1
|
d'Alessandro M, Gangi S, Paggi I, Soccio P, Bergantini L, Pianigiani T, Montuori G, Moriondo G, Natalello G, Marrucci S, Brogna A, Scioscia G, Lacedonia D, Cameli P, Bargagli E. Diagnostic Performance of CLEIA Versus FEIA for KL-6 Peripheral and Alveolar Concentrations in Fibrotic Interstitial Lung Diseases: A Multicentre Study. J Clin Lab Anal 2024; 38:e25108. [PMID: 39323282 PMCID: PMC11520937 DOI: 10.1002/jcla.25108] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2024] [Revised: 09/06/2024] [Accepted: 09/14/2024] [Indexed: 09/27/2024] Open
Abstract
BACKGROUND Interstitial lung diseases (ILD) is a group of lung disorders characterized by interstitial lung thickening due to inflammatory and fibrotic processes. Krebs von den Lungen-6 (KL-6) is a molecule secreted by damaged type II alveolar pneumocytes in the alveolar space. The goal of the present study was to compare two detection methods of KL-6 in both bronchoalveolar lavage (BAL) and serum from ILD patients at the moment of diagnosis. METHODS Patients with suspicious of ILD and followed at two Italian referral centres for rare lung diseases were included in the study. BAL fluid and serum were collected and analysed by chemiluminescent enzyme immunoassay (CLEIA) and fluorescent enzyme immunoassay (FEIA) methods provided by Tosoh Biosciences. RESULTS A total of 158 (mean age ± standard deviation, 61.5 ± 13.7, 65 females) patients were enrolled. A total of, 36 had diagnosis of idiopathic pulmonary fibrosis (IPF), 74 sarcoidosis, 15 connective tissue disease-ILD (CTD-ILD) and 33 other ILD. Diagnostic agreement between two methods was demonstrated for both BAL (r = 0.707, p < 0.0001) and serum (r = 0.816, p < 0.0001). BAL KL-6 values were lower than serum (p < 0.0001). IPF patients had higher serum KL-6 concentration than other ILDs (p = 0.0294), while BAL KL-6 values were lower in IPF than in non-IPF (p = 0.0023). CONCLUSION This study explored KL-6 concentrations through the CLEIA method in serum and BAL of patients with various ILDs, showing significant differences of biomarkers concentrations between IPF and other non-IPF ILDs. Our findings are promising as they provided further knowledge concerning KL-6 expression across different ILDs and may suggest its utility in differential diagnosis.
Collapse
Affiliation(s)
- Miriana d'Alessandro
- Respiratory Diseases Unit, Department of Medical and Surgical Sciences & Neuro‐SciencesUniversity of SienaSienaItaly
| | - Sara Gangi
- Respiratory Diseases Unit, Department of Medical and Surgical Sciences & Neuro‐SciencesUniversity of SienaSienaItaly
| | - Irene Paggi
- Respiratory Diseases Unit, Department of Medical and Surgical Sciences & Neuro‐SciencesUniversity of SienaSienaItaly
| | - Piera Soccio
- Department of Medical and Surgical SciencesUniversity of FoggiaFoggiaItaly
| | - Laura Bergantini
- Respiratory Diseases Unit, Department of Medical and Surgical Sciences & Neuro‐SciencesUniversity of SienaSienaItaly
| | - Tommaso Pianigiani
- Respiratory Diseases Unit, Department of Medical and Surgical Sciences & Neuro‐SciencesUniversity of SienaSienaItaly
| | - Giusy Montuori
- Respiratory Diseases Unit, Department of Medical and Surgical Sciences & Neuro‐SciencesUniversity of SienaSienaItaly
| | - Giorgia Moriondo
- Department of Medical and Surgical SciencesUniversity of FoggiaFoggiaItaly
| | - Giulio Natalello
- Respiratory Diseases Unit, Department of Medical and Surgical Sciences & Neuro‐SciencesUniversity of SienaSienaItaly
| | - Sofia Marrucci
- Respiratory Diseases Unit, Department of Medical and Surgical Sciences & Neuro‐SciencesUniversity of SienaSienaItaly
| | - Alfonso Brogna
- Respiratory Diseases Unit, Department of Medical and Surgical Sciences & Neuro‐SciencesUniversity of SienaSienaItaly
| | - Giulia Scioscia
- Department of Medical and Surgical SciencesUniversity of FoggiaFoggiaItaly
- Institute of Respiratory DiseasesPoliclinico Riuniti of FoggiaFoggiaItaly
| | - Donato Lacedonia
- Department of Medical and Surgical SciencesUniversity of FoggiaFoggiaItaly
- Institute of Respiratory DiseasesPoliclinico Riuniti of FoggiaFoggiaItaly
| | - Paolo Cameli
- Respiratory Diseases Unit, Department of Medical and Surgical Sciences & Neuro‐SciencesUniversity of SienaSienaItaly
| | - Elena Bargagli
- Respiratory Diseases Unit, Department of Medical and Surgical Sciences & Neuro‐SciencesUniversity of SienaSienaItaly
| |
Collapse
|
2
|
Summer R, Chun P. Pressed for understanding: Interstitial lung disease in dry-cleaning workers. Am J Med Sci 2024:S0002-9629(24)01442-3. [PMID: 39237034 DOI: 10.1016/j.amjms.2024.08.026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2024] [Revised: 08/25/2024] [Accepted: 08/26/2024] [Indexed: 09/07/2024]
Abstract
Interstitial lung disease (ILD) represents a heterogeneous group of disorders characterized by inflammation and fibrosis of the pulmonary interstitium. Risk factors for ILD include various environmental exposures and identifying specific exposures offers a point of intervention for preventing disease. Here, we present several cases of patients who worked in the dry-cleaning business and have ILD or abnormalities consistent with early ILD on chest CT imaging. While this report does not attempt to establish causality, we hypothesize that exposure to the industrial solvent tetrachloroethylene may serve as a contributing factor given its links to epithelial injury, inflammation, redox imbalance and apoptosis. We hope that this report serves to not only inform readers of this possible connection between dry cleaning and ILD but also lay the foundation for additional studies examining the effects of tetrachloroethylene on the lung.
Collapse
Affiliation(s)
- Ross Summer
- Division of Pulmonary, Allergy and Critical Care, Department of Medicine, Sidney Kimmel Medical College and the Jane and Leonard Korman Respiratory Institute Thomas Jefferson University, Philadelphia, PA, USA.
| | - Phoebe Chun
- Department of Medicine, Sidney Kimmel Medical College Thomas Jefferson University, Philadelphia, PA, USA
| |
Collapse
|
3
|
Takeshita Y, To M, Kurosawa Y, Furusho N, Kinouchi T, Tsushima K, Tada Y, To Y, Sakao S. Usefulness of Combined Measurement of Surfactant Protein D, Thrombin-Antithrombin III Complex, D-Dimer, and Plasmin-α2 Plasmin Inhibitor Complex in Acute Exacerbation of Interstitial Lung Disease: A Retrospective Cohort Study. J Clin Med 2024; 13:2427. [PMID: 38673700 PMCID: PMC11051190 DOI: 10.3390/jcm13082427] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2024] [Revised: 04/13/2024] [Accepted: 04/19/2024] [Indexed: 04/28/2024] Open
Abstract
Background/Objectives: The coagulation cascade due to tissue damage is considered to be one of the causes of poor prognostic outcomes in patients with acute exacerbations of interstitial lung disease (AE-ILD). This study aimed to confirm coagulopathy in AE-ILD by evaluating the differences in the clinical characteristics of coagulation/fibrinolysis markers between stable ILD and AE-ILD. Methods: Overall, 81 patients were enrolled in this retrospective study and categorized into the following two groups: a chronic ILD group comprising 63 outpatients and an acute ILD group comprising 18 inpatients diagnosed with AE-ILD. Serum markers, including thrombin-antithrombin III complex (TAT), D-dimer, plasmin-α2 plasmin inhibitor complex (PIC), and surfactant protein D (SP-D), were compared between the groups. Results: Among the 18 patients with acute ILD, 17 did not meet the International Society of Thrombosis and Hemostasis scoring system for disseminated intravascular coagulation. In acute ILD, the SP-D levels were statistically significantly positively correlated with TAT, D-dimer, and PIC levels, while the Krebs von den Lungen 6 (KL-6) levels showed no correlation with any of these coagulation/fibrinolytic markers. A positive correlation was observed between SP-D levels and TAT, D-dimer, and PIC levels in acute ILD. Serum TAT, D-dimer, and PIC all showed good area under the receiver operating characteristic (ROC) curve (AUC) values in ROC analysis for the diagnosis of acute ILD. Conclusions: In the clinical setting of AE-ILD, it may be important to focus not only on alveolar damage markers such as SP-D but also on coagulation/fibrinolytic markers including TAT, D-dimer, and PIC.
