1
|
Douglass MS, Kaplowitz MR, Zhang Y, Fike CD. Impact of l-citrulline on nitric oxide signaling and arginase activity in hypoxic human pulmonary artery endothelial cells. Pulm Circ 2023; 13:e12221. [PMID: 37063746 PMCID: PMC10091859 DOI: 10.1002/pul2.12221] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/04/2022] [Revised: 03/28/2023] [Accepted: 03/30/2023] [Indexed: 04/18/2023] Open
Abstract
Impaired nitric oxide (NO) signaling contributes to the development of pulmonary hypertension (PH). The l-arginine precursor, l-citrulline, improves NO signaling and has therapeutic potential in PH. However, there is evidence that l-citrulline might increase arginase activity, which in turn, has been shown to contribute to PH. Our major purpose was to determine if l-citrulline increases arginase activity in hypoxic human pulmonary artery endothelial cells (PAECs). In addition, to avoid potential adverse effects from high dose l-citrulline monotherapy, we evaluated whether the effect on NO signaling is greater using co-treatment with l-citrulline and another agent that improves NO signaling, folic acid, than either alone. Arginase activity was measured in human PAECs cultured under hypoxic conditions in the presence of l-citrulline (0-1 mM). NO production and endothelial nitric oxide synthase (eNOS) coupling, as assessed by eNOS dimer-to-monomer ratios, were measured in PAECs treated with l-citrulline and/or folic acid (0.2 μM). Arginase activity increased in hypoxic PAECs treated with 1 mM but not with either 0.05 or 0.1 mM l-citrulline. Co-treatment with folic acid and 0.1 mM l-citrulline increased NO production and eNOS dimer-to-monomer ratios more than treatment with either alone. The potential to increase arginase activity suggests that there might be plasma l-citrulline concentrations that should not be exceeded when using l-citrulline to treat PH. Rather than progressively increasing the dose of l-citrulline as a monotherapy, co-therapy with l-citrulline and folic acid merits consideration, due to the possibility of achieving efficacy at lower doses and minimizing side effects.
Collapse
Affiliation(s)
| | | | - Yongmei Zhang
- Department of PediatricsUniversity of UtahSalt Lake CityUtahUSA
| | - Candice D. Fike
- Department of PediatricsUniversity of UtahSalt Lake CityUtahUSA
| |
Collapse
|
2
|
The influence of ancillary NCS− ions on structural, spectroscopic, magnetic and biological properties of copper(II) l-argininato complex. J Mol Struct 2022. [DOI: 10.1016/j.molstruc.2022.134776] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
3
|
Olabiyi AA, Ajayi K. Diet, herbs and erectile function: A good friendship! Andrologia 2022; 54:e14424. [PMID: 35319120 DOI: 10.1111/and.14424] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2021] [Revised: 02/15/2022] [Accepted: 03/10/2022] [Indexed: 11/30/2022] Open
Abstract
Plants and plant materials have been used for thousands of years to treat and control erectile dysfunction in men. This practice has spanned many cultures and traditions around the world, with the therapeutic effects of many plants attributed to their phytochemical constituents. This review explains how polyphenols (including phenolic acids, flavonoids, terpenoids, carotenoids, alkaloids and polyunsaturated fatty acids) in plants and plant food products interact with key enzymes (phosphodiesterase-5 [PDE-5], angiotensin-converting enzyme [ACE], acetylcholinesterase [AChE], adenosine deaminase [ADA] and arginase) associated with erectile dysfunction. By modulating or altering the activity of these physiologically important enzymes, various bioactive compounds from plants or plant products can synergistically or additively provide tremendous protection against male erectile problems.
Collapse
Affiliation(s)
- Ayodeji A Olabiyi
- Department of Medical Biochemistry, Afe Babalola University Ado-Ekiti, Ado-Ekiti, Nigeria
| | - Kayode Ajayi
- Department of Nutrition and Dietetics, Afe Babalola University Ado-Ekiti, Ado-Ekiti, Nigeria
| |
Collapse
|
4
|
Li X, Li Y, Yu Q, Qian P, Huang H, Lin Y. Metabolic reprogramming of myeloid-derived suppressor cells: An innovative approach confronting challenges. J Leukoc Biol 2021; 110:257-270. [PMID: 34075637 PMCID: PMC8361984 DOI: 10.1002/jlb.1mr0421-597rr] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2020] [Revised: 04/11/2021] [Accepted: 04/12/2021] [Indexed: 02/06/2023] Open
Abstract
Immune cells such as T cells, macrophages, dendritic cells, and other immunoregulatory cells undergo metabolic reprogramming in cancer and inflammation-derived microenvironment to meet specific physiologic and functional demands. Myeloid-derived suppressor cells (MDSCs) are a heterogeneous population of immature myeloid cells that are characterized by immunosuppressive activity, which plays a key role in host immune homeostasis. In this review, we have discussed the core metabolic pathways, including glycolysis, lipid and fatty acid biosynthesis, and amino acid metabolism in the MDSCs under various pathologic situations. Metabolic reprogramming is a determinant of the phenotype and functions of MDSCs, and is therefore a novel therapeutic possibility in various diseases.
Collapse
Affiliation(s)
- Xiaoqing Li
- Bone Marrow Transplantation Center, the First Affiliated Hospital, School of MedicineZhejiang UniversityHangzhouZhejiangChina
- Institute of HematologyZhejiang UniversityHangzhouZhejiangChina
- Zhejiang Province Engineering Laboratory for Stem Cell and Immunity TherapyHangzhouZhejiangChina
- Liangzhu LaboratoryZhejiang University Medical CenterHangzhouZhejiangChina
| | - Yixue Li
- Bone Marrow Transplantation Center, the First Affiliated Hospital, School of MedicineZhejiang UniversityHangzhouZhejiangChina
- Institute of HematologyZhejiang UniversityHangzhouZhejiangChina
- Zhejiang Province Engineering Laboratory for Stem Cell and Immunity TherapyHangzhouZhejiangChina
- Liangzhu LaboratoryZhejiang University Medical CenterHangzhouZhejiangChina
| | - Qinru Yu
- Bone Marrow Transplantation Center, the First Affiliated Hospital, School of MedicineZhejiang UniversityHangzhouZhejiangChina
- Institute of HematologyZhejiang UniversityHangzhouZhejiangChina
- Zhejiang Province Engineering Laboratory for Stem Cell and Immunity TherapyHangzhouZhejiangChina
- Liangzhu LaboratoryZhejiang University Medical CenterHangzhouZhejiangChina
| | - Pengxu Qian
- Institute of HematologyZhejiang UniversityHangzhouZhejiangChina
- Zhejiang Province Engineering Laboratory for Stem Cell and Immunity TherapyHangzhouZhejiangChina
- Liangzhu LaboratoryZhejiang University Medical CenterHangzhouZhejiangChina
| | - He Huang
- Bone Marrow Transplantation Center, the First Affiliated Hospital, School of MedicineZhejiang UniversityHangzhouZhejiangChina
- Institute of HematologyZhejiang UniversityHangzhouZhejiangChina
- Zhejiang Province Engineering Laboratory for Stem Cell and Immunity TherapyHangzhouZhejiangChina
- Liangzhu LaboratoryZhejiang University Medical CenterHangzhouZhejiangChina
| | - Yu Lin
- Bone Marrow Transplantation Center, the First Affiliated Hospital, School of MedicineZhejiang UniversityHangzhouZhejiangChina
- Institute of HematologyZhejiang UniversityHangzhouZhejiangChina
- Zhejiang Province Engineering Laboratory for Stem Cell and Immunity TherapyHangzhouZhejiangChina
- Liangzhu LaboratoryZhejiang University Medical CenterHangzhouZhejiangChina
| |
Collapse
|
5
|
Sharma V, Aggarwal A, Jacob J, Sahni D. Myeloid-derived suppressor cells: Bridging the gap between inflammation and pancreatic adenocarcinoma. Scand J Immunol 2021; 93:e13021. [PMID: 33455004 DOI: 10.1111/sji.13021] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2020] [Revised: 01/09/2021] [Accepted: 01/10/2021] [Indexed: 12/29/2022]
Abstract
Pancreatic cancer has been identified as one of the deadliest malignancies because it remains asymptomatic and usually presents in the advanced stage. Tumour immune evasion is a well-known mechanism of tumorigenesis in various forms of human malignancies. Chronic inflammation via complex networking of various inflammatory cytokines in the local tissue microenvironment dysregulates the immune system and support tumour development. Pro-inflammatory mediators present in the tumour microenvironment increase the tumour burden by causing immune suppression through the generation of myeloid-derived suppressor cells (MDSCs) and T regulatory cells. These cells, along-with myofibroblasts, create a highly immunosuppressive and resistant tumour microenvironment and are thus considered as one of the culprits for the failure of anti-cancer chemotherapies in pancreatic adenocarcinoma patients. Targeting these MDSCs using various combinatorial approaches might have the potential for abrogating the resistance and suppressive nature of the pancreatic tumour microenvironment. Therefore, there is more curiosity in studying the crosstalk of MDSCs with other immune cells during pathological conditions and the underlying mechanisms of immunosuppression in the current scenario. In this article, the possible role of MDSCs in inflammation-mediated tumour progression of pancreatic adenocarcinoma has been discussed.
Collapse
Affiliation(s)
- Vinit Sharma
- Department of Anatomy, Post Graduate Institute of Medical Education and Research (PGIMER), Chandigarh, India
| | - Anjali Aggarwal
- Department of Anatomy, Post Graduate Institute of Medical Education and Research (PGIMER), Chandigarh, India
| | - Justin Jacob
- Department of Anatomy, Post Graduate Institute of Medical Education and Research (PGIMER), Chandigarh, India
| | - Daisy Sahni
- Department of Anatomy, Post Graduate Institute of Medical Education and Research (PGIMER), Chandigarh, India
| |
Collapse
|
6
|
Douglass MS, Zhang Y, Kaplowitz MR, Fike CD. L-citrulline increases arginase II protein levels and arginase activity in hypoxic piglet pulmonary artery endothelial cells. Pulm Circ 2021; 11:20458940211006289. [PMID: 33948161 PMCID: PMC8053766 DOI: 10.1177/20458940211006289] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/08/2021] [Accepted: 03/08/2021] [Indexed: 11/15/2022] Open
Abstract
The L-arginine precursor, L-citrulline, re-couples endothelial nitric oxide synthase, increases nitric oxide production, and ameliorates chronic hypoxia-induced pulmonary hypertension in newborn pigs. L-arginine can induce arginase, which, in turn, may diminish nitric oxide production. Our major purpose was to determine if L-citrulline increases arginase activity in hypoxic piglet pulmonary arterial endothelial cells, and if so, concomitantly impacts the ability to increase endothelial nitric oxide synthase re-coupling and nitric oxide production. Piglet pulmonary arterial endothelial cells were cultured in hypoxic conditions with L-citrulline (0-3 mM) and/or the arginase inhibitor S-(2-boronoethyl)-L-cysteine. We measured arginase activity and nitric oxide production. We assessed endothelial nitric oxide synthase coupling by measuring endothelial nitric oxide synthase dimers and monomers. L-citrulline concentrations ≥0.5 mM increased arginase activity in hypoxic pulmonary arterial endothelial cells. L-citrulline concentrations ≥0.1 mM increased nitric oxide production and concentrations ≥0.5 mM elevated endothelial nitric oxide synthase dimer-to-monomer ratios. Co-treatment with L-citrulline and S-(2-boronoethyl)-L-cysteine elevated endothelial nitric oxide synthase dimer-to-monomer ratios more than sole treatment. Despite inducing arginase, L-citrulline increased nitric oxide production and endothelial nitric oxide synthase coupling in hypoxic piglet pulmonary arterial endothelial cells. However, these dose-dependent findings raise the possibility that there could be L-citrulline concentrations that elevate arginase to levels that negate improvements in endothelial nitric oxide synthase dysfunction. Moreover, our findings suggest that combining an arginase inhibitor with L-citrulline merits evaluation as a treatment for chronic hypoxia-induced pulmonary hypertension.
Collapse
Affiliation(s)
| | - Yongmei Zhang
- Department of Pediatrics, University of Utah, Salt Lake City, UT, USA
| | - Mark R Kaplowitz
- Department of Pediatrics, University of Utah, Salt Lake City, UT, USA
| | - Candice D Fike
- Department of Pediatrics, University of Utah, Salt Lake City, UT, USA
| |
Collapse
|
7
|
Dahou S, Smahi MCE, Nouari W, Dahmani Z, Benmansour S, Ysmail-Dahlouk L, Miliani M, Yebdri F, Fakir N, Laoufi MY, Chaib-Draa M, Tourabi A, Aribi M. L-Threoascorbic acid treatment promotes S. aureus-infected primary human endothelial cells survival and function, as well as intracellular bacterial killing, and immunomodulates the release of IL-1β and soluble ICAM-1. Int Immunopharmacol 2021; 95:107476. [PMID: 33676147 DOI: 10.1016/j.intimp.2021.107476] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2020] [Revised: 02/02/2021] [Accepted: 02/03/2021] [Indexed: 12/16/2022]
Abstract
BACKGROUND Vitamin C (ascorbic acid, AscH2) has been shown to enhance immunity. Here, we studied its immunomodulatory effect on human endothelial cells (ECs) during S. aureus infection. MATERIALS AND METHODS The ex vivo effects of AscH2 were performed on primary human umbilical vein endothelial cells (HUVECs) infected or not with S. aureus. RESULTS AscH2 treatment induced a marked downregulation of nitric oxide (NO) production and a moderate upregulation of arginase activity in S. aureus-infected HUVECs (respectively, p < 0.05 and p > 0.05). Although the upregulated release levels of soluble intercellular adhesion molecular 1 (sICAM-1/sCD54) and sE-selectin (sCD62E) molecules were not significantly different between treated and untreated S. aureus-infected HUVECs, AscH2 treatment induced reversing effect on sICAM-1 release when comparing to uninfected control HUVECs. Moreover, AscH2 treatment appears to have a significant effect on preventing HUVEC necrosis induced by S. aureus infection (p < 0.05). Furthermore, AscH2 treatment induced a significant upregulation of cell protective redox biomarker in S. aureus-infected, as shown by superoxide dismutase (SOD) activity (p < 0.05), but not by catalase activity (p > 0.05). Additionally, S. aureus infection markedly downregulated total bound calcium ions (bCa2+) levels as compared to control HUVECs, whereas, AscH2 treatment induced a slight upregulation of bCa2+ levels in infected HUVECs as compared to infected and untreated HUVECs (p > 0.05). On the other hand, AscH2 treatment downregulated increased total cellular cholesterol content (tccCHOL) levels in HUVECs induced by S. aureus infection (p < 0.05). In addition, AscH2 treatment markedly reversed S. aureus effect on upregulation of intracellular glucose (iGLU) levels within infected HUVECs (p < 0.05). Moreover, AscH2 treatment significantly downregulated S. aureus growth (p < 0.05), and significantly upregulated bacterial internalization and intracellular killing by HUVECs (p < 0.05), as well as their cell cycle activation (p < 0.01). Finally, AscH2 treatment has a slight effect on the production of interleukin 6 (IL-6), but induced a marked downregulation of that of IL-1β in S. aureus-infected HUVECs (respectively, p > 0.05, and p < 0.05). CONCLUSIONS Our outcomes demonstrated that, during S. aureus infection, AscH2 treatment promotes human ECs survival and function, as well as prevents inflammatory response exacerbation, while inducing bactericidal activity.
