1
|
Li Y, Liu L. UKLF/PCBP2 axis governs the colorectal cancer development by transcriptionally activating SLC39A4. BIOCHIMICA ET BIOPHYSICA ACTA. MOLECULAR CELL RESEARCH 2024; 1871:119755. [PMID: 38768927 DOI: 10.1016/j.bbamcr.2024.119755] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Revised: 04/27/2024] [Accepted: 05/07/2024] [Indexed: 05/22/2024]
Abstract
Colorectal cancer (CRC) is one of the most prevalent malignant tumors with limited treatment options. Therefore, there is an urgent need to investigate new therapeutic targets against CRC. Ubiquitous Kruppel-like factor (UKLF) is involved in various cancer processes, but its effect and detailed molecular mechanism in CRC are not yet fully understood. Here, this study aimed to investigate the function and mechanism of UKLF in the development of CRC. The results showed that UKLF was highly expressed in CRC tissues from clinical patients and its high expression was related to poor prognosis. UKLF promoted cell proliferation, migration and invasion, and inhibited cell apoptosis. The promotion effect of UKLF on tumor growth was further confirmed in vivo. As far as the mechanism was concerned, poly (C) binding protein 2 (PCBP2) was verified to bind to the 3'-UTR of UKLF mRNA and enhance its mRNA stability. Moreover, UKLF modulated the expression of solute carrier family 39 member 4 (SLC39A4) at the transcriptional level. Taken together, these findings elucidated the regulatory mechanism of UKLF and uncovered the importance of the PCBP2/UKLF/SLC39A4 pathway. The targeting of UKLF may be a novel direction for molecular-targeted CRC therapy.
Collapse
Affiliation(s)
- Yunze Li
- Department of General Surgery, Shengjing Hospital of China Medical University, 36 Sanhao Street, Shenyang 110004, China
| | - Lina Liu
- Department of General Surgery, Shengjing Hospital of China Medical University, 36 Sanhao Street, Shenyang 110004, China.
| |
Collapse
|
2
|
Zhang W, Liu M, Wu D, Hao Y, Cong B, Wang L, Wang Y, Gao M, Xu Y, Wu Y. PSO/SDF-1 composite hydrogel promotes osteogenic differentiation of PDLSCs and bone regeneration in periodontitis rats. Heliyon 2024; 10:e32686. [PMID: 38961957 PMCID: PMC11220005 DOI: 10.1016/j.heliyon.2024.e32686] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2024] [Revised: 06/05/2024] [Accepted: 06/06/2024] [Indexed: 07/05/2024] Open
Abstract
Periodontitis is an inflammatory disease characterized by the destruction of periodontal tissues, and the promotion of bone tissue regeneration is the key to curing periodontitis. Psoralen is the main component of Psoralea corylifolia Linn, and has multiple biological effects, including anti-osteoporosis and osteogenesis. We constructed a novel hydrogel loaded with psoralen (PSO) and stromal cell-derived factor-1 (SDF-1) for direct endogenous cell homing. This study aimed to evaluate the synergistic effects of PSO/SDF-1 on periodontal bone regeneration in patients with periodontitis. The results of CCK8, alkaline phosphatase (ALP) activity assay, and Alizarin Red staining showed that PSO/SDF-1 combination treatment promoted cell proliferation, chemotaxis ability, and ALP activity of PDLSCs. qRT-PCR and western blotting showed that the expression levels of alkaline phosphatase (ALP), dwarf-associated transcription factor 2 (RUNX2), and osteocalcin (OCN) gene were upregulated. Rat periodontal models were established to observe the effect of local application of the composite hydrogel on bone regeneration. These results proved that the PSO/SDF-1 combination treatment significantly promoted new bone formation. The immunohistochemical (IHC) results confirmed the elevated expression of ALP, RUNX2, and OCN osteogenic genes. PSO/SDF-1 composite hydrogel can synergistically regulate the biological function and promote periodontal bone formation. Thus, this study provides a novel strategy for periodontal bone regeneration.
Collapse
Affiliation(s)
- Wei Zhang
- School of Stomatology, Shandong Second Medical University, Weifang, 261053, China
| | - Minghong Liu
- Qingdao Stomatological Hospital Affiliated to Qingdao University, Qingdao, 266001, China
| | - Di Wu
- Qingdao Stomatological Hospital Affiliated to Qingdao University, Qingdao, 266001, China
| | - Yuanping Hao
- Qingdao Stomatological Hospital Affiliated to Qingdao University, Qingdao, 266001, China
| | - Beibei Cong
- Qingdao Stomatological Hospital Affiliated to Qingdao University, Qingdao, 266001, China
| | - Lihui Wang
- School of Stomatology, Shandong Second Medical University, Weifang, 261053, China
| | - Yujia Wang
- School of Stomatology, Shandong Second Medical University, Weifang, 261053, China
| | - Meihua Gao
- Qingdao Stomatological Hospital Affiliated to Qingdao University, Qingdao, 266001, China
| | - Yingjie Xu
- Qingdao Stomatological Hospital Affiliated to Qingdao University, Qingdao, 266001, China
| | - Yingtao Wu
- Qingdao Stomatological Hospital Affiliated to Qingdao University, Qingdao, 266001, China
| |
Collapse
|
3
|
Shen K, Xia W, Wang K, Li J, Xu W, Liu H, Yang K, Zhu J, Wang J, Xi Q, Shi T, Li R. ITGBL1 promotes anoikis resistance and metastasis in human gastric cancer via the AKT/FBLN2 axis. J Cell Mol Med 2024; 28:e18113. [PMID: 38332530 PMCID: PMC10853594 DOI: 10.1111/jcmm.18113] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2023] [Revised: 12/22/2023] [Accepted: 12/27/2023] [Indexed: 02/10/2024] Open
Abstract
The resistance to anoikis plays a critical role in the metastatic progression of various types of malignancies, including gastric cancer (GC). Nevertheless, the precise mechanism behind anoikis resistance is not fully understood. Here, our primary focus was to examine the function and underlying molecular mechanism of Integrin beta-like 1 (ITGBL1) in the modulation of anoikis resistance and metastasis in GC. The findings of our investigation have demonstrated that the overexpression of ITGBL1 significantly augmented the resistance of GC cells to anoikis and promoted their metastatic potential, while knockdown of ITGBL1 had a suppressive effect on both cellular processes in vitro and in vivo. Mechanistically, we proved that ITGBL1 has a role in enhancing the resistance of GC cells to anoikis and promoting metastasis through the AKT/Fibulin-2 (FBLN2) axis. The inhibition of AKT/FBLN2 signalling was able to reverse the impact of ITGBL1 on the resistance of GC cells to anoikis and their metastatic capability. Moreover, the expression levels of ITGBL1 were found to be significantly elevated in the cancerous tissues of patients diagnosed with GC, and there was a strong correlation observed between high expression levels of ITGBL1 and worse prognosis among individuals diagnosed with GC. Significantly, it was revealed that within our cohort of GC patients, individuals exhibiting elevated ITGBL1 expression and diminished FBLN2 expression experienced the worst prognosis. In conclusion, the findings of our study indicate that ITGBL1 may serve as a possible modulator of resistance to anoikis and the metastatic process in GC.
Collapse
Affiliation(s)
- Kanger Shen
- Jiangsu Institute of Clinical Immunology, The First Affiliated Hospital of Soochow UniversitySuzhouChina
- Jiangsu Key Laboratory of Clinical ImmunologySoochow UniversitySuzhouChina
- Department of GastroenterologyThe First Affiliated Hospital of Soochow UniversitySuzhouChina
| | - Wei Xia
- Department of GastroenterologyThe First Affiliated Hospital of Soochow UniversitySuzhouChina
| | - Kun Wang
- Jiangsu Institute of Clinical Immunology, The First Affiliated Hospital of Soochow UniversitySuzhouChina
| | - Juntao Li
- Jiangsu Institute of Clinical Immunology, The First Affiliated Hospital of Soochow UniversitySuzhouChina
- Department of GastroenterologyThe First Affiliated Hospital of Soochow UniversitySuzhouChina
| | - Wei Xu
- Department of GastroenterologyThe First Affiliated Hospital of Soochow UniversitySuzhouChina
| | - Haoran Liu
- Department of GastroenterologyThe First Affiliated Hospital of Soochow UniversitySuzhouChina
| | - Kexi Yang
- Jiangsu Institute of Clinical Immunology, The First Affiliated Hospital of Soochow UniversitySuzhouChina
- Department of GastroenterologyThe First Affiliated Hospital of Soochow UniversitySuzhouChina
| | - Jinghan Zhu
- Jiangsu Institute of Clinical Immunology, The First Affiliated Hospital of Soochow UniversitySuzhouChina
- Jiangsu Key Laboratory of Clinical ImmunologySoochow UniversitySuzhouChina
- Department of GastroenterologyThe First Affiliated Hospital of Soochow UniversitySuzhouChina
| | - Jiayu Wang
- Jiangsu Institute of Clinical Immunology, The First Affiliated Hospital of Soochow UniversitySuzhouChina
| | - Qinhua Xi
- Department of GastroenterologyThe First Affiliated Hospital of Soochow UniversitySuzhouChina
| | - Tongguo Shi
- Jiangsu Institute of Clinical Immunology, The First Affiliated Hospital of Soochow UniversitySuzhouChina
| | - Rui Li
- Jiangsu Key Laboratory of Clinical ImmunologySoochow UniversitySuzhouChina
- Department of GastroenterologyThe First Affiliated Hospital of Soochow UniversitySuzhouChina
| |
Collapse
|
4
|
Yang Z, Wu Y, Neo SH, Yang D, Jeon H, Tee CA, Denslin V, Lin DJ, Lee EH, Boyer LA, Han J. Size-Based Microfluidic-Enriched Mesenchymal Stem Cell Subpopulations Enhance Articular Cartilage Repair. Am J Sports Med 2024; 52:503-515. [PMID: 38186352 DOI: 10.1177/03635465231214431] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/09/2024]
Abstract
BACKGROUND The functional heterogeneity of culture-expanded mesenchymal stem cells (MSCs) has hindered the clinical application of MSCs. Previous studies have shown that MSC subpopulations with superior chondrogenic capacity can be isolated using a spiral microfluidic device based on the principle of inertial cell focusing. HYPOTHESIS The delivery of microfluidic-enriched chondrogenic MSCs that are consistent in size and function will overcome the challenge of the functional heterogeneity of expanded MSCs and will significantly improve MSC-based cartilage repair. STUDY DESIGN Controlled laboratory study. METHODS A next-generation, fully automated multidimensional double spiral microfluidic device was designed to provide more refined and efficient isolation of MSC subpopulations based on size. Analysis of in vitro chondrogenic potential and RNA sequencing was performed on size-sorted MSC subpopulations. In vivo cartilage repair efficacy was demonstrated in an osteochondral injury model in 12-week-old rats. Defects were implanted with MSC subpopulations (n = 6 per group) and compared with those implanted with unsegregated MSCs (n = 6). Osteochondral repair was assessed at 6 and 12 weeks after surgery by histological, micro-computed tomography, and mechanical analysis. RESULTS A chondrogenic MSC subpopulation was efficiently isolated using the multidimensional double spiral device. RNA sequencing revealed distinct transcriptomic profiles and identified differential gene expression between subpopulations. The delivery of a chondrogenic MSC subpopulation resulted in improved cartilage repair, as indicated by histological scoring, the compression modulus, and micro-computed tomography of the subchondral bone. CONCLUSION We have established a rapid, label-free, and reliable microfluidic protocol for more efficient size-based enrichment of a chondrogenic MSC subpopulation. Our proof-of-concept in vivo study demonstrates the enhanced cartilage repair efficacy of these enriched chondrogenic MSCs. CLINICAL RELEVANCE The delivery of microfluidic-enriched chondrogenic MSCs that are consistent in size and function can overcome the challenge of the functional heterogeneity of expanded MSCs, resulting in significant improvement in MSC-based cartilage repair. The availability of such rapid, label-free enriched chondrogenic MSCs can enable better cell therapy products for cartilage repair with improved treatment outcomes.
Collapse
Affiliation(s)
- Zheng Yang
- Critical Analytics for Manufacturing Personalized-Medicine Interdisciplinary Research Group, Singapore-MIT Alliance for Research and Technology, Singapore, Singapore
- Department of Orthopaedic Surgery, National University of Singapore, Singapore, Singapore
- NUS Tissue Engineering Program, Life Sciences Institute, National University of Singapore, Singapore, Singapore
| | - Yingnan Wu
- Department of Orthopaedic Surgery, National University of Singapore, Singapore, Singapore
- NUS Tissue Engineering Program, Life Sciences Institute, National University of Singapore, Singapore, Singapore
| | - Shu Hui Neo
- Critical Analytics for Manufacturing Personalized-Medicine Interdisciplinary Research Group, Singapore-MIT Alliance for Research and Technology, Singapore, Singapore
| | - Dahou Yang
- Critical Analytics for Manufacturing Personalized-Medicine Interdisciplinary Research Group, Singapore-MIT Alliance for Research and Technology, Singapore, Singapore
| | - Hyungkook Jeon
- Department of Manufacturing Systems and Design Engineering, Seoul National University of Science and Technology, Seoul, Republic of Korea
- Research Laboratory of Electronics, Massachusetts Institute of Technology, Cambridge, Massachusetts, USA
| | - Ching Ann Tee
- Critical Analytics for Manufacturing Personalized-Medicine Interdisciplinary Research Group, Singapore-MIT Alliance for Research and Technology, Singapore, Singapore
| | - Vinitha Denslin
- NUS Tissue Engineering Program, Life Sciences Institute, National University of Singapore, Singapore, Singapore
| | - Daryl Jimian Lin
- Department of Orthopaedic Surgery, National University of Singapore, Singapore, Singapore
- NUS Tissue Engineering Program, Life Sciences Institute, National University of Singapore, Singapore, Singapore
| | - Eng Hin Lee
- Critical Analytics for Manufacturing Personalized-Medicine Interdisciplinary Research Group, Singapore-MIT Alliance for Research and Technology, Singapore, Singapore
- Department of Orthopaedic Surgery, National University of Singapore, Singapore, Singapore
- NUS Tissue Engineering Program, Life Sciences Institute, National University of Singapore, Singapore, Singapore
| | - Laurie A Boyer
- Critical Analytics for Manufacturing Personalized-Medicine Interdisciplinary Research Group, Singapore-MIT Alliance for Research and Technology, Singapore, Singapore
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts, USA
- Department of Biology, Massachusetts Institute of Technology, Cambridge, Massachusetts, USA
| | - Jongyoon Han
- Critical Analytics for Manufacturing Personalized-Medicine Interdisciplinary Research Group, Singapore-MIT Alliance for Research and Technology, Singapore, Singapore
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts, USA
- Department of Electrical Engineering and Computer Science, Massachusetts Institute of Technology, Cambridge, Massachusetts, USA
| |
Collapse
|
5
|
Xu D, Tang M. Advances in the study of biomarkers related to bone metastasis in breast cancer. Br J Radiol 2023; 96:20230117. [PMID: 37393528 PMCID: PMC10546430 DOI: 10.1259/bjr.20230117] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2023] [Revised: 05/05/2023] [Accepted: 06/08/2023] [Indexed: 07/03/2023] Open
Abstract
Breast cancer is by far the most common malignancy in females. And bone is the most common site of distant metastasis in breast cancer, accounting for about 65 to 75% of all metastatic breast cancer patients.1,2Bone metastasis is an important factor affecting the prognosis of breast cancer. When patients have early-stage breast cancer without metastasis, their 5-year survival rate is as high as 90%, and once metastasis occurs, their 5-year survival rate will drop to 10%.3 Bone radionuclide imaging (ECT), X-ray, CT scan, MRI and other imaging tests to diagnose breast cancer bone metastasis are commonly used in clinical, It is currently believed that breast cancer bone metastasis is a multistep process: first, breast cancer cells need to acquire invasive and metastatic properties; breast cancer cells enter the blood circulation and migrate from blood breast cancer cells enter the blood circulation and migrate from blood vessels to bone tissue in a targeted manner; breast cancer cells adhere and remain in bone tissue and colonise it; and finally, it leads to bone destruction.4 Several key molecules are involved in breast cancer bone metastasis, and serum biomarkers are generally able to detect pathological changes earlier Several key molecules are involved in breast cancer bone metastasis, and serum biomarkers are generally able to detect pathological changes earlier than imaging.5 This review describes the progress of serum biomarkers for breast cancer bone metastasis.
Collapse
|
6
|
Krajnović M, Kožik B, Božović A, Jovanović-Ćupić S. Multiple Roles of the RUNX Gene Family in Hepatocellular Carcinoma and Their Potential Clinical Implications. Cells 2023; 12:2303. [PMID: 37759525 PMCID: PMC10527445 DOI: 10.3390/cells12182303] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2023] [Revised: 09/07/2023] [Accepted: 09/08/2023] [Indexed: 09/29/2023] Open
Abstract
Hepatocellular carcinoma (HCC) is one of the most frequent cancers in humans, characterised by a high resistance to conventional chemotherapy, late diagnosis, and a high mortality rate. It is necessary to elucidate the molecular mechanisms involved in hepatocarcinogenesis to improve diagnosis and treatment outcomes. The Runt-related (RUNX) family of transcription factors (RUNX1, RUNX2, and RUNX3) participates in cardinal biological processes and plays paramount roles in the pathogenesis of numerous human malignancies. Their role is often controversial as they can act as oncogenes or tumour suppressors and depends on cellular context. Evidence shows that deregulated RUNX genes may be involved in hepatocarcinogenesis from the earliest to the latest stages. In this review, we summarise the topical evidence on the roles of RUNX gene family members in HCC. We discuss their possible application as non-invasive molecular markers for early diagnosis, prognosis, and development of novel treatment strategies in HCC patients.
Collapse
Affiliation(s)
| | - Bojana Kožik
- Laboratory for Radiobiology and Molecular Genetics, Vinča Institute of Nuclear Sciences, National Institute of the Republic of Serbia, University of Belgrade, Mike Petrovića Alasa 12-14, Vinča, 11351 Belgrade, Serbia; (M.K.); (A.B.); (S.J.-Ć.)
| | | | | |
Collapse
|
7
|
Berg T, Doppelt-Flikshtain O, Coyac BR, Zigdon-Giladi H. Oral fibroblasts rescue osteogenic differentiation of mesenchymal stem cells after exposure to Zoledronic acid in a paracrine effect. Front Pharmacol 2023; 14:1172705. [PMID: 37637413 PMCID: PMC10450747 DOI: 10.3389/fphar.2023.1172705] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2023] [Accepted: 08/03/2023] [Indexed: 08/29/2023] Open
Abstract
Background: Medication-related osteonecrosis of the jaw is a serious complication that develops in oncologic patients treated with Zoledronic acid. Although used for over 30 years, the influence of Zoledronic acid on bone has been thoroughly investigated, mainly on osteoclasts. While decreasing osteoclast differentiation and function, for many years it was thought that Zoledronic acid increased osteoblast differentiation, thus increasing bone volume. Moreover, despite the influence of soft tissue on the bone healing process, the impact of zoledronic acid on the interaction between soft tissue and bone was not investigated. Aim: Our goal was to investigate the influence of Zoledronic Acid and soft tissue cells on osteogenic differentiation of mesenchymal stem cells (MSCs). Materials and methods: Osteogenic differentiation of MSCs was examined after exposure to Zoledronic Acid. To determine the influence of soft tissue cells on MSCs' osteogenic differentiation, conditioned media from keratinocytes and oral fibroblasts were added to osteogenic medium supplemented with Zoledronic Acid. Proteomic composition of keratinocytes' and fibroblasts' conditioned media were analyzed. Results: Zoledronic Acid decreased osteogenic differentiation of MSCs by seven-fold. The osteogenic differentiation of MSCs was restored by the supplementation of fibroblasts' conditioned medium to osteogenic medium, despite Zoledronic acid treatment. Five osteogenic proteins involved in the TGFβ pathway were exclusively identified in fibroblasts' conditioned medium, suggesting their role in the rescue effect. Conclusion: Oral fibroblasts secrete proteins that enable osteogenic differentiation of MSCs in the presence of Zoledronic Acid.
