1
|
Shakeri M, Aminian A, Mokhtari K, Bahaeddini M, Tabrizian P, Farahani N, Nabavi N, Hashemi M. Unraveling the molecular landscape of osteoarthritis: A comprehensive review focused on the role of non-coding RNAs. Pathol Res Pract 2024; 260:155446. [PMID: 39004001 DOI: 10.1016/j.prp.2024.155446] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/25/2024] [Revised: 06/27/2024] [Accepted: 06/28/2024] [Indexed: 07/16/2024]
Abstract
Osteoarthritis (OA) poses a significant global health challenge, with its prevalence anticipated to increase in the coming years. This review delves into the emerging molecular biomarkers in OA pathology, focusing on the roles of various molecules such as metabolites, noncoding RNAs (ncRNAs), including microRNAs (miRNAs) and long non-coding RNAs (lncRNAs), and circular RNAs (circRNAs). Advances in omics technologies have transformed biomarker identification, enabling comprehensive analyses of the complex pathways involved in OA pathogenesis. Notably, ncRNAs, especially miRNAs and lncRNAs, exhibit dysregulated expression patterns in OA, presenting promising opportunities for diagnosis and therapy. Additionally, the intricate interplay between epigenetic modifications and OA progression highlights the regulatory role of epigenetics in gene expression dynamics. Genome-wide association studies have pinpointed key genes undergoing epigenetic changes, providing insights into the inflammatory processes and chondrocyte hypertrophy typical of OA. Understanding the molecular landscape of OA, including biomarkers and epigenetic mechanisms, holds significant potential for developing innovative diagnostic tools and therapeutic strategies for OA management.
Collapse
Affiliation(s)
- Mohammadreza Shakeri
- MD, Bone and Joint Reconstruction Research Center, Shafa Orthopedic Hospital, Department of Orthopedic, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Amir Aminian
- MD, Bone and Joint Reconstruction Research Center, Shafa Orthopedic Hospital, Department of Orthopedic, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Khatere Mokhtari
- Department of Cellular and Molecular Biology and Microbiology, Faculty of Biological Science and Technology, University of Isfahan, Isfahan, Iran
| | - Mohammadreza Bahaeddini
- MD, Bone and Joint Reconstruction Research Center, Shafa Orthopedic Hospital, Department of Orthopedic, School of Medicine, Iran University of Medical Sciences, Tehran, Iran.
| | - Pouria Tabrizian
- MD, Bone and Joint Reconstruction Research Center, Shafa Orthopedic Hospital, Department of Orthopedic, School of Medicine, Iran University of Medical Sciences, Tehran, Iran.
| | - Najma Farahani
- Department of Genetics and Molecular Biology, Isfahan University of Medical Sciences, Isfahan, Iran.
| | - Noushin Nabavi
- Independent Researcher, Victoria, British Columbia V8V 1P7, Canada
| | - Mehrdad Hashemi
- Farhikhtegan Medical Convergence Sciences Research Center, Farhikhtegan Hospital Tehran Medical Sciences, Islamic Azad University, Tehran, Iran; Department of Genetics, Faculty of Advanced Science and Technology, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran.
| |
Collapse
|
2
|
Nguyen M, Battistoni CM, Babiak PM, Liu JC, Panitch A. Chondroitin Sulfate/Hyaluronic Acid-Blended Hydrogels Suppress Chondrocyte Inflammation under Pro-Inflammatory Conditions. ACS Biomater Sci Eng 2024; 10:3242-3254. [PMID: 38632852 PMCID: PMC11094685 DOI: 10.1021/acsbiomaterials.4c00200] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2024] [Revised: 04/04/2024] [Accepted: 04/09/2024] [Indexed: 04/19/2024]
Abstract
Osteoarthritis is characterized by enzymatic breakdown of the articular cartilage via the disruption of chondrocyte homeostasis, ultimately resulting in the destruction of the articular surface. Decades of research have highlighted the importance of inflammation in osteoarthritis progression, with inflammatory cytokines shifting resident chondrocytes into a pro-catabolic state. Inflammation can result in poor outcomes for cells implanted for cartilage regeneration. Therefore, a method to promote the growth of new cartilage and protect the implanted cells from the pro-inflammatory cytokines found in the joint space is required. In this study, we fabricate two gel types: polymer network hydrogels composed of chondroitin sulfate and hyaluronic acid, glycosaminoglycans (GAGs) known for their anti-inflammatory and prochondrogenic activity, and interpenetrating networks of GAGs and collagen I. Compared to a collagen-only hydrogel, which does not provide an anti-inflammatory stimulus, chondrocytes in GAG hydrogels result in reduced production of pro-inflammatory cytokines and enzymes as well as preservation of collagen II and aggrecan expression. Overall, GAG-based hydrogels have the potential to promote cartilage regeneration under pro-inflammatory conditions. Further, the data have implications for the use of GAGs to generally support tissue engineering in pro-inflammatory environments.
Collapse
Affiliation(s)
- Michael Nguyen
- Department
of Biomedical Engineering, University of
California, Davis, California 95616, United States
| | - Carly M. Battistoni
- Davidson
School of Chemical Engineering, Purdue University, West Lafayette, Indiana 47907, United States
| | - Paulina M. Babiak
- Davidson
School of Chemical Engineering, Purdue University, West Lafayette, Indiana 47907, United States
| | - Julie C. Liu
- Davidson
School of Chemical Engineering, Purdue University, West Lafayette, Indiana 47907, United States
- Weldon
School of Biomedical Engineering, Purdue
University, West Lafayette, Indiana 47907, United States
| | - Alyssa Panitch
- Department
of Biomedical Engineering, University of
California, Davis, California 95616, United States
- Wallace
H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, Georgia 30332, United States
| |
Collapse
|
3
|
Khan NM, Diaz-Hernandez ME, Martin WN, Patel B, Chihab S, Drissi H. pH-sensing G protein-coupled orphan receptor GPR68 is expressed in human cartilage and correlates with degradation of extracellular matrix during OA progression. PeerJ 2023; 11:e16553. [PMID: 38077417 PMCID: PMC10704986 DOI: 10.7717/peerj.16553] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2023] [Accepted: 11/09/2023] [Indexed: 12/18/2023] Open
Abstract
Background Osteoarthritis (OA) is a debilitating joints disease affecting millions of people worldwide. As OA progresses, chondrocytes experience heightened catabolic activity, often accompanied by alterations in the extracellular environment's osmolarity and acidity. Nevertheless, the precise mechanism by which chondrocytes perceive and respond to acidic stress remains unknown. Recently, there has been growing interest in pH-sensing G protein-coupled receptors (GPCRs), such as GPR68, within musculoskeletal tissues. However, function of GPR68 in cartilage during OA progression remains unknown. This study aims to identify the role of GPR68 in regulation of catabolic gene expression utilizing an in vitro model that simulates catabolic processes in OA. Methods We examined the expression of GPCR by analyzing high throughput RNA-Seq data in human cartilage isolated from healthy donors and OA patients. De-identified and discarded OA cartilage was obtained from joint arthroplasty and chondrocytes were prepared by enzymatic digestion. Chondrocytes were treated with GPR68 agonist, Ogerin and then stimulated IL1β and RNA isolation was performed using Trizol method. Reverse transcription was done using the cDNA synthesis kit and the expression of GPR68 and OA related catabolic genes was quantified using SYBR® green assays. Results The transcriptome analysis revealed that pH sensing GPCR were expressed in human cartilage with a notable increase in the expression of GPR68 in OA cartilage which suggest a potential role for GPR68 in the pathogenesis of OA. Immunohistochemical (IHC) and qPCR analyses in human cartilage representing various stages of OA indicated a progressive increase in GPR68 expression in cartilage associated with higher OA grades, underscoring a correlation between GPR68 expression and the severity of OA. Furthermore, IHC analysis of Gpr68 in murine cartilage subjected to surgically induced OA demonstrated elevated levels of GPR68 in knee cartilage and meniscus. Using IL1β stimulated in vitro model of OA catabolism, our qPCR analysis unveiled a time-dependent increase in GPR68 expression in response to IL1β stimulation, which correlates with the expression of matrix degrading proteases suggesting the role of GPR68 in chondrocytes catabolism and matrix degeneration. Using pharmacological activator of GPR68, our results further showed that GPR68 activation repressed the expression of MMPs in human chondrocytes. Conclusions Our results demonstrated that GPR68 was robustly expressed in human cartilage and mice and its expression correlates with matrix degeneration and severity of OA progression in human and surgical model. GPR68 activation in human chondrocytes further repressed the expression of MMPs under OA pathological condition. These results identify GPR68 as a possible therapeutic target in the regulation of matrix degradation during OA.
Collapse
Affiliation(s)
- Nazir M. Khan
- Orthopaedics, Emory University, Atlanta, GA, United States
| | | | | | - Bhakti Patel
- Orthopaedics, Emory University, Atlanta, GA, United States
| | - Samir Chihab
- Orthopaedics, Emory University, Atlanta, GA, United States
| | - Hicham Drissi
- Orthopaedics, Emory University, Atlanta, GA, United States
| |
Collapse
|
4
|
Araújo C, Oliveira RD, Pinto-Ribeiro F, Almeida-Aguiar C. An Insight on the Biomedical Potential of Portuguese Propolis from Gerês. Foods 2022; 11:3431. [PMID: 36360044 PMCID: PMC9656172 DOI: 10.3390/foods11213431] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2022] [Revised: 10/22/2022] [Accepted: 10/26/2022] [Indexed: 09/29/2023] Open
Abstract
Osteoarthritis (OA), a progressive degenerative disease of weight-bearing joints, is the second leading cause of disability in the world. Despite all the advances and research over the last years, none of the proposed strategies has been effective in generating functional and long-lasting tissue. Due to the high prevalence of OA and the urgent need for an effective and successful treatment, interest in natural products as anti-inflammatory agents, such as propolis and its components, has emerged. In this work, we estimate the biomedical potential of Portuguese propolis, evaluating the in vitro antioxidant and anti-inflammatory effects of single hydroalcoholic extracts prepared with propolis from Gerês sampled over a five-year period (2011-2015) (G.EE70 and G.EE35). The in vivo and in vitro anti-inflammatory potential of the hydroalcoholic extract of mixtures of the same samples (mG.EE70 and mG.EE35) was evaluated for the first time too. DPPH• radical scavenging and superoxide anion scavenging assays showed the strong antioxidant potential of both hydroalcoholic extracts, either prepared from single propolis samples or from the mixtures of the same samples. Results also revealed an anti-inflammatory effect of mG.EE35, both in vitro by inhibiting BSA denaturation and in vivo in the OA-induced model by improving mechanical hyperalgesia as well as the gait pattern parameters. Results further support the use of propolis blends as a better and more efficient approach to take full advantage of the bioactive potential of propolis.
Collapse
Affiliation(s)
- Carina Araújo
- Biology Department, University of Minho, 4710-057 Braga, Portugal
- Life and Health Sciences Research Institute (ICVS), University of Minho, 4710-057 Braga, Portugal
| | - Rafaela Dias Oliveira
- Biology Department, University of Minho, 4710-057 Braga, Portugal
- Life and Health Sciences Research Institute (ICVS), University of Minho, 4710-057 Braga, Portugal
- ICVS/3B’s—PT Government Associate Laboratory, 4710-057 Braga/4806-909 Guimarães, Portugal
- CBMA—Centre of Molecular and Environmental Biology, University of Minho, 4710-057 Braga, Portugal
| | - Filipa Pinto-Ribeiro
- Life and Health Sciences Research Institute (ICVS), University of Minho, 4710-057 Braga, Portugal
- ICVS/3B’s—PT Government Associate Laboratory, 4710-057 Braga/4806-909 Guimarães, Portugal
| | - Cristina Almeida-Aguiar
- Biology Department, University of Minho, 4710-057 Braga, Portugal
- CBMA—Centre of Molecular and Environmental Biology, University of Minho, 4710-057 Braga, Portugal
| |
Collapse
|
5
|
Sappanone A Alleviated IL-1β-Induced Inflammation in OA Chondrocytes through Modulating the NF-κB and Nrf2/HO-1 Pathways. DISEASE MARKERS 2022; 2022:2380879. [PMID: 36157214 PMCID: PMC9507726 DOI: 10.1155/2022/2380879] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/29/2022] [Revised: 08/22/2022] [Accepted: 08/23/2022] [Indexed: 11/17/2022]
Abstract
Objective This study was to examine the anti-inflammatory effect of sappanone A on interleukin- (IL-) 1β-stimulated osteoarthritis (OA) chondrocytes. Methods Chondrocytes were pretreated with sappanone A for 2 h before subsequent IL-1β stimulation. The mRNA expression levels of iNOs, COX-2, aggrecan, and collagen-II were measured with qRT-PCR. The levels of TNF-α, IL-6, IL-8, MMP-3, and MMP-13 were determined by ELISA. The protein levels of iNOs, COX-2, ADAMTS-4, ADAMTS-5, aggrecan, collagen-II, p-p65, p65, IκBα, Nrf2, and HO-1 were assessed by Western blot. Results Sappanone A inhibited the IL-1β-stimulated production of NO, PGE2, iNOS, COX-2, TNF-α, IL-6, and IL-8 in OA chondrocytes. In addition, sappanone A suppressed the expression of MMP-3, MMP-13, ADAMTS-4, and ADAMTS-5 in IL-1β-stimulated OA chondrocytes. The degradation of ECM components was reversed by sappanone A. Sappanone A prevented NF-κB activation while enhanced Nrf2/HO-1 activation in IL-1β-treated chondrocytes. Conclusion Sappanone A may be a potent therapeutic agent for OA.
Collapse
|
6
|
Zhao X, Cao X, Fu W, Yu P, Li Y, Yu X, Xu H. Protective effect of Ginsenoside Rc on the complete Freund’s adjuvant-induced rheumatoid arthritis in rats by attenuation of inflammatory mediators through inhibition NF-κB pathway. J Funct Foods 2022. [DOI: 10.1016/j.jff.2022.105136] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022] Open
|
7
|
Yao M, Zhang C, Ni L, Ji X, Hong J, Chen Y, Wang J, Li C, Lin J, Lu T, Sheng Y, Sun M, Shi M, Zhou C, Cai X. Cepharanthine Ameliorates Chondrocytic Inflammation and Osteoarthritis via Regulating the MAPK/NF-κB-Autophagy Pathway. Front Pharmacol 2022; 13:854239. [PMID: 35800437 PMCID: PMC9253373 DOI: 10.3389/fphar.2022.854239] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2022] [Accepted: 05/09/2022] [Indexed: 12/29/2022] Open
Abstract
Osteoarthritis is a worldwide joint disease caused by abnormal chondrocytic metabolism. However, traditional therapeutic methods aimed at anti-inflammation for early-stage disease are palliative. In the present study, we demonstrated that cepharanthine (CEP), extracted from the plant Stephania cepharantha, exerted protective medicinal efficacy on osteoarthritis for the first time. In our in vitro study, CEP suppressed the elevated expression of matrix metalloproteinases (MMPs), a disintegrin and metalloproteinase with thrombospondin motifs 5 (ADAMTS5) and inducible nitric oxide synthase (iNOS) stimulated by IL-1β or TNF-α by inhibiting the activation of MAPK and NF-κB signaling pathways, and upregulated the protein expression of aggrecan, collagen II, and Sox9. Also, CEP could reverse the reduced level of cellular autophagy in IL-1β or TNF-α–induced chondrocytes, indicating that the protective effect of CEP on osteoarthritis was achieved by restoring MAPK/NF-κB-mediated autophagy. Furthermore, in a murine OA model, CEP mitigated cartilage degradation and prevented osteoarthritis in the CEP-treated groups versus the OA group. Hence, our results revealed the therapeutic prospect of CEP for anti-osteoarthritic treatment.