Collapse
Affiliation(s)
- Sara Dahou
- Laboratory of Applied Molecular Biology and Immunology, W0414100, University of Tlemcen, 13000 Tlemcen, Algeria
| | - Mohammed Chems-Eddine Smahi
- Laboratory of Applied Molecular Biology and Immunology, W0414100, University of Tlemcen, 13000 Tlemcen, Algeria; Neonatal Department of Specialized Maternal and Child Hospital of Tlemcen, 13000, Tlemcen, Algeria
| | - Wafa Nouari
- Laboratory of Applied Molecular Biology and Immunology, W0414100, University of Tlemcen, 13000 Tlemcen, Algeria
| | - Zoheir Dahmani
- Laboratory of Applied Molecular Biology and Immunology, W0414100, University of Tlemcen, 13000 Tlemcen, Algeria
| | - Souheila Benmansour
- Laboratory of Applied Molecular Biology and Immunology, W0414100, University of Tlemcen, 13000 Tlemcen, Algeria; Neonatal Department of Specialized Maternal and Child Hospital of Tlemcen, 13000, Tlemcen, Algeria
| | - Lamia Ysmail-Dahlouk
- Laboratory of Applied Molecular Biology and Immunology, W0414100, University of Tlemcen, 13000 Tlemcen, Algeria
| | - Maroua Miliani
- Laboratory of Applied Molecular Biology and Immunology, W0414100, University of Tlemcen, 13000 Tlemcen, Algeria
| | - Fadela Yebdri
- Laboratory of Applied Molecular Biology and Immunology, W0414100, University of Tlemcen, 13000 Tlemcen, Algeria
| | - Nassima Fakir
- Laboratory of Applied Molecular Biology and Immunology, W0414100, University of Tlemcen, 13000 Tlemcen, Algeria
| | - Mohammed Yassine Laoufi
- Laboratory of Applied Molecular Biology and Immunology, W0414100, University of Tlemcen, 13000 Tlemcen, Algeria; Neonatal Department of Specialized Maternal and Child Hospital of Tlemcen, 13000, Tlemcen, Algeria
| | - Mouad Chaib-Draa
- Laboratory of Applied Molecular Biology and Immunology, W0414100, University of Tlemcen, 13000 Tlemcen, Algeria
| | - Amina Tourabi
- Laboratory of Applied Molecular Biology and Immunology, W0414100, University of Tlemcen, 13000 Tlemcen, Algeria
| | - Mourad Aribi
- Laboratory of Applied Molecular Biology and Immunology, W0414100, University of Tlemcen, 13000 Tlemcen, Algeria.
| |
Collapse
|
8
|
Shaikh A, Tekale S, Wagh S, Padul M. Metabolite profiling of arginase inhibitor activity guided fraction of Ficus religiosa leaves by LC-HRMS. Biomed Chromatogr 2020; 34:e4966. [PMID: 32794216 DOI: 10.1002/bmc.4966] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2020] [Revised: 08/04/2020] [Accepted: 08/09/2020] [Indexed: 11/06/2022]
Abstract
Cardiovascular disease is one of the major causes of deaths worldwide. Increased arginase activity is associated with cardiovascular disease. The literature shows that plants are a good source of arginase inhibitors. Hence in the present work arginase inhibitor activity is studied from Ficus religiosa leaves. A fine powder of F. religiosa leaves was serially extracted in various solvents, viz. hexane, chloroform, ethyl acetate and methanol. Out of those four solvent extracts, the one showing highest arginase inhibitor activity was loaded onto the column for further fractionation. Among the collected fractions, the one showing the highest activity was subjected to identification of metabolites by using LC-HRMS. Total compounds including acipimox, edoxudine, levulinic acid, hydroxyhydroquinone, ramiprilglucuronide, berberine, antimycin A, swietenine and some short peptides were identified from the fraction showing the highest arginase inhibitory activity. Identification of these metabolites from F. religiosa and their biological importance may help to promote its use as medicinal plant. Further purification and characterization of therapeutically novel molecules will be the subject of future work.
Collapse
Affiliation(s)
- Ayesha Shaikh
- Department of Biochemistry, Dr Babasaheb Ambedkar Marathwada University, Aurangabad, India
| | - Satishkumar Tekale
- Department of Biochemistry, Dr Babasaheb Ambedkar Marathwada University, Aurangabad, India
| | - Sandip Wagh
- Department of Biochemistry, Dr Babasaheb Ambedkar Marathwada University, Aurangabad, India
| | - Manohar Padul
- Department of Biochemistry, Dr Babasaheb Ambedkar Marathwada University, Aurangabad, India.,Department of Biochemistry, The Institute of Science, Dr Homi Bhabha State University, Mumbai, India
| |
Collapse
|
9
|
Pang R, Zhou H, Huang Y, Su Y, Chen X. Inhibition of Host Arginase Activity Against Staphylococcal Bloodstream Infection by Different Metabolites. Front Immunol 2020; 11:1639. [PMID: 32849560 PMCID: PMC7399636 DOI: 10.3389/fimmu.2020.01639] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2020] [Accepted: 06/18/2020] [Indexed: 11/13/2022] Open
Abstract
Staphylococcus aureus is a notorious bacterial pathogen that often causes soft tissue and bloodstream infections and invariably garners resistance mechanisms against new antibiotics. Modulation of the host immune response by metabolites is a powerful tool against bacterial infections, but has not yet been used against S. aureus infections. In this study, we identified four metabolite biomarkers: L-proline, L-isoleucine, L-leucine, and L-valine (PILV), through a metabolomics study using animal models of S. aureus bloodstream infection. The exogenous administration of each metabolite or of PILV showed anti-infective effects, and a higher protection was achieved with PILV in comparison to individual metabolites. During the staphylococcal infection, the expression of most host arginase and nitric oxide synthase (NOS) isozymes was simultaneously induced in mouse liver, kidney, and blood samples. However, the induction of arginase isozymes was dramatically stronger than that of NOS isozymes. This elevated arginase activity was inhibited by the metabolite biomarkers thus killing S. aureus, and PILV exhibited the strongest inhibition of arginase activity and bacterial inhibition. The suppression of arginase activity also contributed to the metabolite-mediated phagocytic killing of S. aureus in mouse and human blood. Our findings demonstrate the metabolite-mediated arginase inhibition as a therapeutic intervention for S. aureus infection.
Collapse
Affiliation(s)
- Rui Pang
- Guangdong Provincial Key Laboratory of Microbial Safety and Health, State Key Laboratory of Applied Microbiology Southern China, Guangdong Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou, China
| | - Hua Zhou
- Department of Respiratory and Critical Care Medicine, School of Medicine, The First Affiliated Hospital, Zhejiang University, Hangzhou, China
| | - Yifeng Huang
- Key Laboratory of Functional Protein Research of Guangdong Higher Education Institutes, Department of Biotechnology, College of Life Science and Technology, Jinan University, Guangzhou, China
| | - Yubin Su
- Key Laboratory of Functional Protein Research of Guangdong Higher Education Institutes, Department of Biotechnology, College of Life Science and Technology, Jinan University, Guangzhou, China
| | - Xinhai Chen
- Shenzhen International Institute for Biomedical Research, Shenzhen, China.,Department of Microbiology, University of Chicago, Chicago, IL, United States
| |
Collapse
|
10
|
Abstract
Few medications are available and well tested to treat infants who already have developed or inevitably will develop severe bronchopulmonary dysplasia (sBPD). Infants who develop sBPD clearly have not benefited from decades of research efforts to identify clinically meaningful preventive therapies for very preterm infants in the first days and weeks of their postnatal lives. This review addresses challenges to individualized approaches to medication use for sBPD. Specific challenges include understanding the combination of an individual infant's postmenstrual and postnatal age and the developmental status of drug-metabolizing enzymes and receptor expression. This review will also explore the reasons for the variable responsiveness of infants to specific therapies, based on current understanding of developmental pharmacology and pharmacogenetics. Data demonstrating the remarkable variability in the use of commonly prescribed drugs for sBPD are presented, and a discussion about the current use of some of these medications is provided. Finally, the potential use of antifibrotic medications in late-stage sBPD, which is characterized by a profibrotic state, is addressed.
Collapse
Affiliation(s)
- William E Truog
- Division of Neonatology, Children's Mercy-Kansas City and the Department of Pediatrics, University of Missouri-Kansas City School of Medicine, Kansas City, MO
| | - Tamorah R Lewis
- Divisions of Neonatology and Clinical Pharmacology, Toxicology and Therapeutic Innovation, Children's Mercy-Kansas City and the Department of Pediatrics, University of Missouri-Kansas City School of Medicine, Kansas City, MO
| | - Nicolas A Bamat
- Division of Neonatology, Children's Hospital of Philadelphia, Department of Pediatrics, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA
| |
Collapse
|
11
|
Wernly B, Pernow J, Kelm M, Jung C. The role of arginase in the microcirculation in cardiovascular disease. Clin Hemorheol Microcirc 2020; 74:79-92. [PMID: 31743994 DOI: 10.3233/ch-199237] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
In the microcirculation, the exchange of nutrients, water, gas, hormones, and waste takes place, and it is divided into the three main sections arterioles, capillaries, and venules. Disturbances in the microcirculation can be measured using surrogate parameters or be visualized either indirectly or directly.Arginase is a manganese metalloenzyme hydrolyzing L-arginine to urea and L-ornithine. It is located in different cell types, including vascular cells, but also in circulating cells such as red blood cells. A variety of pro-inflammatory factors, as well as interleukins, stimulate increased arginase expression. An increase in arginase activity consequently leads to a consumption of L-arginine needed for nitric oxide (NO) production by endothelial NO synthase. A vast body of evidence convincingly showed that increased arginase activity is associated with endothelial dysfunction in larger vessels of the vascular tree. Of note, arginase also influences the microcirculation. Arginase inhibition leads to an increase in the bioavailability of NO and reduces superoxide levels, resulting in improved endothelial function. Arginase inhibition might, therefore, be a potent treatment strategy in cardiovascular medicine. Recently, red blood cells emerged as an influential player in the development from increased arginase activity to endothelial dysfunction. As red blood cells directly interact with the microcirculation in gas exchange, this could constitute a potential link between arginase activity, endothelial dysfunction and microcirculatory disturbances.The aim of this review is to summarize recent findings revealing the role of arginase in regulating vascular function with particular emphasis on the microcirculation.
Collapse
Affiliation(s)
- Bernhard Wernly
- Clinic of Internal Medicine II, Department of Cardiology, Paracelsus Medical University of Salzburg, Salzburg, Austria
| | - John Pernow
- Division of Cardiology, Department of Medicine, Karolinska Institutet, Karolinska University Hospital, Stockholm, Sweden
| | - Malte Kelm
- Division of Cardiology, Pulmonology, and Vascular Medicine, Medical Faculty, University Düsseldorf, Düsseldorf, Germany
| | - Christian Jung
- Division of Cardiology, Pulmonology, and Vascular Medicine, Medical Faculty, University Düsseldorf, Düsseldorf, Germany
| |
Collapse
|
12
|
Wang P, Meng X, Li J, Chen Y, Zhang D, Zhong H, Xia P, Cui L, Zhu G, Wang H. Transcriptome profiling of avian pathogenic Escherichia coli and the mouse microvascular endothelial cell line bEnd.3 during interaction. PeerJ 2020; 8:e9172. [PMID: 32509459 PMCID: PMC7246031 DOI: 10.7717/peerj.9172] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2019] [Accepted: 04/21/2020] [Indexed: 12/20/2022] Open
Abstract
Background Avian pathogenic Escherichia coli (APEC), an important extraintestinal pathogenic E. coli, causes colibacillosis, an acute and mostly systemic disease involving multiple organ lesions such as meningitis. Meningitis-causing APEC can invade the host central nervous system by crossing the blood–brain barrier (BBB), which is a critical step in the development of meningitis. However, the bacteria-host interaction mechanism in this process remains unclear. Methods In this study, we examined E. coli and bEnd.3 cells transcriptomes during infection and mock infection to investigate the global transcriptional changes in both organisms using RNA sequencing approach. Results When APEC infected the bEnd.3 cells, several significant changes in the expression of genes related to cell junctional complexes, extracellular matrix degradation, actin cytoskeleton rearrangement, immune activation and the inflammatory response in bEnd.3 cells were observed as compared to the mock infection group. Thus, the immune activation of bEnd.3 cells indicated that APEC infection activated host defenses. Furthermore, APEC may exploit cell junction degradation to invade the BBB. In addition, amino acid metabolism and energy metabolism related genes were downregulated and the protein export pathway related genes were upregulated in APEC cultured with bEnd.3 cells, compared to that in control. Thus, APEC may encounter starvation and express virulence factors during incubation with bEnd.3 cells. Conclusion This study provides a comprehensive overview of transcriptomic changes that occur during APEC infection of bEnd.3 cells, and offers insights into the bacterial invasion strategies and the subsequent host defense mechanism.
Collapse
Affiliation(s)
- Peili Wang
- College of Veterinary Medicine, Yangzhou University, Yangzhou, Jiangsu, China.,Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, Jiangsu, China
| | - Xia Meng
- College of Veterinary Medicine, Yangzhou University, Yangzhou, Jiangsu, China.,Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, Jiangsu, China
| | - Jianji Li
- College of Veterinary Medicine, Yangzhou University, Yangzhou, Jiangsu, China.,Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, Jiangsu, China
| | - Yanfei Chen
- College of Veterinary Medicine, Yangzhou University, Yangzhou, Jiangsu, China.,Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, Jiangsu, China
| | - Dong Zhang
- College of Veterinary Medicine, Yangzhou University, Yangzhou, Jiangsu, China.,Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, Jiangsu, China
| | - Haoran Zhong
- College of Veterinary Medicine, Yangzhou University, Yangzhou, Jiangsu, China.,Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, Jiangsu, China
| | - Pengpeng Xia
- College of Veterinary Medicine, Yangzhou University, Yangzhou, Jiangsu, China.,Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, Jiangsu, China
| | - Luying Cui
- College of Veterinary Medicine, Yangzhou University, Yangzhou, Jiangsu, China.,Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, Jiangsu, China
| | - Guoqiang Zhu
- College of Veterinary Medicine, Yangzhou University, Yangzhou, Jiangsu, China.,Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, Jiangsu, China
| | - Heng Wang
- College of Veterinary Medicine, Yangzhou University, Yangzhou, Jiangsu, China.,Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, Jiangsu, China
| |
Collapse
|
13
|
Demchenko SA, Koklin IS, Koklina NY. Role of Arginase 2 as a potential pharmacological target for the creation of new drugs to correct cardiovascular diseases. RESEARCH RESULTS IN PHARMACOLOGY 2020. [DOI: 10.3897/rrpharmacology.6.50942] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Introduction: The review provides relevant information about arginase 2, the role of this enzyme in the formation of endothelial dysfunction and, as a consequence, the development of cardiovascular diseases.
History of the discovery of arginase and its functions: The discovery of arginase took place long before its active study as a substance that affects the formation of endothelial dysfunction.
Role of arginase 2 in the development of a number of cardiovascular diseases: The role of NO synthase and arginase 2 in the formation of oxidative stress is determined. The pathophysiological mechanisms of the development of a number of cardiovascular diseases, such as coronary heart disease, atherosclerosis, and aortic aneurysm, are described. The modern possibilities of treatment of endothelial dysfunction in the pathology of the cardiovascular system and the possibility of creation of new drugs are considered. An increase in the activity of arginase 2 was proven to occur in the case of the development of coronary heart disease (CHD), hypertension, type II diabetes mellitus, hypercholesterolemia, as well as in the process of aging. According to the WHO, coronary heart disease and apoplectic attack have topped the list of causes of death worldwide over the past 15 years.
Arginase 2 as a potential pharmacological target: The purpose of this literature review is to determine the possibilities of use of arginase 2 as a new target for the pharmacological correction of cardiovascular diseases.
