1
|
Diop MP, van der Stegen SJC. The Pluripotent Path to Immunotherapy. Exp Hematol 2024; 139:104648. [PMID: 39251182 DOI: 10.1016/j.exphem.2024.104648] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2024] [Revised: 08/14/2024] [Accepted: 09/03/2024] [Indexed: 09/11/2024]
Abstract
Adoptive cell therapy (ACT) enhances the patient's own immune cells' ability to identify and eliminate cancer cells. Several immune cell types are currently being applied in autologous ACT, including T cells, natural killer (NK) cells, and macrophages. The cells' inherent antitumor capacity can be used, or they can be targeted toward tumor-associated antigen through expression of a chimeric antigen receptor (CAR). Although CAR-based ACT has achieved great results in hematologic malignancies, the accessibility of ACT is limited by the autologous nature of the therapy. Induced pluripotent stem cells (iPSCs) hold the potential to address this challenge, because they can provide an unlimited source for the in vitro generation of immune cells. Various immune subsets have been generated from iPSC for application in ACT, including several T-cell subsets (αβT cells, mucosal-associated invariant T cells, invariant NKT [iNKT] cells, and γδT cells), as well as NK cells, macrophages, and neutrophils. iPSC-derived αβT, NK, and iNKT cells are currently being tested in phase I clinical trials. The ability to perform (multiplexed) gene editing at the iPSC level and subsequent differentiation into effector populations not only expands the arsenal of ACT but allows for development of ACT utilizing cell types which cannot be efficiently obtained from peripheral blood or engineered and expanded in vitro.
Collapse
Affiliation(s)
- Mame P Diop
- Immunology Program, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, NY
| | | |
Collapse
|
2
|
Bridge J, Johnson MJ, Kim J, Wenthe S, Krueger J, Wick B, Kluesner M, Crane AT, Bell J, Skeate JG, Moriarity BS, Webber BR. Efficient multiplex non-viral engineering and expansion of polyclonal γδ CAR-T cells for immunotherapy. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.09.03.611042. [PMID: 39464114 PMCID: PMC11507710 DOI: 10.1101/2024.09.03.611042] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 10/29/2024]
Abstract
Gamma delta (γδ) T cells are defined by their unique ability to recognize a limited repertoire of non-peptide, non-MHC-associated antigens on transformed and pathogen-infected cells. In addition to their lack of alloreactivity, γδ T cells exhibit properties distinct from other lymphocyte subsets, prompting significant interest in their development as an off-the-shelf cellular immunotherapeutic. However, their low abundance in circulation, heterogeneity, limited methods for ex vivo expansion, and under-developed methodologies for genetic modification have hindered basic study and clinical application of γδ T cells. Here, we implement a feeder-free, scalable approach for ex vivo manufacture of polyclonal, non-virally modified, gene edited chimeric antigen receptor (CAR)-γδ T cells in support of therapeutic application. Engineered CAR-γδ T cells demonstrate high function in vitro and and in vivo. Longitudinal in vivo pharmacokinetic profiling of adoptively transferred polyclonal CAR-γδ T cells uncover subset-specific responses to IL-15 cytokine armoring and multiplex base editing. Our results present a robust platform for genetic modification of polyclonal CAR-γδ T cells and present unique opportunities to further define synergy and the contribution of discrete, engineered CAR-γδ T cell subsets to therapeutic efficacy in vivo.
Collapse
Affiliation(s)
- Jacob Bridge
- Department of Pediatrics, University of Minnesota, Minneapolis, MN, USA
- Masonic Cancer Center, University of Minnesota, Minneapolis, MN, USA
- Center for Genome Engineering, University of Minnesota, Minneapolis, MN, USA
- Department of Genetics, Cell Biology and Development, University of Minnesota, Minneapolis, MN, USA
| | - Matthew J Johnson
- Department of Pediatrics, University of Minnesota, Minneapolis, MN, USA
- Masonic Cancer Center, University of Minnesota, Minneapolis, MN, USA
- Center for Genome Engineering, University of Minnesota, Minneapolis, MN, USA
| | - Jihyun Kim
- Department of Pediatrics, University of Minnesota, Minneapolis, MN, USA
- Masonic Cancer Center, University of Minnesota, Minneapolis, MN, USA
- Center for Genome Engineering, University of Minnesota, Minneapolis, MN, USA
| | - Sophia Wenthe
- Department of Pediatrics, University of Minnesota, Minneapolis, MN, USA
- Masonic Cancer Center, University of Minnesota, Minneapolis, MN, USA
- Center for Genome Engineering, University of Minnesota, Minneapolis, MN, USA
| | - Joshua Krueger
- Department of Pediatrics, University of Minnesota, Minneapolis, MN, USA
- Masonic Cancer Center, University of Minnesota, Minneapolis, MN, USA
- Center for Genome Engineering, University of Minnesota, Minneapolis, MN, USA
| | - Bryce Wick
- Department of Pediatrics, University of Minnesota, Minneapolis, MN, USA
- Masonic Cancer Center, University of Minnesota, Minneapolis, MN, USA
- Center for Genome Engineering, University of Minnesota, Minneapolis, MN, USA
| | - Mitchell Kluesner
- Molecular and Cellular Biology Graduate Program, University of Washington, Seattle, WA, USA
- Human Biology Division, Fred Hutchinson Cancer Research Center, Seattle, WA, USA
| | - Andrew T Crane
- Department of Pediatrics, University of Minnesota, Minneapolis, MN, USA
- Masonic Cancer Center, University of Minnesota, Minneapolis, MN, USA
- Center for Genome Engineering, University of Minnesota, Minneapolis, MN, USA
| | - Jason Bell
- Department of Pediatrics, University of Minnesota, Minneapolis, MN, USA
- Masonic Cancer Center, University of Minnesota, Minneapolis, MN, USA
- Center for Genome Engineering, University of Minnesota, Minneapolis, MN, USA
| | - Joseph G Skeate
- Department of Pediatrics, University of Minnesota, Minneapolis, MN, USA
- Masonic Cancer Center, University of Minnesota, Minneapolis, MN, USA
- Center for Genome Engineering, University of Minnesota, Minneapolis, MN, USA
| | - Branden S Moriarity
- Department of Pediatrics, University of Minnesota, Minneapolis, MN, USA
- Masonic Cancer Center, University of Minnesota, Minneapolis, MN, USA
- Center for Genome Engineering, University of Minnesota, Minneapolis, MN, USA
- Stem Cell Institute, University of Minnesota, Minneapolis, MN, USA
| | - Beau R Webber
- Department of Pediatrics, University of Minnesota, Minneapolis, MN, USA
- Masonic Cancer Center, University of Minnesota, Minneapolis, MN, USA
- Center for Genome Engineering, University of Minnesota, Minneapolis, MN, USA
- Stem Cell Institute, University of Minnesota, Minneapolis, MN, USA
| |
Collapse
|
3
|
Andrea AE, Chiron A, Sarrabayrouse G, Bessoles S, Hacein-Bey-Abina S. A structural, genetic and clinical comparison of CAR-T cells and CAR-NK cells: companions or competitors? Front Immunol 2024; 15:1459818. [PMID: 39430751 PMCID: PMC11486669 DOI: 10.3389/fimmu.2024.1459818] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2024] [Accepted: 09/16/2024] [Indexed: 10/22/2024] Open
Abstract
In recent years, following the groundbreaking achievements of chimeric antigen receptor (CAR) T cell therapy in hematological cancers, and advancements in cell engineering technologies, the exploration of other immune cells has garnered significant attention. CAR-Therapy extended beyond T cells to include CAR natural killer (NK) cells and CAR-macrophages, which are firmly established in the clinical trial landscape. Less conventional immune cells are also making their way into the scene, such as CAR mucosal-associated invariant T (MAIT) cells. This progress is advancing precision medicine and facilitating the development of ready-to-use biological treatments. However, in view of the unique features of natural killer cells, adoptive NK cell immunotherapy has emerged as a universal, allogenic, "off-the shelf" therapeutic strategy. CAR-NK cytotoxic cells present targeted tumor specificity but seem to be devoid of the side effects associated with CAR-T cells. CAR-NK cells appear to be potentially promising candidates for cancer immunotherapy. However, their application is hindered by significant challenges, particularly the limited persistence of CAR-NK cells in the body, which poses a hurdle to their sustained effectiveness in treating cancer. Based upon the foregoing, this review discusses the current status and applications of both CAR-T cells and CAR-NK cells in hematological cancers, and provides a comparative analysis of the structure, genetics, and clinical outcomes between these two types of genetically modified immune cells.
Collapse
Affiliation(s)
- Alain E. Andrea
- Department of Biology, Faculty of Arts and Sciences, Saint George University of Beirut, Beirut, Lebanon
| | - Andrada Chiron
- Université Paris Cité, Centre National de la Recherche Scientifique, Institut National de la Santé et de la Recherche Médicale, Unité des Technologies Chimiques et Biologiques pour la Santé (UTCBS), Paris, France
- Clinical Immunology Laboratory, Groupe Hospitalier Universitaire Paris Saclay, Hôpital Bicêtre, Assistance Publique-Hôpitaux de Paris, Le-Kremlin-Bicêtre, France
| | - Guillaume Sarrabayrouse
- Université Paris Cité, Centre National de la Recherche Scientifique, Institut National de la Santé et de la Recherche Médicale, Unité des Technologies Chimiques et Biologiques pour la Santé (UTCBS), Paris, France
| | - Stéphanie Bessoles
- Université Paris Cité, Centre National de la Recherche Scientifique, Institut National de la Santé et de la Recherche Médicale, Unité des Technologies Chimiques et Biologiques pour la Santé (UTCBS), Paris, France
| | - Salima Hacein-Bey-Abina
- Université Paris Cité, Centre National de la Recherche Scientifique, Institut National de la Santé et de la Recherche Médicale, Unité des Technologies Chimiques et Biologiques pour la Santé (UTCBS), Paris, France
- Clinical Immunology Laboratory, Groupe Hospitalier Universitaire Paris Saclay, Hôpital Bicêtre, Assistance Publique-Hôpitaux de Paris, Le-Kremlin-Bicêtre, France
| |
Collapse
|
4
|
Ren Y, Bao X, Feng M, Xing B, Lian W, Yao Y, Wang R. CD87-targeted BiTE and CAR-T cells potently inhibit invasive nonfunctional pituitary adenomas. SCIENCE CHINA. LIFE SCIENCES 2024; 67:2169-2185. [PMID: 38987430 DOI: 10.1007/s11427-024-2591-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/20/2024] [Accepted: 04/12/2024] [Indexed: 07/12/2024]
Abstract
Recently, bispecific T-cell engagers (BiTEs) and chimeric antigen receptor-modified T cells (CAR-Ts) have been shown to have high therapeutic efficacy in hematological tumors. CD87 is highly expressed in solid tumors with an oncogenic function. To assess their cytotoxic effects on invasive nonfunctioning pituitary adenomas (iNFPAs), we first examined CD87 expression and its effects on the metabolism of iNFPA cells. We generated CD87-specific BiTE and CAR/IL-12 T cells, and their cytotoxic effects on iNFPAs cells and in mouse models were determined. CD87 had high expression in iNFPA tissue and cell samples but was undetected in noncancerous brain samples. CD87×CD3 BiTE and CD87 CAR/IL-12 T-cells showed antigenic specificity and exerted satisfactory cytotoxic effects, decreasing tumor cell proliferation in vitro and reducing existing tumors in experimental mice. Overall, the above findings suggest that CD87 is a promising target for the immunotherapeutic management of iNFPAs using anti-CD87 BiTE and CD87-specific CAR/IL-12 T cells.
Collapse
Affiliation(s)
- Yuan Ren
- Department of Neurosurgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100730, China
| | - Xinjie Bao
- Department of Neurosurgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100730, China
| | - Ming Feng
- Department of Neurosurgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100730, China
| | - Bing Xing
- Department of Neurosurgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100730, China
| | - Wei Lian
- Department of Neurosurgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100730, China
| | - Yong Yao
- Department of Neurosurgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100730, China
| | - Renzhi Wang
- Department of Neurosurgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100730, China.
| |
Collapse
|
5
|
Lutskovich D, Meleshko A, Katsin M. State of the art and perspectives of chimeric antigen receptor T cells cell therapy for neuroblastoma. Cytotherapy 2024; 26:1122-1131. [PMID: 38852096 DOI: 10.1016/j.jcyt.2024.05.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2024] [Revised: 04/19/2024] [Accepted: 05/08/2024] [Indexed: 06/10/2024]
Abstract
Neuroblastoma (NB) is a solid, neuroendocrine pediatric solid tumor with divergent clinical behavior. Patients with high-risk diseases have poor prognoses despite complex multimodal therapy, which requires the search for new therapeutic approaches. Chimeric antigen receptor T cells (CAR-T) have led to dramatic improvements in the survival of cancer patients, most notably those with hematologic malignancies. Early-phase clinical trials of CAR-T cell therapy for NB have proven safe and feasible, but limited clinical efficacy. At the same time, multiple experimental and preclinical studies have shown that the most common in clinical trials single 2nd or 3rd generation CAR structure is not sufficient for a complete response in solid tumors. Here, we review the recent advances and future perspectives associated with engineered receptors, including several antigens binding, armored CAR-T of 4th and 5th generation and CAR-T cell combination strategies with other immunotherapy. We also summarize the results and shortcomings of ongoing clinical trials of CAR-T therapy for NB.
Collapse
Affiliation(s)
- Dzmitry Lutskovich
- Belarusian Research Center for Pediatric Oncology, Hematology and Immunology, Minsk, Belarus.
| | - Alexander Meleshko
- Belarusian Research Center for Pediatric Oncology, Hematology and Immunology, Minsk, Belarus
| | - Mikalai Katsin
- Vitebsk Regional Clinical Cancer Centre, Vitebsk, Belarus
| |
Collapse
|
6
|
Fischer-Riepe L, Kailayangiri S, Zimmermann K, Pfeifer R, Aigner M, Altvater B, Kretschmann S, Völkl S, Hartley J, Dreger C, Petry K, Bosio A, von Döllen A, Hartmann W, Lode H, Görlich D, Mackensen A, Jungblut M, Schambach A, Abken H, Rossig C. Preclinical Development of CAR T Cells with Antigen-Inducible IL18 Enforcement to Treat GD2-Positive Solid Cancers. Clin Cancer Res 2024; 30:3564-3577. [PMID: 38593230 DOI: 10.1158/1078-0432.ccr-23-3157] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2023] [Revised: 12/19/2023] [Accepted: 01/30/2024] [Indexed: 04/11/2024]
Abstract
PURPOSE Cytokine-engineering of chimeric antigen receptor-redirected T cells (CAR T cells) is a promising principle to overcome the limited activity of canonical CAR T cells against solid cancers. EXPERIMENTAL DESIGN We developed an investigational medicinal product, GD2IL18CART, consisting of CAR T cells directed against ganglioside GD2 with CAR-inducible IL18 to enhance their activation response and cytolytic effector functions in the tumor microenvironment. To allow stratification of patients according to tumor GD2 expression, we established and validated immunofluorescence detection of GD2 on paraffin-embedded tumor tissues. RESULTS Lentiviral all-in-one vector engineering of human T cells with the GD2-specific CAR with and without inducible IL18 resulted in cell products with comparable proportions of CAR-expressing central memory T cells. Production of IL18 strictly depends on GD2 antigen engagement. GD2IL18CART respond to interaction with GD2-positive tumor cells with higher IFNγ and TNFα cytokine release and more effective target cytolysis compared with CAR T cells without inducible IL18. GD2IL18CART further have superior in vivo antitumor activity, with eradication of GD2-positive tumor xenografts. Finally, we established GMP-compliant manufacturing of GD2IL18CART and found it to be feasible and efficient at clinical scale. CONCLUSIONS These results pave the way for clinical investigation of GD2IL18CART in pediatric and adult patients with neuroblastoma and other GD2-positive cancers (EU CT 2022- 501725-21-00). See related commentary by Locatelli and Quintarelli, p. 3361.
Collapse
Affiliation(s)
- Lena Fischer-Riepe
- Department of Pediatric Hematology and Oncology, University Children's Hospital Muenster, Muenster, Germany
| | - Sareetha Kailayangiri
- Department of Pediatric Hematology and Oncology, University Children's Hospital Muenster, Muenster, Germany
| | - Katharina Zimmermann
- Institute of Experimental Hematology, Hannover Medical School, Hannover, Germany
| | - Rita Pfeifer
- Miltenyi Biotec B.V. & Co. KG, Bergisch Gladbach, Germany
| | - Michael Aigner
- Department of Internal Medicine 5 - Hematology and Oncology, Friedrich Alexander University Erlangen-Nuremberg (FAU) and Universitätsklinikum Erlangen, Erlangen, Germany
- Deutsches Zentrum für Immuntherapie (DZI), Friedrich Alexander University Erlangen-Nuremberg and Universitätsklinikum Erlangen, Erlangen, Germany
| | - Bianca Altvater
- Department of Pediatric Hematology and Oncology, University Children's Hospital Muenster, Muenster, Germany
| | - Sascha Kretschmann
- Department of Internal Medicine 5 - Hematology and Oncology, Friedrich Alexander University Erlangen-Nuremberg (FAU) and Universitätsklinikum Erlangen, Erlangen, Germany
- Deutsches Zentrum für Immuntherapie (DZI), Friedrich Alexander University Erlangen-Nuremberg and Universitätsklinikum Erlangen, Erlangen, Germany
| | - Simon Völkl
- Department of Internal Medicine 5 - Hematology and Oncology, Friedrich Alexander University Erlangen-Nuremberg (FAU) and Universitätsklinikum Erlangen, Erlangen, Germany
- Deutsches Zentrum für Immuntherapie (DZI), Friedrich Alexander University Erlangen-Nuremberg and Universitätsklinikum Erlangen, Erlangen, Germany
| | - Jordan Hartley
- Division of Genetic Immunotherapy, Leibniz Institute for Immunotherapy (LIT) and University of Regensburg, Regensburg, Germany
| | - Celine Dreger
- Division of Genetic Immunotherapy, Leibniz Institute for Immunotherapy (LIT) and University of Regensburg, Regensburg, Germany
| | - Katja Petry
- Miltenyi Biomedicine GmbH, Bergisch Gladbach, Germany
| | - Andreas Bosio
- Miltenyi Biotec B.V. & Co. KG, Bergisch Gladbach, Germany
| | - Angelika von Döllen
- Institute of Transfusion Medicine and Cell Therapy, University Hospital Muenster, Muenster, Germany
| | - Wolfgang Hartmann
- Gerhard-Domagk-Institute of Pathology, University of Muenster, Muenster, Germany
| | - Holger Lode
- Pediatric Hematology-Oncology Department, University Medicine Greifswald, Greifswald, Germany
| | - Dennis Görlich
- Institute of Biostatistics and Clinical Research, University of Muenster
| | - Andreas Mackensen
- Department of Internal Medicine 5 - Hematology and Oncology, Friedrich Alexander University Erlangen-Nuremberg (FAU) and Universitätsklinikum Erlangen, Erlangen, Germany
- Deutsches Zentrum für Immuntherapie (DZI), Friedrich Alexander University Erlangen-Nuremberg and Universitätsklinikum Erlangen, Erlangen, Germany
| | | | - Axel Schambach
- Institute of Experimental Hematology, Hannover Medical School, Hannover, Germany
- REBIRTH Research Center for Translational Regenerative Medicine, Hannover Medical School, Hannover, Germany
| | - Hinrich Abken
- Division of Genetic Immunotherapy, Leibniz Institute for Immunotherapy (LIT) and University of Regensburg, Regensburg, Germany
| | - Claudia Rossig
- Department of Pediatric Hematology and Oncology, University Children's Hospital Muenster, Muenster, Germany
- Institute of Transfusion Medicine and Cell Therapy, University Hospital Muenster, Muenster, Germany
- Cells-in-Motion Cluster of Excellence (EXC 1003 - CiM), University of Muenster, Muenster, Germany
- Princess Máxima Center for Pediatric Oncology, Utrecht, the Netherlands
| |
Collapse
|
7
|
Dou Z, Bonacci TR, Shou P, Landoni E, Woodcock MG, Sun C, Savoldo B, Herring LE, Emanuele MJ, Song F, Baldwin AS, Wan Y, Dotti G, Zhou X. 4-1BB-encoding CAR causes cell death via sequestration of the ubiquitin-modifying enzyme A20. Cell Mol Immunol 2024; 21:905-917. [PMID: 38937625 PMCID: PMC11291893 DOI: 10.1038/s41423-024-01198-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2023] [Accepted: 06/14/2024] [Indexed: 06/29/2024] Open
Abstract
CD28 and 4-1BB costimulatory endodomains included in chimeric antigen receptor (CAR) molecules play a critical role in promoting sustained antitumor activity of CAR-T cells. However, the molecular events associated with the ectopic and constitutive display of either CD28 or 4-1BB in CAR-T cells have been only partially explored. In the current study, we demonstrated that 4-1BB incorporated within the CAR leads to cell cluster formation and cell death in the forms of both apoptosis and necroptosis in the absence of CAR tonic signaling. Mechanistic studies illustrate that 4-1BB sequesters A20 to the cell membrane in a TRAF-dependent manner causing A20 functional deficiency that in turn leads to NF-κB hyperactivity, cell aggregation via ICAM-1 overexpression, and cell death including necroptosis via RIPK1/RIPK3/MLKL pathway. Genetic modulations obtained by either overexpressing A20 or releasing A20 from 4-1BB by deleting the TRAF-binding motifs of 4-1BB rescue cell cluster formation and cell death and enhance the antitumor ability of 4-1BB-costimulated CAR-T cells.
