1
|
Alexander M, Upadhyay V, Rock R, Ramirez L, Trepka K, Puchalska P, Orellana D, Ang QY, Whitty C, Turnbaugh JA, Tian Y, Dumlao D, Nayak R, Patterson A, Newman JC, Crawford PA, Turnbaugh PJ. A diet-dependent host metabolite shapes the gut microbiota to protect from autoimmunity. Cell Rep 2024; 43:114891. [PMID: 39500329 DOI: 10.1016/j.celrep.2024.114891] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2023] [Revised: 04/04/2024] [Accepted: 10/03/2024] [Indexed: 11/13/2024] Open
Abstract
Diet can protect from autoimmune disease; however, whether diet acts via the host and/or microbiome remains unclear. Here, we use a ketogenic diet (KD) as a model to dissect these complex interactions. A KD rescued the experimental autoimmune encephalomyelitis (EAE) mouse model of multiple sclerosis in a microbiota-dependent fashion. Dietary supplementation with a single KD-dependent host metabolite (β-hydroxybutyrate [βHB]) rescued EAE, whereas transgenic mice unable to produce βHB in the intestine developed more severe disease. Transplantation of the βHB-shaped gut microbiota was protective. Lactobacillus sequence variants were associated with decreased T helper 17 cell activation in vitro. Finally, we isolated an L. murinus strain that protected from EAE, which was phenocopied by a Lactobacillus metabolite enriched by βHB supplementation, indole lactate. Thus, diet alters the immunomodulatory potential of the gut microbiota by shifting host metabolism, emphasizing the utility of taking a more integrative approach to study diet-host-microbiome interactions.
Collapse
Affiliation(s)
- Margaret Alexander
- Department of Microbiology & Immunology, University of California, San Francisco, San Francisco, CA 94143, USA; Department of Medical Microbiology and Immunology, University of Wisconsin - Madison, Madison, WI 53706, USA
| | - Vaibhav Upadhyay
- Department of Microbiology & Immunology, University of California, San Francisco, San Francisco, CA 94143, USA; Department of Medicine, University of California, San Francisco, San Francisco, CA 94158, USA
| | - Rachel Rock
- Department of Microbiology & Immunology, University of California, San Francisco, San Francisco, CA 94143, USA
| | - Lorenzo Ramirez
- Department of Microbiology & Immunology, University of California, San Francisco, San Francisco, CA 94143, USA
| | - Kai Trepka
- Department of Microbiology & Immunology, University of California, San Francisco, San Francisco, CA 94143, USA
| | - Patrycja Puchalska
- Division of Molecular Medicine, University of Minnesota, Minneapolis, MN 55455, USA
| | - Diego Orellana
- Department of Medicine, University of California, San Francisco, San Francisco, CA 94158, USA
| | - Qi Yan Ang
- Department of Microbiology & Immunology, University of California, San Francisco, San Francisco, CA 94143, USA
| | - Caroline Whitty
- Department of Microbiology & Immunology, University of California, San Francisco, San Francisco, CA 94143, USA
| | - Jessie A Turnbaugh
- Department of Microbiology & Immunology, University of California, San Francisco, San Francisco, CA 94143, USA
| | - Yuan Tian
- Department of Veterinary and Biomedical Sciences, Pennsylvania State University, University Park, PA 16802, USA
| | - Darren Dumlao
- Department of Medicine, University of California, San Francisco, San Francisco, CA 94158, USA
| | - Renuka Nayak
- Department of Medicine, University of California, San Francisco, San Francisco, CA 94158, USA; San Francisco VA Medical Center, San Francisco, CA 94121, USA
| | - Andrew Patterson
- Department of Veterinary and Biomedical Sciences, Pennsylvania State University, University Park, PA 16802, USA
| | - John C Newman
- Buck Institute for Research on Aging, Novato, CA 94945, USA; Division of Geriatrics, University of California, San Francisco, San Francisco, CA 94158, USA
| | - Peter A Crawford
- Division of Molecular Medicine, University of Minnesota, Minneapolis, MN 55455, USA; Department of Biochemistry, Molecular Biology, and Biophysics, University of Minnesota, Minneapolis, MN 55455, USA
| | - Peter J Turnbaugh
- Department of Microbiology & Immunology, University of California, San Francisco, San Francisco, CA 94143, USA; Chan Zuckerberg Biohub - San Francisco, San Francisco, CA 94158, USA.
| |
Collapse
|
2
|
Luesma MJ, López-Marco L, Monzón M, Santander S. Enteric Nervous System and Its Relationship with Neurological Diseases. J Clin Med 2024; 13:5579. [PMID: 39337066 PMCID: PMC11433641 DOI: 10.3390/jcm13185579] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2024] [Revised: 09/12/2024] [Accepted: 09/13/2024] [Indexed: 09/30/2024] Open
Abstract
The enteric nervous system (ENS) is a fundamental component of the gastrointestinal system, composed of a vast network of neurons and glial cells. It operates autonomously but is interconnected with the central nervous system (CNS) through the vagus nerve. This communication, known as the gut-brain axis, influences the bidirectional communication between the brain and the gut. Background/Objectives: This study aimed to review neurological pathologies related to the ENS. Methods: To this end, a comprehensive literature search was conducted in the "PubMed" database. Articles available in "free format" were selected, applying the filters "Humans" and limiting the search to publications from the last ten years. Results: The ENS has been linked to various neurological diseases, from autism spectrum disorder to Parkinson's disease including neurological infection with the varicella zoster virus (VZV), even sharing pathologies with the CNS. This finding suggests that the ENS could serve as an early diagnostic marker or therapeutic target for neurological diseases. Gastrointestinal symptoms often precede CNS symptoms, and the ENS's accessibility aids in diagnosis and treatment. Parkinson's patients may show intestinal lesions up to twenty years before CNS symptoms, underscoring the potential for early diagnosis. However, challenges include developing standardized diagnostic protocols and the uneven distribution of dopaminergic neurons in the ENS. Continued research is needed to explore the ENS's potential in improving disease prognosis. Conclusions: The ENS is a promising area for early diagnosis and therapeutic development. Nevertheless, it is essential to continue research in this area, especially to gain a deeper understanding of its organization, function, and regenerative capacity.
Collapse
Affiliation(s)
- María José Luesma
- Department of Human Anatomy and Histology, University of Zaragoza, 50009 Zaragoza, Spain
| | - Liberto López-Marco
- Department of Human Anatomy and Histology, University of Zaragoza, 50009 Zaragoza, Spain
| | - Marta Monzón
- Department of Human Anatomy and Histology, University of Zaragoza, 50009 Zaragoza, Spain
| | - Sonia Santander
- Department of Pharmacology, Physiology, Legal and Forensic Medicine, University of Zaragoza, 50009 Zaragoza, Spain
| |
Collapse
|
3
|
Białoń MN, Górka DHNOZD, Górka MM. The brain-gut axis: communication mechanisms and the role of the microbiome as a neuroprotective factor in the development of neurodegenerative diseases: A literature overview. AIMS Neurosci 2024; 11:289-311. [PMID: 39431278 PMCID: PMC11486619 DOI: 10.3934/neuroscience.2024019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2024] [Revised: 08/15/2024] [Accepted: 08/22/2024] [Indexed: 10/22/2024] Open
Abstract
The study of the brain-gut axis and its impact on cognitive function and in the development of neurodegenerative diseases is a very timely topic of interest to researchers. This review summarizes information on the basic mechanisms of gut-brain communication. We then discuss the roles of the gut microbiome as a neuroprotective factor in neurodegeneration. The gut microbiota is extremely important in maintaining the body's homeostasis, shaping the human immune system and the proper functioning of the brain. The intestinal microflora affects the processes of neuroplasticity, synaptogenesis, and neuronal regeneration. This review aims to explain changes in the composition of the bacterial population of the intestinal microflora among patients with Alzheimer's disease, Parkinson's disease, and multiple sclerosis. Abnormalities in gut microflora composition are also noted in stress, depression, or autism spectrum development. New observations on psychobiotic supplementation in alleviating the symptoms of neurodegenerative diseases are also presented.
Collapse
Affiliation(s)
- Mgr Natalia Białoń
- Faculty of Health Sciences in Katowice, Department of Sports Medicine and Physiology of Physical Exercise, Medical University of Silesia in Katowice, 12 Medyków St., 40-752 Katowice, Poland
| | - Dr Hab N O Zdr Dariusz Górka
- Faculty of Health Sciences in Katowice, Department of Sports Medicine and Physiology of Physical Exercise, Medical University of Silesia in Katowice, 12 Medyków St., 40-752 Katowice, Poland
| | - Mgr Mikołaj Górka
- Center for Experimental Medicine of the Silesian Medical University in Katowice, 4 Medyków St., 40-752 Katowice, Poland
| |
Collapse
|
4
|
Ouyang Q, Yu H, Xu L, Yu M, Zhang Y. Relationship between gut microbiota and multiple sclerosis: a scientometric visual analysis from 2010 to 2023. Front Immunol 2024; 15:1451742. [PMID: 39224586 PMCID: PMC11366631 DOI: 10.3389/fimmu.2024.1451742] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2024] [Accepted: 07/29/2024] [Indexed: 09/04/2024] Open
Abstract
Background Numerous studies have investigated the relationship between gut microbiota (GM) and multiple sclerosis(MS), highlighting the significant role of GM in MS. However, there is a lack of systematic Scientometric analyses published in this specific research area to provide an overall understanding of the current research status. Methods Perform a scientometric analysis on research conducted between 2010 and 2023 concerning the link between GM and MS using quantitative and visual analysis software (CiteSpace and VOSviewer.). Results From January 1, 2010, and December 31, 2023, a total of 1019 records about GM and MS were retrieved. The number of publications exhibited a consistent upward trend annually. The United States led in publications, showed the strongest level of collaboration among countries. The University of California, San Francisco stands as the top institution in terms of output, and the most prolific and cited authors were Lloyd H. Kasper and Javier Ochoa-Reparaz from the USA. The research in this field primarily centers on investigating the alterations and associations of GM in MS or EAE, the molecular immunological mechanisms, and the potential of GM-based interventions to provide beneficial effects in MS or EAE. The Keywords co-occurrence network reveals five primary research directions in this field. The most frequently occurring keywords are inflammation, probiotics, diet, dysbiosis, and tryptophan. In recent years, neurodegeneration and neuropsychiatric disorders have been prominent, indicating that the investigation of the mechanisms and practical applications of GM in MS has emerged as a current research focus. Moreover, GM research is progressively extending into the realm of neurodegenerative and psychiatric diseases, potentially becoming future research hotspots. Conclusions This study revealed a data-driven systematic comprehension of research in the field of GM in MS over the past 13 years, highlighted noteworthy research within the field, provided us with a clear understanding of the current research status and future trends, providing a valuable reference for researchers venturing into this domain.
Collapse
Affiliation(s)
- Qingrong Ouyang
- Department of Neurology, Suining Central Hospital, Suining, China
| | - Hao Yu
- Department of Emergency, Suining Central Hospital, Suining, China
| | - Lei Xu
- Department of Neurology, Suining Central Hospital, Suining, China
| | - Ming Yu
- Department of Neurology, Suining Central Hospital, Suining, China
| | - Yunwei Zhang
- Department of Neurology, Suining Central Hospital, Suining, China
| |
Collapse
|
5
|
Mihori S, Nichols F, Provatas A, Matz A, Zhou B, Blesso CN, Panier H, Daddi L, Zhou Y, Clark RB. Microbiome-derived bacterial lipids regulate gene expression of proinflammatory pathway inhibitors in systemic monocytes. Front Immunol 2024; 15:1415565. [PMID: 38989285 PMCID: PMC11233717 DOI: 10.3389/fimmu.2024.1415565] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2024] [Accepted: 05/29/2024] [Indexed: 07/12/2024] Open
Abstract
How the microbiome regulates responses of systemic innate immune cells is unclear. In the present study, our purpose was to document a novel mechanism by which the microbiome mediates crosstalk with the systemic innate immune system. We have identified a family of microbiome Bacteroidota-derived lipopeptides-the serine-glycine (S/G) lipids, which are TLR2 ligands, access the systemic circulation, and regulate proinflammatory responses of splenic monocytes. To document the role of these lipids in regulating systemic immunity, we used oral gavage with an antibiotic to decrease the production of these lipids and administered exogenously purified lipids to increase the systemic level of these lipids. We found that decreasing systemic S/G lipids by decreasing microbiome Bacteroidota significantly enhanced splenic monocyte proinflammatory responses. Replenishing systemic levels of S/G lipids via exogenous administration returned splenic monocyte responses to control levels. Transcriptomic analysis demonstrated that S/G lipids regulate monocyte proinflammatory responses at the level of gene expression of a small set of upstream inhibitors of TLR and NF-κB pathways that include Trem2 and Irf4. Consistent with enhancement in proinflammatory cytokine responses, decreasing S/G lipids lowered gene expression of specific pathway inhibitors. Replenishing S/G lipids normalized gene expression of these inhibitors. In conclusion, our results suggest that microbiome-derived S/G lipids normally establish a level of buffered signaling activation necessary for well-regulated innate immune responses in systemic monocytes. By regulating gene expression of inflammatory pathway inhibitors such as Trem2, S/G lipids merit broader investigation into the potential dysfunction of other innate immune cells, such as microglia, in diseases such as Alzheimer's disease.
Collapse
Affiliation(s)
- Saki Mihori
- Department of Immunology, UConn Health, Farmington, CT, United States
| | - Frank Nichols
- Department of Periodontology, UConn Health, Farmington, CT, United States
| | - Anthony Provatas
- Center for Environmental Sciences and Engineering, Institute of the Environment, University of Connecticut, Storrs, CT, United States
| | - Alyssa Matz
- Department of Immunology, UConn Health, Farmington, CT, United States
| | - Beiyan Zhou
- Department of Immunology, UConn Health, Farmington, CT, United States
| | - Christopher N. Blesso
- Department of Nutritional Sciences, University of Connecticut, Storrs, CT, United States
| | - Hunter Panier
- Department of Medicine, UConn Health, Farmington, CT, United States
| | - Lauren Daddi
- Department of Medicine, UConn Health, Farmington, CT, United States
| | - Yanjiao Zhou
- Department of Medicine, UConn Health, Farmington, CT, United States
| | - Robert B. Clark
- Department of Immunology, UConn Health, Farmington, CT, United States
- Department of Medicine, UConn Health, Farmington, CT, United States
| |
Collapse
|
6
|
Pereira QC, Fortunato IM, Oliveira FDS, Alvarez MC, dos Santos TW, Ribeiro ML. Polyphenolic Compounds: Orchestrating Intestinal Microbiota Harmony during Aging. Nutrients 2024; 16:1066. [PMID: 38613099 PMCID: PMC11013902 DOI: 10.3390/nu16071066] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2024] [Revised: 03/20/2024] [Accepted: 03/21/2024] [Indexed: 04/14/2024] Open
Abstract
In the aging process, physiological decline occurs, posing a substantial threat to the physical and mental well-being of the elderly and contributing to the onset of age-related diseases. While traditional perspectives considered the maintenance of life as influenced by a myriad of factors, including environmental, genetic, epigenetic, and lifestyle elements such as exercise and diet, the pivotal role of symbiotic microorganisms had been understated. Presently, it is acknowledged that the intestinal microbiota plays a profound role in overall health by signaling to both the central and peripheral nervous systems, as well as other distant organs. Disruption in this bidirectional communication between bacteria and the host results in dysbiosis, fostering the development of various diseases, including neurological disorders, cardiovascular diseases, and cancer. This review aims to delve into the intricate biological mechanisms underpinning dysbiosis associated with aging and the clinical ramifications of such dysregulation. Furthermore, we aspire to explore bioactive compounds endowed with functional properties capable of modulating and restoring balance in this aging-related dysbiotic process through epigenetics alterations.
Collapse
Affiliation(s)
- Quélita Cristina Pereira
- Laboratory of Immunopharmacology and Molecular Biology, Sao Francisco University, Av. Sao Francisco de Assis, 218, Braganca Paulista 12916-900, SP, Brazil; (Q.C.P.); (I.M.F.); (F.d.S.O.); (M.C.A.); (T.W.d.S.)
| | - Isabela Monique Fortunato
- Laboratory of Immunopharmacology and Molecular Biology, Sao Francisco University, Av. Sao Francisco de Assis, 218, Braganca Paulista 12916-900, SP, Brazil; (Q.C.P.); (I.M.F.); (F.d.S.O.); (M.C.A.); (T.W.d.S.)
| | - Fabricio de Sousa Oliveira
- Laboratory of Immunopharmacology and Molecular Biology, Sao Francisco University, Av. Sao Francisco de Assis, 218, Braganca Paulista 12916-900, SP, Brazil; (Q.C.P.); (I.M.F.); (F.d.S.O.); (M.C.A.); (T.W.d.S.)
| | - Marisa Claudia Alvarez
- Laboratory of Immunopharmacology and Molecular Biology, Sao Francisco University, Av. Sao Francisco de Assis, 218, Braganca Paulista 12916-900, SP, Brazil; (Q.C.P.); (I.M.F.); (F.d.S.O.); (M.C.A.); (T.W.d.S.)