Collapse
|
14
|
Wei Z, Dong C, Guan L, Wang Y, Huang J, Wen X. A metabolic exploration of the protective effect of Ligusticum wallichii on IL-1β-injured mouse chondrocytes. Chin Med 2020; 15:12. [PMID: 32025239 PMCID: PMC6995652 DOI: 10.1186/s13020-020-0295-0] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2019] [Accepted: 01/21/2020] [Indexed: 02/06/2023] Open
Abstract
Background Osteoarthritis (OA) is a metabolic disorder and able to be relieved by traditional Chinese medicines. However, the effect of Ligusticum wallichii on OA is unknown. Methods Cytokine IL-1β and L. wallichii extracts were used to stimulate the primary mouse chondrocytes. MTT assay was used to measure the cell viability. The mRNA and protein level of each gene were test by qRT-PCR and western blotting, respectively. The rate of apoptotic cell was measured by flow cytometry. GC/MS-based metabolomics was utilized to characterize the variation of metabolome. Results Here, we found that L. wallichii attenuated the IL-1β-induced apoptosis, inflammatory response, and extracellular matrix (ECM) degradation in mouse chondrocytes. Then we used GC/MS-based metabolomics to characterize the variation of metabolomes. The established metabolic profile of mouse chondrocytes showed that the abundance of most metabolites (n = 40) altered by IL-1β stimulation could be repressed by L. wallichii treatment. Multivariate data analysis identified that cholesterol, linoleic acid, hexadecandioic acid, proline, l-valine, l-leucine, pyruvate, palmitic acid, and proline are the most key biomarkers for understanding the metabolic role of L. wallichii in IL-1β-treated chondrocytes. Further pathway analysis using these metabolites enriched fourteen metabolic pathways, which were dramatically changed in IL-1β-treated chondrocytes and capable of being reprogrammed by L. wallichii incubation. These enriched pathways were involved in carbon metabolisms, fatty acid biosynthesis, and amino acid metabolisms. Conclusions These findings provide potential clues that metabolic strategies are linked to protective mechanisms of L. wallichii treatment in IL-1β-stimulated chondrocytes and emphasize the importance of metabolic strategies against inflammatory responses in OA development.
Collapse
Affiliation(s)
- Zhiqiang Wei
- 1Orthopaedics Department, Dongfang Hospital, Beijing University of Chinese Medicine, Bejing, 100078 China
| | - Chunjiao Dong
- Cardiology & Neurology Department, Beijing TongRen Tang Traditional Chinese Medicine Hospital, Bejing, 100051 China
| | - Liping Guan
- Intensive Care Unit, Huimin Hospital of Beijing, Bejing, 100013 China
| | - Yafei Wang
- 1Orthopaedics Department, Dongfang Hospital, Beijing University of Chinese Medicine, Bejing, 100078 China
| | - Jianghai Huang
- 1Orthopaedics Department, Dongfang Hospital, Beijing University of Chinese Medicine, Bejing, 100078 China
| | - Xinzhu Wen
- 1Orthopaedics Department, Dongfang Hospital, Beijing University of Chinese Medicine, Bejing, 100078 China
| |
Collapse
|
15
|
Koklin IS, Danilenko LM. Combined use of arginase II and tadalafil inhibitors for the correction of monocrotaline pulmonary hypertension. RESEARCH RESULTS IN PHARMACOLOGY 2019. [DOI: 10.3897/rrpharmacology.5.39522] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
Introduction: The concept of the regulatory role of endothelium in the pathogenesis of pulmonary hypertension (PH) is fundamental.
Research objective: To study the protective effects of the selective arginase II inhibitors L207-0525 and L327-0346 in combination with tadalafil in a monocrotaline model of pulmonary hypertension in rats.
Materials and methods: Monocrotaline-induced pulmonary hypertension was simulated in 10 animals by a subcutaneous injection of an alcohol-water solution of monocrotaline (MCT) in the dose of 60 mg/kg. Seven days after the injection of MCT, the administration of L207-0525 and L327-0346 in the doses of 1 mg/kg and 3 mg/kg was started. The compounds were administered intragastrically once a day for 21 days.
Results and discussion: It was found that L207-0525 and L327-0346 in the dose of 3 mg/kg and tadalafil in the dose of 1 mg/kg prevented the development of pulmonary hypertension, which was expressed in a statistically significant decrease in the coefficient of endothelial dysfunction (CED, prevention of an increase in systolic pressure in the right ventricle, as well as Fulton, RV/BW and WT indices. The greatest activity was shown by L207-0525 and L327-0346 in the dose of 3 mg/kg in combination with tadalafil in the dose of 0.1 mg/kg.
Conclusions: The received results suggest the dose-dependent protective activity of selective arginase II inhibitors L207-0525 and L327-0346 and the development of the additive effect of their combined use with low doses of PDE-5 inhibitor tadalafil in relation to the development of monocrotaline pulmonary hypertension.
Collapse
|
16
|
Mazrouei S, Sharifpanah F, Caldwell RW, Franz M, Shatanawi A, Muessig J, Fritzenwanger M, Schulze PC, Jung C. Regulation of MAP kinase-mediated endothelial dysfunction in hyperglycemia via arginase I and eNOS dysregulation. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2019; 1866:1398-1411. [DOI: 10.1016/j.bbamcr.2019.05.004] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/18/2018] [Revised: 12/14/2018] [Accepted: 05/20/2019] [Indexed: 12/24/2022]
|
17
|
Chen X, Qin S, Zhao X, Zhou S. l-Proline protects mice challenged by Klebsiella pneumoniae bacteremia. JOURNAL OF MICROBIOLOGY, IMMUNOLOGY, AND INFECTION = WEI MIAN YU GAN RAN ZA ZHI 2019; 54:213-220. [PMID: 31324551 DOI: 10.1016/j.jmii.2019.05.013] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/24/2019] [Revised: 04/09/2019] [Accepted: 05/29/2019] [Indexed: 01/19/2023]
Abstract
OBJECTIVE K. pneumoniae, a common pathogen that frequently causes bacteremia in clinic, is unresponsive to most of known antibiotics, thus cumulatively exacerbating empirical therapy failures. Effective strategies to control Klebsiella pneumoniae bacteremia are in high demand. One possibility is to mobilize host defense mechanisms against bacterial pathogens. METHODS We employed GC/MS-based metabolomics to identify the changes of metabolism in mice challenged by K. pneumoniae (ATCC 43816) bacteremia. RESULTS Compared with the mice that compromised from K. pneumoniae bacteremia, mice that survived from infection displayed the varied metabolomic profile. The differential analysis of metabolome showed that Ethanedioic acid, d-Glucose, l-Glutamine, Myo-inositol, and l-Proline were more likely associated with the host surviving a K. pneumoniae bacteremia. Further pathway enrichment analysis proposed that arginine and proline metabolism involved in outcome of K. pneumoniae bacteremia. The follow-up data showed that exogenous l-Proline but not d-Proline could decline the loads of Klebsiella pneumonia in infected blood and tissues (lung, liver and spleen) and increase the mouse survival. CONCLUSION Our study provides an exercisable strategy of identifying metabolic biomarkers from surviving host and highlights the possibility of utilizing the metabolic biomarker as a therapy for K. pneumoniae bacteremia.
Collapse
Affiliation(s)
- Xuedong Chen
- Zhujiang Hospital of Southern Medical University, Guangzhou, Guangdong, China
| | - Sihua Qin
- Zhujiang Hospital of Southern Medical University, Guangzhou, Guangdong, China
| | - Xin Zhao
- Zhujiang Hospital of Southern Medical University, Guangzhou, Guangdong, China
| | - Shaosong Zhou
- Zhujiang Hospital of Southern Medical University, Guangzhou, Guangdong, China.
| |
Collapse
|
18
|
Arginase II activity regulates cytosolic Ca 2+ level in a p32-dependent manner that contributes to Ca 2+-dependent vasoconstriction in native low-density lipoprotein-stimulated vascular smooth muscle cells. Exp Mol Med 2019; 51:1-12. [PMID: 31155612 PMCID: PMC6545325 DOI: 10.1038/s12276-019-0262-y] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2018] [Revised: 02/19/2019] [Accepted: 02/26/2019] [Indexed: 12/04/2022] Open
Abstract
Although arginase II (ArgII) is abundant in mitochondria, Ca2+-accumulating organelles, the relationship between ArgII activity and Ca2+ translocation into mitochondria and the regulation of cytosolic Ca2+ signaling are completely unknown. We investigated the effects of ArgII activity on mitochondrial Ca2+ uptake through mitochondrial p32 protein (p32m) and on CaMKII-dependent vascular smooth muscle cell (VSMC) contraction. Native low-density lipoprotein stimulation induced an increase in [Ca2+]m as measured by CoCl2-quenched calcein-AM fluorescence, which was prevented by Arg inhibition in hAoSMCs and reduced in mAoSMCs from ArgII−/− mice. Conversely, [Ca2+]c analyzed with Fluo-4 AM was increased by Arg inhibition and ArgII gene knockout. The increased [Ca2+]c resulted in CaMKII and MLC 20 phosphorylation, which was associated with enhanced vasoconstriction activity to phenylephrine (PE) in the vascular tension assay. Cy5-tagged siRNA against mitochondrial p32 mRNA (sip32m) abolished mitochondrial Ca2+ uptake and induced activation of CaMKII. Spermine, a polyamine, induced mitochondrial Ca2+ uptake and dephosphorylation of CaMKII and was completely inhibited by sip32m incubation. In mAoSMCs from ApoE-null mice fed a high-cholesterol diet (ApoE−/− +HCD), Arg activity was increased, and spermine concentration was higher than that of wild-type mice. Furthermore, [Ca2+]m and p32m levels were elevated, and CaMKII phosphorylation was reduced in mAoSMCs from ApoE−/− +HCD. In vascular tension experiments, an attenuated response to vasoconstrictors in de-endothelialized aorta from ApoE−/− +HCD was recovered by incubation of sip32m. ArgII activity-dependent production of spermine augments Ca2+ transition from the cytosol to the mitochondria in a p32m-dependent manner and regulates CaMKII-dependent constriction in VSMCs. Researchers have illuminated how a protein, arginase II (ArgII), is involved in development of vascular diseases such as atherosclerosis, or narrowing of the arteries by plaque deposits. Blood vessel diameter is regulated by layers of muscle; the balance between constriction and relaxation is critical for blood flow and vascular health. Increased ArgII is known to be a factor in arterial disease; however, the details of regulation, and how they relate to plaque deposition, remain poorly understood. Sungwoo Ryoo at Kangwon National University, Chuncheon, South Korea and co-workers investigated how ArgII levels affect arterial constriction and relaxation in mice. Decreasing ArgII restored the muscle cells’ contraction response by preventing excessive calcium accumulation in the cellular powerhouse, mitochondria. These results may aid in developing treatments for one of the leading causes of death worldwide.
Collapse
|
19
|
Hu L, Xu B, Wang Y, Wang M, Wang H. Influence of arginine on enzymes related to arginine metabolism in bovine mammary epithelial cells in vitro. CANADIAN JOURNAL OF ANIMAL SCIENCE 2019. [DOI: 10.1139/cjas-2017-0215] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Bovine mammary epithelial cells were used to evaluate the effects of different levels of Arginine (Arg) on enzymes related to Arg metabolism. A series of seven Arg concentrations in the medium as treatments were T0 (0.00 mg L−1) as control group, and T0.25 (69.50 mg L−1), T0.5 (139.00 mg L−1), T1 (278.00 mg L−1), T2 (556.00 mg L−1), T4 (1112.00 mg L−1), and T8 (2224.00 mg L−1) as experiment groups, respectively. The quantitative polymerase chain reaction and enzyme-linked immunosorbent assay analysis showed that the nitric oxide concentration, the expressions of endothelial nitric oxide synthase in mRNA, and enzyme level were all increased in response to enhanced Arg doses such that the T8 was the greatest group (P < 0.05). Four-fold Arg concentration improved gene expression and synthesis of arginase which then deceased when excessive Arg was supplied (P < 0.05). The expressions of ornithine aminotransferase mRNA and enzyme in T1 and T2 groups were significantly greater than that in the other groups (P < 0.05). Two-fold Arg was the optimum level for ornithine decarboxylase gene expression and enzyme synthesis among all seven treatments (P < 0.05). These somewhat various effects of Arg concentrations on four kinds of enzymes in different Arg metabolic pathways suggest that Arg might participate in regulating bovine mammary physiological function with an optimum concentration by influencing the enzymes in related metabolic pathways.
Collapse
Affiliation(s)
- Liangyu Hu
- School of Animal Science and Technology, Yangzhou University, Yangzhou, Jiangsu 225009, People’s Republic of China
| | - Bolin Xu
- School of Animal Science and Technology, Yangzhou University, Yangzhou, Jiangsu 225009, People’s Republic of China
| | - Yifan Wang
- Medical School of Southeast University, Nanjing, Jiangsu 210009, People’s Republic of China
| | - Mengzhi Wang
- School of Animal Science and Technology, Yangzhou University, Yangzhou, Jiangsu 225009, People’s Republic of China
| | - Hongrong Wang
- School of Animal Science and Technology, Yangzhou University, Yangzhou, Jiangsu 225009, People’s Republic of China
| |
Collapse
|
20
|
Trittmann JK, Bartenschlag A, Zmuda EJ, Frick J, Stewart WCL, Nelin LD. Using clinical and genetic data to predict pulmonary hypertension in bronchopulmonary dysplasia. Acta Paediatr 2018; 107:2158-2164. [PMID: 30267614 PMCID: PMC6226353 DOI: 10.1111/apa.14600] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/26/2018] [Revised: 08/28/2018] [Accepted: 09/25/2018] [Indexed: 02/03/2023]
Abstract
AIM Pulmonary hypertension significantly increases morbidity and mortality in infants with bronchopulmonary dysplasia. The frequency of single nucleotide polymorphisms in arginase-1 (ARG1 rs2781666) and dimethylarginine dimethylaminohydrolase-1 (DDAH1 rs480414) genes has been found to differ in a cohort of bronchopulmonary dysplasia patients with pulmonary hypertension (cases) and without pulmonary hypertension (controls). Therefore, we tested the hypothesis that combining these genotypes with phenotypic data would better predict pulmonary hypertension in bronchopulmonary dysplasia patients. METHODS Bronchopulmonary dysplasia patients (n = 79) born at <35 weeks gestation were studied. Pulmonary hypertension was diagnosed by echocardiographic criteria (n = 20). ROC curves to predict pulmonary hypertension in bronchopulmonary dysplasia were generated from genotype and/or clinical data. RESULTS Cases were born at an earlier gestation and weighed less at birth than did controls. ROC curves for rs2781666 had an AUC of 0.61, while rs480414 had an AUC of 0.66. Together, the AUC was 0.70. When clinical data were added to the genetic model, AUC was 0.73. CONCLUSION These findings demonstrate that ROC predictive modelling of pulmonary hypertension in bronchopulmonary dysplasia improves with inclusion of both genotypic and phenotypic data. Further refinement of these types of models could facilitate the implementation of precision medicine approaches to pulmonary hypertension in bronchopulmonary dysplasia.
Collapse
Affiliation(s)
- J K Trittmann
- Pulmonary Hypertension Group, Center for Perinatal Research, The Research Institute, Nationwide Children's Hospital, Columbus, OH, USA
- Department of Pediatrics, The Ohio State University, Columbus, OH, USA
| | - A Bartenschlag
- Pulmonary Hypertension Group, Center for Perinatal Research, The Research Institute, Nationwide Children's Hospital, Columbus, OH, USA
| | - E J Zmuda
- Department of Pediatrics, The Ohio State University, Columbus, OH, USA
- Institute for Genomic Medicine, Nationwide Children's Hospital, Columbus, OH, USA
- Department of Pathology, The Ohio State University, Columbus, OH, USA
| | - J Frick
- Institute for Genomic Medicine, Nationwide Children's Hospital, Columbus, OH, USA
| | - W C L Stewart
- Department of Pediatrics, The Ohio State University, Columbus, OH, USA
- Battelle Center for Mathematical Medicine, Columbus, OH, USA
| | - L D Nelin
- Pulmonary Hypertension Group, Center for Perinatal Research, The Research Institute, Nationwide Children's Hospital, Columbus, OH, USA
- Department of Pediatrics, The Ohio State University, Columbus, OH, USA
| |
Collapse
|
21
|
Serum exosomes mediate delivery of arginase 1 as a novel mechanism for endothelial dysfunction in diabetes. Proc Natl Acad Sci U S A 2018; 115:E6927-E6936. [PMID: 29967177 DOI: 10.1073/pnas.1721521115] [Citation(s) in RCA: 90] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023] Open
Abstract
Exosomes, abundant in blood, deliver various molecules to recipient cells. Endothelial cells are directly exposed to circulating substances. However, how endothelial cells respond to serum exosomes (SExos) and the implications in diabetes-associated vasculopathy have never been explored. In the present study, we showed that SExos from diabetic db/db mice (db/db SExos) were taken up by aortic endothelial cells, which severely impaired endothelial function in nondiabetic db/m+ mice. The exosomal proteins, rather than RNAs, mostly account for db/db SExos-induced endothelial dysfunction. Comparative proteomics analysis showed significant increase of arginase 1 in db/db SExos. Silence or overexpression of arginase 1 confirmed its essential role in db/db SExos-induced endothelial dysfunction. This study is a demonstration that SExos deliver arginase 1 protein to endothelial cells, representing a cellular mechanism during development of diabetic endothelial dysfunction. The results expand the scope of blood-borne substances that monitor vascular homeostasis.