Collapse
Affiliation(s)
- Zhangqi Dou
- Lineberger Comprehensive Cancer Center, University of North Carolina, Chapel Hill, NC, USA
- Department of Neurosurgery, Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, China
| | | | - Peishun Shou
- Lineberger Comprehensive Cancer Center, University of North Carolina, Chapel Hill, NC, USA
| | - Elisa Landoni
- Lineberger Comprehensive Cancer Center, University of North Carolina, Chapel Hill, NC, USA
| | - Mark G Woodcock
- Lineberger Comprehensive Cancer Center, University of North Carolina, Chapel Hill, NC, USA
- Division of Oncology, Department of Medicine, The University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Chuang Sun
- Lineberger Comprehensive Cancer Center, University of North Carolina, Chapel Hill, NC, USA
| | - Barbara Savoldo
- Lineberger Comprehensive Cancer Center, University of North Carolina, Chapel Hill, NC, USA
- Department of Pediatrics, University of North Carolina, Chapel Hill, NC, USA
| | - Laura E Herring
- Michael Hooker Proteomics Center, Department of Pharmacology, University of North Carolina, Chapel Hill, NC, USA
| | - Michael J Emanuele
- Department of Genetics, University of North Carolina, Chapel Hill, NC, USA
| | - Feifei Song
- Lineberger Comprehensive Cancer Center, University of North Carolina, Chapel Hill, NC, USA
| | - Albert S Baldwin
- Lineberger Comprehensive Cancer Center, University of North Carolina, Chapel Hill, NC, USA
- Department of Genetics, University of North Carolina, Chapel Hill, NC, USA
| | - Yisong Wan
- Lineberger Comprehensive Cancer Center, University of North Carolina, Chapel Hill, NC, USA
- Department of Microbiology and Immunology, University of North Carolina, Chapel Hill, NC, USA
| | - Gianpietro Dotti
- Lineberger Comprehensive Cancer Center, University of North Carolina, Chapel Hill, NC, USA.
- Department of Microbiology and Immunology, University of North Carolina, Chapel Hill, NC, USA.
| | - Xin Zhou
- Lineberger Comprehensive Cancer Center, University of North Carolina, Chapel Hill, NC, USA.
- Department of Microbiology and Immunology, University of North Carolina, Chapel Hill, NC, USA.
| |
Collapse
|
8
|
Thomas P, Paris P, Pecqueur C. Arming Vδ2 T Cells with Chimeric Antigen Receptors to Combat Cancer. Clin Cancer Res 2024; 30:3105-3116. [PMID: 38747974 PMCID: PMC11292201 DOI: 10.1158/1078-0432.ccr-23-3495] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2023] [Revised: 01/19/2024] [Accepted: 04/18/2024] [Indexed: 08/02/2024]
Abstract
Immunotherapy has emerged as a promising approach in the field of cancer treatment, with chimeric antigen receptor (CAR) T-cell therapy demonstrating remarkable success. However, challenges such as tumor antigen heterogeneity, immune evasion, and the limited persistence of CAR-T cells have prompted the exploration of alternative cell types for CAR-based strategies. Gamma delta T cells, a unique subset of lymphocytes with inherent tumor recognition capabilities and versatile immune functions, have garnered increasing attention in recent years. In this review, we present how arming Vδ2-T cells might be the basis for next-generation immunotherapies against solid tumors. Following a comprehensive overview of γδ T-cell biology and innovative CAR engineering strategies, we discuss the clinical potential of Vδ2 CAR-T cells in overcoming the current limitations of immunotherapy in solid tumors. Although the applications of Vδ2 CAR-T cells in cancer research are relatively in their infancy and many challenges are yet to be identified, Vδ2 CAR-T cells represent a promising breakthrough in cancer immunotherapy.
Collapse
Affiliation(s)
- Pauline Thomas
- Nantes Université, CRCI2NA, INSERM, CNRS, Nantes, France
| | - Pierre Paris
- Nantes Université, CRCI2NA, INSERM, CNRS, Nantes, France
| | | |
Collapse
|
9
|
Sánchez-Moreno I, Lasarte-Cia A, Martín-Otal C, Casares N, Navarro F, Gorraiz M, Sarrión P, Hervas-Stubbs S, Jordana L, Rodriguez-Madoz JR, San Miguel J, Prosper F, Lasarte JJ, Lozano T. Tethered IL15-IL15Rα augments antitumor activity of CD19 CAR-T cells but displays long-term toxicity in an immunocompetent lymphoma mouse model. J Immunother Cancer 2024; 12:e008572. [PMID: 38955421 PMCID: PMC11218034 DOI: 10.1136/jitc-2023-008572] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/10/2024] [Indexed: 07/04/2024] Open
Abstract
BACKGROUND Adoptive cell therapy using genetically modified T cells to express chimeric antigen receptors (CAR-T) has shown encouraging results, particularly in certain blood cancers. Nevertheless, over 40% of B cell malignancy patients experience a relapse after CAR-T therapy, likely due to inadequate persistence of the modified T cells in the body. IL15, known for its pro-survival and proliferative properties, has been suggested for incorporation into the fourth generation of CAR-T cells to enhance their persistence. However, the potential systemic toxicity associated with this cytokine warrants further evaluation. METHODS We analyzed the persistence, antitumor efficacy and potential toxicity of anti-mouse CD19 CAR-T cells which express a membrane-bound IL15-IL15Rα chimeric protein (CD19/mbIL15q CAR-T), in BALB/c mice challenged with A20 tumor cells as well as in NSG mice. RESULTS Conventional CD19 CAR-T cells showed low persistence and poor efficacy in BALB/c mice treated with mild lymphodepletion regimens (total body irradiation (TBI) of 1 Gy). CD19/mbIL15q CAR-T exhibits prolonged persistence and enhanced in vivo efficacy, effectively eliminating established A20 B cell lymphoma. However, this CD19/mbIL15q CAR-T displays important long-term toxicities, with marked splenomegaly, weight loss, transaminase elevations, and significant inflammatory findings in some tissues. Mice survival is highly compromised after CD19/mbIL15q CAR-T cell transfer, particularly if a high TBI regimen is applied before CAR-T cell transfer. CONCLUSION Tethered IL15-IL15Rα augments the antitumor activity of CD19 CAR-T cells but displays long-term toxicity in immunocompetent mice. Inducible systems to regulate IL15-IL15Rα expression could be considered to control this toxicity.
Collapse
Affiliation(s)
- Inés Sánchez-Moreno
- Immunology and Immunotherapy Program, Center for Applied Medical Research (CIMA), University of Navarra, IdISNA, Pamplona, Spain
| | - Aritz Lasarte-Cia
- Immunology and Immunotherapy Program, Center for Applied Medical Research (CIMA), University of Navarra, IdISNA, Pamplona, Spain
| | - Celia Martín-Otal
- Immunology and Immunotherapy Program, Center for Applied Medical Research (CIMA), University of Navarra, IdISNA, Pamplona, Spain
| | - Noelia Casares
- Immunology and Immunotherapy Program, Center for Applied Medical Research (CIMA), University of Navarra, IdISNA, Pamplona, Spain
| | - Flor Navarro
- Immunology and Immunotherapy Program, Center for Applied Medical Research (CIMA), University of Navarra, IdISNA, Pamplona, Spain
| | - Marta Gorraiz
- Immunology and Immunotherapy Program, Center for Applied Medical Research (CIMA), University of Navarra, IdISNA, Pamplona, Spain
| | - Patricia Sarrión
- Immunology and Immunotherapy Program, Center for Applied Medical Research (CIMA), University of Navarra, IdISNA, Pamplona, Spain
| | - Sandra Hervas-Stubbs
- Immunology and Immunotherapy Program, Center for Applied Medical Research (CIMA), University of Navarra, IdISNA, Pamplona, Spain
- Cancer Center Universidad de Navarra (CCUN), Pamplona, Spain
| | - Lorea Jordana
- Hemato-Oncology Program, Centre for Applied Medical Research (CIMA), University of Navarra, IdiSNA, Pamplona, Spain
| | - Juan Roberto Rodriguez-Madoz
- Cancer Center Universidad de Navarra (CCUN), Pamplona, Spain
- Hemato-Oncology Program, Centre for Applied Medical Research (CIMA), University of Navarra, IdiSNA, Pamplona, Spain
| | - Jesús San Miguel
- Cancer Center Universidad de Navarra (CCUN), Pamplona, Spain
- Hematology and Cell Therapy Department, Clínica Universidad de Navarra, (CUN), Pamplona, Spain
- Centro de Investigación Biomédica en Red de Cáncer (CIBERONC), Madrid, Spain
| | - Felipe Prosper
- Cancer Center Universidad de Navarra (CCUN), Pamplona, Spain
- Hemato-Oncology Program, Centre for Applied Medical Research (CIMA), University of Navarra, IdiSNA, Pamplona, Spain
- Hematology and Cell Therapy Department, Clínica Universidad de Navarra, (CUN), Pamplona, Spain
- Centro de Investigación Biomédica en Red de Cáncer (CIBERONC), Madrid, Spain
| | - Juan Jose Lasarte
- Immunology and Immunotherapy Program, Center for Applied Medical Research (CIMA), University of Navarra, IdISNA, Pamplona, Spain
- Cancer Center Universidad de Navarra (CCUN), Pamplona, Spain
| | - Teresa Lozano
- Immunology and Immunotherapy Program, Center for Applied Medical Research (CIMA), University of Navarra, IdISNA, Pamplona, Spain
- Cancer Center Universidad de Navarra (CCUN), Pamplona, Spain
| |
Collapse
|
10
|
Dias J, Garcia J, Agliardi G, Roddie C. CAR-T cell manufacturing landscape-Lessons from the past decade and considerations for early clinical development. Mol Ther Methods Clin Dev 2024; 32:101250. [PMID: 38737799 PMCID: PMC11088187 DOI: 10.1016/j.omtm.2024.101250] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/14/2024]
Abstract
CAR-T cell therapies have consolidated their position over the last decade as an effective alternative to conventional chemotherapies for the treatment of a number of hematological malignancies. With an exponential increase in the number of commercial therapies and hundreds of phase 1 trials exploring CAR-T cell efficacy in different settings (including autoimmunity and solid tumors), demand for manufacturing capabilities in recent years has considerably increased. In this review, we explore the current landscape of CAR-T cell manufacturing and discuss some of the challenges limiting production capacity worldwide. We describe the latest technical developments in GMP production platform design to facilitate the delivery of a range of increasingly complex CAR-T cell products, and the challenges associated with translation of new scientific developments into clinical products for patients. We explore all aspects of the manufacturing process, namely early development, manufacturing technology, quality control, and the requirements for industrial scaling. Finally, we discuss the challenges faced as a small academic team, responsible for the delivery of a high number of innovative products to patients. We describe our experience in the setup of an effective bench-to-clinic pipeline, with a streamlined workflow, for implementation of a diverse portfolio of phase 1 trials.
Collapse
Affiliation(s)
- Juliana Dias
- Centre for Cell, Gene and Tissue Therapeutics, Royal Free Hospital NHS Foundation Trust, London NW3 2QG, UK
- Research Department of Haematology, Cancer Institute, University College London, London WC1E 6DD, UK
| | - John Garcia
- Centre for Cell, Gene and Tissue Therapeutics, Royal Free Hospital NHS Foundation Trust, London NW3 2QG, UK
- Research Department of Haematology, Cancer Institute, University College London, London WC1E 6DD, UK
| | - Giulia Agliardi
- Centre for Cell, Gene and Tissue Therapeutics, Royal Free Hospital NHS Foundation Trust, London NW3 2QG, UK
- Research Department of Haematology, Cancer Institute, University College London, London WC1E 6DD, UK
| | - Claire Roddie
- Research Department of Haematology, Cancer Institute, University College London, London WC1E 6DD, UK
| |
Collapse
|
11
|
Hegde M, Navai S, DeRenzo C, Joseph SK, Sanber K, Wu M, Gad AZ, Janeway KA, Campbell M, Mullikin D, Nawas Z, Robertson C, Mathew PR, Zhang H, Mehta B, Bhat RR, Major A, Shree A, Gerken C, Kalra M, Chakraborty R, Thakkar SG, Dakhova O, Salsman VS, Grilley B, Lapteva N, Gee A, Dotti G, Bao R, Salem AH, Wang T, Brenner MK, Heslop HE, Wels WS, Hicks MJ, Gottschalk S, Ahmed N. Autologous HER2-specific CAR T cells after lymphodepletion for advanced sarcoma: a phase 1 trial. NATURE CANCER 2024; 5:880-894. [PMID: 38658775 DOI: 10.1038/s43018-024-00749-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/23/2022] [Accepted: 02/23/2024] [Indexed: 04/26/2024]
Abstract
In this prospective, interventional phase 1 study for individuals with advanced sarcoma, we infused autologous HER2-specific chimeric antigen receptor T cells (HER2 CAR T cells) after lymphodepletion with fludarabine (Flu) ± cyclophosphamide (Cy): 1 × 108 T cells per m2 after Flu (cohort A) or Flu/Cy (cohort B) and 1 × 108 CAR+ T cells per m2 after Flu/Cy (cohort C). The primary outcome was assessment of safety of one dose of HER2 CAR T cells after lymphodepletion. Determination of antitumor responses was the secondary outcome. Thirteen individuals were treated in 14 enrollments, and seven received multiple infusions. HER2 CAR T cells expanded after 19 of 21 infusions. Nine of 12 individuals in cohorts A and B developed grade 1-2 cytokine release syndrome. Two individuals in cohort C experienced dose-limiting toxicity with grade 3-4 cytokine release syndrome. Antitumor activity was observed with clinical benefit in 50% of individuals treated. The tumor samples analyzed showed spatial heterogeneity of immune cells and clustering by sarcoma type and by treatment response. Our results affirm HER2 as a CAR T cell target and demonstrate the safety of this therapeutic approach in sarcoma. ClinicalTrials.gov registration: NCT00902044 .
Collapse
Affiliation(s)
- Meenakshi Hegde
- Texas Children's Cancer and Hematology Center, Texas Children's Hospital, Baylor College of Medicine, Houston, TX, USA.
- Center for Cell and Gene Therapy, Texas Children's Hospital, Houston Methodist Hospital, Baylor College of Medicine, Houston, TX, USA.
- Department of Pediatrics, Baylor College of Medicine, Houston, TX, USA.
- Dan L. Duncan Comprehensive Cancer Center, Baylor College of Medicine, Houston, TX, USA.