- Hematology and Transfusion Medicine Center, University of Campinas/Hemocentro, UNICAMP, Rua Carlos Chagas 480, Campinas 13083-878, SP, Brazil
| | - Tanila Wood dos Santos
- Laboratory of Immunopharmacology and Molecular Biology, Sao Francisco University, Av. Sao Francisco de Assis, 218, Braganca Paulista 12916-900, SP, Brazil; (Q.C.P.); (I.M.F.); (F.d.S.O.); (M.C.A.); (T.W.d.S.)
| | - Marcelo Lima Ribeiro
- Laboratory of Immunopharmacology and Molecular Biology, Sao Francisco University, Av. Sao Francisco de Assis, 218, Braganca Paulista 12916-900, SP, Brazil; (Q.C.P.); (I.M.F.); (F.d.S.O.); (M.C.A.); (T.W.d.S.)
| |
Collapse
|
7
|
Lan Z, Tang X, Lu M, Hu Z, Tang Z. The role of short-chain fatty acids in central nervous system diseases: A bibliometric and visualized analysis with future directions. Heliyon 2024; 10:e26377. [PMID: 38434086 PMCID: PMC10906301 DOI: 10.1016/j.heliyon.2024.e26377] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2023] [Revised: 02/11/2024] [Accepted: 02/12/2024] [Indexed: 03/05/2024] Open
Abstract
Background Short-chain fatty acids (SCFAs) are thought to play a key role in the microbe-gut-brain axis and involve in the pathogenesis of a variety of neurological diseases. This study aimed to identify research hotspots and evolution trends in SCFAs in central nervous diseases (CNS) and examine current research trends. Methods The bibliometric analysis was performed using CiteSpace, and the results were visualized via network maps. Results From 2002 to 2022, 480 publications in the database met the criteria. On the country level, China produced the highest number of publications, while the United States had the highest centrality. On the institutional level, University College Cork contributed to the most publications, and John F. Cryan from this university was the key researcher with considerable academic influence. The article, the role of short-chain fatty acids in microbiota-gut-brain, written by Boushra Dalile et al., in 2019 was the most cited article. Furthermore, the journal Nutrients had the maximum number of publications, while Plos One was the most cited journal. "Gut microbiome", "SCFAs", and "central nervous system" were the three most frequent keywords. Among them, SCFAs had the highest centrality. "Animal model" was the keyword with the highest burst strength, with the latest burst keywords being "social behavior", "pathogenesis", and "insulin sensitive". In addition, the research topics on SCFAs in CNS diseases from 2002 to 2022 mainly focused on following aspects: SCFAs plays a key role in microbe-gut-brain crosstalk; The classification and definition of SCFAs in the field of CNS; Several CNS diseases that are closely related to SCFAs research; Mechanism and translational studies of SCFAs in the CNS diseases. And the hotspots over the past 5 years have gradually increased the attention to the therapeutic potential of SCFAs in the CNS diseases. Conclusion The research of SCFAs in CNS diseases is attracting growing attention. However, there is a lack of cooperation between countries and institutions, and additional measures are required to promote cooperation. The current evidence for an association between SCFAs and CNS diseases is preliminary and more work is needed to pinpoint the precise mechanism. Moreover, large-scale clinical trials are needed in the future to define the therapeutic potential of SCFAs in CNS diseases.
Collapse
Affiliation(s)
- Ziwei Lan
- Department of Neurology, The Second Xiangya Hospital of Central South University, Changsha, Hunan, 410011, China
| | - Xiangqi Tang
- Department of Neurology, The Second Xiangya Hospital of Central South University, Changsha, Hunan, 410011, China
| | - Ming Lu
- Hunan Provincial Key Laboratory of Neurorestoratology, The Second Affiliated Hospital, Hunan Normal University, Changsha, 410003, Hunan, China
| | - Zhiping Hu
- Department of Neurology, The Second Xiangya Hospital of Central South University, Changsha, Hunan, 410011, China
| | - Zhenchu Tang
- Department of Neurology, The Second Xiangya Hospital of Central South University, Changsha, Hunan, 410011, China
- Hunan Key Laboratory of Tumor Models and Individualized Medicine, The Second Xiangya Hospital of Central South University, Changsha, Hunan, 410011, China
| |
Collapse
|
8
|
Mishra V, Yadav D, Solanki KS, Koul B, Song M. A Review on the Protective Effects of Probiotics against Alzheimer's Disease. BIOLOGY 2023; 13:8. [PMID: 38248439 PMCID: PMC10813289 DOI: 10.3390/biology13010008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/10/2023] [Revised: 12/01/2023] [Accepted: 12/13/2023] [Indexed: 01/23/2024]
Abstract
This review summarizes the protective effects of probiotics against Alzheimer's disease (AD), one of the most common neurodegenerative disorders affecting older adults. This disease is characterized by the deposition of tau and amyloid β peptide (Aβ) in different parts of the brain. Symptoms observed in patients with AD include struggles with writing, speech, memory, and knowledge. The gut microbiota reportedly plays an important role in brain functioning due to its bidirectional communication with the gut via the gut-brain axis. The emotional and cognitive centers in the brain are linked to the functions of the peripheral intestinal system via this gut-brain axis. Dysbiosis has been linked to neurodegenerative disorders, indicating the significance of gut homeostasis for proper brain function. Probiotics play an important role in protecting against the symptoms of AD as they restore gut-brain homeostasis to a great extent. This review summarizes the characteristics, status of gut-brain axis, and significance of gut microbiota in AD. Review and research articles related to the role of probiotics in the treatment of AD were searched in the PubMed database. Recent studies conducted using animal models were given preference. Recent clinical trials were searched for separately. Several studies conducted on animal and human models clearly explain the benefits of probiotics in improving cognition and memory in experimental subjects. Based on these studies, novel therapeutic approaches can be designed for the treatment of patients with AD.
Collapse
Affiliation(s)
- Vibhuti Mishra
- School of Studies in Biochemistry, Jiwaji University, Gwalior 474003, India;
| | - Dhananjay Yadav
- Department of Life Science, Yeungnam University, Gyeongsan 38541, Republic of Korea;
| | - Kavita Singh Solanki
- Department of Neuroscience and Pharmacology, Iowa Neuroscience Institute, University of Iowa, Iowa City, IA 52242, USA;
| | - Bhupendra Koul
- School of Bioengineering and Biosciences, Lovely Professional University, Phagwara 144411, India;
| | - Minseok Song
- Department of Life Science, Yeungnam University, Gyeongsan 38541, Republic of Korea;
| |
Collapse
|
9
|
Tsogka A, Kitsos DK, Stavrogianni K, Giannopapas V, Chasiotis A, Christouli N, Tsivgoulis G, Tzartos JS, Giannopoulos S. Modulating the Gut Microbiome in Multiple Sclerosis Management: A Systematic Review of Current Interventions. J Clin Med 2023; 12:7610. [PMID: 38137679 PMCID: PMC10743570 DOI: 10.3390/jcm12247610] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2023] [Revised: 12/05/2023] [Accepted: 12/07/2023] [Indexed: 12/24/2023] Open
Abstract
This review attempted to explore all recent clinical studies that have investigated the clinical and autoimmune impact of gut microbiota interventions in multiple sclerosis (MS), including dietary protocols, probiotics, fecal microbiota transplantation (FMT), and intermittent fasting (IF). Methods: Thirteen studies were held between 2011 and 2023 this demonstrated interventions in gut microbiome among patients with MS and their impact the clinical parameters of the disease. These included specialized dietary interventions, the supply of probiotic mixtures, FMT, and IF. Results: Dietary interventions positively affected various aspects of MS, including relapse rates, EDSS disability scores, MS-related fatigue, and metabolic features. Probiotic mixtures showed promising results on MS-related fatigue, EDSS parameters, inflammation; meanwhile, FMT-though a limited number of studies was included-indicated some clinical improvement in similar variables. IF showed reductions in EDSS scores and significant improvement in patients' emotional statuses. Conclusions: In dietary protocols, clinical MS parameters, including relapse rate, EDSS, MFIS, FSS, and MSQoL54 scales, were significantly improved through the application of a specific diet each time. Probiotic nutritional mixtures promote a shift in inflammation towards an anti-inflammatory cytokine profile in patients with MS. The administration of such mixtures affected disability, mood levels, and quality of life among patients with MS. FMT protocols possibly demonstrate a therapeutic effect in some case reports. IF protocols were found to ameliorate EDSS and FAMS scores. All interventional means of gut microbiome modulation provided significant conclusions on several clinical aspects of MS and highlight the complexity in the relationship between MS and the gut microbiome.
Collapse
Affiliation(s)
- Anthi Tsogka
- Second Department of Neurology, Attikon University Hospital, School of Medicine, National and Kapodistrian University of Athens, 157 72 Athens, Greece; (A.T.); (D.K.K.); (K.S.); (V.G.); (A.C.); (N.C.); (G.T.); (J.S.T.)
| | - Dimitrios K. Kitsos
- Second Department of Neurology, Attikon University Hospital, School of Medicine, National and Kapodistrian University of Athens, 157 72 Athens, Greece; (A.T.); (D.K.K.); (K.S.); (V.G.); (A.C.); (N.C.); (G.T.); (J.S.T.)
| | - Konstantina Stavrogianni
- Second Department of Neurology, Attikon University Hospital, School of Medicine, National and Kapodistrian University of Athens, 157 72 Athens, Greece; (A.T.); (D.K.K.); (K.S.); (V.G.); (A.C.); (N.C.); (G.T.); (J.S.T.)
- Department of Physiology, Faculty of Medicine, School of Health Sciences, University of Ioannina, 451 10 Ioannina, Greece
| | - Vasileios Giannopapas
- Second Department of Neurology, Attikon University Hospital, School of Medicine, National and Kapodistrian University of Athens, 157 72 Athens, Greece; (A.T.); (D.K.K.); (K.S.); (V.G.); (A.C.); (N.C.); (G.T.); (J.S.T.)
- Department of Physical Therapy, University of West Attica, 122 43 Attica, Greece
- Laboratory of Neuromuscular and Cardiovascular Study of Motion-LANECASM, University of West Attica, 122 43 Attica, Greece
| | - Athanasios Chasiotis
- Second Department of Neurology, Attikon University Hospital, School of Medicine, National and Kapodistrian University of Athens, 157 72 Athens, Greece; (A.T.); (D.K.K.); (K.S.); (V.G.); (A.C.); (N.C.); (G.T.); (J.S.T.)
- Department of Physical Therapy, University of West Attica, 122 43 Attica, Greece
- Laboratory of Neuromuscular and Cardiovascular Study of Motion-LANECASM, University of West Attica, 122 43 Attica, Greece
| | - Niki Christouli
- Second Department of Neurology, Attikon University Hospital, School of Medicine, National and Kapodistrian University of Athens, 157 72 Athens, Greece; (A.T.); (D.K.K.); (K.S.); (V.G.); (A.C.); (N.C.); (G.T.); (J.S.T.)
| | - Georgios Tsivgoulis
- Second Department of Neurology, Attikon University Hospital, School of Medicine, National and Kapodistrian University of Athens, 157 72 Athens, Greece; (A.T.); (D.K.K.); (K.S.); (V.G.); (A.C.); (N.C.); (G.T.); (J.S.T.)
| | - John S. Tzartos
- Second Department of Neurology, Attikon University Hospital, School of Medicine, National and Kapodistrian University of Athens, 157 72 Athens, Greece; (A.T.); (D.K.K.); (K.S.); (V.G.); (A.C.); (N.C.); (G.T.); (J.S.T.)
| | - Sotirios Giannopoulos
- Second Department of Neurology, Attikon University Hospital, School of Medicine, National and Kapodistrian University of Athens, 157 72 Athens, Greece; (A.T.); (D.K.K.); (K.S.); (V.G.); (A.C.); (N.C.); (G.T.); (J.S.T.)
| |
Collapse
|
10
|
Torres-Chávez ME, Torres-Carrillo NM, Monreal-Lugo AV, Garnés-Rancurello S, Murugesan S, Gutiérrez-Hurtado IA, Beltrán-Ramírez JR, Sandoval-Pinto E, Torres-Carrillo N. Association of intestinal dysbiosis with susceptibility to multiple sclerosis: Evidence from different population studies (Review). Biomed Rep 2023; 19:93. [PMID: 37901876 PMCID: PMC10603378 DOI: 10.3892/br.2023.1675] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2023] [Accepted: 09/25/2023] [Indexed: 10/31/2023] Open
Abstract
Understanding the relationship between microorganisms that live in our intestines and neuroinflammatory and neurodegenerative pathologies of the central nervous system (CNS) is essential, since they have been shown to have an immunomodulatory effect in neurological disorders, such as multiple sclerosis (MS). The gut microbiota can be affected by several environmental factors, including infections, physical and emotional stress and diet, the latter known as the main modulator of intestinal bacteria. An abrupt shift in the gut microbiota composition and function is known as dysbiosis, a state of local and systemic inflammation produced by pathogenic bacteria and its metabolites responsible for numerous neurological symptoms. It may also trigger neuronal damage in patients diagnosed with MS. Intestinal dysbiosis affects the permeability of the intestine, allowing chronic low-grade bacterial translocation from the intestine to the circulation, which may overstimulate immune cells and cells resident in the CNS, break immune tolerance and, in addition, alter the permeability of the blood-brain barrier (BBB). This way, toxins, inflammatory molecules and oxidative stress molecules can pass freely into the CNS and cause extensive damage to the brain. However, commensal bacteria, such as the Lactobacillus genus and Bacteroides fragilis, and their metabolites (with anti-inflammatory potential), produce neurotransmitters such as γ-aminobutyric acid, histamine, dopamine, norepinephrine, acetylcholine and serotonin, which are important for neurological regulation. In addition, reprogramming the gut microbiota of patients with MS with a healthy gut microbiota may help improve the integrity of the gut and BBB, by providing clinically protective anti-inflammatory effects and reducing the disease's degenerative progression. The present review provides valuable information about the relationship between gut microbiota and neuroinflammatory processes of the CNS. Most importantly, it highlights the importance of intestinal bacteria as an environmental factor that may mediate the clinical course of MS, or even predispose to the outbreak of this disease.
Collapse
Affiliation(s)
- María Eugenia Torres-Chávez
- Department of Microbiology and Pathology, University Center for Health Sciences, University of Guadalajara, Guadalajara, Jalisco 44340, Mexico
| | - Nora Magdalena Torres-Carrillo
- Department of Microbiology and Pathology, University Center for Health Sciences, University of Guadalajara, Guadalajara, Jalisco 44340, Mexico
| | - Ana Victoria Monreal-Lugo
- Department of Nutrition and Health Research Center, National Institute of Public Health, Cuernavaca, Morelos 62100, Mexico
- Department of Nutrition and Bioprogramming Coordination, Isidro Espinosa de los Reyes National Institute of Perinatology, Mexico City 11000, Mexico
| | - Sandra Garnés-Rancurello
- Department of Nutrition, Technological Institute of Higher Studies of Monterrey, Zapopan, Jalisco 45201, Mexico
| | | | - Itzae Adonai Gutiérrez-Hurtado
- Department of Molecular Biology and Genomics, University Center for Health Sciences, University of Guadalajara, Guadalajara, Jalisco 44340, Mexico
| | - Jesús Raúl Beltrán-Ramírez
- Department of Information Systems, University Center of Administrative Economic Sciences, University of Guadalajara, Zapopan, Jalisco 45100, Mexico
| | - Elena Sandoval-Pinto
- Department of Cellular and Molecular Biology, University Center for Biological and Agricultural Sciences, University of Guadalajara, Zapopan, Jalisco 45200, Mexico
| | - Norma Torres-Carrillo
- Department of Microbiology and Pathology, University Center for Health Sciences, University of Guadalajara, Guadalajara, Jalisco 44340, Mexico
| |
Collapse
|
11
|
Raghib MF, Bernitsas E. From Animal Models to Clinical Trials: The Potential of Antimicrobials in Multiple Sclerosis Treatment. Biomedicines 2023; 11:3069. [PMID: 38002068 PMCID: PMC10668955 DOI: 10.3390/biomedicines11113069] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2023] [Revised: 11/05/2023] [Accepted: 11/14/2023] [Indexed: 11/26/2023] Open
Abstract
Multiple sclerosis (MS) is a chronic, autoimmune, demyelinating disease of the central nervous system (CNS). Microbes, including bacteria and certain viruses, particularly Epstein-Barr virus (EBV), have been linked to the pathogenesis of MS. While there is currently no cure for MS, antibiotics and antivirals have been studied as potential treatment options due to their immunomodulatory ability that results in the regulation of the immune process. The current issue addressed in this systematic review is the effect of antimicrobials, including antibiotics, antivirals, and antiparasitic agents in animals and humans. We performed a comprehensive search of PubMed, Google Scholar, and Scopus for articles on antimicrobials in experimental autoimmune encephalomyelitis animal models of MS, as well as in people with MS (pwMS). In animal models, antibiotics tested included beta-lactams, minocycline, rapamycin, macrolides, and doxycycline. Antivirals included acyclovir, valacyclovir, and ganciclovir. Hydroxychloroquine was the only antiparasitic that was tested. In pwMS, we identified a total of 24 studies, 17 of them relevant to antibiotics, 6 to antivirals, and 1 relevant to antiparasitic hydroxychloroquine. While the effect of antimicrobials in animal models was promising, only minocycline and hydroxychloroquine improved outcome measures in pwMS. No favorable effect of the antivirals in humans has been observed yet. The number and size of clinical trials testing antimicrobials have been limited. Large, multicenter, well-designed studies are needed to further evaluate the effect of antimicrobials in MS.