Collapse
|
22
|
Navolotskaya EV, Sadovnikov VB, Zinchenko DV, Vladimirov VI, Zolotarev YA. Interaction of Cholera Toxin B Subunit with Rat Intestinal Epithelial Cells. RUSSIAN JOURNAL OF BIOORGANIC CHEMISTRY 2018. [DOI: 10.1134/s1068162018030123] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
23
|
Caldwell RW, Rodriguez PC, Toque HA, Narayanan SP, Caldwell RB. Arginase: A Multifaceted Enzyme Important in Health and Disease. Physiol Rev 2018; 98:641-665. [PMID: 29412048 PMCID: PMC5966718 DOI: 10.1152/physrev.00037.2016] [Citation(s) in RCA: 273] [Impact Index Per Article: 45.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2016] [Revised: 08/14/2017] [Accepted: 08/17/2017] [Indexed: 12/15/2022] Open
Abstract
The arginase enzyme developed in early life forms and was maintained during evolution. As the last step in the urea cycle, arginase cleaves l-arginine to form urea and l-ornithine. The urea cycle provides protection against excess ammonia, while l-ornithine is needed for cell proliferation, collagen formation, and other physiological functions. In mammals, increases in arginase activity have been linked to dysfunction and pathologies of the cardiovascular system, kidney, and central nervous system and also to dysfunction of the immune system and cancer. Two important aspects of the excessive activity of arginase may be involved in diseases. First, overly active arginase can reduce the supply of l-arginine needed for the production of nitric oxide (NO) by NO synthase. Second, too much l-ornithine can lead to structural problems in the vasculature, neuronal toxicity, and abnormal growth of tumor cells. Seminal studies have demonstrated that increased formation of reactive oxygen species and key inflammatory mediators promote this pathological elevation of arginase activity. Here, we review the involvement of arginase in diseases affecting the cardiovascular, renal, and central nervous system and cancer and discuss the value of therapies targeting the elevated activity of arginase.
Collapse
Affiliation(s)
- R William Caldwell
- Department of Pharmacology & Toxicology, Vision Discovery Institute, Department of Medicine-Hematology and Oncology, Department of Occupational Therapy, School of Allied Health Sciences, and Vascular Biology Center, Medical College of Georgia, Augusta University , Augusta, Georgia ; and VA Medical Center, Augusta, Georgia
| | - Paulo C Rodriguez
- Department of Pharmacology & Toxicology, Vision Discovery Institute, Department of Medicine-Hematology and Oncology, Department of Occupational Therapy, School of Allied Health Sciences, and Vascular Biology Center, Medical College of Georgia, Augusta University , Augusta, Georgia ; and VA Medical Center, Augusta, Georgia
| | - Haroldo A Toque
- Department of Pharmacology & Toxicology, Vision Discovery Institute, Department of Medicine-Hematology and Oncology, Department of Occupational Therapy, School of Allied Health Sciences, and Vascular Biology Center, Medical College of Georgia, Augusta University , Augusta, Georgia ; and VA Medical Center, Augusta, Georgia
| | - S Priya Narayanan
- Department of Pharmacology & Toxicology, Vision Discovery Institute, Department of Medicine-Hematology and Oncology, Department of Occupational Therapy, School of Allied Health Sciences, and Vascular Biology Center, Medical College of Georgia, Augusta University , Augusta, Georgia ; and VA Medical Center, Augusta, Georgia
| | - Ruth B Caldwell
- Department of Pharmacology & Toxicology, Vision Discovery Institute, Department of Medicine-Hematology and Oncology, Department of Occupational Therapy, School of Allied Health Sciences, and Vascular Biology Center, Medical College of Georgia, Augusta University , Augusta, Georgia ; and VA Medical Center, Augusta, Georgia
| |
Collapse
|
24
|
Navolotskaya EV, Sadovnikov VB, Lipkin VM, Zav'yalov VP. Binding of cholera toxin B subunit to intestinal epithelial cells. Toxicol In Vitro 2018; 47:269-273. [DOI: 10.1016/j.tiv.2017.12.010] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2017] [Revised: 11/08/2017] [Accepted: 12/14/2017] [Indexed: 11/16/2022]
|
25
|
Ding LY, Chen LM, Wang MZ, Zhang J, Loor JJ, Zhou G, Zhang X, Wang HR. Inhibition of arginase via jugular infusion of N ω-hydroxy-nor-l-arginine inhibits casein synthesis in lactating dairy cows. J Dairy Sci 2018; 101:3514-3523. [PMID: 29397169 DOI: 10.3168/jds.2017-13178] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2017] [Accepted: 11/28/2017] [Indexed: 01/04/2023]
Abstract
A previous in vitro study revealed that Arg elicits positive effects on casein synthesis through alterations of the Arg-ornithine pathway in bovine mammary epithelial cells. The main purpose of this work was to determine the effects of arginase inhibition using Nω-hydroxy-nor-l-arginine (nor-NOHA) on milk protein synthesis in vivo. Six healthy Chinese Holstein cows with similar body weight (550.0 ± 20 kg; means ± standard deviation), parity (4), body condition score (3.0), milk yield (21.0 ± 1.0 kg), and days in milk (80 ± 2) were selected and randomly assigned to 3 treatments in a replicated 3 × 3 Latin square design with 22 d for each period (7 d for infusion and 15 d for washout). The treatments were (1) control: saline infusion; (2) nor-NOHA: infusion of 125 mg/L of nor-NOHA; (3) nor-NOHA + Arg: infusion of 125 mg/L of nor-NOHA with 9.42 g/L of Arg. The activity of enzymes related to Arg metabolism, milk protein synthesis, and expression of AA transporters was determined. The infusion of nor-NOHA decreased the activity of arginase but had no effect on the activity of ornithine decarboxylase and nitric oxide synthase in serum, and these responses were the same at the gene expression level in mammary gland. In addition, the infusion of nor-NOHA also reduced protein and fat synthesis in milk but had no effect on milk yield. When Arg was infused with nor-NOHA, the activity of total arginase, ornithine decarboxylase, and nitric oxide synthase, and the concentration of casein, protein, and fat in milk did not change compared with the nor-NOHA group, but the milk protein yield, the expression of some Arg transporters (SLC7A5 and SLC7A8), and milk yield increased. Overall, results verified previous in vitro findings indicating that synthesis of casein protein is closely regulated by the Arg-ornithine pathway in bovine mammary gland.
Collapse
Affiliation(s)
- L Y Ding
- College of Animal Science and Technology, Yangzhou University, Yangzhou 225009, P. R. China
| | - L M Chen
- College of Animal Science and Technology, Yangzhou University, Yangzhou 225009, P. R. China
| | - M Z Wang
- College of Animal Science and Technology, Yangzhou University, Yangzhou 225009, P. R. China.
| | - J Zhang
- The Experimental Farm of Yangzhou University, Yangzhou 225009, P. R. China.
| | - J J Loor
- Department of Animal Sciences and Division of Nutritional Sciences, University of Illinois, Urbana 61801
| | - G Zhou
- College of Animal Science and Technology, Yangzhou University, Yangzhou 225009, P. R. China
| | - X Zhang
- College of Animal Science and Technology, Yangzhou University, Yangzhou 225009, P. R. China
| | - H R Wang
- College of Animal Science and Technology, Yangzhou University, Yangzhou 225009, P. R. China
| |
Collapse
|
26
|
Mitchell WK, Phillips BE, Wilkinson DJ, Williams JP, Rankin D, Lund JN, Smith K, Atherton PJ. Supplementing essential amino acids with the nitric oxide precursor, l-arginine, enhances skeletal muscle perfusion without impacting anabolism in older men. Clin Nutr 2017; 36:1573-1579. [PMID: 27746000 DOI: 10.1016/j.clnu.2016.09.031] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2015] [Revised: 05/22/2016] [Accepted: 09/30/2016] [Indexed: 01/01/2023]
Abstract
Postprandial limb blood flow and skeletal muscle microvascular perfusion reduce with aging. Here we tested the impact of providing bolus essential amino acids (EAA) in the presence and absence of the nitric oxide precursor, l-Arginine (ARG), upon skeletal muscle blood flow and anabolism in older men. Healthy young (YOUNG: 19.7 ± 0.5 y, N = 8) and older men (OLD, 70 ± 0.8 y, N = 8) received 15 g EAA or (older only) 15 g EAA +3 g ARG (OLD-ARG, 69.2 ± 1.2 y, N = 8). We quantified responses in muscle protein synthesis (MPS; incorporation of 13C phenylalanine into myofibrillar proteins), leg and muscle microvascular blood flow (Doppler/contrast enhanced ultrasound (CEUS)) and insulin/EAA in response to EEA ± ARG. Plasma EAA increased similarly across groups but argininemia was evident solely in OLD-ARG (∼320 mmol, 65 min post feed); increases in plasma insulin (to ∼13 IU ml-1) were similar across groups. Increases in femoral flow were evident in YOUNG >2 h after feeding; these effects were blunted in OLD and OLD-ARG. Increases in microvascular blood volume (MBV) occurred only in YOUNG and these effects were isolated to the early postprandial phase (+45% at ∼45 min after feeding) coinciding with detectable arterio-venous differences in EAA reflecting net uptake by muscle. Increases in microvascular flow velocity (MFV) and tissue perfusion (MBV × MFV) occurred (∼2 h) in YOUNG and OLD-ARG, but not OLD. Postprandial protein accretion was greater in YOUNG than OLD or OLD-ARG; the latter two groups being indistinguishable. Therefore, ARG rescues aspects of muscle perfusion in OLD without impacting anabolic blunting, perhaps due to the "rescue" being beyond the period of active EAA-uptake.
Collapse
Affiliation(s)
- W Kyle Mitchell
- MRC-ARUK Centre of Excellence for Musculoskeletal Ageing Research, School of Medicine, University of Nottingham, Derby, DE22 3DT, UK
| | - Bethan E Phillips
- MRC-ARUK Centre of Excellence for Musculoskeletal Ageing Research, School of Medicine, University of Nottingham, Derby, DE22 3DT, UK
| | - Daniel J Wilkinson
- MRC-ARUK Centre of Excellence for Musculoskeletal Ageing Research, School of Medicine, University of Nottingham, Derby, DE22 3DT, UK
| | - John P Williams
- MRC-ARUK Centre of Excellence for Musculoskeletal Ageing Research, School of Medicine, University of Nottingham, Derby, DE22 3DT, UK
| | - Debbie Rankin
- MRC-ARUK Centre of Excellence for Musculoskeletal Ageing Research, School of Medicine, University of Nottingham, Derby, DE22 3DT, UK
| | - Jonathan N Lund
- MRC-ARUK Centre of Excellence for Musculoskeletal Ageing Research, School of Medicine, University of Nottingham, Derby, DE22 3DT, UK
| | - Kenneth Smith
- MRC-ARUK Centre of Excellence for Musculoskeletal Ageing Research, School of Medicine, University of Nottingham, Derby, DE22 3DT, UK
| | - Philip J Atherton
- MRC-ARUK Centre of Excellence for Musculoskeletal Ageing Research, School of Medicine, University of Nottingham, Derby, DE22 3DT, UK.
| |
Collapse
|
27
|
Trittmann JK, Jin Y, Chicoine LG, Liu Y, Chen B, Nelin LD. An arginase-1 SNP that protects against the development of pulmonary hypertension in bronchopulmonary dysplasia enhances NO-mediated apoptosis in lymphocytes. Physiol Rep 2017; 4:4/22/e13041. [PMID: 27895230 PMCID: PMC5358007 DOI: 10.14814/phy2.13041] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2016] [Revised: 10/20/2016] [Accepted: 10/26/2016] [Indexed: 11/24/2022] Open
Abstract
Arginase and nitric oxide synthase (NOS) share a common substrate, l‐arginine, and have opposing effects on vascular remodeling. Arginase is the first step in polyamine and proline synthesis necessary for cellular proliferation, while NO produced from NOS promotes apoptosis. Previously, we identified a single nucleotide polymorphism (SNP) in the arginase‐1 (ARG1) gene, rs2781666 (T‐allele) that was associated with a decreased risk for developing pulmonary hypertension (PH) in a cohort of infants with bronchopulmonary dysplasia (BPD). In this study, we utilized lymphocytes from neonates (the only readily available cells from these patients expressing the two genotypes of interest) with either the rs2781666 SNP (TT) or wild type (GG) to test the hypothesis that the protection of the ARG1 SNP against the development of PH in BPD would involve augmented NO production leading to more apoptosis. Lymphocytes were stimulated with IL‐4, IL‐13, and phorbol myristate acetate (PMA). We found that TT lymphocytes had similar levels of arginase I and arginase II expression, but there was a tendency for lower urea production (a surrogate marker of arginase activity), than in the GG lymphocytes. The TT lymphocytes also had significantly greater NO production than did GG lymphocytes despite no differences in iNOS expression between genotypes. Furthermore, the TT lymphocytes had lower numbers of viable cells, and higher levels of cleaved caspase‐3 than did GG lymphocytes. Inhibiting NOS activity using Nω‐Nitro‐l‐arginine methyl ester hydrochloride (l‐NAME) significantly decreased cleaved caspase‐3 levels in the TT lymphocytes. These data demonstrate that the TT genotype results in greater levels of NO production leading to more apoptosis, which is consistent with the concept that BPD patients with the TT genotype are protected against the development of PH by producing greater basal levels of endogenous NO.
Collapse
Affiliation(s)
- Jennifer K Trittmann
- Pulmonary Hypertension Group, Center for Perinatal Research, The Ohio State University, Columbus, Ohio .,Department of Pediatrics, The Ohio State University, Columbus, Ohio
| | - Yi Jin
- Pulmonary Hypertension Group, Center for Perinatal Research, The Ohio State University, Columbus, Ohio
| | - Louis G Chicoine
- Pulmonary Hypertension Group, Center for Perinatal Research, The Ohio State University, Columbus, Ohio.,Department of Pediatrics, The Ohio State University, Columbus, Ohio.,Center for Gene Therapy, The Research Institute at Nationwide Children's Hospital, The Ohio State University, Columbus, Ohio
| | - Yusen Liu
- Pulmonary Hypertension Group, Center for Perinatal Research, The Ohio State University, Columbus, Ohio.,Department of Pediatrics, The Ohio State University, Columbus, Ohio
| | - Bernadette Chen
- Pulmonary Hypertension Group, Center for Perinatal Research, The Ohio State University, Columbus, Ohio.,Department of Pediatrics, The Ohio State University, Columbus, Ohio
| | - Leif D Nelin
- Pulmonary Hypertension Group, Center for Perinatal Research, The Ohio State University, Columbus, Ohio.,Department of Pediatrics, The Ohio State University, Columbus, Ohio
| |
Collapse
|
28
|
Lin W, Vann DR, Doulias PT, Wang T, Landesberg G, Li X, Ricciotti E, Scalia R, He M, Hand NJ, Rader DJ. Hepatic metal ion transporter ZIP8 regulates manganese homeostasis and manganese-dependent enzyme activity. J Clin Invest 2017; 127:2407-2417. [PMID: 28481222 DOI: 10.1172/jci90896] [Citation(s) in RCA: 114] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2016] [Accepted: 03/07/2017] [Indexed: 01/08/2023] Open
Abstract
Genetic variants at the solute carrier family 39 member 8 (SLC39A8) gene locus are associated with the regulation of whole-blood manganese (Mn) and multiple physiological traits. SLC39A8 encodes ZIP8, a divalent metal ion transporter best known for zinc transport. Here, we hypothesized that ZIP8 regulates Mn homeostasis and Mn-dependent enzymes to influence metabolism. We generated Slc39a8-inducible global-knockout (ZIP8-iKO) and liver-specific-knockout (ZIP8-LSKO) mice and observed markedly decreased Mn levels in multiple organs and whole blood of both mouse models. By contrast, liver-specific overexpression of human ZIP8 (adeno-associated virus-ZIP8 [AAV-ZIP8]) resulted in increased tissue and whole blood Mn levels. ZIP8 expression was localized to the hepatocyte canalicular membrane, and bile Mn levels were increased in ZIP8-LSKO and decreased in AAV-ZIP8 mice. ZIP8-LSKO mice also displayed decreased liver and kidney activity of the Mn-dependent enzyme arginase. Both ZIP8-iKO and ZIP8-LSKO mice had defective protein N-glycosylation, and humans homozygous for the minor allele at the lead SLC39A8 variant showed hypogalactosylation, consistent with decreased activity of another Mn-dependent enzyme, β-1,4-galactosyltransferase. In summary, hepatic ZIP8 reclaims Mn from bile and regulates whole-body Mn homeostasis, thereby modulating the activity of Mn-dependent enzymes. This work provides a mechanistic basis for the association of SLC39A8 with whole-blood Mn, potentially linking SLC39A8 variants with other physiological traits.