| | - Shoba Navai
- Texas Children's Cancer and Hematology Center, Texas Children's Hospital, Baylor College of Medicine, Houston, TX, USA
- Center for Cell and Gene Therapy, Texas Children's Hospital, Houston Methodist Hospital, Baylor College of Medicine, Houston, TX, USA
- Department of Pediatrics, Baylor College of Medicine, Houston, TX, USA
- Dan L. Duncan Comprehensive Cancer Center, Baylor College of Medicine, Houston, TX, USA
| | - Christopher DeRenzo
- Texas Children's Cancer and Hematology Center, Texas Children's Hospital, Baylor College of Medicine, Houston, TX, USA
- Center for Cell and Gene Therapy, Texas Children's Hospital, Houston Methodist Hospital, Baylor College of Medicine, Houston, TX, USA
- Department of Pediatrics, Baylor College of Medicine, Houston, TX, USA
- Department of Bone Marrow Transplantation and Cellular Therapy, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Sujith K Joseph
- Texas Children's Cancer and Hematology Center, Texas Children's Hospital, Baylor College of Medicine, Houston, TX, USA
- Center for Cell and Gene Therapy, Texas Children's Hospital, Houston Methodist Hospital, Baylor College of Medicine, Houston, TX, USA
- Department of Pediatrics, Baylor College of Medicine, Houston, TX, USA
- Dan L. Duncan Comprehensive Cancer Center, Baylor College of Medicine, Houston, TX, USA
| | - Khaled Sanber
- Texas Children's Cancer and Hematology Center, Texas Children's Hospital, Baylor College of Medicine, Houston, TX, USA
- Center for Cell and Gene Therapy, Texas Children's Hospital, Houston Methodist Hospital, Baylor College of Medicine, Houston, TX, USA
- Department of Medicine, Baylor College of Medicine, Houston, TX, USA
| | - Mengfen Wu
- Dan L. Duncan Comprehensive Cancer Center, Baylor College of Medicine, Houston, TX, USA
| | - Ahmed Z Gad
- Texas Children's Cancer and Hematology Center, Texas Children's Hospital, Baylor College of Medicine, Houston, TX, USA
- Center for Cell and Gene Therapy, Texas Children's Hospital, Houston Methodist Hospital, Baylor College of Medicine, Houston, TX, USA
- Department of Pediatrics, Baylor College of Medicine, Houston, TX, USA
- Interdepartmental Program in Translational Biology and Molecular Medicine, Baylor College of Medicine, Houston, TX, USA
| | - Katherine A Janeway
- Department of Pediatrics, Boston Children's Hospital, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA, USA
| | - Matthew Campbell
- Texas Children's Cancer and Hematology Center, Texas Children's Hospital, Baylor College of Medicine, Houston, TX, USA
- Center for Cell and Gene Therapy, Texas Children's Hospital, Houston Methodist Hospital, Baylor College of Medicine, Houston, TX, USA
- Department of Pediatrics, Baylor College of Medicine, Houston, TX, USA
| | - Dolores Mullikin
- Texas Children's Cancer and Hematology Center, Texas Children's Hospital, Baylor College of Medicine, Houston, TX, USA
- Center for Cell and Gene Therapy, Texas Children's Hospital, Houston Methodist Hospital, Baylor College of Medicine, Houston, TX, USA
- Department of Pediatrics, Baylor College of Medicine, Houston, TX, USA
| | - Zeid Nawas
- Texas Children's Cancer and Hematology Center, Texas Children's Hospital, Baylor College of Medicine, Houston, TX, USA
- Center for Cell and Gene Therapy, Texas Children's Hospital, Houston Methodist Hospital, Baylor College of Medicine, Houston, TX, USA
- Department of Pediatrics, Baylor College of Medicine, Houston, TX, USA
| | - Catherine Robertson
- Center for Cell and Gene Therapy, Texas Children's Hospital, Houston Methodist Hospital, Baylor College of Medicine, Houston, TX, USA
| | - Pretty R Mathew
- Texas Children's Cancer and Hematology Center, Texas Children's Hospital, Baylor College of Medicine, Houston, TX, USA
- Center for Cell and Gene Therapy, Texas Children's Hospital, Houston Methodist Hospital, Baylor College of Medicine, Houston, TX, USA
- Department of Pediatrics, Baylor College of Medicine, Houston, TX, USA
| | - Huimin Zhang
- Center for Cell and Gene Therapy, Texas Children's Hospital, Houston Methodist Hospital, Baylor College of Medicine, Houston, TX, USA
| | - Birju Mehta
- Center for Cell and Gene Therapy, Texas Children's Hospital, Houston Methodist Hospital, Baylor College of Medicine, Houston, TX, USA
| | - Raksha R Bhat
- Texas Children's Cancer and Hematology Center, Texas Children's Hospital, Baylor College of Medicine, Houston, TX, USA
- Center for Cell and Gene Therapy, Texas Children's Hospital, Houston Methodist Hospital, Baylor College of Medicine, Houston, TX, USA
- Department of Pediatrics, Baylor College of Medicine, Houston, TX, USA
| | - Angela Major
- Department of Pathology and Immunology, Baylor College of Medicine, Houston, TX, USA
| | - Ankita Shree
- Texas Children's Cancer and Hematology Center, Texas Children's Hospital, Baylor College of Medicine, Houston, TX, USA
- Center for Cell and Gene Therapy, Texas Children's Hospital, Houston Methodist Hospital, Baylor College of Medicine, Houston, TX, USA
- Department of Pediatrics, Baylor College of Medicine, Houston, TX, USA
| | - Claudia Gerken
- Texas Children's Cancer and Hematology Center, Texas Children's Hospital, Baylor College of Medicine, Houston, TX, USA
- Center for Cell and Gene Therapy, Texas Children's Hospital, Houston Methodist Hospital, Baylor College of Medicine, Houston, TX, USA
- Department of Pediatrics, Baylor College of Medicine, Houston, TX, USA
| | - Mamta Kalra
- Texas Children's Cancer and Hematology Center, Texas Children's Hospital, Baylor College of Medicine, Houston, TX, USA
- Center for Cell and Gene Therapy, Texas Children's Hospital, Houston Methodist Hospital, Baylor College of Medicine, Houston, TX, USA
- Department of Pediatrics, Baylor College of Medicine, Houston, TX, USA
| | - Rikhia Chakraborty
- Texas Children's Cancer and Hematology Center, Texas Children's Hospital, Baylor College of Medicine, Houston, TX, USA
- Department of Pediatrics, Baylor College of Medicine, Houston, TX, USA
- Dan L. Duncan Comprehensive Cancer Center, Baylor College of Medicine, Houston, TX, USA
| | - Sachin G Thakkar
- Center for Cell and Gene Therapy, Texas Children's Hospital, Houston Methodist Hospital, Baylor College of Medicine, Houston, TX, USA
| | - Olga Dakhova
- Center for Cell and Gene Therapy, Texas Children's Hospital, Houston Methodist Hospital, Baylor College of Medicine, Houston, TX, USA
| | - Vita S Salsman
- Texas Children's Cancer and Hematology Center, Texas Children's Hospital, Baylor College of Medicine, Houston, TX, USA
- Center for Cell and Gene Therapy, Texas Children's Hospital, Houston Methodist Hospital, Baylor College of Medicine, Houston, TX, USA
- Department of Pediatrics, Baylor College of Medicine, Houston, TX, USA
| | - Bambi Grilley
- Texas Children's Cancer and Hematology Center, Texas Children's Hospital, Baylor College of Medicine, Houston, TX, USA
- Center for Cell and Gene Therapy, Texas Children's Hospital, Houston Methodist Hospital, Baylor College of Medicine, Houston, TX, USA
- Department of Pediatrics, Baylor College of Medicine, Houston, TX, USA
- Dan L. Duncan Comprehensive Cancer Center, Baylor College of Medicine, Houston, TX, USA
| | - Natalia Lapteva
- Center for Cell and Gene Therapy, Texas Children's Hospital, Houston Methodist Hospital, Baylor College of Medicine, Houston, TX, USA
- Department of Pathology and Immunology, Baylor College of Medicine, Houston, TX, USA
| | - Adrian Gee
- Texas Children's Cancer and Hematology Center, Texas Children's Hospital, Baylor College of Medicine, Houston, TX, USA
- Center for Cell and Gene Therapy, Texas Children's Hospital, Houston Methodist Hospital, Baylor College of Medicine, Houston, TX, USA
- Department of Pediatrics, Baylor College of Medicine, Houston, TX, USA
| | - Gianpietro Dotti
- Department of Microbiology and Immunology, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Riyue Bao
- Department of Medicine, University of Pittsburgh, Pittsburgh, PA, USA
- UPMC Hillman Cancer Center, Pittsburgh, PA, USA
| | | | - Tao Wang
- Dan L. Duncan Comprehensive Cancer Center, Baylor College of Medicine, Houston, TX, USA
| | - Malcolm K Brenner
- Texas Children's Cancer and Hematology Center, Texas Children's Hospital, Baylor College of Medicine, Houston, TX, USA
- Center for Cell and Gene Therapy, Texas Children's Hospital, Houston Methodist Hospital, Baylor College of Medicine, Houston, TX, USA
- Department of Pediatrics, Baylor College of Medicine, Houston, TX, USA
- Dan L. Duncan Comprehensive Cancer Center, Baylor College of Medicine, Houston, TX, USA
- Department of Medicine, Baylor College of Medicine, Houston, TX, USA
| | - Helen E Heslop
- Texas Children's Cancer and Hematology Center, Texas Children's Hospital, Baylor College of Medicine, Houston, TX, USA
- Center for Cell and Gene Therapy, Texas Children's Hospital, Houston Methodist Hospital, Baylor College of Medicine, Houston, TX, USA
- Department of Pediatrics, Baylor College of Medicine, Houston, TX, USA
- Dan L. Duncan Comprehensive Cancer Center, Baylor College of Medicine, Houston, TX, USA
- Department of Medicine, Baylor College of Medicine, Houston, TX, USA
| | - Winfried S Wels
- Georg-Speyer-Haus, Institute for Tumor Biology and Experimental Therapy, Frankfurt, Germany
- German Cancer Consortium (DKTK), partner site Frankfurt/Mainz, Frankfurt, Germany
- Frankfurt Cancer Institute, Goethe University, Frankfurt, Germany
| | - M John Hicks
- Texas Children's Cancer and Hematology Center, Texas Children's Hospital, Baylor College of Medicine, Houston, TX, USA
- Department of Pathology and Immunology, Baylor College of Medicine, Houston, TX, USA
| | - Stephen Gottschalk
- Texas Children's Cancer and Hematology Center, Texas Children's Hospital, Baylor College of Medicine, Houston, TX, USA
- Center for Cell and Gene Therapy, Texas Children's Hospital, Houston Methodist Hospital, Baylor College of Medicine, Houston, TX, USA
- Department of Pediatrics, Baylor College of Medicine, Houston, TX, USA
- Dan L. Duncan Comprehensive Cancer Center, Baylor College of Medicine, Houston, TX, USA
- Department of Bone Marrow Transplantation and Cellular Therapy, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Nabil Ahmed
- Texas Children's Cancer and Hematology Center, Texas Children's Hospital, Baylor College of Medicine, Houston, TX, USA.
- Center for Cell and Gene Therapy, Texas Children's Hospital, Houston Methodist Hospital, Baylor College of Medicine, Houston, TX, USA.
- Department of Pediatrics, Baylor College of Medicine, Houston, TX, USA.
- Dan L. Duncan Comprehensive Cancer Center, Baylor College of Medicine, Houston, TX, USA.
- Department of Pathology and Immunology, Baylor College of Medicine, Houston, TX, USA.
| |
Collapse
|
12
|
Gargett T, Truong NTH, Gardam B, Yu W, Ebert LM, Johnson A, Yeo ECF, Wittwer NL, Tapia Rico G, Logan J, Sivaloganathan P, Collis M, Ruszkiewicz A, Brown MP. Safety and biological outcomes following a phase 1 trial of GD2-specific CAR-T cells in patients with GD2-positive metastatic melanoma and other solid cancers. J Immunother Cancer 2024; 12:e008659. [PMID: 38754916 PMCID: PMC11097842 DOI: 10.1136/jitc-2023-008659] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/28/2024] [Indexed: 05/18/2024] Open
Abstract
BACKGROUND Chimeric antigen receptor (CAR) T cell therapies specific for the CD19 and B-cell maturation antigen have become an approved standard of care worldwide for relapsed and refractory B-cell malignancies. If CAR-T cell therapy for non-hematological malignancies is to achieve the same stage of clinical development, then iterative early-phase clinical testing can add value to the clinical development process for evaluating CAR-T cell products containing different CAR designs and manufactured under differing conditions. METHODS We conducted a phase 1 trial of third-generation GD2-specific CAR-T cell therapy, which has previously been tested in neuroblastoma patients. In this study, the GD2-CAR-T therapy was evaluated for the first time in metastatic melanoma patients in combination with BRAF/MEK inhibitor therapy, and as a monotherapy in patients with colorectal cancer and a patient with fibromyxoid sarcoma. Feasibility and safety were determined and persistence studies, multiplex cytokine arrays on sera and detailed immune phenotyping of the original CAR-T products, the circulating CAR-T cells, and, in select patients, the tumor-infiltrating CAR-T cells were performed. RESULTS We demonstrate the feasibility of manufacturing CAR-T products at point of care for patients with solid cancer and show that a single intravenous infusion was well tolerated with no dose-limiting toxicities or severe adverse events. In addition, we note significant improvements in CAR-T cell immune phenotype, and expansion when a modified manufacturing procedure was adopted for the latter 6 patients recruited to this 12-patient trial. We also show evidence of CAR-T cell-mediated immune activity and in some patients expanded subsets of circulating myeloid cells after CAR-T cell therapy. CONCLUSIONS This is the first report of third-generation GD2-targeting CAR-T cells in patients with metastatic melanoma and other solid cancers such as colorectal cancer, showing feasibility, safety and immune activity, but limited clinical effect. TRIAL REGISTRATION NUMBER ACTRN12613000198729.
Collapse
Affiliation(s)
- Tessa Gargett
- University of South Australia, Translational Oncology Laboratory, Centre for Cancer Biology, SA Pathology, Rundle Mall, South Australia, Australia
- Adelaide Medical School, The University of Adelaide, Adelaide, South Australia, Australia
- Cancer Clinical Trials Unit, Royal Adelaide Hospital, Adelaide, South Australia, Australia
| | - Nga T H Truong
- University of South Australia, Translational Oncology Laboratory, Centre for Cancer Biology, SA Pathology, Rundle Mall, South Australia, Australia
- Cancer Clinical Trials Unit, Royal Adelaide Hospital, Adelaide, South Australia, Australia
| | - Bryan Gardam
- University of South Australia, Translational Oncology Laboratory, Centre for Cancer Biology, SA Pathology, Rundle Mall, South Australia, Australia
- Adelaide Medical School, The University of Adelaide, Adelaide, South Australia, Australia
| | - Wenbo Yu
- University of South Australia, Translational Oncology Laboratory, Centre for Cancer Biology, SA Pathology, Rundle Mall, South Australia, Australia
- Cancer Clinical Trials Unit, Royal Adelaide Hospital, Adelaide, South Australia, Australia
| | - Lisa M Ebert
- University of South Australia, Translational Oncology Laboratory, Centre for Cancer Biology, SA Pathology, Rundle Mall, South Australia, Australia
- Adelaide Medical School, The University of Adelaide, Adelaide, South Australia, Australia
- Cancer Clinical Trials Unit, Royal Adelaide Hospital, Adelaide, South Australia, Australia
| | - Amy Johnson
- Flinders University, Adelaide, South Australia, Australia
| | - Erica C F Yeo
- University of South Australia, Translational Oncology Laboratory, Centre for Cancer Biology, SA Pathology, Rundle Mall, South Australia, Australia
| | - Nicole L Wittwer
- University of South Australia, Translational Oncology Laboratory, Centre for Cancer Biology, SA Pathology, Rundle Mall, South Australia, Australia
- Cancer Clinical Trials Unit, Royal Adelaide Hospital, Adelaide, South Australia, Australia
| | - Gonzalo Tapia Rico
- Adelaide Medical School, The University of Adelaide, Adelaide, South Australia, Australia
- Cancer Clinical Trials Unit, Royal Adelaide Hospital, Adelaide, South Australia, Australia
| | - Jesikah Logan
- Cancer Clinical Trials Unit, Royal Adelaide Hospital, Adelaide, South Australia, Australia
| | - Purany Sivaloganathan
- Cancer Clinical Trials Unit, Royal Adelaide Hospital, Adelaide, South Australia, Australia
| | - Maria Collis
- Surgical Pathology, SA Pathology, Adelaide, South Australia, Australia
| | - Andrew Ruszkiewicz
- Adelaide Medical School, The University of Adelaide, Adelaide, South Australia, Australia
- Surgical Pathology, SA Pathology, Adelaide, South Australia, Australia
- School of Pharmacy and Medical Science, University of South Australia, Adelaide, South Australia, Australia
| | - Michael P Brown
- University of South Australia, Translational Oncology Laboratory, Centre for Cancer Biology, SA Pathology, Rundle Mall, South Australia, Australia
- Adelaide Medical School, The University of Adelaide, Adelaide, South Australia, Australia
- Cancer Clinical Trials Unit, Royal Adelaide Hospital, Adelaide, South Australia, Australia
| |
Collapse
|
13
|
Yuan G, Ye M, Zhang Y, Zeng X. Challenges and strategies in relation to effective CAR-T cell immunotherapy for solid tumors. Med Oncol 2024; 41:126. [PMID: 38652178 DOI: 10.1007/s12032-024-02310-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2023] [Accepted: 01/23/2024] [Indexed: 04/25/2024]
Abstract
Chimeric Antigen Receptor T cell (CAR-T) therapy has revolutionized cancer treatment, but its application to solid tumors is limited. CAR-T cells have poor incapability of entering, surviving, proliferating, and finally exerting function in the tumor microenvironment. This review summarizes the main strategies related to enhancing the infiltration, efficacy, antigen recognition, and production of CAR-T in solid tumors. Additional applications of CAR-γδ T and macrophages are also discussed. We believe CAR-T will be a milestone in treating solid tumors once these problems are solved.
Collapse
Affiliation(s)
- Guangxun Yuan
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, National Medical Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310003, China
| | - Mengke Ye
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, National Medical Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310003, China
| | - Yixi Zhang
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, National Medical Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310003, China.
| | - Xun Zeng
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, National Medical Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310003, China.
| |
Collapse
|
14
|
Niu Z, Wu J, Zhao Q, Zhang J, Zhang P, Yang Y. CAR-based immunotherapy for breast cancer: peculiarities, ongoing investigations, and future strategies. Front Immunol 2024; 15:1385571. [PMID: 38680498 PMCID: PMC11045891 DOI: 10.3389/fimmu.2024.1385571] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2024] [Accepted: 03/27/2024] [Indexed: 05/01/2024] Open
Abstract
Surgery, chemotherapy, and endocrine therapy have improved the overall survival and postoperative recurrence rates of Luminal A, Luminal B, and HER2-positive breast cancers but treatment modalities for triple-negative breast cancer (TNBC) with poor prognosis remain limited. The effective application of the rapidly developing chimeric antigen receptor (CAR)-T cell therapy in hematological tumors provides new ideas for the treatment of breast cancer. Choosing suitable and specific targets is crucial for applying CAR-T therapy for breast cancer treatment. In this paper, we summarize CAR-T therapy's effective targets and potential targets in different subtypes based on the existing research progress, especially for TNBC. CAR-based immunotherapy has resulted in advancements in the treatment of breast cancer. CAR-macrophages, CAR-NK cells, and CAR-mesenchymal stem cells (MSCs) may be more effective and safer for treating solid tumors, such as breast cancer. However, the tumor microenvironment (TME) of breast tumors and the side effects of CAR-T therapy pose challenges to CAR-based immunotherapy. CAR-T cells and CAR-NK cells-derived exosomes are advantageous in tumor therapy. Exosomes carrying CAR for breast cancer immunotherapy are of immense research value and may provide a treatment modality with good treatment effects. In this review, we provide an overview of the development and challenges of CAR-based immunotherapy in treating different subtypes of breast cancer and discuss the progress of CAR-expressing exosomes for breast cancer treatment. We elaborate on the development of CAR-T cells in TNBC therapy and the prospects of using CAR-macrophages, CAR-NK cells, and CAR-MSCs for treating breast cancer.
Collapse
Affiliation(s)
- Zhipu Niu
- Clinical Medicine, China-Japan Union Hospital of Jilin University, Changchun, China
| | - Jingyuan Wu
- Clinical Medicine, China-Japan Union Hospital of Jilin University, Changchun, China
| | - Qiancheng Zhao
- Department of Cell Biology and Medical Genetics, College of Basic Medical Sciences, Jilin University, Changchun, China
| | - Jinyu Zhang
- Department of Pharmacology, College of Basic Medical Sciences, Jilin University, Changchun, China
| | - Pengyu Zhang
- Clinical Medicine, China-Japan Union Hospital of Jilin University, Changchun, China
| | - Yiming Yang
- Department of Cell Biology and Medical Genetics, College of Basic Medical Sciences, Jilin University, Changchun, China
| |
Collapse
|
15
|
Bell M, Lange S, Sejdiu BI, Ibanez J, Shi H, Sun X, Meng X, Nguyen P, Sutton M, Wagner J, Kc A, Langfitt D, Patil SL, Tan H, Pandey RV, Li Y, Yuan ZF, Anido AA, Ho M, Sheppard H, Vogel P, Yu J, Peng J, Chi H, Babu MM, Krenciute G, Gottschalk S. Modular chimeric cytokine receptors with leucine zippers enhance the antitumour activity of CAR T cells via JAK/STAT signalling. Nat Biomed Eng 2024; 8:380-396. [PMID: 38036617 DOI: 10.1038/s41551-023-01143-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2022] [Accepted: 10/20/2023] [Indexed: 12/02/2023]
Abstract
The limited availability of cytokines in solid tumours hinders maintenance of the antitumour activity of chimeric antigen receptor (CAR) T cells. Cytokine receptor signalling pathways in CAR T cells can be activated by transgenic expression or injection of cytokines in the tumour, or by engineering the activation of cognate cytokine receptors. However, these strategies are constrained by toxicity arising from the activation of bystander cells, by the suboptimal biodistribution of the cytokines and by downregulation of the cognate receptor. Here we show that replacement of the extracellular domains of heterodimeric cytokine receptors in T cells with two leucine zipper motifs provides optimal Janus kinase/signal transducer and activator of transcription signalling. Such chimeric cytokine receptors, which can be generated for common γ-chain receptors, interleukin-10 and -12 receptors, enabled T cells to survive cytokine starvation without induction of autonomous cell growth, and augmented the effector function of CAR T cells in vitro in the setting of chronic antigen exposure and in human tumour xenografts in mice. As a modular design, leucine zippers can be used to generate constitutively active cytokine receptors in effector immune cells.