Collapse
Affiliation(s)
- Muhammad Faraz Raghib
- Department of Neurology, Wayne State University School of Medicine, Detroit, MI 48201, USA;
| | - Evanthia Bernitsas
- Department of Neurology, Wayne State University School of Medicine, Detroit, MI 48201, USA;
- Sastry Neuroimaging Laboratory, Department of Neurology, Wayne State University School of Medicine, Detroit, MI 48201, USA
| |
Collapse
|
12
|
Lehman P, Ghimire S, Price JD, Ramer-Tait AE, Mangalam A. Diet-microbiome-immune interplay in multiple sclerosis: Understanding the impact of phytoestrogen metabolizing gut bacteria. Eur J Immunol 2023; 53:e2250236. [PMID: 37673213 PMCID: PMC11606726 DOI: 10.1002/eji.202250236] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2023] [Revised: 07/19/2023] [Accepted: 09/05/2023] [Indexed: 09/08/2023]
Abstract
Multiple sclerosis (MS) is a chronic and progressive autoimmune disease of the central nervous system (CNS), with both genetic and environmental factors contributing to the pathobiology of the disease. Although HLA genes have emerged as the strongest genetic factor linked to MS, consensus on the environmental risk factors is lacking. Recently, the gut microbiota has garnered increasing attention as a potential environmental factor in MS, as mounting evidence suggests that individuals with MS exhibit microbial dysbiosis (changes in the gut microbiome). Thus, there has been a strong emphasis on understanding the role of the gut microbiome in the pathobiology of MS, specifically, factors regulating the gut microbiota and the mechanism(s) through which gut microbes may contribute to MS. Among all factors, diet has emerged to have the strongest influence on the composition and function of gut microbiota. As MS patients lack gut bacteria capable of metabolizing dietary phytoestrogen, we will specifically discuss the role of a phytoestrogen diet and phytoestrogen metabolizing gut bacteria in the pathobiology of MS. A better understanding of these mechanisms will help to harness the enormous potential of the gut microbiota as potential therapeutics to treat MS and other autoimmune diseases.
Collapse
Affiliation(s)
- Peter Lehman
- Department of Pathology, University of Iowa, Iowa City, IA, USA
- Department of Pathology Graduate Program, University of Iowa, Iowa City, IA, USA
| | - Sudeep Ghimire
- Department of Pathology, University of Iowa, Iowa City, IA, USA
| | - Jeffrey D. Price
- Department of Food Science and Technology, University of Nebraska-Lincoln, Lincoln, NE, USA
- Nebraska Food for Health Center, University of Nebraska-Lincoln, Lincoln, NE, USA
| | - Amanda E. Ramer-Tait
- Department of Food Science and Technology, University of Nebraska-Lincoln, Lincoln, NE, USA
- Nebraska Food for Health Center, University of Nebraska-Lincoln, Lincoln, NE, USA
| | - Ashutosh Mangalam
- Department of Pathology, University of Iowa, Iowa City, IA, USA
- Department of Pathology Graduate Program, University of Iowa, Iowa City, IA, USA
- Graduate Program in Immunology, University of Iowa, Iowa City, IA, USA
- Iowa City VA Healthcare System, Iowa City, IA, USA
| |
Collapse
|
13
|
Prajjwal P, Inban P, Natarajan B, Gadam S, Marsool MD, Tariq H, Paras P, Vora N, Al-Aish ST, Marsool AD, Amir Hussin O. Remyelination in multiple sclerosis, along with its immunology and association with gut dysbiosis, lifestyle, and environmental factors. Ann Med Surg (Lond) 2023; 85:4417-4424. [PMID: 37663721 PMCID: PMC10473370 DOI: 10.1097/ms9.0000000000001127] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2023] [Accepted: 07/22/2023] [Indexed: 09/05/2023] Open
Abstract
Multiple sclerosis (MS) is a chronic inflammatory disease that damages the myelin sheath around the axons of the central nervous system. While there are periods of inflammation and remyelination in MS, the latter can sometimes be insufficient and lead to the formation of lesions in the brain and spinal cord. Environmental factors such as vitamin D deficiency, viral or bacterial infections, tobacco smoking, and anxiety have been shown to play a role in the development of MS. Dysbiosis, where the composition of the microbiome changes, may also be involved in the pathogenesis of MS by affecting the gut's microbial population and negatively impacting the integrity of the epithelia. While the cause of MS remains unknown, genetic susceptibility, and immunological dysregulation are believed to play a key role in the development of the disease. Further research is needed to fully understand the complex interplay between genetic, environmental, and microbial factors in the pathogenesis of MS.
Collapse
Affiliation(s)
| | | | - Balaganesh Natarajan
- St. George’s University School of Medicine, University Centre Grenada, West Indies, Grenada
| | | | | | | | | | - Neel Vora
- BJ Medical College, Ahmedabad, India
| | | | | | | |
Collapse
|
14
|
Adabanya U, Awosika A, Khan A, Oluka E, Adeniyi M. Pediatric multiple sclerosis: an integrated outlook at the interplay between genetics, environment and brain-gut dysbiosis. AIMS Neurosci 2023; 10:232-251. [PMID: 37841344 PMCID: PMC10567585 DOI: 10.3934/neuroscience.2023018] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2023] [Revised: 08/13/2023] [Accepted: 08/15/2023] [Indexed: 10/17/2023] Open
Abstract
Multiple sclerosis (MS) is a debilitating autoimmune condition caused by demyelination, neurodegeneration and persistent inflammation of the central nervous system. Pediatric multiple sclerosis (PMS) is a relatively rare form of the disease that affects a significant number of individuals with MS. Environmental exposures, such as viral infections and smoking, can interact with MS-associated human leukocyte antigens (HLA) risk alleles and influence the immune response. Upregulation of immune response results in the disruption of immune balance leading to cascade of inflammatory events. It has also been established that gut microbiome dysbiosis poses a higher risk for pro-inflammation, and it is essentially argued to be the greatest environmental risk factor for MS. Dysbiosis can cause an unusual response from the adaptive immune system and significantly contribute to the development of disease in the host by activating pro-inflammatory pathways that cause immune-mediated disorders such as PMS, rendering the body more vulnerable to foreign attacks due to a weakened immune response. All these dynamic interactions between biological, environmental and genetic factors based on epigenetic study has further revealed that upregulation or downregulation of some genes/enzyme in the central nervous system white matter of MS patients produces a less stable form of myelin basic protein and ultimately leads to the loss of immune tolerance. The diagnostic criteria and treatment options for PMS are constantly evolving, making it crucial to have a better understanding of the disease burden on a global and regional scale. The findings from this review will aid in deepening the understanding of the interplay between genetic and environmental risk factors, as well as the role of the gut microbiome in the development of pediatric multiple sclerosis. As a result, healthcare professionals will be kept abreast of the early diagnostic criteria, accurately delineating other conditions that can mimic pediatric MS and to provide comprehensive care to individuals with PMS based on the knowledge gained from this research.
Collapse
Affiliation(s)
- Uzochukwu Adabanya
- Anatomical Sciences, Edward Via College of Osteopathic Medicine, Monroe, USA
| | - Ayoola Awosika
- College of Medicine, University of Illinois, Chicago, USA
| | - Anosh Khan
- Emergency Medicine, Trinity health Livonia Hospital, Livonia USA
| | - Ejike Oluka
- Department of pathophysiology, St. George's University School of Medicine, Grenada
| | - Mayowa Adeniyi
- Department of Physiology, Federal University of Health Sciences Otukpo, Benue State, Nigeria
| |
Collapse
|
15
|
Prado C, Espinoza A, Martínez-Hernández JE, Petrosino J, Riquelme E, Martin AJM, Pacheco R. GPR43 stimulation on TCRαβ + intraepithelial colonic lymphocytes inhibits the recruitment of encephalitogenic T-cells into the central nervous system and attenuates the development of autoimmunity. J Neuroinflammation 2023; 20:135. [PMID: 37264394 PMCID: PMC10233874 DOI: 10.1186/s12974-023-02815-9] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2022] [Accepted: 05/22/2023] [Indexed: 06/03/2023] Open
Abstract
INTRODUCTION Gut microbiota plays a critical role in the regulation of immune homeostasis. Accordingly, several autoimmune disorders have been associated with dysbiosis in the gut microbiota. Notably, the dysbiosis associated with central nervous system (CNS) autoimmunity involves a substantial reduction of bacteria belonging to Clostridia clusters IV and XIVa, which constitute major producers of short-chain fatty acids (SCFAs). Here we addressed the role of the surface receptor-mediated effects of SCFAs on mucosal T-cells in the development of CNS autoimmunity. METHODS To induce CNS autoimmunity, we used the mouse model of experimental autoimmune encephalomyelitis (EAE) induced by immunization with the myelin oligodendrocyte glycoprotein (MOG)-derived peptide (MOG35-55 peptide). To address the effects of GPR43 stimulation on colonic TCRαβ+ T-cells upon CNS autoimmunity, mucosal lymphocytes were isolated and stimulated with a selective GPR43 agonist ex vivo and then transferred into congenic mice undergoing EAE. Several subsets of lymphocytes infiltrating the CNS or those present in the gut epithelium and gut lamina propria were analysed by flow cytometry. In vitro migration assays were conducted with mucosal T-cells using transwells. RESULTS Our results show a sharp and selective reduction of intestinal propionate at the peak of EAE development, accompanied by increased IFN-γ and decreased IL-22 in the colonic mucosa. Further analyses indicated that GPR43 was the primary SCFAs receptor expressed on T-cells, which was downregulated on colonic TCRαβ+ T-cells upon CNS autoimmunity. The pharmacologic stimulation of GPR43 increased the anti-inflammatory function and reduced the pro-inflammatory features in several TCRαβ+ T-cell subsets in the colonic mucosa upon EAE development. Furthermore, GPR43 stimulation induced the arrest of CNS-autoreactive T-cells in the colonic lamina propria, thus avoiding their infiltration into the CNS and dampening the disease development. Mechanistic analyses revealed that GPR43-stimulation on mucosal TCRαβ+ T-cells inhibits their CXCR3-mediated migration towards CXCL11, which is released from the CNS upon neuroinflammation. CONCLUSIONS These findings provide a novel mechanism involved in the gut-brain axis by which bacterial-derived products secreted in the gut mucosa might control the CNS tropism of autoreactive T-cells. Moreover, this study shows GPR43 expressed on T-cells as a promising therapeutic target for CNS autoimmunity.
Collapse
Affiliation(s)
- Carolina Prado
- Laboratorio de Neuroinmunología, Centro Científico y Tecnológico de Excelencia Ciencia & Vida, Fundación Ciencia & Vida, Avenida Del Valle Norte #725, 8580702, Huechuraba, Santiago, Chile.
- Facultad de Medicina y Ciencia, Universidad San Sebastián, 7510156, Providencia, Santiago, Chile.
| | - Alexandra Espinoza
- Laboratorio de Neuroinmunología, Centro Científico y Tecnológico de Excelencia Ciencia & Vida, Fundación Ciencia & Vida, Avenida Del Valle Norte #725, 8580702, Huechuraba, Santiago, Chile
| | - J Eduardo Martínez-Hernández
- Laboratorio de Redes Biológicas, Centro Científico y Tecnológico de Excelencia Ciencia & Vida, Fundación Ciencia & Vida, Avenida Del Valle Norte #725, 8580702, Huechuraba, Santiago, Chile
- Agriaquaculture Nutritional Genomic Center, Temuco, Chile
| | - Joseph Petrosino
- Department of Molecular Virology and Microbiology, Baylor College of Medicine, Houston, TX, USA
| | - Erick Riquelme
- Respiratory Diseases Department, Faculty of Medicine, Pontifical Catholic University of Chile, Santiago, Chile
| | - Alberto J M Martin
- Laboratorio de Redes Biológicas, Centro Científico y Tecnológico de Excelencia Ciencia & Vida, Fundación Ciencia & Vida, Avenida Del Valle Norte #725, 8580702, Huechuraba, Santiago, Chile
- Escuela de Ingeniería, Facultad de Ingeniería Arquitectura y Diseño, Universidad San Sebastián, Providencia, Chile
| | - Rodrigo Pacheco
- Laboratorio de Neuroinmunología, Centro Científico y Tecnológico de Excelencia Ciencia & Vida, Fundación Ciencia & Vida, Avenida Del Valle Norte #725, 8580702, Huechuraba, Santiago, Chile.
- Facultad de Medicina y Ciencia, Universidad San Sebastián, 7510156, Providencia, Santiago, Chile.
| |
Collapse
|
16
|
Niu J, Xu H, Zeng G, Wang P, Raciheon B, Nawaz S, Zeng Z, Zhao J. Music-based interventions in the feeding environment on the gut microbiota of mice. Sci Rep 2023; 13:6313. [PMID: 37072501 PMCID: PMC10111315 DOI: 10.1038/s41598-023-33522-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2022] [Accepted: 04/14/2023] [Indexed: 05/03/2023] Open
Abstract
Gut microbiota is established to be associated with the diversity of gastrointestinal conditions, but information on the variation associated with music and gut microbes is limited. Current study revealed the impacts of music intervention during feeding on the growth performance and gut microbes of mice by using clinical symptoms and 16S rRNA sequencing techniques. The results showed that feeding mice with music had a significant increase in body weight after the 25th day. The Firmicutes and Proteobacteria were the most dominant phylum in the gut microbiota. Also, the relative abundance of the dominant bacteria was variable after musical intervention. In contrast to the control group, a significant decrease in alpha diversity analysis of gut bacterial microorganisms and Metastats analysis showed a significant increase in the relative abundance of 5 genera and one phylum after the music intervention. Moreover, the musical intervention during feeding caused modifications in the gut microbial composition of mice, as evidenced by an increase in the level of Firmicutes and Lactobacillus, while decreases the richness of pathogenic bacteria, e.g. Proteobacteria, Cyanobacteria and Muribaculaceae, etc. In summary, music intervention increased body weight and enhanced the abundance of beneficial bacteria by reducing the prevalence of pathogenic bacteria in gut microbiota of mice.
Collapse
Affiliation(s)
- Junyi Niu
- College of Music and Dance, South-Central Minzu University, Wuhan, 430074, People's Republic of China
| | - Hongli Xu
- College of Music and Dance, South-Central Minzu University, Wuhan, 430074, People's Republic of China
| | - Guosheng Zeng
- People's Government of Shian Town, Nanyang City, 473540, Henan Province, People's Republic of China
| | - Pengpeng Wang
- College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, 430070, People's Republic of China
| | - Bakint Raciheon
- Institute of Agricultural Sciences, ETH Zurich, Universitaetstrasse 2, 8092, Zurich, Switzerland
| | - Shah Nawaz
- College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, 430070, People's Republic of China
| | - Zhibo Zeng
- College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, 430070, People's Republic of China.
- Institute of Agricultural Sciences, ETH Zurich, Universitaetstrasse 2, 8092, Zurich, Switzerland.
| | - Jiewei Zhao
- College of Music and Dance, South-Central Minzu University, Wuhan, 430074, People's Republic of China.
| |
Collapse
|
17
|
Vacaras V, Muresanu DF, Buzoianu AD, Nistor C, Vesa SC, Paraschiv AC, Botos-Vacaras D, Vacaras C, Vithoulkas G. The role of multiple sclerosis therapies on the dynamic of human gut microbiota. J Neuroimmunol 2023; 378:578087. [PMID: 37058852 DOI: 10.1016/j.jneuroim.2023.578087] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2023] [Revised: 03/24/2023] [Accepted: 04/06/2023] [Indexed: 04/16/2023]
Abstract
Gut microbiota, the total microorganisms in our gastrointestinal tract, might have an implication in multiple sclerosis (MS), a demyelinating neurological disease. Our study included 50 MS patients and 21 healthy controls (HC). Twenty patients received a disease modifying therapy (DMT), interferon beta1a or teriflunomide, 19 DMT combined with homeopathy and 11 patients accepted only homeopathy. We collected in total 142 gut samples, two for each individual: at the study enrolment and eight weeks after treatment. We compared MS patients' microbiome with HC, we analysed its evolution in time and the effect of interferon beta1a, teriflunomide and homeopathy. There was no difference in alpha diversity, only two beta diversity results related to homeopathy. Compared to HC, untreated MS patients had a decrease of Actinobacteria, Bifidobacterium, Faecalibacterium prauznitzii and increased Prevotella stercorea, while treated patients presented lowered Ruminococcus and Clostridium. Compared to the initial sample, treated MS patients had a decrease of Lachnospiraceae and Ruminococcus and an increased Enterococcus faecalis. Eubacterium oxidoreducens was reduced after homeopathic treatment. The study revealed that MS patients may present dysbiosis. Treatment with interferon beta1a, teriflunomide or homeopathy implied several taxonomic changes. DMTs and homeopathy might influence the gut microbiota.
