrome (MODS) group, and Da-Cheng-Qi decoction (DCQD) group. The network of enteric nerves-interstitial cells of Cajal- (ICC-) smooth muscle cells (SMC) in small intestine was observed using confocal laser scanning microscopy and transmission electron microscopy. The results showed that the numbers of cholinergic/nitriergic nerves, and the deep muscular plexus of ICC (ICC-DMP) and connexin43 (Cx43) in small intestine with MODS were significantly decreased. The network integrity of enteric nerves-ICC-SMC was disrupted. The ultrastructures of ICC-DMP, enteric nerves, and SMC were severely damaged. After treatment with DCQD, the damages were repaired and the network integrity of enteric nerves ICC-SMC was significantly recovered. In conclusion, the pathogenesis of gastrointestinal motility dysfunction in MODS in part may be due to the damages to enteric nerves-ICC-SMC network and gap junctions. The therapeutic mechanism of DCQD in part may be that it could repair the damages and maintain the integrity of enteric nerves ICC-SMC network.
Collapse
|
25
|
Modeling of stochastic behavior of pacemaker potential in interstitial cells of Cajal. PROGRESS IN BIOPHYSICS AND MOLECULAR BIOLOGY 2014; 116:56-69. [PMID: 25238716 DOI: 10.1016/j.pbiomolbio.2014.09.002] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/26/2014] [Revised: 08/28/2014] [Accepted: 09/06/2014] [Indexed: 01/20/2023]
Abstract
It is widely accepted that interstitial cells of Cajal (ICCs) generate pacemaker potentials to propagate slow waves along the whole gastrointestinal tract. Previously, we constructed a biophysically based model of ICCs in mouse small intestine to explain the pacemaker mechanism. Our previous model, however, could not explain non-uniformity of pacemaker potentials and random occurrence of unitary potentials, thus we updated our model. The inositol 1,4,5-trisphosphate (IP3)-mediated Ca(2+) mobilization is a key event to drive the cycle of pacemaker activity and was updated to reproduce its stochastic behavior. The stochasticity was embodied by simulating random opening and closing of individual IP3-mediated Ca(2+) channel. The updated model reproduces the stochastic features of pacemaker potentials in ICCs. Reproduced pacemaker potentials are not uniform in duration and interval. The resting and peak potentials are -75.5 ± 1.1 mV and -0.8 ± 0.5 mV, respectively (n = 55). Frequency of pacemaker potential is 14.3 ± 0.4 min(-1) (n = 10). Width at half-maximal amplitude of pacemaker potential is 902 ± 6 ms (n = 55). There are random events of unitary potential-like depolarization. Finally, we compared our updated model with a recently published model to speculate which ion channel is the best candidate to drive pacemaker depolarization. In conclusion, our updated mathematical model could now reproduce stochastic features of pacemaker activity in ICCs.
Collapse
|
26
|
Blair PJ, Rhee PL, Sanders KM, Ward SM. The significance of interstitial cells in neurogastroenterology. J Neurogastroenterol Motil 2014; 20:294-317. [PMID: 24948131 PMCID: PMC4102150 DOI: 10.5056/jnm14060] [Citation(s) in RCA: 90] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/21/2014] [Revised: 06/06/2014] [Accepted: 06/07/2014] [Indexed: 12/21/2022] Open
Abstract
Smooth muscle layers of the gastrointestinal tract consist of a heterogeneous population of cells that include enteric neurons, several classes of interstitial cells of mesenchymal origin, a variety of immune cells and smooth muscle cells (SMCs). Over the last number of years the complexity of the interactions between these cell types has begun to emerge. For example, interstitial cells, consisting of both interstitial cells of Cajal (ICC) and platelet-derived growth factor receptor alpha-positive (PDGFRα(+)) cells generate pacemaker activity throughout the gastrointestinal (GI) tract and also transduce enteric motor nerve signals and mechanosensitivity to adjacent SMCs. ICC and PDGFRα(+) cells are electrically coupled to SMCs possibly via gap junctions forming a multicellular functional syncytium termed the SIP syncytium. Cells that make up the SIP syncytium are highly specialized containing unique receptors, ion channels and intracellular signaling pathways that regulate the excitability of GI muscles. The unique role of these cells in coordinating GI motility is evident by the altered motility patterns in animal models where interstitial cell networks are disrupted. Although considerable advances have been made in recent years on our understanding of the roles of these cells within the SIP syncytium, the full physiological functions of these cells and the consequences of their disruption in GI muscles have not been clearly defined. This review gives a synopsis of the history of interstitial cell discovery and highlights recent advances in structural, molecular expression and functional roles of these cells in the GI tract.
Collapse
Affiliation(s)
- Peter J Blair
- Department of Physiology and Cell Biology, University of Nevada School of Medicine, Reno, NV, USA; and
| | - Poong-Lyul Rhee
- Division of Gastroenterology, Department of Medicine, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Korea
| | - Kenton M Sanders
- Department of Physiology and Cell Biology, University of Nevada School of Medicine, Reno, NV, USA; and
| | - Sean M Ward
- Department of Physiology and Cell Biology, University of Nevada School of Medicine, Reno, NV, USA; and
| |
Collapse
|
27
|
Blair PJ, Rhee PL, Sanders KM, Ward SM. The significance of interstitial cells in neurogastroenterology. J Neurogastroenterol Motil 2014. [PMID: 24948131 DOI: 10.5056/jnm140] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
Smooth muscle layers of the gastrointestinal tract consist of a heterogeneous population of cells that include enteric neurons, several classes of interstitial cells of mesenchymal origin, a variety of immune cells and smooth muscle cells (SMCs). Over the last number of years the complexity of the interactions between these cell types has begun to emerge. For example, interstitial cells, consisting of both interstitial cells of Cajal (ICC) and platelet-derived growth factor receptor alpha-positive (PDGFRα(+)) cells generate pacemaker activity throughout the gastrointestinal (GI) tract and also transduce enteric motor nerve signals and mechanosensitivity to adjacent SMCs. ICC and PDGFRα(+) cells are electrically coupled to SMCs possibly via gap junctions forming a multicellular functional syncytium termed the SIP syncytium. Cells that make up the SIP syncytium are highly specialized containing unique receptors, ion channels and intracellular signaling pathways that regulate the excitability of GI muscles. The unique role of these cells in coordinating GI motility is evident by the altered motility patterns in animal models where interstitial cell networks are disrupted. Although considerable advances have been made in recent years on our understanding of the roles of these cells within the SIP syncytium, the full physiological functions of these cells and the consequences of their disruption in GI muscles have not been clearly defined. This review gives a synopsis of the history of interstitial cell discovery and highlights recent advances in structural, molecular expression and functional roles of these cells in the GI tract.