Collapse
Affiliation(s)
- Matthew Bell
- Department of Bone Marrow Transplantation and Cellular Therapy, St. Jude Children's Research Hospital, Memphis, TN, USA
- Graduate School of Biomedical Sciences, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Shannon Lange
- Department of Bone Marrow Transplantation and Cellular Therapy, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Besian I Sejdiu
- Center of Excellence for Data Driven Discovery, St. Jude Children's Research Hospital, Memphis, TN, USA
- Department of Structural Biology, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Jorge Ibanez
- Department of Bone Marrow Transplantation and Cellular Therapy, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Hao Shi
- Department of Immunology, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Xiang Sun
- Department of Immunology, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Xiaoxi Meng
- Department of Immunology, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Phuong Nguyen
- Department of Bone Marrow Transplantation and Cellular Therapy, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Morgan Sutton
- Department of Bone Marrow Transplantation and Cellular Therapy, St. Jude Children's Research Hospital, Memphis, TN, USA
- Graduate School of Biomedical Sciences, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Jessica Wagner
- Department of Bone Marrow Transplantation and Cellular Therapy, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Anil Kc
- Department of Immunology, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Deanna Langfitt
- Department of Bone Marrow Transplantation and Cellular Therapy, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Sagar L Patil
- Department of Bone Marrow Transplantation and Cellular Therapy, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Haiyan Tan
- Center for Proteomics and Metabolomics, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Ram Vinay Pandey
- Department of Computational Biology, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Yuxin Li
- Center for Proteomics and Metabolomics, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Zuo-Fei Yuan
- Center for Proteomics and Metabolomics, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Alejandro Allo Anido
- Department of Bone Marrow Transplantation and Cellular Therapy, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Mitchell Ho
- Laboratory of Molecular Biology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Heather Sheppard
- Department of Pathology, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Peter Vogel
- Department of Pathology, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Jiyang Yu
- Department of Computational Biology, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Junmin Peng
- Department of Structural Biology, St. Jude Children's Research Hospital, Memphis, TN, USA
- Center for Proteomics and Metabolomics, St. Jude Children's Research Hospital, Memphis, TN, USA
- Department of Developmental Neurobiology, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Hongbo Chi
- Department of Immunology, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - M Madan Babu
- Center of Excellence for Data Driven Discovery, St. Jude Children's Research Hospital, Memphis, TN, USA
- Department of Structural Biology, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Giedre Krenciute
- Department of Bone Marrow Transplantation and Cellular Therapy, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Stephen Gottschalk
- Department of Bone Marrow Transplantation and Cellular Therapy, St. Jude Children's Research Hospital, Memphis, TN, USA.
| |
Collapse
|
16
|
Philippova J, Shevchenko J, Sennikov S. GD2-targeting therapy: a comparative analysis of approaches and promising directions. Front Immunol 2024; 15:1371345. [PMID: 38558810 PMCID: PMC10979305 DOI: 10.3389/fimmu.2024.1371345] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2024] [Accepted: 02/26/2024] [Indexed: 04/04/2024] Open
Abstract
Disialoganglioside GD2 is a promising target for immunotherapy with expression primarily restricted to neuroectodermal and epithelial tumor cells. Although its role in the maintenance and repair of neural tissue is well-established, its functions during normal organism development remain understudied. Meanwhile, studies have shown that GD2 plays an important role in tumorigenesis. Its functions include proliferation, invasion, motility, and metastasis, and its high expression and ability to transform the tumor microenvironment may be associated with a malignant phenotype. Structurally, GD2 is a glycosphingolipid that is stably expressed on the surface of tumor cells, making it a suitable candidate for targeting by antibodies or chimeric antigen receptors. Based on mouse monoclonal antibodies, chimeric and humanized antibodies and their combinations with cytokines, toxins, drugs, radionuclides, nanoparticles as well as chimeric antigen receptor have been developed. Furthermore, vaccines and photoimmunotherapy are being used to treat GD2-positive tumors, and GD2 aptamers can be used for targeting. In the field of cell therapy, allogeneic immunocompetent cells are also being utilized to enhance GD2 therapy. Efforts are currently being made to optimize the chimeric antigen receptor by modifying its design or by transducing not only αβ T cells, but also γδ T cells, NK cells, NKT cells, and macrophages. In addition, immunotherapy can combine both diagnostic and therapeutic methods, allowing for early detection of disease and minimal residual disease. This review discusses each immunotherapy method and strategy, its advantages and disadvantages, and highlights future directions for GD2 therapy.
Collapse
Affiliation(s)
| | | | - Sergey Sennikov
- Laboratory of Molecular Immunology, Federal State Budgetary Scientific Institution Research Institute of Fundamental and Clinical Immunology, Novosibirsk, Russia
| |
Collapse
|
17
|
Huang Y, Wang H. From suppressor to enhancer: IL-10's alternative role in CAR-T cell therapies against solid tumors. Cell Stem Cell 2024; 31:285-287. [PMID: 38458175 DOI: 10.1016/j.stem.2024.02.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2024] [Revised: 02/02/2024] [Accepted: 02/06/2024] [Indexed: 03/10/2024]
Abstract
Aiming to improve the effector function of CAR-T cells, Zhao et al.1 report that IL-10 metabolically reprograms CAR-T cells, and this promotes their effectiveness against solid tumors and challenges IL-10's perceived role as merely immunosuppressive. This simple but promising strategy fosters durable immune memory and eagerly awaits validation in clinical trials.
Collapse
Affiliation(s)
- Yuwei Huang
- School of Life Science and Technology, ShanghaiTech University, Shanghai, China; Lingang Laboratory, Shanghai 200031, China
| | - Haopeng Wang
- School of Life Science and Technology, ShanghaiTech University, Shanghai, China; State Key Laboratory of Advanced Medical Materials and Devices, ShanghaiTech University, Shanghai, China; Shanghai Clinical Research and Trial Center, Shanghai, China.
| |
Collapse
|
18
|
Liu Z, Lei W, Wang H, Liu X, Fu R. Challenges and strategies associated with CAR-T cell therapy in blood malignancies. Exp Hematol Oncol 2024; 13:22. [PMID: 38402232 PMCID: PMC10893672 DOI: 10.1186/s40164-024-00490-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2023] [Accepted: 02/19/2024] [Indexed: 02/26/2024] Open
Abstract
Cellular immunotherapy, particularly CAR-T cells, has shown potential in the improvement of outcomes in patients with refractory and recurrent malignancies of the blood. However, achieving sustainable long-term complete remission for blood cancer remains a challenge, with resistance and relapse being expected outcomes for many patients. Although many studies have attempted to clarify the mechanisms of CAR-T cell therapy failure, the mechanism remains unclear. In this article, we discuss and describe the current state of knowledge regarding these factors, which include elements that influence the CAR-T cell, cancer cells as a whole, and the microenvironment surrounding the tumor. In addition, we propose prospective approaches to overcome these obstacles in an effort to decrease recurrence rates and extend patient survival subsequent to CAR-T cell therapy.
Collapse
Affiliation(s)
- Zhaoyun Liu
- Department of Hematology, Tianjin Medical University General Hospital, 154 Anshan Street, Heping District, Tianjin, 300052, PR China.
- Tianjin Key Laboratory of Bone Marrow Failure and Malignant Hemopoietic Clone46Control, Tianjin, 300052, P. R. China.
| | - Wenhui Lei
- Department of Hematology, Tianjin Medical University General Hospital, 154 Anshan Street, Heping District, Tianjin, 300052, PR China
- Tianjin Key Laboratory of Bone Marrow Failure and Malignant Hemopoietic Clone46Control, Tianjin, 300052, P. R. China
- Department of Nephrology, Lishui Municipal Central Hospital, Lishui, Zhejiang, 323000, People's Republic of China
| | - Hao Wang
- Department of Hematology, Tianjin Medical University General Hospital, 154 Anshan Street, Heping District, Tianjin, 300052, PR China
- Tianjin Key Laboratory of Bone Marrow Failure and Malignant Hemopoietic Clone46Control, Tianjin, 300052, P. R. China
| | - Xiaohan Liu
- Department of Hematology, Tianjin Medical University General Hospital, 154 Anshan Street, Heping District, Tianjin, 300052, PR China
- Tianjin Key Laboratory of Bone Marrow Failure and Malignant Hemopoietic Clone46Control, Tianjin, 300052, P. R. China
| | - Rong Fu
- Department of Hematology, Tianjin Medical University General Hospital, 154 Anshan Street, Heping District, Tianjin, 300052, PR China.
- Tianjin Key Laboratory of Bone Marrow Failure and Malignant Hemopoietic Clone46Control, Tianjin, 300052, P. R. China.
| |
Collapse
|
19
|
Yu Z, Li H, Lu Q, Zhang Z, Tong A, Niu T. Fc receptor-like 5 (FCRL5)-directed CAR-T cells exhibit antitumor activity against multiple myeloma. Signal Transduct Target Ther 2024; 9:16. [PMID: 38212320 PMCID: PMC10784595 DOI: 10.1038/s41392-023-01702-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2023] [Revised: 10/11/2023] [Accepted: 11/08/2023] [Indexed: 01/13/2024] Open
Abstract
Multiple myeloma (MM) remains a challenging hematologic malignancy despite advancements in chimeric antigen receptor T-cell (CAR-T) therapy. Current targets of CAR-T cells used in MM immunotherapy have limitations, with a subset of patients experiencing antigen loss resulting in relapse. Therefore, novel targets for enhancing CAR-T cell therapy in MM remain needed. Fc receptor-like 5 (FCRL5) is a protein marker with considerably upregulated expression in MM and has emerged as a promising target for CAR-T cell therapeutic interventions, offering an alternative treatment for MM. To further explore this option, we designed FCRL5-directed CAR-T cells and assessed their cytotoxicity in vitro using a co-culture system and in vivo using MM cell-derived xenograft models, specifically focusing on MM with gain of chromosome 1q21. Given the challenges in CAR-T therapies arising from limited T cell persistence, our approach incorporates interleukin-15 (IL-15), which enhances the functionality of central memory T (TCM) cells, into the design of FCRL5-directed CAR-T cells, to improve cytotoxicity and reduce T-cell dysfunction, thereby promoting greater CAR-T cell survival and efficacy. Both in vitro and xenograft models displayed that FCRL5 CAR-T cells incorporating IL-15 exhibited potent antitumor efficacy, effectively inhibiting the proliferation of MM cells and leading to remarkable tumor suppression. Our results highlight the capacity of FCRL5-specific CAR-T cells with the integration of IL-15 to improve the therapeutic potency, suggesting a potential novel immunotherapeutic strategy for MM treatment.
Collapse
Affiliation(s)
- Zhengyu Yu
- Department of Hematology, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Hexian Li
- Department of Hematology, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Qizhong Lu
- Department of Hematology, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Zongliang Zhang
- Department of Hematology, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Aiping Tong
- Department of Hematology, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, 610041, China.
| | - Ting Niu
- Department of Hematology, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, 610041, China.
| |
Collapse
|
20
|
Landoni E, Woodcock MG, Barragan G, Casirati G, Cinella V, Stucchi S, Flick LM, Withers TA, Hudson H, Casorati G, Dellabona P, Genovese P, Savoldo B, Metelitsa LS, Dotti G. IL-12 reprograms CAR-expressing natural killer T cells to long-lived Th1-polarized cells with potent antitumor activity. Nat Commun 2024; 15:89. [PMID: 38167707 PMCID: PMC10762263 DOI: 10.1038/s41467-023-44310-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2023] [Accepted: 12/07/2023] [Indexed: 01/05/2024] Open
Abstract
Human natural killer T cells (NKTs) are innate-like T lymphocytes increasingly used for cancer immunotherapy. Here we show that human NKTs expressing the pro-inflammatory cytokine interleukin-12 (IL-12) undergo extensive and sustained molecular and functional reprogramming. Specifically, IL-12 instructs and maintains a Th1-polarization program in NKTs in vivo without causing their functional exhaustion. Furthermore, using CD62L as a marker of memory cells in human NKTs, we observe that IL-12 maintains long-term CD62L-expressing memory NKTs in vivo. Notably, IL-12 initiates a de novo programming of memory NKTs in CD62L-negative NKTs indicating that human NKTs circulating in the peripheral blood possess an intrinsic differentiation hierarchy, and that IL-12 plays a role in promoting their differentiation to long-lived Th1-polarized memory cells. Human NKTs engineered to co-express a Chimeric Antigen Receptor (CAR) coupled with the expression of IL-12 show enhanced antitumor activity in leukemia and neuroblastoma tumor models, persist long-term in vivo and conserve the molecular signature driven by the IL-12 expression. Thus IL-12 reveals an intrinsic plasticity of peripheral human NKTs that may play a crucial role in the development of cell therapeutics.
Collapse
Affiliation(s)
- Elisa Landoni
- Lineberger Comprehensive Cancer Center, University of North Carolina, Chapel Hill, NC, USA
| | - Mark G Woodcock
- Lineberger Comprehensive Cancer Center, University of North Carolina, Chapel Hill, NC, USA
- Division of Oncology, Department of Medicine, University of North Carolina, Chapel Hill, NC, USA
| | - Gabriel Barragan
- Center for Advanced Innate Cell Therapy, Texas Children's Cancer Center, Department of Pediatrics, Baylor College of Medicine, Houston, TX, USA
| | - Gabriele Casirati
- Dana-Farber/Boston Children's Cancer and Blood Disorder Center, Boston, USA
- Harvard Medical School, Boston, USA
| | - Vincenzo Cinella
- Dana-Farber/Boston Children's Cancer and Blood Disorder Center, Boston, USA
- Harvard Medical School, Boston, USA
| | - Simone Stucchi
- Lineberger Comprehensive Cancer Center, University of North Carolina, Chapel Hill, NC, USA
| | - Leah M Flick
- Lineberger Comprehensive Cancer Center, University of North Carolina, Chapel Hill, NC, USA
| | - Tracy A Withers
- Lineberger Comprehensive Cancer Center, University of North Carolina, Chapel Hill, NC, USA
| | - Hanna Hudson
- Lineberger Comprehensive Cancer Center, University of North Carolina, Chapel Hill, NC, USA
| | - Giulia Casorati
- Experimental Immunology Unit, Division of Immunology, Transplantation and Infectious Diseases, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Paolo Dellabona
- Experimental Immunology Unit, Division of Immunology, Transplantation and Infectious Diseases, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Pietro Genovese
- Dana-Farber/Boston Children's Cancer and Blood Disorder Center, Boston, USA
- Harvard Medical School, Boston, USA
| | - Barbara Savoldo
- Lineberger Comprehensive Cancer Center, University of North Carolina, Chapel Hill, NC, USA
- Department of Pediatrics, University of North Carolina, Chapel Hill, NC, USA
| | - Leonid S Metelitsa
- Center for Advanced Innate Cell Therapy, Texas Children's Cancer Center, Department of Pediatrics, Baylor College of Medicine, Houston, TX, USA
| | - Gianpietro Dotti
- Lineberger Comprehensive Cancer Center, University of North Carolina, Chapel Hill, NC, USA.
- Department of Microbiology and Immunology, University of North Carolina, Chapel Hill, NC, USA.
| |
Collapse
|
21
|
Pérez-Herrero E, Lanier OL, Krishnan N, D'Andrea A, Peppas NA. Drug delivery methods for cancer immunotherapy. Drug Deliv Transl Res 2024; 14:30-61. [PMID: 37587290 PMCID: PMC10746770 DOI: 10.1007/s13346-023-01405-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/24/2023] [Indexed: 08/18/2023]
Abstract
Despite the fact that numerous immunotherapy-based drugs have been approved by the FDA for the treatment of primary and metastatic tumors, only a small proportion of the population can benefit from them because of primary and acquired resistances. Moreover, the translation of immunotherapy from the bench to the clinical practice is being challenging because of the short half-lives of the involved molecules, the difficulties to accomplish their delivery to the target sites, and some serious adverse effects that are being associated with these approaches. The emergence of drug delivery vehicles in the field of immunotherapy is helping to overcome these difficulties and limitations and this review describes how, providing some illustrative examples. Moreover, this article provides an exhaustive review of the studies that have been published to date on the particular case of hematological cancers. (Created with BioRender).
Collapse
Affiliation(s)
- Edgar Pérez-Herrero
- Departamento de Ingeniería Química y Tecnología Farmacéutica, Universidad de La Laguna, La Laguna, Tenerife, Spain.
- Instituto Universitario de Tecnologías Biomédicas, Universidad de La Laguna, La Laguna, Tenerife, Spain.
| | - Olivia L Lanier
- Department of Biomedical Engineering, The University of Texas at Austin, Austin, TX, USA
| | - Neha Krishnan
- Department of Biomedical Engineering, The University of Texas at Austin, Austin, TX, USA
| | - Abby D'Andrea
- Department of Chemical Engineering, The University of Texas at Austin, Austin, TX, USA
| | - Nicholas A Peppas
- Department of Biomedical Engineering, The University of Texas at Austin, Austin, TX, USA
- Department of Chemical Engineering, The University of Texas at Austin, Austin, TX, USA
- Institute for Biomaterials, Drug Delivery & Regenerative Medicine, The University of Texas at Austin, Austin, TX, USA
- Division of Molecular Pharmaceutics and Drug Delivery, College of Pharmacy, The University of Texas at Austin, Austin, TX, USA
- Department of Pediatrics, Dell Medical School, The University of Texas at Austin, Austin, TX, USA
- Department of Surgery & Perioperative Care, Dell Medical School, The University of Texas at Austin, Austin, TX, USA
| |
Collapse
|
22
|
Chamorro DF, Somes LK, Hoyos V. Engineered Adoptive T-Cell Therapies for Breast Cancer: Current Progress, Challenges, and Potential. Cancers (Basel) 2023; 16:124. [PMID: 38201551 PMCID: PMC10778447 DOI: 10.3390/cancers16010124] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2023] [Revised: 12/19/2023] [Accepted: 12/21/2023] [Indexed: 01/12/2024] Open
Abstract
Breast cancer remains a significant health challenge, and novel treatment approaches are critically needed. This review presents an in-depth analysis of engineered adoptive T-cell therapies (E-ACTs), an innovative frontier in cancer immunotherapy, focusing on their application in breast cancer. We explore the evolving landscape of chimeric antigen receptor (CAR) and T-cell receptor (TCR) T-cell therapies, highlighting their potential and challenges in targeting breast cancer. The review addresses key obstacles such as target antigen selection, the complex breast cancer tumor microenvironment, and the persistence of engineered T-cells. We discuss the advances in overcoming these barriers, including strategies to enhance T-cell efficacy. Finally, our comprehensive analysis of the current clinical trials in this area provides insights into the future possibilities and directions of E-ACTs in breast cancer treatment.
Collapse
Affiliation(s)
- Diego F. Chamorro
- Center for Cell and Gene Therapy, Baylor College of Medicine, Houston, TX 77030, USA; (D.F.C.); (L.K.S.)
| | - Lauren K. Somes
- Center for Cell and Gene Therapy, Baylor College of Medicine, Houston, TX 77030, USA; (D.F.C.); (L.K.S.)
| | - Valentina Hoyos
- Center for Cell and Gene Therapy, Baylor College of Medicine, Houston, TX 77030, USA; (D.F.C.); (L.K.S.)
- Dan L. Duncan Comprehensive Cancer Center, Baylor College of Medicine, Houston, TX 77030, USA
| |
Collapse
|
23
|
Bergaggio E, Tai WT, Aroldi A, Mecca C, Landoni E, Nüesch M, Mota I, Metovic J, Molinaro L, Ma L, Alvarado D, Ambrogio C, Voena C, Blasco RB, Li T, Klein D, Irvine DJ, Papotti M, Savoldo B, Dotti G, Chiarle R. ALK inhibitors increase ALK expression and sensitize neuroblastoma cells to ALK.CAR-T cells. Cancer Cell 2023; 41:2100-2116.e10. [PMID: 38039964 PMCID: PMC10793157 DOI: 10.1016/j.ccell.2023.11.004] [Citation(s) in RCA: 14] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/13/2022] [Revised: 07/05/2023] [Accepted: 11/06/2023] [Indexed: 12/03/2023]
Abstract
Selection of the best tumor antigen is critical for the therapeutic success of chimeric antigen receptor (CAR) T cells in hematologic malignancies and solid tumors. The anaplastic lymphoma kinase (ALK) receptor is expressed by most neuroblastomas while virtually absent in most normal tissues. ALK is an oncogenic driver in neuroblastoma and ALK inhibitors show promising clinical activity. Here, we describe the development of ALK.CAR-T cells that show potent efficacy in monotherapy against neuroblastoma with high ALK expression without toxicity. For neuroblastoma with low ALK expression, combination with ALK inhibitors specifically potentiates ALK.CAR-T cells but not GD2.CAR-T cells. Mechanistically, ALK inhibitors impair tumor growth and upregulate the expression of ALK, thereby facilitating the activity of ALK.CAR-T cells against neuroblastoma. Thus, while neither ALK inhibitors nor ALK.CAR-T cells will likely be sufficient as monotherapy in neuroblastoma with low ALK density, their combination specifically enhances therapeutic efficacy.