Collapse
Affiliation(s)
- Yuichiro Takeshita
- Department of Pulmonary Medicine, International University of Health and Welfare Narita Hospital, 852 Hatakeda, Narita 286-8520, Japan
| | - Masako To
- Department of Laboratory Medicine, Dokkyo Medical University, Saitama Medical Center, 2-1-50 Minami-Koshigaya, Koshigaya 343-8555, Japan
| | - Yusuke Kurosawa
- Department of Pulmonary Medicine, International University of Health and Welfare Narita Hospital, 852 Hatakeda, Narita 286-8520, Japan
- Division of Respiratory Medicine, Department of Internal Medicine, Nihon University School of Medicine, 30-1 Oyaguchi Kamicho, Tokyo 173-8610, Japan
| | - Naho Furusho
- Department of Pulmonary Medicine, International University of Health and Welfare Narita Hospital, 852 Hatakeda, Narita 286-8520, Japan
- Division of Respiratory Medicine, Department of Internal Medicine, Nihon University School of Medicine, 30-1 Oyaguchi Kamicho, Tokyo 173-8610, Japan
| | - Toru Kinouchi
- Department of Pulmonary Medicine, International University of Health and Welfare Narita Hospital, 852 Hatakeda, Narita 286-8520, Japan
| | - Kenji Tsushima
- Department of Pulmonary Medicine, International University of Health and Welfare Narita Hospital, 852 Hatakeda, Narita 286-8520, Japan
| | - Yuji Tada
- Department of Pulmonary Medicine, International University of Health and Welfare Narita Hospital, 852 Hatakeda, Narita 286-8520, Japan
| | - Yasuo To
- Department of Pulmonary Medicine, International University of Health and Welfare Narita Hospital, 852 Hatakeda, Narita 286-8520, Japan
| | - Seiichiro Sakao
- Department of Pulmonary Medicine, International University of Health and Welfare Narita Hospital, 852 Hatakeda, Narita 286-8520, Japan
| |
Collapse
|
4
|
Zhu X, Ji J, Han X. Osteopontin: an essential regulatory protein in idiopathic pulmonary fibrosis. J Mol Histol 2024; 55:1-13. [PMID: 37878112 DOI: 10.1007/s10735-023-10169-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2023] [Accepted: 10/12/2023] [Indexed: 10/26/2023]
Abstract
Idiopathic pulmonary fibrosis (IPF) is a progressive, chronic lung disease characterized by abnormal proliferation and activation of fibroblasts, excessive accumulation of extracellular matrix (ECM), inflammatory damage, and disrupted alveolar structure. Despite its increasing morbidity and mortality rates, effective clinical treatments for IPF remain elusive. Osteopontin (OPN), a multifunctional ECM protein found in various tissues, has been implicated in numerous biological processes such as bone remodeling, innate immunity, acute and chronic inflammation, and cancer. Recent studies have highlighted the pivotal role of OPN in the pathogenesis of IPF. This review aims to delve into the involvement of OPN in the inflammatory response, ECM deposition, and epithelial-mesenchymal transition (EMT) during IPF, and intends to lay a solid theoretical groundwork for the development of therapeutic strategies for IPF.
Collapse
Affiliation(s)
- Xiaoyu Zhu
- Immunology and Reproduction Biology Laboratory & State Key Laboratory of Analytical Chemistry for Life Science, Medical School, Nanjing University, Hankou Road 22, Nanjing, 210093, China
- Jiangsu Key Laboratory of Molecular Medicine, Nanjing University, Nanjing, 210093, China
| | - Jie Ji
- Immunology and Reproduction Biology Laboratory & State Key Laboratory of Analytical Chemistry for Life Science, Medical School, Nanjing University, Hankou Road 22, Nanjing, 210093, China
- Jiangsu Key Laboratory of Molecular Medicine, Nanjing University, Nanjing, 210093, China
| | - Xiaodong Han
- Immunology and Reproduction Biology Laboratory & State Key Laboratory of Analytical Chemistry for Life Science, Medical School, Nanjing University, Hankou Road 22, Nanjing, 210093, China.
- Jiangsu Key Laboratory of Molecular Medicine, Nanjing University, Nanjing, 210093, China.
| |
Collapse
|
5
|
Pappas AG, Eleftheriou K, Vlahakos V, Magkouta SF, Riba T, Dede K, Siampani R, Kompogiorgas S, Polydora E, Papalampidou A, Loutsidi NE, Mantas N, Tavernaraki E, Exarchos D, Kalomenidis I. High Plasma Osteopontin Levels Are Associated with Serious Post-Acute-COVID-19-Related Dyspnea. J Clin Med 2024; 13:392. [PMID: 38256526 PMCID: PMC10816040 DOI: 10.3390/jcm13020392] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2023] [Revised: 12/30/2023] [Accepted: 01/04/2024] [Indexed: 01/24/2024] Open
Abstract
COVID-19 survivors commonly report persistent symptoms. In this observational study, we investigated the link between osteopontin (OPN) and post-acute COVID-19 symptoms and lung functional/imaging abnormalities. We recorded symptoms and lung imaging/functional data from previously hospitalized COVID-19 patients, who were followed for 4-84 weeks (122 patients/181 visits) post-symptom onset at our outpatient clinic. Circulating OPN was determined using ELISA. Plasma OPN levels were higher in symptomatic patients (compared with the asymptomatic ones); those with dyspnea (compared with those without dyspnea);those with a combination of serious symptoms, i.e., the presence of at least one of the following: dyspnea, fatigue and muscular weakness (compared with those with none of these symptoms); and those with dyspnea and m-MRC > 1 (compared with those with m-MRC = 0-1). Plasma OPN levels were inversely correlated with EQ-VAS (visual analog scale of the EQ-5D-5L health-related quality-of-life questionnaire) values. High-resolution CT or diffusion lung capacity (DLCO) findings were not related to circulating OPN. In the multiple logistic regression, the presence of symptoms, dyspnea, or the combination of serious symptoms were linked to female gender, increased BMI and pre-existing dyspnea (before the acute disease), while increased plasma OPN levels, female gender and pre-existing dyspnea with m-MRC > 1 were independently associated with severe post-COVID-19 dyspnea (m-MRC > 1). Using a correlation matrix to investigate multiple correlations between EQ-VAS, OPN and epidemiological data, we observed an inverse correlation between the OPN and EQ-VAS values. Increased circulating OPN was linked to the persistence of severe exertional dyspnea and impaired quality of life in previously hospitalized COVID-19 patients.
Collapse
Affiliation(s)
- Apostolos G. Pappas
- First Department of Critical Care and Pulmonary Medicine, “Evangelismos” General Hospital, School of Medicine, National and Kapodistrian University of Athens, 10676 Athens, Greece (T.R.); (K.D.); (A.P.); (I.K.)
| | - Konstantinos Eleftheriou
- First Department of Critical Care and Pulmonary Medicine, “Evangelismos” General Hospital, School of Medicine, National and Kapodistrian University of Athens, 10676 Athens, Greece (T.R.); (K.D.); (A.P.); (I.K.)
| | - Vassilios Vlahakos
- First Department of Critical Care and Pulmonary Medicine, “Evangelismos” General Hospital, School of Medicine, National and Kapodistrian University of Athens, 10676 Athens, Greece (T.R.); (K.D.); (A.P.); (I.K.)
| | - Sophia F. Magkouta
- “Marianthi Simou Laboratory”, First Department of Critical Care and Pulmonary Medicine, “Evangelismos” General Hospital, School of Medicine, National and Kapodistrian University of Athens, 10676 Athens, Greece
| | - Theofani Riba
- First Department of Critical Care and Pulmonary Medicine, “Evangelismos” General Hospital, School of Medicine, National and Kapodistrian University of Athens, 10676 Athens, Greece (T.R.); (K.D.); (A.P.); (I.K.)
| | - Konstantina Dede
- First Department of Critical Care and Pulmonary Medicine, “Evangelismos” General Hospital, School of Medicine, National and Kapodistrian University of Athens, 10676 Athens, Greece (T.R.); (K.D.); (A.P.); (I.K.)
| | - Rafaela Siampani
- First Department of Critical Care and Pulmonary Medicine, “Evangelismos” General Hospital, School of Medicine, National and Kapodistrian University of Athens, 10676 Athens, Greece (T.R.); (K.D.); (A.P.); (I.K.)
| | - Steven Kompogiorgas
- Department of Pulmonary Medicine, “Evangelismos” General Hospital, 10676 Athens, Greece
| | - Eftychia Polydora
- First Department of Critical Care and Pulmonary Medicine, “Evangelismos” General Hospital, School of Medicine, National and Kapodistrian University of Athens, 10676 Athens, Greece (T.R.); (K.D.); (A.P.); (I.K.)
| | - Athanasia Papalampidou
- First Department of Critical Care and Pulmonary Medicine, “Evangelismos” General Hospital, School of Medicine, National and Kapodistrian University of Athens, 10676 Athens, Greece (T.R.); (K.D.); (A.P.); (I.K.)
| | - Natasa-Eleni Loutsidi
- Hematology—Lymphomas Department and Bone Marrow Transplant Unit, “Evangelismos” General Hospital, 10676 Athens, Greece;
| | - Nikolaos Mantas
- Department of CT-MRI, “Evangelismos” General Hospital, 10676 Athens, Greece (D.E.)
| | | | - Demetrios Exarchos
- Department of CT-MRI, “Evangelismos” General Hospital, 10676 Athens, Greece (D.E.)