Collapse
Affiliation(s)
- Minjun Yao
- Department of Orthopedic Surgery, Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
- Orthopedic Research Institute of Zhejiang University, Hangzhou, China
| | - Caihua Zhang
- Department of Orthopedics, Ningbo First Hospital, Ningbo, China
| | - Lingzhi Ni
- Department of Orthopedic Surgery, Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
- Department of Orthopedics, Hangzhou Third Hospital, Hangzhou, China
| | - Xiaoxiao Ji
- Department of Orthopedic Surgery, Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
- Orthopedic Research Institute of Zhejiang University, Hangzhou, China
| | - Jianqiao Hong
- Department of Orthopedic Surgery, Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
- Orthopedic Research Institute of Zhejiang University, Hangzhou, China
| | - Yazhou Chen
- Department of Orthopedic Surgery, Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
- Orthopedic Research Institute of Zhejiang University, Hangzhou, China
| | - Jie Wang
- Department of Orthopedic Surgery, Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
- Orthopedic Research Institute of Zhejiang University, Hangzhou, China
| | - Congsun Li
- Department of Orthopedic Surgery, Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
- Orthopedic Research Institute of Zhejiang University, Hangzhou, China
| | - Jiyan Lin
- Department of Orthopedic Surgery, Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
- Orthopedic Research Institute of Zhejiang University, Hangzhou, China
| | - Tingting Lu
- Department of Oncology, The First Clinical Medical College of Wenzhou Medical University, Wenzhou, China
| | - Yihao Sheng
- Department of Orthopedics, Hangzhou Xiaoshan Cha Ting Orthopedic Trauma Hospital, Hangzhou, China
| | - Menghao Sun
- Department of Orthopedic Surgery, Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
- Orthopedic Research Institute of Zhejiang University, Hangzhou, China
| | - Mingmin Shi
- Department of Orthopedic Surgery, Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
- Orthopedic Research Institute of Zhejiang University, Hangzhou, China
| | - Chenhe Zhou
- Department of Orthopedic Surgery, Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
- Orthopedic Research Institute of Zhejiang University, Hangzhou, China
- *Correspondence: Xunzi Cai, ; Chenhe Zhou,
| | - Xunzi Cai
- Department of Orthopedic Surgery, Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
- Orthopedic Research Institute of Zhejiang University, Hangzhou, China
- *Correspondence: Xunzi Cai, ; Chenhe Zhou,
| |
Collapse
|
8
|
Tiendrebeogo E, Choueiri M, Chevalier X, Conrozier T, Eymard F. Does the Presence of Neuropathic Pain Influence the Response to Hyaluronic Acid in Patients with Knee Osteoarthritis? Cartilage 2021; 13:1548S-1556S. [PMID: 32909439 PMCID: PMC8808856 DOI: 10.1177/1947603520954509] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
OBJECTIVES Up to 50% of patients with symptomatic knee osteoarthritis (OA) present with neuropathic pain (NP) features. We assessed the impact of NP according to DN4 (Douleurs Neuropathiques 4 questions) score on the response to intra-articular (IA) hyaluronic acid (HA) injections and the effects of HA injections on NP. MATERIALS AND METHODS We conducted a post hoc analysis from a multicenter, randomized, double-blind, noninferiority trial comparing the efficacy of 2 HA in symptomatic knee OA at 24 weeks. At baseline, demographic, anthropometric, radiologic data, and symptoms were recorded. The symptomatic effect of HA was assessed by VAS pain, patient global assessment (PGA), WOMAC, DN4, and OMERACT-OARSI response. RESULTS A total of 187 patients were included. NP according to DN4 score was present in 20 patients (10.7%) at baseline. Most common positive DN4 items were tingling (36.9%) and burning (36.4%). NP was associated with WOMAC pain score (P = 0.02). The presence of NP at baseline did not affect the symptomatic improvement after HA injections according to the VAS pain (P = 0.71), PGA (P = 050), WOMAC pain (P = 0.89), WOMAC function (P = 0.52), and rate of OMERACT-OARSI responders (P = 0.21). The prevalence of patients with NP decreased by 50% (n = 10) at 24 weeks after HA injections. Most improved DN4 items were itching (90%), hypoesthesia to pinprick (88%), and burning (50%). CONCLUSION In our study, NP was associated with pain severity, but did not influence the response to IA HA. On the other hand, HA injections reduced some NP features, especially itching, sting hypoesthesia, and burning.
Collapse
Affiliation(s)
| | - Magda Choueiri
- Department of Rheumatology, AP-HP Henri
Mondor Hospital, Creteil Cedex, France
| | - Xavier Chevalier
- Department of Rheumatology, AP-HP Henri
Mondor Hospital, Creteil Cedex, France
| | - Thierry Conrozier
- Department of Rheumatology, Nord
Franche-Comté Hospital, Belfort, France
| | - Florent Eymard
- Department of Rheumatology, AP-HP Henri
Mondor Hospital, Creteil Cedex, France,Florent Eymard, Department of Rheumatology,
AP-HP Henri Mondor Hospital, 51 avenue du Marechal de Lattre de Tassigny,
Creteil Cedex, F-94010, France.
| |
Collapse
|
9
|
You H, Zhang R, Wang L, Pan Q, Mao Z, Huang X. Chondro-Protective Effects of Shikimic Acid on Osteoarthritis via Restoring Impaired Autophagy and Suppressing the MAPK/NF-κB Signaling Pathway. Front Pharmacol 2021; 12:634822. [PMID: 34385915 PMCID: PMC8354550 DOI: 10.3389/fphar.2021.634822] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2020] [Accepted: 06/24/2021] [Indexed: 11/13/2022] Open
Abstract
Osteoarthritis (OA) is a major cause of cartilage pain and limited mobility in middle-aged and elderly individuals. The degeneration of cartilage induced by inflammation and cartilage anabolic and catabolic disorder plays a key role in OA. Shikimic acid (SA), a natural ingredient extracted from Illicium verum, has been shown to exert notable anti-inflammatory effects in previous studies, suggesting its potential effects in the treatment of OA. In this study, we revealed that the pretreatment of SW1353 human chondrocytes with SA before interleukin 1β (IL-1β) stimulation effectively decreased the expression of inducible nitric oxide synthase (iNOS), cyclooxygenase (Cox)-2, matrix metalloproteinases (MMPs; MMP3 and MMP13), a disintegrin and metalloproteinase with thrombospondin motifs (ADAMTS)-5, type X collagen, and p62; increased the expression of type II collagen, ATG7, Beclin-1, and LC3; and increased the autophagic flux. Mechanistically, we found that SA suppressed the IL-1β-induced activation of the mitogen-activated protein kinase (MAPK) and nuclear factor-kappaB (NF-κB) pathways. Furthermore, the results of safranin O staining and toluidine blue staining of primary rat cartilage chondrocytes and a trauma-induced rat model of OA showed that SA alleviated progression of OA in vivo. Collectively, our research enhances understanding of the mechanism of protective effect of SA against the progression of OA, which involves amelioration of cartilage degeneration, thereby providing new evidence for the use of SA as a therapy to prevent the development of OA.
Collapse
Affiliation(s)
- Hongbo You
- Department of Orthopedics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Rui Zhang
- Department of Orthopedics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Lingying Wang
- Department of Radiation Oncology, Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Qiyong Pan
- Department of Orthopaedics, First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Zekai Mao
- Department of Orthopedics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Xiaojian Huang
- Department of Orthopedics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| |
Collapse
|
10
|
Zhou H, Li G, Wang Y, Jiang R, Li Y, Wang H, Wang F, Ma H, Cao L. Microbial Metabolite Sodium Butyrate Attenuates Cartilage Degradation by Restoring Impaired Autophagy and Autophagic Flux in Osteoarthritis Development. Front Pharmacol 2021; 12:659597. [PMID: 33897442 PMCID: PMC8062861 DOI: 10.3389/fphar.2021.659597] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2021] [Accepted: 03/01/2021] [Indexed: 12/16/2022] Open
Abstract
Osteoarthritis (OA) is a degenerative joint disease with multiple etiologies that affects individuals worldwide. No effective interventions are currently available to reverse the pathological process of OA. Sodium butyrate (NaB), a component of short-chain fatty acids (SCFAs), has multiple biological activities, including the attenuation of inflammation and anti-tumor activities in various diseases. However, whether the protective effects of NaB in OA are associated with the promotion of autophagy had not been investigated. Here, we explored the chondroprotective properties of NaB in an interleukin (IL)-1β-induced inflammatory chondrocyte model and an anterior cruciate ligament transection (ACLT) mouse model. Hematoxylin and eosin (HE), Safranin O, and immunohistochemical staining were performed to evaluate the effects of NaB treatment on articular cartilage. An optimal NaB dose for chondrocyte treatment was determined via cell counting kit-8 assays. Immunofluorescence and transmission electron microscopy were used to detect autophagy in chondrocytes. Flow cytometry was utilized to detect reactive oxygen species (ROS), cell cycle activity, and apoptosis in chondrocytes. Western blot and immunostaining were performed to evaluate the protein expression levels of relevant indicators. We found that the administration of NaB by oral gavage could attenuate cartilage degradation. In parallel, NaB treatment could enhance the activation of autophagy, increase autophagic flux, decrease extracellular matrix degradation, and reduce apoptosis by restraining inflammation, ROS production, and cell cycle arrest in IL-1β-treated chondrocytes. The protective effects of NaB could be partially abolished by the autophagy inhibitor 3-methyladenine (3-MA), which indicated that the protective effects of NaB against OA were partially governed by the enhancement of autophagy to restrain the formation of inflammatory mediators and ROS and regulate cell cycle progression and apoptosis in chondrocytes. In conclusion, NaB could attenuate OA progression by restoring impaired autophagy and autophagic flux via the phosphoinositide 3-kinase (PI3K)/protein kinase B (Akt)/mammalian target of rapamycin (mTOR) pathway, both in vitro and in vivo, implying that NaB could represent a novel therapeutic approach for OA.
Collapse
Affiliation(s)
- Haikang Zhou
- Department of Orthopaedics, First Affiliated Hospital of Xinjiang Medical University, Urumqi, China
| | - Guoqing Li
- Department of Orthopaedics, First Affiliated Hospital of Xinjiang Medical University, Urumqi, China
| | - Yang Wang
- Department of Orthopaedics, First Affiliated Hospital of Xinjiang Medical University, Urumqi, China
| | - Rendong Jiang
- Department of Orthopaedics, First Affiliated Hospital of Xinjiang Medical University, Urumqi, China
| | - Yicheng Li
- Department of Orthopaedics, First Affiliated Hospital of Xinjiang Medical University, Urumqi, China
| | - Huhu Wang
- Department of Orthopaedics, First Affiliated Hospital of Xinjiang Medical University, Urumqi, China
| | - Fei Wang
- Xinjiang Uygur Autonomous Region Clinical Research Center for Orthopedic Diseases, First Affiliated Hospital of Xinjiang Medical University, Urumqi, China
| | - Hairong Ma
- Xinjiang Uygur Autonomous Region Clinical Research Center for Orthopedic Diseases, First Affiliated Hospital of Xinjiang Medical University, Urumqi, China
| | - Li Cao
- Department of Orthopaedics, First Affiliated Hospital of Xinjiang Medical University, Urumqi, China
| |
Collapse
|
11
|
Qi Y, Li B, Wen Y, Yang X, Chen B, He Z, Zhao Z, Magdalou J, Wang H, Chen L. H3K9ac of TGFβRI in human umbilical cord: a potential biomarker for evaluating cartilage differentiation and susceptibility to osteoarthritis via a two-step strategy. Stem Cell Res Ther 2021; 12:163. [PMID: 33663609 PMCID: PMC7934528 DOI: 10.1186/s13287-021-02234-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2020] [Accepted: 02/15/2021] [Indexed: 11/10/2022] Open
Abstract
Background Epidemiological investigation and our previous reports indicated that osteoarthritis had a fetal origin and was closely associated with intrauterine growth retardation (IUGR). Human Wharton’s jelly-derived mesenchymal stem cells (WJ-MSCs) could be programmable to “remember” early-life stimuli. Here, we aimed to explore an early-warning biomarker of fetal-originated adult osteoarthritis in the WJ-MSCs. Methods Firstly, two kinds of WJ-MSCs were applied to evaluate their chondrogenic potential in vitro through inducing chondrogenic differentiation as the first step of our strategy, one from newborns with IUGR and the other from normal newborns but treated with excessive cortisol during differentiation to simulate the excessive maternal glucocorticoid in the IUGR newborns. As for the second step of the strategy, the differentiated WJ-MSCs were treated with interleukin 1β (IL-1β) to mimic the susceptibility to osteoarthritis. Then, the expression and histone acetylation levels of transforming growth factor β (TGFβ) signaling pathway and the expression of histone deacetylases (HDACs) were quantified, with or without cortisol receptor inhibitor RU486, or HDAC4 inhibitor LMK235. Secondly, the histone acetylation and expression levels of TGFβRI were further detected in rat cartilage and human umbilical cord from IUGR individuals. Results Glycosaminoglycan content and the expression levels of chondrogenic genes were decreased in the WJ-MSCs from IUGR, and the expression levels of chondrogenic genes were further reduced after IL-1β treatment, while the expression levels of catabolic factors were increased. Then, serum cortisol level from IUGR individuals was found increased, and similar changes were observed in normal WJ-MSCs treated with excessive cortisol. Moreover, the decreased histone 3 lysine 9 acetylation (H3K9ac) level of TGFβRI and its expression were observed in IUGR-derived WJ-MSCs and normal WJ-MSCs treated with excessive cortisol, which could be abolished by RU486 and LMK235. At last, the decreased H3K9ac level of TGFβRI and its expression were further confirmed in the cartilage of IUGR rat offspring and human umbilical cords from IUGR newborn. Conclusions WJ-MSCs from IUGR individuals displayed a poor capacity of chondrogenic differentiation and an increased susceptibility to osteoarthritis-like phenotype, which was attributed to the decreased H3K9ac level of TGFβRI and its expression induced by high cortisol through GR/HDAC4. The H3K9ac of TGFβRI in human umbilical cord could be a potential early-warning biomarker for predicting neonatal cartilage dysplasia and osteoarthritis susceptibility. Supplementary Information The online version contains supplementary material available at 10.1186/s13287-021-02234-8.