Collapse
Affiliation(s)
- Elisa Bergaggio
- Department of Pathology, Boston Children's Hospital and Harvard Medical School, Boston, MA 02115, USA
| | - Wei-Tien Tai
- Department of Pathology, Boston Children's Hospital and Harvard Medical School, Boston, MA 02115, USA
| | - Andrea Aroldi
- Department of Medicine and Surgery, University of Milano-Bicocca, 20900 Monza, Italy
| | - Carmen Mecca
- Department of Pathology, Boston Children's Hospital and Harvard Medical School, Boston, MA 02115, USA
| | - Elisa Landoni
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Manuel Nüesch
- Department of Pathology, Boston Children's Hospital and Harvard Medical School, Boston, MA 02115, USA
| | - Ines Mota
- Department of Pathology, Boston Children's Hospital and Harvard Medical School, Boston, MA 02115, USA; Department of Radiation Oncology, Weill Cornell Medicine, New York, NY 10065, USA
| | - Jasna Metovic
- Department of Oncology, University of Torino, 10126 Torino, Italy
| | - Luca Molinaro
- Department of Medical Science, University of Torino, 10126 Torino, Italy
| | - Leyuan Ma
- Koch Institute and MIT, Cambridge, MA 02139, USA
| | | | - Chiara Ambrogio
- Department of Molecular Biotechnology and Health Sciences, University of Torino, 10126 Torino, Italy
| | - Claudia Voena
- Department of Molecular Biotechnology and Health Sciences, University of Torino, 10126 Torino, Italy
| | - Rafael B Blasco
- Department of Pathology, Boston Children's Hospital and Harvard Medical School, Boston, MA 02115, USA
| | - Tongqing Li
- Department of Pharmacology, Yale University School of Medicine, New Haven, CT 06520, USA
| | - Daryl Klein
- Department of Pharmacology, Yale University School of Medicine, New Haven, CT 06520, USA
| | | | - Mauro Papotti
- Department of Oncology, University of Torino, 10126 Torino, Italy
| | - Barbara Savoldo
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA; Department of Microbiology and Immunology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Gianpietro Dotti
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA; Department of Microbiology and Immunology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Roberto Chiarle
- Department of Pathology, Boston Children's Hospital and Harvard Medical School, Boston, MA 02115, USA; Department of Molecular Biotechnology and Health Sciences, University of Torino, 10126 Torino, Italy.
| |
Collapse
|
24
|
Luo M, Gong W, Zhang Y, Li H, Ma D, Wu K, Gao Q, Fang Y. New insights into the stemness of adoptively transferred T cells by γc family cytokines. Cell Commun Signal 2023; 21:347. [PMID: 38049832 PMCID: PMC10694921 DOI: 10.1186/s12964-023-01354-3] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2023] [Accepted: 10/11/2023] [Indexed: 12/06/2023] Open
Abstract
T cell-based adoptive cell therapy (ACT) has exhibited excellent antitumoral efficacy exemplified by the clinical breakthrough of chimeric antigen receptor therapy (CAR-T) in hematologic malignancies. It relies on the pool of functional T cells to retain the developmental potential to serially kill targeted cells. However, failure in the continuous supply and persistence of functional T cells has been recognized as a critical barrier to sustainable responses. Conferring stemness on infused T cells, yielding stem cell-like memory T cells (TSCM) characterized by constant self-renewal and multilineage differentiation similar to pluripotent stem cells, is indeed necessary and promising for enhancing T cell function and sustaining antitumor immunity. Therefore, it is crucial to identify TSCM cell induction regulators and acquire more TSCM cells as resource cells during production and after infusion to improve antitumoral efficacy. Recently, four common cytokine receptor γ chain (γc) family cytokines, encompassing interleukin-2 (IL-2), IL-7, IL-15, and IL-21, have been widely used in the development of long-lived adoptively transferred TSCM in vitro. However, challenges, including their non-specific toxicities and off-target effects, have led to substantial efforts for the development of engineered versions to unleash their full potential in the induction and maintenance of T cell stemness in ACT. In this review, we summarize the roles of the four γc family cytokines in the orchestration of adoptively transferred T cell stemness, introduce their engineered versions that modulate TSCM cell formation and demonstrate the potential of their various combinations. Video Abstract.
Collapse
Affiliation(s)
- Mengshi Luo
- Department of Gynecological Oncology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- National Clinical Research Center for Obstetrics and Gynecology, Cancer Biology Research Center (Key Laboratory of the Ministry of Education), Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Wenjian Gong
- Department of Gynecological Oncology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- National Clinical Research Center for Obstetrics and Gynecology, Cancer Biology Research Center (Key Laboratory of the Ministry of Education), Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yuewen Zhang
- Department of Gynecological Oncology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- National Clinical Research Center for Obstetrics and Gynecology, Cancer Biology Research Center (Key Laboratory of the Ministry of Education), Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Huayi Li
- Department of Gynecological Oncology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- National Clinical Research Center for Obstetrics and Gynecology, Cancer Biology Research Center (Key Laboratory of the Ministry of Education), Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Ding Ma
- Department of Gynecological Oncology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- National Clinical Research Center for Obstetrics and Gynecology, Cancer Biology Research Center (Key Laboratory of the Ministry of Education), Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Kongming Wu
- Department of Oncology, Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Qinglei Gao
- Department of Gynecological Oncology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.
- National Clinical Research Center for Obstetrics and Gynecology, Cancer Biology Research Center (Key Laboratory of the Ministry of Education), Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.
| | - Yong Fang
- Department of Gynecological Oncology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.
- National Clinical Research Center for Obstetrics and Gynecology, Cancer Biology Research Center (Key Laboratory of the Ministry of Education), Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.
| |
Collapse
|
25
|
Dagher OK, Posey AD. Forks in the road for CAR T and CAR NK cell cancer therapies. Nat Immunol 2023; 24:1994-2007. [PMID: 38012406 DOI: 10.1038/s41590-023-01659-y] [Citation(s) in RCA: 26] [Impact Index Per Article: 26.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2023] [Accepted: 09/20/2023] [Indexed: 11/29/2023]
Abstract
The advent of chimeric antigen receptor (CAR) T cell therapy has resulted in unprecedented long-term clearance of relapse/refractory hematological malignancies in both pediatric and adult patients. However, severe toxicities, such as cytokine release syndrome and neurotoxicity, associated with CAR T cells affect therapeutic utility; and treatment efficacies for solid tumors are still not impressive. As a result, engineering strategies that modify other immune cell types, especially natural killer (NK) cells have arisen. Owing to both CAR-dependent and CAR-independent (innate immune-mediated) antitumor killing capacity, major histocompatibility complex-independent cytotoxicity, reduced risk of alloreactivity and lack of major CAR T cell toxicities, CAR NK cells constitute one of the promising next-generation CAR immune cells that are also amenable as 'off-the-shelf' therapeutics. In this Review, we compare CAR T and CAR NK cell therapies, with particular focus on immunological synapses, engineering strategies and challenges.
Collapse
Affiliation(s)
- Oula K Dagher
- Department of Systems Pharmacology and Translational Therapeutics, University of Pennsylvania, Perelman School of Medicine, Philadelphia, PA, USA.
| | - Avery D Posey
- Department of Systems Pharmacology and Translational Therapeutics, University of Pennsylvania, Perelman School of Medicine, Philadelphia, PA, USA.
- Corporal Michael J. Crescenz VA Medical Center, Philadelphia, PA, USA.
| |
Collapse
|
26
|
Ruella M, Korell F, Porazzi P, Maus MV. Mechanisms of resistance to chimeric antigen receptor-T cells in haematological malignancies. Nat Rev Drug Discov 2023; 22:976-995. [PMID: 37907724 PMCID: PMC10965011 DOI: 10.1038/s41573-023-00807-1] [Citation(s) in RCA: 24] [Impact Index Per Article: 24.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/05/2023] [Indexed: 11/02/2023]
Abstract
Chimeric antigen receptor (CAR)-T cells have recently emerged as a powerful therapeutic approach for the treatment of patients with chemotherapy-refractory or relapsed blood cancers, including acute lymphoblastic leukaemia, diffuse large B cell lymphoma, follicular lymphoma, mantle cell lymphoma and multiple myeloma. Nevertheless, resistance to CAR-T cell therapies occurs in most patients. In this Review, we summarize the resistance mechanisms to CAR-T cell immunotherapy by analysing CAR-T cell dysfunction, intrinsic tumour resistance and the immunosuppressive tumour microenvironment. We discuss current research strategies to overcome multiple resistance mechanisms, including optimization of the CAR design, improvement of in vivo T cell function and persistence, modulation of the immunosuppressive tumour microenvironment and synergistic combination strategies.
Collapse
Affiliation(s)
- Marco Ruella
- Division of Hematology and Oncology and Center for Cellular Immunotherapies, University of Pennsylvania, Philadelphia, PA, USA
| | - Felix Korell
- Cellular Immunotherapy Program, Massachusetts General Hospital Cancer Center, Boston, MA, USA
- Harvard Medical School, Boston, MA, USA
| | - Patrizia Porazzi
- Division of Hematology and Oncology and Center for Cellular Immunotherapies, University of Pennsylvania, Philadelphia, PA, USA
| | - Marcela V Maus
- Cellular Immunotherapy Program, Massachusetts General Hospital Cancer Center, Boston, MA, USA.
- Harvard Medical School, Boston, MA, USA.
| |
Collapse
|
27
|
Giardino Torchia ML, Moody G. DIALing-up the preclinical characterization of gene-modified adoptive cellular immunotherapies. Front Immunol 2023; 14:1264882. [PMID: 38090585 PMCID: PMC10713823 DOI: 10.3389/fimmu.2023.1264882] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2023] [Accepted: 10/27/2023] [Indexed: 12/18/2023] Open
Abstract
The preclinical characterization of gene modified adoptive cellular immunotherapy candidates for clinical development often requires the use of mouse models. Gene-modified lymphocytes (GML) incorporating chimeric antigen receptors (CAR) and T-cell receptors (TCR) into immune effector cells require in vivo characterization of biological activity, mechanism of action, and preclinical safety. Typically, this characterization involves the assessment of dose-dependent, on-target, on-tumor activity in severely immunocompromised mice. While suitable for the purpose of evaluating T cell-expressed transgene function in a living host, this approach falls short in translating cellular therapy efficacy, safety, and persistence from preclinical models to humans. To comprehensively characterize cell therapy products in mice, we have developed a framework called "DIAL". This framework aims to enable an end-to-end understanding of genetically engineered cellular immunotherapies in vivo, from infusion to tumor clearance and long-term immunosurveillance. The acronym DIAL stands for Distribution, Infiltration, Accumulation, and Longevity, compartmentalizing the systemic attributes of gene-modified cellular therapy and providing a platform for optimization with the ultimate goal of improving therapeutic efficacy. This review will discuss both existent and emerging examples of DIAL characterization in mouse models, as well as opportunities for future development and optimization.
Collapse
Affiliation(s)
| | - Gordon Moody
- Cell Therapy Unit, Oncology Research, AstraZeneca, Gaithersburg, MD, United States
| |
Collapse
|
28
|
Grover P, Nunez-Cruz S, Leferovich J, Wentz T, Bagchi A, Milone MC, Greene MI. F77 antigen is a promising target for adoptive T cell therapy of prostate cancer. Biochem Biophys Res Commun 2023; 680:51-60. [PMID: 37717341 PMCID: PMC10591779 DOI: 10.1016/j.bbrc.2023.09.018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2023] [Revised: 08/31/2023] [Accepted: 09/09/2023] [Indexed: 09/19/2023]
Abstract
Adoptive immunotherapy using chimeric antigen receptor (CAR) T cells has made significant success in treating hematological malignancies, paving the way for solid tumors like prostate cancer. However, progress is impeded by a paucity of suitable target antigens. A novel carbohydrate antigen, F77, is expressed on both androgen-dependent and androgen-independent prostate cancer cells, making it a potential immunotherapy target. This study entails the generation and evaluation of a second-generation CAR against a carbohydrate antigen on malignant prostate cancer cells. Using a single chain fragment variable (scFv) from an F77-specific mouse monoclonal antibody, we created second-generation CARs with CD28 and CD137 (4-1BB) costimulatory signals. F77 expressing lentiviral CAR T cells produce cytokines and kill tumor cells in a F77 expression-dependent manner. These F77-specific CAR T cells eradicate prostate tumors in a human xenograft model employing PC3 cells. These findings validate F77 as a promising immunotherapeutic target for prostate cancer and other malignancies with this aberrant carbohydrate structure.
Collapse
Affiliation(s)
- Payal Grover
- Department of Pathology and Lab Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Selene Nunez-Cruz
- Department of Pathology and Lab Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA; Center for Cellular Immunotherapies, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - John Leferovich
- Department of Pathology and Lab Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA; Center for Cellular Immunotherapies, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Tyra Wentz
- Department of Pathology and Lab Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA; Center for Cellular Immunotherapies, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Atrish Bagchi
- Loxo Oncology @ Lilly, South San Francisco, CA, 94080, USA
| | - Michael C Milone
- Department of Pathology and Lab Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA; Center for Cellular Immunotherapies, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Mark I Greene
- Department of Pathology and Lab Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA.
| |
Collapse
|
29
|
Tang L, Pan S, Wei X, Xu X, Wei Q. Arming CAR-T cells with cytokines and more: Innovations in the fourth-generation CAR-T development. Mol Ther 2023; 31:3146-3162. [PMID: 37803832 PMCID: PMC10638038 DOI: 10.1016/j.ymthe.2023.09.021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2023] [Revised: 08/11/2023] [Accepted: 09/29/2023] [Indexed: 10/08/2023] Open
Abstract
Chimeric antigen receptor T cells (CAR-T) therapy has shown great potential in tumor treatment. However, many factors impair the efficacy of CAR-T therapy, such as antigenic heterogeneity and loss, limited potency and persistence, poor infiltration capacity, and a suppressive tumor microenvironment. To overcome these obstacles, recent studies have reported a new generation of CAR-T cells expressing cytokines called armored CAR-T, TRUCK-T, or the fourth-generation CAR-T. Here we summarize the strategies of arming CAR-T cells with natural or synthetic cytokine signals to enhance their anti-tumor capacity. Moreover, we summarize the advances in CAR-T cells expressing non-cytokine proteins, such as membrane receptors, antibodies, enzymes, co-stimulatory molecules, and transcriptional factors. Furthermore, we discuss several prospective strategies for armored CAR-T therapy development. Altogether, these ideas may provide new insights for the innovations of the next-generation CAR-T therapy.
Collapse
Affiliation(s)
- Lin Tang
- Zhejiang University School of Medicine, Hangzhou 310058, China; Key Laboratory of Integrated Oncology and Intelligent Medicine of Zhejiang Province, Department of Hepatobiliary and Pancreatic Surgery, Affiliated Hangzhou First People's Hospital, Zhejiang University School of Medicine, Hangzhou 310006, China
| | - Sheng Pan
- Zhejiang University School of Medicine, Hangzhou 310058, China; Key Laboratory of Integrated Oncology and Intelligent Medicine of Zhejiang Province, Department of Hepatobiliary and Pancreatic Surgery, Affiliated Hangzhou First People's Hospital, Zhejiang University School of Medicine, Hangzhou 310006, China
| | - Xuyong Wei
- Key Laboratory of Integrated Oncology and Intelligent Medicine of Zhejiang Province, Department of Hepatobiliary and Pancreatic Surgery, Affiliated Hangzhou First People's Hospital, Zhejiang University School of Medicine, Hangzhou 310006, China
| | - Xiao Xu
- Zhejiang University School of Medicine, Hangzhou 310058, China; Key Laboratory of Integrated Oncology and Intelligent Medicine of Zhejiang Province, Department of Hepatobiliary and Pancreatic Surgery, Affiliated Hangzhou First People's Hospital, Zhejiang University School of Medicine, Hangzhou 310006, China.
| | - Qiang Wei
- Zhejiang University School of Medicine, Hangzhou 310058, China; Key Laboratory of Integrated Oncology and Intelligent Medicine of Zhejiang Province, Department of Hepatobiliary and Pancreatic Surgery, Affiliated Hangzhou First People's Hospital, Zhejiang University School of Medicine, Hangzhou 310006, China.
| |
Collapse
|
30
|
Zappa E, Vitali A, Anders K, Molenaar JJ, Wienke J, Künkele A. Adoptive cell therapy in paediatric extracranial solid tumours: current approaches and future challenges. Eur J Cancer 2023; 194:113347. [PMID: 37832507 PMCID: PMC10695178 DOI: 10.1016/j.ejca.2023.113347] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2023] [Revised: 09/03/2023] [Accepted: 09/09/2023] [Indexed: 10/15/2023]
Abstract
Immunotherapy has ignited hope to cure paediatric solid tumours that resist traditional therapies. Among the most promising methods is adoptive cell therapy (ACT). Particularly, ACT using T cells equipped with chimeric antigen receptors (CARs) has moved into the spotlight in clinical studies. However, the efficacy of ACT is challenged by ACT-intrinsic factors, like lack of activation or T cell exhaustion, as well as immune evasion strategies of paediatric solid tumours, such as their highly immunosuppressive microenvironment. Novel strategies, including ACT using innate-like lymphocytes, innovative cell engineering techniques, and ACT combination therapies, are being developed and will be crucial to overcome these challenges. Here, we discuss the main classes of ACT for the treatment of paediatric extracranial solid tumours, reflect on the available preclinical and clinical evidence supporting promising strategies, and address the challenges that ACT is still facing. Ultimately, we highlight state-of-the-art developments and opportunities for new therapeutic options, which hold great potential for improving outcomes in this challenging patient population.
Collapse
Affiliation(s)
- Elisa Zappa
- Princess Máxima Center for Pediatric Oncology, Utrecht, the Netherlands
| | - Alice Vitali
- Department of Pediatric Oncology and Hematology, Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt Universität zu Berlin, Berlin, Germany.
| | - Kathleen Anders
- Department of Pediatric Oncology and Hematology, Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt Universität zu Berlin, Berlin, Germany; German Cancer Consortium (DKTK), Partner Site Berlin, Berlin, Germany; German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Jan J Molenaar
- Princess Máxima Center for Pediatric Oncology, Utrecht, the Netherlands; Department of Pharmaceutical Sciences, Faculty of Science, Utrecht University, Utrecht, the Netherlands
| | - Judith Wienke
- Princess Máxima Center for Pediatric Oncology, Utrecht, the Netherlands
| | - Annette Künkele
- Department of Pediatric Oncology and Hematology, Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt Universität zu Berlin, Berlin, Germany; German Cancer Consortium (DKTK), Partner Site Berlin, Berlin, Germany; German Cancer Research Center (DKFZ), Heidelberg, Germany
| |
Collapse
|
31
|
Rios X, Pardias O, Morales MA, Bhattacharya P, Chen Y, Guo L, Zhang C, Di Pierro EJ, Tian G, Barragan GA, Sumazin P, Metelitsa LS. Refining chimeric antigen receptors via barcoded protein domain combination pooled screening. Mol Ther 2023; 31:3210-3224. [PMID: 37705245 PMCID: PMC10638030 DOI: 10.1016/j.ymthe.2023.09.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2023] [Revised: 09/06/2023] [Accepted: 09/08/2023] [Indexed: 09/15/2023] Open
Abstract
Chimeric antigen receptor (CAR)-T cells represent a promising frontier in cancer immunotherapy. However, the current process for developing new CAR constructs is time consuming and inefficient. To address this challenge and expedite the evaluation and comparison of full-length CAR designs, we have devised a novel cloning strategy. This strategy involves the sequential assembly of individual CAR domains using blunt ligation, with each domain being assigned a unique DNA barcode. Applying this method, we successfully generated 360 CAR constructs that specifically target clinically validated tumor antigens CD19 and GD2. By quantifying changes in barcode frequencies through next-generation sequencing, we characterize CARs that best mediate proliferation and expansion of transduced T cells. The screening revealed a crucial role for the hinge domain in CAR functionality, with CD8a and IgG4 hinges having opposite effects in the surface expression, cytokine production, and antitumor activity in CD19- versus GD2-based CARs. Importantly, we discovered two novel CD19-CAR architectures containing the IgG4 hinge domain that mediate superior in vivo antitumor activity compared with the construct used in Kymriah, a U.S. Food and Drug Administration (FDA)-approved therapy. This novel screening approach represents a major advance in CAR engineering, enabling accelerated development of cell-based cancer immunotherapies.