| | - Ioannis Kalomenidis
- First Department of Critical Care and Pulmonary Medicine, “Evangelismos” General Hospital, School of Medicine, National and Kapodistrian University of Athens, 10676 Athens, Greece (T.R.); (K.D.); (A.P.); (I.K.)
| |
Collapse
|
6
|
Zeyada MS, Eraky SM, El-Shishtawy MM. Trigonelline mitigates bleomycin-induced pulmonary inflammation and fibrosis: Insight into NLRP3 inflammasome and SPHK1/S1P/Hippo signaling modulation. Life Sci 2024; 336:122272. [PMID: 37981228 DOI: 10.1016/j.lfs.2023.122272] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2023] [Revised: 10/31/2023] [Accepted: 11/12/2023] [Indexed: 11/21/2023]
Abstract
AIMS Pulmonary fibrosis (PF) is a chronic interstitial lung disease with an increasing incidence following the COVID-19 outbreak. Pirfenidone (Pirf), an FDA-approved pulmonary anti-fibrotic drug, is poorly tolerated and exhibits limited efficacy. Trigonelline (Trig) is a natural plant alkaloid with diverse pharmacological actions. We investigated the underlying prophylactic and therapeutic mechanisms of Trig in ameliorating bleomycin (BLM)-induced PF and the possible synergistic antifibrotic activity of Pirf via its combination with Trig. MATERIALS AND METHODS A single dose of BLM was administered intratracheally to male Sprague-Dawley rats for PF induction. In the prophylactic study, Trig was given orally 3 days before BLM and then for 28 days. In the therapeutic study, Trig and/or Pirf were given orally from day 8 after BLM until the 28th day. Biochemical assay, histopathology, qRT-PCR, ELISA, and immunohistochemistry were performed on lung tissues. KEY FINDINGS Trig prophylactically and therapeutically mitigated the inflammatory process via targeting NF-κB/NLRP3/IL-1β signaling. Trig activated the autophagy process which in turn attenuated alveolar epithelial cells apoptosis and senescence. Remarkably, Trig attenuated lung SPHK1/S1P axis and its downstream Hippo targets, YAP-1, and TAZ, with a parallel decrease in YAP/TAZ profibrotic genes. Interestingly, Trig upregulated lung miR-375 and miR-27a expression. Consequently, epithelial-mesenchymal transition in lung tissues was reversed upon Trig administration. These results were simultaneously associated with profound improvement in lung histological alterations. SIGNIFICANCE The current study verifies Trig's prophylactic and antifibrotic effects against BLM-induced PF via targeting multiple signaling. Trig and Pirf combination may be a promising approach to synergize Pirf antifibrotic effect.
Collapse
Affiliation(s)
- Menna S Zeyada
- Department of Biochemistry, Faculty of Pharmacy, Mansoura University, Mansoura 35516, Egypt
| | - Salma M Eraky
- Department of Biochemistry, Faculty of Pharmacy, Mansoura University, Mansoura 35516, Egypt
| | - Mamdouh M El-Shishtawy
- Department of Biochemistry, Faculty of Pharmacy, Mansoura University, Mansoura 35516, Egypt.
| |
Collapse
|
7
|
Zamfir AS, Zabara ML, Arcana RI, Cernomaz TA, Zabara-Antal A, Marcu MTD, Trofor A, Zamfir CL, Crișan-Dabija R. Exploring the Role of Biomarkers Associated with Alveolar Damage and Dysfunction in Idiopathic Pulmonary Fibrosis-A Systematic Review. J Pers Med 2023; 13:1607. [PMID: 38003922 PMCID: PMC10672103 DOI: 10.3390/jpm13111607] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2023] [Revised: 10/30/2023] [Accepted: 11/09/2023] [Indexed: 11/26/2023] Open
Abstract
BACKGROUND Idiopathic pulmonary fibrosis (IPF) is one of the most aggressive forms of interstitial lung diseases (ILDs), marked by an ongoing, chronic fibrotic process within the lung tissue. IPF leads to an irreversible deterioration of lung function, ultimately resulting in an increased mortality rate. Therefore, the focus has shifted towards the biomarkers that might contribute to the early diagnosis, risk assessment, prognosis, and tracking of the treatment progress, including those associated with epithelial injury. METHODS We conducted this review through a systematic search of the relevant literature using established databases such as PubMed, Scopus, and Web of Science. Selected articles were assessed, with data extracted and synthesized to provide an overview of the current understanding of the existing biomarkers for IPF. RESULTS Signs of epithelial cell damage hold promise as relevant biomarkers for IPF, consequently offering valuable support in its clinical care. Their global and standardized utilization remains limited due to a lack of comprehensive information of their implications in IPF. CONCLUSIONS Recognizing the aggressive nature of IPF among interstitial lung diseases and its profound impact on lung function and mortality, the exploration of biomarkers becomes pivotal for early diagnosis, risk assessment, prognostic evaluation, and therapy monitoring.
Collapse
Affiliation(s)
- Alexandra-Simona Zamfir
- Clinical Hospital of Pulmonary Diseases, 700115 Iasi, Romania; (A.-S.Z.); (R.I.A.); (A.T.); (R.C.-D.)
- Department of Medical Sciences III, Faculty of Medicine, University of Medicine and Pharmacy “Grigore T. Popa”, 700115 Iasi, Romania
| | - Mihai Lucian Zabara
- Department of Surgery, Faculty of Medicine, University of Medicine and Pharmacy “Grigore T. Popa”, 700115 Iasi, Romania
- Clinic of Surgery (II), St. Spiridon Emergency Hospital, 700111 Iasi, Romania
| | - Raluca Ioana Arcana
- Clinical Hospital of Pulmonary Diseases, 700115 Iasi, Romania; (A.-S.Z.); (R.I.A.); (A.T.); (R.C.-D.)
- Doctoral School of the Faculty of Medicine, University of Medicine and Pharmacy “Grigore T. Popa”, 700115 Iasi, Romania
| | - Tudor Andrei Cernomaz
- Department of Medical Sciences III, Faculty of Medicine, University of Medicine and Pharmacy “Grigore T. Popa”, 700115 Iasi, Romania
- Regional Institute of Oncology, 700483 Iasi, Romania
| | - Andreea Zabara-Antal
- Clinical Hospital of Pulmonary Diseases, 700115 Iasi, Romania; (A.-S.Z.); (R.I.A.); (A.T.); (R.C.-D.)
- Doctoral School of the Faculty of Medicine, University of Medicine and Pharmacy “Grigore T. Popa”, 700115 Iasi, Romania
| | - Marius Traian Dragoș Marcu
- Clinical Hospital of Pulmonary Diseases, 700115 Iasi, Romania; (A.-S.Z.); (R.I.A.); (A.T.); (R.C.-D.)
- Department of Medical Sciences I, Faculty of Medicine, University of Medicine and Pharmacy “Grigore T. Popa”, 700115 Iasi, Romania
| | - Antigona Trofor
- Clinical Hospital of Pulmonary Diseases, 700115 Iasi, Romania; (A.-S.Z.); (R.I.A.); (A.T.); (R.C.-D.)
- Department of Medical Sciences III, Faculty of Medicine, University of Medicine and Pharmacy “Grigore T. Popa”, 700115 Iasi, Romania
| | - Carmen Lăcrămioara Zamfir
- Department of Morpho-Functional Sciences I, Faculty of Medicine, University of Medicine and Pharmacy “Grigore T. Popa”, 700115 Iasi, Romania;
| | - Radu Crișan-Dabija
- Clinical Hospital of Pulmonary Diseases, 700115 Iasi, Romania; (A.-S.Z.); (R.I.A.); (A.T.); (R.C.-D.)
- Department of Medical Sciences III, Faculty of Medicine, University of Medicine and Pharmacy “Grigore T. Popa”, 700115 Iasi, Romania
| |
Collapse
|
8
|
Young ON, Bourke JE, Widdop RE. Catch your breath: The protective role of the angiotensin AT 2 receptor for the treatment of idiopathic pulmonary fibrosis. Biochem Pharmacol 2023; 217:115839. [PMID: 37778444 DOI: 10.1016/j.bcp.2023.115839] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2023] [Revised: 09/28/2023] [Accepted: 09/28/2023] [Indexed: 10/03/2023]
Abstract
Idiopathic pulmonary fibrosis (IPF) is a progressive interstitial lung disease whereby excessive deposition of extracellular matrix proteins (ECM) ultimately leads to respiratory failure. While there have been advances in pharmacotherapies for pulmonary fibrosis, IPF remains an incurable and irreversible disease. There remains an unmet clinical need for treatments that reverse fibrosis, or at the very least have a more tolerable side effect profile than currently available treatments. Transforming growth factor β1(TGFβ1) is considered the main driver of fibrosis in IPF. However, as our understanding of the role of the pulmonary renin-angiotensin system (PRAS) in the pathogenesis of IPF increases, it is becoming clear that targeting angiotensin receptors represents a potential novel treatment strategy for IPF - in particular, via activation of the anti-fibrotic angiotensin type 2 receptor (AT2R). This review describes the current understanding of the pathophysiology of IPF and the mediators implicated in its pathogenesis; focusing on TGFβ1, angiotensin II and related peptides in the PRAS and their contribution to fibrotic processes in the lung. Preclinical and clinical assessment of currently available AT2R agonists and the development of novel, highly selective ligands for this receptor will also be described, with a focus on compound 21, currently in clinical trials for IPF. Collectively, this review provides evidence of the potential of AT2R as a novel therapeutic target for IPF.