Collapse
Affiliation(s)
- Tal Berg
- Laboratory for Bone Repair, Rambam Healthcare Campus, Haifa, Israel
- The Ruth and Bruce Rappaport Faculty of Medicine, Technion-Israel Institute of Technology, Haifa, Israel
| | - Ofri Doppelt-Flikshtain
- Laboratory for Bone Repair, Rambam Healthcare Campus, Haifa, Israel
- The Ruth and Bruce Rappaport Faculty of Medicine, Technion-Israel Institute of Technology, Haifa, Israel
| | - Benjamin R. Coyac
- Laboratory for Bone Repair, Rambam Healthcare Campus, Haifa, Israel
- Department of Periodontology, School of Graduate Dentistry, Rambam Health Care Campus, Haifa, Israel
| | - Hadar Zigdon-Giladi
- Laboratory for Bone Repair, Rambam Healthcare Campus, Haifa, Israel
- The Ruth and Bruce Rappaport Faculty of Medicine, Technion-Israel Institute of Technology, Haifa, Israel
- Department of Periodontology, School of Graduate Dentistry, Rambam Health Care Campus, Haifa, Israel
| |
Collapse
|
8
|
Si W, Kan C, Zhang L, Li F. Role of RUNX2 in breast cancer development and drug resistance (Review). Oncol Lett 2023; 25:176. [PMID: 37033103 PMCID: PMC10079821 DOI: 10.3892/ol.2023.13762] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2022] [Accepted: 03/02/2023] [Indexed: 03/17/2023] Open
Abstract
Breast cancer is the most common malignancy and ranks second among the causes of tumor-associated death in females. The recurrence and drug resistance of breast cancer are intractable due to the presence of breast cancer stem cells (BCSCs), which are adequate to initiate tumor formation and refractory to conventional remedies. Runt-related transcription factor 2 (RUNX2), a pivotal transcription factor in mammary gland and bone development, has also been related to metastatic cancer and BCSCs. State-of-the-art research has indicated the retention of RUNX2 expression in a more invasive subtype of breast cancer, and in particular, triple-negative breast cancer development and drug resistance are associated with estrogen receptor signaling pathways. The present review mainly focused on the latest updates on RUNX2 in BCSCs and their roles in breast cancer progression and drug resistance, providing insight that may aid the development of RUNX2-based diagnostics and treatments for breast cancer in clinical practice.
Collapse
Affiliation(s)
- Wentao Si
- Department of Pathophysiology, School of Basic Medical Sciences, Anhui Medical University, Hefei, Anhui 230032, P.R. China
| | - Chen Kan
- Department of Pathophysiology, School of Basic Medical Sciences, Anhui Medical University, Hefei, Anhui 230032, P.R. China
| | - Leisheng Zhang
- Key Laboratory of Molecular Diagnostics and Precision Medicine for Surgical Oncology in Gansu Province and NHC Key Laboratory of Diagnosis and Therapy of Gastrointestinal Tumor, Gansu Provincial Hospital, Lanzhou, Gansu 730000, P.R. China
- Key Laboratory of Radiation Technology and Biophysics, Hefei Institute of Physical Science, Chinese Academy of Sciences, Hefei, Anhui 230031, P.R. China
| | - Feifei Li
- Department of Pathophysiology, School of Basic Medical Sciences, Anhui Medical University, Hefei, Anhui 230032, P.R. China
| |
Collapse
|
9
|
Huang Y, Wang H, Yue X, Li X. Bone serves as a transfer station for secondary dissemination of breast cancer. Bone Res 2023; 11:21. [PMID: 37085486 PMCID: PMC10121690 DOI: 10.1038/s41413-023-00260-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2022] [Revised: 02/28/2023] [Accepted: 03/22/2023] [Indexed: 04/23/2023] Open
Abstract
Metastasis is responsible for the majority of deaths among breast cancer patients. Although parallel polyclonal seeding has been shown to contribute to organ-specific metastasis, in the past decade, horizontal cross-metastatic seeding (metastasis-to-metastasis spreading) has also been demonstrated as a pattern of distant metastasis to multiple sites. Bone, as the most frequent first destination of breast cancer metastasis, has been demonstrated to facilitate the secondary dissemination of breast cancer cells. In this review, we summarize the clinical and experimental evidence that bone is a transfer station for the secondary dissemination of breast cancer. We also discuss the regulatory mechanisms of the bone microenvironment in secondary seeding of breast cancer, focusing on stemness regulation, quiescence-proliferation equilibrium regulation, epigenetic reprogramming and immune escape of cancer cells. Furthermore, we highlight future research perspectives and strategies for preventing secondary dissemination from bone.
Collapse
Affiliation(s)
- Yufan Huang
- Department of Biochemistry and Molecular Biology, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center of Cancer, Tianjin, 300060, China
- Tianjin's Clinical Research Center for Cancer, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center of Cancer, Tianjin, 300060, China
- Key Laboratory of Breast Cancer Prevention and Treatment of the Ministry of Education, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center of Cancer, Tianjin, 300060, China
| | - Hongli Wang
- Department of Biochemistry and Molecular Biology, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center of Cancer, Tianjin, 300060, China
- Tianjin's Clinical Research Center for Cancer, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center of Cancer, Tianjin, 300060, China
- Key Laboratory of Breast Cancer Prevention and Treatment of the Ministry of Education, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center of Cancer, Tianjin, 300060, China
| | - Xiaomin Yue
- Department of Biochemistry and Molecular Biology, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center of Cancer, Tianjin, 300060, China
- Tianjin's Clinical Research Center for Cancer, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center of Cancer, Tianjin, 300060, China
- Key Laboratory of Breast Cancer Prevention and Treatment of the Ministry of Education, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center of Cancer, Tianjin, 300060, China
| | - Xiaoqing Li
- Department of Biochemistry and Molecular Biology, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center of Cancer, Tianjin, 300060, China.
- Tianjin's Clinical Research Center for Cancer, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center of Cancer, Tianjin, 300060, China.
- Key Laboratory of Breast Cancer Prevention and Treatment of the Ministry of Education, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center of Cancer, Tianjin, 300060, China.
| |
Collapse
|
10
|
Mao L, Wang L, Xu J, Zou J. The role of integrin family in bone metabolism and tumor bone metastasis. Cell Death Discov 2023; 9:119. [PMID: 37037822 PMCID: PMC10086008 DOI: 10.1038/s41420-023-01417-x] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2023] [Revised: 03/21/2023] [Accepted: 03/24/2023] [Indexed: 04/12/2023] Open
Abstract
Integrins have been the research focus of cell-extracellular matrix adhesion (ECM) and cytokine receptor signal transduction. They are involved in the regulation of bone metabolism of bone precursor cells, mesenchymal stem cells (MSCs), osteoblasts (OBs), osteoclasts (OCs), and osteocytes. Recent studies expanded and updated the role of integrin in bone metabolism, and a large number of novel cytokines were found to activate bone metabolism pathways through interaction with integrin receptors. Integrins act as transducers that mediate the regulation of bone-related cells by mechanical stress, fluid shear stress (FSS), microgravity, hypergravity, extracellular pressure, and a variety of physical factors. Integrins mediate bone metastasis of breast, prostate, and lung cancer by promoting cancer cell adhesion, migration, and survival. Integrin-mediated targeted therapy showed promising prospects in bone metabolic diseases. This review emphasizes the latest research results of integrins in bone metabolism and bone metastasis and provides a vision for treatment strategies.
Collapse
Affiliation(s)
- Liwei Mao
- School of Kinesiology, Shanghai University of Sport, 200438, Shanghai, China
| | - Lian Wang
- School of Kinesiology, Shanghai University of Sport, 200438, Shanghai, China
| | - Jiake Xu
- School of Biomedical Sciences, The University of Western Australia, WA, 6009, Perth, Australia
| | - Jun Zou
- School of Kinesiology, Shanghai University of Sport, 200438, Shanghai, China.
| |
Collapse
|
11
|
Huang B, Liu H, Chan S, Liu J, Gu J, Chen M, Kuang L, Li X, Zhang X, Li J. RUNX2 promotes the suppression of osteoblast function and enhancement of osteoclast activity by multiple myeloma cells. Med Oncol 2023; 40:115. [PMID: 36897488 PMCID: PMC10006269 DOI: 10.1007/s12032-023-01960-8] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2022] [Accepted: 01/27/2023] [Indexed: 03/11/2023]
Abstract
RUNX2 is a transcription factor that participates in osteoblast differentiation and chondrocyte maturation and plays an important role in the invasion and metastasis of cancers. With the deepening of research, evidence has indicated the correlation between RUNX2 and bone destruction in cancers. However, the mechanisms underlying its role in multiple myeloma remain unclear. By observing the induction effects of conditioned medium from myeloma cells on preosteoblasts (MC3T3-E1) and preosteoclasts (RAW264.7) and constructing myeloma-bearing mice, we found that RUNX2 promotes bone destruction in multiple myeloma. In vitro, conditioned medium from RUNX2-overexpressing myeloma cells reduced osteoblast activity and increased osteoclast activity. In vivo, RUNX2 expression was positively correlated with bone loss in myeloma-bearing mice. These results suggest that therapeutic inhibition of RUNX2 may protect against bone destruction by maintaining the balance between osteoblast and osteoclast activity in multiple myeloma.
Collapse
Affiliation(s)
- Beihui Huang
- Department of Hematopathology, The First Affiliated Hospital, Sun Yat-Sen University, No. 58, Zhongshan 2Nd Road, Guangzhou, 510080, China
| | - Huixin Liu
- Department of Hematopathology, The First Affiliated Hospital, Sun Yat-Sen University, No. 58, Zhongshan 2Nd Road, Guangzhou, 510080, China
| | - Szehoi Chan
- Department of Pharmacology, School of Medicine, Molecular Cancer Research Center, Sun Yat-Sen University, No.66, Gongchang Road, Shenzhen, 518107, China
| | - Junru Liu
- Department of Hematopathology, The First Affiliated Hospital, Sun Yat-Sen University, No. 58, Zhongshan 2Nd Road, Guangzhou, 510080, China
| | - Jingli Gu
- Department of Hematopathology, The First Affiliated Hospital, Sun Yat-Sen University, No. 58, Zhongshan 2Nd Road, Guangzhou, 510080, China
| | - Meilan Chen
- Department of Hematopathology, The First Affiliated Hospital, Sun Yat-Sen University, No. 58, Zhongshan 2Nd Road, Guangzhou, 510080, China
| | - Lifen Kuang
- Department of Hematopathology, The First Affiliated Hospital, Sun Yat-Sen University, No. 58, Zhongshan 2Nd Road, Guangzhou, 510080, China
| | - Xiaozhe Li
- Department of Hematopathology, The First Affiliated Hospital, Sun Yat-Sen University, No. 58, Zhongshan 2Nd Road, Guangzhou, 510080, China
| | - Xingding Zhang
- Department of Pharmacology, School of Medicine, Molecular Cancer Research Center, Sun Yat-Sen University, No.66, Gongchang Road, Shenzhen, 518107, China.
| | - Juan Li
- Department of Hematopathology, The First Affiliated Hospital, Sun Yat-Sen University, No. 58, Zhongshan 2Nd Road, Guangzhou, 510080, China.
| |
Collapse
|
12
|
Sun X, Wang Y, Wang C, Wang Y, Ren Z, Yang X, Yang X, Liu Y. Genome analysis reveals hepatic transcriptional reprogramming changes mediated by enhancers during chick embryonic development. Poult Sci 2023; 102:102516. [PMID: 36764138 PMCID: PMC9929590 DOI: 10.1016/j.psj.2023.102516] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2022] [Revised: 01/15/2023] [Accepted: 01/16/2023] [Indexed: 01/22/2023] Open
Abstract
The liver undergoes a slow process for lipid deposition during chick embryonic period. However, the underlying physiological and molecular mechanisms are still unclear. Therefore, the aim of the current study was to reveal the epigenetic mechanism of hepatic transcriptional reprogramming changes based on the integration analysis of RNA-seq and H3K27ac labeled CUT&Tag. Results showed that lipid contents increased gradually with the embryonic age (E) 11, E15, and E19 based on morphological analysis of Hematoxylin-eosin and Oil Red O staining as well as total triglyceride and cholesterol detection. The hepatic protein level of SREBP-1c was higher in E19 when compared with that in E11 and E15, while H3K27ac and H3K4me2 levels declined from E11 to E19. Differential expression genes (DEGs) among these 3 embryonic ages were determined by transcriptome analysis. A total of 107 and 46 genes were gradually upregulated and downregulated respectively with the embryonic age. Meanwhile, differential H3K27ac occupancy in chromatin was investigated. But the integration analysis of RNA-seq and CUT&Tag data showed that the overlap genes were less between DEGs and target genes of differential peaks in the promoter regions. Further, some KEGG pathways enriched from target genes of typical enhancer were overlapped with those from DEGs in transcriptome analysis such as insulin, FoxO, MAPK signaling pathways which were related to lipid metabolism. DNA motif analysis identify 8 and 10 transcription factors (TFs) based on up and down differential peaks individually among E11, E15, and E19 stages where 7 TFs were overlapped including COUP-TFII, FOXM1, FOXA1, HNF4A, RXR, ERRA, FOXA2. These results indicated that H3K27ac histone modification is involved in the transcriptional reprogramming regulation during embryonic development, which could recruit TFs binding to mediate differential enhancer activation. Differential activated enhancer impels dynamic transcriptional reprogramming towards lipid metabolism to promote the occurrence of special phenotype of hepatic lipid deposition.
Collapse
Affiliation(s)
- Xi Sun
- College of Animal Science and Technology, Northwest A&F University, Yangling 712100, China
| | - Yumeng Wang
- College of Animal Science and Technology, Northwest A&F University, Yangling 712100, China
| | - Chaohui Wang
- College of Animal Science and Technology, Northwest A&F University, Yangling 712100, China
| | - Yibin Wang
- College of Animal Science and Technology, Northwest A&F University, Yangling 712100, China
| | - Zhouzheng Ren
- College of Animal Science and Technology, Northwest A&F University, Yangling 712100, China
| | - Xin Yang
- College of Animal Science and Technology, Northwest A&F University, Yangling 712100, China
| | - Xiaojun Yang
- College of Animal Science and Technology, Northwest A&F University, Yangling 712100, China
| | - Yanli Liu
- College of Animal Science and Technology, Northwest A&F University, Yangling 712100, China.
| |
Collapse
|
13
|
Zhu H, Ji H, Chen W, Han L, Yu L. Integrin subunit β-like 1 mediates angiotensin II-induced myocardial fibrosis by regulating the forkhead box Q1/Snail axis. Arch Biochem Biophys 2022; 730:109422. [DOI: 10.1016/j.abb.2022.109422] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2022] [Revised: 09/24/2022] [Accepted: 09/26/2022] [Indexed: 11/25/2022]
|
14
|
Jiang A, Pang Q, Gan X, Wang A, Wu Z, Liu B, Luo P, Qu L, Wang L. Definition and verification of novel metastasis and recurrence related signatures of ccRCC: A multicohort study. CANCER INNOVATION 2022; 1:146-167. [PMID: 38090653 PMCID: PMC10686128 DOI: 10.1002/cai2.25] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/30/2022] [Revised: 06/27/2022] [Accepted: 07/14/2022] [Indexed: 10/15/2024]
Abstract
Background Cancer metastasis and recurrence remain major challenges in renal carcinoma patient management. There are limited biomarkers to predict the metastatic probability of renal cancer, especially in the early-stage subgroup. Here, our study applied robust machine-learning algorithms to identify metastatic and recurrence-related signatures across multiple renal cancer cohorts, which reached high accuracy in both training and testing cohorts. Methods Clear cell renal cell carcinoma (ccRCC) patients with primary or metastatic site sequencing information from eight cohorts, including one out-house cohort, were enrolled in this study. Three robust machine-learning algorithms were applied to identify metastatic signatures. Then, two distinct metastatic-related subtypes were identified and verified; matrix remodeling associated 5 (MXRA5), as a promising diagnostic and therapeutic target, was investigated in vivo and in vitro. Results We identified five stable metastasis-related signatures (renin, integrin subunit beta-like 1, MXRA5, mesenchyme homeobox 2, and anoctamin 3) from multicenter cohorts. Additionally, we verified the specificity and sensibility of these signatures in external and out-house cohorts, which displayed a satisfactory consistency. According to these metastatic signatures, patients were grouped into two distinct and heterogeneous ccRCC subtypes named metastatic cancer subtype 1 (MTCS1) and type 2 (MTCS2). MTCS2 exhibited poorer clinical outcomes and metastatic tendencies than MTCS1. In addition, MTCS2 showed higher immune cell infiltration and immune signature expression but a lower response rate to immune blockade therapy than MTCS1. The MTCS2 subgroup was more sensitive to saracatinib, sunitinib, and several molecular targeted drugs. In addition, MTCS2 displayed a higher genome mutation burden and instability. Furthermore, we constructed a prognosis model based on subtype biomarkers, which performed well in training and validation cohorts. Finally, MXRA5, as a promising biomarker, significantly suppressed malignant ability, including the cell migration and proliferation of ccRCC cell lines in vitro and in vivo. Conclusions This study identified five robust metastatic signatures and proposed two metastatic probability clusters with stratified prognoses, multiomics landscapes, and treatment options. The current work not only provided new insight into the heterogeneity of renal cancer but also shed light on optimizing decision-making in immunotherapy and chemotherapy.
Collapse
Affiliation(s)
- Aimin Jiang
- Department of Urology, Changhai HospitalNaval Medical University (Second Military Medical University)ShanghaiChina
| | - Qingyang Pang
- Department of Urology, Changhai HospitalNaval Medical University (Second Military Medical University)ShanghaiChina
| | - Xinxin Gan
- Department of Urology, Changhai HospitalNaval Medical University (Second Military Medical University)ShanghaiChina
| | - Anbang Wang
- Department of Urology, Changzheng HospitalNaval Medical University (Second Military Medical University)ShanghaiChina
| | - Zhenjie Wu
- Department of Urology, Changhai HospitalNaval Medical University (Second Military Medical University)ShanghaiChina
| | - Bing Liu
- Department of Urology, The Third Affiliated HospitalNaval Medical University (Second Military Medical University)ShanghaiChina
| | - Peng Luo
- Department of Oncology, Zhujiang HospitalSouthern Medical UniversityGuangzhouChina
| | - Le Qu
- Department of Urology, Affiliated Jinling HospitalMedical School of Nanjing UniversityNanjingChina
| | - Linhui Wang
- Department of Urology, Changhai HospitalNaval Medical University (Second Military Medical University)ShanghaiChina
| |
Collapse
|
15
|
Zou Q, Zhang M, Yuan R, Wang Y, Gong Z, Shi R, Li Y, Fei K, Luo C, Xiong Y, Zheng T, Zhu L, Tang G, Li M, Li X, Jiang Y. Small extracellular vesicles derived from dermal fibroblasts promote fibroblast activity and skin development through carrying miR-218 and ITGBL1. J Nanobiotechnology 2022; 20:296. [PMID: 35733144 PMCID: PMC9215004 DOI: 10.1186/s12951-022-01499-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2022] [Accepted: 06/07/2022] [Indexed: 11/10/2022] Open
Abstract
Skin thickness is closely related to the appearance of human skin, such as sagging and wrinkling, which primarily depends on the level of collagen I synthesized by dermal fibroblasts (DFs). Small extracellular vesicles (SEVs), especially those derived from human DFs (HDFs), are crucial orchestrators in shaping physiological and pathological development of skin. However, the limited supply of human skin prevents the production of a large amount of HDFs-SEVs, and pig skin is used as a model of human skin. In this study, SEVs derived from DFs of Chenghua pigs (CH-SEVs), considered to have superior skin thickness, and Large White pigs (LW-SEVs) were collected to compare their effects on DFs and skin tissue. Our results showed that, compared with LW-SEVs, CH-SEVs more effectively promoted fibroblast proliferation, migration, collagen synthesis and contraction; in addition, in mouse model injected with both SEVs, compared with LW-SEVs, CH-SEVs increased the skin thickness and collagen I content more effectively. Some differentially expressed miRNAs and proteins were found between CH-SEVs and LW-SEVs by small RNA-seq and LC-MS/MS analysis. Interestingly, we identified that CH-SEVs were enriched in miRNA-218 and ITGBL1 protein, which played important roles in promoting fibroblast activity via activation of the downstream TGFβ1-SMAD2/3 pathway in vitro. Furthermore, overexpression of miRNA-218 and ITGBL1 protein increased the thickness and collagen I content of mouse skin in vivo. These results indicate that CH-SEVs can effectively stimulate fibroblast activity and promote skin development and thus have the potential to protect against and repair skin damage.