Collapse
Affiliation(s)
- Yongjian Qi
- Department of Orthopedic Surgery, Zhongnan Hospital of Wuhan University, Wuhan, 430071, China.,Hubei Provincial Key Laboratory of Developmentally Originated Disease, Wuhan, 430071, China
| | - Bin Li
- Department of Orthopedic Surgery, Zhongnan Hospital of Wuhan University, Wuhan, 430071, China.,Hubei Provincial Key Laboratory of Developmentally Originated Disease, Wuhan, 430071, China
| | - Yinxian Wen
- Department of Orthopedic Surgery, Zhongnan Hospital of Wuhan University, Wuhan, 430071, China.,Hubei Provincial Key Laboratory of Developmentally Originated Disease, Wuhan, 430071, China
| | - Xu Yang
- Hubei Provincial Key Laboratory of Developmentally Originated Disease, Wuhan, 430071, China
| | - Biao Chen
- Department of Orthopedic Surgery, Zhongnan Hospital of Wuhan University, Wuhan, 430071, China.,Hubei Provincial Key Laboratory of Developmentally Originated Disease, Wuhan, 430071, China
| | - Zheng He
- Department of Orthopedic Surgery, Zhongnan Hospital of Wuhan University, Wuhan, 430071, China.,Hubei Provincial Key Laboratory of Developmentally Originated Disease, Wuhan, 430071, China
| | - Zhe Zhao
- Department of Orthopedic Surgery, Zhongnan Hospital of Wuhan University, Wuhan, 430071, China
| | - Jacques Magdalou
- UMR 7561 CNRS-Université de Lorraine, Faculté de Médicine, Vandoeuvre-lès-Nancy, France
| | - Hui Wang
- Hubei Provincial Key Laboratory of Developmentally Originated Disease, Wuhan, 430071, China. .,Department of Pharmacology, Wuhan University School of Basic Medical Sciences, Wuhan, 430071, China.
| | - Liaobin Chen
- Department of Orthopedic Surgery, Zhongnan Hospital of Wuhan University, Wuhan, 430071, China. .,Department of Pharmacology, Wuhan University School of Basic Medical Sciences, Wuhan, 430071, China.
| |
Collapse
|
12
|
Lin W, Kang H, Dai Y, Niu Y, Yang G, Niu J, Li M, Wang F. Early patellofemoral articular cartilage degeneration in a rat model of patellar instability is associated with activation of the NF-κB signaling pathway. BMC Musculoskelet Disord 2021; 22:90. [PMID: 33461534 PMCID: PMC7814603 DOI: 10.1186/s12891-021-03965-8] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/31/2020] [Accepted: 01/11/2021] [Indexed: 01/11/2023] Open
Abstract
Background Patellar instability (PI) often increases the possibility of lateral patellar dislocation and early osteoarthritis. The molecular mechanism of early articular cartilage degeneration during patellofemoral osteoarthritis (PFOA) still requires further investigation. However, it is known that the NF-κB signaling pathway plays an important role in articular cartilage degeneration. The aim of this study was to investigate the relationship between the NF-κB signaling pathway and patellofemoral joint cartilage degeneration. Methods We established a rat model of PI-induced PFOA. Female 4-week-old Sprague-Dawley rats (n = 120) were randomly divided into two groups: the PI (n = 60) and control group (n = 60). The distal femurs of the PI and control group were isolated and compared 4, 8, and 12 weeks after surgery. The morphological structure of the trochlear cartilage and subchondral bone were evaluated by micro-computed tomography and histology. The expression of NF-κB, matrix metalloproteinase (MMP)-13, collagen X, and TNF-ɑ were evaluated by immunohistochemistry and quantitative polymerase chain reaction. Results In the PI group, subchondral bone loss and cartilage degeneration were found 4 weeks after surgery. Compared with the control group, the protein and mRNA expression of NF-κB and TNF-ɑ were significantly increased 4, 8, and 12 weeks after surgery in the PI group. In addition, the markers of cartilage degeneration MMP-13 and collagen X were more highly expressed in the PI group compared with the control group at different time points after surgery. Conclusions This study has demonstrated that early patellofemoral joint cartilage degeneration can be caused by PI in growing rats, accompanied by significant subchondral bone loss and cartilage degeneration. In addition, the degeneration of articular cartilage may be associated with the activation of the NF-κB signaling pathway and can deteriorate with time as a result of PI.
Collapse
Affiliation(s)
- Wei Lin
- Department of Orthopedic Surgery, Third Hospital of Hebei Medical University, No. 139 Ziqiang Road, 050051, Shijiazhuang, Hebei, China
| | - Huijun Kang
- Department of Orthopedic Surgery, Third Hospital of Hebei Medical University, No. 139 Ziqiang Road, 050051, Shijiazhuang, Hebei, China
| | - Yike Dai
- Department of Orthopedic Surgery, Third Hospital of Hebei Medical University, No. 139 Ziqiang Road, 050051, Shijiazhuang, Hebei, China
| | - Yingzhen Niu
- Department of Orthopedic Surgery, Third Hospital of Hebei Medical University, No. 139 Ziqiang Road, 050051, Shijiazhuang, Hebei, China
| | - Guangmin Yang
- Department of Orthopedic Surgery, Third Hospital of Hebei Medical University, No. 139 Ziqiang Road, 050051, Shijiazhuang, Hebei, China
| | - Jinghui Niu
- Department of Orthopedic Surgery, Third Hospital of Hebei Medical University, No. 139 Ziqiang Road, 050051, Shijiazhuang, Hebei, China
| | - Ming Li
- Department of Orthopedic Surgery, Third Hospital of Hebei Medical University, No. 139 Ziqiang Road, 050051, Shijiazhuang, Hebei, China
| | - Fei Wang
- Department of Orthopedic Surgery, Third Hospital of Hebei Medical University, No. 139 Ziqiang Road, 050051, Shijiazhuang, Hebei, China.
| |
Collapse
|
13
|
Min GY, Park JM, Joo IH, Kim DH. Inhibition effect of Caragana sinica root extracts on Osteoarthritis through MAPKs, NF-κB signaling pathway. Int J Med Sci 2021; 18:861-872. [PMID: 33456343 PMCID: PMC7807197 DOI: 10.7150/ijms.52330] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/24/2020] [Accepted: 11/30/2020] [Indexed: 02/07/2023] Open
Abstract
Osteoarthritis (OA) is a common joint disease characterized by degradation and inflammation of cartilage extracellular matrix. We aimed to evaluate the protective effect of Caragana sinica root (CSR) on interleukin (IL)-1β-stimulated rat chondrocytes and a monosodium iodoacetate (MIA)-induced model of OA. In vitro, cell viability of CSR-treated chondrocytes was measured by MTT assay. The mRNA expression of Matrix metallopeptidases (MMPs), a disintegrin and metalloproteinase with thrombospondin motifs (ADAMTSs) and extracellular matrix (ECM) were analyzed by quantitative real-time PCR (qRT-PCR). Moreover, the protein expression of MAPK (phosphorylation of EKR, JNK, p38), inhibitory kappa B (IκBα) and nuclear factor-kappa B (NF-κB p65) was detected by western blot analysis. In vivo, the production of nitric oxide (NO) was detected by Griess reagent, while those of inflammatory mediators, MMPs and ECM were detected by ELISA. The degree of OA was evaluated by histopathological analyses, Osteoarthritis Research Society International (OARSI) score and micro-CT analysis. CSR significantly inhibited the expression of MMPs, ADAMTSs and the degradation of ECM in IL-1β-stimulated chondrocytes. Furthermore, CSR significantly suppressed IL-1β-stimulated of MAPKs, NF-κB signaling pathway. In vivo, CSR and Indomethacin inhibited the production of inflammatory mediators, MMPs and degradation of ECM in MIA-induced model of OA. In addition, CSR improved the severity of OA. Taken together, these results suggest CSR is a potential therapeutic active agent in the treatment of OA.
Collapse
Affiliation(s)
- Ga-Yul Min
- Department of Pathology, College of Oriental Medicine, Daejeon University, Daejeon 34520, Republic of Korea
| | - Jong-Min Park
- Department of Pathology, College of Oriental Medicine, Daejeon University, Daejeon 34520, Republic of Korea
| | - In-Hwan Joo
- Department of Pathology, College of Oriental Medicine, Daejeon University, Daejeon 34520, Republic of Korea
| | - Dong-Hee Kim
- Department of Pathology, College of Oriental Medicine, Daejeon University, Daejeon 34520, Republic of Korea
| |
Collapse
|
14
|
杨 定, 张 志. [The role of helper T cell in the pathogenesis of osteoarthritis]. ZHONGGUO XIU FU CHONG JIAN WAI KE ZA ZHI = ZHONGGUO XIUFU CHONGJIAN WAIKE ZAZHI = CHINESE JOURNAL OF REPARATIVE AND RECONSTRUCTIVE SURGERY 2020; 34:932-938. [PMID: 32666741 PMCID: PMC8180432 DOI: 10.7507/1002-1892.201910063] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Subscribe] [Scholar Register] [Received: 10/17/2019] [Revised: 02/20/2020] [Indexed: 11/03/2022]
Abstract
OBJECTIVE To review and summarize the role of helper T cell (Th) in the pathogenesis of osteoarthritis (OA) and research progress of Th cell-related treatment for OA. METHODS The domestic and foreign literature in recent years was reviewed. The role of Th cells [Th1, Th2, Th9, Th17, Th22, and follicular helper T cell (Tfh)] and related cytokines in the pathogenesis of OA and the latest research progress of treatment were summarized. RESULTS Th cells play an important role in the pathogenesis of OA. Th1, Th9, and Th17 cells are more important than Th2, Th22, and Tfh cells in the pathogenesis of OA. Cytokines such as tumor necrosis factor α and interleukin 17 can cause damage to articular cartilage significantly. CONCLUSION At present, the role of Th cells in the pathogenesis of OA has been played in the spotlight. The specific mechanism has not been clear. Regulating the Th cell-associated cytokines, intracellular and extracellular signals, and cellular metabolism is a potential method for prevention and treatment of OA.
Collapse
Affiliation(s)
- 定龙 杨
- 山西医科大学(太原 030000)Shanxi Medical University, Taiyuan Shanxi, 030000, P.R.China
| | - 志强 张
- 山西医科大学(太原 030000)Shanxi Medical University, Taiyuan Shanxi, 030000, P.R.China
| |
Collapse
|
15
|
Molecular Targets of Natural Products for Chondroprotection in Destructive Joint Diseases. Int J Mol Sci 2020; 21:ijms21144931. [PMID: 32668590 PMCID: PMC7404046 DOI: 10.3390/ijms21144931] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2020] [Revised: 07/06/2020] [Accepted: 07/08/2020] [Indexed: 12/16/2022] Open
Abstract
Osteoarthritis (OA) is the most common type of arthritis that occurs in an aged population. It affects any joints in the body and degenerates the articular cartilage and the subchondral bone. Despite the pathophysiology of OA being different, cartilage resorption is still a symbol of osteoarthritis. Matrix metalloproteinases (MMPs) are important proteolytic enzymes that degrade extra-cellular matrix proteins (ECM) in the body. MMPs contribute to the turnover of cartilage and its break down; their levels have increased in the joint tissues of OA patients. Application of chondroprotective drugs neutralize the activities of MMPs. Natural products derived from herbs and plants developed as traditional medicine have been paid attention to, due to their potential biological effects. The therapeutic value of natural products in OA has increased in reputation due to their clinical impact and insignificant side effects. Several MMPs inhibitor have been used as therapeutic drugs, for a long time. Recently, different types of compounds were reviewed for their biological activities. In this review, we summarize numerous natural products for the development of MMPs inhibitors in arthritic diseases and describe the major signaling targets that were involved for the treatments of these destructive joint diseases.
Collapse
|
16
|
Abstract
For centuries, people believed that bats possessed sinister powers. Bats are thought to be ancestral hosts to many deadly viruses affecting humans including Ebola, rabies, and most recently SARS-CoV-2 coronavirus. However, bats themselves tolerate these viruses without ill effects. The second power that bats have is their longevity. Bats live much longer than similar-sized land mammals. Here we review how bats' ability to control inflammation may be contributing to their longevity. The underlying mechanisms may hold clues to developing new treatments for age-related diseases. Now may be the time to use science to exploit the secret powers of bats for human benefit.
Collapse
Affiliation(s)
- Vera Gorbunova
- Departments of Biology and Medicine, University of Rochester, Rochester, NY 14627, USA.
| | - Andrei Seluanov
- Departments of Biology and Medicine, University of Rochester, Rochester, NY 14627, USA
| | - Brian K Kennedy
- Departments of Biochemistry and Physiology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117596, Singapore; Centre for Healthy Longevity, National University Health System, Singapore 117609, Singapore; Singapore Institute of Clinical Sciences, A(∗)STAR, Singapore 117609, Singapore.
| |
Collapse
|
17
|
Ma H, Qin S, Zhao S. Osteoarthritis is Prevented in Rats by Verbascoside via Nuclear Factor kappa B (NF-κB) Pathway Downregulation. Med Sci Monit 2020; 26:e921276. [PMID: 32249762 PMCID: PMC7160605 DOI: 10.12659/msm.921276] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Background Cartilage degeneration during osteoarthritis (OA) most adversely affects the quality of life by hindering the movement. The present study investigated the role of verbascoside in the protection of cartilage degeneration induced by osteoarthritis. Material/Methods The enzyme-linked immunosorbent (ELISA) and western blot assays were used for determination of inflammatory cytokine secretion in serum and cartilage tissues, respectively. Results Treatment of the OA rats with verbascoside inhibited overproduction of interleukin (IL)-6, tumor necrosis factor (TNF)-α, and IL-1β in serum as well as cartilage tissues. The expression of P2X7R and matrix metalloproteinase (MMP)-13 was much higher in the rats induced with OA. However, administration of verbascoside reversed the OA-induced upregulation of P2X7R and MMP-13 expression in the cartilage tissues. The OA-mediated increase in substance P (SP) and prostaglandin E2 (PGE2) expression was also reduced in the cartilage tissues by the verbascoside treatment. Western blot assay revealed that verbascoside treatment markedly decreased the activation of IκBα and NF-κB p65 in the OA rats. Conclusions Thus, verbascoside inhibited inflammatory cytokine secretion in the OA rats by targeting P2X7R expression, production of matrix metalloproteinase, PGE2 and downregulation of NF-κB signaling pathway. Therefore, verbascoside may be used as potent agent for osteoarthritis treatment.
Collapse
Affiliation(s)
- Hongbing Ma
- Department of Orthopedics, Chengdu Second People's Hospital, Chengdu, Sichuan, China (mainland)
| | - Shourong Qin
- Department of Traumatic Orthopaedics, Taian City Central Hospital, Taian, Shandong, China (mainland)
| | - Shaoheng Zhao
- Department of Orthopedic, Xi'an No.3 Hospital, Xi'an, Shaanxi, China (mainland)
| |
Collapse
|
18
|
Joung EJ, Kwon M, Gwon WG, Cao L, Lee SG, Utsuki T, Wakamatsu N, Kim JI, Kim HR. Meroterpenoid-Rich Fraction of the Ethanol Extract of Sargassum Serratifolium Suppresses Collagen-Induced Rheumatoid Arthritis in DBA/1J Mice Via Inhibition of Nuclear Factor κB Activation. Mol Nutr Food Res 2020; 64:e1900373. [PMID: 31900972 DOI: 10.1002/mnfr.201900373] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2019] [Revised: 12/10/2019] [Indexed: 12/20/2022]
Abstract
SCOPE Rheumatoid arthritis (RA) is an autoimmune disorder related to the inflammation of cartilage due to the infiltration of inflammatory cells. Sargassum serratifolium, a brown alga, possesses strong anti-inflammatory activities. METHODS AND RESULTS The effect of meroterpenoid-rich fraction from the ethanol extract of S. serratifolium (MES) on RA and its underlying mechanisms on the inhibition of RA using a collagen-induced arthritis (CIA) mouse model are examined. The results show that MES ameliorates paw swelling and reduces the arthritis score. MES considerably decreases the secretion of pro-inflammatory cytokines in the serum and joint tissue of mice. Histopathological analysis demonstrates that MES strongly inhibited bone damage and inflammatory cell intrusion in the joint tissue. The expression of inflammatory enzymes and adhesion molecules is significantly inhibited in the serum and joint tissue of MES-fed mice. In addition, MES downregulates the nuclear factor κB (NF-κB) signaling pathway by suppressing the phosphorylation of protein kinase B, c-Jun N-terminal kinase, and p38 mitogen-activated protein kinases. CONCLUSIONS MES supplementation remarkably reduces inflammatory response in CIA mouse model. These results indicate that MES can be used as a pharmaceutical agent against RA.