Collapse
Affiliation(s)
- Xavier Rios
- Center for Advanced Innate Cell Therapy, Texas Children's Cancer Center, Department of Pediatrics, Baylor College of Medicine, Houston, TX, USA; Center for Cell and Gene Therapy, Baylor College of Medicine, Houston, TX, USA
| | - Osmay Pardias
- Center for Advanced Innate Cell Therapy, Texas Children's Cancer Center, Department of Pediatrics, Baylor College of Medicine, Houston, TX, USA
| | - Marc A Morales
- Center for Advanced Innate Cell Therapy, Texas Children's Cancer Center, Department of Pediatrics, Baylor College of Medicine, Houston, TX, USA
| | - Pradyot Bhattacharya
- Center for Advanced Innate Cell Therapy, Texas Children's Cancer Center, Department of Pediatrics, Baylor College of Medicine, Houston, TX, USA
| | - Yibin Chen
- Center for Advanced Innate Cell Therapy, Texas Children's Cancer Center, Department of Pediatrics, Baylor College of Medicine, Houston, TX, USA
| | - Linjie Guo
- Center for Advanced Innate Cell Therapy, Texas Children's Cancer Center, Department of Pediatrics, Baylor College of Medicine, Houston, TX, USA
| | - Chunchao Zhang
- Center for Advanced Innate Cell Therapy, Texas Children's Cancer Center, Department of Pediatrics, Baylor College of Medicine, Houston, TX, USA
| | - Erica J Di Pierro
- Center for Advanced Innate Cell Therapy, Texas Children's Cancer Center, Department of Pediatrics, Baylor College of Medicine, Houston, TX, USA
| | - Gengwen Tian
- Center for Advanced Innate Cell Therapy, Texas Children's Cancer Center, Department of Pediatrics, Baylor College of Medicine, Houston, TX, USA; Center for Cell and Gene Therapy, Baylor College of Medicine, Houston, TX, USA
| | - Gabriel A Barragan
- Center for Advanced Innate Cell Therapy, Texas Children's Cancer Center, Department of Pediatrics, Baylor College of Medicine, Houston, TX, USA; Center for Cell and Gene Therapy, Baylor College of Medicine, Houston, TX, USA
| | - Pavel Sumazin
- Texas Children's Cancer Center, Department of Pediatrics, Baylor College of Medicine, Houston, TX, USA
| | - Leonid S Metelitsa
- Center for Advanced Innate Cell Therapy, Texas Children's Cancer Center, Department of Pediatrics, Baylor College of Medicine, Houston, TX, USA; Center for Cell and Gene Therapy, Baylor College of Medicine, Houston, TX, USA; Department of Pathology and Immunology, Baylor College of Medicine, Houston, TX, USA.
| |
Collapse
|
32
|
Li Z, Zhao L, Zhang Y, Zhu L, Mu W, Ge T, Jin J, Tan J, Cheng J, Wang J, Wang N, Zhou X, Chen L, Chang Z, Liu C, Bian Z, Liu B, Ye L, Lan Y, Huang L, Zhou J. Functional diversification and dynamics of CAR-T cells in patients with B-ALL. Cell Rep 2023; 42:113263. [PMID: 37851569 DOI: 10.1016/j.celrep.2023.113263] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2022] [Revised: 08/03/2023] [Accepted: 09/28/2023] [Indexed: 10/20/2023] Open
Abstract
Understanding of cellular evolution and molecular programs of chimeric antigen receptor-engineered (CAR)-T cells post-infusion is pivotal for developing better treatment strategies. Here, we construct a longitudinal high-precision single-cell transcriptomic landscape of 7,578 CAR-T cells from 26 patients with B cell acute lymphoblastic leukemia (B-ALL) post-infusion. We molecularly identify eight CAR-T cell subtypes, including three cytotoxic subtypes with distinct kinetics and three dual-identity subtypes with non-T cell characteristics. Remarkably, long-term remission is coincident with the dominance of cytotoxic subtypes, while leukemia progression is correlated with the emergence of subtypes with B cell transcriptional profiles, which have dysfunctional features and might predict relapse. We further validate in vitro that the generation of B-featured CAR-T cells is induced by excessive tumor antigen stimulation or suppressed TCR signaling, while it is relieved by exogenous IL-12. Moreover, we define transcriptional hallmarks of CAR-T cell subtypes and reveal their molecular changes along computationally inferred cellular evolution in vivo. Collectively, these results decipher functional diversification and dynamics of peripheral CAR-T cells post-infusion.
Collapse
Affiliation(s)
- Zongcheng Li
- State Key Laboratory of Experimental Hematology, Haihe Laboratory of Cell Ecosystem, Institute of Hematology, Senior Department of Hematology, Fifth Medical Center of Chinese PLA General Hospital, Beijing 100071, China.
| | - Lei Zhao
- Department of Hematology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China; Immunotherapy Research Center for Hematologic Diseases of Hubei Province, Wuhan 432826, China; National Clinical Research Center for Hematologic Diseases, the First Affiliated Hospital of Soochow University, Suzhou 215006, China
| | - Yuanyuan Zhang
- Department of Hematology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China; Immunotherapy Research Center for Hematologic Diseases of Hubei Province, Wuhan 432826, China; National Clinical Research Center for Hematologic Diseases, the First Affiliated Hospital of Soochow University, Suzhou 215006, China
| | - Li Zhu
- Department of Hematology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China; Immunotherapy Research Center for Hematologic Diseases of Hubei Province, Wuhan 432826, China; National Clinical Research Center for Hematologic Diseases, the First Affiliated Hospital of Soochow University, Suzhou 215006, China
| | - Wei Mu
- Department of Hematology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China; Immunotherapy Research Center for Hematologic Diseases of Hubei Province, Wuhan 432826, China; National Clinical Research Center for Hematologic Diseases, the First Affiliated Hospital of Soochow University, Suzhou 215006, China
| | - Tong Ge
- Department of Hematology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China; Immunotherapy Research Center for Hematologic Diseases of Hubei Province, Wuhan 432826, China; National Clinical Research Center for Hematologic Diseases, the First Affiliated Hospital of Soochow University, Suzhou 215006, China
| | - Jin Jin
- Department of Hematology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China; Immunotherapy Research Center for Hematologic Diseases of Hubei Province, Wuhan 432826, China; National Clinical Research Center for Hematologic Diseases, the First Affiliated Hospital of Soochow University, Suzhou 215006, China
| | - Jiaqi Tan
- Department of Hematology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China; Immunotherapy Research Center for Hematologic Diseases of Hubei Province, Wuhan 432826, China; National Clinical Research Center for Hematologic Diseases, the First Affiliated Hospital of Soochow University, Suzhou 215006, China
| | - Jiali Cheng
- Department of Hematology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China; Immunotherapy Research Center for Hematologic Diseases of Hubei Province, Wuhan 432826, China; National Clinical Research Center for Hematologic Diseases, the First Affiliated Hospital of Soochow University, Suzhou 215006, China
| | - Jue Wang
- Department of Hematology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China; Immunotherapy Research Center for Hematologic Diseases of Hubei Province, Wuhan 432826, China; National Clinical Research Center for Hematologic Diseases, the First Affiliated Hospital of Soochow University, Suzhou 215006, China
| | - Na Wang
- Department of Hematology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China; Immunotherapy Research Center for Hematologic Diseases of Hubei Province, Wuhan 432826, China; National Clinical Research Center for Hematologic Diseases, the First Affiliated Hospital of Soochow University, Suzhou 215006, China
| | - Xiaoxi Zhou
- Department of Hematology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China; Immunotherapy Research Center for Hematologic Diseases of Hubei Province, Wuhan 432826, China; National Clinical Research Center for Hematologic Diseases, the First Affiliated Hospital of Soochow University, Suzhou 215006, China
| | - Liting Chen
- Department of Hematology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China; Immunotherapy Research Center for Hematologic Diseases of Hubei Province, Wuhan 432826, China; National Clinical Research Center for Hematologic Diseases, the First Affiliated Hospital of Soochow University, Suzhou 215006, China
| | - Zhilin Chang
- State Key Laboratory of Proteomics, Academy of Military Medical Sciences, Academy of Military Sciences, Beijing 100850, China
| | - Chen Liu
- State Key Laboratory of Proteomics, Academy of Military Medical Sciences, Academy of Military Sciences, Beijing 100850, China
| | - Zhilei Bian
- Department of Hematology, the First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, China; Academy of Medical Sciences, Zhengzhou University, Zhengzhou 450052, China
| | - Bing Liu
- State Key Laboratory of Experimental Hematology, Haihe Laboratory of Cell Ecosystem, Institute of Hematology, Senior Department of Hematology, Fifth Medical Center of Chinese PLA General Hospital, Beijing 100071, China; State Key Laboratory of Proteomics, Academy of Military Medical Sciences, Academy of Military Sciences, Beijing 100850, China; Key Laboratory for Regenerative Medicine of Ministry of Education, Institute of Hematology, School of Medicine, Jinan University, Guangzhou 510632, China.
| | - Lilin Ye
- Institute of Immunology, Third Military Medical University, Chongqing 400038, China.
| | - Yu Lan
- Key Laboratory for Regenerative Medicine of Ministry of Education, Institute of Hematology, School of Medicine, Jinan University, Guangzhou 510632, China.
| | - Liang Huang
- Department of Hematology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China; Immunotherapy Research Center for Hematologic Diseases of Hubei Province, Wuhan 432826, China; National Clinical Research Center for Hematologic Diseases, the First Affiliated Hospital of Soochow University, Suzhou 215006, China.
| | - Jianfeng Zhou
- Department of Hematology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China; Immunotherapy Research Center for Hematologic Diseases of Hubei Province, Wuhan 432826, China; National Clinical Research Center for Hematologic Diseases, the First Affiliated Hospital of Soochow University, Suzhou 215006, China
| |
Collapse
|
33
|
Altvater B, Kailayangiri S, Spurny C, Flügge M, Meltzer J, Greune L, Urban K, Schwöppe C, Brand C, Schliemann C, Hintelmann H, Harrach S, Hartmann W, Abken H, Kuehle J, Schambach A, Görlich D, Berdel WE, Rossig C. CAR T cells as micropharmacies against solid cancers: Combining effector T-cell mediated cell death with vascular targeting in a one-step engineering process. Cancer Gene Ther 2023; 30:1355-1368. [PMID: 37391502 PMCID: PMC10581901 DOI: 10.1038/s41417-023-00642-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2023] [Revised: 06/13/2023] [Accepted: 06/21/2023] [Indexed: 07/02/2023]
Abstract
To enhance the potency of chimeric antigen receptor (CAR) engineered T cells in solid cancers, we designed a novel cell-based combination strategy with an additional therapeutic mode of action. CAR T cells are used as micropharmacies to produce a targeted pro-coagulatory fusion protein, truncated tissue factor (tTF)-NGR, which exerts pro-coagulatory activity and hypoxia upon relocalization to the vascular endothelial cells that invade tumor tissues. Delivery by CAR T cells aimed to induce locoregional tumor vascular infarction for combined immune-mediated and hypoxic tumor cell death. Human T cells that were one-vector gene-modified to express a GD2-specific CAR along with CAR-inducible tTF-NGR exerted potent GD2-specific effector functions while secreting tTF-NGR that activates the extrinsic coagulation pathway in a strictly GD2-dependent manner. In murine models, the CAR T cells infiltrated GD2-positive tumor xenografts, secreted tTF-NGR into the tumor microenvironment and showed a trend towards superior therapeutic activity compared with control cells producing functionally inactive tTF-NGR. In vitro evidence supports a mechanism of hypoxia-mediated enhancement of T cell cytolytic activity. We conclude that combined CAR T cell targeting with an additional mechanism of antitumor action in a one-vector engineering strategy is a promising approach to be further developed for targeted treatment of solid cancers.
Collapse
Affiliation(s)
- Bianca Altvater
- Department of Pediatric Hematology and Oncology, University Children's Hospital Muenster, Muenster, Germany
| | - Sareetha Kailayangiri
- Department of Pediatric Hematology and Oncology, University Children's Hospital Muenster, Muenster, Germany
| | - Christian Spurny
- Department of Pediatric Hematology and Oncology, University Children's Hospital Muenster, Muenster, Germany
| | - Maike Flügge
- Department of Pediatric Hematology and Oncology, University Children's Hospital Muenster, Muenster, Germany
| | - Jutta Meltzer
- Department of Pediatric Hematology and Oncology, University Children's Hospital Muenster, Muenster, Germany
| | - Lea Greune
- Department of Pediatric Hematology and Oncology, University Children's Hospital Muenster, Muenster, Germany
| | - Katja Urban
- Department of Pediatric Hematology and Oncology, University Children's Hospital Muenster, Muenster, Germany
| | | | - Caroline Brand
- Department of Medicine A, University of Muenster, Muenster, Germany
| | | | - Heike Hintelmann
- Department of Medicine A, University of Muenster, Muenster, Germany
| | - Saliha Harrach
- Department of Medicine A, University of Muenster, Muenster, Germany
| | - Wolfgang Hartmann
- Division of Translational Pathology, Gerhard-Domagk-Institute of Pathology, Münster University Hospital, Münster, Germany
| | - Hinrich Abken
- Division of Genetic Immunotherapy, Leibniz Institute for Immunotherapy (LIT), and University of Regensburg, Regensburg, Germany
| | - Johannes Kuehle
- Center for Molecular Medicine Cologne, University of Cologne, 50931, Cologne, Germany
| | - Axel Schambach
- Institute of Experimental Hematology, Hannover Medical School, Hannover, Germany
- REBIRTH Research Center for Translational Regenerative Medicine, Hannover Medical School, Hannover, Germany
- Division of Hematology/Oncology, Harvard Medical School, Boston Children's Hospital, Boston, MA, USA
| | - Dennis Görlich
- Institute of Biostatistics and Clinical Research, University of Muenster, Muenster, Germany
| | - Wolfgang E Berdel
- Department of Medicine A, University of Muenster, Muenster, Germany
- Cells-in-Motion Cluster of Excellence (EXC 1003 - CiM), University of Muenster, Muenster, Germany
| | - Claudia Rossig
- Department of Pediatric Hematology and Oncology, University Children's Hospital Muenster, Muenster, Germany.
- Cells-in-Motion Cluster of Excellence (EXC 1003 - CiM), University of Muenster, Muenster, Germany.
- Princess Máxima Center for Pediatric Oncology, Utrecht, The Netherlands.
| |
Collapse
|
34
|
Zhang X, Guo H, Chen J, Xu C, Wang L, Ke Y, Gao Y, Zhang B, Zhu J. Highly proliferative and hypodifferentiated CAR-T cells targeting B7-H3 enhance antitumor activity against ovarian and triple-negative breast cancers. Cancer Lett 2023; 572:216355. [PMID: 37597651 DOI: 10.1016/j.canlet.2023.216355] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2023] [Revised: 08/15/2023] [Accepted: 08/17/2023] [Indexed: 08/21/2023]
Abstract
Chimeric antigen receptor (CAR)-T cell immunotherapy is highly effective against hematological neoplasms. However, owing to tumor variability, low antigen specificity, and impermanent viability of CAR-T cells, their use in the treatment of solid tumors is limited. Here, a novel CAR-T cell targeting B7-H3 and incorporating a 4-1BB costimulatory molecule with STAT3-and STAT5-related activation motifs was constructed using lentivirus transduction. B7-H3, a tumor-associated antigen, and its scFv antibody endowed CAR-T cells with tumor-specific targeting capabilities. Moreover, the integration of the trIL2RB and YRHQ motifs stimulated STAT5 and STAT3 in an antigen-dependent manner, inducing a remarkable increase in the proliferation and survival of CAR-T cells via the activation of the JAK-STAT signaling pathway. Besides, the proportion of less-differentiated T cells increased among BB-trIL2RB-z(YRHQ) CAR-T cells. Moreover, BB-trIL2RB-z(YRHQ) effectively inhibited ovarian cancer (OC) and triple-negative breast cancer (TNBC) in vivo at low doses, without high serum levels of inflammatory cytokines and organ toxicity. Therefore, our study proposes a combination of elements for the construction of superior pluripotent CAR-T cells to provide an effective strategy for the treatment of intractable solid tumors.
Collapse
Affiliation(s)
- Xiaoshuai Zhang
- Engineering Research Center of Cell & Therapeutic Antibody, MOE, School of Pharmacy, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Haiyan Guo
- Department of Orthopaedics, Shanghai Key Laboratory for Prevention and Treatment of Bone and Joint Diseases, Shanghai Institute of Traumatology and Orthopaedics, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
| | - Jie Chen
- Jecho Biopharmaceutical Institute, Shanghai, 200240, China
| | - Chenxiao Xu
- Engineering Research Center of Cell & Therapeutic Antibody, MOE, School of Pharmacy, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Lei Wang
- Engineering Research Center of Cell & Therapeutic Antibody, MOE, School of Pharmacy, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Yong Ke
- Engineering Research Center of Cell & Therapeutic Antibody, MOE, School of Pharmacy, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Yang Gao
- Engineering Research Center of Cell & Therapeutic Antibody, MOE, School of Pharmacy, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Baohong Zhang
- Engineering Research Center of Cell & Therapeutic Antibody, MOE, School of Pharmacy, Shanghai Jiao Tong University, Shanghai, 200240, China.
| | - Jianwei Zhu
- Engineering Research Center of Cell & Therapeutic Antibody, MOE, School of Pharmacy, Shanghai Jiao Tong University, Shanghai, 200240, China; Jecho Biopharmaceutical Institute, Shanghai, 200240, China
| |
Collapse
|
35
|
Righi M, Gannon I, Robson M, Srivastava S, Kokalaki E, Grothier T, Nannini F, Allen C, Bai YV, Sillibourne J, Cordoba S, Thomas S, Pule M. Enhancing CAR T-cell Therapy Using Fab-Based Constitutively Heterodimeric Cytokine Receptors. Cancer Immunol Res 2023; 11:1203-1221. [PMID: 37352396 PMCID: PMC10472109 DOI: 10.1158/2326-6066.cir-22-0640] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2022] [Revised: 03/15/2023] [Accepted: 06/21/2023] [Indexed: 06/25/2023]
Abstract
Adoptive T-cell therapy aims to achieve lasting tumor clearance, requiring enhanced engraftment and survival of the immune cells. Cytokines are paramount modulators of T-cell survival and proliferation. Cytokine receptors signal via ligand-induced dimerization, and this principle has been hijacked utilizing nonnative dimerization domains. A major limitation of current technologies resides in the absence of a module that recapitulates the natural cytokine receptor heterodimeric pairing. To circumvent this, we created a new engineered cytokine receptor able to constitutively recreate receptor-heterodimer utilizing the heterodimerization domain derived from the IgG1 antibody (dFab_CCR). We found that the signal delivered by the dFab_CCR-IL2 proficiently mimicked the cytokine receptor heterodimerization, with transcriptomic signatures like those obtained by activation of the native IL2 receptor. Moreover, we found that this dimerization structure was agnostic, efficiently activating signaling through four cytokine receptor families. Using a combination of in vivo and in vitro screening approaches, we characterized a library of 18 dFab_CCRs coexpressed with a clinically relevant solid tumor-specific GD2-specific chimeric antigen receptor (CAR). Based on this characterization, we suggest that the coexpression of either the common β-chain GMCSF or the IL18 dFab_CCRs is optimal to improve CAR T-cell expansion, engraftment, and efficacy. Our results demonstrate how Fab dimerization is efficient and versatile in recapitulating a cytokine receptor heterodimerization signal. This module could be applied for the enhancement of adoptive T-cell therapies, as well as therapies based on other immune cell types. Furthermore, these results provide a choice of cytokine signal to incorporate with adoptive T-cell therapies.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Francesco Nannini
- Department of Haematology, University College London, London, United Kingdom
| | | | | | | | | | | | - Martin Pule
- Autolus Therapeutics, London, United Kingdom
- Department of Haematology, University College London, London, United Kingdom
| |
Collapse
|
36
|
Zhang P, Zhang G, Wan X. Challenges and new technologies in adoptive cell therapy. J Hematol Oncol 2023; 16:97. [PMID: 37596653 PMCID: PMC10439661 DOI: 10.1186/s13045-023-01492-8] [Citation(s) in RCA: 29] [Impact Index Per Article: 29.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2023] [Accepted: 08/04/2023] [Indexed: 08/20/2023] Open
Abstract
Adoptive cell therapies (ACTs) have existed for decades. From the initial infusion of tumor-infiltrating lymphocytes to the subsequent specific enhanced T cell receptor (TCR)-T and chimeric antigen receptor (CAR)-T cell therapies, many novel strategies for cancer treatment have been developed. Owing to its promising outcomes, CAR-T cell therapy has revolutionized the field of ACTs, particularly for hematologic malignancies. Despite these advances, CAR-T cell therapy still has limitations in both autologous and allogeneic settings, including practicality and toxicity issues. To overcome these challenges, researchers have focused on the application of CAR engineering technology to other types of immune cell engineering. Consequently, several new cell therapies based on CAR technology have been developed, including CAR-NK, CAR-macrophage, CAR-γδT, and CAR-NKT. In this review, we describe the development, advantages, and possible challenges of the aforementioned ACTs and discuss current strategies aimed at maximizing the therapeutic potential of ACTs. We also provide an overview of the various gene transduction strategies employed in immunotherapy given their importance in immune cell engineering. Furthermore, we discuss the possibility that strategies capable of creating a positive feedback immune circuit, as healthy immune systems do, could address the flaw of a single type of ACT, and thus serve as key players in future cancer immunotherapy.