Collapse
Affiliation(s)
- Peter J Blair
- Department of Physiology and Cell Biology, University of Nevada School of Medicine, Reno, NV, USA
| | - Poong-Lyul Rhee
- Division of Gastroenterology, Department of Medicine, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Korea
| | - Kenton M Sanders
- Department of Physiology and Cell Biology, University of Nevada School of Medicine, Reno, NV, USA
| | - Sean M Ward
- Department of Physiology and Cell Biology, University of Nevada School of Medicine, Reno, NV, USA
| |
Collapse
|
28
|
Bitar KN, Raghavan S, Zakhem E. Tissue engineering in the gut: developments in neuromusculature. Gastroenterology 2014; 146:1614-24. [PMID: 24681129 PMCID: PMC4035447 DOI: 10.1053/j.gastro.2014.03.044] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/31/2013] [Revised: 03/17/2014] [Accepted: 03/20/2014] [Indexed: 12/13/2022]
Abstract
The complexity of the gastrointestinal (GI) tract lies in its anatomy as well as in its physiology. Several different cell types populate the GI tract, adding to the complexity of cell sourcing for regenerative medicine. Each cell layer has a specialized function in mediating digestion, absorption, secretion, motility, and excretion. Tissue engineering and regenerative medicine aim to regenerate the specific layers mimicking architecture and recapitulating function. Gastrointestinal motility is the underlying program that mediates the diverse functions of the intestines, as an organ. Hence, the first logical step in GI regenerative medicine is the reconstruction of the tubular smooth musculature along with the drivers of their input, the enteric nervous system. Recent advances in the field of GI tissue engineering have focused on the use of scaffolding biomaterials in combination with cells and bioactive factors. The ability to innervate the bioengineered muscle is a critical step to ensure proper functionality. Finally, in vivo studies are essential to evaluate implant integration with host tissue, survival, and functionality. In this review, we focus on the tubular structure of the GI tract, tools for innervation, and, finally, evaluation of in vivo strategies for GI replacements.
Collapse
Affiliation(s)
- Khalil N. Bitar
- Wake Forest Institute for Regenerative Medicine, Wake Forest School of Medicine, Winston-Salem NC 27101,Virginia Tech-Wake Forest School of Biomedical Engineering and Sciences, Winston-Salem NC 27101
| | - Shreya Raghavan
- Wake Forest Institute for Regenerative Medicine, Wake Forest School of Medicine, Winston-Salem NC 27101,Virginia Tech-Wake Forest School of Biomedical Engineering and Sciences, Winston-Salem NC 27101
| | - Elie Zakhem
- Wake Forest Institute for Regenerative Medicine, Wake Forest School of Medicine, Winston-Salem NC 27101,Virginia Tech-Wake Forest School of Biomedical Engineering and Sciences, Winston-Salem NC 27101
| |
Collapse
|
29
|
Tanahashi Y, Ichimura Y, Kimura K, Matsuyama H, Iino S, Komori S, Unno T. Cholinergic neuromuscular transmission mediated by interstitial cells of Cajal in the myenteric layer in mouse ileal longitudinal smooth muscles. Naunyn Schmiedebergs Arch Pharmacol 2013; 387:377-88. [PMID: 24322587 DOI: 10.1007/s00210-013-0944-2] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2013] [Accepted: 11/21/2013] [Indexed: 01/15/2023]
Abstract
To elucidate the roles played by the interstitial cells of Cajal in the myenteric layer (ICC-MY) in cholinergic neuromuscular transmission, we recorded mechanical and electrical activities in response to electrical field stimulation (EFS) of the ileal longitudinal muscle strips from WBB6F1-W/W(V) (W/W(V)) mutant mice, that lacked ICC-MY and compared with those in WBB6F1-+/+ (+/+) control mice. In +/+ muscle strips, EFS induced phasic contractions, which were abolished or strongly attenuated by atropine or tetrodotoxin. In W/W(V) preparations, EFS induced similar phasic contractions, but the cholinergic component was smaller than that in +/+ strips. This was despite of the fact that the contractions because of exogenous applications of carbachol and high K(+) solution in W/W(V) strips were comparable to or rather greater than those in the +/+ preparations. EFS induced atropine-sensitive excitatory junction potentials (EJPs) in the +/+ longitudinal smooth muscle cells but not in W/W(V) cells. In the presence of eserine, EFS induced atropine-sensitive EJPs in W/W(V) cells. These results suggest that ICC-MY mediate the cholinergic neuromuscular transmission in mouse ileal longitudinal smooth muscles. In addition, the other pathway in which ICC-MY are not involved can operate concomitantly.