Collapse
Affiliation(s)
- Eun-Ji Joung
- Department of Food Science and Nutrition, Pukyong National University, 45 Yongso-ro, Nam-gu, Busan, 48513, Republic of Korea
| | - Misung Kwon
- Department of Food Science and Nutrition, Pukyong National University, 45 Yongso-ro, Nam-gu, Busan, 48513, Republic of Korea
| | - Wi-Gyeong Gwon
- Department of Food Science and Nutrition, Pukyong National University, 45 Yongso-ro, Nam-gu, Busan, 48513, Republic of Korea
| | - Lei Cao
- Department of Food Science and Nutrition, Pukyong National University, 45 Yongso-ro, Nam-gu, Busan, 48513, Republic of Korea
| | - Sang-Gil Lee
- Department of Food Science and Nutrition, Pukyong National University, 45 Yongso-ro, Nam-gu, Busan, 48513, Republic of Korea
| | - Tadanobu Utsuki
- Department of Pathobiological Science, School of Veterinary Medicine, Louisiana State University, Baton Rouge, LA, 70802, USA
| | - Nobuko Wakamatsu
- Department of Pathobiological Science, School of Veterinary Medicine, Louisiana State University, Baton Rouge, LA, 70802, USA
| | - Jae-Il Kim
- Department of Food Science and Nutrition, Pukyong National University, 45 Yongso-ro, Nam-gu, Busan, 48513, Republic of Korea
| | - Hyeung-Rak Kim
- Department of Food Science and Nutrition, Pukyong National University, 45 Yongso-ro, Nam-gu, Busan, 48513, Republic of Korea
| |
Collapse
|
19
|
He J, Zheng S. NF-κB Phosphorylation Inhibition Prevents Articular Cartilage Degradation in Osteoarthritis Rats via 2-Aminoquinoline. Med Sci Monit 2020; 26:e920346. [PMID: 31978040 PMCID: PMC6998790 DOI: 10.12659/msm.920346] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Background Osteoarthritis is a chronic degenerative disease of the joints that is common in older people worldwide. The characteristic features of osteoarthritis include cartilage degradation, synovitis, and remodelling of subchondral bone. The present study investigated the effect of 2-aminoquinoline on knee articular cartilage degradation in an osteoarthritis rat model. Material/Methods The rat model of osteoarthritis was established in Wistar rats by intra-articular injection of monosodium iodoacetate. The rats were randomly divided into 6 groups of 10 rats each: a normal control group, an untreated group, and 4 (5, 10, 15 and 20 mg/kg) treatment groups. The rats in treatment groups received 5, 10, 15, or 20 mg/kg doses of 2-aminoquinoline on day 2 of monosodium iodoacetate injection. Results The 2-aminoquinoline treatment of monosodium iodoacetate-injected rats markedly decreased weight-bearing asymmetry, inhibited edema formation, and improved paw withdrawal thresholds. The expression of inflammatory cytokines was markedly higher in the osteoarthritis rats. Treatment with 2-aminoquinoline led to a significant reduction in inflammatory cytokine expression in osteoarthritis rats in a dose-dependent manner. In osteoarthritis rats, the expressions of prostaglandin E2 (PGE2), matrix metalloproteinase-13 (MMP-13), and substance P were also higher in comparison to the control group. The 2-aminoquinoline treatment supressed PGE2, MMP-13, and substance P levels in osteoarthritis rats. Moreover, the expression of phosphorylated nuclear factor kappaB (p-NF-κB) was markedly higher in the untreated rats. However, activation of NF-κB was downregulated in the osteoarthritis rats by treatment with 2-aminoquinoline. Conclusions The present study demonstrated that 2-aminoquinoline prevents articular cartilage damage in osteoarthritis rats through inhibition of inflammatory factors and downregulation of NF-κB activation, suggesting that 2-aminoquinoline would be effective in treatment of osteoarthritis.
Collapse
Affiliation(s)
- Jinlong He
- Department of Integrated Traditional Chinese Medicine (TCM) and Western Medicine Orthopedics, Honghui Hospital, Xi'an Jiaotong University, Xi'an, Shaanxi, China (mainland)
| | - Shicheng Zheng
- Department of Integrated Traditional Chinese Medicine (TCM) and Western Medicine Orthopedics, Honghui Hospital, Xi'an Jiaotong University, Xi'an, Shaanxi, China (mainland)
| |
Collapse
|
20
|
Pesce Viglietti AI, Giambartolomei GH, Quarleri J, Delpino MV. Brucella abortus Infection Modulates 3T3-L1 Adipocyte Inflammatory Response and Inhibits Adipogenesis. Front Endocrinol (Lausanne) 2020; 11:585923. [PMID: 33071987 PMCID: PMC7531218 DOI: 10.3389/fendo.2020.585923] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/22/2020] [Accepted: 09/08/2020] [Indexed: 01/18/2023] Open
Abstract
Brucellosis is a prevalent global zoonotic infection but has far more impact in developing countries. The adipocytes are the most abundant cell type of adipose tissue and their secreted factors play an important role in several aspects of the innate and adaptive immune response. Here, we demonstrated the ability of Brucella abortus to infect and replicate in both adipocytes and its precursor cells (pre-adipocytes) derived from 3T3-L1 cell line. Additionally, infection of pre-adipocytes also inhibited adipogenesis in a mechanism independent of bacterial viability and dependent on lipidated outer membrane protein (L-Omp19). B. abortus infection was able to modulate the secretion of IL-6 and the matrix metalloproteases (MMPs) -2 and-9 in pre-adipocytes and adipocytes, and also modulated de transcription of adiponectin, leptin, and resistin in differentiated adipocytes. B. abortus-infected macrophages also modulate adipocyte differentiation involving a TNF-α dependent mechanism, thus suggesting a plausible interplay between B. abortus, adipocytes, and macrophages. In conclusion, B. abortus is able to alter adipogenesis process in adipocytes and its precursors directly after their infection, or merely their exposure to the B. abortus lipoproteins, and indirectly through soluble factors released by B. abortus-infected macrophages.
Collapse
Affiliation(s)
- Ayelén Ivana Pesce Viglietti
- Instituto de Inmunología, Genética y Metabolismo (INIGEM), Facultad de Farmacia y Bioquímica, Universidad de Buenos Aires (UBA), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Buenos Aires, Argentina
| | - Guillermo Hernán Giambartolomei
- Instituto de Inmunología, Genética y Metabolismo (INIGEM), Facultad de Farmacia y Bioquímica, Universidad de Buenos Aires (UBA), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Buenos Aires, Argentina
| | - Jorge Quarleri
- Instituto de Investigaciones Biomédicas en Retrovirus y Sida (INBIRS), Facultad de Medicina, Universidad de Buenos Aires (UBA), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Buenos Aires, Argentina
- *Correspondence: María Victoria Delpino, ; Jorge Quarleri,
| | - María Victoria Delpino
- Instituto de Inmunología, Genética y Metabolismo (INIGEM), Facultad de Farmacia y Bioquímica, Universidad de Buenos Aires (UBA), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Buenos Aires, Argentina
- *Correspondence: María Victoria Delpino, ; Jorge Quarleri,
| |
Collapse
|
21
|
Abstract
Osteoarthritis (OA) is a chronic degenerative joint disease, in which metabolic imbalance in bone is observed. The pathological mechanism of metabolic imbalance is not clear yet, but the nutritional factors, particularly the vitamins, might be intrinsic to the development and progression of OA. In this review article, we have explored databases such as PubMed, Scopus, and Google Scholar articles until the beginning of 2017 and reviewed the role of fat-soluble vitamins in pathological and therapeutic aspects of OA. Vitamin D plays an important role in the development and maintenance of the skeleton, as well as bone and cartilage metabolism, and its deficiency is implicated in the pathological process of OA. Vitamin E enhances chondrocyte growth and exhibits an anti-inflammatory activity, as well as plays an important role in the prevention of cartilage degeneration. In human OA cartilage, vitamin K deficiency produces abnormal growth plate calcification and inappropriate mineralization of cartilage. Thus, these fat-soluble vitamins play a key role in the pathophysiology of OA, and supplementation of these vitamins may provide innovative approaches for OA management. However, vitamin A has a different role, which is a regulator of cartilage and skeletal formation. When metabolite levels of vitamin A are elevated in synovial fluid, they appear to drive OA development. The role of inhibitors of vitamin A here remains unclear. More investigations are needed to examine the effects of fat-soluble vitamins on the various molecular pathways of OA, as well as to assess the efficacy and safety of their usage clinically.
Collapse
|
22
|
Malemud CJ. Inhibition of MMPs and ADAM/ADAMTS. Biochem Pharmacol 2019; 165:33-40. [PMID: 30826330 DOI: 10.1016/j.bcp.2019.02.033] [Citation(s) in RCA: 118] [Impact Index Per Article: 23.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2018] [Accepted: 02/28/2019] [Indexed: 12/12/2022]
Abstract
Matrix metalloproteinases (MMPs), A Disintegrin and Metalloproteinase (ADAM) and A Disintegrin and Metalloproteinase with Thrombospondin Motif (ADAMTS) are zinc-dependent endopeptidases that play a critical role in the destruction of extracellular matrix proteins and, the shedding of membrane-bound receptor molecules in various forms of arthritis and other diseases. Under normal conditions, MMP, ADAM and ADAMTS gene expression aids in the maintenance of homeostasis. However, in inflamed synovial joints characteristic of rheumatoid arthritis and osteoarthritis. MMP, ADAM and ADAMTS production is greatly increased under the influence of pro-inflammatory cytokines. Analyses based on medicinal chemistry strategies designed to directly inhibit the activity of MMPs have been largely unsuccessful when these MMP inhibitors were employed in animal models of rheumatoid arthritis and osteoarthritis. This is despite the fact that these MMP inhibitors were largely able to suppress pro-inflammatory cytokine-induced MMP production in vitro. A focus on ADAM and ADAMTS inhibitors has also been pursued. Thus, recent progress has identified the "sheddase" activity of ADAMs as a viable target and the development of GW280264X is an experimental ADAM17 inhibitor. Of note, a monoclonal antibody, GLPG1972, developed as an ADAMTS-5 inhibitor, entered a Phase I OA clinical trial. However, the failure of many of these previously developed inhibitors to move beyond the preclinical testing phase has required that novel strategies be developed that are designed to suppress both MMP, ADAM and ADAMTS production and activity.
Collapse
Affiliation(s)
- Charles J Malemud
- Division of Rheumatic Diseases, Case Western Reserve University School of Medicine, Cleveland, OH 44106, United States; Department of Medicine, Division of Rheumatic Diseases, University Hospitals Cleveland Medical Center, Foley Medical Building, 2061 Cornell Road, Room 207, Cleveland, OH 44106-5076, United States.
| |
Collapse
|
23
|
Hu PF, Ma CY, Sun FF, Chen WP, Wu LD. Follistatin-like protein 1 (FSTL1) promotes chondrocyte expression of matrix metalloproteinase and inflammatory factors via the NF-κB pathway. J Cell Mol Med 2019; 23:2230-2237. [PMID: 30644158 PMCID: PMC6378216 DOI: 10.1111/jcmm.14155] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2018] [Revised: 12/07/2018] [Accepted: 12/25/2018] [Indexed: 12/13/2022] Open
Abstract
Background The expression of follistatin‐like protein 1 (FSTL1) is closely associated with diseases of the musculoskeletal system. However, despite being a well characterized inflammatory mediator, the effects of FSTL1 on chondrocytes are not completely understood. In this study, we investigated the effects of FSTL1 on the expression of inflammatory and catabolic factors in rat chondrocytes. Methods Rat chondrocytes were treated directly with various concentrations of FSTL1 in vitro. The levels of matrix metalloproteinases (MMPs), inducible nitric oxide synthase (iNOS), cyclooxygenase (COX)‐2, interleukin (IL)‐1β, tumour necrosis factor (TNF)‐α and IL‐6 were measured by polymerase chain reaction, ELISA and Western blotting. In addition, activation of the nuclear factor kappa B (NF‐κB) pathway was explored to identify potential regulatory mechanisms. Results Follistatin‐like protein 1 directly increased the expression of MMP‐1, MMP‐13, iNOS, COX‐2, IL‐1β, TNF‐α and IL‐6 at both gene and protein level in a dose‐dependent manner. Activation of NF‐ κB and phosphorylation of p65 were also promoted by FSTL1 stimulation. Conclusions Follistatin‐like protein 1 exerts pro‐inflammatory and catabolic effects on cultured chondrocytes via activation of the NF‐κB signalling pathway. FSTL1 may therefore be a target in the treatment of OA.
Collapse
Affiliation(s)
- Peng-Fei Hu
- Department of Orthopedic Surgery, School of Medicine, Second Affiliated Hospital, Zhejiang University, Hangzhou, Zhejiang, P.R. China.,Orthopedics Research Institute of Zhejiang University, Hangzhou, Zhejiang, P.R. China
| | - Chi-Yuan Ma
- Department of Orthopedic Surgery, School of Medicine, Second Affiliated Hospital, Zhejiang University, Hangzhou, Zhejiang, P.R. China.,Orthopedics Research Institute of Zhejiang University, Hangzhou, Zhejiang, P.R. China
| | - Fang-Fang Sun
- Key Laboratory of Cancer Prevention and Intervention, School of Medicine, China National Ministry of Education, The Second Affiliated Hospital, Cancer Institute, Zhejiang University, Hangzhou, Zhejiang, P.R. China
| | - Wei-Ping Chen
- Department of Orthopedic Surgery, School of Medicine, Second Affiliated Hospital, Zhejiang University, Hangzhou, Zhejiang, P.R. China.,Orthopedics Research Institute of Zhejiang University, Hangzhou, Zhejiang, P.R. China
| | - Li-Dong Wu
- Department of Orthopedic Surgery, School of Medicine, Second Affiliated Hospital, Zhejiang University, Hangzhou, Zhejiang, P.R. China.,Orthopedics Research Institute of Zhejiang University, Hangzhou, Zhejiang, P.R. China
| |
Collapse
|
24
|
Fu X, Gong LF, Wu YF, Lin Z, Jiang BJ, Wu L, Yu KH. Urolithin A targets the PI3K/Akt/NF-κB pathways and prevents IL-1β-induced inflammatory response in human osteoarthritis: in vitro and in vivo studies. Food Funct 2019; 10:6135-6146. [PMID: 31497826 DOI: 10.1039/c9fo01332f] [Citation(s) in RCA: 53] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Osteoarthritis (OA) is a degenerative joint disease, whose progression is closely related to the inflammatory environment.
Collapse
Affiliation(s)
- Xin Fu
- Department of Orthopaedics
- The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University
- Wenzhou
- China
- The Second School of Medicine
| | - Lan-Fang Gong
- Department of Respiratory Medicine
- The First Affiliated Hospital of Wenzhou Medical University
- The First Medical School of the Wenzhou Medical University
- Wenzhou
- China
| | - Yi-Fan Wu
- Department of Orthopaedics
- The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University
- Wenzhou
- China
- The Second School of Medicine
| | - Zeng Lin
- Department of Orthopaedics
- The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University
- Wenzhou
- China
- The Second School of Medicine
| | - Bing-Jie Jiang
- Department of Orthopaedics
- The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University
- Wenzhou
- China
- The Second School of Medicine
| | - Long Wu
- Department of Orthopaedics
- The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University
- Wenzhou
- China
- The Second School of Medicine
| | - Ke-He Yu
- Department of Orthopaedics
- The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University
- Wenzhou
- China
- The Second School of Medicine
| |
Collapse
|
25
|
Abstract
Osteoarthritis is a common condition that affects many individuals resulting in pain, reduced mobility, and decreased function. Corticosteroids have been a mainstay of osteoarthritis treatment. Studies have shown that they provide short-term pain improvement and can be used for osteoarthritis flares. Hyaluronic acid injections have extensively been studied in knee osteoarthritis but to a lesser degree in other joints. Despite some debate between societies, a large number of recent studies have shown hyaluronic acid to be a viable treatment option showing longer-term improvement in both pain and function.