Collapse
Affiliation(s)
- Pengchao Zhang
- Center for Protein and Cell-based Drugs, Institute of Biomedicine and Biotechnology, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, 1068 Xueyuan Avenue, Nanshan District, Shenzhen, 518055, People's Republic of China
- University of Chinese Academy of Sciences, Beijing, 100049, People's Republic of China
| | - Guizhong Zhang
- Center for Protein and Cell-based Drugs, Institute of Biomedicine and Biotechnology, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, 1068 Xueyuan Avenue, Nanshan District, Shenzhen, 518055, People's Republic of China.
| | - Xiaochun Wan
- Center for Protein and Cell-based Drugs, Institute of Biomedicine and Biotechnology, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, 1068 Xueyuan Avenue, Nanshan District, Shenzhen, 518055, People's Republic of China.
| |
Collapse
|
37
|
Shi H, Li A, Dai Z, Xue J, Zhao Q, Tian J, Song D, Wang H, Chen J, Zhang X, Zhou K, Wei H, Qin S. IL-15 armoring enhances the antitumor efficacy of claudin 18.2-targeting CAR-T cells in syngeneic mouse tumor models. Front Immunol 2023; 14:1165404. [PMID: 37564658 PMCID: PMC10410263 DOI: 10.3389/fimmu.2023.1165404] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2023] [Accepted: 07/10/2023] [Indexed: 08/12/2023] Open
Abstract
Claudin 18.2 (CLDN18.2)-targeting chimeric antigen receptor (CAR)-modified T cells are one of the few cell therapies currently producing an impressive therapeutic effect in treating solid tumors; however, their long-term therapeutic efficacy is not satisfactory with a short duration of response. Transgenic expression of interleukin (IL)-15 has been reported to promote T-cell expansion, survival, and function and enhance the antitumor activity of engineered T cells in vitro and in vivo. Therefore, this study aimed to explore whether IL-15 modification would increase the antitumor activity of CLDN18.2-targeting CAR-modified T (CAR-T) cells in immunocompetent murine tumor models. CLDN18.2-specific CAR-T cells with (H9 CAR-IL15) or without transgenic IL-15 expression (H9 CAR) were generated by retroviral transduction of mouse splenic T cells. In vitro, compared with H9 CAR T cells, H9 CAR-IL15 T cells exhibited better expansion and viability in the absence of antigen stimulation, with a less differentiated and T-cell exhausted phenotype; although IL-15 modification did not affect the production of effector cytokines and cytotoxic activity in the short-term killing assay, it moderately improved the in vitro recursive killing activity of CAR-T cells against CLDN18.2-expressing tumor cells. In vivo, H9 CAR T cells showed no antitumor activity against CLDN18.2-expressing pancreatic tumors in immunocompetent mice without lymphodepleting pretreatment; however, H9 CAR-IL15 T cells produced significant tumor-suppressive effects. Furthermore, H9 CAR-IL15 T cells exhibited greater in vivo expansion and tumor infiltration when combined with lymphodepleting preconditioning, resulting in superior antitumor activity in two murine tumor models and a survival advantage in one tumor model. We further demonstrated that recurrent tumors following H9 CAR-IL15 T-cell therapy downregulated CLDN18.2 expression, suggesting immune escape through the selection of antigen-negative cells under persistent CAR-T-cell immune pressure. In conclusion, our findings provide preclinical evidence supporting the clinical evaluation of IL-15-expressing CLDN18.2 CAR-T cells in patients with CLDN18.2-positive tumors.
Collapse
Affiliation(s)
- Hongtai Shi
- Department of Radiotherapy, The First Affiliated Hospital of Soochow University, Suzhou, China
- Department of Radiation Oncology, The Sixth Affiliated Hospital of Nantong University, Yancheng Third People’s Hospital, Yancheng, China
| | - Andi Li
- Innovent Cells Pharmaceuticals, Inc., Suzhou, China
| | - Zhenyu Dai
- Department of Radiology, The Sixth Affiliated Hospital of Nantong University, Yancheng Third People’s Hospital, Yancheng, China
| | - Jiao Xue
- Department of Radiotherapy, The First Affiliated Hospital of Soochow University, Suzhou, China
| | - Qi Zhao
- Department of Radiotherapy, The First Affiliated Hospital of Soochow University, Suzhou, China
| | - Jiyuan Tian
- Innovent Cells Pharmaceuticals, Inc., Suzhou, China
| | | | - Hao Wang
- Innovent Biologics, Inc., Suzhou, China
| | - Jianan Chen
- Innovent Cells Pharmaceuticals, Inc., Suzhou, China
| | - Xiaokang Zhang
- Department of Radiotherapy, The First Affiliated Hospital of Soochow University, Suzhou, China
| | - Kaisong Zhou
- Innovent Cells Pharmaceuticals, Inc., Suzhou, China
- Innovent Biologics, Inc., Suzhou, China
| | - Huafeng Wei
- Innovent Cells Pharmaceuticals, Inc., Suzhou, China
- Innovent Biologics, Inc., Suzhou, China
| | - Songbing Qin
- Department of Radiotherapy, The First Affiliated Hospital of Soochow University, Suzhou, China
| |
Collapse
|
38
|
Jin X, Yang GY. Pathophysiological roles and applications of glycosphingolipids in the diagnosis and treatment of cancer diseases. Prog Lipid Res 2023; 91:101241. [PMID: 37524133 DOI: 10.1016/j.plipres.2023.101241] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2023] [Revised: 07/24/2023] [Accepted: 07/28/2023] [Indexed: 08/02/2023]
Abstract
Glycosphingolipids (GSLs) are major amphiphilic glycolipids present on the surface of living cell membranes. They have important biological functions, including maintaining plasma membrane stability, regulating signal transduction, and mediating cell recognition and adhesion. Specific GSLs and related enzymes are abnormally expressed in many cancer diseases and affect the malignant characteristics of tumors. The regulatory roles of GSLs in signaling pathways suggest that they are involved in tumor pathogenesis. GSLs have therefore been widely studied as diagnostic markers of cancer diseases and important targets of immunotherapy. This review describes the tumor-related biological functions of GSLs and systematically introduces recent progress in using diverse GSLs and related enzymes to diagnose and treat tumor diseases. Development of drugs and biomarkers for personalized cancer therapy based on GSL structure is also discussed. These advances, combined with recent progress in the preparation of GSLs derivatives through synthetic biology technologies, suggest a strong future for the use of customized GSL libraries in treating human diseases.
Collapse
Affiliation(s)
- Xuefeng Jin
- State Key Laboratory of Microbial Metabolism, Joint International Research Laboratory of Metabolic & Developmental Sciences, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai 200240, China; Department of Clinical Pharmaceutics, Guangxi Academy of Medical Sciences and the People's Hospital of Guangxi Zhuang Autonomous Region, Nanning 530021, China
| | - Guang-Yu Yang
- State Key Laboratory of Microbial Metabolism, Joint International Research Laboratory of Metabolic & Developmental Sciences, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai 200240, China.
| |
Collapse
|
39
|
Hadiloo K, Tahmasebi S, Esmaeilzadeh A. CAR-NKT cell therapy: a new promising paradigm of cancer immunotherapy. Cancer Cell Int 2023; 23:86. [PMID: 37158883 PMCID: PMC10165596 DOI: 10.1186/s12935-023-02923-9] [Citation(s) in RCA: 16] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2023] [Accepted: 04/10/2023] [Indexed: 05/10/2023] Open
Abstract
Today, cancer treatment is one of the fundamental problems facing clinicians and researchers worldwide. Efforts to find an excellent way to treat this illness continue, and new therapeutic strategies are developed quickly. Adoptive cell therapy (ACT) is a practical approach that has been emerged to improve clinical outcomes in cancer patients. In the ACT, one of the best ways to arm the immune cells against tumors is by employing chimeric antigen receptors (CARs) via genetic engineering. CAR equips cells to target specific antigens on tumor cells and selectively eradicate them. Researchers have achieved promising preclinical and clinical outcomes with different cells by using CARs. One of the potent immune cells that seems to be a good candidate for CAR-immune cell therapy is the Natural Killer-T (NKT) cell. NKT cells have multiple features that make them potent cells against tumors and would be a powerful replacement for T cells and natural killer (NK) cells. NKT cells are cytotoxic immune cells with various capabilities and no notable side effects on normal cells. The current study aimed to comprehensively provide the latest advances in CAR-NKT cell therapy for cancers.
Collapse
Affiliation(s)
- Kaveh Hadiloo
- Student Research Committee, Department of immunology, School of Medicine, Zanjan University of Medical Sciences, Zanjan, Iran
| | - Safa Tahmasebi
- Student Research Committee, Department of immunology, School of Medicine, Shahid beheshti University of Medical Sciences, Tehran, Iran.
| | - Abdolreza Esmaeilzadeh
- Department of Immunology, Zanjan University of Medical Sciences, Zanjan, Iran.
- Cancer Gene Therapy Research Center (CGRC), Zanjan University of Medical Sciences, Zanjan, Iran.
| |
Collapse
|
40
|
Ash S, Askenasy N. Immunotherapy for neuroblastoma by hematopoietic cell transplantation and post-transplant immunomodulation. Crit Rev Oncol Hematol 2023; 185:103956. [PMID: 36893946 DOI: 10.1016/j.critrevonc.2023.103956] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2021] [Revised: 12/14/2022] [Accepted: 03/04/2023] [Indexed: 03/09/2023] Open
Abstract
Neuroblastoma represents a relatively common childhood tumor that imposes therapeutic difficulties. High risk neuroblastoma patients have poor prognosis, display limited response to radiochemotherapy and may be treated by hematopoietic cell transplantation. Allogeneic and haploidentical transplants have the distinct advantage of reinstitution of immune surveillance, reinforced by antigenic barriers. The key factors favorable to ignition of potent anti-tumor reactions are transition to adaptive immunity, recovery from lymphopenia and removal of inhibitory signals that inactivate immune cells at the local and systemic levels. Post-transplant immunomodulation may further foster anti-tumor reactivity, with positive but transient impact of infusions of lymphocytes and natural killer cells both from the donor, the recipient or third party. The most promising approaches include introduction of antigen-presenting cells in early post-transplant stages and neutralization of inhibitory signals. Further studies will likely shed light on the nature and actions of suppressor factors within tumor stroma and at the systemic level.
Collapse
Affiliation(s)
- Shifra Ash
- Department of Pediatric Hematology-Oncology, Rambam Medical Center, Haifa, Israel; Frankel Laboratory of Bone Marrow Transplantation, Schneider Children's Medical Center of Israel, Petach Tikva, Israel.
| | - Nadir Askenasy
- Frankel Laboratory of Bone Marrow Transplantation, Schneider Children's Medical Center of Israel, Petach Tikva, Israel
| |
Collapse
|
41
|
Huynh D, Winter P, Märkl F, Endres S, Kobold S. Beyond direct killing-novel cellular immunotherapeutic strategies to reshape the tumor microenvironment. Semin Immunopathol 2023; 45:215-227. [PMID: 36167831 PMCID: PMC10121530 DOI: 10.1007/s00281-022-00962-4] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2022] [Accepted: 09/05/2022] [Indexed: 11/24/2022]
Abstract
The clinical use of cellular immunotherapies is gaining momentum and the number of approved indications is steadily increasing. One class of cellular therapies-chimeric antigen receptor (CAR)-modified T cells-has achieved impressive results in distinct blood cancer indications. These existing cellular therapies treating blood cancers face significant relapse rates, and their application beyond hematology has been underwhelming, especially in solid oncology. Major reasons for resistance source largely in the tumor microenvironment (TME). The TME in fact functionally suppresses, restricts, and excludes adoptive immune cells, which limits the efficacy of cellular immunotherapies from the onset. Many promising efforts are ongoing to adapt cellular immunotherapies to address these obstacles, with the aim of reshaping the tumor microenvironment to ameliorate function and to achieve superior efficacy against both hematological and solid malignancies.
Collapse
Affiliation(s)
- Duc Huynh
- Department of Medicine IV, Center of Integrated Protein Science Munich (CIPS-M) and Division of Clinical Pharmacology, Klinikum der Universität München, LMU Lindwurmstrasse 2a, 80337, Munich, Germany
| | - Pia Winter
- Department of Medicine IV, Center of Integrated Protein Science Munich (CIPS-M) and Division of Clinical Pharmacology, Klinikum der Universität München, LMU Lindwurmstrasse 2a, 80337, Munich, Germany
| | - Florian Märkl
- Department of Medicine IV, Center of Integrated Protein Science Munich (CIPS-M) and Division of Clinical Pharmacology, Klinikum der Universität München, LMU Lindwurmstrasse 2a, 80337, Munich, Germany
| | - Stefan Endres
- Department of Medicine IV, Center of Integrated Protein Science Munich (CIPS-M) and Division of Clinical Pharmacology, Klinikum der Universität München, LMU Lindwurmstrasse 2a, 80337, Munich, Germany
- Einheit Für Klinische Pharmakologie (EKLiP), Helmholtz Zentrum München, Research Center for Environmental Health (HMGU), Neuherberg, Germany
- German Center for Translational Cancer Research (DKTK), partner site Munich, Heidelberg, Germany
| | - Sebastian Kobold
- Department of Medicine IV, Center of Integrated Protein Science Munich (CIPS-M) and Division of Clinical Pharmacology, Klinikum der Universität München, LMU Lindwurmstrasse 2a, 80337, Munich, Germany.
- Einheit Für Klinische Pharmakologie (EKLiP), Helmholtz Zentrum München, Research Center for Environmental Health (HMGU), Neuherberg, Germany.
- German Center for Translational Cancer Research (DKTK), partner site Munich, Heidelberg, Germany.
| |
Collapse
|
42
|
CAR-T cells for cancer immunotherapy. CHINESE CHEM LETT 2023. [DOI: 10.1016/j.cclet.2023.108202] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/15/2023]
|
43
|
Kong Y, Tang L, You Y, Li Q, Zhu X. Analysis of causes for poor persistence of CAR-T cell therapy in vivo. Front Immunol 2023; 14:1063454. [PMID: 36761742 PMCID: PMC9905114 DOI: 10.3389/fimmu.2023.1063454] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2022] [Accepted: 01/03/2023] [Indexed: 01/26/2023] Open
Abstract
Chimeric antigen receptor T-cell (CAR-T-cell) therapy has been well researched to date because of its ability to target malignant tumor cells. The most common CAR-T cells are CD19 CAR-T cells, which play a large role in B-cell leukemia treatment. However, most CAR-T cells are associated with relapse after clinical treatment, so the quality and persistence of CAR-T cells need to be improved. With continuous optimization, there have been four generations of CARs and each generation of CARs has better quality and durability than the previous generation. In addition, it is important to increase the proportion of memory cells in CAR-T cells. Studies have shown that an immunosuppressive tumor microenvironment (TME) can lead to dysfunction of CAR-T cells, resulting in decreased cell proliferation and poor persistence. Thus, overcoming the challenges of immunosuppressive molecules and targeting cytokines in the TME can also improve CAR-T cell persistence. In this paper, we explored how to improve the durability of CAR-T cell therapy by improving the structure of CARs, increasing the proportion of memory CAR-T cells and improving the TME.
Collapse
Affiliation(s)
- Yingjie Kong
- Institute of Hematology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Ling Tang
- Institute of Hematology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yong You
- Institute of Hematology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Qing Li
- Department of Hematology, Wuhan No.1 Hospital, Wuhan, China
| | - Xiaojian Zhu
- Department of Hematology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| |
Collapse
|
44
|
CAR-NK as a Rapidly Developed and Efficient Immunotherapeutic Strategy against Cancer. Cancers (Basel) 2022; 15:cancers15010117. [PMID: 36612114 PMCID: PMC9817948 DOI: 10.3390/cancers15010117] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2022] [Revised: 12/14/2022] [Accepted: 12/20/2022] [Indexed: 12/28/2022] Open
Abstract
Chimeric antigen receptor (CAR)-modified T cell therapy has been rapidly developing in recent years, ultimately revolutionizing immunotherapeutic strategies and providing significant anti-tumor potency, mainly in treating hematological neoplasms. However, graft-versus-host disease (GVHD) and other adverse effects, such as cytokine release syndromes (CRS) and neurotoxicity associated with CAR-T cell infusion, have raised some concerns about the broad application of this therapy. Natural killer (NK) cells have been identified as promising alternative platforms for CAR-based therapies because of their unique features, such as a lack of human leukocyte antigen (HLA)-matching restriction, superior safety, and better anti-tumor activity when compared with CAR-T cells. The lack of CRS, neurotoxicity, or GVHD, in the case of CAR-NK therapy, in addition to the possibility of using allogeneic NK cells as a CAR platform for "off-the-shelf" therapy, opens new windows for strategic opportunities. This review underlines recent design achievements in CAR constructs and summarizes preclinical studies' results regarding CAR-NK therapies' safety and anti-tumor potency. Additionally, new approaches in CAR-NK technology are briefly described, and currently registered clinical trials are listed.
Collapse
|
45
|
Riesenberg BP, Hunt EG, Tennant MD, Hurst KE, Andrews AM, Leddy LR, Neskey DM, Hill EG, Rivera GOR, Paulos CM, Gao P, Thaxton JE. Stress-Mediated Attenuation of Translation Undermines T-cell Activity in Cancer. Cancer Res 2022; 82:4386-4399. [PMID: 36126165 PMCID: PMC9722626 DOI: 10.1158/0008-5472.can-22-1744] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2022] [Revised: 08/06/2022] [Accepted: 09/15/2022] [Indexed: 01/24/2023]
Abstract
Protein synthesis supports robust immune responses. Nutrient competition and global cell stressors in the tumor microenvironment (TME) may impact protein translation in T cells and antitumor immunity. Using human and mouse tumors, we demonstrated here that protein translation in T cells is repressed in solid tumors. Reduced glucose availability to T cells in the TME led to activation of the unfolded protein response (UPR) element eIF2α (eukaryotic translation initiation factor 2 alpha). Genetic mouse models revealed that translation attenuation mediated by activated p-eIF2α undermines the ability of T cells to suppress tumor growth. Reprograming T-cell metabolism was able to alleviate p-eIF2α accumulation and translational attenuation in the TME, allowing for sustained protein translation. Metabolic and pharmacological approaches showed that proteasome activity mitigates induction of p-eIF2α to support optimal antitumor T-cell function, protecting from translation attenuation and enabling prolonged cytokine synthesis in solid tumors. Together, these data identify a new therapeutic avenue to fuel the efficacy of tumor immunotherapy. SIGNIFICANCE Proteasome function is a necessary cellular component for endowing T cells with tumor killing capacity by mitigating translation attenuation resulting from the unfolded protein response induced by stress in the tumor microenvironment.