Collapse
Affiliation(s)
- Qin Zou
- Department of Zoology, College of Life Science, Sichuan Agricultural University, Ya'an, 625014, Sichuan, China
| | - Mei Zhang
- Department of Zoology, College of Life Science, Sichuan Agricultural University, Ya'an, 625014, Sichuan, China
| | - Rong Yuan
- Chengdu Livestock and Poultry Genetic Resources Protection Center, Chengdu, 610081, Sichuan, China
| | - Yifei Wang
- Department of Zoology, College of Life Science, Sichuan Agricultural University, Ya'an, 625014, Sichuan, China
| | - Zhengyin Gong
- Department of Zoology, College of Life Science, Sichuan Agricultural University, Ya'an, 625014, Sichuan, China
| | - Rui Shi
- Department of Zoology, College of Life Science, Sichuan Agricultural University, Ya'an, 625014, Sichuan, China
| | - Yujing Li
- Department of Zoology, College of Life Science, Sichuan Agricultural University, Ya'an, 625014, Sichuan, China
| | - Kaixin Fei
- Department of Zoology, College of Life Science, Sichuan Agricultural University, Ya'an, 625014, Sichuan, China
| | - Chenggang Luo
- Chengdu Livestock and Poultry Genetic Resources Protection Center, Chengdu, 610081, Sichuan, China
| | - Ying Xiong
- Department of Zoology, College of Life Science, Sichuan Agricultural University, Ya'an, 625014, Sichuan, China
| | - Ting Zheng
- Department of Zoology, College of Life Science, Sichuan Agricultural University, Ya'an, 625014, Sichuan, China
| | - Li Zhu
- Institute of Animal Genetics and Breeding, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, 611130, Sichuan, China
| | - Guoqing Tang
- Institute of Animal Genetics and Breeding, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, 611130, Sichuan, China
| | - Mingzhou Li
- Institute of Animal Genetics and Breeding, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, 611130, Sichuan, China
| | - Xuewei Li
- Institute of Animal Genetics and Breeding, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, 611130, Sichuan, China
| | - Yanzhi Jiang
- Department of Zoology, College of Life Science, Sichuan Agricultural University, Ya'an, 625014, Sichuan, China.
| |
Collapse
|
16
|
Wang Z, Fu L, Zhang J, Ge Y, Guo C, Wang R, Deng M, Wang Q, Wang Z. A comprehensive analysis of potential gastric cancer prognostic biomarker ITGBL1 associated with immune infiltration and epithelial-mesenchymal transition. Biomed Eng Online 2022; 21:30. [PMID: 35596183 PMCID: PMC9123716 DOI: 10.1186/s12938-022-00998-5] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2021] [Accepted: 04/27/2022] [Indexed: 11/17/2022] Open
Abstract
Background Integrin, beta-like 1 (ITGBL1) is involved in a variety of human malignancies. However, the information on the involvement of ITGBL1 in gastric carcinoma (GC) is limited. Hence, this study aimed further to explore the functions and mechanisms of ITGBL1 in GC. Methods First, multiple bioinformatics databases, including Oncomine, Tumor Immune Estimation Resource, UALCAN, and Kaplan–Meier Plotter, were used to predict the expression level and prognostic value of ITGBL1, as well as its association with immune infiltration and epithelial–mesenchymal transition (EMT) in GC. Quantitative reverse transcription–polymerase chain reaction and immunohistochemical analysis were used to detect the expression of ITGBL1 in both GC tissues and cells. Then, targeted silencing of ITGBL1 in GC cells was further used to examine the biological functions of ITGBL1. Results These databases revealed that ITGBL1 was overexpressed and affected the overall survival in GC. Besides, the expression of ITGBL1 positively correlated with immune-infiltrating cells and EMT-related markers. Subsequently, molecular biology experiments verified these predictions. In GC tissues and cells, ITGBL1 was notably overexpressed. Loss-of-function studies showed that the knockdown of ITGBL1 significantly suppressed migration and invasion but promoted apoptosis in MGC803 GC cells. Furthermore, the inhibition of ITGBL1 resulted in remarkably increased protein expression levels of cadherin 1, while the expression of Vimentin, Snail, and transforming growth factor-β1 was downregulated, indicating the initiation and progression of GC caused by ITGBL1 partly via inducing EMT. Conclusions To sum up, the findings indicated that ITGBL1 acted as a valuable oncogenic factor in GC.
Collapse
Affiliation(s)
- Zhe Wang
- Department of Gastroenterology, Tongji Hospital, Tongji University School of Medicine, 389 Xincun Road, Putuo District, Shanghai, 200065, People's Republic of China
| | - Liu Fu
- Department of Gastroenterology, Putuo People's Hospital, Tongji University, Shanghai, 200060, People's Republic of China
| | - Junjie Zhang
- Department of Gastroenterology, Tongji Hospital, Tongji University School of Medicine, 389 Xincun Road, Putuo District, Shanghai, 200065, People's Republic of China
| | - Yanli Ge
- Department of Gastroenterology, Tongji Hospital, Tongji University School of Medicine, 389 Xincun Road, Putuo District, Shanghai, 200065, People's Republic of China
| | - Cheng Guo
- Department of Gastroenterology, Tongji Hospital, Tongji University School of Medicine, 389 Xincun Road, Putuo District, Shanghai, 200065, People's Republic of China
| | - Rui Wang
- Department of Gastroenterology, Tongji Hospital, Tongji University School of Medicine, 389 Xincun Road, Putuo District, Shanghai, 200065, People's Republic of China
| | - Min Deng
- Department of Gastroenterology, The First Affiliated Hospital of Bengbu Medical College, Bengbu, Anhui, 233004, People's Republic of China
| | - Qizhi Wang
- Department of Gastroenterology, The First Affiliated Hospital of Bengbu Medical College, Bengbu, Anhui, 233004, People's Republic of China
| | - Zhirong Wang
- Department of Gastroenterology, Tongji Hospital, Tongji University School of Medicine, 389 Xincun Road, Putuo District, Shanghai, 200065, People's Republic of China.
| |
Collapse
|
17
|
Du T, Zhang K, Zhang Z, Guo A, Yu G, Xu Y. ITGBL1 transcriptionally inhibited by JDP2 promotes the development of pancreatic cancer through the TGF-beta/Smad pathway. Braz J Med Biol Res 2022; 55:e11989. [PMID: 35584452 PMCID: PMC9113530 DOI: 10.1590/1414-431x2022e11989] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2021] [Accepted: 02/23/2022] [Indexed: 12/24/2022] Open
Abstract
Pancreatic cancer (PC) is one of the malignant tumors with the worst prognosis worldwide because of a lack of early diagnostic markers and efficient therapies. Integrin, beta-like 1 (ITGBL1) is a β-integrin-related extracellular matrix protein and is reported to promote progression of some types of cancer. Nevertheless, the function of ITGBL1 in PC is still not clear. Herein, we found that ITGBL1 was highly expressed in PC tissues compared to normal tissues (P<0.05) and PC patients with higher TGBL1 expression showed worse prognosis. PANC-1 and AsPC-1 cells were used for gain/loss-of-function experiments. We found that ITGBL1-silenced cells exhibited decreased proliferation, migration, and invasion abilities and delayed cell cycle, whereas ITGBL1 overexpression reversed these malignant behaviors. ITGBL1 was also demonstrated to activate the TGF-β/Smad pathway, a key signaling pathway in PC progression. Additionally, ITGBL1 expression was found to be suppressed by a suppressor of PC progression, c-Jun dimerization protein 2 (JDP2). Results of dual-luciferase assay indicated that transcription factor JDP2 could inhibit TGBL1 promoter activity. ITGBL1 overexpression inversed the effects of JDP2 up-regulation on cell function. Collectively, we concluded that ITGBL1 may be transcriptionally suppressed by JDP2 and promote PC progression through the TGF-β/Smad pathway, indicating that ITGBL1 may have therapeutic potential for the treatment of PC.
Collapse
Affiliation(s)
- Tiancong Du
- Department of Pancreatic and Biliary Surgery, The First Hospital of China Medical University, Shenyang, Liaoning, China.,Department of Anorectal Surgery, Panjin Central Hospital, Panjin, Liaoning, China
| | - Ke Zhang
- Department of Pancreatic and Biliary Surgery, The First Hospital of China Medical University, Shenyang, Liaoning, China
| | - Zhongbo Zhang
- Department of Pancreatic and Biliary Surgery, The First Hospital of China Medical University, Shenyang, Liaoning, China
| | - Aijia Guo
- Department of Pancreatic and Biliary Surgery, The First Hospital of China Medical University, Shenyang, Liaoning, China
| | - Guilin Yu
- Department of Pancreatic and Biliary Surgery, The First Hospital of China Medical University, Shenyang, Liaoning, China
| | - Yuanhong Xu
- Department of Pancreatic and Biliary Surgery, The First Hospital of China Medical University, Shenyang, Liaoning, China
| |
Collapse
|
18
|
Li XQ, Zhang R, Lu H, Yue XM, Huang YF. Extracellular Vesicle-Packaged CDH11 and ITGA5 Induce the Premetastatic Niche for Bone Colonization of Breast Cancer Cells. Cancer Res 2022; 82:1560-1574. [PMID: 35149589 DOI: 10.1158/0008-5472.can-21-1331] [Citation(s) in RCA: 23] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2021] [Revised: 11/26/2021] [Accepted: 02/07/2022] [Indexed: 11/16/2022]
Abstract
Although most breast cancer metastases in bone cause osteolytic lesions, the osteogenic niche has commonly been described as an initiator of early-stage bone colonization of disseminated cancer cells. Tumor cell-derived extracellular vesicles (EV) have been shown to determine the organotropism of cancer cells by transferring their cargo, such as nucleic acids and proteins, to resident cells at future metastatic sites and preparing a favorable premetastatic niche. Runt-related transcription factor 2 (RUNX2) and its regulated genes have been shown to facilitate the acquisition of osteomimetic features and to enhance the bone metastatic potential of breast cancer cells. In this study, we present in vivo and in vitro evidence to clarify the role of EVs released by breast cancer cells with high RUNX2 expression in the education of osteoblasts to form an osteogenic premetastatic niche. Furthermore, different extracellular vesicular proteins were identified that mediate events subsequent to the specific recognition of tumor-derived EVs by osteoblasts via cadherin 11 (CDH11) and the induction of the osteogenic premetastatic niche by integrin α5 (ITGA5). CDH11high/ITGA5high EVs were demonstrated to be responsible for the formation of a premetastatic niche that facilitates RUNX2 high-expressing breast cancer cell colonization in bone, revealing a potential EV-based premetastatic niche blockage strategy. SIGNIFICANCE This study provides mechanistic insights into the generation of an osteogenic premetastatic niche by breast cancer-derived EVs and identifies potential EV-derived diagnostic biomarkers and targets for breast cancer bone metastasis.
Collapse
Affiliation(s)
- Xiao-Qing Li
- Department of Biochemistry and Molecular Biology, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center of Cancer, Tianjin, China
- Key Laboratory of Breast Cancer Prevention and Treatment of the Ministry of Education, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center of Cancer, Tianjin, China
| | - Rui Zhang
- Department of Biochemistry and Molecular Biology, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center of Cancer, Tianjin, China
- Key Laboratory of Breast Cancer Prevention and Treatment of the Ministry of Education, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center of Cancer, Tianjin, China
| | - Hong Lu
- Key Laboratory of Breast Cancer Prevention and Treatment of the Ministry of Education, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center of Cancer, Tianjin, China
- Department of Radiology, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center of Cancer, Tianjin, China
| | - Xiao-Min Yue
- Department of Biochemistry and Molecular Biology, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center of Cancer, Tianjin, China
- Key Laboratory of Breast Cancer Prevention and Treatment of the Ministry of Education, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center of Cancer, Tianjin, China
| | - Yu-Fan Huang
- Department of Biochemistry and Molecular Biology, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center of Cancer, Tianjin, China
- Key Laboratory of Breast Cancer Prevention and Treatment of the Ministry of Education, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center of Cancer, Tianjin, China
| |
Collapse
|
19
|
miR-23a-3p Regulates Runx2 to Inhibit the Proliferation and Metastasis of Oral Squamous Cell Carcinoma. JOURNAL OF ONCOLOGY 2022; 2022:8719542. [PMID: 35342401 PMCID: PMC8956426 DOI: 10.1155/2022/8719542] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/07/2021] [Revised: 01/21/2022] [Accepted: 01/26/2022] [Indexed: 12/18/2022]
Abstract
Objective To investigate the effects of microRNA-23a (miR-23a-3p) and Runx2 on malignant progression of oral cancer cells and their possible molecular mechanisms. Methods Fluorescence quantitative PCR (qPCR) was used to detect the expression of miR-23a-3p and Runx2 in human oral squamous cell carcinoma tissues and paracancerous tissues. The dual luciferase reporter assay was used to evaluate the targeted regulation of miR-23a-3p on Runx2. A subcutaneous xenograft model was established to investigate the tumor-suppressive effect of miR-23a-3p. Cells were transfected with miR-23a-3p mimics and negative control NC. CCK-8 assay, EDU assay, Transwell assay, and clone formation assay were used to detect malignant evolution of cells. Western blotting was used to detect the expression of Runx2, PTEN, and PI3K/Akt. The cells were simultaneously transfected with miR-23a-3p mimics and Runx2 to detect the malignant evolution of cells. Results The expression of miR-23a-3p was downregulated in oral squamous cell carcinoma tissues, while the expression of Runx2 was upregulated. Overexpression of miR-23a-3p or inhibition of Runx2 inhibited the malignant progression of oral squamous cell carcinoma CAL-27 and TSCCA. Overexpression of miR-23a-3p inhibits the growth of oral cancer tumors. miR-23a-3p inhibits the PTEN/PI3K/Akt signaling pathway through Runx2. Overexpression of Runx2 reverses the tumor-suppressive effect of miR-23a-3p. Conclusion miR-23a-3p can inhibit the PI3K/Akt signaling pathway by targeting Runx2 and inhibit the malignant evolution of oral cancer.
Collapse
|
20
|
Jang DG, Kwon KY, Song EK, Park TJ. Integrin β-like 1 protein (ITGBL1) promotes cell migration by preferentially inhibiting integrin-ECM binding at the trailing edge. Genes Genomics 2022; 44:405-413. [PMID: 35066808 PMCID: PMC8921176 DOI: 10.1007/s13258-021-01204-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2021] [Accepted: 12/06/2021] [Indexed: 11/30/2022]
Abstract
Background Cell migration is a basic cellular behavior involved in multiple phenomena in the human body such as embryonic development, wound healing, immune reactions, and cancer metastasis. For proper cell migration, integrin and the ECM binding complex must be disassembled for the retraction of trailing edges. Objective Integrin must be differentially regulated at leading edges or trailing edges during cell migration. Previously, we showed that ITGBL1 was a secreted protein and inhibits integrin activity. Therefore, we examined the function of ITGBL1 on the retraction of trailing edges during cell migration. Methods To examined the function of ITGBL1 on cell migration, we knocked-down or overexpressed ITGBL1 by using ITGBL1 siRNA or ITGBL1 plasmid DNA in human chondrocytes or ATDC5 cells. We then characterized cellular migration and directionality by performing wound healing assays. Also, to analyze leading-edge formation and trailing-edge retraction, we labeled cell membranes with membrane-GFP and performed live imaging of migrating cells and. Finally, we specifically detected active forms of integrin, FAK and Vinculin using specific antibodies upon ITGBL1 depletion or overexpression. Result In this study, ITGBL1 preferentially inhibited integrin activity at the trailing edges to promote cell migration. ITGBL1-depleted cells showed increased focal adhesions at the membranous traces of trailing edges to prevent the retraction of trailing edges. In contrast, overexpression of ITGBL1 upregulated directional cell migration by promoting focal adhesion disassembly at the trailing edges. Conclusion ITGBL1 facilitates directional cell migration by promoting disassembly of the trailing edge focal adhesion complex. Supplementary Information The online version contains supplementary material available at 10.1007/s13258-021-01204-x.
Collapse
Affiliation(s)
- Dong Gil Jang
- Department of Biological Sciences, College of Information-Bio Convergence Engineering, Ulsan National Institute of Science and Technology, Ulsan, 44919, Republic of Korea
| | - Keun Yeong Kwon
- Department of Biological Sciences, College of Information-Bio Convergence Engineering, Ulsan National Institute of Science and Technology, Ulsan, 44919, Republic of Korea
| | - Eun Kyung Song
- School of Medicine, Stanford University, Palo Alto, CA, 94305, USA.
| | - Tae Joo Park
- Department of Biological Sciences, College of Information-Bio Convergence Engineering, Ulsan National Institute of Science and Technology, Ulsan, 44919, Republic of Korea.
- Center for Genomic Integrity, Institute for Basic Science, Ulsan, 44919, Republic of Korea.
| |
Collapse
|
21
|
Dennis J, Tyrer JP, Walker LC, Michailidou K, Dorling L, Bolla MK, Wang Q, Ahearn TU, Andrulis IL, Anton-Culver H, Antonenkova NN, Arndt V, Aronson KJ, Freeman LEB, Beckmann MW, Behrens S, Benitez J, Bermisheva M, Bogdanova NV, Bojesen SE, Brenner H, Castelao JE, Chang-Claude J, Chenevix-Trench G, Clarke CL, Collée JM, Couch FJ, Cox A, Cross SS, Czene K, Devilee P, Dörk T, Dossus L, Eliassen AH, Eriksson M, Evans DG, Fasching PA, Figueroa J, Fletcher O, Flyger H, Fritschi L, Gabrielson M, Gago-Dominguez M, García-Closas M, Giles GG, González-Neira A, Guénel P, Hahnen E, Haiman CA, Hall P, Hollestelle A, Hoppe R, Hopper JL, Howell A, Jager A, Jakubowska A, John EM, Johnson N, Jones ME, Jung A, Kaaks R, Keeman R, Khusnutdinova E, Kitahara CM, Ko YD, Kosma VM, Koutros S, Kraft P, Kristensen VN, Kubelka-Sabit K, Kurian AW, Lacey JV, Lambrechts D, Larson NL, Linet M, Ogrodniczak A, Mannermaa A, Manoukian S, Margolin S, Mavroudis D, Milne RL, Muranen TA, Murphy RA, Nevanlinna H, Olson JE, Olsson H, Park-Simon TW, Perou CM, Peterlongo P, Plaseska-Karanfilska D, Pylkäs K, Rennert G, Saloustros E, Sandler DP, Sawyer EJ, Schmidt MK, Schmutzler RK, Shibli R, Smeets A, Soucy P, Southey MC, Swerdlow AJ, Tamimi RM, Taylor JA, Teras LR, Terry MB, Tomlinson I, Troester MA, Truong T, Vachon CM, Wendt C, Winqvist R, Wolk A, Yang XR, Zheng W, Ziogas A, Simard J, Dunning AM, Pharoah PDP, Easton DF. Rare germline copy number variants (CNVs) and breast cancer risk. Commun Biol 2022; 5:65. [PMID: 35042965 PMCID: PMC8766486 DOI: 10.1038/s42003-021-02990-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2021] [Accepted: 12/01/2021] [Indexed: 12/14/2022] Open
Abstract
Germline copy number variants (CNVs) are pervasive in the human genome but potential disease associations with rare CNVs have not been comprehensively assessed in large datasets. We analysed rare CNVs in genes and non-coding regions for 86,788 breast cancer cases and 76,122 controls of European ancestry with genome-wide array data. Gene burden tests detected the strongest association for deletions in BRCA1 (P = 3.7E-18). Nine other genes were associated with a p-value < 0.01 including known susceptibility genes CHEK2 (P = 0.0008), ATM (P = 0.002) and BRCA2 (P = 0.008). Outside the known genes we detected associations with p-values < 0.001 for either overall or subtype-specific breast cancer at nine deletion regions and four duplication regions. Three of the deletion regions were in established common susceptibility loci. To the best of our knowledge, this is the first genome-wide analysis of rare CNVs in a large breast cancer case-control dataset. We detected associations with exonic deletions in established breast cancer susceptibility genes. We also detected suggestive associations with non-coding CNVs in known and novel loci with large effects sizes. Larger sample sizes will be required to reach robust levels of statistical significance.