Collapse
Affiliation(s)
- Nina A Yaftali
- Primary Care Sports Medicine, Rush University Medical Center, Midwest Orthopaedics at Rush, 1611 West Harrison, 3rd Floor, Chicago, IL 60612, USA
| | - Kathleen Weber
- Department of Orthopaedics, Rush University Medical Center, Midwest Orthopaedics at Rush, 1611 West Harrison, 3rd Floor, Chicago, IL 60612, USA.
| |
Collapse
|
26
|
Malemud CJ. MicroRNAs and Osteoarthritis. Cells 2018; 7:cells7080092. [PMID: 30071609 PMCID: PMC6115911 DOI: 10.3390/cells7080092] [Citation(s) in RCA: 98] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2018] [Revised: 07/23/2018] [Accepted: 07/29/2018] [Indexed: 12/14/2022] Open
Abstract
An imbalance in gene expressional events skewing chondrocyte anabolic and catabolic pathways toward the latter causes an aberrant turnover and loss of extracellular matrix proteins in osteoarthritic (OA) articular cartilage. Thus, catabolism results in the elevated loss of extracellular matrix proteins. There is also evidence of an increase in the frequency of chondrocyte apoptosis that compromises the capacity of articular cartilage to undergo repair. Although much of the fundamental OA studies over the past 20 years identified and characterized many genes relevant to pro-inflammatory cytokines, apoptosis, and matrix metalloproteinases (MMPs)/a disintegrin and metalloproteinase with thrombospondin motif (ADAMTS), more recent studies focused on epigenetic mechanisms and the associated role of microRNAs (miRs) in regulating gene expression in OA cartilage. Thus, several miRs were identified as regulators of chondrocyte signaling pathways, apoptosis, and proteinase gene expression. For example, the reduced expression of miR-146a was found to be coupled to reduced type II collagen (COL2) in OA cartilage, whereas MMP-13 levels were increased, suggesting an association between MMP-13 gene expression and COL2A1 gene expression. Results of these studies imply that microRNAs could become useful in the search for diagnostic biomarkers, as well as providing novel therapeutic targets for intervention in OA.
Collapse
Affiliation(s)
- Charles J Malemud
- Department of Medicine, Division of Rheumatic Diseases, University Hospitals Cleveland Medical Center, Foley Medical Building, 2061 Cornell Road, Cleveland, OH 44106-5076, USA.
| |
Collapse
|
27
|
Zheng W, Tao Z, Cai L, Chen C, Zhang C, Wang Q, Ying X, Hu W, Chen H. Chrysin Attenuates IL-1β-Induced Expression of Inflammatory Mediators by Suppressing NF-κB in Human Osteoarthritis Chondrocytes. Inflammation 2018; 40:1143-1154. [PMID: 28364187 DOI: 10.1007/s10753-017-0558-9] [Citation(s) in RCA: 41] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
Osteoarthritis (OA) is a degenerative joint disease characterized by cartilage degradation and inflammation. Chrysin, a natural flavonoid extracted from honey and propolis, has been reported to have anti-inflammatory effects. However, the anti-inflammatory effects of chrysin on OA have not been reported. This study aimed to assess the effects of chrysin on human OA chondrocytes. Human OA chondrocytes were pretreated with chrysin (1, 5, 10 μM) for 2 h and subsequently stimulated with IL-1β for 24 h. Production of NO, PGE2, MMP-1, MMP-3, MMP-13, ADAMTS-4, and ADAMTS-5 was evaluated by the Griess reaction and ELISAs. The messenger RNA (mRNA) expression of COX-2, iNOS, MMP-1, MMP-3, MMP-13, ADAMTS-4, ADAMTS-5, aggrecan, and collagen-II was measured by real-time PCR. The protein expression of COX-2, iNOS, p65, p-p65, IκB-α, and p-IκB-α was detected by Western blot. The protein expression of collagen-II and p65 nuclear translocation was evaluated by immunofluorescence. We found that chrysin significantly inhibited the IL-1β-induced production of NO and PGE2; expression of COX-2, iNOS, MMP-1, MMP-3, MMP-13, ADAMTS-4, and ADAMTS-5; and degradation of aggrecan and collagen-II. Furthermore, chrysin dramatically blocked IL-1β-stimulated IκB-α degradation and NF-κB activation. Taken together, these results suggest that chrysin may be a potential agent in the treatment of OA.
Collapse
Affiliation(s)
- Wenhao Zheng
- Department of Orthopaedic Surgery, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, 109 Xueyuan Xi Road, Wenzhou, 325000, China
| | - Zhenyu Tao
- Department of Orthopaedic Surgery, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, 109 Xueyuan Xi Road, Wenzhou, 325000, China
| | - Leyi Cai
- Department of Orthopaedic Surgery, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, 109 Xueyuan Xi Road, Wenzhou, 325000, China
| | - Chunhui Chen
- Department of Orthopaedic Surgery, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, 109 Xueyuan Xi Road, Wenzhou, 325000, China
| | - Chuanxu Zhang
- Department of Orthopaedic Surgery, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, 109 Xueyuan Xi Road, Wenzhou, 325000, China
| | - Quan Wang
- Department of Orthopaedic Surgery, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, 109 Xueyuan Xi Road, Wenzhou, 325000, China
| | - Xiaozhou Ying
- Department of Orthopaedic Surgery, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, 109 Xueyuan Xi Road, Wenzhou, 325000, China
| | - Wei Hu
- Department of Orthopaedic Surgery, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, 109 Xueyuan Xi Road, Wenzhou, 325000, China
| | - Hua Chen
- Department of Orthopaedic Surgery, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, 109 Xueyuan Xi Road, Wenzhou, 325000, China.
| |
Collapse
|
28
|
Java Tea (Orthosiphon stamineus) protected against osteoarthritis by mitigating inflammation and cartilage degradation: a preclinical study. Inflammopharmacology 2018; 26:939-949. [PMID: 29380171 DOI: 10.1007/s10787-017-0432-2] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2017] [Accepted: 12/06/2017] [Indexed: 01/15/2023]
Abstract
The effect of Orthosiphon stamineus aqueous (OSA) extract against osteoarthritis (OA) was investigated in explant cartilage culture and in postmenopausal OA rat model. Female rats were bilaterally ovariectomized (OVX). Osteoarthritis was induced after surgical recovery, by intra-articular injection of monosodium iodoacetate (MIA) into the right knee. Rats were grouped (n = 8) into: healthy sham control; non-treated OA; OA + diclofenac (positive control 5 mg/kg); and two doses OSA (150-300 mg/kg). After 4 weeks' treatment, rats were evaluated for OA-related parameters and biomarkers. The OSA reduced proteoglycan and ROS release from the cartilage explants under inflammatory (IL-1b) conditions. In the OA-induced rats' cartilages, the OSA downregulated the mRNA expressions for IL-1β, IL-6, IL-10, TNF-α, NF-κβ, NOS2, PTGS2, PTGER2, ACAN, COL2A1, MMP1, MMP13, ADAMTS4, ADAMTS5 and TIMP1, mostly dose-dependently. The OSA reduced the OA rats' serum levels for PGE2, CTX-II, TNF-α, MMP1, MMP13, PIINP, OPG, RANKL, OC and BALP, but not dose-dependently. The OSA contained polyphenols and flavonoids (tetramethoxyflavone). The OSA alleviated articular cartilage degradation, inflammation, collagenase/aggrecanase activities, to improve joint and subchondral bone structure. O. stamineus mitigated osteoarthritis by downregulating inflammation, peptidases and aggrecanases, at a dose equivalent to about 30 mg/kg for humans.
Collapse
|
29
|
miR-27b promotes type II collagen expression by targetting peroxisome proliferator-activated receptor-γ2 during rat articular chondrocyte differentiation. Biosci Rep 2018; 38:BSR20171109. [PMID: 29187585 PMCID: PMC6435457 DOI: 10.1042/bsr20171109] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2017] [Revised: 11/27/2017] [Accepted: 11/28/2017] [Indexed: 12/23/2022] Open
Abstract
MicroRNAs (miRNAs) play an essential role in articular cartilage development and growth. However, the exact mechanisms involved in this process remain unknown. In the present study, we investigated the biological functions of miR-27b during hypertrophic differentiation of rat articular chondrocytes. Based on in situ hybridization and immunohistochemistry, we report that miR-27b expression is reduced in the hypertrophic zone of articular cartilage, but expression of peroxisome proliferator-activated receptor γ (Pparγ) is increased. Dual-luciferase reporter gene assay and Western blot analysis demonstrated that Pparγ2 is a target of miR-27b Overexpression of miR-27b inhibited expression of Pparγ2, as well as type X collagen (Col10a1) and matrix metalloproteinase 13 (Mmp13), while significantly promoting the expression of Sex-determining Region-box 9 (Sox9) and type II collagen (Col2a1) at both the mRNA and protein levels. Rosiglitazone, a Pparγ agonist, suppressed Col2a1 expression, while promoting expression of runt-related transcription factor 2 (Runx2) and Col10a1 in a concentration-dependent manner. siRNA-mediated knockdown of Pparγ2 caused an increase in protein levels of Col2a1. The present study demonstrates that miR-27b regulates chondrocyte hypertrophy in part by targetting Pparγ2, and that miR-27b may have important therapeutic implications in cartilage diseases.
Collapse
|
30
|
|
31
|
Ji B, Guo W, Ma H, Xu B, Mu W, Zhang Z, Amat A, Cao L. Isoliquiritigenin suppresses IL-1β induced apoptosis and inflammation in chondrocyte-like ATDC5 cells by inhibiting NF-κB and exerts chondroprotective effects on a mouse model of anterior cruciate ligament transection. Int J Mol Med 2017; 40:1709-1718. [PMID: 29039445 PMCID: PMC5716454 DOI: 10.3892/ijmm.2017.3177] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2017] [Accepted: 09/28/2017] [Indexed: 11/05/2022] Open
Abstract
Isoliquiritigenin (ISL), a natural flavonoid extracted from licorice, has been demonstrated to exert attenuation of the nuclear factor-κB (NF-κB) signaling pathway and anti-inflammatory activity in a wide variety of cells. In the present study, the authors first evaluated the effects of ISL on cartilage degeneration in interleukin-1β (IL-1β)-stimulated chondrocyte-like ATDC5 cells and in a mouse model of osteoarthritis (OA). The data of a cell counting kit-8 and flow cytometry assay indicated that ISL suppressed the inhibitory effect of IL-1β on cell viability. The mRNA and protein expression levels of cyclooxygenase-2 and matrix metalloproteinase-13 were significantly decreased, while the expression of collagen II was increased, as indicated by RT-qPCR and western blot analysis following the chondrocyte-like ATDC5 cells were co-intervened with IL-1β and ISL for 48 h. Also, ISL attenuated protein expressions level of pro-apoptotic Bax, cleaved-caspase-3 and cleaved-caspase-9 and promoted expression of anti-apoptotic Bcl-2. Moreover, ISL inhibited NF-κB p65 phosphorylation induced by IL-1β. In addition, ISL also increased improved the thickness of hyaline cartilage and the production of proteoglycans in the cartilage matrix in a mouse OA model. These results indicated that ISL exerted anti-inflammatory and anti-apoptotic effects on IL-1β-stimulated chondrocyte-like ATDC5 cells, which may be associated with the downregulation of the NF-κB signaling pathway. In this way, the data supported the conclusion that ISL may be a novel potential preventive agent suitable for use in OA therapy.
Collapse
Affiliation(s)
- Baochao Ji
- Department of Orthopaedics, The First Affiliated Hospital of Xinjiang Medical University, Urumqi, Xinjiang 830054, P.R. China
| | - Wentao Guo
- Department of Orthopaedics, The First Affiliated Hospital of Xinjiang Medical University, Urumqi, Xinjiang 830054, P.R. China
| | - Hairong Ma
- Xinjiang Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Urumqi, Xinjiang 830054, P.R. China
| | - Boyong Xu
- Department of Orthopaedics, The First Affiliated Hospital of Xinjiang Medical University, Urumqi, Xinjiang 830054, P.R. China
| | - Wenbo Mu
- Department of Orthopaedics, The First Affiliated Hospital of Xinjiang Medical University, Urumqi, Xinjiang 830054, P.R. China
| | - Zhendong Zhang
- Department of Orthopaedics, The First Affiliated Hospital of Xinjiang Medical University, Urumqi, Xinjiang 830054, P.R. China
| | - Abdusami Amat
- Department of Orthopaedics, The First Affiliated Hospital of Xinjiang Medical University, Urumqi, Xinjiang 830054, P.R. China
| | - Li Cao
- Department of Orthopaedics, The First Affiliated Hospital of Xinjiang Medical University, Urumqi, Xinjiang 830054, P.R. China
| |
Collapse
|
32
|
Chen C, Zhang C, Cai L, Xie H, Hu W, Wang T, Lu D, Chen H. Baicalin suppresses IL-1β-induced expression of inflammatory cytokines via blocking NF-κB in human osteoarthritis chondrocytes and shows protective effect in mice osteoarthritis models. Int Immunopharmacol 2017; 52:218-226. [PMID: 28942223 DOI: 10.1016/j.intimp.2017.09.017] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2017] [Revised: 09/04/2017] [Accepted: 09/18/2017] [Indexed: 01/12/2023]
Abstract
Osteoarthritis (OA) is a degenerative joint disease with an inflammatory component that drives the degradation of cartilage extracellular matrix. Baicalin, a predominant flavonoid isolated from the dry root of Scutellaria baicalensis Georgi, has been reported to have anti-inflammatory effects. However, the anti-inflammatory effects of baicalin on OA have not been reported. Our study aimed to investigate the effect of baicalin on OA both in vitro and in vivo. In vitro, human OA chondrocytes were pretreated with baicalin (10, 50, 100μM) for 2h and subsequently stimulated with IL-1β for 24h. Production of NO and PGE2 were evaluated by the Griess reaction and ELISAs. The mRNA expression of COX-2, iNOS, MMP-3, MMP-13, ADAMTS-5, aggrecan and collagen-II were measured by real-time PCR. The protein expression of COX-2, iNOS, MMP-3, MMP-13, ADAMTS-5, p65, p-p65, IκBα and p-IκBα was detected by Western blot. The protein expression of collagen-II was evaluated by immunofluorescence. Luciferase activity assay was used to assess the relative activity of NF-kB. In vivo, the severity of OA was determined by histological analysis. We found that baicalin significantly inhibited the IL-1β-induced production of NO and PGE2, expression of COX-2, iNOS, MMP-3, MMP-13 and ADAMTS-5 and degradation of aggrecan and collagen-II. Furthermore, baicalin dramatically suppressed IL-1β-stimulated NF-κB activation. In vivo, treatment of baicalin not only prevented the destruction of cartilage but also relieved synovitis in mice OA models. Taken together, these results suggest that baicalin may be a potential agent in the treatment of OA.