Collapse
Affiliation(s)
- Yasuyuki Tanahashi
- Department of Animal Medical Sciences, Faculty of Life Sciences, Kyoto Sangyo University, Motoyama, Kamigamo, Kita-Ku, Kyoto, 603-8555, Japan,
| | | | | | | | | | | | | |
Collapse
|
30
|
Lentle RG, Reynolds GW, Janssen PWM. Gastrointestinal tone; its genesis and contribution to the physical processes of digestion. Neurogastroenterol Motil 2013; 25:931-42. [PMID: 24028606 DOI: 10.1111/nmo.12223] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/27/2013] [Accepted: 08/08/2013] [Indexed: 12/24/2022]
Abstract
BACKGROUND Myogenic tone has long been recognised as an important component of gastrointestinal motility. Recent work has clarified the cellular mechanisms that engender tone and the neurogenic and mechanical stimuli that modulate it but has also highlighted cellular and regional specialisation in these mechanisms within the GI tract. Smooth muscle in all segments of the gut has the capability of latching, i.e. can generate ongoing specific rather than tetanic tone. This is likely modulated by both direct and indirect input from agonists such as acetylcholine and mechanoreceptors, the latter originating in ICC-IM, smooth muscle cells or elements of the ENS. Tonic contraction can occur in the absence of phasic contractions or concurrent with them, and it can modulate wall compliance and the capacity of particular segments, thereby affecting the level of on-flow and mixing, both luminal and adjacent to the mucosa. PURPOSE The review seeks to provide an overview of our understanding of the mechanism by which tone is generated and maintained, highlighting its modulation by neurogenic and mechanical stimuli, its mechanical consequences in the walls of the various segments of the gastrointestinal tract and its contribution to flow and mixing of contained digesta.
Collapse
Affiliation(s)
- R G Lentle
- Institute of Food, Nutrition and Human Health, Massey University, Palmerston North, New Zealand
| | | | | |
Collapse
|
31
|
Tanahashi Y, Waki N, Unno T, Matsuyama H, Iino S, Kitazawa T, Yamada M, Komori S. Roles of M2 and M3 muscarinic receptors in the generation of rhythmic motor activity in mouse small intestine. Neurogastroenterol Motil 2013; 25:e687-97. [PMID: 23889852 DOI: 10.1111/nmo.12194] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/05/2013] [Accepted: 06/26/2013] [Indexed: 02/08/2023]
Abstract
BACKGROUND The roles of M2 and M3 muscarinic receptor subtypes in the regulation of gut motor activity were investigated. METHODS We simultaneously recorded changes in the intraluminal pressure (IP) and longitudinal tension (LT) in small intestinal segments from M2 or M3 receptor knockout (KO) and wild-type (WT) mice. KEY RESULTS In the WT preparations, luminal distension induced a continuous rhythmic contractile activity that was characterized by synchronous rises in IP and LT, occurring periodically at a constant interval. Tetrodotoxin completely abolished the response, whereas atropine either abolished or attenuated it. In the majority of the M2 KO preparations, however, no rhythmic activity was observed in response to the luminal distention, even though networks of enteric neurons and interstitial cells of Cajal (ICC) seemed to be intact. Where rhythmic activity did occur in M2 KO preparations, it was atropine resistant. In the M3 KO preparations, the IP and LT were synchronously changed by the luminal distention, but the changes occurred at irregular intervals. The W/W(v) mutant preparations, which lack ICC in the myenteric plexus (ICC-MY), showed results similar to those of the M3 KO preparations. In some of the M2 /M3 double-KO preparations, rhythmic activity was not observed, but in the others, an atropine-resistant rhythmicity appeared. CONCLUSIONS & INFERENCES These results suggest that M2 and M3 muscarinic receptors differentially regulate the intestinal motor activity: M2 receptors play an essential role in the generation of rhythmic motor activity, and M3 receptors have a modulatory role in controlling the periodicity of the rhythmic activity together with the ICC-MY.
Collapse
Affiliation(s)
- Y Tanahashi
- Department of Animal Medical Sciences, Faculty of Life Sciences, Kyoto Sangyo University, Kyoto, Japan
| | | | | | | | | | | | | | | |
Collapse
|
32
|
Bombardi C, Grandis A, Gardini A, Sorteni C, Clavenzani P, Chiocchetti R. Expression of β2 adrenoceptors within enteric neurons of the horse ileum. Res Vet Sci 2013; 95:837-45. [PMID: 23941962 DOI: 10.1016/j.rvsc.2013.07.006] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2013] [Revised: 05/10/2013] [Accepted: 07/08/2013] [Indexed: 12/31/2022]
Abstract
The activity of the gastrointestinal tract is regulated through the activation of adrenergic receptors (ARs). Since data concerning the distribution of ARs in the horse intestine is virtually absent, we investigated the distribution of β2-AR in the horse ileum using double-immunofluorescence. The β2-AR-immunoreactivity (IR) was observed in most (95%) neurons located in submucosal plexus (SMP) and in few (8%) neurons of the myenteric plexus (MP). Tyrosine hydroxylase (TH)-IR fibers were observed close to neurons expressing β2-AR-IR. Since β2-AR is virtually expressed in most neurons located in the horse SMP and in a lower percentage of neurons in the MP, it is reasonable to retain that this adrenergic receptor could regulate the activity of both secretomotor neurons and motor neurons innervating muscle layers and blood vessels. The high density of TH-IR fibers near β2-AR-IR enteric neurons indicates that the excitability of these cells could be directly modulated by the sympathetic system.
Collapse
Affiliation(s)
- Cristiano Bombardi
- Department of Veterinary Medical Science, University of Bologna, 40064 Ozzano dell'Emilia, Bologna, Italy.