Collapse
Affiliation(s)
- Joe Dennis
- Centre for Cancer Genetic Epidemiology, Department of Public Health and Primary Care, University of Cambridge, Cambridge, UK.
| | - Jonathan P Tyrer
- Centre for Cancer Genetic Epidemiology, Department of Oncology, University of Cambridge, Cambridge, UK
| | - Logan C Walker
- Department of Pathology and Biomedical Science, University of Otago, Christchurch, New Zealand
| | - Kyriaki Michailidou
- Centre for Cancer Genetic Epidemiology, Department of Public Health and Primary Care, University of Cambridge, Cambridge, UK
- Biostatistics Unit, The Cyprus Institute of Neurology & Genetics, Nicosia, Cyprus
- Cyprus School of Molecular Medicine, The Cyprus Institute of Neurology & Genetics, Nicosia, Cyprus
| | - Leila Dorling
- Centre for Cancer Genetic Epidemiology, Department of Public Health and Primary Care, University of Cambridge, Cambridge, UK
| | - Manjeet K Bolla
- Centre for Cancer Genetic Epidemiology, Department of Public Health and Primary Care, University of Cambridge, Cambridge, UK
| | - Qin Wang
- Centre for Cancer Genetic Epidemiology, Department of Public Health and Primary Care, University of Cambridge, Cambridge, UK
| | - Thomas U Ahearn
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, National Institutes of Health, Department of Health and Human Services, Bethesda, MD, USA
| | - Irene L Andrulis
- Fred A. Litwin Center for Cancer Genetics, Lunenfeld-Tanenbaum Research Institute of Mount Sinai Hospital, Toronto, ON, Canada
- Department of Molecular Genetics, University of Toronto, Toronto, ON, Canada
| | - Hoda Anton-Culver
- Department of Medicine, Genetic Epidemiology Research Institute, University of California Irvine, Irvine, CA, USA
| | - Natalia N Antonenkova
- N.N. Alexandrov Research Institute of Oncology and Medical Radiology, Minsk, Belarus
| | - Volker Arndt
- Division of Clinical Epidemiology and Aging Research, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Kristan J Aronson
- Department of Public Health Sciences, and Cancer Research Institute, Queen's University, Kingston, ON, Canada
| | - Laura E Beane Freeman
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, National Institutes of Health, Department of Health and Human Services, Bethesda, MD, USA
| | - Matthias W Beckmann
- Department of Gynecology and Obstetrics, Comprehensive Cancer Center Erlangen-EMN, University Hospital Erlangen, Friedrich-Alexander University Erlangen-Nuremberg (FAU), Erlangen, Germany
| | - Sabine Behrens
- Division of Cancer Epidemiology, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Javier Benitez
- Biomedical Network on Rare Diseases (CIBERER), Madrid, Spain
- Human Cancer Genetics Programme, Spanish National Cancer Research Centre (CNIO), Madrid, Spain
| | - Marina Bermisheva
- Institute of Biochemistry and Genetics, Ufa Federal Research Centre of the Russian Academy of Sciences, Ufa, Russia
| | - Natalia V Bogdanova
- N.N. Alexandrov Research Institute of Oncology and Medical Radiology, Minsk, Belarus
- Department of Radiation Oncology, Hannover Medical School, Hannover, Germany
- Gynaecology Research Unit, Hannover Medical School, Hannover, Germany
| | - Stig E Bojesen
- Copenhagen General Population Study, Herlev and Gentofte Hospital, Copenhagen University Hospital, Herlev, Denmark
- Department of Clinical Biochemistry, Herlev and Gentofte Hospital, Copenhagen University Hospital, Herlev, Denmark
- Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Hermann Brenner
- Division of Clinical Epidemiology and Aging Research, German Cancer Research Center (DKFZ), Heidelberg, Germany
- Division of Preventive Oncology, German Cancer Research Center (DKFZ) and National Center for Tumor Diseases (NCT), Heidelberg, Germany
- German Cancer Consortium (DKTK), German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Jose E Castelao
- Oncology and Genetics Unit, Instituto de Investigacion Sanitaria Galicia Sur (IISGS), Xerencia de Xestion Integrada de Vigo-SERGAS, Vigo, Spain
| | - Jenny Chang-Claude
- Division of Cancer Epidemiology, German Cancer Research Center (DKFZ), Heidelberg, Germany
- Cancer Epidemiology Group, University Cancer Center Hamburg (UCCH), University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Georgia Chenevix-Trench
- Department of Genetics and Computational Biology, QIMR Berghofer Medical Research Institute, Brisbane, QLD, Australia
| | - Christine L Clarke
- Westmead Institute for Medical Research, University of Sydney, Sydney, NSW, Australia
| | - J Margriet Collée
- Department of Clinical Genetics, Erasmus University Medical Center, Rotterdam, The Netherlands
| | - Fergus J Couch
- Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, MN, USA
| | - Angela Cox
- Sheffield Institute for Nucleic Acids (SInFoNiA), Department of Oncology and Metabolism, University of Sheffield, Sheffield, UK
| | - Simon S Cross
- Academic Unit of Pathology, Department of Neuroscience, University of Sheffield, Sheffield, UK
| | - Kamila Czene
- Department of Medical Epidemiology and Biostatistics, Karolinska Institutet, Stockholm, Sweden
| | - Peter Devilee
- Department of Pathology, Leiden University Medical Center, Leiden, The Netherlands
- Department of Human Genetics, Leiden University Medical Center, Leiden, The Netherlands
| | - Thilo Dörk
- Gynaecology Research Unit, Hannover Medical School, Hannover, Germany
| | - Laure Dossus
- Nutrition and Metabolism Section, International Agency for Research on Cancer (IARC-WHO), Lyon, France
| | - A Heather Eliassen
- Channing Division of Network Medicine, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA
- Department of Epidemiology, Harvard T.H. Chan School of Public Health, Boston, MA, USA
| | - Mikael Eriksson
- Department of Medical Epidemiology and Biostatistics, Karolinska Institutet, Stockholm, Sweden
| | - D Gareth Evans
- Division of Evolution and Genomic Sciences, School of Biological Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester Academic Health Science Centre, Manchester, UK
- North West Genomics Laboratory Hub, Manchester Centre for Genomic Medicine, St Mary's Hospital, Manchester University NHS Foundation Trust, Manchester Academic Health Science Centre, Manchester, UK
| | - Peter A Fasching
- Department of Gynecology and Obstetrics, Comprehensive Cancer Center Erlangen-EMN, University Hospital Erlangen, Friedrich-Alexander University Erlangen-Nuremberg (FAU), Erlangen, Germany
- David Geffen School of Medicine, Department of Medicine Division of Hematology and Oncology, University of California at Los Angeles, Los Angeles, CA, USA
| | - Jonine Figueroa
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, National Institutes of Health, Department of Health and Human Services, Bethesda, MD, USA
- Usher Institute of Population Health Sciences and Informatics, The University of Edinburgh, Edinburgh, UK
- Cancer Research UK Edinburgh Centre, The University of Edinburgh, Edinburgh, UK
| | - Olivia Fletcher
- The Breast Cancer Now Toby Robins Research Centre, The Institute of Cancer Research, London, UK
| | - Henrik Flyger
- Department of Breast Surgery, Herlev and Gentofte Hospital, Copenhagen University Hospital, Herlev, Denmark
| | - Lin Fritschi
- School of Public Health, Curtin University, Perth, WA, Australia
| | - Marike Gabrielson
- Department of Medical Epidemiology and Biostatistics, Karolinska Institutet, Stockholm, Sweden
| | - Manuela Gago-Dominguez
- Fundación Pública Galega de Medicina Xenómica, Instituto de Investigación Sanitaria de Santiago de Compostela (IDIS), Complejo Hospitalario Universitario de Santiago, SERGAS, Santiago de Compostela, Spain
- Moores Cancer Center, University of California San Diego, La Jolla, CA, USA
| | - Montserrat García-Closas
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, National Institutes of Health, Department of Health and Human Services, Bethesda, MD, USA
| | - Graham G Giles
- Cancer Epidemiology Division, Cancer Council Victoria, Melbourne, Victoria, Australia
- Centre for Epidemiology and Biostatistics, Melbourne School of Population and Global Health, The University of Melbourne, Melbourne, VIC, Australia
- Precision Medicine, School of Clinical Sciences at Monash Health, Monash University, Clayton, VIC, Australia
| | - Anna González-Neira
- Human Cancer Genetics Programme, Spanish National Cancer Research Centre (CNIO), Madrid, Spain
| | - Pascal Guénel
- Center for Research in Epidemiology and Population Health (CESP), Team Exposome and Heredity, INSERM, University Paris-Saclay, Villejuif, France
| | - Eric Hahnen
- Center for Familial Breast and Ovarian Cancer, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany
- Center for Integrated Oncology (CIO), Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany
| | - Christopher A Haiman
- Department of Preventive Medicine, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - Per Hall
- Department of Medical Epidemiology and Biostatistics, Karolinska Institutet, Stockholm, Sweden
- Department of Oncology, Södersjukhuset, Stockholm, Sweden
| | | | - Reiner Hoppe
- Dr. Margarete Fischer-Bosch-Institute of Clinical Pharmacology, Stuttgart, Germany
- University of Tübingen, Tübingen, Germany
| | - John L Hopper
- Centre for Epidemiology and Biostatistics, Melbourne School of Population and Global Health, The University of Melbourne, Melbourne, VIC, Australia
| | - Anthony Howell
- Division of Cancer Sciences, University of Manchester, Manchester, UK
| | - Agnes Jager
- Department of Medical Oncology, Erasmus MC Cancer Institute, Rotterdam, The Netherlands
| | - Anna Jakubowska
- Department of Genetics and Pathology, Pomeranian Medical University, Szczecin, Poland
- Independent Laboratory of Molecular Biology and Genetic Diagnostics, Pomeranian Medical University, Szczecin, Poland
| | - Esther M John
- Department of Epidemiology & Population Health, Stanford University School of Medicine, Stanford, CA, USA
- Department of Medicine, Division of Oncology, Stanford Cancer Institute, Stanford University School of Medicine, Stanford, CA, USA
| | - Nichola Johnson
- The Breast Cancer Now Toby Robins Research Centre, The Institute of Cancer Research, London, UK
| | - Michael E Jones
- Division of Genetics and Epidemiology, The Institute of Cancer Research, London, UK
| | - Audrey Jung
- Division of Cancer Epidemiology, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Rudolf Kaaks
- Division of Cancer Epidemiology, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Renske Keeman
- Division of Molecular Pathology, The Netherlands Cancer Institute - Antoni van Leeuwenhoek Hospital, Amsterdam, The Netherlands
| | - Elza Khusnutdinova
- Institute of Biochemistry and Genetics, Ufa Federal Research Centre of the Russian Academy of Sciences, Ufa, Russia
- Department of Genetics and Fundamental Medicine, Bashkir State University, Ufa, Russia
| | - Cari M Kitahara
- Radiation Epidemiology Branch, Division of Cancer Epidemiology and Genetics, National Cancer Institute, Bethesda, MD, USA
| | - Yon-Dschun Ko
- Department of Internal Medicine, Evangelische Kliniken Bonn gGmbH, Johanniter Krankenhaus, Bonn, Germany
| | - Veli-Matti Kosma
- Translational Cancer Research Area, University of Eastern Finland, Kuopio, Finland
- Institute of Clinical Medicine, Pathology and Forensic Medicine, University of Eastern Finland, Kuopio, Finland
- Biobank of Eastern Finland, Kuopio University Hospital, Kuopio, Finland
| | - Stella Koutros
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, National Institutes of Health, Department of Health and Human Services, Bethesda, MD, USA
| | - Peter Kraft
- Department of Epidemiology, Harvard T.H. Chan School of Public Health, Boston, MA, USA
- Program in Genetic Epidemiology and Statistical Genetics, Harvard T.H. Chan School of Public Health, Boston, MA, USA
| | - Vessela N Kristensen
- Department of Medical Genetics, Oslo University Hospital and University of Oslo, Oslo, Norway
- Institute of Clinical Medicine, Faculty of Medicine, University of Oslo, Oslo, Norway
| | - Katerina Kubelka-Sabit
- Department of Histopathology and Cytology, Clinical Hospital Acibadem Sistina, Skopje, Republic of North Macedonia
| | - Allison W Kurian
- Department of Epidemiology & Population Health, Stanford University School of Medicine, Stanford, CA, USA
- Department of Medicine, Division of Oncology, Stanford Cancer Institute, Stanford University School of Medicine, Stanford, CA, USA
| | - James V Lacey
- Department of Computational and Quantitative Medicine, City of Hope, Duarte, CA, USA
- City of Hope Comprehensive Cancer Center, City of Hope, Duarte, CA, USA
| | - Diether Lambrechts
- VIB Center for Cancer Biology, Leuven, Belgium
- Laboratory for Translational Genetics, Department of Human Genetics, University of Leuven, Leuven, Belgium
| | - Nicole L Larson
- Department of Health Sciences Research, Mayo Clinic, Rochester, MN, USA
| | - Martha Linet
- Radiation Epidemiology Branch, Division of Cancer Epidemiology and Genetics, National Cancer Institute, Bethesda, MD, USA
| | - Alicja Ogrodniczak
- Department of Genetics and Pathology, Pomeranian Medical University, Szczecin, Poland
| | - Arto Mannermaa
- Translational Cancer Research Area, University of Eastern Finland, Kuopio, Finland
- Institute of Clinical Medicine, Pathology and Forensic Medicine, University of Eastern Finland, Kuopio, Finland
- Biobank of Eastern Finland, Kuopio University Hospital, Kuopio, Finland
| | - Siranoush Manoukian
- Unit of Medical Genetics, Department of Medical Oncology and Hematology, Fondazione IRCCS Istituto Nazionale dei Tumori di Milano, Milan, Italy
| | - Sara Margolin
- Department of Oncology, Södersjukhuset, Stockholm, Sweden
- Department of Clinical Science and Education, Södersjukhuset, Karolinska Institutet, Stockholm, Sweden
| | - Dimitrios Mavroudis
- Department of Medical Oncology, University Hospital of Heraklion, Heraklion, Greece
| | - Roger L Milne
- Cancer Epidemiology Division, Cancer Council Victoria, Melbourne, Victoria, Australia
- Centre for Epidemiology and Biostatistics, Melbourne School of Population and Global Health, The University of Melbourne, Melbourne, VIC, Australia
- Precision Medicine, School of Clinical Sciences at Monash Health, Monash University, Clayton, VIC, Australia
| | - Taru A Muranen
- Department of Obstetrics and Gynecology, Helsinki University Hospital, University of Helsinki, Helsinki, Finland
| | - Rachel A Murphy
- School of Population and Public Health, University of British Columbia, Vancouver, BC, Canada
- Cancer Control Research, BC Cancer, Vancouver, Canada
| | - Heli Nevanlinna
- Department of Obstetrics and Gynecology, Helsinki University Hospital, University of Helsinki, Helsinki, Finland
| | - Janet E Olson
- Department of Health Sciences Research, Mayo Clinic, Rochester, MN, USA
| | - Håkan Olsson
- Department of Cancer Epidemiology, Clinical Sciences, Lund University, Lund, Sweden
| | | | - Charles M Perou
- Department of Genetics, Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Paolo Peterlongo
- Genome Diagnostics Program, IFOM - the FIRC Institute of Molecular Oncology, Milan, Italy
| | - Dijana Plaseska-Karanfilska
- Research Centre for Genetic Engineering and Biotechnology 'Georgi D. Efremov', MASA, Skopje, Republic of North Macedonia
| | - Katri Pylkäs
- Laboratory of Cancer Genetics and Tumor Biology, Cancer and Translational Medicine Research Unit, Biocenter Oulu, University of Oulu, Oulu, Finland
- Laboratory of Cancer Genetics and Tumor Biology, Northern Finland Laboratory Centre Oulu, Oulu, Finland
| | - Gad Rennert
- Clalit National Cancer Control Center, Carmel Medical Center and Technion Faculty of Medicine, Haifa, Israel
| | | | - Dale P Sandler
- Epidemiology Branch, National Institute of Environmental Health Sciences, NIH, Research Triangle Park, NC, USA
| | - Elinor J Sawyer
- School of Cancer & Pharmaceutical Sciences, Comprehensive Cancer Centre, Guy's Campus, King's College London, London, UK
| | - Marjanka K Schmidt
- Division of Molecular Pathology, The Netherlands Cancer Institute - Antoni van Leeuwenhoek Hospital, Amsterdam, The Netherlands
- Division of Psychosocial Research and Epidemiology, The Netherlands Cancer Institute - Antoni van Leeuwenhoek hospital, Amsterdam, The Netherlands
| | - Rita K Schmutzler
- Center for Familial Breast and Ovarian Cancer, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany
- Center for Integrated Oncology (CIO), Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany
- Center for Molecular Medicine Cologne (CMMC), Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany
| | - Rana Shibli
- Clalit National Cancer Control Center, Carmel Medical Center and Technion Faculty of Medicine, Haifa, Israel
| | - Ann Smeets
- Department of Surgical Oncology, University Hospitals Leuven, Leuven, Belgium
| | - Penny Soucy
- Genomics Center, Centre Hospitalier Universitaire de Québec - Université Laval Research Center, Québec City, QC, Canada
| | - Melissa C Southey
- Cancer Epidemiology Division, Cancer Council Victoria, Melbourne, Victoria, Australia
- Precision Medicine, School of Clinical Sciences at Monash Health, Monash University, Clayton, VIC, Australia
- Department of Clinical Pathology, The University of Melbourne, Melbourne, Victoria, Australia
| | - Anthony J Swerdlow
- Division of Genetics and Epidemiology, The Institute of Cancer Research, London, UK
- Division of Breast Cancer Research, The Institute of Cancer Research, London, UK
| | - Rulla M Tamimi
- Department of Epidemiology, Harvard T.H. Chan School of Public Health, Boston, MA, USA
- Department of Population Health Sciences, Weill Cornell Medicine, New York, NY, USA
| | - Jack A Taylor
- Epidemiology Branch, National Institute of Environmental Health Sciences, NIH, Research Triangle Park, NC, USA
- Epigenetic and Stem Cell Biology Laboratory, National Institute of Environmental Health Sciences, NIH, Research Triangle Park, NC, USA
| | - Lauren R Teras
- Department of Population Science, American Cancer Society, Atlanta, GA, USA
| | - Mary Beth Terry
- Department of Epidemiology, Mailman School of Public Health, Columbia University, New York, NY, USA
| | - Ian Tomlinson
- Cancer Research UK Edinburgh Centre, The University of Edinburgh, Edinburgh, UK
| | - Melissa A Troester
- Department of Epidemiology, Gillings School of Global Public Health and UNC Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Thérèse Truong
- Center for Research in Epidemiology and Population Health (CESP), Team Exposome and Heredity, INSERM, University Paris-Saclay, Villejuif, France
| | - Celine M Vachon
- Department of Quantitative Health Sciences, Division of Epidemiology, Mayo Clinic, Rochester, MN, USA
| | - Camilla Wendt
- Department of Clinical Science and Education, Södersjukhuset, Karolinska Institutet, Stockholm, Sweden
| | - Robert Winqvist
- Laboratory of Cancer Genetics and Tumor Biology, Cancer and Translational Medicine Research Unit, Biocenter Oulu, University of Oulu, Oulu, Finland
- Laboratory of Cancer Genetics and Tumor Biology, Northern Finland Laboratory Centre Oulu, Oulu, Finland
| | - Alicja Wolk
- Institute of Environmental Medicine, Karolinska Institutet, Stockholm, Sweden
- Department of Surgical Sciences, Uppsala University, Uppsala, Sweden
| | - Xiaohong R Yang
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, National Institutes of Health, Department of Health and Human Services, Bethesda, MD, USA
| | - Wei Zheng
- Division of Epidemiology, Department of Medicine, Vanderbilt Epidemiology Center, Vanderbilt-Ingram Cancer Center, Vanderbilt University School of Medicine, Nashville, TN, USA
| | - Argyrios Ziogas
- Department of Medicine, Genetic Epidemiology Research Institute, University of California Irvine, Irvine, CA, USA
| | - Jacques Simard
- Genomics Center, Centre Hospitalier Universitaire de Québec - Université Laval Research Center, Québec City, QC, Canada
| | - Alison M Dunning
- Centre for Cancer Genetic Epidemiology, Department of Oncology, University of Cambridge, Cambridge, UK
| | - Paul D P Pharoah
- Centre for Cancer Genetic Epidemiology, Department of Public Health and Primary Care, University of Cambridge, Cambridge, UK
- Centre for Cancer Genetic Epidemiology, Department of Oncology, University of Cambridge, Cambridge, UK
| | - Douglas F Easton
- Centre for Cancer Genetic Epidemiology, Department of Public Health and Primary Care, University of Cambridge, Cambridge, UK
- Centre for Cancer Genetic Epidemiology, Department of Oncology, University of Cambridge, Cambridge, UK
| |
Collapse
|
22
|
Liu C, Hu A, Chen H, Liang J, Gu M, Xiong Y, Mu CF. The osteogenic niche-targeted arsenic nanoparticles prevent colonization of disseminated breast tumor cells in the bone. Acta Pharm Sin B 2022; 12:364-377. [PMID: 35127392 PMCID: PMC8799883 DOI: 10.1016/j.apsb.2021.06.012] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2021] [Revised: 05/19/2021] [Accepted: 05/24/2021] [Indexed: 11/22/2022] Open
Abstract
Up to 70% of patients with late-stage breast cancer have bone metastasis. Current treatment regimens for breast cancer bone metastasis are palliative with no therapeutic cure. Disseminated tumor cells (DTCs) colonize inside the osteogenic niches in the early stage of bone metastasis. Drug delivery into osteogenic niches to inhibit DTC colonization can prevent bone metastasis from entering its late stage and therefore cure bone metastasis. Here, we constructed a 50% DSS6 peptide conjugated nanoparticle to target the osteogenic niche. The osteogenic niche was always located at the endosteum with immature hydroxyapatite. Arsenic-manganese nanocrystals (around 14 nm) were loaded in osteogenic niche-targeted PEG-PLGA nanoparticles with an acidic environment-triggered arsenic release. Arsenic formulations greatly reduced 4T1 cell adhesion to mesenchymal stem cells (MSCs)/preosteoblasts (pre-OBs) and osteogenic differentiation of osteoblastic cells. Arsenic formulations also prevented tumor cell colonization and dormancy via altering the direct interaction between 4T1 cells and MSCs/pre-OBs. The chemotactic migration of 4T1 cells toward osteogenic cells was blocked by arsenic in mimic 3D osteogenic niche. Systemic administration of osteogenic niche-targeted arsenic nanoparticles significantly extended the survival of mice with 4T1 syngeneic bone metastasis. Our findings provide an effective approach for osteogenic niche-specific drug delivery and suggest that bone metastasis can be effectively inhibited by blockage of tumor cell colonization in the bone microenvironment.