Collapse
Affiliation(s)
- Brian P. Riesenberg
- Immunotherapy Program, Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill; Chapel Hill, NC 27514; USA
| | - Elizabeth G. Hunt
- Immunotherapy Program, Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill; Chapel Hill, NC 27514; USA,Department of Cell Biology & Physiology, University of North Carolina at Chapel Hill; Chapel Hill, NC 27514; USA
| | - Megan D. Tennant
- Department of Microbiology & Immunology, Medical University of South Carolina, Charleston, SC 29425; USA
| | - Katie E. Hurst
- Immunotherapy Program, Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill; Chapel Hill, NC 27514; USA
| | - Alex M. Andrews
- Hollings Cancer Center, Medical University of South Carolina, Charleston, SC 29425; USA
| | - Lee R. Leddy
- Hollings Cancer Center, Medical University of South Carolina, Charleston, SC 29425; USA
| | - David M. Neskey
- Hollings Cancer Center, Medical University of South Carolina, Charleston, SC 29425; USA
| | - Elizabeth G. Hill
- Hollings Cancer Center, Medical University of South Carolina, Charleston, SC 29425; USA,Department of Public Health Sciences, Hollings Cancer Center Biostatistics Shared Resource; Director, Medical University of South Carolina, Charleston, SC 29425; USA
| | - Guillermo O. Rangel Rivera
- Department of Microbiology & Immunology, Medical University of South Carolina, Charleston, SC 29425; USA,Department of Surgery and Microbiology & Immunology, Winship Cancer Institute, Emory University, Atlanta, GA, 30322; USA
| | - Chrystal M. Paulos
- Department of Microbiology & Immunology, Medical University of South Carolina, Charleston, SC 29425; USA,Department of Surgery and Microbiology & Immunology, Winship Cancer Institute, Emory University, Atlanta, GA, 30322; USA
| | - Peng Gao
- Department of Medicine, Metabolomics Core Facility; Director, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611; USA
| | - Jessica E. Thaxton
- Immunotherapy Program, Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill; Chapel Hill, NC 27514; USA,Department of Cell Biology & Physiology, University of North Carolina at Chapel Hill; Chapel Hill, NC 27514; USA,Correspondence: Dr. Jessica Thaxton, Department of Cell Biology & Physiology, Immunotherapy Program, Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, 125 Mason Farm Road, Chapel Hill, NC 27514, 919-966-4913,
| |
Collapse
|
46
|
Biederstädt A, Manzar GS, Daher M. Multiplexed engineering and precision gene editing in cellular immunotherapy. Front Immunol 2022; 13:1063303. [PMID: 36483551 PMCID: PMC9723254 DOI: 10.3389/fimmu.2022.1063303] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2022] [Accepted: 10/31/2022] [Indexed: 11/23/2022] Open
Abstract
The advent of cellular immunotherapy in the clinic has entirely redrawn the treatment landscape for a growing number of human cancers. Genetically reprogrammed immune cells, including chimeric antigen receptor (CAR)-modified immune effector cells as well as T cell receptor (TCR) therapy, have demonstrated remarkable responses across different hard-to-treat patient populations. While these novel treatment options have had tremendous success in providing long-term remissions for a considerable fraction of treated patients, a number of challenges remain. Limited in vivo persistence and functional exhaustion of infused immune cells as well as tumor immune escape and on-target off-tumor toxicities are just some examples of the challenges which restrain the potency of today's genetically engineered cell products. Multiple engineering strategies are being explored to tackle these challenges.The advent of multiplexed precision genome editing has in recent years provided a flexible and highly modular toolkit to specifically address some of these challenges by targeted genetic interventions. This class of next-generation cellular therapeutics aims to endow engineered immune cells with enhanced functionality and shield them from immunosuppressive cues arising from intrinsic immune checkpoints as well as the hostile tumor microenvironment (TME). Previous efforts to introduce additional genetic modifications into immune cells have in large parts focused on nuclease-based tools like the CRISPR/Cas9 system or TALEN. However, nuclease-inactive platforms including base and prime editors have recently emerged and promise a potentially safer route to rewriting genetic sequences and introducing large segments of transgenic DNA without inducing double-strand breaks (DSBs). In this review, we discuss how these two exciting and emerging fields-cellular immunotherapy and precision genome editing-have co-evolved to enable a dramatic expansion in the possibilities to engineer personalized anti-cancer treatments. We will lay out how various engineering strategies in addition to nuclease-dependent and nuclease-inactive precision genome editing toolkits are increasingly being applied to overcome today's limitations to build more potent cellular therapeutics. We will reflect on how novel information-rich unbiased discovery approaches are continuously deepening our understanding of fundamental mechanisms governing tumor biology. We will conclude with a perspective of how multiplexed-engineered and gene edited cell products may upend today's treatment paradigms as they evolve into the next generation of more potent cellular immunotherapies.
Collapse
Affiliation(s)
- Alexander Biederstädt
- Department of Stem Cell Transplantation and Cellular Therapy, The University of Texas MD Anderson Cancer Center, Houston, TX, United States
- Department of Medicine III, Hematology and Oncology, School of Medicine, Technical University of Munich, Munich, Germany
| | - Gohar Shahwar Manzar
- Department of Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, United States
| | - May Daher
- Department of Stem Cell Transplantation and Cellular Therapy, The University of Texas MD Anderson Cancer Center, Houston, TX, United States
| |
Collapse
|
47
|
GU T, ZHU M, HUANG H, HU Y. Relapse after CAR-T cell therapy in B-cell malignancies: challenges and future approaches. J Zhejiang Univ Sci B 2022; 23:793-811. [PMID: 36226535 PMCID: PMC9561408 DOI: 10.1631/jzus.b2200256] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
Chimeric antigen receptor-T (CAR-T) cell therapy, as a novel cellular immunotherapy, has dramatically reshaped the landscape of cancer treatment, especially in hematological malignancies. However, relapse is still one of the most troublesome obstacles to achieving broad clinical application. The intrinsic factors and superior adaptability of tumor cells mark a fundamental aspect of relapse. The unique biological function of CAR-T cells governed by their special CAR construction also affects treatment efficacy. Moreover, complex cross-interactions among CAR-T cells, tumor cells, and the tumor microenvironment (TME) profoundly influence clinical outcomes concerning CAR-T cell function and persistence. Therefore, in this review, based on the most recent discoveries, we focus on the challenges of relapse after CAR-T cell therapy in B-cell malignancies from the perspective of tumor cells, CAR-T cells, and the TME. We also discuss the corresponding basic and clinical approaches that may overcome the problem in the future. We aim to provide a comprehensive understanding for scientists and physicians that will help improve research and clinical practice.
Collapse
Affiliation(s)
- Tianning GU
- Bone Marrow Transplantation Center, the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou310003, China,Liangzhu Laboratory, Zhejiang University Medical Center, Hangzhou311121, China,Institute of Hematology, Zhejiang University, Hangzhou310058, China,Zhejiang Province Engineering Laboratory for Stem Cell and Immunity Therapy, Hangzhou310058, China
| | - Meng ZHU
- Bone Marrow Transplantation Center, the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou310003, China,Liangzhu Laboratory, Zhejiang University Medical Center, Hangzhou311121, China,Institute of Hematology, Zhejiang University, Hangzhou310058, China,Zhejiang Province Engineering Laboratory for Stem Cell and Immunity Therapy, Hangzhou310058, China
| | - He HUANG
- Bone Marrow Transplantation Center, the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou310003, China,Liangzhu Laboratory, Zhejiang University Medical Center, Hangzhou311121, China,Institute of Hematology, Zhejiang University, Hangzhou310058, China,Zhejiang Province Engineering Laboratory for Stem Cell and Immunity Therapy, Hangzhou310058, China,He HUANG,
| | - Yongxian HU
- Bone Marrow Transplantation Center, the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou310003, China,Liangzhu Laboratory, Zhejiang University Medical Center, Hangzhou311121, China,Institute of Hematology, Zhejiang University, Hangzhou310058, China,Zhejiang Province Engineering Laboratory for Stem Cell and Immunity Therapy, Hangzhou310058, China,Yongxian HU,
| |
Collapse
|
48
|
Feng J, Xu H, Cinquina A, Wu Z, Zhang W, Sun L, Chen Q, Tian L, Song L, Pinz KG, Wada M, Jiang X, Hanes WM, Ma Y, Zhang H. Treatment of aggressive T-cell lymphoma/leukemia with anti-CD4 CAR T cells. Front Immunol 2022; 13:997482. [PMID: 36172388 PMCID: PMC9511023 DOI: 10.3389/fimmu.2022.997482] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2022] [Accepted: 08/23/2022] [Indexed: 11/13/2022] Open
Abstract
T-cell lymphomas are aggressive lymphomas that often resist current therapy options or present with relapsed disease, making the development of more effective treatment regimens clinically important. Previously, we have shown that CD4 CAR can effectively target T-cell malignancies in preclinical studies. As IL-15 has been shown to strengthen the anti-tumor response, we have modified CD4 CAR to secrete an IL-15/IL-15sushi complex. These CD4-IL15/IL15sushi CAR T cells and NK92 cells efficiently eliminated CD4+ leukemic cell lines in co-culture assays. Additionally, CD4-IL15/IL15sushi CAR out-performed CD4 CAR in in vivo models, demonstrating a benefit to IL-15/IL-15sushi inclusion. In a Phase I clinical trial, CD4-IL15/IL15sushi CAR T cells were tested for safety in three patients with different T-cell lymphomas. Infusion of CD4-IL15/IL15sushi CAR T cells was well-tolerated by the patients without significant adverse effects and led to the remission of their lymphomas. Additionally, infusion led to the depletion of CD4+ Treg cells and expansion of CD3+CD8+ T cells and NK cells. These results suggest that CD4-IL15/IL15sushi CAR T cells may be a safe and effective treatment for patients with relapsed or refractory T-cell lymphomas, where new treatment options are needed.
Collapse
Affiliation(s)
- Jia Feng
- Department of Hematology, Peking University Shenzhen Hospital, Shenzhen, China
| | - Haichan Xu
- Department of Hematology, Peking University Shenzhen Hospital, Shenzhen, China
| | - Andrew Cinquina
- iCell Gene Therapeutics LLC, Research & Development Division, Long Island High Technology Incubator, Stony Brook, NY, United States
| | - Zehua Wu
- Department of Hematology, Peking University Shenzhen Hospital, Shenzhen, China
| | - Wenli Zhang
- Department of Hematology, Peking University Shenzhen Hospital, Shenzhen, China
| | - Lihua Sun
- Department of Hematology, Peking University Shenzhen Hospital, Shenzhen, China
| | - Qi Chen
- Department of Hematology, Peking University Shenzhen Hospital, Shenzhen, China
| | - Lei Tian
- Department of Hematology, Peking University Third Hospital, Beijing, China
| | - Le Song
- Department of Nuclear Medicine, Peking University Third Hospital, Beijing, China
| | - Kevin G. Pinz
- iCell Gene Therapeutics LLC, Research & Development Division, Long Island High Technology Incubator, Stony Brook, NY, United States
| | - Masayuki Wada
- iCell Gene Therapeutics LLC, Research & Development Division, Long Island High Technology Incubator, Stony Brook, NY, United States
| | - Xun Jiang
- iCell Gene Therapeutics LLC, Research & Development Division, Long Island High Technology Incubator, Stony Brook, NY, United States
| | - William M. Hanes
- iCell Gene Therapeutics LLC, Research & Development Division, Long Island High Technology Incubator, Stony Brook, NY, United States
| | - Yupo Ma
- iCell Gene Therapeutics LLC, Research & Development Division, Long Island High Technology Incubator, Stony Brook, NY, United States
- *Correspondence: Hongyu Zhang, ; Yupo Ma,
| | - Hongyu Zhang
- Department of Hematology, Peking University Shenzhen Hospital, Shenzhen, China
- *Correspondence: Hongyu Zhang, ; Yupo Ma,
| |
Collapse
|
49
|
Silveira CRF, Corveloni AC, Caruso SR, Macêdo NA, Brussolo NM, Haddad F, Fernandes TR, de Andrade PV, Orellana MD, Guerino-Cunha RL. Cytokines as an important player in the context of CAR-T cell therapy for cancer: Their role in tumor immunomodulation, manufacture, and clinical implications. Front Immunol 2022; 13:947648. [PMID: 36172343 PMCID: PMC9512053 DOI: 10.3389/fimmu.2022.947648] [Citation(s) in RCA: 30] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2022] [Accepted: 08/23/2022] [Indexed: 12/02/2022] Open
Abstract
CAR-T cell therapies have been recognized as one of the most advanced and efficient strategies to treat patients with hematologic malignancies. However, similar results have not been observed for the treatment of solid tumors. One of the explanations is the fact that tumors have extremely hostile microenvironments for the infiltration and effector activity of T-cells, mainly due to the presence of highly suppressive cytokines, hypoxia, and reactive oxygen species. Taking advantage of cytokines functionally, new fourth-generation CAR constructs have been developed to target tumor cells and additionally release cytokines that can contribute to the cytotoxicity of T-cells. The manufacturing process, including the use of cytokines in the expansion and differentiation of T cells, is also discussed. Finally, the clinical aspects and the influence of cytokines on the clinical condition of patients, such as cytokine release syndrome, who receive treatment with CAR-T cells are addressed. Therefore, this review aims to highlight how important cytokines are as one of the major players of cell therapy.
Collapse
Affiliation(s)
| | | | - Sâmia Rigotto Caruso
- Cell Therapy Laboratory, Fundação Hemocentro de Ribeirão Preto, São Paulo, Brazil
| | - Nathália Araújo Macêdo
- Advanced Cellular Therapy Laboratory, Fundação Hemocentro de Ribeirão Preto, São Paulo, Brazil
| | | | - Felipe Haddad
- Advanced Cellular Therapy Laboratory, Fundação Hemocentro de Ribeirão Preto, São Paulo, Brazil
| | | | - Pamela Viani de Andrade
- Advanced Cellular Therapy Laboratory, Fundação Hemocentro de Ribeirão Preto, São Paulo, Brazil
| | | | - Renato Luiz Guerino-Cunha
- Advanced Cellular Therapy Laboratory, Fundação Hemocentro de Ribeirão Preto, São Paulo, Brazil
- Department of Medical Images, Hematology and Clinical Oncology, Ribeirão Preto Medical School of University of São Paulo, Ribeirão Preto, Brazil
- *Correspondence: Renato Luiz Guerino-Cunha,
| |
Collapse
|
50
|
Gargett T, Ebert LM, Truong NTH, Kollis PM, Sedivakova K, Yu W, Yeo ECF, Wittwer NL, Gliddon BL, Tea MN, Ormsby R, Poonnoose S, Nowicki J, Vittorio O, Ziegler DS, Pitson SM, Brown MP. GD2-targeting CAR-T cells enhanced by transgenic IL-15 expression are an effective and clinically feasible therapy for glioblastoma. J Immunother Cancer 2022; 10:jitc-2022-005187. [PMID: 36167468 PMCID: PMC9516307 DOI: 10.1136/jitc-2022-005187] [Citation(s) in RCA: 40] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/13/2022] [Indexed: 11/08/2022] Open
Abstract
Background Aggressive primary brain tumors such as glioblastoma are uniquely challenging to treat. The intracranial location poses barriers to therapy, and the potential for severe toxicity. Effective treatments for primary brain tumors are limited, and 5-year survival rates remain poor. Immune checkpoint inhibitor therapy has transformed treatment of some other cancers but has yet to significantly benefit patients with glioblastoma. Early phase trials of chimeric antigen receptor (CAR) T-cell therapy in patients with glioblastoma have demonstrated that this approach is safe and feasible, but with limited evidence of its effectiveness. The choices of appropriate target antigens for CAR-T-cell therapy also remain limited. Methods We profiled an extensive biobank of patients’ biopsy tissues and patient-derived early passage glioma neural stem cell lines for GD2 expression using immunomicroscopy and flow cytometry. We then employed an approved clinical manufacturing process to make CAR- T cells from patients with peripheral blood of glioblastoma and diffuse midline glioma and characterized their phenotype and function in vitro. Finally, we tested intravenously administered CAR-T cells in an aggressive intracranial xenograft model of glioblastoma and used multicolor flow cytometry, multicolor whole-tissue immunofluorescence and next-generation RNA sequencing to uncover markers associated with effective tumor control. Results Here we show that the tumor-associated antigen GD2 is highly and consistently expressed in primary glioblastoma tissue removed at surgery. Moreover, despite patients with glioblastoma having perturbations in their immune system, highly functional GD2-specific CAR-T cells can be produced from their peripheral T cells using an approved clinical manufacturing process. Finally, after intravenous administration, GD2-CAR-T cells effectively infiltrated the brain and controlled tumor growth in an aggressive orthotopic xenograft model of glioblastoma. Tumor control was further improved using CAR-T cells manufactured with a clinical retroviral vector encoding an interleukin-15 transgene alongside the GD2-specific CAR. These CAR-T cells achieved a striking 50% complete response rate by bioluminescence imaging in established intracranial tumors. Conclusions Targeting GD2 using a clinically deployed CAR-T-cell therapy has a sound scientific and clinical rationale as a treatment for glioblastoma and other aggressive primary brain tumors.
Collapse
Affiliation(s)
- Tessa Gargett
- Translational Oncology Laboratory, Centre for Cancer Biology, SA Pathology and Univeristy of South Australia, Adelaide, South Australia, Australia .,Cancer Clinical Trials Unit, Royal Adelaide Hospital, Adelaide, South Australia, Australia.,Adelaide Medical School, The University of Adelaide, Adelaide, South Australia, Australia
| | - Lisa M Ebert
- Translational Oncology Laboratory, Centre for Cancer Biology, SA Pathology and Univeristy of South Australia, Adelaide, South Australia, Australia.,Adelaide Medical School, The University of Adelaide, Adelaide, South Australia, Australia
| | - Nga T H Truong
- Translational Oncology Laboratory, Centre for Cancer Biology, SA Pathology and Univeristy of South Australia, Adelaide, South Australia, Australia.,Cancer Clinical Trials Unit, Royal Adelaide Hospital, Adelaide, South Australia, Australia
| | - Paris M Kollis
- Translational Oncology Laboratory, Centre for Cancer Biology, SA Pathology and Univeristy of South Australia, Adelaide, South Australia, Australia.,Adelaide Medical School, The University of Adelaide, Adelaide, South Australia, Australia
| | - Kristyna Sedivakova
- Translational Oncology Laboratory, Centre for Cancer Biology, SA Pathology and Univeristy of South Australia, Adelaide, South Australia, Australia.,Adelaide Medical School, The University of Adelaide, Adelaide, South Australia, Australia
| | - Wenbo Yu
- Translational Oncology Laboratory, Centre for Cancer Biology, SA Pathology and Univeristy of South Australia, Adelaide, South Australia, Australia
| | - Erica C F Yeo
- Translational Oncology Laboratory, Centre for Cancer Biology, SA Pathology and Univeristy of South Australia, Adelaide, South Australia, Australia
| | - Nicole L Wittwer
- Translational Oncology Laboratory, Centre for Cancer Biology, SA Pathology and Univeristy of South Australia, Adelaide, South Australia, Australia.,Cancer Clinical Trials Unit, Royal Adelaide Hospital, Adelaide, South Australia, Australia
| | - Briony L Gliddon
- Molecular Therapeutics Laboratory, Centre for Cancer Biology, Adelaide, South Australia, Australia
| | - Melinda N Tea
- Molecular Therapeutics Laboratory, Centre for Cancer Biology, Adelaide, South Australia, Australia
| | - Rebecca Ormsby
- Flinders Health and Medical Research Institute, Flinders University, Adelaide, South Australia, Australia
| | - Santosh Poonnoose
- Flinders Health and Medical Research Institute, Flinders University, Adelaide, South Australia, Australia.,Department of Neurosurgery, Flinders Medical Centre, Bedford Park, South Australia, Australia
| | - Jake Nowicki
- Flinders Health and Medical Research Institute, Flinders University, Adelaide, South Australia, Australia.,Department of Neurosurgery, Flinders Medical Centre, Bedford Park, South Australia, Australia
| | - Orazio Vittorio
- Children's Cancer Institute, Lowy Cancer Research Centre, Sydney, New South Wales, Australia.,School of Women's and Children's Health, University of New South Wales, Sydney, New South Wales, Australia
| | - David S Ziegler
- Children's Cancer Institute, Lowy Cancer Research Centre, Sydney, New South Wales, Australia.,School of Women's and Children's Health, University of New South Wales, Sydney, New South Wales, Australia.,Kid's Cancer Centre, Sydney Children's Hospital, Randwick, NSW, Australia
| | - Stuart M Pitson
- Adelaide Medical School, The University of Adelaide, Adelaide, South Australia, Australia.,Molecular Therapeutics Laboratory, Centre for Cancer Biology, Adelaide, South Australia, Australia
| | - Michael P Brown
- Translational Oncology Laboratory, Centre for Cancer Biology, SA Pathology and Univeristy of South Australia, Adelaide, South Australia, Australia.,Cancer Clinical Trials Unit, Royal Adelaide Hospital, Adelaide, South Australia, Australia.,Adelaide Medical School, The University of Adelaide, Adelaide, South Australia, Australia
| |
Collapse
|