| | | | | | | | | | | |
Collapse
|
33
|
Chen JH, Zhang Q, Yu Y, Li K, Liao H, Jiang L, Hong L, Du X, Hu X, Chen S, Yin S, Gao Q, Yin X, Luo H, Huizinga JD. Neurogenic and myogenic properties of pan-colonic motor patterns and their spatiotemporal organization in rats. PLoS One 2013; 8:e60474. [PMID: 23577116 PMCID: PMC3618275 DOI: 10.1371/journal.pone.0060474] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2012] [Accepted: 02/26/2013] [Indexed: 02/06/2023] Open
Abstract
Background and Aims Better understanding of intrinsic control mechanisms of colonic motility will lead to better treatment options for colonic dysmotility. The aim was to investigate neurogenic and myogenic control mechanisms underlying pan-colonic motor patterns. Methods Analysis of in vitro video recordings of whole rat colon motility was used to explore motor patterns and their spatiotemporal organizations and to identify mechanisms of neurogenic and myogenic control using pharmacological tools. Results Study of the pan-colonic spatiotemporal organization of motor patterns revealed: fluid-induced or spontaneous rhythmic propulsive long distance contractions (LDCs, 0.4–1.5/min, involving the whole colon), rhythmic propulsive motor complexes (RPMCs) (0.8–2.5/min, dominant in distal colon), ripples (10–14/min, dominant in proximal colon), segmentation and retrograde contractions (0.1–0.8/min, prominent in distal and mid colon). Spontaneous rhythmic LDCs were the dominant pattern, blocked by tetrodotoxin, lidocaine or blockers of cholinergic, nitrergic or serotonergic pathways. Change from propulsion to segmentation and distal retrograde contractions was most prominent after blocking 5-HT3 receptors. In the presence of all neural blockers, bethanechol consistently evoked rhythmic LDC-like propulsive contractions in the same frequency range as the LDCs, indicating the existence of myogenic mechanisms of initiation and propulsion. Conclusions Neurogenic and myogenic control systems orchestrate distinct and variable motor patterns at different regions of the pan-colon. Cholinergic, nitrergic and serotonergic pathways are essential for rhythmic LDCs to develop. Rhythmic motor patterns in presence of neural blockade indicate the involvement of myogenic control systems and suggest a role for the networks of interstitial cells of Cajal as pacemakers.
Collapse
Affiliation(s)
- Ji-Hong Chen
- Department of Gastroenterology and Hepatology, Renmin Hospital of Wuhan University and Wuhan University Institute of Digestive and Liver Diseases, Wuhan, Hubei, China.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
34
|
Wang JP, Ding GF, Wang QZ. Interstitial cells of Cajal mediate excitatory sympathetic neurotransmission in guinea pig prostate. Cell Tissue Res 2013; 352:479-86. [PMID: 23411811 DOI: 10.1007/s00441-013-1572-3] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2012] [Accepted: 01/17/2013] [Indexed: 01/26/2023]
Abstract
Morphological and functional studies have confirmed that interstitial cells of Cajal (ICCs) are involved in many enteric motor neurotransmission pathways. Recent investigations have demonstrated that human and guinea pig prostate glands possess a distinct cell type with morphological and immunological similarities to ICCs. These prostate ICCs have a close relationship with nerve bundles and smooth muscle cells. Prostate smooth muscle tone is largely induced by stimulation from the sympathetic nervous system, which releases excitatory norepinephrine (NE) to act on the α1-adrenoceptor. We have performed morphological and functional experiments to determine the role of ICCs in sympathetic neurotransmission in the guinea pig prostate based on the hypothesis that prostate ICCs act as mediators of sympathetic neurotransmission. Immunohistochemistry revealed many close points of contact between ICCs and sympathetic nerve bundles and smooth muscle cells. Double-labeled sections revealed that α1-adrenoceptor and the gap junction protein connexin 43 were expressed in prostate ICCs. Surprisingly, prostate ICCs co-expressed tyrosine hydroxylase and dopamine β-hydroxylase, two markers of sympathetic neurons. Functionally, the application of NE evoked a large single inward current in isolated prostate ICCs in a dose-dependent manner. The inward current evoked by NE was mediated via the activation of α1-adrenoceptors, because it was abolished by the non-specific α-adrenoceptor antagonist, phentolamine and the specific α1-adrenoceptor antagonist, prazosin. Thus, ICCs in the guinea pig prostate are target cells for prostate sympathetic nerves and possess the morphological and functional characteristics required to mediate sympathetic signals.
Collapse
Affiliation(s)
- Jiang-ping Wang
- Department of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, People's Republic of China
| | | | | |
Collapse
|
35
|
Li Y, Xue L, Miao Q, Mao F, Yao L, Yuan J, Qin W, Zhao Y, Sun H, Liu F, Wang H. Expression and electrophysiological characteristics of P2X3receptors in interstitial cells of Cajal in rats with partial bladder outlet obstruction. BJU Int 2012; 111:843-51. [PMID: 22882254 DOI: 10.1111/j.1464-410x.2012.11408.x] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Yuxin Li
- Department of Urology; Xijing Hospital; Xi'an; China
| | - Li Xue
- Department of Urology; Xijing Hospital; Xi'an; China
| | - Qing Miao
- Institute of Meteria Medical; The Fourth Military Medical University; Xi'an; China
| | - Fengfeng Mao
- Laboratory Animal Centre; The Fourth Military Medical University; Xi'an; China
| | - Liping Yao
- State Key Laboratory of Cancer Biology and Xijing Hospital of Digestive Diseases; The Fourth Military Medical University; Xi'an; China
| | - Jianlin Yuan
- Department of Urology; Xijing Hospital; Xi'an; China
| | - Weijun Qin
- Department of Urology; Xijing Hospital; Xi'an; China
| | - Yufeng Zhao
- Department of Experimental Basic Medicine; The Fourth Military Medical University; Xi'an; China
| | - Hang Sun
- Department of Urology; Xijing Hospital; Xi'an; China
| | - Fei Liu
- Department of Urology; Xijing Hospital; Xi'an; China
| | - He Wang
- Department of Urology; Xijing Hospital; Xi'an; China
| |
Collapse
|
36
|
Xu WD, Jiang X, Lan L, Wang CH, Tong HX, Wang BX. Long-term culture and cryopreservation of interstitial cells of Cajal. Scand J Gastroenterol 2012; 47:89-98. [PMID: 22050097 DOI: 10.3109/00365521.2011.627445] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
OBJECTIVE Interstitial cells of Cajal (ICCs) in the gastrointestinal tract generate and propagate slow waves and mediate neuromuscular neurotransmission. Damage to ICCs has been described in several gastrointestinal motor disorders, and although many studies have examined ICCs in culture, they have been largely limited to freshly dissociated cells or short-term cultures. An efficient and reliable method to establish a source of ICCs is much needed. The aim of this study was to investigate methods for culturing, subculturing, cryopreservation, and recovery of ICCs. METHODS ICCs were derived from intestinal segments of domestic rabbits, and immunohistochemistry for c-Kit was used to identify ICCs in culture and after recovery. Recovered ICCs were also examined for motilin receptor expression. RESULTS Optimal conditions for ICC culture and cryopreservation were based on cell growth curves and MTT assay. On the basis of these findings, recovered cells were cultured for 7 days and then sorted via flow cytometry based on c-Kit immunoreactivity. The percent of c-Kit positive cells was 64.3%, and the number of ICCs sorted was 6.7 × 10(5). Reverse-transcription polymerase chain reaction and western blotting verified motilin receptor expression in c-Kit-positive ICCs. CONCLUSIONS This is the first study to describe the culture, passage, and recovery of ICCs and to show motilin receptor expression. Our results suggest that ICCs play an important role, at least in some species, in initiating the migrating myoelectric complex induced by motilin.