Collapse
Affiliation(s)
- Vitalie Vacaras
- Neurology Department, Cluj Emergency County Hospital, 400012 Cluj-Napoca, Romania; Department of Neurosciences, Faculty of Medicine, Iuliu Hațieganu University of Medicine and Pharmacy, 400012 Cluj-Napoca, Romania
| | - Dafin F Muresanu
- Neurology Department, Cluj Emergency County Hospital, 400012 Cluj-Napoca, Romania; Department of Neurosciences, Faculty of Medicine, Iuliu Hațieganu University of Medicine and Pharmacy, 400012 Cluj-Napoca, Romania
| | - Anca-Dana Buzoianu
- Department of Pharmacology, Toxicology and Clinical Pharmacology, Faculty of Medicine, Iuliu Haţieganu University of Medicine and Pharmacy, 400349 Cluj-Napoca, Romania
| | - Cristina Nistor
- Neurology Department, Cluj Emergency County Hospital, 400012 Cluj-Napoca, Romania; Department of Neurosciences, Faculty of Medicine, Iuliu Hațieganu University of Medicine and Pharmacy, 400012 Cluj-Napoca, Romania.
| | - Stefan Cristian Vesa
- Department of Pharmacology, Toxicology and Clinical Pharmacology, Faculty of Medicine, Iuliu Haţieganu University of Medicine and Pharmacy, 400349 Cluj-Napoca, Romania
| | - Andreea-Cristina Paraschiv
- Department of Neurosciences, Faculty of Medicine, Iuliu Hațieganu University of Medicine and Pharmacy, 400012 Cluj-Napoca, Romania
| | - Daniela Botos-Vacaras
- Department of Internal Medicine, Faculty of Medicine, Iuliu Hațieganu University of Medicine and Pharmacy, 400012 Cluj-Napoca, Romania
| | - Cristiana Vacaras
- Faculty of Medicine, Iuliu Hațieganu University of Medicine and Pharmacy, 400012 Cluj-Napoca, Romania
| | | |
Collapse
|
18
|
Mannion JM, McLoughlin RM, Lalor SJ. The Airway Microbiome-IL-17 Axis: a Critical Regulator of Chronic Inflammatory Disease. Clin Rev Allergy Immunol 2023; 64:161-178. [PMID: 35275333 PMCID: PMC10017631 DOI: 10.1007/s12016-022-08928-y] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/11/2022] [Indexed: 02/07/2023]
Abstract
The respiratory tract is home to a diverse microbial community whose influence on local and systemic immune responses is only beginning to be appreciated. Increasing reports have linked changes in this microbiome to a range of pulmonary and extrapulmonary disorders, including asthma, chronic obstructive pulmonary disease and rheumatoid arthritis. Central to many of these findings is the role of IL-17-type immunity as an important driver of inflammation. Despite the crucial role played by IL-17-mediated immune responses in protection against infection, overt Th17 cell responses have been implicated in the pathogenesis of several chronic inflammatory diseases. However, our knowledge of the influence of bacteria that commonly colonise the respiratory tract on IL-17-driven inflammatory responses remains sparse. In this article, we review the current knowledge on the role of specific members of the airway microbiota in the modulation of IL-17-type immunity and discuss how this line of research may support the testing of susceptible individuals and targeting of inflammation at its earliest stages in the hope of preventing the development of chronic disease.
Collapse
Affiliation(s)
- Jenny M Mannion
- School of Biochemistry and Immunology, Trinity Biomedical Sciences Institute, Trinity College Dublin, Dublin, Ireland
| | - Rachel M McLoughlin
- School of Biochemistry and Immunology, Trinity Biomedical Sciences Institute, Trinity College Dublin, Dublin, Ireland
| | - Stephen J Lalor
- UCD School of Medicine, Conway Institute of Biomolecular and Biomedical Research, University College Dublin, Dublin, Ireland.
| |
Collapse
|
19
|
Farahat RA, Nazir A, Ochani S, Khan SH, Mahjabin A, Mohammed S, Jahan I, Kubra K, Swed S, Dhama K. Hidden relationship between sarcoidosis and gut microbiota: recent evidence and future implications. THE EGYPTIAN JOURNAL OF INTERNAL MEDICINE 2023. [DOI: 10.1186/s43162-023-00199-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/03/2023] Open
|
20
|
Kumar N, Sahoo NK, Mehan S, Verma B. The importance of gut-brain axis and use of probiotics as a treatment strategy for multiple sclerosis. Mult Scler Relat Disord 2023; 71:104547. [PMID: 36805171 DOI: 10.1016/j.msard.2023.104547] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2022] [Revised: 01/16/2023] [Accepted: 01/31/2023] [Indexed: 02/05/2023]
Abstract
It has been shown that the dysbiosis of the gut's microbes substantially impacts CNS illnesses, including Alzheimer's, Parkinson's, autism, and autoimmune diseases like multiple sclerosis (MS). MS is a CNS-affected autoimmune demyelination condition. Through a two-way communication pathway known as the gut-brain axis, gut microbes communicate with the CNS. When there is a disruption in the gut microbiome, cytokines and other immune cells are secreted, which affects the BBB and gastrointestinal permeability. Recent research using animal models has revealed that the gut microbiota may greatly influence the pathophysiology of EAE/MS. Any change in the gut might increase inflammatory cytokinesand affect the quantity of SCFAs, and other metabolites that cause neuroinflammation and demyelination. In- vivo and in-vitro studies have concluded that probiotics affect the immune system and can be utilized to treat gastrointestinal dysbiosis. Any alteration in the gut microbial composition caused by probiotic intake may serve as a preventive and treatment strategy for MS. The major goal of this review is to emphasize an overview of recent research on the function of gut microbiota in the onset of MS and how probiotics have a substantial impact on gastrointestinal disruption in MS and other neuro disorders. It will be easier to develop new therapeutic approaches, particularly probiotic-based supplements, for treating multiple sclerosis (MS) if we know the link between the gut and CNS.
Collapse
Affiliation(s)
- Nitish Kumar
- SRM Modinagar College of Pharmacy, SRM Institute of Science and Technology (Deemed to be University), Delhi-NCR Campus, Modinagar, Ghaziabad, Uttar Pradesh 201204, India.
| | - Nalini Kanta Sahoo
- SRM Modinagar College of Pharmacy, SRM Institute of Science and Technology (Deemed to be University), Delhi-NCR Campus, Modinagar, Ghaziabad, Uttar Pradesh 201204, India
| | - Sidharth Mehan
- Division of Neuroscience, Department of Pharmacology, ISF College of Pharmacy, (An Autonomous College), Moga, Punjab 142001, India
| | - Bharti Verma
- SRM Modinagar College of Pharmacy, SRM Institute of Science and Technology (Deemed to be University), Delhi-NCR Campus, Modinagar, Ghaziabad, Uttar Pradesh 201204, India
| |
Collapse
|
21
|
Zhang ML, Li WX, Wang XY, Wu YL, Chen XF, Zhang H, Yang LQ, Wu CZ, Zhang SQ, Chen YL, Feng KR, Wang B, Niu L, Kong DX, Tang JF. Oxymatrine ameliorates experimental autoimmune encephalomyelitis by rebalancing the homeostasis of gut microbiota and reducing blood-brain barrier disruption. Front Cell Infect Microbiol 2023; 12:1095053. [PMID: 36710971 PMCID: PMC9878311 DOI: 10.3389/fcimb.2022.1095053] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2022] [Accepted: 12/20/2022] [Indexed: 01/15/2023] Open
Abstract
Background Increasing evidence suggests that gut dysbiosis can directly or indirectly affect the immune system through the brain-gut axis and play a role in the occurrence and development of Multiple sclerosis (MS). Oxymatrine (OMAT) has been shown to ameliorate the symptoms of MS in the classical experimental autoimmune encephalomyelitis (EAE) model of MS, but whether its therapeutic role is through the correction of gut dysbiosis, is unclear. Methods The effects of OMAT on intestinal flora and short-chain fatty acids in EAE model mice were evaluated by 16S rRNA sequencing and GC-MS/MS, respectively, and the function change of the blood-brain barrier and intestinal epithelial barrier was further tested by immunohistochemical staining, Evans Blue leakage detection, and RT-qPCR. Results The alpha and beta diversity in the feces of EAE mice were significantly different from that of the control group but recovered substantially after OMAT treatment. Besides, the OMAT treatment significantly affected the gut functional profiling and the abundance of genes associated with energy metabolism, amino acid metabolism, the immune system, infectious diseases, and the nervous system. OMAT also decreased the levels of isobutyric acid and isovaleric acid in EAE mice, which are significantly related to the abundance of certain gut microbes and were consistent with the reduced expression of TNF-a, IL-6, and IL-1b. Furthermore, OMAT treatment significantly increased the expression of ZO-1 and occludin in the brains and colons of EAE mice and decreased blood-brain barrier permeability. Conclusion OMAT may alleviate the clinical and pathological symptoms of MS by correcting dysbiosis, restoring gut ecological and functional microenvironment, and inhibiting immune cell-mediated inflammation to remodel the brain-gut axis.
Collapse
Affiliation(s)
- Ming-Liang Zhang
- Department of Pharmacy, the First Affiliated Hospital of Henan University of Chinese Medicine, Zhengzhou, China,Henan Province Engineering Research Center of Clinical Application, Evaluation and Transformation of Traditional Chinese Medicine, Henan Provincial Key Laboratory for Clinical Pharmacy of Traditional Chinese Medicine, Zhengzhou, China
| | - Wei-Xia Li
- Department of Pharmacy, the First Affiliated Hospital of Henan University of Chinese Medicine, Zhengzhou, China,Henan Province Engineering Research Center of Clinical Application, Evaluation and Transformation of Traditional Chinese Medicine, Henan Provincial Key Laboratory for Clinical Pharmacy of Traditional Chinese Medicine, Zhengzhou, China
| | - Xiao-Yan Wang
- Department of Pharmacy, the First Affiliated Hospital of Henan University of Chinese Medicine, Zhengzhou, China,Henan Province Engineering Research Center of Clinical Application, Evaluation and Transformation of Traditional Chinese Medicine, Henan Provincial Key Laboratory for Clinical Pharmacy of Traditional Chinese Medicine, Zhengzhou, China
| | - Ya-Li Wu
- Department of Pharmacy, the First Affiliated Hospital of Henan University of Chinese Medicine, Zhengzhou, China
| | - Xiao-Fei Chen
- Department of Pharmacy, the First Affiliated Hospital of Henan University of Chinese Medicine, Zhengzhou, China
| | - Hui Zhang
- Department of Pharmacy, the First Affiliated Hospital of Henan University of Chinese Medicine, Zhengzhou, China
| | - Liu-Qing Yang
- Department of Pharmacy, the First Affiliated Hospital of Henan University of Chinese Medicine, Zhengzhou, China
| | - Cheng-Zhao Wu
- Chengdu University of Chinese Medicine, Chengdu, China
| | - Shu-Qi Zhang
- Department of Pharmacy, the First Affiliated Hospital of Henan University of Chinese Medicine, Zhengzhou, China
| | - Yu-Long Chen
- School of Pharmacy, Henan University of Chinese Medicine, Zhengzhou, China
| | - Ke-Ran Feng
- Chengdu University of Chinese Medicine, Chengdu, China
| | - Bin Wang
- School of Pharmacy, Henan University of Chinese Medicine, Zhengzhou, China
| | - Lu Niu
- Department of Pharmacy, the First Affiliated Hospital of Henan University of Chinese Medicine, Zhengzhou, China
| | - De-Xin Kong
- School of Pharmacy, Henan University of Chinese Medicine, Zhengzhou, China
| | - Jin-Fa Tang
- Department of Pharmacy, the First Affiliated Hospital of Henan University of Chinese Medicine, Zhengzhou, China,Henan Province Engineering Research Center of Clinical Application, Evaluation and Transformation of Traditional Chinese Medicine, Henan Provincial Key Laboratory for Clinical Pharmacy of Traditional Chinese Medicine, Zhengzhou, China,School of Pharmacy, Henan University of Chinese Medicine, Zhengzhou, China,*Correspondence: Jin-Fa Tang,
| |
Collapse
|
22
|
McCombe PA, Greer JM. Effects of biological sex and pregnancy in experimental autoimmune encephalomyelitis: It's complicated. Front Immunol 2022; 13:1059833. [PMID: 36518769 PMCID: PMC9742606 DOI: 10.3389/fimmu.2022.1059833] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2022] [Accepted: 11/03/2022] [Indexed: 11/29/2022] Open
Abstract
Experimental autoimmune encephalomyelitis (EAE) can be induced in many animal strains by inoculation with central nervous system antigens and adjuvant or by the passive transfer of lymphocytes reactive with these antigens and is widely used as an animal model for multiple sclerosis (MS). There are reports that female sex and pregnancy affect EAE. Here we review the effects of biological sex and the effects of pregnancy on the clinical features (including disease susceptibility) and pathophysiology of EAE. We also review reports of the possible mechanisms underlying these differences. These include sex-related differences in the immune system and in the central nervous system, the effects of hormones and the sex chromosomes and molecules unique to pregnancy. We also review sex differences in the response to factors that can modify the course of EAE. Our conclusion is that the effects of biological sex in EAE vary amongst animal models and should not be widely extrapolated. In EAE, it is therefore essential that studies looking at the effects of biological sex or pregnancy give full information about the model that is used (i.e. animal strain, sex, the inducing antigen, timing of EAE induction in relation to pregnancy, etc.). In addition, it would be preferable if more than one EAE model were used, to show if any observed effects are generalizable. This is clearly a field that requires further work. However, understanding of the mechanisms of sex differences could lead to greater understanding of EAE, and suggest possible therapies for MS.
Collapse
Affiliation(s)
| | - Judith M. Greer
- UQ Centre for Clinical Research, The University of Queensland, Brisbane, QLD, Australia
| |
Collapse
|
23
|
Montgomery TL, Eckstrom K, Lile KH, Caldwell S, Heney ER, Lahue KG, D'Alessandro A, Wargo MJ, Krementsov DN. Lactobacillus reuteri tryptophan metabolism promotes host susceptibility to CNS autoimmunity. MICROBIOME 2022; 10:198. [PMID: 36419205 PMCID: PMC9685921 DOI: 10.1186/s40168-022-01408-7] [Citation(s) in RCA: 70] [Impact Index Per Article: 23.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/17/2022] [Accepted: 11/01/2022] [Indexed: 05/27/2023]
Abstract
BACKGROUND Dysregulation of gut microbiota-associated tryptophan metabolism has been observed in patients with multiple sclerosis. However, defining direct mechanistic links between this apparent metabolic rewiring and individual constituents of the gut microbiota remains challenging. We and others have previously shown that colonization with the gut commensal and putative probiotic species, Lactobacillus reuteri, unexpectedly enhances host susceptibility to experimental autoimmune encephalomyelitis (EAE), a murine model of multiple sclerosis. To identify underlying mechanisms, we characterized the genome of commensal L. reuteri isolates, coupled with in vitro and in vivo metabolomic profiling, modulation of dietary substrates, and gut microbiota manipulation. RESULTS The enzymes necessary to metabolize dietary tryptophan into immunomodulatory indole derivatives were enriched in the L. reuteri genomes, including araT, fldH, and amiE. Moreover, metabolite profiling of L. reuteri monocultures and serum of L. reuteri-colonized mice revealed a depletion of kynurenines and production of a wide array of known and novel tryptophan-derived aryl hydrocarbon receptor (AhR) agonists and antagonists, including indole acetate, indole-3-glyoxylic acid, tryptamine, p-cresol, and diverse imidazole derivatives. Functionally, dietary tryptophan was required for L. reuteri-dependent EAE exacerbation, while depletion of dietary tryptophan suppressed disease activity and inflammatory T cell responses in the CNS. Mechanistically, L. reuteri tryptophan-derived metabolites activated the AhR and enhanced T cell production of IL-17. CONCLUSIONS Our data suggests that tryptophan metabolism by gut commensals, such as the putative probiotic species L. reuteri, can unexpectedly enhance autoimmunity, inducing broad shifts in the metabolome and immunological repertoire. Video Abstract.