Collapse
Affiliation(s)
- Olivia N Young
- Department of Pharmacology and Cardiovascular Disease Program, Biomedicine Discovery Institute, Monash University, Clayton, Victoria 3800, Australia
| | - Jane E Bourke
- Department of Pharmacology and Cardiovascular Disease Program, Biomedicine Discovery Institute, Monash University, Clayton, Victoria 3800, Australia
| | - Robert E Widdop
- Department of Pharmacology and Cardiovascular Disease Program, Biomedicine Discovery Institute, Monash University, Clayton, Victoria 3800, Australia.
| |
Collapse
|
9
|
d'Amati A, Ronca R, Maccarinelli F, Turati M, Lorusso L, De Giorgis M, Tamma R, Ribatti D, Annese T. PTX3 shapes profibrotic immune cells and epithelial/fibroblast repair and regeneration in a murine model of pulmonary fibrosis. Pathol Res Pract 2023; 251:154901. [PMID: 37922722 DOI: 10.1016/j.prp.2023.154901] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/29/2023] [Revised: 10/11/2023] [Accepted: 10/19/2023] [Indexed: 11/07/2023]
Abstract
The long pentraxin 3 (PTX3) is protective in different pathologies but was not analyzed in-depth in Idiopathic Pulmonary Fibrosis (IPF). Here, we have explored the influence of PTX3 in the bleomycin (BLM)-induced murine model of IPF by looking at immune cells (macrophages, mast cells, T cells) and stemness/regenerative markers of lung epithelium (SOX2) and fibro-blasts/myofibroblasts (CD44) at different time points that retrace the progression of the disease from onset at day 14, to full-blown disease at day 21, to incomplete regression at day 28. We took advantage of transgenic PTX3 overexpressing mice (Tie2-PTX3) and Ptx3 null ones (PTX3-KO) in which pulmonary fibrosis was induced. Our data have shown that PTX3 overexpression in Tie2-PTX3 compared to WT or PTX3-KO: reduced CD68+ and CD163+ macrophages and the Tryptase+ mast cells during the whole experimental time; on the contrary, CD4+ T cells are consistently present on day 14 and dramatically decreased on day 21; CD8+ T cells do not show significant differences on day 14, but are significantly reduced on day 21; SOX2 is reduced on days 14 and 21; CD44 is reduced on day 21. Therefore, PTX3 could act on the proimmune and fibrogenic microenvironment to prevent fibrosis in BLM-treated mice.
Collapse
Affiliation(s)
- Antonio d'Amati
- Department of Basic Medical Sciences, Neurosciences and Sensory Organs, University of Bari Medical School, Bari, Italy; Section of Pathology, Department of Emergency and Organ Transplantation, University of Bari, 70124 Bari, Italy
| | - Roberto Ronca
- Department of Molecular and Translational Medicine, School of Medicine, University of Brescia, 25123 Brescia, Italy
| | - Federica Maccarinelli
- Department of Molecular and Translational Medicine, School of Medicine, University of Brescia, 25123 Brescia, Italy
| | - Marta Turati
- Department of Molecular and Translational Medicine, School of Medicine, University of Brescia, 25123 Brescia, Italy
| | - Loredana Lorusso
- Department of Basic Medical Sciences, Neurosciences and Sensory Organs, University of Bari Medical School, Bari, Italy
| | - Michelina De Giorgis
- Department of Basic Medical Sciences, Neurosciences and Sensory Organs, University of Bari Medical School, Bari, Italy
| | - Roberto Tamma
- Department of Basic Medical Sciences, Neurosciences and Sensory Organs, University of Bari Medical School, Bari, Italy
| | - Domenico Ribatti
- Department of Basic Medical Sciences, Neurosciences and Sensory Organs, University of Bari Medical School, Bari, Italy
| | - Tiziana Annese
- Department of Basic Medical Sciences, Neurosciences and Sensory Organs, University of Bari Medical School, Bari, Italy; Department of Medicine and Surgery, LUM University, Casamassima, 70010 Bari, Italy.
| |
Collapse
|
10
|
Luo YL, Li Y, Zhou W, Wang SY, Liu YQ. Inhibition of LPA-LPAR1 and VEGF-VEGFR2 Signaling in IPF Treatment. Drug Des Devel Ther 2023; 17:2679-2690. [PMID: 37680863 PMCID: PMC10482219 DOI: 10.2147/dddt.s415453] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2023] [Accepted: 07/25/2023] [Indexed: 09/09/2023] Open
Abstract
Due to the complex mechanism and limited treatments available for pulmonary fibrosis, the development of targeted drugs or inhibitors based on their molecular mechanisms remains an important strategy for prevention and treatment. In this paper, the downstream signaling pathways mediated by VEGFR and LPAR1 in pulmonary cells and the role of these pathways in pulmonary fibrosis, as well as the current status of drug research on the targets of LPAR1 and VEGFR2, are described. The mechanism by which these two pathways regulate vascular leakage and collagen deposition leading to the development of pulmonary fibrosis are analyzed, and the mutual promotion of the two pathways is discussed. Here we propose the development of drugs that simultaneously target LPAR1 and VEGFR2, and discuss the important considerations in targeting and safety.
Collapse
Affiliation(s)
- Ya-Li Luo
- Gansu University Key Laboratory for Molecular Medicine and Chinese Medicine Prevention and Treatment of Major Diseases, Gansu University of Chinese Medicine, Lanzhou, 730000, People’s Republic of China
| | - Yan Li
- Gansu University Key Laboratory for Molecular Medicine and Chinese Medicine Prevention and Treatment of Major Diseases, Gansu University of Chinese Medicine, Lanzhou, 730000, People’s Republic of China
| | - Wen Zhou
- Gansu University Key Laboratory for Molecular Medicine and Chinese Medicine Prevention and Treatment of Major Diseases, Gansu University of Chinese Medicine, Lanzhou, 730000, People’s Republic of China
| | - Si-Yu Wang
- Gansu University Key Laboratory for Molecular Medicine and Chinese Medicine Prevention and Treatment of Major Diseases, Gansu University of Chinese Medicine, Lanzhou, 730000, People’s Republic of China
| | - Yong-Qi Liu
- Gansu University Key Laboratory for Molecular Medicine and Chinese Medicine Prevention and Treatment of Major Diseases, Gansu University of Chinese Medicine, Lanzhou, 730000, People’s Republic of China
| |
Collapse
|
11
|
Poe A, Martinez Yus M, Wang H, Santhanam L. Lysyl oxidase like-2 in fibrosis and cardiovascular disease. Am J Physiol Cell Physiol 2023; 325:C694-C707. [PMID: 37458436 PMCID: PMC10635644 DOI: 10.1152/ajpcell.00176.2023] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2023] [Revised: 07/12/2023] [Accepted: 07/12/2023] [Indexed: 09/01/2023]
Abstract
Fibrosis is an important and essential reparative response to injury that, if left uncontrolled, results in the excessive synthesis, deposition, remodeling, and stiffening of the extracellular matrix, which is deleterious to organ function. Thus, the sustained activation of enzymes that catalyze matrix remodeling and cross linking is a fundamental step in the pathology of fibrotic diseases. Recent studies have implicated the amine oxidase lysyl oxidase like-2 (LOXL2) in this process and established significantly elevated expression of LOXL2 as a key component of profibrotic conditions in several organ systems. Understanding the relationship between LOXL2 and fibrosis as well as the mechanisms behind these relationships can offer significant insights for developing novel therapies. Here, we summarize the key findings that demonstrate the link between LOXL2 and fibrosis and inflammation, examine current therapeutics targeting LOXL2 for the treatment of fibrosis, and discuss future directions for experiments and biomedical engineering.