Collapse
Affiliation(s)
- Chunhui Chen
- Department of Orthopaedic Surgery, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou 325000, China
| | - Chuanxu Zhang
- Department of Orthopaedic Surgery, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou 325000, China
| | - Leyi Cai
- Department of Orthopaedic Surgery, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou 325000, China
| | - Huanguang Xie
- Department of Orthopaedic Surgery, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou 325000, China
| | - Wei Hu
- Department of Orthopaedic Surgery, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou 325000, China
| | - Te Wang
- Department of Orthopaedic Surgery, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou 325000, China
| | - Di Lu
- Department of Orthopaedic Surgery, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou 325000, China
| | - Hua Chen
- Department of Orthopaedic Surgery, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou 325000, China.
| |
Collapse
|
33
|
Ma CH, Wu CH, Jou IM, Tu YK, Hung CH, Hsieh PL, Tsai KL. PKR activation causes inflammation and MMP-13 secretion in human degenerated articular chondrocytes. Redox Biol 2017; 14:72-81. [PMID: 28869834 PMCID: PMC5582648 DOI: 10.1016/j.redox.2017.08.011] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2017] [Revised: 07/31/2017] [Accepted: 08/15/2017] [Indexed: 01/04/2023] Open
Abstract
Osteoarthritis (OA) is a degenerative joint disease affecting a large population of people. Although the elevated expression of PKR (double stranded RNA-dependent protein kinase) and MMP-13 (collagenase-3) have been indicated to play pivotal roles in the pathogenesis of OA, the exact mechanism underlying the regulation of MMP-13 by PKR following inflammatory stimulation was relatively unknown. The purpose of this study was to determine the signaling pathway involved in the PKR-mediated induction of MMP-13 after TNF-α-stimulation. In this study, cartilages of knee joint were obtained from OA subjects who underwent arthroplastic knee surgery. Cartilages were used for tissue analysis or for chondrocytes isolation. In results, the upregulated expression of PKR was observed in damaged OA cartilages as well as in TNF-α-stimulated chondrocytes. Phosphorylation of PKC (protein kinase C) was found after TNF-α administration or PKR activation using poly(I:C), indicating PKC was regulated by PKR. The subsequent increased activity of NADPH oxidase led to oxidative stress accumulation and antioxidant capacity downregulation followed by an exaggerated inflammatory response with elevated levels of COX-2 and IL-8 via ERK/NF-κB pathway. Activated ERK pathway also impeded the inhibition of MMP-13 by PPAR-γ. These findings demonstrated that TNF-α-induced PKR activation triggered oxidative stress-mediated inflammation and MMP-13 in human chondrocytes. Unraveling these deregulated signaling cascades will deepen our knowledge of OA pathophysiology and provide aid in the development of novel therapies.
Collapse
Affiliation(s)
- Ching-Hou Ma
- Department of Orthopedics, E-Da Hospital/I-Shou University, Kaohsiung, Taiwan
| | - Chin-Hsien Wu
- Department of Orthopedics, E-Da Hospital/I-Shou University, Kaohsiung, Taiwan
| | - I-Ming Jou
- Department of Orthopedics, E-Da Hospital/I-Shou University, Kaohsiung, Taiwan
| | - Yuan-Kun Tu
- Department of Orthopedics, E-Da Hospital/I-Shou University, Kaohsiung, Taiwan
| | - Ching-Hsia Hung
- Department of Physical Therapy, College of Medicine, National Cheng Kung University, Tainan, Taiwan; Institute of Allied Health Sciences, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| | - Pei-Ling Hsieh
- Institute of Oral Sciences, Chung Shan Medical University, Taichung, Taiwan.
| | - Kun-Ling Tsai
- Department of Physical Therapy, College of Medicine, National Cheng Kung University, Tainan, Taiwan.
| |
Collapse
|
34
|
Negative Regulators of JAK/STAT Signaling in Rheumatoid Arthritis and Osteoarthritis. Int J Mol Sci 2017; 18:ijms18030484. [PMID: 28245561 PMCID: PMC5372500 DOI: 10.3390/ijms18030484] [Citation(s) in RCA: 74] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2016] [Revised: 01/31/2017] [Accepted: 02/16/2017] [Indexed: 12/28/2022] Open
Abstract
Elevated levels of pro-inflammatory cytokines are generally thought to be responsible for driving the progression of synovial joint inflammation in rheumatoid arthritis (RA) and osteoarthritis (OA). These cytokines activate several signal transduction pathways, including the Janus kinase/Signal Transducers and Activators of Transcription (JAK/STAT), Stress-Activated/Mitogen-Activated Protein Kinase (SAPK/MAPK) and phosphatidylinositol-3-kinase/Akt/mechanistic target of rapamycin (PI3K/Akt/mTOR) pathways which regulate numerous cellular responses. However, cytokine gene expression, matrix metalloproteinase gene expression and aberrant immune cell and synoviocyte survival via reduced apoptosis are most critical in the context of inflammation characteristic of RA and OA. Negative regulation of JAK/STAT signaling is controlled by Suppressor of Cytokine Signaling (SOCS) proteins. SOCS is produced at lower levels in RA and OA. In addition, gaining further insight into the role played in RA and OA pathology by the inhibitors of the apoptosis protein family, cellular inhibitor of apoptosis protein-1, -2 (c-IAP1, c-IAP2), X (cross)-linked inhibitor of apoptosis protein (XIAP), protein inhibitor of activated STAT (PIAS), and survivin (human) as well as SOCS appears to be a worthy endeavor going forward.
Collapse
|
35
|
Abstract
Interleukin-6 (IL-6) is one of several pro-inflammatory cytokines present at elevated levels in the synovial fluid of individuals with confirmed clinical diagnosis of rheumatoid arthritis (RA) and osteoarthritis (OA). The mechanism of action of IL-6 was shown to involve its capacity to interact with a membrane-bound IL-6 receptor (mIL-6Rα), also known as the "classical" IL-6 pathway, or through its interaction with a soluble IL-6 receptor (sIL-6R) termed the "trans-signaling" pathway. Activation of downstream signaling is transduced via these IL-6 receptors and principally involves the Janus Kinase/Signal Transduction and Activators of Transcription (JAK/STAT) signaling pathway that is further regulated by glycoprotein-130 (gp130) interacting with the IL-6/mIL-6R complex. Phosphorylation of STAT proteins via JAK activation facilitates STAT proteins to act as transcription factors in inflammation. However, the biological function(s) of the sIL-6R in human chondrocytes requires further elucidation, although we previously showed that exogenous sIL-6R significantly suppressed the synthesis of neutrophil gelatinase-associated lipocalin (NGAL) in the immortalized line of human chondrocytes, C28/I2. NGAL was shown to regulate the activity of matrix metalloproteinase-9 (MMP-9), whose activity is crucial in OA for the destruction of articular cartilage. The "shedding" of sIL-6R from the plasma membrane is carried out by a family of enzymes known as A Distintegrin and Metalloproteinase (ADAM), which are also elevated in OA. In this paper, we have systematically reviewed the role played by IL-6 in OA. We have proposed that sIL-6R may be an important target for future drug development in OA by ameliorating cartilage extracellular protein degradation.
Collapse
Affiliation(s)
- Graham Akeson
- Department of Medicine, Division of Rheumatic Diseases, Case Western Reserve University School of Medicine and University Hospitals Cleveland Medical Center, Cleveland, OH 44106, USA
| | - Charles J. Malemud
- Department of Medicine, Division of Rheumatic Diseases, Case Western Reserve University School of Medicine and University Hospitals Cleveland Medical Center, Cleveland, OH 44106, USA
- Department of Medicine, University Hospitals Cleveland Medical Center, Foley Medical Building, 2061 Cornell Road, Room 207, Cleveland, OH 44106-5076, USA
- Correspondence: ; Tel.: +1-(216)-844-7846 or +1-(216)-536-1945; Fax: +1-(216)-844-2288
| |
Collapse
|
36
|
Özler K, Aktaş E, Atay Ç, Yılmaz B, Arıkan M, Güngör Ş. Serum and knee synovial fluid matrixmetalloproteinase-13 and tumor necrosis factor-alpha levels in patients with late stage osteoarthritis. ACTA ORTHOPAEDICA ET TRAUMATOLOGICA TURCICA 2016; 50:670-673. [PMID: 27932045 PMCID: PMC6197357 DOI: 10.1016/j.aott.2015.11.003] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 02/27/2015] [Revised: 09/12/2015] [Accepted: 11/11/2015] [Indexed: 01/08/2023]
Abstract
Objective To compare the levels of MMP-13 and TNF-α in late stage osteoarthritis, define their predominant pathways and investigate their correlation with McMaster Universities Arthritis Index scores. Patients and methods A total of 42 patients (mean age 64 ± 8.8) with grade 3 and grade 4 knee osteoarthritis according to Kellegren- Lawrence criteria and who were scheduled for total knee arthroplasty were enrolled in the study. TNF-alpha and MMP-13 levels were measured preoperatively from venous blood samples and intraoperatively from knee synovial fluid via ELISA. Preoperative and 1 month postoperative knee functions were assessed by McMaster Universities Arthritis Index. Results Grade 4 synovial fluid MMP-13 (4.76 ± 5.82) was elevated compared to grade 3 (3.95 ± 4.45) (p = 0.438), whereas grade 3 serum MMP-13 (1.128 ± 0.308) was found elevated compared to grade 4 (1.038 ± 0.204) (p = 0.430). Grade 4 serum TNF-α (0.253 ± 0.277) was elevated compared to grade 3 (0.206 ± 0.219) whereas grade 3 synovial fluid TNF-α (0.129 ± 0.052) was elevated compared to grade 4 (0.118 ± 0.014). Positive correlation was observed between synovial fluid MMP-13 levels and postoperative WOMAC scores. Mean serum TNF-α level (0.226 ± 0.246 pg/ml) was found higher compared to synovial level (0.124 ± 1.59), synovial MMP-13 level (4.31 ± 1.24) was found higher compared to serum level (1.089 ± 1.519). Conclusion Despite the systemic increase in TNF-α levels concordant with osteoarthritis grade, MMP-13 levels are elevated via local manner with a significant correlation with WOMAC scores. Level of evidence Level IV, Diagnostic study.
Collapse
Affiliation(s)
- Kenan Özler
- Dr. Abdurrahman Yurtaslan Oncology Training and Research Hospital, Department of Orthopedics, Ankara, Turkey
| | - Erdem Aktaş
- Dr. Abdurrahman Yurtaslan Onkoloji Training and Research Hospital, Ankara, Turkey.
| | - Çiğdem Atay
- Dr. Abdurrahman Yurtaslan Oncology Training and Research Hospital, Department of Biochemistry, Ankara, Turkey
| | - Barış Yılmaz
- Fatih Sultan Mehmet Training and Research Hospital, Department of Orthopedics, Istanbul, Turkey
| | - Murat Arıkan
- Dr. Abdurrahman Yurtaslan Oncology Training and Research Hospital, Department of Orthopedics, Ankara, Turkey
| | - Şafak Güngör
- Dr. Abdurrahman Yurtaslan Oncology Training and Research Hospital, Department of Orthopedics, Ankara, Turkey
| |
Collapse
|
37
|
Hu H, Yang B, Li Y, Zhang S, Li Z. Blocking of the P2X7 receptor inhibits the activation of the MMP-13 and NF-κB pathways in the cartilage tissue of rats with osteoarthritis. Int J Mol Med 2016; 38:1922-1932. [PMID: 27748894 DOI: 10.3892/ijmm.2016.2770] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2016] [Accepted: 09/20/2016] [Indexed: 11/06/2022] Open
Abstract
P2X purinoceptor 7 (P2X7) receptor (P2X7R) is known to play a significant role in inflammation and pain-causing diseases, including osteoarthritis (OA). However, the mechanisms of action of P2X7R and its role in OA remain unclear. The articular cartilage is the crucial region in which pathological changes occur in OA, involving the dysregulation of degradation and maintenance mechanisms. In this study, we aimed to reveal the molecular mechanisms of action of P2X7R in articular cartilage in OA-induced pain and inflammation by using AZD9056, an antagonist of P2X7R. We created an animal model of OA by using Wistar rats administered (by intra-articular injection) monosodium iodoacetate (MIA), and the rats with OA were then treated with the P2X7R antagonist, AZD9056. We found that treatment with AZD9056 exerted pain-relieving and anti-inflammatory effects. Importantly, we found that the upregulated expression of interleukin (IL)-1β, IL-6, tumor necrosis factor-α (TNF-α), matrix metalloproteinase-13 (MMP-13), substance P (SP) and prostaglandin E2 (PGE2) which was induced by MIA in cartilage tissues was reversed by AZD9056. Western blot analysis was used to examine the expression of inhibitor of nuclear factor-κB (NF-κB) kinase (IKK)α, IKKβ, inhibitor of NF-κB (IκB)α, NF-κB p65 and their phosphorylation forms; they were found to be significantly increased in the knee cartilage tissues from rats with OA; however, opposite effects were observed by the injection of AZD9056. These results implied that P2X7R was associated with the activation of the NF-κB pathway in the development of OA. Our results also revealed that helenalin, an NF-κB pathway inhibitor, decreased the expression of P2X7R, IL-1β, IL-6, TNF-α, SP, PGE2 and MMP-13, which was induced by MIA, in the knee cartilage tissues of rats with OA. On the whole, our findings suggest that P2X7R regulates the MMP-13 and NF-κB pathways in cartilage tissue and mediate OA-induced pain and inflammation.
Collapse
Affiliation(s)
- Hongbo Hu
- Second Department of Orthopaedics, Weinan Central Hospital, Weinan, Shaanxi 714000, P.R. China
| | - Baohui Yang
- Department of Οrthopaedics, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi 710004, P.R. China
| | - Yumin Li
- Second Department of Orthopaedics, Weinan Central Hospital, Weinan, Shaanxi 714000, P.R. China
| | - Subin Zhang
- Second Department of Orthopaedics, Weinan Central Hospital, Weinan, Shaanxi 714000, P.R. China
| | - Zheng Li
- Second Department of Orthopaedics, Weinan Central Hospital, Weinan, Shaanxi 714000, P.R. China
| |
Collapse
|
38
|
Kann B, Spengler C, Coradini K, Rigo LA, Bennink ML, Jacobs K, Offerhaus HL, Beck RCR, Windbergs M. Intracellular Delivery of Poorly Soluble Polyphenols: Elucidating the Interplay of Self-Assembling Nanocarriers and Human Chondrocytes. Anal Chem 2016; 88:7014-22. [PMID: 27329347 DOI: 10.1021/acs.analchem.6b00199] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
Increased molecular understanding of multifactorial diseases paves the way for novel therapeutic approaches requiring sophisticated carriers for intracellular delivery of actives. We designed and characterized self-assembling lipid-core nanocapsules for coencapsulation of two poorly soluble natural polyphenols curcumin and resveratrol. The polyphenols were identified as high-potential therapeutic candidates intervening in the intracellular inflammation cascade of chondrocytes during the progress of osteoarthritis. To elucidate the interplay between chondrocytes and nanocapsules and their therapeutic effect, we pursued a complementary analytical approach combining label-free visualization with biological assays. Primary human chondrocytes did not show any adverse effects upon nanocapsule application and coherent anti-Stokes Raman scattering images visualized their intracellular uptake. Further, by systematically blocking different uptake mechanisms, an energy independent uptake into the cells could be identified. Additionally, we tested the therapeutic effect of the polyphenol-loaded carriers on inflamed chondrocytes. Treatment with nanocapsules resulted in a major reduction of nitric oxide levels, a well-known apoptosis trigger during the course of osteoarthritis. For a more profound examination of this protective effect on joint cells, we pursued studies with atomic force microscopy investigations. Significant changes in the cell cytoskeleton as well as prominent dents in the cell membrane upon induced apoptosis were revealed. Interestingly, these effects could not be detected for chondrocytes which were pretreated with the nanocapsules. Overall, besides presenting a sophisticated carrier system for joint application, these results highlight the necessity of establishing combinatorial analytical approaches to elucidate cellular uptake, the interplay of codelivered drugs and their therapeutic effect on the subcellular level.