Collapse
Affiliation(s)
- Theresa L Montgomery
- Department of Biomedical and Health Sciences, University of Vermont, Burlington, VT, 05401, USA
| | - Korin Eckstrom
- Department of Microbiology and Molecular Genetics, University of Vermont, Burlington, VT, 05401, USA
| | - Katarina H Lile
- Department of Biomedical and Health Sciences, University of Vermont, Burlington, VT, 05401, USA
| | - Sydney Caldwell
- Department of Biomedical and Health Sciences, University of Vermont, Burlington, VT, 05401, USA
| | - Eamonn R Heney
- Department of Biomedical and Health Sciences, University of Vermont, Burlington, VT, 05401, USA
| | - Karolyn G Lahue
- Department of Biomedical and Health Sciences, University of Vermont, Burlington, VT, 05401, USA
| | - Angelo D'Alessandro
- Department of Biochemistry and Molecular Genetics, University of Colorado, Aurora, CO, 80045, USA
| | - Matthew J Wargo
- Department of Microbiology and Molecular Genetics, University of Vermont, Burlington, VT, 05401, USA
| | - Dimitry N Krementsov
- Department of Biomedical and Health Sciences, University of Vermont, Burlington, VT, 05401, USA.
| |
Collapse
|
24
|
Magni G, Riboldi B, Petroni K, Ceruti S. Flavonoids bridging the gut and the brain: intestinal metabolic fate, and direct or indirect effects of natural supporters against neuroinflammation and neurodegeneration. Biochem Pharmacol 2022; 205:115257. [PMID: 36179933 DOI: 10.1016/j.bcp.2022.115257] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2022] [Revised: 09/14/2022] [Accepted: 09/14/2022] [Indexed: 11/02/2022]
Abstract
In recent years, experimental evidence suggested a possible role of the gut microbiota in the onset and development of several neurodegenerative disorders, such as AD and PD, MS and pain. Flavonoids, including anthocyanins, EGCG, the flavonol quercetin, and isoflavones, are plant polyphenolic secondary metabolites that have shown therapeutic potential for the treatment of various pathological conditions, including neurodegenerative diseases. This is due to their antioxidant and anti-inflammatory properties, despite their low bioavailability which often limits their use in clinical practice. In more recent years it has been demonstrated that flavonoids are metabolized by specific bacterial strains in the gut to produce their active metabolites. On the other way round, both naturally-occurring flavonoids and their metabolites promote or limit the proliferation of specific bacterial strains, thus profoundly affecting the composition of the gut microbiota which in turn modifies its ability to further metabolize flavonoids. Thus, understanding the best way of acting on this virtuous circle is of utmost importance to develop innovative approaches to many brain disorders. In this review, we summarize some of the most recent advances in preclinical and clinical research on the neuroinflammatory and neuroprotective effects of flavonoids on AD, PD, MS and pain, with a specific focus on their mechanisms of action including possible interactions with the gut microbiota, to emphasize the potential exploitation of dietary flavonoids as adjuvants in the treatment of these pathological conditions.
Collapse
Affiliation(s)
- Giulia Magni
- Department of Pharmacological and Biomolecular Sciences - Università degli Studi di Milano - via Balzaretti, 9 - 20133 MILAN (Italy)
| | - Benedetta Riboldi
- Department of Pharmacological and Biomolecular Sciences - Università degli Studi di Milano - via Balzaretti, 9 - 20133 MILAN (Italy)
| | - Katia Petroni
- Department of Biosciences - Università degli Studi di Milano - via Celoria, 26 - 20133 MILAN (Italy)
| | - Stefania Ceruti
- Department of Pharmacological and Biomolecular Sciences - Università degli Studi di Milano - via Balzaretti, 9 - 20133 MILAN (Italy).
| |
Collapse
|
25
|
Zou M, Chen FJ, Deng LR, Han Q, Huang CY, Shen SS, Tomlinson B, Li YH. Anemoside B4 ameliorates experimental autoimmune encephalomyelitis in mice by modulating inflammatory responses and the gut microbiota. Eur J Pharmacol 2022; 931:175185. [PMID: 35987252 DOI: 10.1016/j.ejphar.2022.175185] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2022] [Revised: 08/01/2022] [Accepted: 08/02/2022] [Indexed: 11/03/2022]
Abstract
BACKGROUND Anemoside B4 (AB4) is a representative component of Pulsatilla decoction that is used in traditional Chinese medicine for treating inflammatory conditions. It is not known whether AB4 has beneficial effects on multiple sclerosis (MS). METHODS In the present study, we examined the preventative and therapeutic effects of AB4, and the possible mechanism by which it protects female mice against experimental autoimmune encephalomyelitis (EAE). RESULTS Preventative treatment with AB4 (given orally at 100 and 200 mg/kg for 18 days) reduced the clinical severity of EAE significantly (from 3.6 ± 1.3 to 1.8 ± 1.5 and 1.6 ± 0.6, respectively), and inhibited demyelination and inflammatory infiltration of the spinal cord. In the therapeutic protocol, oral administration of 200 mg/kg AB4 for 21 days after initiation of EAE significantly alleviated disease severity (from 2.6 ± 1.3 to 0.9 ± 0.6) and was as effective as the clinically used drug fingolimod (0.3 ± 0.6). Furthermore, both doses of AB4 significantly inhibited mRNA expression of TNF-α, IL-6, and IL-17, and STAT3 activation, in the spinal cord; and the ex vivo and iv vitro AB4 treatment markedly inhibited secretion of the three cytokines from lymphocytes of EAE mice upon in vitro restimulation. In addition, AB4 reversed the changes in the composition of the intestinal microbiome observed in EAE mice. CONCLUSION We reveal for the first time that AB4 protects against EAE by modulating inflammatory responses and the gut microbiota, demonstrating that AB4 may have potential as a therapeutic agent for treating MS in humans.
Collapse
Affiliation(s)
- Min Zou
- School of Medicine, South China University of Technology, Guangzhou, China
| | - Fang-Jun Chen
- School of Medicine, South China University of Technology, Guangzhou, China
| | - Li-Rong Deng
- School of Medicine, South China University of Technology, Guangzhou, China
| | - Qian Han
- School of Medicine, South China University of Technology, Guangzhou, China
| | - Chang-Yin Huang
- School of Medicine, South China University of Technology, Guangzhou, China
| | - Shi-Shi Shen
- Department of Neurology, The Third Affiliated Hospital of Sun Yat-Sen University, Guangzhou, China
| | - Brian Tomlinson
- Faculty of Medicine, Macau University of Science and Technology, Taipa, Macau, China
| | - Yan-Hong Li
- School of Medicine, South China University of Technology, Guangzhou, China.
| |
Collapse
|
26
|
Oliveira MET, Paulino GVB, Dos Santos Júnior ED, da Silva Oliveira FA, Melo VMM, Ursulino JS, de Aquino TM, Shetty AK, Landell MF, Gitaí DLG. Multi-omic Analysis of the Gut Microbiome in Rats with Lithium-Pilocarpine-Induced Temporal Lobe Epilepsy. Mol Neurobiol 2022; 59:6429-6446. [PMID: 35962889 DOI: 10.1007/s12035-022-02984-3] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2021] [Accepted: 07/29/2022] [Indexed: 11/25/2022]
Abstract
Evidence supports that the gut microbiota and bacteria-dependent metabolites influence the maintenance of epileptic brain activity. However, the alterations in the gut microbiota between epileptic versus healthy individuals are poorly understood. We used a multi-omic approach to evaluate the changes in the composition of gut metagenome as well in the fecal metabolomic profile in rats before and after being submitted to status epilepticus (SE)-induced temporal lobe epilepsy (TLE). The 16S ribosomal RNA (rRNA) sequencing of fecal samples coupled to bioinformatic analysis revealed taxonomic, compositional, and functional shifts in epileptic rats. The species richness (Chao1 index) was significantly lower in the post-TLE group, and the β-diversity analysis revealed clustering separated from the pre-TLE group. The taxonomic abundance analysis showed a significant increase of phylum Desulfobacterota and a decrease of Patescibacteria in the post-TLE group. The DESEq2 and LEfSe analysis resulted in 18 genera significantly enriched between post-TLE and pre-TLE groups at the genus level. We observed that epileptic rats present a peculiar metabolic phenotype, including a lower concentration of D-glucose and L-lactic acid and a higher concentration of L-glutamic acid and glycine. The microbiota-host metabolic correlation analysis showed that the genera differentially abundant in post-TLE rats are associated with the altered metabolites, especially the proinflammatory Desulfovibrio and Marvinbryantia, which were enriched in epileptic animals and positively correlated with these excitatory neurotransmitters and carbohydrate metabolites. Therefore, our data revealed a correlation between dysbacteriosis in epileptic animals and fecal metabolites that are known to be relevant for maintaining epileptic brain activity by enhancing chronic inflammation, an excitatory-inhibitory imbalance, and/or a metabolic disturbance. These data are promising and suggest that targeting the gut microbiota could provide a novel avenue for preventing and treating acquired epilepsy. However, the causal relationship between these microbial/metabolite components and the SRS occurrence still needs further exploration.
Collapse
Affiliation(s)
- Maria Eduarda T Oliveira
- Laboratory of Cellular and Molecular Biology (LBCM), Institute of Biological and Health Sciences, Federal University of Alagoas, Maceió, AL, 57072-900, Brazil
| | - Gustavo V B Paulino
- Laboratory of Molecular Diversity (LDM), Institute of Biological and Health Sciences, Federal University of Alagoas, Maceió, AL, 57072-900, Brazil
| | - Erivaldo D Dos Santos Júnior
- Laboratory of Cellular and Molecular Biology (LBCM), Institute of Biological and Health Sciences, Federal University of Alagoas, Maceió, AL, 57072-900, Brazil
| | - Francisca A da Silva Oliveira
- Laboratory of Microbial Ecology and Biotechnology (Lembiotech), Department of Biology, Universidade Federal Do Ceará, Campus do Pici, Bloco 909, Fortaleza, CE, 60455-760, Brazil
| | - Vânia M M Melo
- Laboratory of Microbial Ecology and Biotechnology (Lembiotech), Department of Biology, Universidade Federal Do Ceará, Campus do Pici, Bloco 909, Fortaleza, CE, 60455-760, Brazil
| | - Jeferson S Ursulino
- Nucleus of Analysis and Research in Nuclear Magnetic Resonance - NAPRMN, Institute of Chemistry and Biotechnology, Federal University of Alagoas, Maceió, AL, 57072-900, Brazil
| | - Thiago M de Aquino
- Nucleus of Analysis and Research in Nuclear Magnetic Resonance - NAPRMN, Institute of Chemistry and Biotechnology, Federal University of Alagoas, Maceió, AL, 57072-900, Brazil
| | - Ashok K Shetty
- Institute for Regenerative Medicine, Department of Molecular and Cellular Medicine, Texas A&M University Health Science Center College of Medicine, College Station, TX, USA
| | - Melissa Fontes Landell
- Laboratory of Molecular Diversity (LDM), Institute of Biological and Health Sciences, Federal University of Alagoas, Maceió, AL, 57072-900, Brazil.
| | - Daniel Leite Góes Gitaí
- Laboratory of Cellular and Molecular Biology (LBCM), Institute of Biological and Health Sciences, Federal University of Alagoas, Maceió, AL, 57072-900, Brazil.
| |
Collapse
|
27
|
Varela-Trinidad GU, Domínguez-Díaz C, Solórzano-Castanedo K, Íñiguez-Gutiérrez L, Hernández-Flores TDJ, Fafutis-Morris M. Probiotics: Protecting Our Health from the Gut. Microorganisms 2022; 10:1428. [PMID: 35889147 PMCID: PMC9316266 DOI: 10.3390/microorganisms10071428] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Revised: 07/12/2022] [Accepted: 07/13/2022] [Indexed: 02/07/2023] Open
Abstract
The gut microbiota (GM) comprises billions of microorganisms in the human gastrointestinal tract. This microbial community exerts numerous physiological functions. Prominent among these functions is the effect on host immunity through the uptake of nutrients that strengthen intestinal cells and cells involved in the immune response. The physiological functions of the GM are not limited to the gut, but bidirectional interactions between the gut microbiota and various extraintestinal organs have been identified. These interactions have been termed interorganic axes by several authors, among which the gut-brain, gut-skin, gut-lung, gut-heart, and gut-metabolism axes stand out. It has been shown that an organism is healthy or in homeostasis when the GM is in balance. However, altered GM or dysbiosis represents a critical factor in the pathogenesis of many local and systemic diseases. Therefore, probiotics intervene in this context, which, according to various published studies, allows balance to be maintained in the GM, leading to an individual's good health.
Collapse
Affiliation(s)
- Gael Urait Varela-Trinidad
- Doctorado en Ciencias Biomédicas, Con Orientaciones en Inmunología y Neurociencias, Universidad de Guadalajara, Sierra Mojada 950, Guadalajara 44340, Mexico; (G.U.V.-T.); (C.D.-D.)
- Centro de Investigación en Inmunología y Dermatología (CIINDE), Calzada del Federalismo Nte 3102, Zapopan 45190, Mexico
| | - Carolina Domínguez-Díaz
- Doctorado en Ciencias Biomédicas, Con Orientaciones en Inmunología y Neurociencias, Universidad de Guadalajara, Sierra Mojada 950, Guadalajara 44340, Mexico; (G.U.V.-T.); (C.D.-D.)
- Centro de Investigación en Inmunología y Dermatología (CIINDE), Calzada del Federalismo Nte 3102, Zapopan 45190, Mexico
| | - Karla Solórzano-Castanedo
- Doctorado en Ciencias de la Nutrición Traslacional, Universidad de Guadalajara, Sierra Mojada 950, Guadalajara 44340, Mexico;
| | - Liliana Íñiguez-Gutiérrez
- Instituto de Investigación de Inmunodeficiencias y VIH, Hospital Civil de Guadalajara, Coronel Calderón 777, Guadalajara 44280, Mexico; (L.Í.-G.); (T.d.J.H.-F.)
| | - Teresita de Jesús Hernández-Flores
- Instituto de Investigación de Inmunodeficiencias y VIH, Hospital Civil de Guadalajara, Coronel Calderón 777, Guadalajara 44280, Mexico; (L.Í.-G.); (T.d.J.H.-F.)
- Departamento de Disciplinas Filosóficas Metodológicas e Intrumentales, Centro Universitario de Ciencias de la Salud, Universidad de Guadalajara, Sierra Mojada 950, Guadalajara 44340, Mexico
| | - Mary Fafutis-Morris
- Centro de Investigación en Inmunología y Dermatología (CIINDE), Calzada del Federalismo Nte 3102, Zapopan 45190, Mexico
- Departamento de Fisiología, Centro Universitario de Ciencias de la Salud, Universidad de Guadalajara, Sierra Mojada 950, Guadalajara 44340, Mexico
| |
Collapse
|
28
|
Ullah H, Khan A, Rengasamy KRR, Di Minno A, Sacchi R, Daglia M. The Efficacy of S-Adenosyl Methionine and Probiotic Supplementation on Depression: A Synergistic Approach. Nutrients 2022; 14:2751. [PMID: 35807931 PMCID: PMC9268496 DOI: 10.3390/nu14132751] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2022] [Revised: 05/28/2022] [Accepted: 06/29/2022] [Indexed: 02/01/2023] Open
Abstract
Depression is a common and serious health issue affecting around 280 million people around the world. Suicidal ideation more frequently occurs in people with moderate to severe depression. Psychotherapy and pharmacological drugs are the mainstay of available treatment options for depressive disorders. However, pharmacological options do not offer complete cure, especially in moderate to severe depression, and are often seen with a range of adverse events. S-adenosyl methionine (SAMe) supplementation has been widely studied, and an impressive collection of literature published over the last few decades suggests its antidepressant efficacy. Probiotics have gained significant attention due to their wide array of clinical uses, and multiple studies have explored the link between probiotic species and mood disorders. Gut dysbiosis is one of the risk factors in depression by inducing systemic inflammation accompanied by an imbalance in neurotransmitter production. Thus, concomitant administration of probiotics may be an effective treatment strategy in patients with depressed mood, particularly in resistant cases, as these can aid in dysbiosis, possibly resulting in the attenuation of systemic inflammatory processes and the improvement of the therapeutic efficacy of SAMe. The current review highlights the therapeutic roles of SAMe and probiotics in depression, their mechanistic targets, and their possible synergistic effects and may help in the development of food supplements consisting of a combination of SAMe and probiotics with new dosage forms that may improve their bioavailability.
Collapse
Affiliation(s)
- Hammad Ullah
- Department of Pharmacy, University of Napoli Federico II, Via D. Montesano 49, 80131 Naples, Italy; (H.U.); (A.D.M.)
| | - Ayesha Khan
- Department of Medicine, Combined Military Hospital Nowshera, Nowshera 24110, Pakistan;
| | - Kannan R. R. Rengasamy
- Centre for Transdisciplinary Research, Department of Pharmacology, Saveetha Dental College, Saveetha Institute of Medical and Technical Sciences (SIMATS), Chennai 600077, India;
| | - Alessandro Di Minno
- Department of Pharmacy, University of Napoli Federico II, Via D. Montesano 49, 80131 Naples, Italy; (H.U.); (A.D.M.)