Collapse
Affiliation(s)
- Wen-Da Xu
- Department of Pediatrics, Tangdu Hospital, Fourth Military Medical University, Xi'an, Shanxi Province, China
| | | | | | | | | | | |
Collapse
|
37
|
Kim SJ, Park JH, Song DK, Park KS, Lee JE, Kim ES, Cho KB, Jang BK, Chung WJ, Hwang JS, Kwon JG, Kim TW. Alterations of colonic contractility in long-term diabetic rat model. J Neurogastroenterol Motil 2011; 17:372-80. [PMID: 22148106 PMCID: PMC3228977 DOI: 10.5056/jnm.2011.17.4.372] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/04/2011] [Revised: 07/28/2011] [Accepted: 08/06/2011] [Indexed: 12/28/2022] Open
Abstract
Background/Aims Dysfunction of the gastrointestinal tract occurs in about 76% of patients who are diabetic for more than 10 years. Although diabetes-related dysfunctions of the stomach such as gastroparesis have been extensively studied over the recent years, studies about the mechanism underlying colonic symptoms in long-term diabetes models are rare. Therefore, the goal of our study was to clarify the nature of colonic dysfunction in a long-term diabetic rat model. Methods The characteristics of colonic smooth muscle were investigated in Otsuka Long-Evans Tokushima Fatty (OLETF) rats, an animal model of type 2 diabetes. These results were compared to those obtained from Long-Evans Tokushima Otsuka (LETO) control rats. Results Spontaneous contractility of the proximal colon was significantly decreased in the diabetic rats compared to the controls, while the spontaneous contractility of the distal colon was not. The number of interstitial cells of Cajal networks in the proximal colon was greatly decreased in diabetic rats compared to the controls. Contractility of the proximal colon in response to carbachol, an acetylcholine receptor agonist, was significantly weaker in the diabetic rats. In addition, the degree of relaxation in response to nitric oxide in the proximal colon of diabetic rats also appeared to be attenuated. Conclusions The results from our study suggest that the decrease of interstitial cells of Cajal network, cholinergic receptors, and neuronal nitric oxide synthase in the proximal colon plays important roles in diabetes-related dysfunction of colon.
Collapse
Affiliation(s)
- Sun Joo Kim
- Department of Physiology, Keimyung University School of Medicine, Daegu, Korea
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
38
|
Lees-Green R, Du P, O'Grady G, Beyder A, Farrugia G, Pullan AJ. Biophysically based modeling of the interstitial cells of cajal: current status and future perspectives. Front Physiol 2011; 2:29. [PMID: 21772822 PMCID: PMC3131535 DOI: 10.3389/fphys.2011.00029] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2011] [Accepted: 06/13/2011] [Indexed: 12/29/2022] Open
Abstract
Gastrointestinal motility research is progressing rapidly, leading to significant advances in the last 15 years in understanding the cellular mechanisms underlying motility, following the discovery of the central role played by the interstitial cells of Cajal (ICC). As experimental knowledge of ICC physiology has expanded, biophysically based modeling has become a valuable tool for integrating experimental data, for testing hypotheses on ICC pacemaker mechanisms, and for applications in in silico studies including in multiscale models. This review is focused on the cellular electrophysiology of ICC. Recent evidence from both experimental and modeling domains have called aspects of the existing pacemaker theories into question. Therefore, current experimental knowledge of ICC pacemaker mechanisms is examined in depth, and current theories of ICC pacemaking are evaluated and further developed. Existing biophysically based ICC models and their physiological foundations are then critiqued in light of the recent advances in experimental knowledge, and opportunities to improve these models are identified. The review concludes by examining several potential clinical applications of biophysically based ICC modeling from the subcellular through to the organ level, including ion channelopathies and ICC network degradation.
Collapse
Affiliation(s)
- Rachel Lees-Green
- Auckland Bioengineering Institute, The University of Auckland Auckland, New Zealand
| | | | | | | | | | | |
Collapse
|
39
|
Shahi PK, Choi S, Zuo DC, Yeum CH, Yoon PJ, Lee J, Kim YD, Park CG, Kim MY, Shin HR, Oh HJ, Jun JY. 5-hydroxytryptamine generates tonic inward currents on pacemaker activity of interstitial cells of cajal from mouse small intestine. THE KOREAN JOURNAL OF PHYSIOLOGY & PHARMACOLOGY : OFFICIAL JOURNAL OF THE KOREAN PHYSIOLOGICAL SOCIETY AND THE KOREAN SOCIETY OF PHARMACOLOGY 2011; 15:129-35. [PMID: 21860590 DOI: 10.4196/kjpp.2011.15.3.129] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/08/2011] [Revised: 06/13/2011] [Accepted: 06/14/2011] [Indexed: 12/22/2022]
Abstract
In this study we determined whether or not 5-hydroxytryptamine (5-HT) has an effect on the pacemaker activities of interstitial cells of Cajal (ICC) from the mouse small intestine. The actions of 5-HT on pacemaker activities were investigated using a whole-cell patch-clamp technique, intracellular Ca(2+) ([Ca(2+)](i)) analysis, and RT-PCR in ICC. Exogenously-treated 5-HT showed tonic inward currents on pacemaker currents in ICC under the voltage-clamp mode in a dose-dependent manner. Based on RT-PCR results, we found the existence of 5-HT(2B, 3, 4, and 7) receptors in ICC. However, SDZ 205557 (a 5-HT(4) receptor antagonist), SB 269970 (a 5-HT7 receptor antagonist), 3-tropanylindole - 3 - carboxylate methiodide (3-TCM; a 5-HT(3) antagonist) blocked the 5-HT-induced action on pacemaker activity, but not SB 204741 (a 5-HT(2B) receptor antagonist). Based on [Ca(2+)](i) analysis, we found that 5-HT increased the intensity of [Ca(2+)](i). The treatment of PD 98059 or JNK II inhibitor blocked the 5-HT-induced action on pacemaker activity of ICC, but not SB 203580. In summary, these results suggest that 5-HT can modulate pacemaker activity through 5-HT(3, 4, and 7) receptors via [Ca(2+)](i) mobilization and regulation of mitogen-activated protein kinases.