Collapse
Affiliation(s)
- Wen Lin
- Department of Medicine, Perelman School of Medicine, and
| | - David R Vann
- Department of Earth and Environmental Science, School of Arts and Sciences, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Paschalis-Thomas Doulias
- Children's Hospital of Philadelphia Research Institute and Department of Pharmacology, Children's Hospital of Philadelphia and University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Tao Wang
- Department of Medicine, Perelman School of Medicine, and
| | - Gavin Landesberg
- Department of Physiology, Temple University, Philadelphia, Pennsylvania, USA
| | - Xueli Li
- Palmieri Metabolic Disease Laboratory, Children's Hospital of Philadelphia, Philadelphia, Pennsylvania, USA
| | | | - Rosario Scalia
- Department of Physiology, Temple University, Philadelphia, Pennsylvania, USA
| | - Miao He
- Palmieri Metabolic Disease Laboratory, Children's Hospital of Philadelphia, Philadelphia, Pennsylvania, USA.,Department of Pathology and Laboratory Medicine, Perelman School of Medicine, and
| | - Nicholas J Hand
- Department of Genetics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Daniel J Rader
- Department of Medicine, Perelman School of Medicine, and.,Institute for Translational Medicine and Therapeutics.,Department of Genetics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| |
Collapse
|
29
|
Cerkezkayabekir A, Sanal F, Bakar E, Ulucam E, Inan M. Naringin protects viscera from ischemia/reperfusion injury by regulating the nitric oxide level in a rat model. Biotech Histochem 2017; 92:252-263. [PMID: 28426254 DOI: 10.1080/10520295.2017.1305499] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
We investigated the effects of naringin on small intestine, liver, kidney and lung recovery after ischemia/reperfusion (I/R) injury of the gut. Rats were divided randomly into four groups of eight. Group A was the sham control; group B was ischemic for 2 h; group C was ischemic for 2 h and re-perfused for 2 h (I/R); group D was treated with 50 mg/kg naringin after ischemia, then re-perfused for 2 h. Endothelial nitric oxide synthase (eNOS) and inducible nitric oxide synthase (iNOS) expressions were detected by immunolabeling. We also measured arginase activity, amounts of nitric oxide (NO) and total protein. iNOS was increased significantly in the small intestine, liver and kidney in group C. iNOS was decreased significantly only in small intestine and lung in group D. eNOS was increased significantly in the small intestine, liver and lung in group C. eNOS was decreased in small intestine, liver and lung in group D; however, eNOS was decreased in the kidney in group C and increased in the kidney in group D. The amount of NO was decreased significantly in all tissues in group D, but arginase activity was decreased in the small intestine and lung, increased in the kidney and remained unchanged in the liver in group D. The total protein increased in the small intestine and liver in group D, but decreased significantly in the kidney and lung in group D. Naringin had significant, salutary effects on the biochemical parameters of I/R by decreasing the NO level, equilibrating iNOS and eNOS expressions, and decreasing arginase activity.
Collapse
Affiliation(s)
| | - F Sanal
- a Faculty of Science, Department of Biology
| | - E Bakar
- b Faculty of Pharmaceutical, Department of Pharmaceutical Technology
| | - E Ulucam
- c School of Medicine, Department of Anatomy
| | - M Inan
- d School of Medicine, Department of Pediatric Surgery , Trakya University , Edirne , Turkey
| |
Collapse
|
30
|
Chen XH, Liu SR, Peng B, Li D, Cheng ZX, Zhu JX, Zhang S, Peng YM, Li H, Zhang TT, Peng XX. Exogenous l-Valine Promotes Phagocytosis to Kill Multidrug-Resistant Bacterial Pathogens. Front Immunol 2017; 8:207. [PMID: 28321214 PMCID: PMC5337526 DOI: 10.3389/fimmu.2017.00207] [Citation(s) in RCA: 68] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2016] [Accepted: 02/15/2017] [Indexed: 01/21/2023] Open
Abstract
The emergence of multidrug-resistant bacteria presents a severe threat to public health and causes extensive losses in livestock husbandry and aquaculture. Effective strategies to control such infections are in high demand. Enhancing host immunity is an ideal strategy with fewer side effects than antibiotics. To explore metabolite candidates, we applied a metabolomics approach to investigate the metabolic profiles of mice after Klebsiella pneumoniae infection. Compared with the mice that died from K. pneumoniae infection, mice that survived the infection displayed elevated levels of l-valine. Our analysis showed that l-valine increased macrophage phagocytosis, thereby reducing the load of pathogens; this effect was not only limited to K. pneumoniae but also included Escherichia coli clinical isolates in infected tissues. Two mechanisms are involved in this process: l-valine activating the PI3K/Akt1 pathway and promoting NO production through the inhibition of arginase activity. The NO precursor l-arginine is necessary for l-valine-stimulated macrophage phagocytosis. The valine-arginine combination therapy effectively killed K. pneumoniae and exerted similar effects in other Gram-negative (E. coli and Pseudomonas aeruginosa) and Gram-positive (Staphylococcus aureus) bacteria. Our study extends the role of metabolism in innate immunity and develops the possibility of employing the metabolic modulator-mediated innate immunity as a therapy for bacterial infections.
Collapse
Affiliation(s)
- Xin-Hai Chen
- Center for Proteomics, State Key Laboratory of Bio-Control, School of Life Sciences, Guangdong Province Key Laboratory for Pharmaceutical Functional Genes, Sun Yat-sen University , Guangzhou , China
| | - Shi-Rao Liu
- Center for Proteomics, State Key Laboratory of Bio-Control, School of Life Sciences, Guangdong Province Key Laboratory for Pharmaceutical Functional Genes, Sun Yat-sen University , Guangzhou , China
| | - Bo Peng
- Center for Proteomics, State Key Laboratory of Bio-Control, School of Life Sciences, Guangdong Province Key Laboratory for Pharmaceutical Functional Genes, Sun Yat-sen University , Guangzhou , China
| | - Dan Li
- Center for Proteomics, State Key Laboratory of Bio-Control, School of Life Sciences, Guangdong Province Key Laboratory for Pharmaceutical Functional Genes, Sun Yat-sen University , Guangzhou , China
| | - Zhi-Xue Cheng
- Center for Proteomics, State Key Laboratory of Bio-Control, School of Life Sciences, Guangdong Province Key Laboratory for Pharmaceutical Functional Genes, Sun Yat-sen University , Guangzhou , China
| | - Jia-Xin Zhu
- Third Affiliated Hospital of Sun Yat-sen University , Guangzhou , China
| | - Song Zhang
- Center for Proteomics, State Key Laboratory of Bio-Control, School of Life Sciences, Guangdong Province Key Laboratory for Pharmaceutical Functional Genes, Sun Yat-sen University , Guangzhou , China
| | - Yu-Ming Peng
- Center for Proteomics, State Key Laboratory of Bio-Control, School of Life Sciences, Guangdong Province Key Laboratory for Pharmaceutical Functional Genes, Sun Yat-sen University , Guangzhou , China
| | - Hui Li
- Center for Proteomics, State Key Laboratory of Bio-Control, School of Life Sciences, Guangdong Province Key Laboratory for Pharmaceutical Functional Genes, Sun Yat-sen University , Guangzhou , China
| | - Tian-Tuo Zhang
- Third Affiliated Hospital of Sun Yat-sen University , Guangzhou , China
| | - Xuan-Xian Peng
- Center for Proteomics, State Key Laboratory of Bio-Control, School of Life Sciences, Guangdong Province Key Laboratory for Pharmaceutical Functional Genes, Sun Yat-sen University , Guangzhou , China
| |
Collapse
|
31
|
Talavera MM, Nuthakki S, Cui H, Jin Y, Liu Y, Nelin LD. Immunostimulated Arginase II Expression in Intestinal Epithelial Cells Reduces Nitric Oxide Production and Apoptosis. Front Cell Dev Biol 2017; 5:15. [PMID: 28299311 PMCID: PMC5331049 DOI: 10.3389/fcell.2017.00015] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2016] [Accepted: 02/14/2017] [Indexed: 01/03/2023] Open
Abstract
Increased production of nitric oxide (NO) and subsequent local cytotoxicity to mucosal epithelial cells has been proposed as a putative mechanism involved in the development of necrotizing enterocolitis (NEC). Intestinal epithelial cells (IECs) metabolize L-arginine to either nitric oxide (NO) by NO synthase (NOS) or to L-ornithine and urea by arginase. L-ornithine is the first step in polyamine synthesis important for cell proliferation, while NO production can lead to apoptosis. We hypothesized that in IECs immunostimulation increases both NOS and arginase expression, and that arginase activity mitigates NO production and apoptosis. Rat intestinal epithelial cells (rIEC-6) were immunostimulated by either incubation with lipopolysaccharide (LPS) alone for 24 h or by incubation with conditioned media (CM) for 24 h. CM was obtained from RAW 264.7 cells (a macrophage cell line) treated with LPS (E. coli 0127:B8; 1 μg/ml) for 4 h. The rIEC-6 stimulated with LPS or with CM had significantly higher levels of inducible NOS (iNOS) protein, NO production, and arginase II protein than did the control cells. Direct LPS stimulation of rIEC-6 produced a less robust increase in iNOS expression and NO (represented as nitrite percent of control) than did CM stimulation. Inhibition of arginase using Nω hydroxyl-L-arginine (NOHA) further increased stimulated NO production in rIEC-6. Viable cell numbers were significantly lower in CM stimulated cells after 24 h than in controls, and inhibition of arginase activity with NOHA resulted in a further significant decrease in viable cell numbers. We conclude that immunostimulated arginase expression of rIEC-6 cells tempers cytokine-induced iNOS-derived NO production and apoptosis.
Collapse
Affiliation(s)
- Maria M Talavera
- Center for Perinatal Research, The Research Institute at Nationwide Children's HospitalColumbus, OH, USA; Department of Pediatrics, The Ohio State UniversityColumbus, OH, USA
| | - Sushma Nuthakki
- Department of Pediatrics, Baylor College of Medicine, Texas Children's Hospital Houston, TX, USA
| | - Hongmei Cui
- Center for Perinatal Research, The Research Institute at Nationwide Children's Hospital Columbus, OH, USA
| | - Yi Jin
- Center for Perinatal Research, The Research Institute at Nationwide Children's Hospital Columbus, OH, USA
| | - Yusen Liu
- Center for Perinatal Research, The Research Institute at Nationwide Children's HospitalColumbus, OH, USA; Department of Pediatrics, The Ohio State UniversityColumbus, OH, USA
| | - Leif D Nelin
- Center for Perinatal Research, The Research Institute at Nationwide Children's HospitalColumbus, OH, USA; Department of Pediatrics, The Ohio State UniversityColumbus, OH, USA
| |
Collapse
|
32
|
Xue J, Nelin LD, Chen B. Hypoxia induces arginase II expression and increases viable human pulmonary artery smooth muscle cell numbers via AMPKα 1 signaling. Am J Physiol Lung Cell Mol Physiol 2017; 312:L568-L578. [PMID: 28213467 DOI: 10.1152/ajplung.00117.2016] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2016] [Revised: 02/08/2017] [Accepted: 02/09/2017] [Indexed: 01/08/2023] Open
Abstract
Pulmonary artery smooth muscle cell (PASMC) proliferation is one of the hallmark features of hypoxia-induced pulmonary hypertension. With only supportive treatment options available for this life-threatening disease, treating and preventing the proliferation of PASMCs is a viable therapeutic option. A key promoter of hypoxia-induced increases in the number of viable human PASMCs is arginase II, with attenuation of viable cell numbers following pharmacologic inhibition or siRNA knockdown of the enzyme. Additionally, increased levels of arginase have been demonstrated in the pulmonary vasculature of patients with pulmonary hypertension. The signaling pathways responsible for the hypoxic induction of arginase II in PASMCs, however, remain unknown. Hypoxia is a recognized activator of AMPK, which is known to be expressed in human PASMCs (hPASMCs). Activation of AMPK by hypoxia has been shown to promote cell survival in PASMCs. In addition, pharmacologic agents targeting AMPK have been shown to attenuate chronic hypoxia-induced pulmonary hypertension in animal models. The present studies tested the hypothesis that hypoxia-induced arginase II expression in hPASMCs is mediated through AMPK signaling. We found that pharmacologic inhibitors of AMPK, as well as siRNA knockdown of AMPKα1, prevented hypoxia-induced arginase II. The hypoxia-induced increase in viable hPASMC numbers was also prevented following both pharmacologic inhibition and siRNA knockdown of AMPK. Furthermore, we demonstrate that overexpression of AMPK induced arginase II protein expression and viable cells numbers in hPASMCs.
Collapse
Affiliation(s)
- Jianjing Xue
- Pulmonary Hypertension Group, Center for Perinatal Research, The Research Institute at Nationwide Children's Hospital, Columbus, Ohio; and
| | - Leif D Nelin
- Pulmonary Hypertension Group, Center for Perinatal Research, The Research Institute at Nationwide Children's Hospital, Columbus, Ohio; and.,Department of Pediatrics, The Ohio State University, Columbus, Ohio
| | - Bernadette Chen
- Pulmonary Hypertension Group, Center for Perinatal Research, The Research Institute at Nationwide Children's Hospital, Columbus, Ohio; and .,Department of Pediatrics, The Ohio State University, Columbus, Ohio
| |
Collapse
|
33
|
Bichell TJV, Wegrzynowicz M, Tipps KG, Bradley EM, Uhouse MA, Bryan M, Horning K, Fisher N, Dudek K, Halbesma T, Umashanker P, Stubbs AD, Holt HK, Kwakye GF, Tidball AM, Colbran RJ, Aschner M, Neely MD, Di Pardo A, Maglione V, Osmand A, Bowman AB. Reduced bioavailable manganese causes striatal urea cycle pathology in Huntington's disease mouse model. Biochim Biophys Acta Mol Basis Dis 2017; 1863:1596-1604. [PMID: 28213125 DOI: 10.1016/j.bbadis.2017.02.013] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2016] [Revised: 01/23/2017] [Accepted: 02/13/2017] [Indexed: 01/12/2023]
Abstract
Huntington's disease (HD) is caused by a mutation in the huntingtin gene (HTT), resulting in profound striatal neurodegeneration through an unknown mechanism. Perturbations in the urea cycle have been reported in HD models and in HD patient blood and brain. In neurons, arginase is a central urea cycle enzyme, and the metal manganese (Mn) is an essential cofactor. Deficient biological responses to Mn, and reduced Mn accumulation have been observed in HD striatal mouse and cell models. Here we report in vivo and ex vivo evidence of a urea cycle metabolic phenotype in a prodromal HD mouse model. Further, either in vivo or in vitro Mn supplementation reverses the urea-cycle pathology by restoring arginase activity. We show that Arginase 2 (ARG2) is the arginase enzyme present in these mouse brain models, with ARG2 protein levels directly increased by Mn exposure. ARG2 protein is not reduced in the prodromal stage, though enzyme activity is reduced, indicating that altered Mn bioavailability as a cofactor leads to the deficient enzymatic activity. These data support a hypothesis that mutant HTT leads to a selective deficiency of neuronal Mn at an early disease stage, contributing to HD striatal urea-cycle pathophysiology through an effect on arginase activity.