Collapse
|
23
|
Albaradei S, Uludag M, Thafar MA, Gojobori T, Essack M, Gao X. Predicting Bone Metastasis Using Gene Expression-Based Machine Learning Models. Front Genet 2021; 12:771092. [PMID: 34858485 PMCID: PMC8631472 DOI: 10.3389/fgene.2021.771092] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2021] [Accepted: 10/20/2021] [Indexed: 11/13/2022] Open
Abstract
Bone is the most common site of distant metastasis from malignant tumors, with the highest prevalence observed in breast and prostate cancers. Such bone metastases (BM) cause many painful skeletal-related events, such as severe bone pain, pathological fractures, spinal cord compression, and hypercalcemia, with adverse effects on life quality. Many bone-targeting agents developed based on the current understanding of BM onset's molecular mechanisms dull these adverse effects. However, only a few studies investigated potential predictors of high risk for developing BM, despite such knowledge being critical for early interventions to prevent or delay BM. This work proposes a computational network-based pipeline that incorporates a ML/DL component to predict BM development. Based on the proposed pipeline we constructed several machine learning models. The deep neural network (DNN) model exhibited the highest prediction accuracy (AUC of 92.11%) using the top 34 featured genes ranked by betweenness centrality scores. We further used an entirely separate, "external" TCGA dataset to evaluate the robustness of this DNN model and achieved sensitivity of 85%, specificity of 80%, positive predictive value of 78.10%, negative predictive value of 80%, and AUC of 85.78%. The result shows the models' way of learning allowed it to zoom in on the featured genes that provide the added benefit of the model displaying generic capabilities, that is, to predict BM for samples from different primary sites. Furthermore, existing experimental evidence provides confidence that about 50% of the 34 hub genes have BM-related functionality, which suggests that these common genetic markers provide vital insight about BM drivers. These findings may prompt the transformation of such a method into an artificial intelligence (AI) diagnostic tool and direct us towards mechanisms that underlie metastasis to bone events.
Collapse
Affiliation(s)
- Somayah Albaradei
- Computer, Electrical and Mathematical Sciences and Engineering Division (CEMSE), Computational Bioscience Research Center (CBRC), King Abdullah University of Science and Technology (KAUST), Thuwal, Saudi Arabia.,Faculty of Computing and Information Technology, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Mahmut Uludag
- Computer, Electrical and Mathematical Sciences and Engineering Division (CEMSE), Computational Bioscience Research Center (CBRC), King Abdullah University of Science and Technology (KAUST), Thuwal, Saudi Arabia
| | - Maha A Thafar
- Computer, Electrical and Mathematical Sciences and Engineering Division (CEMSE), Computational Bioscience Research Center (CBRC), King Abdullah University of Science and Technology (KAUST), Thuwal, Saudi Arabia.,College of Computers and Information Technology, Taif University, Taif, Saudi Arabia
| | - Takashi Gojobori
- Computer, Electrical and Mathematical Sciences and Engineering Division (CEMSE), Computational Bioscience Research Center (CBRC), King Abdullah University of Science and Technology (KAUST), Thuwal, Saudi Arabia
| | - Magbubah Essack
- Computer, Electrical and Mathematical Sciences and Engineering Division (CEMSE), Computational Bioscience Research Center (CBRC), King Abdullah University of Science and Technology (KAUST), Thuwal, Saudi Arabia
| | - Xin Gao
- Computer, Electrical and Mathematical Sciences and Engineering Division (CEMSE), Computational Bioscience Research Center (CBRC), King Abdullah University of Science and Technology (KAUST), Thuwal, Saudi Arabia
| |
Collapse
|
24
|
Othman A, Winogradzki M, Lee L, Tandon M, Blank A, Pratap J. Bone Metastatic Breast Cancer: Advances in Cell Signaling and Autophagy Related Mechanisms. Cancers (Basel) 2021; 13:cancers13174310. [PMID: 34503118 PMCID: PMC8431094 DOI: 10.3390/cancers13174310] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2021] [Revised: 08/18/2021] [Accepted: 08/19/2021] [Indexed: 12/13/2022] Open
Abstract
Bone metastasis is a frequent complication of breast cancer with nearly 70% of metastatic breast cancer patients developing bone metastasis during the course of their disease. The bone represents a dynamic microenvironment which provides a fertile soil for disseminated tumor cells, however, the mechanisms which regulate the interactions between a metastatic tumor and the bone microenvironment remain poorly understood. Recent studies indicate that during the metastatic process a bidirectional relationship between metastatic tumor cells and the bone microenvironment begins to develop. Metastatic cells display aberrant expression of genes typically reserved for skeletal development and alter the activity of resident cells within the bone microenvironment to promote tumor development, resulting in the severe bone loss. While transcriptional regulation of the metastatic process has been well established, recent findings from our and other research groups highlight the role of the autophagy and secretory pathways in interactions between resident and tumor cells during bone metastatic tumor growth. These reports show high levels of autophagy-related markers, regulatory factors of the autophagy pathway, and autophagy-mediated secretion of matrix metalloproteinases (MMP's), receptor activator of nuclear factor kappa B ligand (RANKL), parathyroid hormone related protein (PTHrP), as well as WNT5A in bone metastatic breast cancer cells. In this review, we discuss the recently elucidated mechanisms and their crosstalk with signaling pathways, and potential therapeutic targets for bone metastatic disease.
Collapse
|
25
|
Liu G, Zhang J. A Cluster-Based Approach for the Discovery of Copy Number Variations From Next-Generation Sequencing Data. Front Genet 2021; 12:699510. [PMID: 34262604 PMCID: PMC8273656 DOI: 10.3389/fgene.2021.699510] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2021] [Accepted: 06/07/2021] [Indexed: 11/13/2022] Open
Abstract
The next-generation sequencing technology offers a wealth of data resources for the detection of copy number variations (CNVs) at a high resolution. However, it is still challenging to correctly detect CNVs of different lengths. It is necessary to develop new CNV detection tools to meet this demand. In this work, we propose a new CNV detection method, called CBCNV, for the detection of CNVs of different lengths from whole genome sequencing data. CBCNV uses a clustering algorithm to divide the read depth segment profile, and assigns an abnormal score to each read depth segment. Based on the abnormal score profile, Tukey's fences method is adopted in CBCNV to forecast CNVs. The performance of the proposed method is evaluated on simulated data sets, and is compared with those of several existing methods. The experimental results prove that the performance of CBCNV is better than those of several existing methods. The proposed method is further tested and verified on real data sets, and the experimental results are found to be consistent with the simulation results. Therefore, the proposed method can be expected to become a routine tool in the analysis of CNVs from tumor-normal matched samples.
Collapse
Affiliation(s)
| | - Junying Zhang
- School of Computer Science and Technology, Xidian University, Xi’an, China
| |
Collapse
|
26
|
Watson AW, Grant AD, Parker SS, Hill S, Whalen MB, Chakrabarti J, Harman MW, Roman MR, Forte BL, Gowan CC, Castro-Portuguez R, Stolze LK, Franck C, Cusanovich DA, Zavros Y, Padi M, Romanoski CE, Mouneimne G. Breast tumor stiffness instructs bone metastasis via maintenance of mechanical conditioning. Cell Rep 2021; 35:109293. [PMID: 34192535 PMCID: PMC8312405 DOI: 10.1016/j.celrep.2021.109293] [Citation(s) in RCA: 32] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2020] [Revised: 02/26/2021] [Accepted: 06/03/2021] [Indexed: 11/14/2022] Open
Abstract
While the immediate and transitory response of breast cancer cells to pathological stiffness in their native microenvironment has been well explored, it remains unclear how stiffness-induced phenotypes are maintained over time after cancer cell dissemination in vivo. Here, we show that fibrotic-like matrix stiffness promotes distinct metastatic phenotypes in cancer cells, which are preserved after transition to softer microenvironments, such as bone marrow. Using differential gene expression analysis of stiffness-responsive breast cancer cells, we establish a multigenic score of mechanical conditioning (MeCo) and find that it is associated with bone metastasis in patients with breast cancer. The maintenance of mechanical conditioning is regulated by RUNX2, an osteogenic transcription factor, established driver of bone metastasis, and mitotic bookmarker that preserves chromatin accessibility at target gene loci. Using genetic and functional approaches, we demonstrate that mechanical conditioning maintenance can be simulated, repressed, or extended, with corresponding changes in bone metastatic potential. Watson et al. demonstrate that mechanical conditioning by stiff microenvironments in breast tumors is maintained in cancer cells after dissemination to softer microenvironments, including bone marrow. They show that mechanical conditioning promotes invasion and osteolysis and establish a mechanical conditioning (MeCo) score, associated with bone metastasis in patients.
Collapse
Affiliation(s)
- Adam W Watson
- University of Arizona Cancer Center, Tucson, AZ 85724, USA; MeCo Diagnostics, Tucson, AZ 85718, USA
| | - Adam D Grant
- University of Arizona Cancer Center, Tucson, AZ 85724, USA
| | - Sara S Parker
- Department of Cellular and Molecular Medicine, University of Arizona, Tucson, AZ 85724, USA
| | - Samantha Hill
- University of Arizona Cancer Center, Tucson, AZ 85724, USA; Department of Cellular and Molecular Medicine, University of Arizona, Tucson, AZ 85724, USA
| | - Michael B Whalen
- Department of Cellular and Molecular Medicine, University of Arizona, Tucson, AZ 85724, USA
| | - Jayati Chakrabarti
- University of Arizona Cancer Center, Tucson, AZ 85724, USA; Department of Cellular and Molecular Medicine, University of Arizona, Tucson, AZ 85724, USA
| | - Michael W Harman
- School of Engineering, Brown University, Providence, RI 02912, USA
| | | | | | - Cody C Gowan
- Department of Cellular and Molecular Medicine, University of Arizona, Tucson, AZ 85724, USA
| | | | - Lindsey K Stolze
- Department of Cellular and Molecular Medicine, University of Arizona, Tucson, AZ 85724, USA
| | - Christian Franck
- Department of Mechanical Engineering, University of Wisconsin-Madison, Madison, WI 53706, USA
| | - Darren A Cusanovich
- Department of Cellular and Molecular Medicine, University of Arizona, Tucson, AZ 85724, USA
| | - Yana Zavros
- University of Arizona Cancer Center, Tucson, AZ 85724, USA; Department of Cellular and Molecular Medicine, University of Arizona, Tucson, AZ 85724, USA
| | - Megha Padi
- University of Arizona Cancer Center, Tucson, AZ 85724, USA; Department of Molecular and Cellular Biology, University of Arizona, Tucson, AZ 85721, USA; Bioinformatics Shared Resource, University of Arizona Cancer Center, Tucson, AZ 85724, USA
| | - Casey E Romanoski
- University of Arizona Cancer Center, Tucson, AZ 85724, USA; Department of Cellular and Molecular Medicine, University of Arizona, Tucson, AZ 85724, USA.
| | - Ghassan Mouneimne
- University of Arizona Cancer Center, Tucson, AZ 85724, USA; Department of Cellular and Molecular Medicine, University of Arizona, Tucson, AZ 85724, USA.
| |
Collapse
|
27
|
Tian Y, Mu H, Wang A, Gao Y, Dong Z, Zhao Y, Li C, Zhang L, Gao Y. Runx2 deficiency in junctional epithelium of mouse molars decreases the expressions of E-cadherin and junctional adhesion molecule 1. J Mol Histol 2021; 52:545-553. [PMID: 33763807 DOI: 10.1007/s10735-021-09962-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2020] [Accepted: 02/02/2021] [Indexed: 01/09/2023]
Abstract
Junctional epithelium (JE) attaching to the enamel surface seals gaps around the teeth, functioning as the first line of gingival defense. Runt-related transcription factor 2 (Runx2) plays a role in epithelial cell fate, and the deficiency of Runx2 in JE causes periodontal destruction, while its effect on the barrier function of JE remains largely unexplored. In the present study, hematoxylin-eosin (H&E) staining revealed the morphological differences of JE between wild-type (WT) and Runx2 conditional knockout (cKO) mice. We speculated that these changes were related to the down-regulation of E-cadherin (E-cad), junctional adhesion molecule 1 (JAM1), and integrin β6 (ITGB6) in JE. Moreover, immunohistochemistry (IHC) was conducted to assess the expressions of these proteins. To verify the relationship between Runx2 and the three above-mentioned proteins, human gingival epithelial cells (HGEs) were cultured for in vitro experiment. The expression of Runx2 in HEGs was depleted by lentivirus. Quantitative real-time PCR (qRT-PCR) and Western blotting analysis were adopted to analyze the differences in mRNA and protein expressions. Taken together, Runx2 played a crucial role in maintaining the structure and function integrality of JE via regulating the expressions of E-cad and JAM1.
Collapse
Affiliation(s)
- Yuan Tian
- Department of Pediatric Dentistry, Binzhou Medical University Hospital, Binzhou, 256600, Shandong, China
| | - Haiyu Mu
- Department of Pediatric Dentistry, Binzhou Medical University Hospital, Binzhou, 256600, Shandong, China
| | - Aiqin Wang
- Department of Periodontics, Binzhou Medical University Hospital, Binzhou, 256600, Shandong, China
| | - Yan Gao
- Department of Pediatric Dentistry, Binzhou Medical University Hospital, Binzhou, 256600, Shandong, China
| | - Zhiheng Dong
- Department of Pediatric Dentistry, Binzhou Medical University Hospital, Binzhou, 256600, Shandong, China
| | - Yang Zhao
- Institute of Stomatology, Binzhou Medical University, Yantai, 264003, Shandong, China
| | - Cong Li
- Department of Pediatric Dentistry, Binzhou Medical University Hospital, Binzhou, 256600, Shandong, China
| | - Li Zhang
- Institute of Stomatology, Binzhou Medical University, Yantai, 264003, Shandong, China
| | - Yuguang Gao
- Department of Pediatric Dentistry, Binzhou Medical University Hospital, Binzhou, 256600, Shandong, China.
| |
Collapse
|
28
|
Ye F, Huang W, Xue Y, Tang E, Wang M, Shi F, Wei D, Han Y, Chen P, Zhang X, Yu D. Serum Levels of ITGBL1 as an Early Diagnostic Biomarker for Hepatocellular Carcinoma with Hepatitis B Virus Infection. J Hepatocell Carcinoma 2021; 8:285-300. [PMID: 33948441 PMCID: PMC8088298 DOI: 10.2147/jhc.s306966] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2021] [Accepted: 04/07/2021] [Indexed: 12/24/2022] Open
Abstract
Purpose Early diagnostic biomarkers of hepatocellular carcinoma (HCC) are needed to distinguish hepatitis B virus (HBV) associated HCC (HBV-HCC) patients from at-risk patients. We assessed the diagnostic values of serum Integrin beta-like 1 (ITGBL1) for early-stage HBV-HCC. Patients and Methods We recruited 716 participators including 299 in the training and 417 in the validation stage, (HBV-HCC, chronic hepatitis B (CHB), HBV‐related liver cirrhosis (HBV-LC), and healthy controls) between 2017 and 2020 from three centers. Serum ITGBL1 was measured by ELISA. Receiver operating characteristic (ROC) was used to calculate diagnostic accuracy. Results The serum levels of ITGBL1 in HBV-HCC patients were significantly lower than those in CHB and HBV-LC patients. This result was confirmed in the follow-up patients who progressed from HBV-LC to HCC. The optimum diagnostic cutoff value of serum ITGBL1 was 47.93ng/mL for detection of early-stage HBV-HCC. The serum ITGBL1 has higher diagnostic accuracy than AFP20 in differentiating the early-stage HBV-HCC from the at-risk patients (area under curve [AUC] 0.787 vs 0.638, p<0.05). For AFP-negative (<20ng/mL) HBV-HCC patients, serum ITGBL1 maintained diagnostic accuracy (training cohort: AUC 0.756, 95% confidence interval [CI] 0.683–0.819, sensitivity 68.18%, and specificity 68.85%; validation cohort: 0.744, 0.686–0.796, 81.13%, and 55.88%). Combination ITGBL1 with AFP20 significantly increased diagnostic accuracy in differentiating the HBV-HCC from at-risk patients (AUC 0.840; 0.868) than ITGBL1 (AUC 0.773, p<0.05; 0.732, p<0.0001) or AFP20 (AUC 0.705, p<0.0001; 0.773, p<0.0001) alone. Conclusion The serum level of ITGBL1 improved identification of AFP-negative HBV-HCC patients, and increased diagnostic accuracy with AFP20 together in the early detection of HBV-HCC.
Collapse
Affiliation(s)
- Fei Ye
- Department of Infectious Diseases, Research Laboratory of Clinical Virology, Ruijin Hospital, Shanghai Jiaotong University, School of Medicine, Shanghai, 200025, People's Republic of China
| | - Wei Huang
- Department of Gastroenterology, Affiliated Hospital of Nantong University, Nantong, 226000, People's Republic of China
| | - Yuan Xue
- Institute of Hepatology, The Third People's Hospital of Changzhou, Changzhou, 213000, People's Republic of China
| | - Erjiang Tang
- Center for Clinical Research and Translational Medicine, Yangpu Hospital, Tongji University School of Medicine, Shanghai, 200090, People's Republic of China.,Institute of Gastrointestinal Surgery and Translational Medicine, Tongji University School of Medicine, Shanghai, 200090, People's Republic of China
| | - Mingjie Wang
- Department of Gastroenterology & Hepatology, Ruijin Hospital, Shanghai Jiaotong University, School of Medicine, Shanghai, 201821, People's Republic of China
| | - Fengchun Shi
- Department of Infectious Diseases, Research Laboratory of Clinical Virology, Ruijin Hospital, Shanghai Jiaotong University, School of Medicine, Shanghai, 200025, People's Republic of China
| | - Dong Wei
- Department of Infectious Diseases, Research Laboratory of Clinical Virology, Ruijin Hospital, Shanghai Jiaotong University, School of Medicine, Shanghai, 200025, People's Republic of China
| | - Yue Han
- Department of Infectious Diseases, Research Laboratory of Clinical Virology, Ruijin Hospital, Shanghai Jiaotong University, School of Medicine, Shanghai, 200025, People's Republic of China
| | - Peizhan Chen
- Clinical Research Center, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 201821, People's Republic of China
| | - Xinxin Zhang
- Department of Infectious Diseases, Research Laboratory of Clinical Virology, Ruijin Hospital, Shanghai Jiaotong University, School of Medicine, Shanghai, 200025, People's Republic of China
| | - Demin Yu
- Department of Infectious Diseases, Research Laboratory of Clinical Virology, Ruijin Hospital, Shanghai Jiaotong University, School of Medicine, Shanghai, 200025, People's Republic of China
| |
Collapse
|
29
|
Wang X, Chen Y, Zhu J, Yang Z, Gong X, Hui R, Huang G, Jin J. A comprehensive screening method for investigating the potential binding targets of doxorubicin based on protein microarray. Eur J Pharmacol 2021; 896:173896. [PMID: 33508279 DOI: 10.1016/j.ejphar.2021.173896] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2020] [Revised: 01/06/2021] [Accepted: 01/19/2021] [Indexed: 11/28/2022]
Abstract
With the development of precision therapy, pharmacological research pays more and more attention to seek and confirm the target of drugs in order to understand the mechanism of drug action and reduce side effects. Screening candidate proteins can be effectively used to predict potential drug targets and toxicity. Therefore, a high-throughput drug-binding protein screening method based on protein microarray which contains over 21,000 human proteins was introduced in this investigation. Doxorubicin, a classical chemotherapeutic agent widely used in clinical treatment, was taken as a drug example in our protein screening study. Through microarray and bioinformatics analysis, more potential targets were found with different binding affinity to doxorubicin, and HRAS stands out as a critical protein from candidate proteins. In addition, the results revealed that the formation of the HRAS-RAF complex is promoted by doxorubicin. It is our expectation that the outcomes could benefit to understand the various effect of the doxorubicin and push the protein microarray screening to apply in the comprehensive pharmacological and toxicological investigation of other drugs.