Collapse
Affiliation(s)
- Alan Poe
- Department of Biomedical Engineering, Johns Hopkins University, Baltimore, Maryland, United States
| | - Marta Martinez Yus
- Department of Anesthesiology and CCM, Johns Hopkins University, Baltimore, Maryland, United States
| | - Huilei Wang
- Department of Biomedical Engineering, Johns Hopkins University, Baltimore, Maryland, United States
| | - Lakshmi Santhanam
- Department of Biomedical Engineering, Johns Hopkins University, Baltimore, Maryland, United States
- Department of Chemical and Biomolecular Engineering, Johns Hopkins University, Baltimore, Maryland, United States
- Department of Anesthesiology and CCM, Johns Hopkins University, Baltimore, Maryland, United States
| |
Collapse
|
12
|
Beach TA, Finkelstein JN, Chang PY. Epithelial Responses in Radiation-Induced Lung Injury (RILI) Allow Chronic Inflammation and Fibrogenesis. Radiat Res 2023; 199:439-451. [PMID: 37237442 PMCID: PMC10498477 DOI: 10.1667/rade-22-00103.1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2022] [Accepted: 02/20/2023] [Indexed: 05/28/2023]
Abstract
Radiation models, such as whole thorax lung irradiation (WTLI) or partial-body irradiation (PBI) with bone-marrow sparing, have shown that affected lung tissue displays a continual progression of injury, often for months after the initial insult. Undoubtably, a variety of resident and infiltrating cell types either contribute to or fail to resolve this type of progressive injury, which in lung tissue, often develops into lethal and irreversible radiation-induced pulmonary fibrosis (RIPF), indicating a failure of the lung to return to a homeostatic state. Resident pulmonary epithelium, which are present at the time of irradiation and persist long after the initial insult, play a key role in the maintenance of homeostatic conditions in the lung and have often been described as contributing to the progression of radiation-induced lung injury (RILI). In this study, we took an unbiased approach through RNA sequencing to determine the in vivo response of the lung epithelium in the progression of RIPF. In our methodology, we isolated CD326+ epithelium from the lungs of 12.5 Gy WTLI C57BL/6J female mice (aged 8-10 weeks and sacrificed at regular intervals) and compared irradiated and non-irradiated CD326+ cells and whole lung tissue. We subsequently verified our findings by qPCR and immunohistochemistry. Transcripts associated with epithelial regulation of immune responses and fibroblast activation were significantly reduced in irradiated animals at 4 weeks postirradiation. Additionally, alveolar type-2 epithelial cells (AEC2) appeared to be significantly reduced in number at 4 weeks and thereafter based on the diminished expression of pro-surfactant protein C (pro-SPC). This change is associated with a reduction of Cd200 and cyclooxygenase 2 (COX2), which are expressed within the CD326 populations of cells and function to suppress macrophage and fibroblast activation under steady-state conditions, respectively. These data indicate that either preventing epithelial cell loss that occurs after irradiation or replacing important mediators of immune and fibroblast activity produced by the epithelium are potentially important strategies for preventing or treating this unique injury.
Collapse
Affiliation(s)
- Tyler A. Beach
- SRI Biosciences, SRI International, Menlo Park, Calfornia 94025-3493
| | - Jacob N. Finkelstein
- University of Rochester Medical Center, Departments of Pediatrics and Neonatology, and Environmental Medicine, Rochester, New York 14642
| | - Polly Y. Chang
- SRI Biosciences, SRI International, Menlo Park, Calfornia 94025-3493
| |
Collapse
|
13
|
Effendi WI, Nagano T. A2B Adenosine Receptor in Idiopathic Pulmonary Fibrosis: Pursuing Proper Pit Stop to Interfere with Disease Progression. Int J Mol Sci 2023; 24:4428. [PMID: 36901855 PMCID: PMC10002355 DOI: 10.3390/ijms24054428] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2023] [Revised: 02/19/2023] [Accepted: 02/20/2023] [Indexed: 02/25/2023] Open
Abstract
Purine nucleotides and nucleosides are involved in various human physiological and pathological mechanisms. The pathological deregulation of purinergic signaling contributes to various chronic respiratory diseases. Among the adenosine receptors, A2B has the lowest affinity such that it was long considered to have little pathophysiological significance. Many studies suggest that A2BAR plays protective roles during the early stage of acute inflammation. However, increased adenosine levels during chronic epithelial injury and inflammation might activate A2BAR, resulting in cellular effects relevant to the progression of pulmonary fibrosis.
Collapse
Affiliation(s)
- Wiwin Is Effendi
- Department of Pulmonology and Respiratory Medicine, Faculty of Medicine, Universitas Airlangga (UNAIR), Surabaya 60132, Indonesia
- Department of Pulmonology and Respiratory Medicine, Universitas Airlangga Teaching Hospital, Surabaya 60015, Indonesia
- Pulmonology and Respiratory Medicine of UNAIR (PaRU) Research Center, Universitas Airlangga Teaching Hospital, Surabaya 60015, Indonesia
| | - Tatsuya Nagano
- Division of Respiratory Medicine, Department of Internal Medicine, Graduate School of Medicine, Kobe University, 7-5-1 Kusunoki-cho, Chuo-ku, Kobe 650-0017, Japan
| |
Collapse
|
14
|
Jehn LB, Costabel U, Boerner E, Wälscher J, Theegarten D, Taube C, Bonella F. Serum KL-6 as a Biomarker of Progression at Any Time in Fibrotic Interstitial Lung Disease. J Clin Med 2023; 12:jcm12031173. [PMID: 36769819 PMCID: PMC9917700 DOI: 10.3390/jcm12031173] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2023] [Revised: 01/26/2023] [Accepted: 01/30/2023] [Indexed: 02/05/2023] Open
Abstract
The development of a progressive phenotype of interstitial lung disease (ILD) is still unpredictable. Whereas tools to predict mortality in ILD exist, scores to predict disease progression are missing. The aim of this study was to investigate whether baseline serum KL-6 as an established marker to assess disease activity in ILD, alone or in combination with clinical variables, could improve stratification of ILD patients according to progression risk at any time. Consecutive patients with fibrotic ILD, followed at our institution between 2008 and 2015, were investigated. Disease progression was defined as relative decline of ≥10% in forced vital capacity (FVC) or ≥15% in diffusing capacity of the lung for carbon monoxide (DLco)% from baseline at any time. Serum KL-6 was measured using an automated immunoassay (Fujirebio Europe, Gent, Belgium). A stepwise logistic regression was performed to select variables to be included in the score. A total of 205 patients (49% idiopathic pulmonary fibrosis (IPF), 51% fibrotic nonspecific interstitial pneumonia (NSIP)) were included, of them 113 (55%) developed disease progression during follow up. Male gender (G) and serum KL-6 strata (K) were significant predictors of progression at regression analysis and were included in the GK score. A threshold of 2 GK score points was best for discriminating patients at high risk versus low risk to develop disease progression at any time. Serum KL-6 concentration, alone or combined in a simple score with gender, allows an effective stratification of ILD patients for risk of disease progression at any time.
Collapse
Affiliation(s)
- Lutz B. Jehn
- Center for Interstitial and Rare Lung Disease, Department of Pneumology, Ruhrlandklinik University Hospital, University of Duisburg-Essen, 45239 Essen, Germany
| | - Ulrich Costabel
- Center for Interstitial and Rare Lung Disease, Department of Pneumology, Ruhrlandklinik University Hospital, University of Duisburg-Essen, 45239 Essen, Germany
| | - Eda Boerner
- Center for Interstitial and Rare Lung Disease, Department of Pneumology, Ruhrlandklinik University Hospital, University of Duisburg-Essen, 45239 Essen, Germany
| | - Julia Wälscher
- Center for Interstitial and Rare Lung Disease, Department of Pneumology, Ruhrlandklinik University Hospital, University of Duisburg-Essen, 45239 Essen, Germany
| | - Dirk Theegarten
- Institute of Pathology, University Hospital Essen, 45239 Essen, Germany
| | - Christian Taube
- Center for Interstitial and Rare Lung Disease, Department of Pneumology, Ruhrlandklinik University Hospital, University of Duisburg-Essen, 45239 Essen, Germany
| | - Francesco Bonella
- Center for Interstitial and Rare Lung Disease, Department of Pneumology, Ruhrlandklinik University Hospital, University of Duisburg-Essen, 45239 Essen, Germany
- Correspondence: ; Tel.: +49-201-433-4502; Fax: +49-201-433-4152
| |
Collapse
|
15
|
Barnes HW, Demirdjian S, Haddock NL, Kaber G, Martinez HA, Nagy N, Karmouty-Quintana H, Bollyky PL. Hyaluronan in the pathogenesis of acute and post-acute COVID-19 infection. Matrix Biol 2023; 116:49-66. [PMID: 36750167 PMCID: PMC9899355 DOI: 10.1016/j.matbio.2023.02.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2022] [Revised: 01/20/2023] [Accepted: 02/02/2023] [Indexed: 02/07/2023]
Abstract
Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) recently emerged as the cause of a global pandemic. Infection with SARS-CoV-2 can result in COVID-19 with both acute and chronic disease manifestations that continue to impact many patients long after the resolution of viral replication. There is therefore great interest in understanding the host factors that contribute to COVID-19 pathogenesis. In this review, we address the role of hyaluronan (HA), an extracellular matrix polymer with roles in inflammation and cellular metabolism, in COVID-19 and critically evaluate the hypothesis that HA promotes COVID-19 pathogenesis. We first provide a brief overview of COVID-19 infection. Then we briefly summarize the known roles of HA in airway inflammation and immunity. We then address what is known about HA and the pathogenesis of COVID-19 acute respiratory distress syndrome (COVID-19 ARDS). Next, we examine potential roles for HA in post-acute SARS-CoV-2 infection (PASC), also known as "long COVID" as well as in COVID-associated fibrosis. Finally, we discuss the potential therapeutics that target HA as a means to treat COVID-19, including the repurposed drug hymecromone (4-methylumbelliferone). We conclude that HA is a promising potential therapeutic target for the treatment of COVID-19.