Collapse
Affiliation(s)
- Terry Jo V Bichell
- Department of Pediatrics, Vanderbilt University (VU), Vanderbilt University Medical Center (VUMC), Nashville, TN, USA; Department of Neurology, Vanderbilt University (VU), Vanderbilt University Medical Center (VUMC), Nashville, TN, USA; Department of Biochemistry, Vanderbilt University (VU), Nashville, TN, USA; Vanderbilt Brain Institute, VU
| | - Michal Wegrzynowicz
- Department of Pediatrics, Vanderbilt University (VU), Vanderbilt University Medical Center (VUMC), Nashville, TN, USA; Department of Neurology, Vanderbilt University (VU), Vanderbilt University Medical Center (VUMC), Nashville, TN, USA; Department of Biochemistry, Vanderbilt University (VU), Nashville, TN, USA
| | - K Grace Tipps
- Department of Pediatrics, Vanderbilt University (VU), Vanderbilt University Medical Center (VUMC), Nashville, TN, USA; Department of Neurology, Vanderbilt University (VU), Vanderbilt University Medical Center (VUMC), Nashville, TN, USA; Department of Biochemistry, Vanderbilt University (VU), Nashville, TN, USA
| | - Emma M Bradley
- Department of Pediatrics, Vanderbilt University (VU), Vanderbilt University Medical Center (VUMC), Nashville, TN, USA; Department of Neurology, Vanderbilt University (VU), Vanderbilt University Medical Center (VUMC), Nashville, TN, USA; Department of Biochemistry, Vanderbilt University (VU), Nashville, TN, USA
| | - Michael A Uhouse
- Department of Pediatrics, Vanderbilt University (VU), Vanderbilt University Medical Center (VUMC), Nashville, TN, USA; Department of Neurology, Vanderbilt University (VU), Vanderbilt University Medical Center (VUMC), Nashville, TN, USA; Department of Biochemistry, Vanderbilt University (VU), Nashville, TN, USA
| | - Miles Bryan
- Department of Pediatrics, Vanderbilt University (VU), Vanderbilt University Medical Center (VUMC), Nashville, TN, USA; Department of Neurology, Vanderbilt University (VU), Vanderbilt University Medical Center (VUMC), Nashville, TN, USA; Department of Biochemistry, Vanderbilt University (VU), Nashville, TN, USA; Vanderbilt Brain Institute, VU
| | - Kyle Horning
- Department of Pediatrics, Vanderbilt University (VU), Vanderbilt University Medical Center (VUMC), Nashville, TN, USA; Department of Neurology, Vanderbilt University (VU), Vanderbilt University Medical Center (VUMC), Nashville, TN, USA; Department of Biochemistry, Vanderbilt University (VU), Nashville, TN, USA; Vanderbilt Brain Institute, VU
| | - Nicole Fisher
- Department of Pediatrics, Vanderbilt University (VU), Vanderbilt University Medical Center (VUMC), Nashville, TN, USA; Department of Neurology, Vanderbilt University (VU), Vanderbilt University Medical Center (VUMC), Nashville, TN, USA; Department of Biochemistry, Vanderbilt University (VU), Nashville, TN, USA
| | - Karrie Dudek
- Department of Pediatrics, Vanderbilt University (VU), Vanderbilt University Medical Center (VUMC), Nashville, TN, USA; Department of Neurology, Vanderbilt University (VU), Vanderbilt University Medical Center (VUMC), Nashville, TN, USA; Department of Biochemistry, Vanderbilt University (VU), Nashville, TN, USA
| | - Timothy Halbesma
- Department of Pediatrics, Vanderbilt University (VU), Vanderbilt University Medical Center (VUMC), Nashville, TN, USA; Department of Neurology, Vanderbilt University (VU), Vanderbilt University Medical Center (VUMC), Nashville, TN, USA; Department of Biochemistry, Vanderbilt University (VU), Nashville, TN, USA
| | - Preethi Umashanker
- Department of Pediatrics, Vanderbilt University (VU), Vanderbilt University Medical Center (VUMC), Nashville, TN, USA; Department of Neurology, Vanderbilt University (VU), Vanderbilt University Medical Center (VUMC), Nashville, TN, USA; Department of Biochemistry, Vanderbilt University (VU), Nashville, TN, USA
| | - Andrew D Stubbs
- Department of Pediatrics, Vanderbilt University (VU), Vanderbilt University Medical Center (VUMC), Nashville, TN, USA; Department of Neurology, Vanderbilt University (VU), Vanderbilt University Medical Center (VUMC), Nashville, TN, USA; Department of Biochemistry, Vanderbilt University (VU), Nashville, TN, USA
| | - Hunter K Holt
- Department of Pediatrics, Vanderbilt University (VU), Vanderbilt University Medical Center (VUMC), Nashville, TN, USA; Department of Neurology, Vanderbilt University (VU), Vanderbilt University Medical Center (VUMC), Nashville, TN, USA; Department of Biochemistry, Vanderbilt University (VU), Nashville, TN, USA
| | - Gunnar F Kwakye
- Department of Pediatrics, Vanderbilt University (VU), Vanderbilt University Medical Center (VUMC), Nashville, TN, USA; Department of Neurology, Vanderbilt University (VU), Vanderbilt University Medical Center (VUMC), Nashville, TN, USA; Department of Biochemistry, Vanderbilt University (VU), Nashville, TN, USA
| | - Andrew M Tidball
- Department of Pediatrics, Vanderbilt University (VU), Vanderbilt University Medical Center (VUMC), Nashville, TN, USA; Department of Neurology, Vanderbilt University (VU), Vanderbilt University Medical Center (VUMC), Nashville, TN, USA; Department of Biochemistry, Vanderbilt University (VU), Nashville, TN, USA
| | | | - Michael Aschner
- Department of Molecular Pharmacology, Albert Einstein College of Medicine, Bronx, NY, USA
| | - M Diana Neely
- Department of Pediatrics, Vanderbilt University (VU), Vanderbilt University Medical Center (VUMC), Nashville, TN, USA; Department of Neurology, Vanderbilt University (VU), Vanderbilt University Medical Center (VUMC), Nashville, TN, USA; Department of Biochemistry, Vanderbilt University (VU), Nashville, TN, USA; Vanderbilt Brain Institute, VU
| | - Alba Di Pardo
- Centre for Neurogenetics and Rare Diseases, IRCCS Neuromed, Pozzilli, IS, Italy
| | - Vittorio Maglione
- Centre for Neurogenetics and Rare Diseases, IRCCS Neuromed, Pozzilli, IS, Italy
| | - Alexander Osmand
- Department of Biochemistry and Cellular and Molecular Biology, University of Tennessee, Knoxville, TN, USA
| | - Aaron B Bowman
- Department of Pediatrics, Vanderbilt University (VU), Vanderbilt University Medical Center (VUMC), Nashville, TN, USA; Department of Neurology, Vanderbilt University (VU), Vanderbilt University Medical Center (VUMC), Nashville, TN, USA; Department of Biochemistry, Vanderbilt University (VU), Nashville, TN, USA; Vanderbilt Brain Institute, VU.
| |
Collapse
|
34
|
Timosenko E, Hadjinicolaou AV, Cerundolo V. Modulation of cancer-specific immune responses by amino acid degrading enzymes. Immunotherapy 2017; 9:83-97. [PMID: 28000524 DOI: 10.2217/imt-2016-0118] [Citation(s) in RCA: 64] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023] Open
Abstract
To evade immune destruction, tumors exploit a wide range of immune escape mechanisms, including the induction of an immunosuppressive tumor microenvironment. This is mediated, in part, by amino acid degrading enzymes indoleamine 2,3-dioxygenase, tryptophan 2,3-dioxygenase, arginase 1 and arginase 2, which have emerged as key players in the regulation of tumor-induced immune tolerance. Here we describe how the expression of tryptophan- and arginine-degrading enzymes by tumor and tumor-infiltrating cells can hamper cancer-specific immune responses, and discuss how this knowledge is being exploited to develop new strategies for cancer immunotherapy.
Collapse
Affiliation(s)
- Elina Timosenko
- MRC Human Immunology Unit, Weatherall Institute of Molecular Medicine, University of Oxford, John Radcliffe Hospital, Oxford, OX3 9DS, UK
| | - Andreas V Hadjinicolaou
- MRC Human Immunology Unit, Weatherall Institute of Molecular Medicine, University of Oxford, John Radcliffe Hospital, Oxford, OX3 9DS, UK
| | - Vincenzo Cerundolo
- MRC Human Immunology Unit, Weatherall Institute of Molecular Medicine, University of Oxford, John Radcliffe Hospital, Oxford, OX3 9DS, UK
| |
Collapse
|
35
|
Zhang GH, Chao M, Hui LH, Xu DL, Cai WL, Zheng J, Gao M, Zhang MX, Wang J, Lu QH. Poly(ADP-ribose)polymerase 1 inhibition protects against age-dependent endothelial dysfunction. Clin Exp Pharmacol Physiol 2016; 42:1266-74. [PMID: 26331430 DOI: 10.1111/1440-1681.12484] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2014] [Revised: 08/23/2015] [Accepted: 08/25/2015] [Indexed: 11/28/2022]
Abstract
Age-related endothelial dysfunction is closely associated with the local production of reactive oxygen species (ROS) within and in the vicinity of the vascular endothelium. Oxidant-induced DNA damage can activate the nuclear enzyme poly(ADP-ribose) polymerase 1 (PARP-1), leading to endothelial dysfunction in various pathophysiological conditions. The present study aimed to investigate the role of PARP-1 in age-dependent changes in endothelial cell function and its underlying mechanism. Wild-type (WT) and PARP-1(-/-) mice were divided into young (2 months) and old (12 months) groups. Isolated aortic rings were suspended to record isometric tension to assess endothelial function. Nitric oxide (NO) production and content in plasma were detected by spectrophotometry. Superoxide (O2(-) production was detected by dihydroethidium. Expression of PARP-1, endothelial nitric oxide synthase (eNOS), induced nitric oxide synthase (iNOS), and arginase-2 (Arg2) was assessed by western blot analysis. Endothelium-dependent relaxation in response to acetylcholine was lost in old WT, but not PARP-1(-/-), mice. Endothelium-independent vasodilation was not impaired in aging mice. Production of O2(-) was greater in aging WT mice than young or aging PARP-1(-/-) mice. eNOS expression was not affected by aging in WT or PARP-1(-/-) mice, but p-eNOS expression decreased and iNOS and Arg2 levels were upregulated only in aging WT mice. In conclusion, PARP-1 inhibition may protect against age-dependent endothelial dysfunction, potentially by regulating NO bioavailability via iNOS. Inhibition of PARP-1 may help in vascular aging prevention.
Collapse
Affiliation(s)
- Guang-hao Zhang
- Department of Cardiology, The Second Hospital of Shandong University, Jinan, China.,Department of Cardiology, Taian City Central Hospital, Shandong, China
| | - Min Chao
- Department of Anorectal surgery, Afliated Hospital of Jining Medical College, Jining, Shandong, China
| | - Long-hua Hui
- The First Sanatorium of Jinan Military Region in Qingdao, Shandong, China.,Department of Cardiology, QiLu Hospital of Shandong University, Jinan, China
| | - Dong Ling Xu
- Department of Cardiology, The Second Hospital of Shandong University, Jinan, China
| | - We-li Cai
- Department of Cardiology, The Third Hospital, Jinan, China
| | - Jie Zheng
- Department of Cardiology, The Second Hospital of Shandong University, Jinan, China
| | - Min Gao
- Department of Cardiology, The Second Hospital of Shandong University, Jinan, China
| | - Ming-xiang Zhang
- Department of Cardiology, The Second Hospital of Shandong University, Jinan, China
| | - Juan Wang
- Department of Cardiology, The Second Hospital of Shandong University, Jinan, China
| | - Qing-hua Lu
- Department of Cardiology, The Second Hospital of Shandong University, Jinan, China
| |
Collapse
|
36
|
Abstract
Arginine metabolism plays a major role in cardiovascular physiology and pathophysiology, largely via nitric oxide (NO)-dependent processes. It is becoming increasingly apparent, however, that arginine metabolic enzymes other than the NO synthases can also play important roles via both NO-dependent and -independent processes. There are three sources of arginine in vivo and at least five mammalian enzymes or enzyme families that utilize arginine as substrate. Changes in arginine availability or in production of the different end products of the various arginine metabolic pathways can have distinct and profound physiologic consequences. However, our knowledge regarding the complex interplay between these pathways at the level of the whole body, specific tissues, and even individual cells, is incomplete. This review will highlight recent findings in this area that may suggest additional avenues of investigation that will allow a fuller understanding of cardiovascular physiology in health and disease.
Collapse
Affiliation(s)
- Sidney M Morris
- Department of Molecular Genetics and Biochemistry, University of Pittsburgh School of Medicine, Pittsburgh, USA,
| |
Collapse
|
37
|
Ahmad AS, Shah ZA, Doré S. Protective Role of Arginase II in Cerebral Ischemia and Excitotoxicity. ACTA ACUST UNITED AC 2016; 7. [PMID: 27308186 DOI: 10.21767/2171-6625.100088] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
BACKGROUND Arginase (Arg), one of the enzymes involved in the urea cycle, provides an essential route for the disposal of excess nitrogen resulting from amino acid and nucleotide metabolism. Two reported subtypes of Arg (ArgI and II) compete with nitric oxide synthase (NOS) to use L-arginine as a substrate, and subsequently regulate NOS activity. It has been reported that Arg has significant effects on circulation that suggest the potential role of this enzyme in regulating vascular function. However, the role of Arg following brain damage has not been elucidated. In this study, we hypothesize that the deletion of ArgII will lead to aggravated brain injury following cerebral ischemia and excitotoxicity. METHODS AND FINDINGS To test our hypothesis, male C57BL/6 wildtype (WT) and ArgII-/- mice were subjected to permanent distal middle cerebral artery occlusion and survived for 7 d. Cerebral blood flow (CBF) data revealed a statistically non-significant decrease in CBF in ArgII-/- mice. However, ArgII-/- mice had significantly higher neurologic deficit scores and brain infarctions. The hypothesis was further tested in a more specific N-methyl-D-aspartate (NMDA)-induced acute excitotoxic model. WT and ArgII-/- mice were given a single intrastriatal injection of 15 nmol NMDA. Forty-eight hours later, the excitotoxic brain damage was significantly worse in ArgII-/- mice. The data from both models confirm the neuroprotective effect of ArgII. CONCLUSION Targeting ArgII could be considered an integrative part of a multi-modal approach to fight acute brain damage excitotoxicity, ischemic brain injury, and other forms of brain trauma.