Collapse
Affiliation(s)
- Xu Wang
- School of Pharmaceutical Sciences, Jiangnan University, Wuxi, 214122, PR China.
| | - Yun Chen
- School of Pharmaceutical Sciences, Jiangnan University, Wuxi, 214122, PR China.
| | - Jingyu Zhu
- School of Pharmaceutical Sciences, Jiangnan University, Wuxi, 214122, PR China.
| | - Zhaoqi Yang
- School of Pharmaceutical Sciences, Jiangnan University, Wuxi, 214122, PR China.
| | - Xiaohai Gong
- School of Pharmaceutical Sciences, Jiangnan University, Wuxi, 214122, PR China.
| | - Renjie Hui
- School of Pharmaceutical Sciences, Jiangnan University, Wuxi, 214122, PR China.
| | - Gang Huang
- Shanghai Key Laboratory of Molecular Imaging, Shanghai University of Medicine and Health Sciences, Shanghai, 201318, China.
| | - Jian Jin
- School of Pharmaceutical Sciences, Jiangnan University, Wuxi, 214122, PR China.
| |
Collapse
|
30
|
Cheli Y, Tulic MK, El Hachem N, Nottet N, Jacquel A, Gesson M, Strub T, Bille K, Picard-Gauci A, Montaudié H, Beranger GE, Passeron T, Close P, Bertolotto C, Ballotti R. ITGBL1 is a new immunomodulator that favors development of melanoma tumors by inhibiting natural killer cells cytotoxicity. Mol Cancer 2021; 20:12. [PMID: 33413419 PMCID: PMC7789764 DOI: 10.1186/s12943-020-01306-2] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2020] [Accepted: 12/29/2020] [Indexed: 02/08/2023] Open
Abstract
Resistances to immunotherapies remains a major hurdle towards a cure for melanoma in numerous patients. An increase in the mesenchymal phenotype and a loss of differentiation have been clearly associated with resistance to targeted therapies. Similar phenotypes have been more recently also linked to resistance to immune checkpoint therapies. We demonstrated here that the loss of MIcrophthalmia associated Transcription Factor (MITF), a pivotal player in melanocyte differentiation, favors the escape of melanoma cells from the immune system. We identified Integrin beta-like protein 1 (ITGBL1), a secreted protein, upregulated in anti-PD1 resistant patients and in MITFlow melanoma cells, as the key immunomodulator. ITGBL1 inhibited immune cell cytotoxicity against melanoma cells by inhibiting NK cells cytotoxicity and counteracting beneficial effects of anti-PD1 treatment, both in vitro and in vivo. Mechanistically, MITF inhibited RUNX2, an activator of ITGBL1 transcription. Interestingly, VitaminD3, an inhibitor of RUNX2, improved melanoma cells to death by immune cells. In conclusion, our data suggest that inhibition of ITGBL1 might improve melanoma response to immunotherapies.
Collapse
Affiliation(s)
- Yann Cheli
- Université Nice Côte d'Azur, INSERM U1065, Team1 Biology and pathologies of melanocytes. Equipe labellisée ARC 2019, 06000, Nice, France.
| | - Meri K Tulic
- Université Nice Côte d'Azur, INSERM, U1065, Team12 Study of the melanocytic differentiation applied to vitiligo and melanoma, 06000, Nice, France
| | - Najla El Hachem
- Laboratory of Cancer Signaling, University of Liège, Liège, Belgium
| | - Nicolas Nottet
- Université Nice Côte d'Azur, INSERM U1065, Team1 Biology and pathologies of melanocytes. Equipe labellisée ARC 2019, 06000, Nice, France
| | - Arnaud Jacquel
- Université Nice Côte d'Azur, INSERM, U1065, Team2 Cell death, differentiation and cancer, 06000, Nice, France
| | - Maeva Gesson
- Université Nice Côte d'Azur, INSERM, U1065, Imaging platform, 06000, Nice, France
| | - Thomas Strub
- Université Nice Côte d'Azur, INSERM U1065, Team1 Biology and pathologies of melanocytes. Equipe labellisée ARC 2019, 06000, Nice, France
| | - Karine Bille
- Université Nice Côte d'Azur, INSERM U1065, Team1 Biology and pathologies of melanocytes. Equipe labellisée ARC 2019, 06000, Nice, France
| | | | | | - Guillaume E Beranger
- Université Nice Côte d'Azur, INSERM U1065, Team1 Biology and pathologies of melanocytes. Equipe labellisée ARC 2019, 06000, Nice, France
- Université Nice Côte d'Azur, INSERM, U1065, Team12 Study of the melanocytic differentiation applied to vitiligo and melanoma, 06000, Nice, France
| | - Thierry Passeron
- Université Nice Côte d'Azur, INSERM, U1065, Team12 Study of the melanocytic differentiation applied to vitiligo and melanoma, 06000, Nice, France
- CHU NICE, Département de Dermatologie, 06000, Nice, France
| | - Pierre Close
- Laboratory of Cancer Signaling, University of Liège, Liège, Belgium
| | - Corine Bertolotto
- Université Nice Côte d'Azur, INSERM U1065, Team1 Biology and pathologies of melanocytes. Equipe labellisée ARC 2019, 06000, Nice, France
| | - Robert Ballotti
- Université Nice Côte d'Azur, INSERM U1065, Team1 Biology and pathologies of melanocytes. Equipe labellisée ARC 2019, 06000, Nice, France
| |
Collapse
|
31
|
The Crosstalk between FAK and Wnt Signaling Pathways in Cancer and Its Therapeutic Implication. Int J Mol Sci 2020; 21:ijms21239107. [PMID: 33266025 PMCID: PMC7730291 DOI: 10.3390/ijms21239107] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2020] [Revised: 11/24/2020] [Accepted: 11/26/2020] [Indexed: 12/12/2022] Open
Abstract
Focal adhesion kinase (FAK) and Wnt signaling pathways are important contributors to tumorigenesis in several cancers. While most results come from studies investigating these pathways individually, there is increasing evidence of a functional crosstalk between both signaling pathways during development and tumor progression. A number of FAK-Wnt interactions are described, suggesting an intricate, context-specific, and cell type-dependent relationship. During development for instance, FAK acts mainly upstream of Wnt signaling; and although in intestinal homeostasis and mucosal regeneration Wnt seems to function upstream of FAK signaling, FAK activates the Wnt/β-catenin signaling pathway during APC-driven intestinal tumorigenesis. In breast, lung, and pancreatic cancers, FAK is reported to modulate the Wnt signaling pathway, while in prostate cancer, FAK is downstream of Wnt. In malignant mesothelioma, FAK and Wnt show an antagonistic relationship: Inhibiting FAK signaling activates the Wnt pathway and vice versa. As the identification of effective Wnt inhibitors to translate in the clinical setting remains an outstanding challenge, further understanding of the functional interaction between Wnt and FAK could reveal new therapeutic opportunities and approaches greatly needed in clinical oncology. In this review, we summarize some of the most relevant interactions between FAK and Wnt in different cancers, address the current landscape of Wnt- and FAK-targeted therapies in different clinical trials, and discuss the rationale for targeting the FAK-Wnt crosstalk, along with the possible translational implications.
Collapse
|
32
|
Hu Y, Xu W, Zeng H, He Z, Lu X, Zuo D, Qin G, Chen W. OXPHOS-dependent metabolic reprogramming prompts metastatic potential of breast cancer cells under osteogenic differentiation. Br J Cancer 2020; 123:1644-1655. [PMID: 32934344 PMCID: PMC7686370 DOI: 10.1038/s41416-020-01040-y] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2019] [Revised: 06/22/2020] [Accepted: 08/06/2020] [Indexed: 01/10/2023] Open
Abstract
BACKGROUND Microcalcification is one of the most reliable clinical features of the malignancy risk of breast cancer, and it is associated with enhanced tumour aggressiveness and poor prognosis. However, its underlying molecular mechanism remains unclear. METHODS Clinical data were retrieved to analyse the association between calcification and bone metastasis in patients with breast cancer. Using multiple human breast cancer cell lines, the osteogenic cocktail model was established in vitro to demonstrate calcification-exacerbated metastasis. Migration and invasion characteristics were determined by wound healing and transwell migration. mRNA and protein expression were identified by quantitative PCR and western blotting. Metabolic alterations in breast cancer cells were evaluated using Seahorse Analyser. RESULTS The osteogenic differentiation of human breast cancer cells activated the classical TGF-β/Smad signalling pathway and the non-canonical MAPK pathway, which, in turn, exacerbated the progression of epithelial-mesenchymal transition (EMT). The metabolic programme switched to enhancing mitochondrial oxidative phosphorylation (OXPHOS) upon osteogenic differentiation. Rotenone was used to inhibit the OXPHOS complex during osteogenesis to block mitochondrial function, consequently reversing the EMT phenotype. CONCLUSIONS This study provides important insights into the mechanisms involved in breast cancer bone metastasis, and outlines a possible strategy to intervene in OXPHOS for the treatment of breast tumours.
Collapse
Affiliation(s)
- Yangling Hu
- Department of Radiology, Nanfang Hospital, Southern Medical University, 510515, Guangzhou, China
| | - Weimin Xu
- Department of Radiology, Nanfang Hospital, Southern Medical University, 510515, Guangzhou, China
| | - Hui Zeng
- Department of Radiology, Nanfang Hospital, Southern Medical University, 510515, Guangzhou, China
| | - Zilong He
- Department of Radiology, Nanfang Hospital, Southern Medical University, 510515, Guangzhou, China
| | - Xiao Lu
- Department of Immunology, School of Basic Medical Sciences, Southern Medical University, 510515, Guangzhou, China
| | - Daming Zuo
- Institute of Molecular Immunology, School of Laboratory Medicine and Biotechnology, Southern Medical University, 510515, Guangzhou, China
| | - Genggeng Qin
- Department of Radiology, Nanfang Hospital, Southern Medical University, 510515, Guangzhou, China.
| | - Weiguo Chen
- Department of Radiology, Nanfang Hospital, Southern Medical University, 510515, Guangzhou, China.
| |
Collapse
|
33
|
Cortez AJ, Kujawa KA, Wilk AM, Sojka DR, Syrkis JP, Olbryt M, Lisowska KM. Evaluation of the Role of ITGBL1 in Ovarian Cancer. Cancers (Basel) 2020; 12:E2676. [PMID: 32961775 PMCID: PMC7563769 DOI: 10.3390/cancers12092676] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2020] [Revised: 09/15/2020] [Accepted: 09/16/2020] [Indexed: 12/27/2022] Open
Abstract
In our previous microarray study we identified two subgroups of high-grade serous ovarian cancers with distinct gene expression and survival. Among differentially expressed genes was an Integrin beta-like 1 (ITGBL1), coding for a poorly characterized protein comprised of ten EGF-like repeats. Here, we have analyzed the influence of ITGBL1 on the phenotype of ovarian cancer (OC) cells. We analyzed expression of four putative ITGBL1 mRNA isoforms in five OC cell lines. OAW42 and SKOV3, having the lowest level of any ITGBL1 mRNA, were chosen to produce ITGBL1-overexpressing variants. In these cells, abundant ITGBL1 mRNA expression could be detected by RT-PCR. Immunodetection was successful only in the culture media, suggesting that ITGBL1 is efficiently secreted. We found that ITGBL1 overexpression affected cellular adhesion, migration and invasiveness, while it had no effect on proliferation rate and the cell cycle. ITGBL1-overexpressing cells were significantly more resistant to cisplatin and paclitaxel, major drugs used in OC treatment. Global gene expression analysis revealed that signaling pathways affected by ITGBL1 overexpression were mostly those related to extracellular matrix organization and function, integrin signaling, focal adhesion, cellular communication and motility; these results were consistent with the findings of our functional studies. Overall, our results indicate that higher expression of ITGBL1 in OC is associated with features that may worsen clinical course of the disease.
Collapse
Affiliation(s)
- Alexander Jorge Cortez
- Department of Biostatistics and Bioinformatics, Maria Skłodowska-Curie National Research Institute of Oncology, Gliwice Branch, 44-102 Gliwice, Poland; (A.J.C.); (A.M.W.)
- Center for Translational Research and Molecular Biology of Cancer, Maria Skłodowska-Curie National Research Institute of Oncology, Gliwice Branch, 44-102 Gliwice, Poland; (K.A.K.); (D.R.S.); (J.P.S.); (M.O.)
| | - Katarzyna Aleksandra Kujawa
- Center for Translational Research and Molecular Biology of Cancer, Maria Skłodowska-Curie National Research Institute of Oncology, Gliwice Branch, 44-102 Gliwice, Poland; (K.A.K.); (D.R.S.); (J.P.S.); (M.O.)
| | - Agata Małgorzata Wilk
- Department of Biostatistics and Bioinformatics, Maria Skłodowska-Curie National Research Institute of Oncology, Gliwice Branch, 44-102 Gliwice, Poland; (A.J.C.); (A.M.W.)
| | - Damian Robert Sojka
- Center for Translational Research and Molecular Biology of Cancer, Maria Skłodowska-Curie National Research Institute of Oncology, Gliwice Branch, 44-102 Gliwice, Poland; (K.A.K.); (D.R.S.); (J.P.S.); (M.O.)
| | - Joanna Patrycja Syrkis
- Center for Translational Research and Molecular Biology of Cancer, Maria Skłodowska-Curie National Research Institute of Oncology, Gliwice Branch, 44-102 Gliwice, Poland; (K.A.K.); (D.R.S.); (J.P.S.); (M.O.)
| | - Magdalena Olbryt
- Center for Translational Research and Molecular Biology of Cancer, Maria Skłodowska-Curie National Research Institute of Oncology, Gliwice Branch, 44-102 Gliwice, Poland; (K.A.K.); (D.R.S.); (J.P.S.); (M.O.)
| | - Katarzyna Marta Lisowska
- Center for Translational Research and Molecular Biology of Cancer, Maria Skłodowska-Curie National Research Institute of Oncology, Gliwice Branch, 44-102 Gliwice, Poland; (K.A.K.); (D.R.S.); (J.P.S.); (M.O.)
| |
Collapse
|
34
|
Screening and identification of potential prognostic biomarkers in bladder urothelial carcinoma: Evidence from bioinformatics analysis. GENE REPORTS 2020. [DOI: 10.1016/j.genrep.2020.100658] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
|
35
|
Wang M, Zhang Y, Xu Z, Qian P, Sun W, Wang X, Jian Z, Xia T, Xu Y, Tang J. RelB sustains endocrine resistant malignancy: an insight of noncanonical NF-κB pathway into breast Cancer progression. Cell Commun Signal 2020; 18:128. [PMID: 32807176 PMCID: PMC7430126 DOI: 10.1186/s12964-020-00613-x] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2019] [Accepted: 06/23/2020] [Indexed: 12/24/2022] Open
Abstract
BACKGROUND The activation of the NF-κB pathway plays a crucial role in the progression of breast cancer (BCa) and also involved in endocrine therapy resistance. On the contrary to the canonical NF-κB pathway, the effect of the noncanonical NF-κB pathway in BCa progression remains elusive. METHODS BCa tumor tissues and the corresponding cell lines were examined to determine the correlation between RelB and the aggressiveness of BCa. RelB was manipulated in BCa cells to examine whether RelB promotes cell proliferation and motility by quantitation of apoptosis, cell cycle, migration, and invasion. RNA-Seq was performed to identify the critical RelB-regulated genes involved in BCa metastasis. Particularly, RelB-regulated MMP1 transcription was verified using luciferase reporter and ChIP assay. Subsequently, the effect of RelB on BCa progression was further validated using BCa mice xenograft models. RESULTS RelB uniquely expresses at a high level in aggressive BCa tissues, particularly in triple-negative breast cancer (TNBC). RelB promotes BCa cell proliferation through increasing G1/S transition and/or decreasing apoptosis by upregulation of Cyclin D1 and Bcl-2. Additionally, RelB enhances cell mobility by activating EMT. Importantly, RelB upregulates bone metastatic protein MMP1 expression through binding to an NF-κB enhancer element located at the 5'-flanking region. Accordingly, in vivo functional validation confirmed that RelB deficiency impairs tumor growth in nude mice and inhibits lung metastasis in SCID mice. Video abstract.
Collapse
Affiliation(s)
- Mei Wang
- Department of General Surgery, The First Affiliated Hospital with Nanjing Medical University, 300 Guangzhou Road, Nanjing, 210029 P. R. China
- Jiangsu Cancer Hospital & Jiangsu Institute of Cancer Research & The Affiliated Cancer Hospital of Nanjing Medical University, 42 Baiziting, Nanjing, 210009 P. R. China
| | - Yanyan Zhang
- Jiangsu Cancer Hospital & Jiangsu Institute of Cancer Research & The Affiliated Cancer Hospital of Nanjing Medical University, 42 Baiziting, Nanjing, 210009 P. R. China
| | - Zhi Xu
- Department of General Surgery, The First Affiliated Hospital with Nanjing Medical University, 300 Guangzhou Road, Nanjing, 210029 P. R. China
- Jiangsu Cancer Hospital & Jiangsu Institute of Cancer Research & The Affiliated Cancer Hospital of Nanjing Medical University, 42 Baiziting, Nanjing, 210009 P. R. China
| | - Peipei Qian
- Jiangsu Cancer Hospital & Jiangsu Institute of Cancer Research & The Affiliated Cancer Hospital of Nanjing Medical University, 42 Baiziting, Nanjing, 210009 P. R. China
| | - Wenbo Sun
- Jiangsu Cancer Hospital & Jiangsu Institute of Cancer Research & The Affiliated Cancer Hospital of Nanjing Medical University, 42 Baiziting, Nanjing, 210009 P. R. China
| | - Xiumei Wang
- Jiangsu Cancer Hospital & Jiangsu Institute of Cancer Research & The Affiliated Cancer Hospital of Nanjing Medical University, 42 Baiziting, Nanjing, 210009 P. R. China
| | - Zhang Jian
- Department of General Surgery, The First Affiliated Hospital with Nanjing Medical University, 300 Guangzhou Road, Nanjing, 210029 P. R. China
| | - Tiansong Xia
- Breast Disease Center, The First Affiliated Hospital with Nanjing Medical University, 300 Guangzhou Road, Nanjing, 210029 P. R. China
| | - Yong Xu
- Jiangsu Cancer Hospital & Jiangsu Institute of Cancer Research & The Affiliated Cancer Hospital of Nanjing Medical University, 42 Baiziting, Nanjing, 210009 P. R. China
- Jiangsu Key Lab of Cancer Biomarkers, Prevention and Treatment, Nanjing Medical University, Nanjing, 211166 P. R. China
- Department of Toxicology and Cancer Biology, University of Kentucky Markey Cancer Center, 1059 VA Dr, Lexington, KY 40513 USA
| | - Jinhai Tang
- Department of General Surgery, The First Affiliated Hospital with Nanjing Medical University, 300 Guangzhou Road, Nanjing, 210029 P. R. China
| |
Collapse
|
36
|
Huang W, Yu D, Wang M, Han Y, Lin J, Wei D, Cai J, Li B, Chen P, Zhang X. ITGBL1 promotes cell migration and invasion through stimulating the TGF-β signalling pathway in hepatocellular carcinoma. Cell Prolif 2020; 53:e12836. [PMID: 32537856 PMCID: PMC7377936 DOI: 10.1111/cpr.12836] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2019] [Revised: 04/24/2020] [Accepted: 05/07/2020] [Indexed: 12/12/2022] Open
Abstract
Objectives Integrin beta‐like 1 (ITGBL1) is involved in the migration and invasion of several cancers; however, its roles in the development and progression of hepatocellular carcinoma (HCC) remain largely unknown. Materials and methods Immunohistochemistry staining was used to investigate the expression pattern of ITGBL1 and its prognostic values in HCC patients. The transwell, wound‐healing assays, xenograft and orthotopic mouse models were employed to determine the effects of ITGBL1 on HCC cell migration and invasion in vitro and in vivo. The biological mechanisms involved in cell migration and invasion caused by ITGBL1 were determined with Western blotting and RT‐PCR methods. Results ITGBL1 expression was significantly increased in HCC tissues compared to adjacent normal tissues. Patients with higher ITGBL1 expression were associated with more reduced overall survival. ITGBL1 overexpression promoted migration and invasion in SMMC‐7721 and HepG2 cells in vitro and in vivo, whereas knockdown or knockout ITGBL1 in CSQT‐2 cells significantly reduced cell migration and invasion abilities. In SMMC‐7721 cells, ITGBL1 overexpression stimulated TGF‐β/Smads signalling pathway, along with the KRT17 and genes involved in the epithelial‐mesenchymal transition (EMT). In contrast, ITGBL1 knockout inhibited the TGF‐β/Smads signalling pathway in CSQT‐2 cells. Conclusions These findings suggested that ITGBL1 promoted migration and invasion in HCC cells by stimulating the TGF‐β/Smads signalling pathway. ITGBL1 could be a promising prognostic biomarker, as well as a potential therapeutic target in HCC.