Collapse
Affiliation(s)
- Henry W Barnes
- Division of Infectious Diseases and Geographic Medicine, Department of Medicine, Stanford University School of Medicine, Beckman Center, 279 Campus Drive, Stanford, CA 94305, USA
| | - Sally Demirdjian
- Division of Infectious Diseases and Geographic Medicine, Department of Medicine, Stanford University School of Medicine, Beckman Center, 279 Campus Drive, Stanford, CA 94305, USA
| | - Naomi L Haddock
- Division of Infectious Diseases and Geographic Medicine, Department of Medicine, Stanford University School of Medicine, Beckman Center, 279 Campus Drive, Stanford, CA 94305, USA
| | - Gernot Kaber
- Division of Infectious Diseases and Geographic Medicine, Department of Medicine, Stanford University School of Medicine, Beckman Center, 279 Campus Drive, Stanford, CA 94305, USA
| | - Hunter A Martinez
- Division of Infectious Diseases and Geographic Medicine, Department of Medicine, Stanford University School of Medicine, Beckman Center, 279 Campus Drive, Stanford, CA 94305, USA
| | - Nadine Nagy
- Division of Infectious Diseases and Geographic Medicine, Department of Medicine, Stanford University School of Medicine, Beckman Center, 279 Campus Drive, Stanford, CA 94305, USA
| | - Harry Karmouty-Quintana
- Department of Biochemistry and Molecular Biology, McGovern Medical School, The University of Texas Health Science Center at Houston (UTHealth Houston), Houston, Texas, USA
| | - Paul L Bollyky
- Division of Infectious Diseases and Geographic Medicine, Department of Medicine, Stanford University School of Medicine, Beckman Center, 279 Campus Drive, Stanford, CA 94305, USA.
| |
Collapse
|
16
|
Vittal R, Fisher AJ, Thompson EL, Cipolla EM, Gu H, Mickler EA, Varre A, Agarwal M, Kim KK, Vasko MR, Moore BB, Lama VN. Overexpression of Decay Accelerating Factor Mitigates Fibrotic Responses to Lung Injury. Am J Respir Cell Mol Biol 2022; 67:459-470. [PMID: 35895592 PMCID: PMC9564933 DOI: 10.1165/rcmb.2021-0463oc] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2021] [Accepted: 07/27/2022] [Indexed: 02/06/2023] Open
Abstract
CD55 or decay accelerating factor (DAF), a ubiquitously expressed glycosylphosphatidylinositol (GPI)-anchored protein, confers a protective threshold against complement dysregulation which is linked to the pathogenesis of idiopathic pulmonary fibrosis (IPF). Since lung fibrosis is associated with downregulation of DAF, we hypothesize that overexpression of DAF in fibrosed lungs will limit fibrotic injury by restraining complement dysregulation. Normal primary human alveolar type II epithelial cells (AECs) exposed to exogenous complement 3a or 5a, and primary AECs purified from IPF lungs demonstrated decreased membrane-bound DAF expression with concurrent increase in the endoplasmic reticulum (ER) stress protein, ATF6. Increased loss of extracellular cleaved DAF fragments was detected in normal human AECs exposed to complement 3a or 5a, and in lungs of IPF patients. C3a-induced ATF6 expression and DAF loss was inhibited using pertussis toxin (an enzymatic inactivator of G-protein coupled receptors), in murine AECs. Treatment with soluble DAF abrogated tunicamycin-induced C3a secretion and ER stress (ATF6 and BiP expression) and restored epithelial cadherin. Bleomycin-injured fibrotic mice subjected to lentiviral overexpression of DAF demonstrated diminished levels of local collagen deposition and complement activation. Further analyses showed diminished release of DAF fragments, as well as reduction in apoptosis (TUNEL and caspase 3/7 activity), and ER stress-related transcripts. Loss-of-function studies using Daf1 siRNA demonstrated worsened lung fibrosis detected by higher mRNA levels of Col1a1 and epithelial injury-related Muc1 and Snai1, with exacerbated local deposition of C5b-9. Our studies provide a rationale for rescuing fibrotic lungs via DAF induction that will restrain complement dysregulation and lung injury.
Collapse
Affiliation(s)
- Ragini Vittal
- Division of Pulmonary and Critical Care, Department of Internal Medicine and
| | - Amanda J. Fisher
- Division of Pulmonary and Critical Care, Department of Medicine and
| | - Eric L. Thompson
- Department of Pharmacology, Indiana University School of Medicine, Indianapolis, Indiana
| | - Ellyse M. Cipolla
- Division of Pulmonary and Critical Care, Department of Internal Medicine and
| | - Hongmei Gu
- Division of Pulmonary and Critical Care, Department of Medicine and
| | | | - Ananya Varre
- Division of Pulmonary and Critical Care, Department of Internal Medicine and
| | - Manisha Agarwal
- Division of Pulmonary and Critical Care, Department of Internal Medicine and
| | - Kevin K. Kim
- Division of Pulmonary and Critical Care, Department of Internal Medicine and
| | - Michael R. Vasko
- Department of Pharmacology, Indiana University School of Medicine, Indianapolis, Indiana
| | - Bethany B. Moore
- Department of Microbiology and Immunology, University of Michigan, Ann Arbor, Michigan; and
| | - Vibha N. Lama
- Division of Pulmonary and Critical Care, Department of Internal Medicine and
| |
Collapse
|
17
|
Griesser E, Schönberger T, Stierstorfer B, Wyatt H, Rist W, Lamla T, Thomas MJ, Lamb D, Geillinger-Kästle KE. Characterization of a flexible AAV-DTR/DT mouse model of acute epithelial lung injury. Am J Physiol Lung Cell Mol Physiol 2022; 323:L206-L218. [PMID: 35762632 DOI: 10.1152/ajplung.00364.2021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Animal models are important to mimic certain pathways or biological aspects of human pathologies including acute and chronic pulmonary diseases. We developed a novel and flexible mouse model of acute epithelial lung injury based on adeno-associated virus (AAV) variant 6.2 mediated expression of the human diphtheria toxin receptor (DTR). Following intratracheal administration of diphtheria toxin (DT), a cell-specific death of bronchial and alveolar epithelial cells can be observed. In contrast to other lung injury models, the here described mouse model provides the possibility of targeted injury using specific tropisms of AAV vectors or cell type specific promotors to drive the human DTR expression. Also, generation of cell specific mouse lines is not required. Detailed characterization of the AAV-DTR/DT mouse model including titration of viral genome (vg) load and administered DT amount revealed increasing cell numbers in bronchoalveolar lavage (BAL; macrophages, neutrophils, and unspecified cells) and elevation of degenerated cells and infiltrated leukocytes in lung tissue, dependent of vg load and DT dose. Cytokine levels in BAL fluid showed different patterns with higher vg load, e.g. IFNγ, TNFα, and IP10 increasing and IL-5 and IL-6 decreasing, while lung function was not affected. Additionally, laser-capture microdissection (LCM)-based proteomics of bronchial epithelium and alveolar tissue revealed upregulated immune and inflammatory response in all regions and extracellular matrix deposition in infiltrated alveoli. Overall, our novel AAV-DTR/DT model allows investigation of repair mechanisms following epithelial injury and resembles specific mechanistic aspects of acute and chronic pulmonary diseases.
Collapse
Affiliation(s)
- Eva Griesser
- Drug Discovery Sciences, Boehringer Ingelheim Pharma GmbH and Co. KG, Biberach an der Riss, Germany, Germany
| | - Tanja Schönberger
- Drug Discovery Sciences, Boehringer Ingelheim Pharma GmbH and Co. KG, Biberach an der Riss, Germany, Germany
| | - Birgit Stierstorfer
- Non-clinical Drug Safety, Boehringer Ingelheim Pharma GmbH & Co. KG, Biberach an der Riss, Germany
| | - Hannah Wyatt
- Drug Discovery Sciences, Boehringer Ingelheim Pharma GmbH and Co. KG, Biberach an der Riss, Germany, Germany
| | - Wolfgang Rist
- Drug Discovery Sciences, Boehringer Ingelheim Pharma GmbH and Co. KG, Biberach an der Riss, Germany, Germany
| | - Thorsten Lamla
- Drug Discovery Sciences, Boehringer Ingelheim Pharma GmbH and Co. KG, Biberach an der Riss, Germany, Germany
| | - Matthew James Thomas
- Immunology and Respiratory Diseases Research, Boehringer Ingelheim Pharma GmbH and Co. KG, Biberach an der Riss, Germany.,University of Bath, Bath, United Kingdom
| | - David Lamb
- Immunology and Respiratory Diseases Research, Boehringer Ingelheim Pharma GmbH and Co. KG, Biberach an der Riss, Germany
| | - Kerstin E Geillinger-Kästle
- Immunology and Respiratory Diseases Research, Boehringer Ingelheim Pharma GmbH and Co. KG, Biberach an der Riss, Germany
| |
Collapse
|
18
|
Connective Tissue Growth Factor in Idiopathic Pulmonary Fibrosis: Breaking the Bridge. Int J Mol Sci 2022; 23:ijms23116064. [PMID: 35682743 PMCID: PMC9181498 DOI: 10.3390/ijms23116064] [Citation(s) in RCA: 28] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2022] [Revised: 05/24/2022] [Accepted: 05/26/2022] [Indexed: 12/23/2022] Open
Abstract
CTGF is upregulated in patients with idiopathic pulmonary fibrosis (IPF), characterized by the deposition of a pathological extracellular matrix (ECM). Additionally, many omics studies confirmed that aberrant cellular senescence-associated mitochondria dysfunction and metabolic reprogramming had been identified in different IPF lung cells (alveolar epithelial cells, alveolar endothelial cells, fibroblasts, and macrophages). Here, we reviewed the role of the CTGF in IPF lung cells to mediate anomalous senescence-related metabolic mechanisms that support the fibrotic environment in IPF.