Collapse
Affiliation(s)
- Pawan Kumar Shahi
- Department of Physiology, College of Medicine, Chosun University, Gwangju 501-759, Korea
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
40
|
Identification and functional response of interstitial Cajal-like cells from rat mesenteric artery. Cell Tissue Res 2011; 343:509-19. [PMID: 21243375 DOI: 10.1007/s00441-010-1114-1] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2010] [Accepted: 12/02/2010] [Indexed: 01/06/2023]
Abstract
Cells with irregular shapes, numerous long thin filaments, and morphological similarities to the gastrointestinal interstitial cells of Cajal (ICCs) have been observed in the wall of some blood vessels. These ICC-like cells (ICC-LCs) do not correspond to the other cell types present in the arterial wall: smooth muscle cells (SMCs), endothelial cells, fibroblasts, inflammatory cells, or pericytes. However, no clear physiological role has as yet been determined for ICC-LCs in the vascular wall. The aim of this study has been to identify and characterize the functional response of ICC-LCs in rat mesenteric arteries. We have observed ICC-LCs and identified them morphologically and histologically in three different environments: isolated artery, freshly dispersed cells, and primary-cultured cells from the arterial wall. Like ICCs but unlike SMCs, ICC-LCs are positively stained by methylene blue. Cells morphologically resembling methylene-blue-positive cells are also positive for the ICC and ICC-LC markers α-smooth muscle actin and desmin. Furthermore, the higher expression of vimentin in ICC-LCs compared with SMCs allows a clear discrimination between these two cell types. At the functional level, the differences observed in the variations of cytosolic free calcium concentration of freshly dispersed SMCs and ICC-LCs in response to a panel of vasoactive molecules show that ICC-LCs, unlike SMCs, do not respond to exogenous ATP and [Arginine](8)-vasopressin.
Collapse
|
41
|
Huizinga JD, Lammers WJEP, Mikkelsen HB, Zhu Y, Wang XY. Toward a concept of stretch coupling in smooth muscle: a thesis by Lars Thuneberg on contractile activity in neonatal interstitial cells of Cajal. Anat Rec (Hoboken) 2010; 293:1543-52. [PMID: 20687173 DOI: 10.1002/ar.21214] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
The hypothesis was put forward by Thuneberg that rhythmically contracting interstitial cells of Cajal (ICC) were sensing stretch of the musculature and that this information was transmitted to smooth muscle cells via peg and socket contacts. The present study provides the evidence for the contractile nature of ICC as perceived by Thuneberg. The contractile activity is shown by video frame subtraction and by tracking areas of interest in sequential video frames. Thuneberg used neonatal ICC in culture maintained between two coverslips thereby allowing growth factors to quickly reach optimal concentrations. Contractions of ICC were seen to precede smooth muscle contractions. In addition, strong contractions were observed solely in branches of ICC. It is hoped that this communication will stimulate discussion about the contractile nature of ICC and that this phenomenon will eventually find its place amongst the physiological properties of the ICC networks of the gut musculature.
Collapse
Affiliation(s)
- Jan D Huizinga
- Farncombe Family Intestinal Health Research Institute, Department of Medicine, McMaster University, Hamilton, Ontario, Canada.
| | | | | | | | | |
Collapse
|
42
|
Tong W, Jia H, Zhang L, Li C, Ridolfi TJ, Liu B. Exogenous stem cell factor improves interstitial cells of Cajal restoration after blockade of c-kit signaling pathway. Scand J Gastroenterol 2010; 45:844-51. [PMID: 20377480 DOI: 10.3109/00365521003782371] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
OBJECTIVE Interstitial cells of Cajal (ICC) have been endowed with considerable intrinsic plasticity. Blockade of the c-kit signaling pathway results in the shift of ICC towards a smooth muscle-like phenotype. Little is known about stem cell factor (SCF), the ligand of c-kit, and the role it plays in the process of restoration. The aim of this study was to determine whether exogenous SCF can promote ICC replenishment following the blockade of c-kit signaling. MATERIAL AND METHODS Neutralizing anti-c-kit monoclonal antibody (ACK2) was administered to mice for 8 days after birth. Jejunal muscle strips were cultured up to 7 days. Electrical rhythmic changes were monitored and ICC were examined by immunohistochemistry. Expression of c-kit mRNA was detected by reverse transcriptase-polymerase chain reaction, and expression of Kit protein was detected by Western blot. RESULTS When c-kit receptors were blocked, ICC nearly disappeared from the jejunum accompanied by the loss of electrical slow waves. By day 7, after in vitro culture with SCF (100 ng/ml), the amplitude of muscle strip slow waves was restored to 0.19 +/- 0.07 mV (p < 0.05), whereas the frequency recovered to 13.7 +/- 3.32/min (p < 0.01). Furthermore, labeling for c-kit(+) cells in the myenteric plexus increased and c-kit mRNA and protein expression were up-regulated compared to that of non-treatment with SCF. CONCLUSIONS The c-kit signaling pathway, activated by SCF, is the critical pathway associated with the control of ICC survival and proliferation. The restoration of ICC number and jejunal electrical rhythm, resulting from blockade of the c-kit signaling pathway, could be facilitated by local SCF administration.