Collapse
Affiliation(s)
- Wei Huang
- Research Laboratory of Clinical Virology, Ruijin Hospital, School of Medicine, Shanghai Jiaotong University, Shanghai, China
| | - Demin Yu
- Research Laboratory of Clinical Virology, Ruijin Hospital, School of Medicine, Shanghai Jiaotong University, Shanghai, China
| | - Mingjie Wang
- Research Laboratory of Clinical Virology, Ruijin Hospital, School of Medicine, Shanghai Jiaotong University, Shanghai, China
| | - Yue Han
- Research Laboratory of Clinical Virology, Ruijin Hospital, School of Medicine, Shanghai Jiaotong University, Shanghai, China
| | - Junyu Lin
- Research Laboratory of Clinical Virology, Ruijin Hospital, School of Medicine, Shanghai Jiaotong University, Shanghai, China
| | - Dong Wei
- Research Laboratory of Clinical Virology, Ruijin Hospital, School of Medicine, Shanghai Jiaotong University, Shanghai, China
| | - Jialin Cai
- Clinical Research Center, Ruijin Hospital North, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Bin Li
- Biliary Tract Surgery Department I, Eastern Hepatobiliary Surgery Hospital, Secondary Military Medical University, Shanghai, China
| | - Peizhan Chen
- Clinical Research Center, Ruijin Hospital North, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Xinxin Zhang
- Research Laboratory of Clinical Virology, Ruijin Hospital, School of Medicine, Shanghai Jiaotong University, Shanghai, China.,Clinical Research Center, Ruijin Hospital North, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| |
Collapse
|
37
|
Song J, Yang P, Lu J. Upregulation of ITGBL1 predicts poor prognosis and promotes chemoresistance in ovarian cancer. Cancer Biomark 2020; 27:51-61. [PMID: 31683459 DOI: 10.3233/cbm-190460] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
BACKGROUND Ovarian cancer remains one of the most lethal malignancies in women and the unfavorable prognosis and frequent recurrence are mainly due to the chemoresistance. However, the main mechanism underlying chemoresistance is still elusive. OBJECTIVE To determine the role and biological function of ITGBL1 in ovarian cancer chemoresistance. METHODS Immunohistochemical staining was used to determine the expression of ITGBL1 in ovarian cancer tissues. The association between ITGBL1 expression and clinicopathological features and survival was determined. Functional analysis including cell viability, apoptosis assays were performed after chemo drugs treatment to confirm the role of ITGBL1 in chemoresistance. In vivo tumor growth assay was used to detect the chemosensitivity of tumor cells. Western blot was used to detect the expression of indicated proteins. RESULTS We noticed that ITGBL1 expression was significantly upregulated in ovarian cancer tissues compared to that in adjacent non-cancer tissues and high expression of ITGBL1 was significantly associated with lymph node invasion and advanced FIGO stage. More importantly, high ITGBL1 was an independent prognostic factor of ovarian cancer. Further experiments demonstrated that ITGBL1 promoted tumor cell resistant to chemo drugs both in vitro and in vivo. Mechanically, we found that ITGBL1 could activate PI3K/Akt signaling and using PI3K/Akt inhibitor could abrogate ITGBL1 induced chemoresistance. CONCLUSIONS Our findings indicate that upregulation of ITGBL1 has important clinical significance and drives chemoresistance in ovarian cancer. Detection and depletion of ITGBL1 might be the potential approaches for diagnosis and therapy for ovarian cancer patients.
Collapse
|
38
|
Iuliani M, Simonetti S, Ribelli G, Napolitano A, Pantano F, Vincenzi B, Tonini G, Santini D. Current and Emerging Biomarkers Predicting Bone Metastasis Development. Front Oncol 2020; 10:789. [PMID: 32582538 PMCID: PMC7283490 DOI: 10.3389/fonc.2020.00789] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2020] [Accepted: 04/22/2020] [Indexed: 02/05/2023] Open
Abstract
Bone is one of the preferential sites of distant metastases from malignant tumors, with the highest prevalence observed in breast and prostate cancers. Patients with bone metastases (BMs) may experience skeletal-related events, such as severe bone pain, pathological fractures, spinal cord compression, and hypercalcemia, with negative effects on the quality of life. In the last decades, a deeper understanding of the molecular mechanisms underlying the BM onset has been gained, leading to the development of bone-targeting agents. So far, most of the research has been focused on the pathophysiology and treatment of BM, with only relatively few studies investigating potential predictors of risk for BM development. The ability to select such "high-risk" patients could allow early identification of those most likely to benefit from interventions to prevent or delay BM. This review summarizes several evidences for the potential use of specific biomarkers able to predict early the BM development.
Collapse
Affiliation(s)
- Michele Iuliani
- Medical Oncology, Bio-Medico University of Rome, Rome, Italy
| | - Sonia Simonetti
- Medical Oncology, Bio-Medico University of Rome, Rome, Italy
| | - Giulia Ribelli
- Medical Oncology, Bio-Medico University of Rome, Rome, Italy
| | | | | | - Bruno Vincenzi
- Medical Oncology, Bio-Medico University of Rome, Rome, Italy
| | - Giuseppe Tonini
- Medical Oncology, Bio-Medico University of Rome, Rome, Italy
| | - Daniele Santini
- Medical Oncology, Bio-Medico University of Rome, Rome, Italy
| |
Collapse
|
39
|
Wenzel J, Rose K, Haghighi EB, Lamprecht C, Rauen G, Freihen V, Kesselring R, Boerries M, Hecht A. Loss of the nuclear Wnt pathway effector TCF7L2 promotes migration and invasion of human colorectal cancer cells. Oncogene 2020; 39:3893-3909. [PMID: 32203164 PMCID: PMC7203011 DOI: 10.1038/s41388-020-1259-7] [Citation(s) in RCA: 40] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2019] [Revised: 03/03/2020] [Accepted: 03/04/2020] [Indexed: 12/25/2022]
Abstract
The transcription factor TCF7L2 is indispensable for intestinal tissue homeostasis where it transmits mitogenic Wnt/β-Catenin signals in stem and progenitor cells, from which intestinal tumors arise. Yet, TCF7L2 belongs to the most frequently mutated genes in colorectal cancer (CRC), and tumor-suppressive functions of TCF7L2 were proposed. This apparent paradox warrants to clarify the role of TCF7L2 in colorectal carcinogenesis. Here, we investigated TCF7L2 dependence/independence of CRC cells and the cellular and molecular consequences of TCF7L2 loss-of-function. By genome editing we achieved complete TCF7L2 inactivation in several CRC cell lines without loss of viability, showing that CRC cells have widely lost the strict requirement for TCF7L2. TCF7L2 deficiency impaired G1/S progression, reminiscent of the physiological role of TCF7L2. In addition, TCF7L2-negative cells exhibited morphological changes, enhanced migration, invasion, and collagen adhesion, albeit the severity of the phenotypic alterations manifested in a cell-line-specific fashion. To provide a molecular framework for the observed cellular changes, we performed global transcriptome profiling and identified gene-regulatory networks in which TCF7L2 positively regulates the proto-oncogene MYC, while repressing the cell cycle inhibitors CDKN2C/CDKN2D. Consistent with its function in curbing cell motility and invasion, TCF7L2 directly suppresses the pro-metastatic transcription factor RUNX2 and impinges on the expression of cell adhesion molecules. Altogether, we conclude that the proliferation-stimulating activity of TCF7L2 persists in CRC cells. In addition, TCF7L2 acts as invasion suppressor. Despite its negative impact on cell cycle progression, TCF7L2 loss-of-function may thereby increase malignancy, which could explain why TCF7L2 is mutated in a sizeable fraction of colorectal tumors.
Collapse
Affiliation(s)
- Janna Wenzel
- Institute of Molecular Medicine and Cell Research, Faculty of Medicine, University of Freiburg, Stefan-Meier-Str. 17, 79104, Freiburg, Germany
- Faculty of Biology, University of Freiburg, Schänzlestraße 1, 79104, Freiburg, Germany
| | - Katja Rose
- Institute of Molecular Medicine and Cell Research, Faculty of Medicine, University of Freiburg, Stefan-Meier-Str. 17, 79104, Freiburg, Germany
| | - Elham Bavafaye Haghighi
- Institute of Medical Bioinformatics and Systems Medicine, Medical Center, Faculty of Medicine, University of Freiburg, Breisacherstr. 153, 79104, Freiburg, Germany
| | - Constanze Lamprecht
- Institute of Physics, University of Freiburg, Hermann-Herder-Str. 3a, 79104, Freiburg, Germany
- BIOSS Centre for Biological Signalling Studies, University of Freiburg, Schänzlestraße 18, 79104, Freiburg, Germany
- Freiburg Center for Interactive Materials and Bioinspired Technology (FIT), University of Freiburg, Georges-Köhler-Allee 105, 79110, Freiburg, Germany
| | - Gilles Rauen
- Faculty of Biology, University of Freiburg, Schänzlestraße 1, 79104, Freiburg, Germany
- BIOSS Centre for Biological Signalling Studies, University of Freiburg, Schänzlestraße 18, 79104, Freiburg, Germany
| | - Vivien Freihen
- Institute of Molecular Medicine and Cell Research, Faculty of Medicine, University of Freiburg, Stefan-Meier-Str. 17, 79104, Freiburg, Germany
| | - Rebecca Kesselring
- Department of General and Visceral Surgery, Center for Surgery, Medical Center, Faculty of Medicine, University of Freiburg, Hugstetter Straße 55, 79106, Freiburg, Germany
| | - Melanie Boerries
- Institute of Medical Bioinformatics and Systems Medicine, Medical Center, Faculty of Medicine, University of Freiburg, Breisacherstr. 153, 79104, Freiburg, Germany
- German Cancer Consortium (DKTK), Hugstetter Straße 55, 79106, Freiburg, Germany
- German Cancer Research Center (DKFZ), Im Neuenheimer Feld 280, 69120, Heidelberg, Germany
| | - Andreas Hecht
- Institute of Molecular Medicine and Cell Research, Faculty of Medicine, University of Freiburg, Stefan-Meier-Str. 17, 79104, Freiburg, Germany.
- Faculty of Biology, University of Freiburg, Schänzlestraße 1, 79104, Freiburg, Germany.
- BIOSS Centre for Biological Signalling Studies, University of Freiburg, Schänzlestraße 18, 79104, Freiburg, Germany.
| |
Collapse
|
40
|
Young RE, Jones MK, Hines EA, Li R, Luo Y, Shi W, Verheyden JM, Sun X. Smooth Muscle Differentiation Is Essential for Airway Size, Tracheal Cartilage Segmentation, but Dispensable for Epithelial Branching. Dev Cell 2020; 53:73-85.e5. [PMID: 32142630 PMCID: PMC7540204 DOI: 10.1016/j.devcel.2020.02.001] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2019] [Revised: 12/10/2019] [Accepted: 01/31/2020] [Indexed: 01/11/2023]
Abstract
Airway smooth muscle is best known for its role as an airway constrictor in diseases such as asthma. However, its function in lung development is debated. A prevalent model, supported by in vitro data, posits that airway smooth muscle promotes lung branching through peristalsis and pushing intraluminal fluid to branching tips. Here, we test this model in vivo by inactivating Myocardin, which prevented airway smooth muscle differentiation. We found that Myocardin mutants show normal branching, despite the absence of peristalsis. In contrast, tracheal cartilage, vasculature, and neural innervation patterns were all disrupted. Furthermore, airway diameter is reduced in the mutant, counter to the expectation that the absence of smooth muscle constriction would lead to a more relaxed and thereby wider airway. These findings together demonstrate that during development, while airway smooth muscle is dispensable for epithelial branching, it is integral for building the tracheal architecture and promoting airway growth.
Collapse
Affiliation(s)
- Randee E Young
- Department of Pediatrics, University of California-San Diego, La Jolla, CA 92093, USA; Laboratory of Genetics, Department of Medical Genetics, University of Wisconsin-Madison, Madison, WI 53706, USA
| | - Mary-Kayt Jones
- Laboratory of Genetics, Department of Medical Genetics, University of Wisconsin-Madison, Madison, WI 53706, USA
| | - Elizabeth A Hines
- Laboratory of Genetics, Department of Medical Genetics, University of Wisconsin-Madison, Madison, WI 53706, USA
| | - Rongbo Li
- Department of Pediatrics, University of California-San Diego, La Jolla, CA 92093, USA
| | - Yongfeng Luo
- Developmental Biology and Regenerative Medicine Program, Saban Research Institute, Children's Hospital Los Angeles, Los Angeles, CA 90027, USA
| | - Wei Shi
- Developmental Biology and Regenerative Medicine Program, Saban Research Institute, Children's Hospital Los Angeles, Los Angeles, CA 90027, USA
| | - Jamie M Verheyden
- Department of Pediatrics, University of California-San Diego, La Jolla, CA 92093, USA.
| | - Xin Sun
- Department of Pediatrics, University of California-San Diego, La Jolla, CA 92093, USA; Department of Biological Sciences, University of California-San Diego, La Jolla, CA 92093, USA.
| |
Collapse
|
41
|
Qi L, Song F, Ding Y. Regulatory Mechanism of ITGBL1 in the Metastasis of Colorectal Cancer. Front Oncol 2020; 10:259. [PMID: 32211321 PMCID: PMC7076154 DOI: 10.3389/fonc.2020.00259] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2019] [Accepted: 02/14/2020] [Indexed: 12/14/2022] Open
Abstract
Integrin, beta-like 1 (ITGBL1) protein is located in the extracellular matrix (ECM) and involved in the development and metastasis of many tumors. However, the regulatory mechanism of ITGBL1 in colorectal cancer (CRC) remains unclear. This study was to analyze the expression profile of CRC and to identify the expression change of ITGBL1 gene at different stages of CRC. Survival analysis showed that ITGBL1 was related to the metastasis of CRC, and CRC patients with a high expression of ITGBL1 had earlier metastasis. Gene Set Enrichment Analysis (GSEA) indicated the relationship between ITGBL1 expression and molecular events of CRC. The results indicated that a high expression of ITGBL1 was linked to Wnt signaling pathway, cell polarity, and tissue development, while a low expression of ITGBL1 was related to cellular respiration, electron transfer chain, and oxidative phosphorylation. With the expression profiles from interstitial and parenchyma CRC tissues, a comparison was made to determine the difference between high/low expression of ITGBL1 and Wnt signaling pathway, respectively, and further confirmed the close relation between ITGBL1 and Wnt signaling pathway. To determine the relation, an interaction network of ITGBL1 and Wnt signaling proteins was constructed. It was found that β-catenin interacted with multiple extracellular Wnt signals and could bind to ITGBL1. As a result, the regulatory mechanism of ITGBL1 in CRC is related to extracellular Wnt signals and may affect extracellular Wnt signals via β-catenin.
Collapse
Affiliation(s)
- Lu Qi
- Department of Pathology, Nanfang Hospital, Southern Medical University, Guangzhou, China.,Department of Pathology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, China.,Guangdong Provincial Key Laboratory of Molecular Oncologic Pathology, Guangzhou, China
| | - Fuyao Song
- Department of Pathology, Nanfang Hospital, Southern Medical University, Guangzhou, China.,Department of Pathology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, China.,Guangdong Provincial Key Laboratory of Molecular Oncologic Pathology, Guangzhou, China
| | - Yanqing Ding
- Department of Pathology, Nanfang Hospital, Southern Medical University, Guangzhou, China.,Department of Pathology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, China.,Guangdong Provincial Key Laboratory of Molecular Oncologic Pathology, Guangzhou, China
| |
Collapse
|
42
|
Ji Q, Zhou L, Sui H, Yang L, Wu X, Song Q, Jia R, Li R, Sun J, Wang Z, Liu N, Feng Y, Sun X, Cai G, Feng Y, Cai J, Cao Y, Cai G, Wang Y, Li Q. Primary tumors release ITGBL1-rich extracellular vesicles to promote distal metastatic tumor growth through fibroblast-niche formation. Nat Commun 2020; 11:1211. [PMID: 32139701 PMCID: PMC7058049 DOI: 10.1038/s41467-020-14869-x] [Citation(s) in RCA: 141] [Impact Index Per Article: 35.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2019] [Accepted: 02/04/2020] [Indexed: 12/13/2022] Open
Abstract
Tumor metastasis is a hallmark of cancer. Metastatic cancer cells often reside in distal tissues and organs in their dormant state. Mechanisms underlying the pre-metastatic niche formation are poorly understood. Here we show that in a colorectal cancer (CRC) model, primary tumors release integrin beta-like 1 (ITGBL1)-rich extracellular vesicles (EVs) to the circulation to activate resident fibroblasts in remote organs. The activated fibroblasts induce the pre-metastatic niche formation and promote metastatic cancer growth by secreting pro-inflammatory cytokine, such as IL-6 and IL-8. Mechanistically, the primary CRC-derived ITGBL1-enriched EVs stimulate the TNFAIP3-mediated NF-κB signaling pathway to activate fibroblasts. Consequently, the activated fibroblasts produce high levels of pro-inflammatory cytokines to promote metastatic cancer growth. These findings uncover a tumor-stromal interaction in the metastatic tumor microenvironment and an intimate signaling communication between primary tumors and metastases through the ITGBL1-loaded EVs. Targeting the EVs-ITGBL1-CAFs-TNFAIP3-NF-κB signaling axis provides an attractive approach for treating metastatic diseases.
Collapse
Affiliation(s)
- Qing Ji
- Department of Medical Oncology and cancer institute, Shuguang Hospital, Shanghai University of Traditional Chinese Medicine, 201203, Shanghai, China
- Academy of Integrative Medicine, Shanghai University of Traditional Chinese Medicine, 201203, Shanghai, China
| | - Lihong Zhou
- Department of Medical Oncology and cancer institute, Shuguang Hospital, Shanghai University of Traditional Chinese Medicine, 201203, Shanghai, China
- Academy of Integrative Medicine, Shanghai University of Traditional Chinese Medicine, 201203, Shanghai, China
| | - Hua Sui
- Department of Medical Oncology and cancer institute, Shuguang Hospital, Shanghai University of Traditional Chinese Medicine, 201203, Shanghai, China
- Academy of Integrative Medicine, Shanghai University of Traditional Chinese Medicine, 201203, Shanghai, China
| | - Liu Yang
- Department of Medical Oncology and cancer institute, Shuguang Hospital, Shanghai University of Traditional Chinese Medicine, 201203, Shanghai, China
| | - Xinnan Wu
- Department of Medical Oncology and cancer institute, Shuguang Hospital, Shanghai University of Traditional Chinese Medicine, 201203, Shanghai, China
- Academy of Integrative Medicine, Shanghai University of Traditional Chinese Medicine, 201203, Shanghai, China
| | - Qing Song
- Department of Medical Oncology and cancer institute, Shuguang Hospital, Shanghai University of Traditional Chinese Medicine, 201203, Shanghai, China
- Academy of Integrative Medicine, Shanghai University of Traditional Chinese Medicine, 201203, Shanghai, China
| | - Ru Jia
- Department of Medical Oncology and cancer institute, Shuguang Hospital, Shanghai University of Traditional Chinese Medicine, 201203, Shanghai, China
| | - Ruixiao Li
- Department of Medical Oncology and cancer institute, Shuguang Hospital, Shanghai University of Traditional Chinese Medicine, 201203, Shanghai, China
- Academy of Integrative Medicine, Shanghai University of Traditional Chinese Medicine, 201203, Shanghai, China
| | - Jian Sun
- Department of Medical Oncology and cancer institute, Shuguang Hospital, Shanghai University of Traditional Chinese Medicine, 201203, Shanghai, China
| | - Ziyuan Wang
- Department of Medical Oncology and cancer institute, Shuguang Hospital, Shanghai University of Traditional Chinese Medicine, 201203, Shanghai, China
| | - Ningning Liu
- Department of Medical Oncology and cancer institute, Shuguang Hospital, Shanghai University of Traditional Chinese Medicine, 201203, Shanghai, China
| | - Yuanyuan Feng
- Department of Medical Oncology and cancer institute, Shuguang Hospital, Shanghai University of Traditional Chinese Medicine, 201203, Shanghai, China
| | - Xiaoting Sun
- Department of Medical Oncology and cancer institute, Shuguang Hospital, Shanghai University of Traditional Chinese Medicine, 201203, Shanghai, China
- Academy of Integrative Medicine, Shanghai University of Traditional Chinese Medicine, 201203, Shanghai, China
| | - Gang Cai
- Department of Medical Oncology and cancer institute, Shuguang Hospital, Shanghai University of Traditional Chinese Medicine, 201203, Shanghai, China
| | - Yu Feng
- Department of Medical Oncology and cancer institute, Shuguang Hospital, Shanghai University of Traditional Chinese Medicine, 201203, Shanghai, China
| | - Jianfeng Cai
- Department of Chemistry, University of South Florida, Tampa, FL, 33620, USA
| | - Yihai Cao
- Academy of Integrative Medicine, Shanghai University of Traditional Chinese Medicine, 201203, Shanghai, China
- Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet, Stockholm, 171 77, Sweden
| | - Guoxiang Cai
- Department of Colorectal Surgery, Fudan University Shanghai Cancer Center, 200032, Shanghai, China.
| | - Yan Wang
- Department of Medical Oncology and cancer institute, Shuguang Hospital, Shanghai University of Traditional Chinese Medicine, 201203, Shanghai, China.
- Academy of Integrative Medicine, Shanghai University of Traditional Chinese Medicine, 201203, Shanghai, China.
| | - Qi Li
- Department of Medical Oncology and cancer institute, Shuguang Hospital, Shanghai University of Traditional Chinese Medicine, 201203, Shanghai, China.