Collapse
|
19
|
Hu X, Zou M, Ni L, Zhang M, Zheng W, Liu B, Cheng Z. Dec1 Deficiency Ameliorates Pulmonary Fibrosis Through the PI3K/AKT/GSK-3β/β-Catenin Integrated Signaling Pathway. Front Pharmacol 2022; 13:829673. [PMID: 35355710 PMCID: PMC8959854 DOI: 10.3389/fphar.2022.829673] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2021] [Accepted: 02/23/2022] [Indexed: 12/14/2022] Open
Abstract
Tissue remodeling/fibrosis is a main feature of idiopathic pulmonary fibrosis (IPF), which results in the replacement of normal lung parenchyma with a collagen-rich extracellular matrix produced by fibroblasts and myofibroblasts. Epithelial-mesenchymal transition (EMT) in type 2 lung epithelial cells is a key process in IPF, which leads to fibroblasts and myofibroblasts accumulation and excessive collagen deposition. DEC1, a structurally distinct class of basic helix-loop-helix proteins, is associated with EMT in cancer. However, the functional role of DEC1 in pulmonary fibrosis (PF) remains elusive. Herein, we aimed to explore DEC1 expression in IPF and bleomycin (BLM)-induced PF in mice and the mechanisms underlying the fibrogenic effect of DEC1 in PF in vivo and in vitro by Dec1-knockout (Dec1 -/-) mice, knockdown and overexpression of DEC1 in alveolar epithelial cells (A549 cells). We found that the expression of DEC1 was increased in IPF and BLM-injured mice. More importantly, Dec1 -/- mice had reduced PF after BLM challenge. Additionally, DEC1 deficiency relieved EMT development and repressed the PI3K/AKT/GSK-3β/β-catenin integrated signaling pathway in mice and in A549 cells, whereas DEC1 overexpression in vitro had converse effects. Moreover, the PI3K/AKT and Wnt/β-catenin signaling inhibitors, LY294002 and XAV-939, ameliorated BLM-meditated PF in vivo and relieved EMT in vivo and in vitro. These pathways are interconnected by the GSK-3β phosphorylation status. Our findings indicated that during PF progression, DEC1 played a key role in EMT via the PI3K/AKT/GSK-3β/β-catenin integrated signaling pathway. Consequently, targeting DEC1 may be a potential novel therapeutic approach for IPF.
Collapse
Affiliation(s)
- Xingxing Hu
- Department of Respiratory and Critical Care Medicine, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Menglin Zou
- Department of Respiratory and Critical Care Medicine, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Lan Ni
- Department of Respiratory and Critical Care Medicine, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Mingyang Zhang
- Department of Respiratory and Critical Care Medicine, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Weishuai Zheng
- Department of Respiratory and Critical Care Medicine, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Bing Liu
- Department of Respiratory and Critical Care Medicine, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Zhenshun Cheng
- Department of Respiratory and Critical Care Medicine, Zhongnan Hospital of Wuhan University, Wuhan, China.,Wuhan Research Center for Infectious Diseases and Cancer, Chinese Academy of Medical Sciences, Wuhan, China
| |
Collapse
|
20
|
Li X, Yu C, Bao H, Chen Z, Liu X, Huang J, Zhang Z. CT/bioluminescence dual-modal imaging tracking of stem cells labeled with Au@PEI@PEG nanotracers and RfLuc in nintedanib-assisted pulmonary fibrosis therapy. NANOMEDICINE : NANOTECHNOLOGY, BIOLOGY, AND MEDICINE 2022; 41:102517. [PMID: 35032629 DOI: 10.1016/j.nano.2022.102517] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/24/2021] [Revised: 11/19/2021] [Accepted: 12/25/2021] [Indexed: 06/14/2023]
Abstract
Mesenchymal stem cells (MSCs) are promising in idiopathic pulmonary fibrosis (IPF) therapy. However, low survival rate and ambiguous behavior of MSCs after transplantation impede their clinical translation. To this end, we have developed a new strategy to improve the survival rate and monitor the behavior of the transplanted MSCs simultaneously. In our strategy, nintedanib, a tyrosine kinase inhibitor, is employed to protect the human MSCs (hMSCs) from excessive oxidative stress responses and inflammatory environment in the damaged lung. Moreover, by labeling of the transplanted hMSCs with a computed tomography (CT) nanotracer, Au nanoparticles functionalized with polyethylenimine (PEI) and polyethylene glycol (PEG) (Au@PEI@PEG), in combination with red-emitting firefly luciferase (RfLuc), in vivo CT/bioluminescence (BL) dual-modal imaging tracking of the location, distribution, and survival of the transplanted hMSCs in presence of nintedanib were achieved, which facilitates the profound understanding of the role the stem cells play in IPF therapy.
Collapse
Affiliation(s)
- Xiaodi Li
- School of Nano-Tech and Nano-Bionics, University of Science and Technology of China, Hefei, China; CAS Key Laboratory of Nano-Bio Interface, Division of Nanobiomedicine, Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences, Suzhou, China
| | - Chenggong Yu
- CAS Key Laboratory of Nano-Bio Interface, Division of Nanobiomedicine, Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences, Suzhou, China
| | - Hongying Bao
- School of Nano-Tech and Nano-Bionics, University of Science and Technology of China, Hefei, China; CAS Key Laboratory of Nano-Bio Interface, Division of Nanobiomedicine, Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences, Suzhou, China
| | - Zhongjin Chen
- CAS Key Laboratory of Nano-Bio Interface, Division of Nanobiomedicine, Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences, Suzhou, China
| | - Xiaoyun Liu
- CAS Key Laboratory of Nano-Bio Interface, Division of Nanobiomedicine, Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences, Suzhou, China
| | - Jie Huang
- School of Nano-Tech and Nano-Bionics, University of Science and Technology of China, Hefei, China; CAS Key Laboratory of Nano-Bio Interface, Division of Nanobiomedicine, Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences, Suzhou, China.
| | - Zhijun Zhang
- School of Nano-Tech and Nano-Bionics, University of Science and Technology of China, Hefei, China; CAS Key Laboratory of Nano-Bio Interface, Division of Nanobiomedicine, Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences, Suzhou, China.
| |
Collapse
|
21
|
The Hedgehog Signaling Pathway in Idiopathic Pulmonary Fibrosis: Resurrection Time. Int J Mol Sci 2021; 23:ijms23010171. [PMID: 35008597 PMCID: PMC8745434 DOI: 10.3390/ijms23010171] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2021] [Revised: 12/20/2021] [Accepted: 12/22/2021] [Indexed: 02/07/2023] Open
Abstract
The hedgehog (Hh) pathway is a sophisticated conserved cell signaling pathway that plays an essential role in controlling cell specification and proliferation, survival factors, and tissue patterning formation during embryonic development. Hh signal activity does not entirely disappear after development and may be reactivated in adulthood within tissue-injury-associated diseases, including idiopathic pulmonary fibrosis (IPF). The dysregulation of Hh-associated activating transcription factors, genomic abnormalities, and microenvironments is a co-factor that induces the initiation and progression of IPF.
Collapse
|
22
|
Tan W, Wang Y, Chen Y, Chen C. Cell tracing reveals the transdifferentiation fate of mouse lung epithelial cells during pulmonary fibrosis in vivo. Exp Ther Med 2021; 22:1188. [PMID: 34475978 PMCID: PMC8406816 DOI: 10.3892/etm.2021.10622] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2021] [Accepted: 06/22/2021] [Indexed: 12/17/2022] Open
Abstract
Idiopathic pulmonary fibrosis (IPF) is a progressive and devastating interstitial lung disease. The origin of myofibroblasts is still to be elucidated and the existence of epithelial-mesenchymal transition (EMT) in IPF remains controversial. Hence, it is important to clarify the origin of fibroblasts by improving modeling and labeling methods and analyzing the differentiation pathway of alveolar epithelial cells (AEC) in pulmonary fibrosis with cell tracking technology. In the present study, adult transgenic mice with SPC-rtTA+/-/tetO7-CMV-Cre+/-/mTmG+/- were induced with doxycycline for 15 days. The gene knockout phenomenon occurred in type II AECs in the lung and the reporter gene cell membrane-localized enhanced green fluorescence protein (mEGFP) was expressed in the cell membrane. The expression of Cre recombinase and SPC was analyzed using immunohistochemical (IHC) staining to detect the labeling efficiency. A repetitive intraperitoneal bleomycin-induced pulmonary fibrosis model was established, and the mice were sacrificed on day 28. The co-localization of mEGFP and mesenchymal markers α-smooth muscle actin (α-SMA) and S100 calcium binding protein A4 (S100A4) were detected by multiple IHC staining. The results revealed that Cre was expressed in the airway and AECs in the lung tissue of adult transgenic mice with SPC-rtTA+/-/tetO7-CMV-Cre+/-/mTmG+/- induced by doxycycline; the labeling efficiency in the peripheral lung tissue was 63.27±7.51%. mEGFP was expressed on the membrane of type II AECs and their differentiated form of type I AECs. Expression of mEGFP was mainly observed in the fibrotic region in bleomycin-induced pulmonary fibrosis; 1.94±0.08% of α-SMA-positive cells were mEGFP-positive and 9.68±2.06% of S100A4-positive cells were mEGFP-positive in bleomycin-induced pulmonary fibrosis. In conclusion, the present results suggested that while EMT contributes to the pathogenesis of pulmonary fibrosis, it is not the major causative factor of this condition.