Collapse
Affiliation(s)
- Weidong Tong
- Department of General Surgery, Daping Hospital, Third Military Medical University, Chongqing, China
| | | | | | | | | | | |
Collapse
|
43
|
Ahn SW, Kim SH, Kim JH, Choi S, Yeum CH, Wie HW, Sun JM, So I, Jun JY. Phentolamine inhibits the pacemaker activity of mouse interstitial cells of Cajal by activating ATP-sensitive K+ channels. Arch Pharm Res 2010; 33:479-89. [DOI: 10.1007/s12272-010-0319-x] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2009] [Revised: 01/07/2010] [Accepted: 01/18/2010] [Indexed: 01/18/2023]
|
44
|
Miyamoto-Kikuta S, Ezaki T, Komuro T. Distribution and morphological characteristics of the interstitial cells of Cajal in the ileocaecal junction of the guinea-pig. Cell Tissue Res 2009; 338:29-35. [PMID: 19823824 DOI: 10.1007/s00441-009-0854-2] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2009] [Accepted: 07/30/2009] [Indexed: 01/02/2023]
Abstract
The guinea-pig ileocaecal junction including the valve was studied by immunohistochemistry to clarify the organization of the muscle bundles, the enteric nerves and the interstitial cells of Cajal (ICC). This region clearly exhibited characteristic features in the distribution patterns of ICC in a proximal to distal direction: (1) the thickened portion of the terminal ileum immediately adjacent to the ileocecal junction contained many ICC throughout the circular (ICC-CM) and longitudinal (ICC-LM) muscle layers, but ICC were few or absent in the rest of the ileum; (2) the ileal side of the valve contained ICC associated with the deep muscular plexus (ICC-DMP) as in the small intestine, whereas ICC-DMP were absent in the caecal side as in the caecum; (3) the valve contained many ICC-CM and ICC-LM in both the ileal and caecal sides; (4) many ICC associated with the myenteric plexus were observed in both the ileal and caecal sides of the valve, whereas they were only sparsely found in the caecum; (5) ICC were also observed around the submucosal plexus in a confined area of the terminal ileum and the ileocaecal valve. These observations provide morphological evidence that the terminal ileum and ileocaecal valve are specially equipped for their active involvement in the movement of the junctional area.
Collapse
Affiliation(s)
- Sachiko Miyamoto-Kikuta
- Department of Anatomy and Developmental Biology, Tokyo Women's Medical University, Shinjuku, Tokyo, 162-8666, Japan.
| | | | | |
Collapse
|
45
|
Garcia-Lopez P, Garcia-Marin V, Martínez-Murillo R, Freire M. Updating old ideas and recent advances regarding the Interstitial Cells of Cajal. ACTA ACUST UNITED AC 2009; 61:154-69. [PMID: 19520112 DOI: 10.1016/j.brainresrev.2009.06.001] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2009] [Revised: 05/30/2009] [Accepted: 06/01/2009] [Indexed: 12/11/2022]
Abstract
Since their discovery by Cajal in 1889, the Interstitial Cells of Cajal (ICC) have generated much controversy in the scientific community. Indeed, the nervous, muscle or fibroblastic nature of the ICC has remained under debate for more than a century, as has their possible physiological function. Cajal and his colleagues considered them to be neurons, while contemporary histologists like Kölliker and Dogiel categorized these cells as fibroblasts. More recently, the role of ICC in the origin of slow-wave peristaltism has been elucidated, and several studies have shown that they participate in neurotransmission (intercalation theory). The fact that ICC assemble in the circular muscular layer and that they originate from cells which emerge from the ventral neural tube (VENT cells), a source of neurons, glia and ICC precursors other than the neural crest, suggests a neural origin for this particular subset of ICC. The discovery that ICC express the Kit protein, a type III tyrosine kinase receptor encoded by the proto-oncogene c-kit, has helped better understand their physiological role and implication in pathological conditions. Gleevec, a novel molecule designed to inhibit the mutant activated version of c-Kit receptors, is the drug of choice to treat the so-called gastrointestinal stromal tumours (GIST), the most common non-epithelial neoplasm of the gastrointestinal tract. Here we review Cajal's original contributions with the aid of unique images taken from Cajal's histological slides (preserved at the Cajal Museum, Cajal Institute, CSIC). In addition, we present a historical review of the concepts associated with this particular cell type, emphasizing current data that has advanced our understanding of the role these intriguing cells fulfil.
Collapse
Affiliation(s)
- P Garcia-Lopez
- Cajal Institute, CSIC, Avda Doctor Arce 37, 28002 - Madrid, Spain
| | | | | | | |
Collapse
|
46
|
So KY, Kim SH, Sohn HM, Choi SJ, Parajuli SP, Choi S, Yeum CH, Yoon PJ, Jun JY. Carbachol regulates pacemaker activities in cultured interstitial cells of Cajal from the mouse small intestine. Mol Cells 2009; 27:525-31. [PMID: 19466600 DOI: 10.1007/s10059-009-0076-1] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2008] [Revised: 03/17/2009] [Accepted: 03/24/2009] [Indexed: 11/25/2022] Open
Abstract
We studied the effect of carbachol on pacemaker currents in cultured interstitial cells of Cajal (ICC) from the mouse small intestine by muscarinic stimulation using a whole cell patch clamp technique and Ca2+-imaging. ICC generated periodic pacemaker potentials in the current-clamp mode and generated spontaneous inward pacemaker currents at a holding potential of-70 mV. Exposure to carbachol depolarized the membrane and produced tonic inward pacemaker currents with a decrease in the frequency and amplitude of the pacemaker currents. The effects of carbachol were blocked by 1-dimethyl-4-diphenylacetoxypiperidinium, a muscarinic M(3) receptor antagonist, but not by methotramine, a muscarinic M(2) receptor antagonist. Intracellular GDP-beta-S suppressed the carbachol-induced effects. Carbachol-induced effects were blocked by external Na+-free solution and by flufenamic acid, a non-selective cation channel blocker, and in the presence of thapsigargin, a Ca2+-ATPase inhibitor in the endoplasmic reticulum. However, carbachol still produced tonic inward pacemaker currents with the removal of external Ca2+. In recording of intracellular Ca2+ concentrations using fluo 3-AM dye, carbachol increased intracellular Ca2+ concentrations with increasing of Ca2+ oscillations. These results suggest that carbachol modulates the pacemaker activity of ICC through the activation of non-selective cation channels via muscarinic M(3) receptors by a G-protein dependent intracellular Ca2+ release mechanism.