- Academy of Integrative Medicine, Shanghai University of Traditional Chinese Medicine, 201203, Shanghai, China.
| |
Collapse
|
43
|
Andrade F, Nakata A, Gotoh N, Fujita A. Large miRNA survival analysis reveals a prognostic four-biomarker signature for triple negative breast cancer. Genet Mol Biol 2020; 43:e20180269. [PMID: 31487369 PMCID: PMC7198019 DOI: 10.1590/1678-4685-gmb-2018-0269] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2018] [Accepted: 04/11/2019] [Indexed: 01/03/2023] Open
Abstract
Triple negative breast cancer (TNBC) is currently the only major breast tumor subtype without effective targeted therapy and, as a consequence, usually presents a poor outcome. Due to its more aggressive phenotype, there is an urgent clinical need to identify novel biomarkers that discriminate individuals with poor prognosis. We hypothesize that miRNAs can be used to this end because they are involved in the initiation and progression of tumors by altering the expression of their target genes. To identify a prognostic biomarker in TNBC, we analyzed the miRNA expression of a cohort composed of 185 patients diagnosed with TNBC using penalized Cox regression models. We identified a four-biomarker signature based on miR-221, miR-1305, miR-4708, and RMDN2 expression levels that allowed for the subdivision of TNBC into high- or low-risk groups (Hazard Ratio – HR = 0.32; 95% Confidence Interval - CI = 0.11–0.91; p = 0.03) and are also statistically associated with survival outcome in subgroups of postmenopausal status (HR = 0.19; 95% CI = 0.04–0.90; p= 0.016), node negative status (HR = 0.12; 95% CI = 0.01–1.04; p = 0.026), and tumors larger than 2cm (HR = 0.21; 95% CI = 0.05–0.81; p = 0.021). This four-biomarker signature was significantly associated with TNBC as an independent prognostic factor for survival.
Collapse
Affiliation(s)
- Fernando Andrade
- Universidade de São Paulo, Programa Internunidades de Pós-Graduação em Bioinformática, São Paulo, SP, Brazil
| | - Asuka Nakata
- Kanazawa University, Cancer Research Institute, Division of Cancer Cell Biology, Kanazawa, Ishikawa, Japan.,Universidade de São Paulo, Faculdade de Medicina, Departamento de Pediatria, São Paulo, SP, Brazil
| | - Noriko Gotoh
- Kanazawa University, Cancer Research Institute, Division of Cancer Cell Biology, Kanazawa, Ishikawa, Japan
| | - André Fujita
- Universidade de São Paulo, Instituto de Matemática e Estatística, Departamento de Ciência de Computação, São Paulo, SP, Brazil
| |
Collapse
|
44
|
Si W, Zhou J, Zhao Y, Zheng J, Cui L. SET7/9 promotes multiple malignant processes in breast cancer development via RUNX2 activation and is negatively regulated by TRIM21. Cell Death Dis 2020; 11:151. [PMID: 32102992 PMCID: PMC7044199 DOI: 10.1038/s41419-020-2350-2] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2019] [Revised: 02/08/2020] [Accepted: 02/10/2020] [Indexed: 12/21/2022]
Abstract
Although the deregulation of lysine methyltransferase (su(var)-3-9, enhancer-of-zeste, trithorax) domain-containing protein 7/9 (SET7/9) has been identified in a variety of cancers, the potential role of SET7/9 and the molecular events in which it is involved in breast cancer remain obscure. Using the online Human Protein Atlas and GEO databases, the expression of SET7/9 was analyzed. Furthermore, we investigated the underlying mechanisms using chromatin immunoprecipitation-based deep sequencing (ChIP-seq) and quantitative ChIP assays. To explore the physiological role of SET7/9, functional analyses such as CCK-8, colony formation, and transwell assays were performed and a xenograft tumor model was generated with the human breast cancer cell lines MCF-7 and MDA-MB-231. Mass spectrometry, co-immunoprecipitation, GST pull-down, and ubiquitination assays were used to explore the mechanisms of SET7/9 function in breast cancer. We evaluated the expression of SET7/9 in different breast cancer cohorts and found that higher expression indicated worse survival times in these public databases. We demonstrated positive effects of SET7/9 on cell proliferation, migration, and invasion via the activation of Runt-related transcription factor 2 (RUNX2). We demonstrate that tripartite motif-containing protein 21 (TRIM21) physically associates with SET7/9 and functions as a major negative regulator upstream of SET7/9 through a proteasome-dependent mechanism and increased ubiquitination. Taken together, our data suggest that SET7/9 has a promoting role via the regulation of RUNX2, whereas TRIM21-mediated SET7/9 degradation acts as an anti-braking system in the progression of breast cancer.
Collapse
Affiliation(s)
- Wenzhe Si
- Department of Laboratory Medicine, Peking University Third Hospital, Peking University Health Science Center, Beijing, 100191, China.
| | - Jiansuo Zhou
- Department of Laboratory Medicine, Peking University Third Hospital, Peking University Health Science Center, Beijing, 100191, China
| | - Yang Zhao
- Department of Laboratory Medicine, Peking University Third Hospital, Peking University Health Science Center, Beijing, 100191, China
| | - Jiajia Zheng
- Department of Laboratory Medicine, Peking University Third Hospital, Peking University Health Science Center, Beijing, 100191, China
| | - Liyan Cui
- Department of Laboratory Medicine, Peking University Third Hospital, Peking University Health Science Center, Beijing, 100191, China.
| |
Collapse
|
45
|
Song EK, Jeon J, Jang DG, Kim HE, Sim HJ, Kwon KY, Medina-Ruiz S, Jang HJ, Lee AR, Rho JG, Lee HS, Kim SJ, Park CY, Myung K, Kim W, Kwon T, Yang S, Park TJ. ITGBL1 modulates integrin activity to promote cartilage formation and protect against arthritis. Sci Transl Med 2019; 10:10/462/eaam7486. [PMID: 30305454 DOI: 10.1126/scitranslmed.aam7486] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2017] [Accepted: 09/20/2018] [Indexed: 11/02/2022]
Abstract
Developing and mature chondrocytes constantly interact with and remodel the surrounding extracellular matrix (ECM). Recent research indicates that integrin-ECM interaction is differentially regulated during cartilage formation (chondrogenesis). Integrin signaling is also a key source of the catabolic reactions responsible for joint destruction in both rheumatoid arthritis and osteoarthritis. However, we do not understand how chondrocytes dynamically regulate integrin signaling in such an ECM-rich environment. Here, we found that developing chondrocytes express integrin-β-like 1 (Itgbl1) at specific stages, inhibiting integrin signaling and promoting chondrogenesis. Unlike cytosolic integrin inhibitors, ITGBL1 is secreted and physically interacts with integrins to down-regulate activity. We observed that Itgbl1 expression was strongly reduced in the damaged articular cartilage of patients with osteoarthritis (OA). Ectopic expression of Itgbl1 protected joint cartilage against OA development in the destabilization of the medial meniscus-induced OA mouse model. Our results reveal ITGBL1 signaling as an underlying mechanism of protection against destructive cartilage disorders and suggest the potential therapeutic utility of targeting ITGBL1 to modulate integrin signaling in human disease.
Collapse
Affiliation(s)
- Eun Kyung Song
- School of Life Sciences, Ulsan National Institute of Science and Technology, Ulsan 44919, Republic of Korea.,Center for Genomic Integrity, Institute for Basic Science, Ulsan 44919, Republic of Korea
| | - Jimin Jeon
- Department of Pharmacology, Ajou University School of Medicine, Suwon 16499, Republic of Korea.,Department of Biomedical Sciences, Graduate School, Ajou University, Suwon 16499, Republic of Korea.,CIRNO, Sungkyunkwan University, Suwon 16419, Republic of Korea
| | - Dong Gil Jang
- School of Life Sciences, Ulsan National Institute of Science and Technology, Ulsan 44919, Republic of Korea
| | - Ha Eun Kim
- School of Life Sciences, Ulsan National Institute of Science and Technology, Ulsan 44919, Republic of Korea
| | - Hyo Jung Sim
- School of Life Sciences, Ulsan National Institute of Science and Technology, Ulsan 44919, Republic of Korea
| | - Keun Yeong Kwon
- School of Life Sciences, Ulsan National Institute of Science and Technology, Ulsan 44919, Republic of Korea
| | - Sofia Medina-Ruiz
- Department of Molecular and Cell Biology, University of California, Berkeley, CA 94720, USA
| | - Hyun-Jun Jang
- School of Life Sciences, Ulsan National Institute of Science and Technology, Ulsan 44919, Republic of Korea
| | - Ah Reum Lee
- School of Life Sciences, Ulsan National Institute of Science and Technology, Ulsan 44919, Republic of Korea
| | - Jun Gi Rho
- Department of Molecular Science and Technology, Ajou University, Suwon 16499, Republic of Korea
| | - Hyun-Shik Lee
- KNU-Center for Nonlinear Dynamics, CMRI, School of Life Sciences, BK21 Plus KNU Creative BioResearch Group, College of Natural Sciences, Kyungpook National University, Daegu 41566, Republic of Korea
| | - Seok Jung Kim
- Department of Orthopaedic Surgery, College of Medicine, The Catholic University of Korea, Seoul 06591, Republic of Korea
| | - Chan Young Park
- School of Life Sciences, Ulsan National Institute of Science and Technology, Ulsan 44919, Republic of Korea
| | - Kyungjae Myung
- Center for Genomic Integrity, Institute for Basic Science, Ulsan 44919, Republic of Korea
| | - Wook Kim
- Department of Molecular Science and Technology, Ajou University, Suwon 16499, Republic of Korea
| | - Taejoon Kwon
- School of Life Sciences, Ulsan National Institute of Science and Technology, Ulsan 44919, Republic of Korea
| | - Siyoung Yang
- Department of Pharmacology, Ajou University School of Medicine, Suwon 16499, Republic of Korea. .,Department of Biomedical Sciences, Graduate School, Ajou University, Suwon 16499, Republic of Korea.,CIRNO, Sungkyunkwan University, Suwon 16419, Republic of Korea
| | - Tae Joo Park
- School of Life Sciences, Ulsan National Institute of Science and Technology, Ulsan 44919, Republic of Korea. .,Center for Genomic Integrity, Institute for Basic Science, Ulsan 44919, Republic of Korea
| |
Collapse
|
46
|
Wang HB, Huang R, Yang K, Xu M, Fan D, Liu MX, Huang SH, Liu LB, Wu HM, Tang QZ. Identification of differentially expressed genes and preliminary validations in cardiac pathological remodeling induced by transverse aortic constriction. Int J Mol Med 2019; 44:1447-1461. [PMID: 31364721 PMCID: PMC6713409 DOI: 10.3892/ijmm.2019.4291] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2019] [Accepted: 07/09/2019] [Indexed: 02/06/2023] Open
Abstract
Cardiac remodeling predisposes to heart failure if the burden is unresolved, and heart failure is an important cause of mortality in humans. The aim of the present study was to identify the key genes involved in cardiac pathological remodeling induced by pressure overload. Gene expression profiles of the GSE5500, GSE18224, GSE36074 and GSE56348 datasets were downloaded from the Gene Expression Omnibus database. Differentially expressed genes (DEGs), defined as |log2FC|>1 (FC, fold change) and an adjusted P‑value of <0.05, were screened using the R software with the limma package. Gene ontology enrichment analysis was performed and a protein‑protein interaction (PPI) network of the DEGs was constructed. A cardiac remodeling model induced by transverse aortic constriction (TAC) was established. Furthermore, consistent DEGs were further validated using reverse transcription‑quantitative polymerase chain reaction (RT‑PCR) analysis, western blotting and immunohistochemistry in the ventricular tissue samples after TAC or sham operation. A total of 24 common DEGs were identified (23 significantly upregulated and 1 downregulated), of which 9 genes had been previously confirmed to be directly involved in cardiac remodeling. Hence, the level of expression of the other 15 genes was detected in subsequent studies via RT‑PCR. Based on the results of the PPI network analysis and RT‑PCR, we further detected the protein levels of Itgbl1 and Asporin, which were consistent with the results of bioinformatics analysis and RT‑PCR. The expression of Itgbl1, Aspn, Fstl1, Mfap5, Col8a1, Ltbp2, Mfap4, Pamr1, Cnksr1, Aqp8, Meox1, Gdf15 and Srpx was found to be upregulated in a mouse model of cardiac remodeling, while that of Retnla was downregulated. Therefore, the present study identified the key genes implicated in cardiac remodeling, aiming to provide new insight into the underlying mechanism.
Collapse
Affiliation(s)
- Hui-Bo Wang
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, Hubei 430060, P.R. China
| | - Rong Huang
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, Hubei 430060, P.R. China
| | - Kang Yang
- Department of Urology, Renmin Hospital of Wuhan University, Wuhan, Hubei 430060, P.R. China
| | - Man Xu
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, Hubei 430060, P.R. China
| | - Di Fan
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, Hubei 430060, P.R. China
| | - Ming-Xin Liu
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, Hubei 430060, P.R. China
| | - Si-Hui Huang
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, Hubei 430060, P.R. China
| | - Li-Bo Liu
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, Hubei 430060, P.R. China
| | - Hai-Ming Wu
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, Hubei 430060, P.R. China
| | - Qi-Zhu Tang
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, Hubei 430060, P.R. China
| |
Collapse
|
47
|
Fonti C, Saumet A, Abi‐Khalil A, Orsetti B, Cleroux E, Bender A, Dumas M, Schmitt E, Colinge J, Jacot W, Weber M, Sardet C, du Manoir S, Theillet C. Distinct oncogenes drive different genome and epigenome alterations in human mammary epithelial cells. Int J Cancer 2019; 145:1299-1311. [DOI: 10.1002/ijc.32413] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2019] [Revised: 04/15/2019] [Accepted: 05/02/2019] [Indexed: 12/22/2022]
Affiliation(s)
- Claire Fonti
- IRCM, Institut de Recherche en Cancérologie de Montpellier, INSERM U1194, Université de Montpellier Montpellier France
| | - Anne Saumet
- IRCM, Institut de Recherche en Cancérologie de Montpellier, INSERM U1194, Université de Montpellier Montpellier France
| | - Amanda Abi‐Khalil
- IRCM, Institut de Recherche en Cancérologie de Montpellier, INSERM U1194, Université de Montpellier Montpellier France
| | - Béatrice Orsetti
- IRCM, Institut de Recherche en Cancérologie de Montpellier, INSERM U1194, Université de Montpellier Montpellier France
- ICM, Institut Régional du Cancer de Montpellier Montpellier France
| | - Elouan Cleroux
- CNRS, University of Strasbourg, UMR 7242 Biotechnology and Cell Signaling Strasbourg France
| | - Ambre Bender
- CNRS, University of Strasbourg, UMR 7242 Biotechnology and Cell Signaling Strasbourg France
| | - Michael Dumas
- CNRS, University of Strasbourg, UMR 7242 Biotechnology and Cell Signaling Strasbourg France
| | - Emeline Schmitt
- IRCM, Institut de Recherche en Cancérologie de Montpellier, INSERM U1194, Université de Montpellier Montpellier France
| | - Jacques Colinge
- IRCM, Institut de Recherche en Cancérologie de Montpellier, INSERM U1194, Université de Montpellier Montpellier France
| | - William Jacot
- ICM, Institut Régional du Cancer de Montpellier Montpellier France
| | - Michael Weber
- CNRS, University of Strasbourg, UMR 7242 Biotechnology and Cell Signaling Strasbourg France
| | - Claude Sardet
- IRCM, Institut de Recherche en Cancérologie de Montpellier, INSERM U1194, Université de Montpellier Montpellier France
| | - Stanislas du Manoir
- IRCM, Institut de Recherche en Cancérologie de Montpellier, INSERM U1194, Université de Montpellier Montpellier France
| | - Charles Theillet
- IRCM, Institut de Recherche en Cancérologie de Montpellier, INSERM U1194, Université de Montpellier Montpellier France
- ICM, Institut Régional du Cancer de Montpellier Montpellier France
| |
Collapse
|
48
|
Abstract
Cancers are not composed merely of cancer cells alone; instead, they are complex 'ecosystems' comprising many different cell types and noncellular factors. The tumour stroma is a critical component of the tumour microenvironment, where it has crucial roles in tumour initiation, progression, and metastasis. Most anticancer therapies target cancer cells specifically, but the tumour stroma can promote the resistance of cancer cells to such therapies, eventually resulting in fatal disease. Therefore, novel treatment strategies should combine anticancer and antistromal agents. Herein, we provide an overview of the advances in understanding the complex cancer cell-tumour stroma interactions and discuss how this knowledge can result in more effective therapeutic strategies, which might ultimately improve patient outcomes.
Collapse
|
49
|
Li W, Li S, Yang J, Cui C, Yu M, Zhang Y. ITGBL1 promotes EMT, invasion and migration by activating NF-κB signaling pathway in prostate cancer. Onco Targets Ther 2019; 12:3753-3763. [PMID: 31190876 PMCID: PMC6529605 DOI: 10.2147/ott.s200082] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2019] [Accepted: 04/01/2019] [Indexed: 12/19/2022] Open
Abstract
Background: Integrin beta-like 1 (ITGBL1) was extensively demonstrated to contribute the metastasis and progression in a variety of cancers. However, its role of ITGBL1 in prostate cancer (PCa) is still not reported. Methods: Reverse transcription-quantitative polymerase chain reaction (RT-qPCR) and western blot were performed to detect ITGBL1 expression in PCa tissues and cell lines. Immunohistochemical (IHC) staining of ITGBL1 in 174 PCa tissues was performed. The influence of ITGL1 expression in PCa cells epithelial-mesenchymal transition (EMT), migration and invasion was investigated. Notably, the possible mechanisms underlying the action of ITGBL1 in vivo and vitro assays were explored. Results: We analyzed PCa dataset from The Cancer Genome Atlas (TCGA) and found that ITGBL1 was upregulated in PCa tissues. Overexpression of ITGBL1 is positively associated with the progression and lymph node metastasis in PCa patients. Furthermore, upregulating ITGBL1 enhanced the invasion, migration abilities and EMT in PCa cells. Conversely, downregulating ITGBL1 exhibited an opposite effect. Our findings further demonstrated that ITGBL1 promoted invasion and migration via activating NF-κB signaling in PCa cells. Conclusion: Therefore, our results identify a novel metastasis-related gene in PCa, which will help to develop a novel therapeutic strategy in metastatic PCa.
Collapse
Affiliation(s)
- Wenze Li
- Department of Urinary Surgery, The First hospital of Xiangtan city, Xiangtan 411101, People's Republic of China
| | - Shuren Li
- Department of Urinary Surgery, The First hospital of Xiangtan city, Xiangtan 411101, People's Republic of China
| | - Jie Yang
- Department of Urinary Surgery, The First hospital of Xiangtan city, Xiangtan 411101, People's Republic of China
| | - Chunyan Cui
- Department of Radiology, Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangzhou 510060, People's Republic of China
| | - Miao Yu
- Center for Private Medical Service and Healthcare, The First Hospital of Sun Yat-sen University, Guangzhou, Guangdong 510080, People's Republic of China
| | - Yadong Zhang
- Department of Andrology, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou 510080, People's Republic of China
| |
Collapse
|
50
|
Sabin KZ, Jiang P, Gearhart MD, Stewart R, Echeverri K. AP-1 cFos/JunB/miR-200a regulate the pro-regenerative glial cell response during axolotl spinal cord regeneration. Commun Biol 2019; 2:91. [PMID: 30854483 PMCID: PMC6403268 DOI: 10.1038/s42003-019-0335-4] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2018] [Accepted: 02/04/2019] [Indexed: 12/30/2022] Open
Abstract
Salamanders have the remarkable ability to functionally regenerate after spinal cord transection. In response to injury, GFAP+ glial cells in the axolotl spinal cord proliferate and migrate to replace the missing neural tube and create a permissive environment for axon regeneration. Molecular pathways that regulate the pro-regenerative axolotl glial cell response are poorly understood. Here we show axolotl glial cells up-regulate AP-1cFos/JunB after injury, which promotes a pro-regenerative glial cell response. Injury induced upregulation of miR-200a in glial cells supresses c-Jun expression in these cells. Inhibition of miR-200a during regeneration causes defects in axonal regrowth and transcriptomic analysis revealed that miR-200a inhibition leads to differential regulation of genes involved with reactive gliosis, the glial scar, extracellular matrix remodeling and axon guidance. This work identifies a unique role for miR-200a in inhibiting reactive gliosis in axolotl glial cells during spinal cord regeneration. Keith Sabin et al. showed that upregulation of the AP-1 complex, composed of c-Fos and JunB, in the axolotl spinal cord promotes a pro-regenerative glial cell response. This response is impaired by inhibition of miR-200a; suggesting an important role for this microRNA in axolotl spinal cord regeneration.
Collapse
Affiliation(s)
- Keith Z Sabin
- Department of Genetics, Cell Biology and Development, University of Minnesota, Minneapolis, MN, 55455, USA.,Marine Biological Laboratory, Eugene Bell Center for Regenerative Biology and Tissue Engineering, Woods Hole, 02543, MA, USA
| | - Peng Jiang
- Morgridge Institute for Research, Madison, 53715, WI, USA
| | - Micah D Gearhart
- Department of Genetics, Cell Biology and Development, University of Minnesota, Minneapolis, MN, 55455, USA
| | - Ron Stewart
- Morgridge Institute for Research, Madison, 53715, WI, USA
| | - Karen Echeverri
- Department of Genetics, Cell Biology and Development, University of Minnesota, Minneapolis, MN, 55455, USA. .,Marine Biological Laboratory, Eugene Bell Center for Regenerative Biology and Tissue Engineering, Woods Hole, 02543, MA, USA.
| |
Collapse
|