- CEINGE-Biotecnologie Avanzate, Via Gaetano Salvatore 486, 80145 Naples, Italy
| | - Roberto Sacchi
- Applied Statistic Unit, Department of Earth and Environmental Sciences, University of Pavia, Viale Taramelli 24, 27100 Pavia, Italy;
| | - Maria Daglia
- Department of Pharmacy, University of Napoli Federico II, Via D. Montesano 49, 80131 Naples, Italy; (H.U.); (A.D.M.)
- International Research Center for Food Nutrition and Safety, Jiangsu University, Zhenjiang 212013, China
| |
Collapse
|
29
|
Association of antibiotic-consumption patterns with the prevalence of hematological malignancies in European countries. Sci Rep 2022; 12:7821. [PMID: 35550556 PMCID: PMC9098430 DOI: 10.1038/s41598-022-11569-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2021] [Accepted: 04/25/2022] [Indexed: 11/17/2022] Open
Abstract
Hematological malignancies are considered the fifth most common cancer in the world. Several risk factors and probable etiological agents have been suspected in the pathomechanism of those malignancies as infections, chemicals, irradiation, etc., and recently, the contribution of the altered gut flora, dysbiosis, was identified also as a possible additional factor to the existing ones. Host, and external factors, like antibiotics, which were identified as a major disruptor of the "normal" gut flora, influence the composition of the microbiome. Considering the several-fold differences in antibiotic consumption patterns and the incidence of hematological malignancies in European countries, the hypothesis was raised that the dominant consumption of certain antibiotic classes might influence the incidence of different hematological malignancies through the modification of gut flora. Comparisons were performed between the average antibiotic consumption databases reported yearly by ECDC (2009–2019) and the incidence rate of Hodgkin lymphoma (HL), non-Hodgkin lymphoma (NHL), multiple myeloma (MM), and leukemia (LEU) estimated for 2020 in 30 European countries. Applying Spearman calculations, significant positive correlation has been found between the incidence of HL and tetracycline (J01A) consumption (r = 0.399, p = 0.029), NHL and narrow spectrum, beta-lactamase resistant penicillin (J01CF) (r = 0.580, p = 0.001), MM and tetracycline (r = 0.492, p = 0.006), penicillin (J01C) (r = 0.366, p = 0.047), narrow spectrum, beta-lactamase resistant penicillin (J01CF) (r = 0.574, p = 0.001), while strong, significant negative correlation has been recorded between NHL and cephalosporin (r = − 0.460, p = 0.011), and quinolone (r = − 0.380, p = 0.038). The incidence of LEU did not show any positive or negative association with any antibiotic classes using Spearman calculation. Multivariate ordinal logistic regression (OR) indicated increased risk between HL and the total consumption of systemic antibiotics (J01 p: 0.038), and tetracyclin (J01A p: 0.002). Similarly, increased risk has been detected between the MM and tetracyclin (J01A p: 0.02), and narrow spectrum, beta-lactamase resistant penicillin (J01CF p: 0.042) and decreased risk between cephalosporin and MM (J01D p:0.022). LEU showed increased risk with the consumption of macrolides (p: 0.047).
Collapse
|
30
|
Soheili M, Alinaghipour A, Salami M. Good bacteria, oxidative stress and neurological disorders: Possible therapeutical considerations. Life Sci 2022; 301:120605. [DOI: 10.1016/j.lfs.2022.120605] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2021] [Revised: 04/27/2022] [Accepted: 04/27/2022] [Indexed: 12/11/2022]
|
31
|
Mitrea L, Nemeş SA, Szabo K, Teleky BE, Vodnar DC. Guts Imbalance Imbalances the Brain: A Review of Gut Microbiota Association With Neurological and Psychiatric Disorders. Front Med (Lausanne) 2022; 9:813204. [PMID: 35433746 PMCID: PMC9009523 DOI: 10.3389/fmed.2022.813204] [Citation(s) in RCA: 82] [Impact Index Per Article: 27.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2021] [Accepted: 02/23/2022] [Indexed: 12/12/2022] Open
Abstract
Over the last 10 years, there has been a growing interest in the relationship between gut microbiota, the brain, and neurologic-associated affections. As multiple preclinical and clinical research studies highlight gut microbiota’s potential to modulate the general state of health state, it goes without saying that gut microbiota plays a significant role in neurogenesis, mental and cognitive development, emotions, and behaviors, and in the progression of neuropsychiatric illnesses. Gut microbiota produces important biologic products that, through the gut-brain axis, are directly connected with the appearance and evolution of neurological and psychiatric disorders such as depression, anxiety, bipolar disorder, autism, schizophrenia, Parkinson’s disease, Alzheimer’s disease, dementia, multiple sclerosis, and epilepsy. This study reviews recent research on the link between gut microbiota and the brain, and microbiome’s role in shaping the development of the most common neurological and psychiatric illnesses. Moreover, special attention is paid to the use of probiotic formulations as a potential non-invasive therapeutic opportunity for prevention and management of neuropsychiatric-associated affections.
Collapse
Affiliation(s)
- Laura Mitrea
- Institute of Life Sciences, University of Agricultural Sciences and Veterinary Medicine of Cluj-Napoca, Cluj-Napoca, Romania.,Faculty of Food Science and Technology, University of Agricultural Sciences and Veterinary Medicine of Cluj-Napoca, Cluj-Napoca, Romania
| | - Silvia-Amalia Nemeş
- Institute of Life Sciences, University of Agricultural Sciences and Veterinary Medicine of Cluj-Napoca, Cluj-Napoca, Romania.,Faculty of Food Science and Technology, University of Agricultural Sciences and Veterinary Medicine of Cluj-Napoca, Cluj-Napoca, Romania
| | - Katalin Szabo
- Institute of Life Sciences, University of Agricultural Sciences and Veterinary Medicine of Cluj-Napoca, Cluj-Napoca, Romania
| | - Bernadette-Emőke Teleky
- Institute of Life Sciences, University of Agricultural Sciences and Veterinary Medicine of Cluj-Napoca, Cluj-Napoca, Romania
| | - Dan-Cristian Vodnar
- Institute of Life Sciences, University of Agricultural Sciences and Veterinary Medicine of Cluj-Napoca, Cluj-Napoca, Romania.,Faculty of Food Science and Technology, University of Agricultural Sciences and Veterinary Medicine of Cluj-Napoca, Cluj-Napoca, Romania
| |
Collapse
|
32
|
Engelenburg HJ, Lucassen PJ, Sarafian JT, Parker W, Laman JD. Multiple sclerosis and the microbiota. Evol Med Public Health 2022; 10:277-294. [PMID: 35747061 PMCID: PMC9211007 DOI: 10.1093/emph/eoac009] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2021] [Accepted: 03/04/2022] [Indexed: 11/13/2022] Open
Abstract
Abstract
Multiple sclerosis (MS), a neurological autoimmune disorder, has recently been linked to neuro-inflammatory influences from the gut. In this review, we address the idea that evolutionary mismatches could affect the pathogenesis of MS via the gut microbiota. The evolution of symbiosis as well as the recent introduction of evolutionary mismatches is considered, and evidence regarding the impact of diet on the MS-associated microbiota is evaluated. Distinctive microbial community compositions associated with the gut microbiota of MS patients are difficult to identify, and substantial study-to-study variation and even larger variations between individual profiles of MS patients are observed. Furthermore, although some dietary changes impact the progression of MS, MS-associated features of microbiota were found to be not necessarily associated with diet per se. In addition, immune function in MS patients potentially drives changes in microbial composition directly, in at least some individuals. Finally, assessment of evolutionary histories of animals with their gut symbionts suggests that the impact of evolutionary mismatch on the microbiota is less concerning than mismatches affecting helminths and protists. These observations suggest that the benefits of an anti-inflammatory diet for patients with MS may not be mediated by the microbiota per se. Furthermore, any alteration of the microbiota found in association with MS may be an effect rather than a cause. This conclusion is consistent with other studies indicating that a loss of complex eukaryotic symbionts, including helminths and protists, is a pivotal evolutionary mismatch that potentiates the increased prevalence of autoimmunity within a population.
Collapse
Affiliation(s)
- Hendrik J Engelenburg
- Department of Pathology and Medical Biology, University Medical Center Groningen , Groningen, The Netherlands
- Brain Plasticity Group, Swammerdam Institute for Life Sciences, University of Amsterdam , Amsterdam, The Netherlands
| | - Paul J Lucassen
- Brain Plasticity Group, Swammerdam Institute for Life Sciences, University of Amsterdam , Amsterdam, The Netherlands
- Center for Urban Mental Health, University of Amsterdam , Amsterdam, The Netherlands
| | | | | | - Jon D Laman
- Department of Pathology and Medical Biology, University Medical Center Groningen , Groningen, The Netherlands
| |
Collapse
|
33
|
González LM, Ospina LN, Sperling LE, Chaparro O, Cucarián JD. Therapeutic Effects of Physical Exercise and the Mesenchymal Stem Cell Secretome by Modulating Neuroinflammatory Response in Multiple Sclerosis. Curr Stem Cell Res Ther 2021; 17:621-632. [PMID: 34886779 DOI: 10.2174/1574888x16666211209155333] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2021] [Revised: 09/14/2021] [Accepted: 10/22/2021] [Indexed: 11/22/2022]
Abstract
Multiple sclerosis (MS) is a neurodegenerative, demyelinating, and chronic inflammatory disease characterized by central nervous system (CNS) lesions that lead to high levels of disability and severe physical and cognitive disturbances. Conventional therapies are not enough to control the neuroinflammatory process in MS and are not able to inhibit ongoing damage to the CNS. Thus, the secretome of mesenchymal stem cells (MSC-S) has been postulated as a potential therapy that could mitigate symptoms and disease progression. We considered that its combination with physical exercise (EX) could induce superior effects and increase the MSC-S effectiveness in this condition. Recent studies have revealed that both EX and MSC-S share similar mechanisms of action that mitigate auto-reactive T cell infiltration, regulate the local inflammatory response, modulate the proinflammatory profile of glial cells, and reduce neuronal damage. Clinical and experimental studies have reported that these treatments in an isolated way also improve myelination, regeneration, promote the release of neurotrophic factors, and increase the recruitment of endogenous stem cells. Together, these effects reduce disease progression and improve patient functionality. Despite these results, the combination of these methods has not yet been studied in MS. In this review, we focus on molecular elements and cellular responses induced by these treatments in a separate way, showing their beneficial effects in the control of symptoms and disease progression in MS, as well as indicating their contribution in clinical fields. In addition, we propose the combined use of EX and MSC-S as a strategy to boost their reparative and immunomodulatory effects in this condition, combining their benefits on synaptogenesis, neurogenesis, remyelination, and neuroinflammatory response. The findings here reported are based on the scientific evidence and our professional experience that will bring significant progress to regenerative medicine to deal with this condition.
Collapse
Affiliation(s)
- Lina María González
- Physiotherapy Program, School of Medicine and Health Sciences, Universidad del Rosario AK 24 #63c-69, Bogotá. Colombia
| | - Laura Natalia Ospina
- Physiotherapy Program, School of Medicine and Health Sciences, Universidad del Rosario AK 24 #63c-69, Bogotá. Colombia
| | - Laura Elena Sperling
- Faculty of Pharmacy & Fundamental Health Science Institute, Federal University of Rio Grande do Sul Rua Ramiro Barcelos, 2600-Prédio Anexo - Floresta, Porto Alegre. Brazil
| | - Orlando Chaparro
- Physiology Department, Faculty of Medicine, Universidad Nacional de Colombia Ak 30 #45-03, Bogotá. Colombia
| | - Jaison Daniel Cucarián
- Physiotherapy Program, School of Medicine and Health Sciences, Universidad del Rosario AK 24 #63c-69, Bogotá. Colombia
| |
Collapse
|
34
|
Maul J. Rheumatologische Erkrankungen und der
Gastrointestinaltrakt. AKTUEL RHEUMATOL 2021. [DOI: 10.1055/a-1638-7663] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Abstract
ZusammenfassungDie meisten rheumatologischen Krankheitsbilder können Einfluss auf den
Gastrointestinaltrakt haben. Dabei können intestinale Manifestationen
(z. B. rheumatoide Vaskulitis, IgG4-assoziierte Pankreatitis,
IgG4-assoziierte Cholangitis, Lupus-Enteritis, Polyarteriitis nodosa, Purpura
Schoenlein-Henoch, nekrotisierende Vaskulitis), assoziierte intestinale
Erkrankungen (chronisch-entzündliche Darmerkrankungen (CED),
Zöliakie) und intestinale Komplikationen der rheumatologischen
Erkrankung (z. B. Amyloidose, erosive Refluxerkrankung bei Sklerodermie)
bzw. ihrer Behandlung (z. B. NSAR-Magenulcus, MTX-Mukositis,
Soor-Ösophagitis, intestinale Tuberkulose, ulzerierende
HSV-Ösophagitis, CMV-Kolitis) voneinander abgegrenzt werden. Dadurch
kommen gastrointestinale Symptome bei Patienten mit rheumatologischen
Erkrankungen sehr häufig vor. Die Diagnosestellung (er)fordert
Gastroenterologen im interdisziplinären Behandlungsnetzwerk mit
Rheumatologen. Insbesondere bei Behandlung von CED ergeben sich für die
überschneidenden Zulassungsindikationen der zur Verfügung
stehenden Medikamente in der interdisziplinären Absprache zwischen
Rheumatologen und Gastroenterologen synergistische Behandlungsoptionen.
Collapse
Affiliation(s)
- Jochen Maul
- Medizinische Klinik für Gastroenterologie, Infektiologie und
Rheumatologie, Charite Universitätsmedizin Berlin, Berlin,
Deutschland
- MVZ für Gastroenterologie am Bayerischen Platz, Berlin,
Deutschland
| |
Collapse
|
35
|
Zhao S, Zhu L, Feng W, Zhang L, Chen DD, Hu YC, Shen H. MicroRNA-602 prevents the development of inflammatory bowel diseases in a microbiota-dependent manner. Exp Ther Med 2021; 22:1373. [PMID: 34659519 PMCID: PMC8515559 DOI: 10.3892/etm.2021.10808] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2019] [Accepted: 03/10/2020] [Indexed: 11/29/2022] Open
Abstract
Inflammatory bowel diseases (IBD) are a group of chronic disorders occurring in the intestinal tract. Previous studies demonstrated that genetics and microbiota play critical roles in the pathogenesis of IBD. Discoveries of genes that may regulate the homeostasis of gut microbiota and pathogenesis of IBD have the potential to provide new therapeutic targets for IBD treatment. The results suggested that the expression level of microRNA (miR)-602 is negatively related to the development of IBD, and that miR-602 overexpression in mice may prevent inflammation and intestinal barrier injuries in dextran sulfate sodium (DSS)-induced IBD mice. It was also found that the microbiota is important for miR-602-mediated prevention of IBD, as the inhibitory effect of miR-602 was lost when the microbiota was depleted using antibiotics. Furthermore, co-housing or adoptive transfer of microbiota from miR-602 could attenuate the pathogenesis of IBD. In addition, it was demonstrated that miR-602 could target tumor necrosis factor receptor-associated factor 6 (TRAF6) in intestinal epithelial cells. Collectively, the present results suggest that miR-602 plays a protective role in DSS-induced IBD by targeting TRAF6 in a microbiota-dependent manner.
Collapse
Affiliation(s)
- Song Zhao
- Department of Gastroenterology, Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, Jiangsu 210029, P.R. China
| | - Lei Zhu
- Department of Gastroenterology, Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, Jiangsu 210029, P.R. China
| | - Wan Feng
- Department of Gastroenterology, Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, Jiangsu 210029, P.R. China
| | - Lu Zhang
- Department of Gastroenterology, Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, Jiangsu 210029, P.R. China
| | - Dan-Dan Chen
- Department of Gastroenterology, Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, Jiangsu 210029, P.R. China
| | - Yu-Cui Hu
- Department of Gastroenterology, Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, Jiangsu 210029, P.R. China
| | - Hong Shen
- Department of Gastroenterology, Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, Jiangsu 210029, P.R. China
| |
Collapse
|
36
|
Zubareva OE, Melik-Kasumov TB. The Gut–Brain Axis and Peroxisome Proliferator-Activated Receptors in the Regulation of Epileptogenesis. J EVOL BIOCHEM PHYS+ 2021. [DOI: 10.1134/s0022093021040013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
37
|
Milošević M, Arsić A, Cvetković Z, Vučić V. Memorable Food: Fighting Age-Related Neurodegeneration by Precision Nutrition. Front Nutr 2021; 8:688086. [PMID: 34422879 PMCID: PMC8374314 DOI: 10.3389/fnut.2021.688086] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2021] [Accepted: 07/13/2021] [Indexed: 12/13/2022] Open
Abstract
Healthcare systems worldwide are seriously challenged by a rising prevalence of neurodegenerative diseases (NDDs), which mostly, but not exclusively, affect the ever-growing population of the elderly. The most known neurodegenerative diseases are Alzheimer's (AD) and Parkinson's disease, multiple sclerosis, and amyotrophic lateral sclerosis, but some viral infections of the brain and traumatic brain injury may also cause NDD. Typical for NDD are the malfunctioning of neurons and their irreversible loss, which often progress irreversibly to dementia and ultimately to death. Numerous factors are involved in the pathogenesis of NDD: genetic variability, epigenetic changes, extent of oxidative/nitrosative stress, mitochondrial dysfunction, and DNA damage. The complex interplay of all the above-mentioned factors may be a fingerprint of neurodegeneration, with different diseases being affected to different extents by particular factors. There is a voluminous body of evidence showing the benefits of regular exercise to brain health and cognitive functions. Moreover, the importance of a healthy diet, balanced in macro- and micro-nutrients, in preventing neurodegeneration and slowing down a progression to full-blown disease is evident. Individuals affected by NDD almost inevitably have low-grade inflammation and anomalies in lipid metabolism. Metabolic and lipid profiles in NDD can be improved by the Mediterranean diet. Many studies have associated the Mediterranean diet with a decreased risk of dementia and AD, but a cause-and-effect relationship has not been deduced. Studies with caloric restriction showed neuroprotective effects in animal models, but the results in humans are inconsistent. The pathologies of NDD are complex and there is a great inter-individual (epi)genetic variance within any population. Furthermore, the gut microbiome, being deeply involved in nutrient uptake and lipid metabolism, also represents a pillar of the gut microbiome-brain axis and is linked with the pathogenesis of NDD. Numerous studies on the role of different micronutrients (omega-3 fatty acids, bioactive polyphenols from fruit and medicinal plants) in the prevention, prediction, and treatment of NDD have been conducted, but we are still far away from a personalized diet plan for individual NDD patients. For this to be realized, large-scale cohorts that would include the precise monitoring of food intake, mapping of genetic variants, epigenetic data, microbiome studies, and metabolome, lipidome, and transcriptome data are needed.