Collapse
Affiliation(s)
- Birthe Kann
- Saarland University , Department of Biopharmaceutics and Pharmaceutical Technology, Campus A4.1, 66123 Saarbruecken, Germany.,University of Twente , Optical Sciences Group, MESA+ Institute for Nanotechnology, P.O. Box 217, 7500 AE Enschede, The Netherlands
| | - Christian Spengler
- Saarland University , Experimental Physics, Campus E2.9, 66123 Saarbruecken, Germany
| | - Karine Coradini
- Programa de Pós-Graduação em Ciências Farmacêuticas, Faculdade de Farmácia, Federal University of Rio Grande do Sul (UFRGS) , 90610-000, Porto Alegre, Rio Grande do Sul, Brazil
| | - Lucas A Rigo
- Programa de Pós-Graduação em Ciências Farmacêuticas, Faculdade de Farmácia, Federal University of Rio Grande do Sul (UFRGS) , 90610-000, Porto Alegre, Rio Grande do Sul, Brazil
| | - Martin L Bennink
- University of Twente , Nanobiophysics Group, MESA+ Institute for Nanotechnology, P.O. Box 217, 7500 AE Enschede, The Netherlands
| | - Karin Jacobs
- Saarland University , Experimental Physics, Campus E2.9, 66123 Saarbruecken, Germany
| | - Herman L Offerhaus
- University of Twente , Optical Sciences Group, MESA+ Institute for Nanotechnology, P.O. Box 217, 7500 AE Enschede, The Netherlands
| | - Ruy C R Beck
- Programa de Pós-Graduação em Ciências Farmacêuticas, Faculdade de Farmácia, Federal University of Rio Grande do Sul (UFRGS) , 90610-000, Porto Alegre, Rio Grande do Sul, Brazil
| | - Maike Windbergs
- Saarland University , Department of Biopharmaceutics and Pharmaceutical Technology, Campus A4.1, 66123 Saarbruecken, Germany.,Helmholtz Centre for Infection Research and Helmholtz Institute for Pharmaceutical Research Saarland , Department of Drug Delivery, Campus E 8.1, 66123 Saarbruecken, Germany.,PharmBioTec GmbH , Department of Drug Delivery, Science Park 1, 66123 Saarbruecken, Germany
| |
Collapse
|
39
|
Malemud CJ, Meszaros EC, Wylie MA, Dahoud W, Skomorovska-Prokvolit Y, Mesiano S. Matrix Metalloproteinase-9 Production by Immortalized Human Chondrocyte Lines. ACTA ACUST UNITED AC 2016; 7. [PMID: 27398263 PMCID: PMC4937998 DOI: 10.4172/2155-9899.1000422] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/03/2022]
Abstract
We reported at the Keynote Forum of Immunology Summit-2015 that recombinant human (rh) TNF-α or rhIL-6 stimulated production of matrix metalloproteinase-9 (MMP-9) in the T/C28a2 and C-28/I2 human immortalized chondrocyte cell lines. Furthermore, we reported that tocilizumab (TCZ), a fully humanized monoclonal antibody which neutralizes IL-6-mediated signaling, inhibited the rhIL-6-mediated increase in the production of MMP-9. IL-6 is also a known activator of the JAK/STAT signaling pathway. In that regard, we evaluated the effect of rhIL-6 on total and phosphorylated Signal Transducer and Activator of Transcription by these chondrocyte lines which showed that whereas STAT3 was constitutively phosphorylated in T/C28a2 chondrocytes, rhIL-6 activated STAT3 in C-28/I2 chondrocytes. The finding that rhIL-6 increased the production of MMP-9 by human immortalized chondrocyte cell lines may have important implications with respect to the destruction of articular cartilage in rheumatoid arthritis and osteoarthritis. Thus, the markedly elevated level of IL-6 in rheumatoid arthritis and osteoarthritis sera and synovial fluid would be expected to generate significant MMP-9 to cause the degradation of articular cartilage extracellular matrix proteins. The finding that TCZ suppressed rhIL-6-mediated MMP-9 production suggests that TCZ, currently employed in the medical therapy of rheumatoid arthritis, could be considered as a drug for osteoarthritis.
Collapse
Affiliation(s)
- Charles J Malemud
- Department of Medicine, Division of Rheumatic Diseases, Case Western Reserve University, School of Medicine, Cleveland, Ohio 44106, USA
| | - Evan C Meszaros
- Department of Medicine, Division of Rheumatic Diseases, Case Western Reserve University, School of Medicine, Cleveland, Ohio 44106, USA
| | - Meredith A Wylie
- Department of Medicine, Division of Rheumatic Diseases, Case Western Reserve University, School of Medicine, Cleveland, Ohio 44106, USA
| | - Wissam Dahoud
- Department of Reproductive Biology, Case Western Reserve University, School of Medicine, Cleveland, Ohio 44106, USA; Department of Pathology, Institute of Pathology, Case Western Reserve University, School of Medicine, University Hospitals Case Medical Center, Cleveland, Ohio 44106, USA
| | | | - Sam Mesiano
- Department of Reproductive Biology, Case Western Reserve University, School of Medicine, Cleveland, Ohio 44106, USA
| |
Collapse
|
40
|
Overexpression of microRNA-634 suppresses survival and matrix synthesis of human osteoarthritis chondrocytes by targeting PIK3R1. Sci Rep 2016; 6:23117. [PMID: 26972586 PMCID: PMC4789801 DOI: 10.1038/srep23117] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2015] [Accepted: 02/25/2016] [Indexed: 12/15/2022] Open
Abstract
Osteoarthritis (OA) is a degenerative disease characterized by deterioration of articular cartilage. Recent studies have demonstrated the importance of some microRNAs in cartilage damage. The aim of this study was to identify and characterize the expression of microRNA-634 (miR-634) in normal and OA chondrocytes, and to determine its role in OA pathogenesis. Human normal and OA chondrocytes obtained from patients were cultured in vitro. Transfection with miR-634 mimic or inhibitor was employed to investigate the effect of miR-634 on chondrocyte survival and matrix synthesis, and to identify miR-634 target. The results indicated that miR-634 was expressed at lower level in high grade OA chondrocyte compared with normal chondrocytes. Overexpression of miR-634 could inhibit cell survival and matrix synthesis in high grade OA chondrocytes. Furthermore, miR-634 targeted PIK3R1 gene that encodes the regulatory subunit 1 of class I PI3K (p85α) and exerted its inhibitory effect on the phosphorylation of Akt, mTOR, and S6 signal molecules in high grade OA chondrocytes. Therefore, the data suggested that miR-634 could suppress survival and matrix synthesis of high grade OA chondrocytes through targeting PIK3R1 gene to modulate the PI3K/Akt/S6 and PI3K/Akt/mTOR/S6 axes, with important implication for validating miR-634 as a potential target for OA therapy.
Collapse
|
41
|
Bock K, Plaass C, Coger V, Peck CT, Reimers K, Stukenborg-Colsman C, Claassen L. What is the effect of nicotinic acetylcholine receptor stimulation on osteoarthritis in a rodent animal model? SAGE Open Med 2016; 4:2050312116637529. [PMID: 27026802 PMCID: PMC4790423 DOI: 10.1177/2050312116637529] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2015] [Accepted: 02/10/2016] [Indexed: 02/04/2023] Open
Abstract
OBJECTIVES Despite the rising number of patients with osteoarthritis, no sufficient chondroprotective and prophylactic therapy for osteoarthritis has been established yet. The purpose of this study was to verify whether stimulation of the nicotinic acetylcholine receptor via nicotine has a beneficial effect on cartilage degeneration in the development of osteoarthritis and is capable of reducing the expression of proinflammatory cytokines and cartilage degrading enzymes in synovial membranes after osteoarthritis induction. METHODS Experimental osteoarthritis was induced in Lewis rats using a standardized osteoarthritis model with monoiodoacetate. A total of 16 Lewis rats were randomized into four groups: control, sham + nicotine application, osteoarthritis, and osteoarthritis + nicotine application. Nicotine (0.625 mg/kg twice daily) was administered intraperitoneally for 42 days. We analyzed histological sections, radiological images and the expression of the proinflammatory cytokines, such as interleukin-1β, tumor necrosis factor-α and interleukin-6, and of matrix metalloproteases 3, 9 and 13 and tissue inhibitors of metalloprotease-1 in synovial membranes via quantitative polymerase chain reaction. RESULTS Histological and x-ray examination revealed cartilage degeneration in the osteoarthritis group compared to control or sham + nicotine groups (histological control vs osteoarthritis: p = 0.002 and x-ray control vs osteoarthritis: p = 0.004). Nicotine treatment reduced the cartilage degeneration without significant differences. Osteoarthritis induction led to a higher expression of proinflammatory cytokines and matrix metalloproteases as compared to control groups. This effect was attenuated after nicotine administration. The differences of proinflammatory cytokines and matrix metalloproteases did not reach statistical significance. CONCLUSION With the present small-scale study, we could not prove a positive effect of nicotinic acetylcholine receptor stimulation on osteoarthritis due to a conservative statistical analysis and the consecutive lack of significant differences. Nevertheless, we found promising tendencies of relevant parameters that might prompt further experiments designed to evaluate the potency of stimulation of this receptor system as an additional treatment approach for osteoarthritis.
Collapse
Affiliation(s)
- Kilian Bock
- Orthopedic Department, Hannover Medical School, Hannover, Germany
| | - Christian Plaass
- Orthopedic Department, Hannover Medical School, Hannover, Germany
| | - Vincent Coger
- Department of Plastic, Hand and Reconstructive Surgery, Hannover Medical School, Hannover, Germany
| | - Claas-Tido Peck
- Department of Plastic, Hand and Reconstructive Surgery, Hannover Medical School, Hannover, Germany
| | - Kerstin Reimers
- Department of Plastic, Hand and Reconstructive Surgery, Hannover Medical School, Hannover, Germany
| | | | - Leif Claassen
- Orthopedic Department, Hannover Medical School, Hannover, Germany
| |
Collapse
|
42
|
Chinzei N, Hashimoto S, Fujishiro T, Hayashi S, Kanzaki N, Uchida S, Kuroda R, Kurosaka M. Inflammation and Degeneration in Cartilage Samples from Patients with Femoroacetabular Impingement. J Bone Joint Surg Am 2016; 98:135-41. [PMID: 26791034 DOI: 10.2106/jbjs.o.00443] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
BACKGROUND Femoroacetabular impingement (FAI) has been reported as a cause of hip pain in young patients and is suggested as the trigger for hip osteoarthritis (OA). The goal of this study was to quantify the metabolic profiles of articular tissues (cartilage, synovium, and labrum) harvested from patients with FAI and with end-stage OA. In addition, we sought to investigate the development of secondary OA in hips with FAI. METHODS Tissue samples were obtained from thirty hips undergoing arthroscopic surgery for FAI with or without labral tear and thirty hips undergoing total hip arthroplasty for OA. Quantitative real-time polymerase chain reaction (PCR) was performed to determine the gene expression of inflammatory cytokines and metabolic (anabolic and catabolic) enzymes. The differences in gene expression in articular tissues from the patients with FAI were also evaluated on the basis of clinical parameters (age range and alpha angle). RESULTS The messenger RNA (mRNA) expression of the inflammatory cytokines interleukin-1 beta (IL-1β) and IL-8 and of matrix metalloproteinase (MMP)-3 (a catabolic gene) in both the synovium and the labrum, and the expression of collagen type I alpha 1 (an anabolic gene) in the labrum, was higher in the samples from hips with OA than in those from hips with FAI (p < 0.05). In cartilage, however, the mRNA expression of the inflammatory cytokines and the catabolic genes MMP-13 and ADAMTS-4 (a disintegrin and metalloproteinase with thrombospondin motifs-4) was higher in the FAI samples compared with the OA samples (p < 0.01). When the expression of inflammatory cytokines was evaluated among the three types of tissues within each disease group, the expression levels were the highest in cartilage within the FAI samples (p < 0.01). In FAI cartilage, we found higher gene expression of aggrecan (ACAN) and ADAMTS-4 in the samples from patients with larger alpha angles (≥60°) (p < 0.01). CONCLUSIONS Our results indicate that the metabolic conditions of articular cartilage in FAI and OA are different and that the expression of genes associated with inflammation is greater in the articular cartilage of patients with FAI compared with the synovium and the labrum. The metabolic changes were heightened by mechanical impingement. CLINICAL RELEVANCE The articular cartilage from the impingement lesion in patients with FAI showed biologically higher inflammation and degeneration, supporting the concept that FAI may be a trigger for joint degeneration.
Collapse
Affiliation(s)
- Nobuaki Chinzei
- Department of Orthopaedic Surgery, Kobe University Graduate School of Medicine, Chuo-ku, Kobe, Japan
| | - Shingo Hashimoto
- Department of Orthopaedic Surgery, Kobe University Graduate School of Medicine, Chuo-ku, Kobe, Japan
| | - Takaaki Fujishiro
- Department of Orthopaedic Surgery, Kobe University Graduate School of Medicine, Chuo-ku, Kobe, Japan
| | - Shinya Hayashi
- Department of Orthopaedic Surgery, Kobe University Graduate School of Medicine, Chuo-ku, Kobe, Japan
| | - Noriyuki Kanzaki
- Department of Orthopaedic Surgery, Kobe University Graduate School of Medicine, Chuo-ku, Kobe, Japan
| | - Soshi Uchida
- Department of Orthopaedic Surgery, Wakamatsu Hospital for University of Occupational and Environmental Health, Wakamatsu-ku, Kitakyushu, Japan
| | - Ryosuke Kuroda
- Department of Orthopaedic Surgery, Kobe University Graduate School of Medicine, Chuo-ku, Kobe, Japan
| | - Masahiro Kurosaka
- Department of Orthopaedic Surgery, Kobe University Graduate School of Medicine, Chuo-ku, Kobe, Japan
| |
Collapse
|
43
|
Mechano growth factor-E regulates apoptosis and inflammatory responses in fibroblast-like synoviocytes of knee osteoarthritis. INTERNATIONAL ORTHOPAEDICS 2015; 39:2503-9. [DOI: 10.1007/s00264-015-2974-5] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/25/2015] [Accepted: 08/08/2015] [Indexed: 10/23/2022]
|
44
|
Tong W, Geng Y, Huang Y, Shi Y, Xiang S, Zhang N, Qin L, Shi Q, Chen Q, Dai K, Zhang X. In Vivo Identification and Induction of Articular Cartilage Stem Cells by Inhibiting NF-κB Signaling in Osteoarthritis. Stem Cells 2015; 33:3125-37. [PMID: 26285913 DOI: 10.1002/stem.2124] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2015] [Accepted: 06/30/2015] [Indexed: 12/20/2022]
Abstract
Osteoarthritis (OA) is a highly prevalent and debilitating joint disorder characterized by the degeneration of articular cartilage. However, no effective medical therapy has been found yet for such condition. In this study, we directly confirmed the existence of articular cartilage stem cells (ACSCs) in vivo and in situ for the first time both in normal and OA articular cartilage, and explored their chondrogenesis in Interleukin-1β (IL-1β) induced inflammation environment and disclose whether the inhibition of NF-κB signaling can induce ACSCs activation thus improve the progression of experimental OA. We found an interesting phenomenon that ACSCs were activated and exhibited a transient proliferative response in early OA as an initial attempt for self-repair. During the in vitro mechanism study, we discovered IL-1β can efficiently activate the NF-κB pathway and potently impair the responsiveness of ACSCs, whereas the NF-κB pathway inhibitor rescued the ACSCs chondrogenesis. The final in vivo experiments further confirmed ACSCs' activation were maintained by NF-κB pathway inhibitor, which induced cartilage regeneration, and protected articular cartilage from injury in an OA animal model. Our results provided in vivo evidence of the presence of ACSCs, and disclosed their action in the early OA stage and gradual quiet as OA process, presented a potential mechanism for both cartilage intrinsic repair and its final degradation, and demonstrated the feasibility of inducing endogenous adult tissue-specific mesenchymal stem cells for articular cartilage repair and OA therapy.