Collapse
Affiliation(s)
- Abdullah Shafique Ahmad
- Department of Anesthesiology, University of Florida, Gainesville, 32610, FL, USA; Center for Translational Research in Neurodegenerative Disease, University of Florida, Gainesville, 32610, FL, USA
| | - Zahoor Ahmad Shah
- Department of Medicinal and Biological Chemistry, University of Toledo, Toledo 43614, OH, USA
| | - Sylvain Doré
- Department of Anesthesiology, University of Florida, Gainesville, 32610, FL, USA; Center for Translational Research in Neurodegenerative Disease, University of Florida, Gainesville, 32610, FL, USA; Departments of Neurology, Psychiatry, Psychology, Pharmaceutics, and Neuroscience, University of Florida, Gainesville, 32610 FL, USA
| |
Collapse
|
38
|
Rodríguez-Gómez I, Manuel Moreno J, Jimenez R, Quesada A, Montoro-Molina S, Vargas-Tendero P, Wangensteen R, Vargas F. Effects of Arginase Inhibition in Hypertensive Hyperthyroid Rats. Am J Hypertens 2015; 28:1464-72. [PMID: 25907224 DOI: 10.1093/ajh/hpv049] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2014] [Accepted: 03/16/2015] [Indexed: 11/13/2022] Open
Abstract
BACKGROUND This study analyzed the effects of chronic administration of N[omega]-hydroxy-nor-l-arginine (nor-NOHA), an inhibitor of arginase, on the hemodynamic, oxidative stress, morphologic, metabolic, and renal manifestations of hyperthyroidism in rats. METHODS Four groups of male Wistar rats were used: control, nor-NOHA-treated (10 mg/kg/day), thyroxine (T4)-treated (75 μg/rat/day), and thyroxine- plus nor-NOHA-treated rats. All treatments were maintained for 4 weeks. Body weight, tail systolic blood pressure (SBP), and heart rate (HR) were recorded weekly. Finally, morphologic, metabolic, plasma, and renal variables were measured. Arginase I and II protein abundance and arginase activity were measured in aorta, heart, and kidney. RESULTS The T4 group showed increased arginase I and II protein abundance, arginase activity, SBP, HR, plasma nitrates/nitrites (NOx), brainstem and urinary isoprostanes, proteinuria and cardiac and renal hypertrophy in comparison to control rats. In hyperthyroid rats, chronic nor-NOHA prevented the increase in SBP and HR and decreased proteinuria in association with an increase in plasma NOx and a decrease in brainstem and urinary isoprostanes. In normal rats, nor-NOHA treatment did not significantly change any hemodynamic, morphologic, or renal variables. Acute nor-NOHA administration did not affect renal or systemic hemodynamic variables in normal or T4-treated rats. CONCLUSION Hyperthyroidism in rats is associated with the increased expression and activity of arginase in aorta, heart, and kidney. Chronic arginase inhibition with nor-NOHA suppresses the characteristic hemodynamic manifestations of hyperthyroidism in association with a reduced oxidative stress. These results indicate an important role for arginase pathway alterations in the cardiovascular and renal abnormalities of hyperthyroidism.
Collapse
Affiliation(s)
- Isabel Rodríguez-Gómez
- Departamento de Fisiología, Facultad de Medicina, Granada, Spain; Instituto de Investigación Biosanitaria ibs.GRANADA, Hospitales Universitarios de Granada. Universidad de Granada, Granada, Spain
| | - Juan Manuel Moreno
- Instituto de Investigación Biosanitaria ibs.GRANADA, Hospitales Universitarios de Granada. Universidad de Granada, Granada, Spain; Departamento de Fisiología, Facultad de Medicina, Murcia, Spain
| | - Rosario Jimenez
- Instituto de Investigación Biosanitaria ibs.GRANADA, Hospitales Universitarios de Granada. Universidad de Granada, Granada, Spain; Departamento de Farmacología, Facultad de Farmacia, Granada, Spain
| | - Andrés Quesada
- Instituto de Investigación Biosanitaria ibs.GRANADA, Hospitales Universitarios de Granada. Universidad de Granada, Granada, Spain; Departamento de Ciencias de la Salud, Universidad de Jaén, Jaén, Spain
| | - Sebastian Montoro-Molina
- Instituto de Investigación Biosanitaria ibs.GRANADA, Hospitales Universitarios de Granada. Universidad de Granada, Granada, Spain; Departamento de Ciencias de la Salud, Universidad de Jaén, Jaén, Spain
| | - Pablo Vargas-Tendero
- Departamento de Fisiología, Facultad de Medicina, Granada, Spain; Instituto de Investigación Biosanitaria ibs.GRANADA, Hospitales Universitarios de Granada. Universidad de Granada, Granada, Spain
| | - Rosemary Wangensteen
- Instituto de Investigación Biosanitaria ibs.GRANADA, Hospitales Universitarios de Granada. Universidad de Granada, Granada, Spain; Departamento de Ciencias de la Salud, Universidad de Jaén, Jaén, Spain
| | - Félix Vargas
- Departamento de Fisiología, Facultad de Medicina, Granada, Spain; Instituto de Investigación Biosanitaria ibs.GRANADA, Hospitales Universitarios de Granada. Universidad de Granada, Granada, Spain;
| |
Collapse
|
39
|
Mitogen-activated protein kinase phosphatase-1 prevents lipopolysaccharide-induced apoptosis in immature rat intestinal epithelial cells. Pediatr Res 2015; 78:128-36. [PMID: 25950450 PMCID: PMC7500060 DOI: 10.1038/pr.2015.88] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/17/2014] [Accepted: 01/31/2015] [Indexed: 12/17/2022]
Abstract
BACKGROUND Necrotizing enterocolitis is characterized by intestinal inflammation and epithelial barrier dysfunction. Mitogen-activated protein kinase (MAPK) phosphatase (MKP)-1 plays a pivotal role in the feedback control of MAPK signaling, which regulates inflammation and apoptosis. We hypothesized that MKP-1 prevents lipopolysaccharide (LPS)-induced apoptosis in intestinal epithelial cells. METHODS Western blot analysis and qPCR were used to assess MKP-1, MAPK (p38, extracellular signal-regulated kinase (ERK), and c-Jun N terminal kinases (JNK)), caspase 3, caspase 9, tumor necrosis factor (TNF)-α, and cyclooxygenase (COX)-2 expression levels in rIEC-6 enterocytes. MKP-1 expression was inhibited using small interfering RNA (siRNA) methodology. Viable cell number was determined using trypan blue exclusion. RESULTS LPS stimulation led to activation of p38, JNK, and ERK, and induction of MKP-1 mRNA and protein expression. The induction of MKP-1 was associated with a decrease in p38 phosphorylation, and knockdown of MKP-1 prolonged p38 phosphorylation. While LPS stimulation significantly attenuated proliferation of rIEC-6 cells transfected with scramble siRNA, LPS stimulation resulted in a net decrease in viable cell number in cells transfected with MKP-1 siRNA. Following LPS stimulation, MKP-1 knockdown resulted in greater caspase 3 and 9 activities and greater proinflammatory cytokine (TNF-α, COX-2) expression than in cells transfected with scramble siRNA. CONCLUSION Our results demonstrate that MKP-1 has a central role in preventing inflammation-induced apoptosis in rIEC-6 enterocytes.
Collapse
|
40
|
Chen B, Strauch K, Jin Y, Cui H, Nelin LD, Chicoine LG. Asymmetric dimethylarginine does not inhibit arginase activity and is pro-proliferative in pulmonary endothelial cells. Clin Exp Pharmacol Physiol 2015; 41:469-74. [PMID: 24799070 DOI: 10.1111/1440-1681.12252] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2013] [Revised: 04/18/2014] [Accepted: 04/24/2014] [Indexed: 11/27/2022]
Abstract
Asymmetric dimethylarginine (ADMA) is an endogenously produced nitric oxide synthase (NOS) inhibitor. L-Arginine can be metabolised by NOS and arginase, and arginase is the first step in polyamine production necessary for cellular proliferation. We tested the hypothesis that ADMA would inhibit NOS but not arginase activity and that this pattern of inhibition would result in greater L-arginine bioavailability to arginase, thereby increasing viable cell number. Bovine arginase was used in in vitro activity assays with various concentrations of substrate (L-arginine, ADMA, N(G) -monomethyl-L-arginine (L-NMMA) and N(G) -nitro-L-arginine methyl ester (L-NAME)). Only L-arginine resulted in measurable urea production (Km = 6.9 ± 0.8 mmol/L; Vmax = 6.6 ± 0.3 μmol/mg protein per min). We then incubated bovine arginase with increasing concentrations of ADMA, L-NMMA and L-NAME in the presence of 1 mmol/L l-arginine and found no effect of any of the tested compounds on arginase activity. Using bovine pulmonary arterial endothelial cells (bPAEC) we determined the effects of ADMA on nitric oxide (NO) and urea production and found significantly lower NO production and greater urea production (P < 0.003) with ADMA, without changes in arginase protein levels. In addition, ADMA treatment resulted in an approximately 30% greater number of viable cells after 48 h than in control bPAEC. These results demonstrate that ADMA is neither a substrate nor an inhibitor of arginase activity and that in bPAEC ADMA inhibits NO production and enhances urea production, leading to more viable cells. These results may have pathophysiological implications in disorders associated with higher ADMA levels, such as pulmonary hypertension.
Collapse
Affiliation(s)
- Bernadette Chen
- Pulmonary Hypertension Group, Center for Perinatal Research, The Research Institute at Nationwide Children's Hospital, Columbus, OH, USA; Department of Pediatrics, The Ohio State University, Columbus, OH, USA
| | | | | | | | | | | |
Collapse
|
41
|
Wijnands KAP, Castermans TMR, Hommen MPJ, Meesters DM, Poeze M. Arginine and citrulline and the immune response in sepsis. Nutrients 2015; 7:1426-63. [PMID: 25699985 PMCID: PMC4377861 DOI: 10.3390/nu7031426] [Citation(s) in RCA: 116] [Impact Index Per Article: 12.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2014] [Revised: 01/15/2015] [Accepted: 01/26/2015] [Indexed: 01/01/2023] Open
Abstract
Arginine, a semi-essential amino acid is an important initiator of the immune response. Arginine serves as a precursor in several metabolic pathways in different organs. In the immune response, arginine metabolism and availability is determined by the nitric oxide synthases and the arginase enzymes, which convert arginine into nitric oxide (NO) and ornithine, respectively. Limitations in arginine availability during inflammatory conditions regulate macrophages and T-lymfocyte activation. Furthermore, over the past years more evidence has been gathered which showed that arginine and citrulline deficiencies may underlie the detrimental outcome of inflammatory conditions, such as sepsis and endotoxemia. Not only does the immune response contribute to the arginine deficiency, also the impaired arginine de novo synthesis in the kidney has a key role in the eventual observed arginine deficiency. The complex interplay between the immune response and the arginine-NO metabolism is further underscored by recent data of our group. In this review we give an overview of physiological arginine and citrulline metabolism and we address the experimental and clinical studies in which the arginine-citrulline NO pathway plays an essential role in the immune response, as initiator and therapeutic target.
Collapse
Affiliation(s)
- Karolina A P Wijnands
- Department of Surgery, NUTRIM School for Nutrition, Toxicology and Metabolism, Maastricht University Medical Center, Maastricht 6200 MD, The Netherlands.
| | - Tessy M R Castermans
- Department of Surgery, Maastricht University Medical Center, Maastricht 6200MD, The Netherlands.
| | - Merel P J Hommen
- Department of Surgery, Maastricht University Medical Center, Maastricht 6200MD, The Netherlands.
| | - Dennis M Meesters
- Department of Surgery, NUTRIM School for Nutrition, Toxicology and Metabolism, Maastricht University Medical Center, Maastricht 6200 MD, The Netherlands.
| | - Martijn Poeze
- Department of Surgery, NUTRIM School for Nutrition, Toxicology and Metabolism, Maastricht University Medical Center, Maastricht 6200 MD, The Netherlands.
| |
Collapse
|
42
|
Endothelial arginine resynthesis contributes to the maintenance of vasomotor function in male diabetic mice. PLoS One 2014; 9:e102264. [PMID: 25033204 PMCID: PMC4102520 DOI: 10.1371/journal.pone.0102264] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2014] [Accepted: 06/16/2014] [Indexed: 02/06/2023] Open
Abstract
Aim Argininosuccinate synthetase (ASS) is essential for recycling L-citrulline, the by-product of NO synthase (NOS), to the NOS substrate L-arginine. Here, we assessed whether disturbed arginine resynthesis modulates endothelium-dependent vasodilatation in normal and diabetic male mice. Methods and Results Endothelium-selective Ass-deficient mice (Assfl/fl/Tie2Cretg/− = Ass-KOTie2) were generated by crossing Assfl/fl mice ( = control) with Tie2Cre mice. Gene ablation in endothelial cells was confirmed by immunohistochemistry. Blood pressure (MAP) was recorded in 34-week-old male mice. Vasomotor responses were studied in isolated saphenous arteries of 12- and 34-week-old Ass-KOTie2 and control animals. At the age of 10 weeks, diabetes was induced in control and Ass-KOTie2 mice by streptozotocin injections. Vasomotor responses of diabetic animals were studied 10 weeks later. MAP was similar in control and Ass-KOTie2 mice. Depletion of circulating L-arginine by arginase 1 infusion or inhibition of NOS activity with L-NAME resulted in an increased MAP (10 and 30 mmHg, respectively) in control and Ass-KOTie2 mice. Optimal arterial diameter, contractile responses to phenylephrine, and relaxing responses to acetylcholine and sodium nitroprusside were similar in healthy control and Ass-KOTie2 mice. However, in diabetic Ass-KOTie2 mice, relaxation responses to acetylcholine and endothelium-derived NO (EDNO) were significantly reduced when compared to diabetic control mice. Conclusions Absence of endothelial citrulline recycling to arginine did not affect blood pressure and systemic arterial vasomotor responses in healthy mice. EDNO-mediated vasodilatation was significantly more impaired in diabetic Ass-KOTie2 than in control mice demonstrating that endothelial arginine recycling becomes a limiting endothelial function in diabetes.
Collapse
|
43
|
Abstract
Oxidative stress has many implications in the pathogenesis of lung diseases. In this review, we provide an overview of Reactive Oxygen Species (ROS) and nitrogen (RNS) species and antioxidants, how they relate to normal physiological function and the pathophysiology of different lung diseases, and therapeutic strategies. The production of ROS/RNS from endogenous and exogenous sources is first discussed, followed by antioxidant systems that restore oxidative balance and cellular homeostasis. The contribution of oxidant/antioxidant imbalance in lung disease pathogenesis is also discussed. An overview of therapeutic strategies is provided, such as augmenting NO bioactivity, blocking the production of ROS/RNS and replacement of deficient antioxidants. The limitations of current strategies and failures of clinical trials are then addressed, followed by discussion of novel experimental approaches for the development of improved antioxidant therapies.
Collapse
|
44
|
Chen B, Xue J, Meng X, Slutzky JL, Calvert AE, Chicoine LG. Resveratrol prevents hypoxia-induced arginase II expression and proliferation of human pulmonary artery smooth muscle cells via Akt-dependent signaling. Am J Physiol Lung Cell Mol Physiol 2014; 307:L317-25. [PMID: 24951775 DOI: 10.1152/ajplung.00285.2013] [Citation(s) in RCA: 50] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Pulmonary artery smooth muscle cell (PASMC) proliferation plays a fundamental role in the vascular remodeling seen in pulmonary hypertensive diseases associated with hypoxia. Arginase II, an enzyme regulating the first step in polyamine and proline synthesis, has been shown to play a critical role in hypoxia-induced proliferation of human PASMC (hPASMC). In addition, there is evidence that patients with pulmonary hypertension have elevated levels of arginase in the vascular wall. Resveratrol, a natural polyphenol found in red wine and grape skins, has diverse biochemical and physiological actions including antiproliferative properties. Furthermore, resveratrol has been shown to attenuate right ventricular and pulmonary artery remodeling, both pathological components of pulmonary hypertension. The present studies tested the hypothesis that resveratrol would prevent hypoxia-induced pulmonary artery smooth muscle cell proliferation by inhibiting hypoxia-induced arginase II expression. Our data indicate that hypoxia-induced hPASMC proliferation is abrogated following treatment with resveratrol. In addition, the hypoxic induction of arginase II was directly attenuated by resveratrol treatment. Furthermore, we found that the inhibitory effect of resveratrol on arginase II in hPASMC was mediated through the PI3K-Akt signaling pathway. Supporting these in vitro findings, resveratrol normalized right ventricular hypertrophy in an in vivo neonatal rat model of chronic hypoxia-induced pulmonary hypertension. These novel data support the notion that resveratrol may be a potential therapeutic agent in pulmonary hypertension by preventing PASMC arginase II induction and proliferation.