Collapse
Affiliation(s)
- Maja Milošević
- Department of Neuroendocrinology, Institute for Medical Research, University of Belgrade, Belgrade, Serbia
| | - Aleksandra Arsić
- Department of Nutritional Biochemistry and Dietology, Centre of Research Excellence in Nutrition and Metabolism, Institute for Medical Research, University of Belgrade, Belgrade, Serbia
| | - Zorica Cvetković
- Department of Hematology, Clinical Hospital Center Zemun, Belgrade, Serbia
- Faculty of Medicine, University of Belgrade, Belgrade, Serbia
| | - Vesna Vučić
- Department of Nutritional Biochemistry and Dietology, Centre of Research Excellence in Nutrition and Metabolism, Institute for Medical Research, University of Belgrade, Belgrade, Serbia
| |
Collapse
|
38
|
Obesity and Multiple Sclerosis-A Multifaceted Association. J Clin Med 2021; 10:jcm10122689. [PMID: 34207197 PMCID: PMC8234028 DOI: 10.3390/jcm10122689] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2021] [Revised: 05/30/2021] [Accepted: 06/15/2021] [Indexed: 02/07/2023] Open
Abstract
BACKGROUND Given the common elements in the pathophysiological theories that try to explain the appearance and evolution of obesity and multiple sclerosis, the association between the two pathologies has become an increasingly researched topic in recent years. On the one hand, there is the chronic demyelinating inflammation caused by the autoimmune cascade of multiple sclerosis, while on the other hand, according to the latest research, it has been shown that obesity shares an inflammatory component with most chronic diseases. METHODS The authors performed independent research of the available literature in the most important electronic databases (PubMed, Google Scholar, Embase, and Science Direct) in February 2021. After applying the exclusion criteria, the reviewers focused on the most relevant articles published during the last 10 years with respect to epidemiology and pathophysiology. RESULTS The data presented are a step forward in trying to elucidate the intricate relationship between obesity and MS, especially the causal relationship between childhood and adolescent obesity and MS, focusing on the epidemiological associations observed in the most relevant observational studies conducted in recent years. In the second part, the authors comment on the latest findings related to the pathophysiological mechanisms that may explain the correlations between obesity and multiple sclerosis, focusing also on the role of adipokines. CONCLUSIONS Based on available epidemiological data, obesity in early life appears to be strongly associated with a higher risk of MS development, independent of other risk factors. Although much research has been done on the pathophysiology of obesity, MS, their possible common mechanism, and the role of adipokines, further studies are needed in order to explain what remains unknown. No relevant data were found regarding the association between obesity, disability (high EDSS score), and mortality risk in MS patients. Thus, we consider that this topic should be elucidated in future research.
Collapse
|
39
|
Perez-Muñoz ME, Sugden S, Harmsen HJM, 't Hart BA, Laman JD, Walter J. Nutritional and ecological perspectives of the interrelationships between diet and the gut microbiome in multiple sclerosis: Insights from marmosets. iScience 2021; 24:102709. [PMID: 34296070 PMCID: PMC8282968 DOI: 10.1016/j.isci.2021.102709] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Studies in experimental autoimmune encephalomyelitis (EAE), the animal model of multiple sclerosis, have shown potential links between diet components, microbiome composition, and modulation of immune responses. In this review, we reanalyze and discuss findings in an outbred marmoset EAE model in which a yogurt-based dietary supplement decreased disease frequency and severity. We show that although diet has detectable effects on the fecal microbiome, microbiome changes are more strongly associated with the EAE development. Using an ecological framework, we further show that the dominant factors influencing the gut microbiota were marmoset sibling pair and experimental time point. These findings emphasize challenges in assigning cause-and-effect relationships in studies of diet-microbiome-host interactions and differentiating the diet effects from other environmental, stochastic, and host-related factors. We advocate for animal experiments to be designed to allow causal inferences of the microbiota's role in pathology while considering the complex ecological processes that shape microbial communities.
Collapse
Affiliation(s)
- Maria Elisa Perez-Muñoz
- Department of Agricultural, Nutritional and Food Science, University of Alberta, Edmonton, AB T6G 2P5, Canada
| | - Scott Sugden
- Department of Biological Sciences, University of Alberta, Edmonton, AB T6G 2E9, Canada
| | - Hermie J M Harmsen
- Department of Medical Microbiology, University of Groningen, University Medical Center Groningen, Groningen 9700AE, The Netherlands
| | - Bert A 't Hart
- Department of Biomedical Sciences of Cells and Systems, Section of Molecular Neurobiology, University of Groningen, University Medical Center Groningen 9700AE, Groningen, The Netherlands.,Department Anatomy and Neuroscience, Amsterdam University Medical Center, Amsterdam 1081HV, The Netherlands
| | - Jon D Laman
- Department of Biomedical Sciences of Cells and Systems, Section of Molecular Neurobiology, University of Groningen, University Medical Center Groningen 9700AE, Groningen, The Netherlands.,Department of Pathology and Medical Biology, University of Groningen, University Medical Center Groningen, Groningen 9700AE, The Netherlands
| | - Jens Walter
- Department of Agricultural, Nutritional and Food Science, University of Alberta, Edmonton, AB T6G 2P5, Canada.,Department of Biological Sciences, University of Alberta, Edmonton, AB T6G 2E9, Canada.,APC Microbiome Ireland, School of Microbiology, and Department of Medicine, University College Cork - National University of Ireland, Cork T12 YT20, Ireland
| |
Collapse
|
40
|
Danehower S. Targeting gut dysbiosis as a means to enhance recovery from surgical brain injury. Surg Neurol Int 2021; 12:210. [PMID: 34084637 PMCID: PMC8168676 DOI: 10.25259/sni_72_2021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2021] [Accepted: 04/11/2021] [Indexed: 11/04/2022] Open
Abstract
Background Surgical brain injury (SBI) impacts roughly 800,000 people who undergo neurosurgical procedures each year. SBI is the result of unavoidable parenchymal damage, vessel disruption, and thermal injury that is an inherent part of all neurosurgical procedures. Clinically, SBI has been associated with postoperative seizures and long-term neurobehavioral deficits. Current therapies are aimed at providing symptom relief by reducing swelling and preventing seizures. However, there are no therapies aimed at reducing the extent of SBI preoperatively. The microbiome-gut-brain axis may serve as a potential target for the development of new preventative therapies due to its extensive involvement in central nervous system function. Methods An extensive literature review was conducted to determine whether there is a potential role for dysbiosis treatment in reducing the extent of SBI. Results Treatment of gut dysbiosis deserves further exploration as a potential means of reducing the extent of unavoidable SBI. Dysbiosis has been correlated with increased neuroinflammation through impaired immune regulation, increased blood-brain barrier permeability, and increased production of reactive metabolites. Recently, dysbiosis has also been linked to acute neurological dysfunction in the postoperative state. Importantly, treatment of dysbiosis has been correlated with better patient outcomes and decreased length of stay in surgical patients. Conclusion Current literature supports the role of dysbiosis treatment in the preoperative setting as a means of optimizing neurological recovery following unavoidable SBI that results from all neurosurgical procedures.
Collapse
Affiliation(s)
- Sarah Danehower
- Drexel University College of Medicine, Philadelphia, Pennsylvania, United States
| |
Collapse
|
41
|
Abstract
The enteric nervous system (ENS) is the largest division of the peripheral nervous system and closely resembles components and functions of the central nervous system. Although the central role of the ENS in congenital enteric neuropathic disorders, including Hirschsprung disease and inflammatory and functional bowel diseases, is well acknowledged, its role in systemic diseases is less understood. Evidence of a disordered ENS has accumulated in neurodegenerative diseases ranging from amyotrophic lateral sclerosis, Alzheimer disease and multiple sclerosis to Parkinson disease as well as neurodevelopmental disorders such as autism. The ENS is a key modulator of gut barrier function and a regulator of enteric homeostasis. A 'leaky gut' represents the gateway for bacterial and toxin translocation that might initiate downstream processes. Data indicate that changes in the gut microbiome acting in concert with the individual genetic background can modify the ENS, central nervous system and the immune system, impair barrier function, and contribute to various disorders such as irritable bowel syndrome, inflammatory bowel disease or neurodegeneration. Here, we summarize the current knowledge on the role of the ENS in gastrointestinal and systemic diseases, highlighting its interaction with various key players involved in shaping the phenotypes. Finally, current flaws and pitfalls related to ENS research in addition to future perspectives are also addressed.
Collapse
|
42
|
Calvo-Barreiro L, Clerico M, Espejo C. Correcting gut dysbiosis can ameliorate inflammation and promote remyelination in multiple sclerosis - Yes. Mult Scler 2021; 27:1161-1162. [PMID: 34047231 DOI: 10.1177/13524585211016723] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Affiliation(s)
- Laura Calvo-Barreiro
- Servei de Neurologia-Neuroimmunologia, Centre d'Esclerosi Múltiple de Catalunya, Vall d'Hebron Institut de Recerca, Hospital Universitari Vall d'Hebron, Vall d'Hebron Barcelona Hospital Campus, Barcelona, Spain; Universitat Autònoma de Barcelona, Bellaterra, Spain
| | - Marinella Clerico
- Department of Clinical and Biological Sciences, University of Turin, Turin, Italy
| | - Carmen Espejo
- Servei de Neurologia-Neuroimmunologia, Centre d'Esclerosi Múltiple de Catalunya, Vall d'Hebron Institut de Recerca, Hospital Universitari Vall d'Hebron, Vall d'Hebron Barcelona Hospital Campus, Barcelona, Spain; Universitat Autònoma de Barcelona, Bellaterra, Spain
| |
Collapse
|
43
|
Pellizoni FP, Leite AZ, Rodrigues NDC, Ubaiz MJ, Gonzaga MI, Takaoka NNC, Mariano VS, Omori WP, Pinheiro DG, Matheucci Junior E, Gomes E, Oliveira DGLV. Detection of Dysbiosis and Increased Intestinal Permeability in Brazilian Patients with Relapsing-Remitting Multiple Sclerosis. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2021; 18:ijerph18094621. [PMID: 33925359 PMCID: PMC8123689 DOI: 10.3390/ijerph18094621] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/11/2021] [Revised: 04/12/2021] [Accepted: 04/14/2021] [Indexed: 02/07/2023]
Abstract
Dysbiosis, associated with barrier disruption and altered gut–brain communications, has been associated with multiple sclerosis (MS). In this study, we evaluated the gut microbiota in relapsing–remitting patients (RRMS) receiving disease-modifying therapies (DMTs) and correlated these data with diet, cytokines levels, and zonulin concentrations. Stool samples were used for 16S sequencing and real-time PCR. Serum was used for cytokine determination by flow cytometry, and zonulin quantification by ELISA. Pearson’s chi-square, Mann–Whitney, and Spearman’s correlation were used for statistical analyses. We detected differences in dietary habits, as well as in the gut microbiota in RRMS patients, with predominance of Akkermansia muciniphila and Bacteroides vulgatus and decreased Bifidobacterium. Interleukin-6 concentrations were decreased in treated patients, and we detected an increased intestinal permeability in RRMS patients when compared with controls. We conclude that diet plays an important role in the composition of the gut microbiota, and intestinal dysbiosis, detected in RRMS patients could be involved in increased intestinal permeability and affect the clinical response to DTMs. The future goal is to predict therapeutic responses based on individual microbiome analyses (personalized medicine) and propose dietary interventions and the use of probiotics or other microbiota modulators as adjuvant therapy to enhance the therapeutic efficacy of DMTs.
Collapse
Affiliation(s)
- Felipe Papa Pellizoni
- Microbiome Study Group, School of Health Sciences Dr. Paulo Prata, Barretos 14785-002, Brazil; (F.P.P.); (M.J.U.); (M.I.G.); (N.N.C.T.)
| | - Aline Zazeri Leite
- Microbiology Program, Institute of Biosciences, Humanities and Exact Sciences, São Paulo State University, Sao Jose do Rio Preto 15054-000, Brazil; (A.Z.L.); (E.G.)
| | | | - Marcelo Jordão Ubaiz
- Microbiome Study Group, School of Health Sciences Dr. Paulo Prata, Barretos 14785-002, Brazil; (F.P.P.); (M.J.U.); (M.I.G.); (N.N.C.T.)
| | - Marina Ignácio Gonzaga
- Microbiome Study Group, School of Health Sciences Dr. Paulo Prata, Barretos 14785-002, Brazil; (F.P.P.); (M.J.U.); (M.I.G.); (N.N.C.T.)
| | - Nauyta Naomi Campos Takaoka
- Microbiome Study Group, School of Health Sciences Dr. Paulo Prata, Barretos 14785-002, Brazil; (F.P.P.); (M.J.U.); (M.I.G.); (N.N.C.T.)
| | | | - Wellington Pine Omori
- Department of Technology, School of Agricultural and Veterinarian Sciences, São Paulo State University (UNESP), Jaboticabal 14884-900, Brazil; (W.P.O.); (D.G.P.)
| | - Daniel Guariz Pinheiro
- Department of Technology, School of Agricultural and Veterinarian Sciences, São Paulo State University (UNESP), Jaboticabal 14884-900, Brazil; (W.P.O.); (D.G.P.)
| | | | - Eleni Gomes
- Microbiology Program, Institute of Biosciences, Humanities and Exact Sciences, São Paulo State University, Sao Jose do Rio Preto 15054-000, Brazil; (A.Z.L.); (E.G.)
| | - de Gislane Lelis Vilela Oliveira
- Microbiology Program, Institute of Biosciences, Humanities and Exact Sciences, São Paulo State University, Sao Jose do Rio Preto 15054-000, Brazil; (A.Z.L.); (E.G.)
- Food Engineering and Technology Department, São Paulo State University (UNESP), Sao Jose do Rio Preto 15054-000, Brazil
- Correspondence: ; Tel.: +55-17-3212-1058
| |
Collapse
|
44
|
Ghorbani M, Rajandas H, Parimannan S, Stephen Joseph GB, Tew MM, Ramly SS, Muhamad Rasat MA, Lee SY. Understanding the role of gut microbiota in the pathogenesis of schizophrenia. Psychiatr Genet 2021; 31:39-49. [PMID: 33252574 DOI: 10.1097/ypg.0000000000000270] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
Schizophrenia is a chronic mental disorder with marked symptoms of hallucination, delusion, and impaired cognitive behaviors. Although multidimensional factors have been associated with the development of schizophrenia, the principal cause of the disorder remains debatable. Microbiome involvement in the etiology of schizophrenia has been widely researched due to the advancement in sequencing technologies. This review describes the contribution of the gut microbiome in the development of schizophrenia that is facilitated by the gut-brain axis. The gut microbiota is connected to the gut-brain axis via several pathways and mechanisms, that are discussed in this review. The role of the oral microbiota, probiotics and prebiotics in shaping the gut microbiota are also highlighted. Lastly, future perspectives for microbiome research in schizophrenia are addressed.