Collapse
Affiliation(s)
- Wenxue Tong
- The Key Laboratory of Stem Cell Biology, Institute of Health Sciences, Shanghai Jiao Tong University School of Medicine (SJTUSM) & Shanghai Institutes for Biological Sciences (SIBS), Chinese Academy of Sciences (CAS), Shanghai, People's Republic of China.,Department of Orthopaedics and Traumatology, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong SAR, People's Republic of China
| | - Yiyun Geng
- The Key Laboratory of Stem Cell Biology, Institute of Health Sciences, Shanghai Jiao Tong University School of Medicine (SJTUSM) & Shanghai Institutes for Biological Sciences (SIBS), Chinese Academy of Sciences (CAS), Shanghai, People's Republic of China
| | - Yan Huang
- The Key Laboratory of Stem Cell Biology, Institute of Health Sciences, Shanghai Jiao Tong University School of Medicine (SJTUSM) & Shanghai Institutes for Biological Sciences (SIBS), Chinese Academy of Sciences (CAS), Shanghai, People's Republic of China.,Shanghai Key Laboratory of Orthopaedic Implant, Department of Orthopaedics, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, People's Republic of China
| | - Yu Shi
- The Key Laboratory of Stem Cell Biology, Institute of Health Sciences, Shanghai Jiao Tong University School of Medicine (SJTUSM) & Shanghai Institutes for Biological Sciences (SIBS), Chinese Academy of Sciences (CAS), Shanghai, People's Republic of China
| | - Shengnan Xiang
- The Key Laboratory of Stem Cell Biology, Institute of Health Sciences, Shanghai Jiao Tong University School of Medicine (SJTUSM) & Shanghai Institutes for Biological Sciences (SIBS), Chinese Academy of Sciences (CAS), Shanghai, People's Republic of China
| | - Ning Zhang
- The Key Laboratory of Stem Cell Biology, Institute of Health Sciences, Shanghai Jiao Tong University School of Medicine (SJTUSM) & Shanghai Institutes for Biological Sciences (SIBS), Chinese Academy of Sciences (CAS), Shanghai, People's Republic of China
| | - Ling Qin
- Department of Orthopaedics and Traumatology, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong SAR, People's Republic of China
| | - Qin Shi
- Orthopaedics Research Laboratory, Research Center, Sacré-Coeur Hospital, University of Montreal, Montreal, Quebec, Canada
| | - Qian Chen
- Cell and Molecular Biology Laboratory, Department of Orthopaedics, Alpert Medical School of Brown University/Rhode Island Hospital, Providence, Rhode Island, USA
| | - Kerong Dai
- The Key Laboratory of Stem Cell Biology, Institute of Health Sciences, Shanghai Jiao Tong University School of Medicine (SJTUSM) & Shanghai Institutes for Biological Sciences (SIBS), Chinese Academy of Sciences (CAS), Shanghai, People's Republic of China.,Shanghai Key Laboratory of Orthopaedic Implant, Department of Orthopaedics, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, People's Republic of China
| | - Xiaoling Zhang
- The Key Laboratory of Stem Cell Biology, Institute of Health Sciences, Shanghai Jiao Tong University School of Medicine (SJTUSM) & Shanghai Institutes for Biological Sciences (SIBS), Chinese Academy of Sciences (CAS), Shanghai, People's Republic of China.,Shanghai Key Laboratory of Orthopaedic Implant, Department of Orthopaedics, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, People's Republic of China
| |
Collapse
|
45
|
Topical diclofenac therapy for osteoarthritis: a meta-analysis of randomized controlled trials. Clin Rheumatol 2015; 35:1253-61. [PMID: 26242469 DOI: 10.1007/s10067-015-3021-z] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2014] [Revised: 06/04/2015] [Accepted: 07/14/2015] [Indexed: 10/23/2022]
Abstract
The objective of this study was to evaluate the efficacy and safety of topical diclofenac therapy for osteoarthritis (OA). A meta-analysis of randomized controlled trials was conducted. A comprehensive literature search, covering the databases of Medline, the Cochrane Central Register of Controlled Trials, and EMBASE, was conducted in September 2014 to identify the randomized controlled trials which adopted the topical diclofenac therapy for OA. A total of nine papers were included in this meta-analysis. Topical diclofenac appears to be effective in both pain relief (standard mean differences (SMD) = 0.40; 95 % confidence interval (CI) 0.19 to 0.62; P = 0.0003) and function improvement (SMD = 0.23; 95 % CI 0.03 to 0.43; P = 0.03) when compared with the control group. The sensitivity analysis and subgroup analysis showed that the result of pain intensity was stable and reliable, while the result of physical function improvement was vague. With respect to safety, topical diclofenac demonstrated a higher incidence of adverse events such as dry skin, rash, dermatitis, neck pain, and withdrawal. Topical diclofenac is effective in pain relief as a treatment of OA. It may also have a potential effect in function improvement, which needs further studies to be explored. Although, some adverse effects were observed in the application of topical diclofenac, none of them was serious.
Collapse
|
46
|
Tenti S, Cheleschi S, Galeazzi M, Fioravanti A. Spa therapy: can be a valid option for treating knee osteoarthritis? INTERNATIONAL JOURNAL OF BIOMETEOROLOGY 2015; 59:1133-1143. [PMID: 25339582 DOI: 10.1007/s00484-014-0913-6] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/03/2014] [Revised: 10/01/2014] [Accepted: 10/06/2014] [Indexed: 05/28/2023]
Abstract
Osteoarthritis (OA) continues to be one of the leading causes of 'years lived with disability' worldwide. Symptomatic knee OA is highly prevalent among people aged 50 years and over and is destined to become an ever more important healthcare problem. Current management of knee OA includes non-pharmacological and pharmacological treatments. Spa therapy is one of the most commonly used non-pharmacological approaches for OA in many European countries, as well as in Japan and Israel. Despite its long history and popularity, spa treatment is still the subject of debate and its role in modern medicine continues to be unclear. The objective of this review is to summarize the currently available information on clinical effects and mechanisms of action of spa therapy in knee OA. Various randomized controlled clinical trials (RCTs) were conducted to assess the efficacy and tolerability of balneotherapy and mud-pack therapy in patients with knee OA. Data from these clinical trials support a beneficial effect of spa therapy on pain, function and quality of life in knee OA that lasts over time, until 6-9 months after the treatment. The mechanisms by which immersion in mineral or thermal water or the application of mud alleviate suffering in OA are not fully understood. The net benefit is probably the result of a combination of factors, among which the mechanical, thermal and chemical effects are most prominent. In conclusion, spa therapy seems to have a role in the treatment of knee OA. Additional RCTs and further studies of mechanisms of action with high methodological quality are necessary to prove the effects of spa therapy.
Collapse
Affiliation(s)
- Sara Tenti
- Rheumatology Unit, Department of Medicine, Surgery and Neurosciences, Policlinico "Le Scotte", University of Siena, Viale Bracci 1, 53100, Siena, Italy
| | | | | | | |
Collapse
|
47
|
Ryd L, Brittberg M, Eriksson K, Jurvelin JS, Lindahl A, Marlovits S, Möller P, Richardson JB, Steinwachs M, Zenobi-Wong M. Pre-Osteoarthritis: Definition and Diagnosis of an Elusive Clinical Entity. Cartilage 2015; 6:156-65. [PMID: 26175861 PMCID: PMC4481392 DOI: 10.1177/1947603515586048] [Citation(s) in RCA: 54] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/03/2022] Open
Abstract
OBJECTIVE An attempt to define pre-osteoarthritis (OA) versus early OA and definitive osteoarthritis. METHODS A group of specialists in the field of cartilage science and treatment was formed to consider the nature of OA onset and its possible diagnosis. RESULTS Late-stage OA, necessitating total joint replacement, is the end stage of a biological process, with many previous earlier stages. Early-stage OA has been defined and involves structural changes identified by arthroscopy or radiography. The group argued that before the "early-stage OA" there must exist a stage where cellular processes, due to the presence of risk factors, have kicked into action but have not yet resulted in structural changes. The group suggested that this stage could be called "pre-osteoarthritis" (pre-OA). CONCLUSIONS The group suggests that defining points of initiation for OA in the knee could be defined, for example, by traumatic episodes or surgical meniscectomy. Such events may set in motion metabolic processes that could be diagnosed by modern MRI protocols or arthroscopy including probing techniques before structural changes of early OA have developed. Preventive measures should preferably be applied at this pre-OA stage in order to stop the projected OA "epidemic."
Collapse
Affiliation(s)
- Leif Ryd
- Medical Management Centre, LIME, Karolinska Institute, Stockholm, Sweden
| | - Mats Brittberg
- Cartilage Research Unit, University of Gothenburg. Department of Orthopaedics, Kungsbacka Hospital, Kungsbacka, Sweden
| | - Karl Eriksson
- Department of Orthopedics, Southern Hospital, Stockholm, Sweden
| | - Jukka S. Jurvelin
- Faculty of Science and Forestry, University of Eastern Finland, Kuopio, Finland
| | - Anders Lindahl
- Clinical Chemistry and Transfusion Medicine, Sahlgrenska University Hospital, Gothenburg, Sweden
| | | | | | | | | | - Marcy Zenobi-Wong
- Cartilage Engineering + Regeneration Laboratory, Zürich, Switzerland
| |
Collapse
|
48
|
Bhattacharjee M, Coburn J, Centola M, Murab S, Barbero A, Kaplan DL, Martin I, Ghosh S. Tissue engineering strategies to study cartilage development, degeneration and regeneration. Adv Drug Deliv Rev 2015; 84:107-22. [PMID: 25174307 DOI: 10.1016/j.addr.2014.08.010] [Citation(s) in RCA: 102] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2014] [Revised: 08/01/2014] [Accepted: 08/20/2014] [Indexed: 01/09/2023]
Abstract
Cartilage tissue engineering has primarily focused on the generation of grafts to repair cartilage defects due to traumatic injury and disease. However engineered cartilage tissues have also a strong scientific value as advanced 3D culture models. Here we first describe key aspects of embryonic chondrogenesis and possible cell sources/culture systems for in vitro cartilage generation. We then review how a tissue engineering approach has been and could be further exploited to investigate different aspects of cartilage development and degeneration. The generated knowledge is expected to inform new cartilage regeneration strategies, beyond a classical tissue engineering paradigm.
Collapse
|
49
|
Olszewska-Slonina D, Jung S, Matewski D, Olszewski KJ, Krzyzynska-Malinowska E, Braszkiewicz A, Kowaliszyn B. Lysosomal enzymes in serum and synovial fluid in patients with osteoarthritis. Scandinavian Journal of Clinical and Laboratory Investigation 2015; 75:145-51. [PMID: 25594799 DOI: 10.3109/00365513.2014.992946] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
OBJECTIVE To assess the activity of arylsulfatase (AS), acid phosphatase (ACP), cathepsin D (CAT-D) and alpha-1 antitrypsin (AAT) in blood serum and synovial fluid (SF) of patients with hip or knee osteoarthritis (OA). METHODS The study included 43 subjects with OA (35 hip OA, 8 knee OA), submitted total joint replacement. The control group consisted of 58 subjects with no past history of musculoskeletal disorders. RESULTS The OA blood serum samples showed a significantly higher level of lysosomal enzymes activity than in the control group (AS by 17.8%, AAT by 42.4%); only the CAT-D activity decreased by 50%). AS, ACP and CAT-D activities were about two-fold higher in SF when compared with blood of OA patients. The differences between the genders were visible in the SF: Total protein concentration, activity of ACP (both higher in OA men) and activity of CAT-D (higher in OA women). Between the involved hip and knee, there were no significant differences in all estimated parameters in the blood serum of the OA group. In regard to the SF, only ACP activity was significantly higher in patients with a hip involved. CONCLUSIONS The osteoarthritic SF enzymatic profile differs from that in normal joints. The OA in joints is not reflected in the systemic response. Our preliminary results suggest further studies on role of lysosomal enzymes (ACP and AS) as biomarkers for the detection of osteoarthritis.
Collapse
Affiliation(s)
- Dorota Olszewska-Slonina
- Department of Pathobiochemistry and Clinical Chemistry, Collegium Medicum in Bydgoszcz, Nicolaus Copernicus University in Torun , Bydgoszcz , Poland
| | | | | | | | | | | | | |
Collapse
|
50
|
Hämäläinen S, Solovieva S, Vehmas T, Leino-Arjas P, Hirvonen A. Variations in the TNFα gene and their interactions with the IL4R and IL10 genes in relation to hand osteoarthritis. BMC Musculoskelet Disord 2014; 15:311. [PMID: 25252624 PMCID: PMC4181701 DOI: 10.1186/1471-2474-15-311] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/10/2014] [Accepted: 09/19/2014] [Indexed: 01/15/2023] Open
Abstract
Background The development of osteoarthritis (OA) involves inflammation, but the evidence for participation of genes propagating or inhibiting inflammation in the OA process is inconsistent. We investigated the associations of common variants in the TNFα gene, and their interactions with other cytokine genes, with hand OA among Finnish women. Methods This cross-sectional study was based on bilateral hand radiographs of 542 female dentists and teachers which were classified according to the presence of OA (radiographic K-L score ≥ 2 in ≥ 3 joints) using reference images. The genotypes were determined by PCR-based methods. The degree of pairwise linkage disequilibrium (LD) and haplotypes were constructed and analyzed by the SNPStats software. The associations between four TNFα SNPs and hand OA were tested using logistic regression adjusting for age, occupation, and BMI, and fitting a log-additive model of inheritance. Gene-gene interactions of TNFα SNPs with IL4R and IL10 SNPs were examined by stratified logistic regression analyses. Possible interactions of the TNFα SNPs with variants in the previously reported IL1β and IL6 genes in influencing hand OA were also explored. Results Two TNFα polymorphisms (“-1031” and “-863”) were associated with hand OA (OR = 1.45, 95% CI 1.01-2.07 and 1.55, 1.06-2.25, respectively). These associations retained when adjusting further for IL1β “3954” and IL6 “174”. The TNFα G-A-G haplotype was associated with an increased risk of hand OA (1.61, 1.10-2.37, p = 0.01). Interactions were observed between TNFα “-1031” and IL4R Ser503Pro, TNFα “-1031” and IL10 “-1082”, and TNFα “-863” and IL10 “-1082” SNPs with regard to hand OA (p = 0.012, p = 0.0068, and p = 0.02, respectively). The carriage of the TNFα “-1031” minor allele doubled the risk (2.01, 1.26 - 3.22) only in women with the IL4R Ser/Ser genotype. Similarly, the TNFα “-1031” and “-863” minor alleles were associated with an increased risk of hand OA only in IL10 G/G or A/A homozygotes (2.54, 1.45-4.47 and 2.60, 1.46-4.62, respectively) but not in heterozygotes (G/A). Conclusions Our results suggest that the TNF α gene variants play a role in the etiology of hand OA. In addition, the findings are suggestive of a gene-gene interaction of the TNF α with IL4R and IL10 genes. Electronic supplementary material The online version of this article (doi:10.1186/1471-2474-15-311) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Satu Hämäläinen
- Finnish Institute of Occupational Health, Centre of Expertise for Health and Work Ability, Topeliuksenkatu 41 a A, FI-00250 Helsinki, Finland.
| | | | | | | | | |
Collapse
|