Collapse
Affiliation(s)
- Keum Young So
- Department of Anesthesiology, College of Medicine, Chosun University, Gwangju 501-759, Korea
| | | | | | | | | | | | | | | | | |
Collapse
|
47
|
Abramowitz J, Birnbaumer L. Physiology and pathophysiology of canonical transient receptor potential channels. FASEB J 2009; 23:297-328. [PMID: 18940894 PMCID: PMC2630793 DOI: 10.1096/fj.08-119495] [Citation(s) in RCA: 244] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2008] [Accepted: 09/25/2008] [Indexed: 11/11/2022]
Abstract
The existence of a mammalian family of TRPC ion channels, direct homologues of TRP, the visual transduction channel of flies, was discovered during 1995-1996 as a consequence of research into the mechanism by which the stimulation of the receptor-Gq-phospholipase Cbeta signaling pathway leads to sustained increases in intracellular calcium. Mammalian TRPs, TRPCs, turned out to be nonselective, calcium-permeable cation channels, which cause both a collapse of the cell's membrane potential and entry of calcium. The family comprises 7 members and is widely expressed. Many cells and tissues express between 3 and 4 of the 7 TRPCs. Despite their recent discovery, a wealth of information has accumulated, showing that TRPCs have widespread roles in almost all cells studied, including cells from excitable and nonexcitable tissues, such as the nervous and cardiovascular systems, the kidney and the liver, and cells from endothelia, epithelia, and the bone marrow compartment. Disruption of TRPC function is at the root of some familial diseases. More often, TRPCs are contributing risk factors in complex diseases. The present article reviews what has been uncovered about physiological roles of mammalian TRPC channels since the time of their discovery. This analysis reveals TRPCs as major and unsuspected gates of Ca(2+) entry that contribute, depending on context, to activation of transcription factors, apoptosis, vascular contractility, platelet activation, and cardiac hypertrophy, as well as to normal and abnormal cell proliferation. TRPCs emerge as targets for a thus far nonexistent field of pharmacological intervention that may ameliorate complex diseases.
Collapse
Affiliation(s)
- Joel Abramowitz
- Transmembrane Signaling Group, Laboratory of Neurobiology, National Institute of Environmental Health Sciences, National Institutes of Health, Research Triangle Park, NC 27709, USA.
| | | |
Collapse
|
48
|
Harhun MI, Szewczyk K, Laux H, Prestwich SA, Gordienko DV, Moss RF, Bolton TB. Interstitial cells from rat middle cerebral artery belong to smooth muscle cell type. J Cell Mol Med 2008; 13:4532-9. [PMID: 19175686 PMCID: PMC4515068 DOI: 10.1111/j.1582-4934.2008.00567.x] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022] Open
Abstract
It is now established that non-contractile cells with thin filopodia, also called vascular interstitial cells (VICs), are constitutively present in the media of many, if not all, blood vessels. The aim of this study was to determine the type of cell lineage to which arterial VICs belong using immunocytochemical, and real-time and reverse transcription PCR (RT-PCR). Using RT-PCR, we compared gene expression profiles of single VICs and smooth muscle cells (SMCs) freshly dispersed from rat middle cerebral artery. Both VICs and SMCs expressed the SMC marker, smooth muscle myosin heavy chain (SM-MHC), but did not express fibroblast, pericyte, neuronal, mast cell, endothelial or stem cell markers. Freshly isolated VICs also did not express c-kit, which is the marker for interstitial cells of Cajal in the gastrointestinal tract. Immunocytochemical labelling of contractile proteins showed that VICs and SMCs expressed SM-MHC similarly to the same degree, but VICs in contrast to SMCs had decreased expression of alpha-SM-actin and very low or no expression of calponin. Real-time RT-PCR was consistent with immunocytochemical experiments and showed that VICs had four times lower gene expression of calponin comparing to SMCs, which may explain VICs' inability to contract. VICs had greater expression than SMCs of structural proteins such as non-muscular beta-actin and desmin. The results obtained suggest that VICs represent a subtype of SMCs and may originate from the same precursor as SMCs, but later develop filopodia and a non-contractile cell phenotype.
Collapse
Affiliation(s)
- Maksym I Harhun
- Ion Channels and Cell Signalling Centre, Division of Basic Medical Sciences, St. George's, University of London, London, United Kingdom.
| | | | | | | | | | | | | |
Collapse
|
49
|
Identification and distribution of interstitial Cajal cells in human pulmonary veins. Heart Rhythm 2008; 5:1063-7. [DOI: 10.1016/j.hrthm.2008.03.057] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/22/2007] [Accepted: 03/27/2008] [Indexed: 01/08/2023]
|
50
|
Immunohistochemical localisation of pre-synaptic muscarinic receptor subtype-2 (M2r) in the enteric nervous system of guinea-pig ileum. Cell Tissue Res 2008; 332:37-48. [DOI: 10.1007/s00441-007-0533-0] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2007] [Accepted: 10/01/2007] [Indexed: 12/31/2022]
|