Collapse
Affiliation(s)
- Mahin Ghorbani
- Centre of Excellence for Omics-Driven Computational Biodiscovery (COMBio), Faculty of Applied Sciences, AIMST University
| | - Heera Rajandas
- Centre of Excellence for Omics-Driven Computational Biodiscovery (COMBio), Faculty of Applied Sciences, AIMST University
| | - Sivachandran Parimannan
- Centre of Excellence for Omics-Driven Computational Biodiscovery (COMBio), Faculty of Applied Sciences, AIMST University
| | - Gerard Benedict Stephen Joseph
- Centre of Excellence for Omics-Driven Computational Biodiscovery (COMBio), Faculty of Applied Sciences, AIMST University
| | - Mei Mei Tew
- Clinical Research Centre (CRC), Hospital Sultanah Bahiyah, Alor Setar
| | - Siti Salwa Ramly
- Psychiatry and Mental Health Department, Hospital Sultan Abdul Halim, Sungai Petani
| | | | - Su Yin Lee
- Centre of Excellence for Omics-Driven Computational Biodiscovery (COMBio), Faculty of Applied Sciences, AIMST University
| |
Collapse
|
45
|
Banerjee A, Pradhan LK, Sahoo PK, Jena KK, Chauhan NR, Chauhan S, Das SK. Unravelling the potential of gut microbiota in sustaining brain health and their current prospective towards development of neurotherapeutics. Arch Microbiol 2021; 203:2895-2910. [PMID: 33763767 DOI: 10.1007/s00203-021-02276-9] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2020] [Revised: 02/18/2021] [Accepted: 03/10/2021] [Indexed: 12/12/2022]
Abstract
Increasing incidences of neurological disorders, such as Parkinson's disease (PD), multiple sclerosis (MS), Alzheimer's disease (AD) and amyotrophic lateral sclerosis (ALS) are being reported, but an insight into their pathology remains elusive. Findings have suggested that gut microbiota play a major role in regulating brain functions through the gut-brain axis. A unique bidirectional communication between gut microbiota and maintenance of brain health could play a pivotal role in regulating incidences of neurodegenerative diseases. Contrarily, the present life style with changing food habits and disturbed circadian rhythm may contribute to gut homeostatic imbalance and dysbiosis leading to progression of several neurological disorders. Therefore, dysbiosis, as a primary factor behind intestinal disorders, may also augment inflammation, intestinal and blood-brain barrier permeability through microbiota-gut-brain axis. This review primarily focuses on the gut-brain axis functions, specific gut microbial population, metabolites produced by gut microbiota, their role in regulating various metabolic processes and role of gut microbiota towards development of neurodegenerative diseases. However, several studies have reported a decrease in abundance of a specific gut microbial population and a corresponding increase in other microbial family, with few findings revealing some contradictions. Reports also showed that colonization of gut microbiota isolated from patients suffering from neurodegenerative disease leads to the development of enhance pathological outcomes in animal models. Hence, a systematic understanding of the dominant role of specific gut microbiome towards development of different neurodegenerative diseases could possibly provide novel insight into the use of probiotics and microbial transplantation as a substitute approach for treating/preventing such health maladies.
Collapse
Affiliation(s)
- Ankita Banerjee
- Neurobiology Laboratory, Centre for Biotechnology, Siksha 'O' Anusandhan (Deemed to be University), Bhubaneswar, 751003, Odisha, India
| | - Lilesh Kumar Pradhan
- Neurobiology Laboratory, Centre for Biotechnology, Siksha 'O' Anusandhan (Deemed to be University), Bhubaneswar, 751003, Odisha, India
| | - Pradyumna Kumar Sahoo
- Neurobiology Laboratory, Centre for Biotechnology, Siksha 'O' Anusandhan (Deemed to be University), Bhubaneswar, 751003, Odisha, India
| | - Kautilya Kumar Jena
- Autophagy Laboratory, Infectious Disease Biology Division, Institute of Life Sciences, Bhubaneswar, 751023, Odisha, India
| | - Nishant Ranjan Chauhan
- Autophagy Laboratory, Infectious Disease Biology Division, Institute of Life Sciences, Bhubaneswar, 751023, Odisha, India
| | - Santosh Chauhan
- Autophagy Laboratory, Infectious Disease Biology Division, Institute of Life Sciences, Bhubaneswar, 751023, Odisha, India
| | - Saroj Kumar Das
- Neurobiology Laboratory, Centre for Biotechnology, Siksha 'O' Anusandhan (Deemed to be University), Bhubaneswar, 751003, Odisha, India.
| |
Collapse
|
46
|
Maiuolo J, Gliozzi M, Musolino V, Carresi C, Scarano F, Nucera S, Scicchitano M, Oppedisano F, Bosco F, Ruga S, Zito MC, Macri R, Palma E, Muscoli C, Mollace V. The Contribution of Gut Microbiota-Brain Axis in the Development of Brain Disorders. Front Neurosci 2021; 15:616883. [PMID: 33833660 PMCID: PMC8021727 DOI: 10.3389/fnins.2021.616883] [Citation(s) in RCA: 68] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2020] [Accepted: 02/05/2021] [Indexed: 12/19/2022] Open
Abstract
Different bacterial families colonize most mucosal tissues in the human organism such as the skin, mouth, vagina, respiratory, and gastrointestinal districts. In particular, the mammalian intestine hosts a microbial community of between 1,000 and 1,500 bacterial species, collectively called "microbiota." Co-metabolism between the microbiota and the host system is generated and the symbiotic relationship is mutually beneficial. The balance that is achieved between the microbiota and the host organism is fundamental to the organization of the immune system. Scientific studies have highlighted a direct correlation between the intestinal microbiota and the brain, establishing the existence of the gut microbiota-brain axis. Based on this theory, the microbiota acts on the development, physiology, and cognitive functions of the brain, although the mechanisms involved have not yet been fully interpreted. Similarly, a close relationship between alteration of the intestinal microbiota and the onset of several neurological pathologies has been highlighted. This review aims to point out current knowledge as can be found in literature regarding the connection between intestinal dysbiosis and the onset of particular neurological pathologies such as anxiety and depression, autism spectrum disorder, and multiple sclerosis. These disorders have always been considered to be a consequence of neuronal alteration, but in this review, we hypothesize that these alterations may be non-neuronal in origin, and consider the idea that the composition of the microbiota could be directly involved. In this direction, the following two key points will be highlighted: (1) the direct cross-talk that comes about between neurons and gut microbiota, and (2) the degree of impact of the microbiota on the brain. Could we consider the microbiota a valuable target for reducing or modulating the incidence of certain neurological diseases?
Collapse
Affiliation(s)
- Jessica Maiuolo
- IRC-FSH Department of Health Sciences, University “Magna Græcia” of Catanzaro, Catanzaro, Italy
| | - Micaela Gliozzi
- IRC-FSH Department of Health Sciences, University “Magna Græcia” of Catanzaro, Catanzaro, Italy
| | - Vincenzo Musolino
- IRC-FSH Department of Health Sciences, University “Magna Græcia” of Catanzaro, Catanzaro, Italy
| | - Cristina Carresi
- IRC-FSH Department of Health Sciences, University “Magna Græcia” of Catanzaro, Catanzaro, Italy
| | - Federica Scarano
- IRC-FSH Department of Health Sciences, University “Magna Græcia” of Catanzaro, Catanzaro, Italy
| | - Saverio Nucera
- IRC-FSH Department of Health Sciences, University “Magna Græcia” of Catanzaro, Catanzaro, Italy
| | - Miriam Scicchitano
- IRC-FSH Department of Health Sciences, University “Magna Græcia” of Catanzaro, Catanzaro, Italy
| | - Francesca Oppedisano
- IRC-FSH Department of Health Sciences, University “Magna Græcia” of Catanzaro, Catanzaro, Italy
| | - Francesca Bosco
- IRC-FSH Department of Health Sciences, University “Magna Græcia” of Catanzaro, Catanzaro, Italy
| | - Stefano Ruga
- IRC-FSH Department of Health Sciences, University “Magna Græcia” of Catanzaro, Catanzaro, Italy
| | - Maria Caterina Zito
- IRC-FSH Department of Health Sciences, University “Magna Græcia” of Catanzaro, Catanzaro, Italy
| | - Roberta Macri
- IRC-FSH Department of Health Sciences, University “Magna Græcia” of Catanzaro, Catanzaro, Italy
| | - Ernesto Palma
- IRC-FSH Department of Health Sciences, University “Magna Græcia” of Catanzaro, Catanzaro, Italy
| | - Carolina Muscoli
- IRC-FSH Department of Health Sciences, University “Magna Græcia” of Catanzaro, Catanzaro, Italy
- IRCCS San Raffaele, Rome, Italy
| | - Vincenzo Mollace
- IRC-FSH Department of Health Sciences, University “Magna Græcia” of Catanzaro, Catanzaro, Italy
- IRCCS San Raffaele, Rome, Italy
| |
Collapse
|
47
|
Immunoregulatory Effects of Tolerogenic Probiotics in Multiple Sclerosis. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2021; 1286:87-105. [PMID: 33725347 DOI: 10.1007/978-3-030-55035-6_6] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Gut microbiota has essential roles in the prevention and progression of multiple sclerosis (MS). The association between the gut microbiota and the central nervous system (CNS) or immune system response of MS patients has been documented in many studies. The composition of the gut microbiota could lead to sensitization or resistance against promotion and development of MS disease. Probiotics are the major part of gut microflorapopulation and could be substituted with tolerogenic probiotics that protect the CNS against autoimmune responses. Tolerogenic probiotics with anti-inflammatory and immuno-modulatory properties have effects on intestinal flora and can reestablish regulatory mucosal and systemic immune responses. Probiotics are able to prevent and restore excessive activation of inflammatory responses, especially autoreactive T cells and inflammatory cytokines. Tolerogenic probiotics, through induction of regulatory T cells and increase of anti-inflammatory cytokines, play a crucial role in controlling inflammation and maintaining tolerance and hemostasis. Therefore, probiotics can be considered as a preventive or therapeutic tool in MS. In the present review, we focus on the immunoregulatory effects of tolerogenic probiotics on the severity of disease, as well as Th1, Th2, and Treg populations in different experimental and human studies of MS.
Collapse
|
48
|
Chen H, Shen L, Liu Y, Ma X, Long L, Ma X, Ma L, Chen Z, Lin X, Si L, Chen X. Strength Exercise Confers Protection in Central Nervous System Autoimmunity by Altering the Gut Microbiota. Front Immunol 2021; 12:628629. [PMID: 33796102 PMCID: PMC8007788 DOI: 10.3389/fimmu.2021.628629] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2020] [Accepted: 01/29/2021] [Indexed: 12/11/2022] Open
Abstract
Exercise therapy including endurance training and resistance training is a promising non-pharmacological therapy in patients with multiple sclerosis (MS). Recent studies have revealed that exercise exerts beneficial impacts on gut microbiota. However, the role of gut microbiota in the immune benefits of strength exercise (SE; one of resistance training) in central nervous system (CNS) autoimmunity is barely known. Here, we observed that 60-min SE ameliorated disease severity and neuropathology in experimental autoimmune encephalomyelitis (EAE), an animal model of MS. SE increased the abundance and diversity of the gut microbiota, and decreased Firmicutes/Bacteroidetes ratio (F/B ratio) and intestinal mucosal permeability, and enrichment of several short-chain fatty acid (SCFA)-producing bacteria. Furthermore, SE reduced Th17 responses and increased Treg responses in the small intestine lymphoid tissues. Compared to the control group, microbiota-depleted mice receiving SE microbiome fecal transplants had lower disease severity and neuropathology scores. These results uncovered a protective role of SE in neuroimmunomodulation effects partly via changes to the gut microbiome.
Collapse
MESH Headings
- Animals
- Autoimmunity
- Bacteria/immunology
- Bacteria/metabolism
- Central Nervous System/immunology
- Dysbiosis
- Encephalomyelitis, Autoimmune, Experimental/immunology
- Encephalomyelitis, Autoimmune, Experimental/microbiology
- Encephalomyelitis, Autoimmune, Experimental/prevention & control
- Fecal Microbiota Transplantation
- Feces/microbiology
- Female
- Gastrointestinal Microbiome
- Intestine, Small/immunology
- Intestine, Small/microbiology
- Mice, Inbred C57BL
- Neuroimmunomodulation
- Physical Conditioning, Animal
- Resistance Training
- T-Lymphocytes, Regulatory/immunology
- Th17 Cells/immunology
- Mice
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | | | - Xiaohong Chen
- Department of Neurology and Multiple Sclerosis Research Center, The Third Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| |
Collapse
|
49
|
Interleukin 17A: Key Player in the Pathogenesis of Hypertension and a Potential Therapeutic Target. Curr Hypertens Rep 2021; 23:13. [PMID: 33666761 DOI: 10.1007/s11906-021-01128-7] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/26/2021] [Indexed: 02/07/2023]
Abstract
PURPOSE OF REVIEW To summarize key advances in our understanding of the role of interleukin 17A (IL-17A) in the pathogenesis of hypertension and highlight important areas for future research and clinical translation. RECENT FINDINGS While T helper 17 (Th17) cells are major producers of IL-17A, there are several additional innate and adaptive immune cell sources including gamma-delta T cells, innate lymphoid cells, and natural killer cells. IL-17A promotes an increase in blood pressure through multiple mechanisms including inhibiting endothelial nitric oxide production, increasing reactive oxygen species formation, promoting vascular fibrosis, and enhancing renal sodium retention and glomerular injury. IL-17A production from Th17 cells is increased by high salt conditions in vitro and in vivo. There is also emerging data linking salt, the gut microbiome, and intestinal T cell IL-17A production. Novel therapeutics targeting IL-17A signaling are approved for the treatment of autoimmune diseases and show promise in both animal models of hypertension and human studies. Hypertensive stimuli enhance IL-17A production. IL-17A is a key mediator of renal and vascular dysfunction in hypertensive mouse models and correlates with hypertension in humans. Large randomized clinical trials are needed to determine whether targeting IL-17A might be an effective adjunct treatment for hypertension and its associated end-organ dysfunction.
Collapse
|
50
|
Chu F, Shi M, Lang Y, Chao Z, Jin T, Cui L, Zhu J. Adoptive transfer of immunomodulatory M2 macrophages suppresses experimental autoimmune encephalomyelitis in C57BL/6 mice via blockading NF-κB pathway. Clin Exp Immunol 2021; 204:199-211. [PMID: 33426702 DOI: 10.1111/cei.13572] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2020] [Revised: 12/17/2020] [Accepted: 12/21/2020] [Indexed: 12/16/2022] Open
Abstract
Macrophages play important roles in multiple sclerosis (MS) and experimental autoimmune encephalomyelitis (EAE), and M2 macrophage may have anti-inflammatory effects. In this study, we elucidated the roles of M1 and M2 macrophages in the pathogenesis of EAE and the effects of treatment with M2 macrophages that target certain proinflammatory cytokines and with immunomodulatory preparations that beneficially influence the disease course. We found macrophages increased at the onset of clinical signs in the EAE group, consistent with an increased proportion of M1 macrophages and low numbers of M2 macrophages. As the disease progressed and the symptoms worsened, M1 macrophages decreased and M2 macrophages gradually increased until the peak. In the recovery stage, M2 macrophages gradually decreased. Treatment with M2 macrophages inhibited the nuclear factor kappa B (NF-κB) pathway, alleviated the symptoms of EAE, reduced inflammatory cell infiltration and demyelination in the central nervous system and decreased the numbers of macrophages in the spleens. BAY-11-7082, an NF-κB blocking agent, could reduce the total number of macrophages both in vivo and in vitro, effectively prevented EAE development and significantly inhibited EAE symptoms in mice. Our study demonstrates that macrophages may play a crucial role in the pathogenesis of EAE, while M2 macrophages have anti-inflammatory effects. Transfer of M2 macrophages to EAE mice can block the NF-κB pathway successfully and relieve EAE symptoms. Application of NF-κB blockers is useful in the prevention and treatment of EAE.
Collapse
Affiliation(s)
- F Chu
- Department of Neurology and Neuroscience Center, The First Hospital of Jilin University, Changchun, Jilin Province, China.,Division of Neurogeriatrics, Department of Neurobiology, Care Sciences and Society, Karolinska Institutet, Karolinska University Hospital Solna, Stockholm, Sweden
| | - M Shi
- Department of Neurology and Neuroscience Center, The First Hospital of Jilin University, Changchun, Jilin Province, China.,Division of Neurogeriatrics, Department of Neurobiology, Care Sciences and Society, Karolinska Institutet, Karolinska University Hospital Solna, Stockholm, Sweden
| | - Y Lang
- Department of Neurology and Neuroscience Center, The First Hospital of Jilin University, Changchun, Jilin Province, China
| | - Z Chao
- Department of Neurology and Neuroscience Center, The First Hospital of Jilin University, Changchun, Jilin Province, China
| | - T Jin
- Department of Neurology and Neuroscience Center, The First Hospital of Jilin University, Changchun, Jilin Province, China
| | - L Cui
- Department of Neurology and Neuroscience Center, The First Hospital of Jilin University, Changchun, Jilin Province, China
| | - J Zhu
- Department of Neurology and Neuroscience Center, The First Hospital of Jilin University, Changchun, Jilin Province, China.,Division of Neurogeriatrics, Department of Neurobiology, Care Sciences and Society, Karolinska Institutet, Karolinska University Hospital Solna, Stockholm, Sweden
| |
Collapse
|