Collapse
Affiliation(s)
- Bernadette Chen
- Pulmonary Hypertension Group, Center for Perinatal Research, Nationwide Children's Hospital, Columbus, Ohio; Department of Pediatrics, The Ohio State University, Columbus, Ohio
| | - Jianjing Xue
- Pulmonary Hypertension Group, Center for Perinatal Research, Nationwide Children's Hospital, Columbus, Ohio
| | - Xiaomei Meng
- Pulmonary Hypertension Group, Center for Perinatal Research, Nationwide Children's Hospital, Columbus, Ohio
| | - Jessica L Slutzky
- Center for Gene Therapy, The Research Institute at Nationwide Children's Hospital, Columbus, Ohio; and
| | - Andrea E Calvert
- Pulmonary Hypertension Group, Center for Perinatal Research, Nationwide Children's Hospital, Columbus, Ohio
| | - Louis G Chicoine
- Center for Gene Therapy, The Research Institute at Nationwide Children's Hospital, Columbus, Ohio; and Department of Pediatrics, The Ohio State University, Columbus, Ohio
| |
Collapse
|
45
|
Lou Y, Zhang G, Geng M, Zhang W, Cui J, Liu S. TIPE2 negatively regulates inflammation by switching arginine metabolism from nitric oxide synthase to arginase. PLoS One 2014; 9:e96508. [PMID: 24806446 PMCID: PMC4013027 DOI: 10.1371/journal.pone.0096508] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2013] [Accepted: 04/09/2014] [Indexed: 12/28/2022] Open
Abstract
TIPE2, the tumor necrosis factor (TNF)-alpha-induced protein 8-like 2 (TNFAIP8L2), plays an essential role in maintaining immune homeostasis. It is highly expressed in macrophages and negatively regulates inflammation through inhibiting Toll-like receptor signaling. In this paper, we utilized RAW264.7 cells stably transfected with a TIPE2 expression plasmid, as well as TIPE2-deficient macrophages to study the roles of TIPE2 in LPS-induced nitric oxide (NO) and urea production. The results showed that TIPE2-deficiency significantly upregulated the levels of iNOS expression and NO production in LPS-stimulated macrophages, but decreased mRNA levels of arginase I and urea production. However, TIPE2 overexpression in macrophages was capable of downregulating protein levels of LPS-induced iNOS and NO, but generated greater levels of arginase I and urea production. Furthermore, TIPE2−/− mice had higher iNOS protein levels in lung and liver and higher plasma NO concentrations, but lower levels of liver arginase I compared to LPS-treated WT controls. Interestingly, significant increases in IκB degradation and phosphorylation of JNK, p38, and IκB were observed in TIPE2-deficient macrophages following LPS challenge. These results strongly suggest that TIPE2 plays an important role in shifting L-arginase metabolism from production of NO to urea, during host inflammatory response.
Collapse
Affiliation(s)
- Yunwei Lou
- Department of Immunology, Shandong University School of Medicine, Ji'nan, P.R. China
| | - Guizhong Zhang
- Department of Immunology, Shandong University School of Medicine, Ji'nan, P.R. China
| | - Minghong Geng
- Department of Immunology, Shandong University School of Medicine, Ji'nan, P.R. China
| | - Wenqian Zhang
- Department of Immunology, Shandong University School of Medicine, Ji'nan, P.R. China
| | - Jian Cui
- Department of Immunology, Shandong University School of Medicine, Ji'nan, P.R. China
| | - Suxia Liu
- Department of Immunology, Shandong University School of Medicine, Ji'nan, P.R. China
- * E-mail:
| |
Collapse
|
46
|
Choi K, Yoon J, Lim HK, Ryoo S. Korean red ginseng water extract restores impaired endothelial function by inhibiting arginase activity in aged mice. THE KOREAN JOURNAL OF PHYSIOLOGY & PHARMACOLOGY : OFFICIAL JOURNAL OF THE KOREAN PHYSIOLOGICAL SOCIETY AND THE KOREAN SOCIETY OF PHARMACOLOGY 2014; 18:95-101. [PMID: 24757370 PMCID: PMC3994309 DOI: 10.4196/kjpp.2014.18.2.95] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/22/2013] [Revised: 02/02/2014] [Accepted: 02/03/2014] [Indexed: 11/25/2022]
Abstract
Cardiovascular disease is the prime cause of morbidity and mortality and the population ages that may contribute to increase in the occurrence of cardiovascular disease. Arginase upregulation is associated with impaired endothelial function in aged vascular system and thus may contribute to cardiovascular disease. According to recent research, Korean Red Ginseng water extract (KRGE) may reduce cardiovascular disease risk by improving vascular system health. The purpose of this study was to examine mechanisms contributing to age-related vascular endothelial dysfunction and to determine whether KRGE improves these functions in aged mice. Young (10±3 weeks) and aged (55±5 weeks) male mice (C57BL/6J) were orally administered 0, 10, or 20 mg/mouse/day of KRGE for 4 weeks. Animals were sacrificed and the aortas were removed. Endothelial arginase activity, nitric oxide (NO) generation and reactive oxygen species (ROS) production, endothelial nitric oxide synthase (eNOS) coupling, vascular tension, and plasma peroxynitrite production were measured. KRGE attenuated arginase activity, restored nitric oxide (NO) generation, reduced ROS production, and enhanced eNOS coupling in aged mice. KRGE also improved vascular tension in aged vessels, as indicated by increased acetylcholine-induced vasorelaxation and improved phenylephrine-stimulated vasoconstriction. Furthermore, KRGE prevented plasma peroxynitrite formation in aged mice, indicating reduced lipid peroxidation. These results suggest KRGE exerts vasoprotective effects by inhibiting arginase activity and augmenting NO signaling and may be a useful treatment for age-dependent vascular diseases.
Collapse
Affiliation(s)
- Kwanhoon Choi
- Department of Anesthesiology and Pain Medicine, Yonsei University Wonju College of Medicine, Wonju 220-701, Korea
| | - Jeongyeon Yoon
- Department of Biology, Kangwon National University, Chuncheon 200-701, Korea
| | - Hyun Kyo Lim
- Department of Anesthesiology and Pain Medicine, Yonsei University Wonju College of Medicine, Wonju 220-701, Korea
| | - Sungwoo Ryoo
- Department of Biology, Kangwon National University, Chuncheon 200-701, Korea
| |
Collapse
|
47
|
Wijnands KAP, Hoeksema MA, Meesters DM, van den Akker NMS, Molin DGM, Briedé JJ, Ghosh M, Köhler SE, van Zandvoort MAMJ, de Winther MPJ, Buurman WA, Lamers WH, Poeze M. Arginase-1 deficiency regulates arginine concentrations and NOS2-mediated NO production during endotoxemia. PLoS One 2014; 9:e86135. [PMID: 24465919 PMCID: PMC3897658 DOI: 10.1371/journal.pone.0086135] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2013] [Accepted: 12/04/2013] [Indexed: 12/15/2022] Open
Abstract
Rationale and objective Arginase-1 is an important component of the intricate mechanism regulating arginine availability during immune responses and nitric oxide synthase (NOS) activity. In this study Arg1fl/fl/Tie2-Cretg/− mice were developed to investigate the effect of arginase-1 related arginine depletion on NOS2- and NOS3-dependent NO production and jejunal microcirculation under resting and endotoxemic conditions, in mice lacking arginase-1 in endothelial and hematopoietic cells. Methods and Results Arginase-1-deficient mice as compared with control mice exhibited higher plasma arginine concentration concomitant with enhanced NO production in endothelial cells and jejunal tissue during endotoxemia. In parallel, impaired jejunal microcirculation was observed in endotoxemic conditions. Cultured bone-marrow-derived macrophages of arginase-1 deficient animals also presented a higher inflammatory response to endotoxin than control littermates. Since NOS2 competes with arginase for their common substrate arginine during endotoxemia, Nos2 deficient mice were also studied under endotoxemic conditions. As Nos2−/− macrophages showed an impaired inflammatory response to endotoxin compared to wild-type macrophages, NOS2 is potentially involved. A strongly reduced NO production in Arg1fl/fl/Tie2-Cretg/− mice following infusion of the NOS2 inhibitor 1400W further implicated NOS2 in the enhanced capacity to produce NO production Arg1fl/fl/Tie2-Cretg/− mice. Conclusions Reduced arginase-1 activity in Arg1fl/fl/Tie2-Cretg/− mice resulted in increased inflammatory response and NO production by NOS2, accompanied by a depressed microcirculatory flow during endotoxemia. Thus, arginase-1 deficiency facilitates a NOS2-mediated pro-inflammatory activity at the expense of NOS3-mediated endothelial relaxation.
Collapse
Affiliation(s)
- Karolina A. P. Wijnands
- Department of Surgery, Maastricht University Medical Centre, Maastricht, the Netherlands
- NUTRIM School for Nutrition, Toxicology and Metabolism, Maastricht University Medical Centre, Maastricht, the Netherlands
- * E-mail:
| | - Marten A. Hoeksema
- Department of Medical Biochemistry, Academic Medical Center, University of Amsterdam, Amsterdam, the Netherlands
| | - Dennis M. Meesters
- Department of Surgery, Maastricht University Medical Centre, Maastricht, the Netherlands
- NUTRIM School for Nutrition, Toxicology and Metabolism, Maastricht University Medical Centre, Maastricht, the Netherlands
| | - Nynke M. S. van den Akker
- Department of Cardiology, Maastricht University Medical Centre, Maastricht, the Netherlands
- CARIM Cardiovascular Research Institute of Maastricht, Maastricht University Medical Centre, Maastricht, the Netherlands
- Department of Physiology, Maastricht University Medical Centre, Maastricht, the Netherlands
| | - Daniel G. M. Molin
- CARIM Cardiovascular Research Institute of Maastricht, Maastricht University Medical Centre, Maastricht, the Netherlands
- Department of Physiology, Maastricht University Medical Centre, Maastricht, the Netherlands
| | - Jacob J. Briedé
- Department of Toxicogenomics, Maastricht University Medical Centre, Maastricht, the Netherlands
- GROW School for Oncology and Developmental Biology, Maastricht University Medical Centre, Maastricht, the Netherlands
| | - Mitrajit Ghosh
- CARIM Cardiovascular Research Institute of Maastricht, Maastricht University Medical Centre, Maastricht, the Netherlands
- Department of Genetics & cell Biology, Section Molecular Cell Biology, Maastricht University Medical Centre, Maastricht, the Netherlands
| | - S. Eleonore Köhler
- NUTRIM School for Nutrition, Toxicology and Metabolism, Maastricht University Medical Centre, Maastricht, the Netherlands
- Department of Anatomy & Embryology, Maastricht University Medical Centre, Maastricht, the Netherlands
| | - Marc A. M. J. van Zandvoort
- CARIM Cardiovascular Research Institute of Maastricht, Maastricht University Medical Centre, Maastricht, the Netherlands
- Department of Genetics & cell Biology, Section Molecular Cell Biology, Maastricht University Medical Centre, Maastricht, the Netherlands
| | - Menno P. J. de Winther
- Department of Medical Biochemistry, Academic Medical Center, University of Amsterdam, Amsterdam, the Netherlands
| | - Wim A. Buurman
- Department of Surgery, Maastricht University Medical Centre, Maastricht, the Netherlands
- NUTRIM School for Nutrition, Toxicology and Metabolism, Maastricht University Medical Centre, Maastricht, the Netherlands
| | - Wouter H. Lamers
- NUTRIM School for Nutrition, Toxicology and Metabolism, Maastricht University Medical Centre, Maastricht, the Netherlands
- Department of Anatomy & Embryology, Maastricht University Medical Centre, Maastricht, the Netherlands
| | - Martijn Poeze
- Department of Surgery, Maastricht University Medical Centre, Maastricht, the Netherlands
- NUTRIM School for Nutrition, Toxicology and Metabolism, Maastricht University Medical Centre, Maastricht, the Netherlands
| |
Collapse
|
48
|
LXR agonism improves TNF-α-induced endothelial dysfunction in the absence of its cholesterol-modulating effects. Atherosclerosis 2014; 232:1-9. [DOI: 10.1016/j.atherosclerosis.2013.10.001] [Citation(s) in RCA: 45] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/06/2013] [Revised: 09/13/2013] [Accepted: 10/01/2013] [Indexed: 12/20/2022]
|
49
|
Nitric oxide synthetic pathway in red blood cells is impaired in coronary artery disease. PLoS One 2013; 8:e66945. [PMID: 23940508 PMCID: PMC3734222 DOI: 10.1371/journal.pone.0066945] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2013] [Accepted: 05/13/2013] [Indexed: 11/19/2022] Open
Abstract
Background All the enzymatic factors/cofactors involved in nitric oxide (NO) metabolism have been recently found in red blood cells. Increased oxidative stress impairs NO bioavailability and has been described in plasma of coronary artery disease (CAD) patients. The aim of the study was to highlight a potential dysfunction of the metabolic profile of NO in red blood cells and in plasma from CAD patients compared with healthy controls. Methods We determined L-arginine/NO pathway by liquid-chromatography tandem mass spectrometry and high performance liquid chromatography methods. The ratio of oxidized and reduced forms of glutathione, as index of oxidative stress, was measured by liquid-chromatography tandem mass spectrometry method. NO synthase expression and activity were evaluated by immunofluorescence staining and ex-vivo experiments of L-[15N2]arginine conversion to L-[15N]citrulline respectively. Results Increased amounts of asymmetric and symmetric dimethylarginines were found both in red blood cells and in plasma of CAD patients in respect to controls. Interestingly NO synthase expression and activity were reduced in CAD red blood cells. In contrast, oxidized/reduced glutathione ratio was increased in CAD and was associated to arginase activity. Conclusion Our study analyzed for the first time the whole metabolic pathway of L-arginine/NO, both in red blood cells and in plasma, highlighting an impairment of NO pathway in erythrocytes from CAD patients, associated with decreased NO synthase expression/activity and increased oxidative stress.
Collapse
|
50
|
Shin W, Yoon J, Oh GT, Ryoo S. Korean red ginseng inhibits arginase and contributes to endotheliumdependent vasorelaxation through endothelial nitric oxide synthase coupling. J Ginseng Res 2013; 37:64-73. [PMID: 23717158 PMCID: PMC3659627 DOI: 10.5142/jgr.2013.37.64] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2012] [Revised: 08/30/2012] [Accepted: 09/02/2012] [Indexed: 01/27/2023] Open
Abstract
Korean red ginseng water extract (KG-WE) has known beneficial effects on the cardiovascular system via inducting nitric oxide (NO) production in endothelium. Endothelial arginase inhibits the activity of endothelial nitric oxide synthase (eNOS) by substrate depletion, thereby reducing NO bioavailability and contributing to vascular diseases including hypertension, aging, and atherosclerosis. In the present study, we demonstrate that KG-WE inhibits arginase activity and negatively regulates NO production and reactive oxygen species generation in endothelium. This is associated with increased dimerization of eNOS without affecting the protein expression levels of either arginase or eNOS. In a vascular tension assay, when aortas isolated from wild type mice were incubated with KG-WE, NO-dependent enhanced vasorelaxation was observed. Furthermore, KG-WE administered via by drinking water to atherogenic model mice being fed high cholesterol diet improved impaired vascular function. Taken together, these results suggest that KG-WE may exert vasoprotective effects through augmentation of NO signaling by inhibiting arginase. Therefore, KG-WE may be useful in the treatment of vascular diseases derived from endothelial dysfunction, such as atherosclerosis.
Collapse
Affiliation(s)
- Woosung Shin
- Department of Biology, College of Natural Sciences, Kangwon National University, Chuncheon 200-701, Korea
| | | | | | | |
Collapse
|