Collapse
Affiliation(s)
- Wei Tan
- Department of Developmental Cell Biology, Key Laboratory of Cell Biology of The Ministry of Public Health, Key Laboratory of Medical Cell Biology of The Ministry of Education, China Medical University, Shenyang, Liaoning 110122, P.R. China.,Department of Respiratory and Critical Care Medicine, The First Affiliated Hospital of China Medical University, Shenyang, Liaoning 110001, P.R. China
| | - Yaru Wang
- Department of Developmental Cell Biology, Key Laboratory of Cell Biology of The Ministry of Public Health, Key Laboratory of Medical Cell Biology of The Ministry of Education, China Medical University, Shenyang, Liaoning 110122, P.R. China
| | - Yuhua Chen
- Department of Developmental Cell Biology, Key Laboratory of Cell Biology of The Ministry of Public Health, Key Laboratory of Medical Cell Biology of The Ministry of Education, China Medical University, Shenyang, Liaoning 110122, P.R. China
| | - Cheng Chen
- Department of Developmental Cell Biology, Key Laboratory of Cell Biology of The Ministry of Public Health, Key Laboratory of Medical Cell Biology of The Ministry of Education, China Medical University, Shenyang, Liaoning 110122, P.R. China
| |
Collapse
|
23
|
Reyes-Jiménez E, Ramírez-Hernández AA, Santos-Álvarez JC, Velázquez-Enríquez JM, Pina-Canseco S, Baltiérrez-Hoyos R, Vásquez-Garzón VR. Involvement of 4-hydroxy-2-nonenal in the pathogenesis of pulmonary fibrosis. Mol Cell Biochem 2021; 476:4405-4419. [PMID: 34463938 DOI: 10.1007/s11010-021-04244-9] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2021] [Accepted: 08/12/2021] [Indexed: 01/19/2023]
Abstract
Pulmonary fibrosis is a chronic progressive disease with high incidence, prevalence, and mortality rates worldwide. It is characterized by excessive accumulation of extracellular matrix in the lung parenchyma. The cellular and molecular mechanisms involved in its pathogenesis are complex, and some are still unknown. Several studies indicate that oxidative stress, characterized by overproduction of 4-hydroxy-2-nonenal (4-HNE), is an important player in pulmonary fibrosis. 4-HNE is a highly reactive compound derived from polyunsaturated fatty acids that can react with proteins, phospholipids, and nucleic acids. Thus, many of the altered cellular mechanisms that contribute to this disease can be explained by the participation of 4-HNE. Here, we summarize the current knowledge on the molecular states and signal transduction pathways that contribute to the pathogenesis of pulmonary fibrosis. Furthermore, we describe the participation of 4-HNE in various mechanisms involved in pulmonary fibrosis development, with a focus on the cell populations involved in the initiation, development, and maintenance of the fibrotic process, mainly alveolar cells, endothelial cells, macrophages, and inflammatory cells. Due to its characteristic activity as a second messenger, 4-HNE, in addition to being a consequence of oxidative stress, can support maintenance of the inflammatory and fibrotic process by spreading the effects of reactive oxygen species (ROS). Thus, regulation of 4-HNE levels could be a viable strategy to reduce its effects on the mechanisms involved in pulmonary fibrosis development.
Collapse
Affiliation(s)
- Edilburga Reyes-Jiménez
- Laboratorio de Fibrosis y Cáncer, Facultad de Medicina y Cirugía, Universidad Autónoma Benito Juárez de Oaxaca, Oaxaca, Mexico
| | - Alma Aurora Ramírez-Hernández
- Laboratorio de Fibrosis y Cáncer, Facultad de Medicina y Cirugía, Universidad Autónoma Benito Juárez de Oaxaca, Oaxaca, Mexico
| | - Jovito Cesar Santos-Álvarez
- Laboratorio de Fibrosis y Cáncer, Facultad de Medicina y Cirugía, Universidad Autónoma Benito Juárez de Oaxaca, Oaxaca, Mexico
| | - Juan Manuel Velázquez-Enríquez
- Laboratorio de Fibrosis y Cáncer, Facultad de Medicina y Cirugía, Universidad Autónoma Benito Juárez de Oaxaca, Oaxaca, Mexico
| | | | - Rafael Baltiérrez-Hoyos
- CONACYT-Facultad de Medicina y Cirugía, Universidad Autónoma Benito Juárez de Oaxaca, Oaxaca, Mexico
| | | |
Collapse
|
24
|
Bluhmki T, Traub S, Müller AK, Bitzer S, Schruf E, Bammert MT, Leist M, Gantner F, Garnett JP, Heilker R. Functional human iPSC-derived alveolar-like cells cultured in a miniaturized 96‑Transwell air-liquid interface model. Sci Rep 2021; 11:17028. [PMID: 34426605 PMCID: PMC8382767 DOI: 10.1038/s41598-021-96565-4] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2021] [Accepted: 08/11/2021] [Indexed: 02/06/2023] Open
Abstract
In order to circumvent the limited access and donor variability of human primary alveolar cells, directed differentiation of human pluripotent stem cells (hiPSCs) into alveolar-like cells, provides a promising tool for respiratory disease modeling and drug discovery assays. In this work, a unique, miniaturized 96-Transwell microplate system is described where hiPSC-derived alveolar-like cells were cultured at an air-liquid interface (ALI). To this end, hiPSCs were differentiated into lung epithelial progenitor cells (LPCs) and subsequently matured into a functional alveolar type 2 (AT2)-like epithelium with monolayer-like morphology. AT2-like cells cultured at the physiological ALI conditions displayed characteristics of AT2 cells with classical alveolar surfactant protein expressions and lamellar-body like structures. The integrity of the epithelial barriers between the AT2-like cells was confirmed by applying a custom-made device for 96-parallelized transepithelial electric resistance (TEER) measurements. In order to generate an IPF disease-like phenotype in vitro, the functional AT2-like cells were stimulated with cytokines and growth factors present in the alveolar tissue of IPF patients. The cytokines stimulated the secretion of pro-fibrotic biomarker proteins both on the mRNA (messenger ribonucleic acid) and protein level. Thus, the hiPSC-derived and cellular model system enables the recapitulation of certain IPF hallmarks, while paving the route towards a miniaturized medium throughput approach of pharmaceutical drug discovery.
Collapse
Affiliation(s)
- Teresa Bluhmki
- Department of Drug Discovery Sciences, Boehringer Ingelheim Pharma GmbH & Co. KG, 88397, Biberach an der Riss, Germany.
| | - Stefanie Traub
- Trenzyme GmbH, Byk-Gulden-Str. 2, 78467, Constance, Germany
| | | | - Sarah Bitzer
- Department of Drug Discovery Sciences, Boehringer Ingelheim Pharma GmbH & Co. KG, 88397, Biberach an der Riss, Germany
| | - Eva Schruf
- Department of Immunology & Respiratory Diseases Research, Boehringer Ingelheim Pharma GmbH & Co. KG, 88397, Biberach an der Riss, Germany
| | - Marie-Therese Bammert
- Department of Immunology & Respiratory Diseases Research, Boehringer Ingelheim Pharma GmbH & Co. KG, 88397, Biberach an der Riss, Germany
| | - Marcel Leist
- In-vitro Toxicology and Biomedicine, University of Konstanz, 78457, Constance, Germany
| | - Florian Gantner
- Department of Translational Medicine and Clinical Pharmacology, C. H. Boehringer Sohn AG & Co. KG, 88397, Biberach an der Riss, Germany
| | - James P Garnett
- Department of Immunology & Respiratory Diseases Research, Boehringer Ingelheim Pharma GmbH & Co. KG, 88397, Biberach an der Riss, Germany
| | - Ralf Heilker
- Department of Drug Discovery Sciences, Boehringer Ingelheim Pharma GmbH & Co. KG, 88397, Biberach an der Riss, Germany
| |
Collapse
|
25
|
Fukushima K, Akira S. Novel insights into the pathogenesis of lung fibrosis: the RBM7-NEAT1-CXCL12-SatM axis at fibrosis onset. Int Immunol 2021; 33:659-663. [PMID: 34165514 DOI: 10.1093/intimm/dxab034] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2021] [Accepted: 08/04/2021] [Indexed: 12/12/2022] Open
Abstract
Fibrosis is a life-threatening disorder with significant morbidity and mortality and is caused by excessive formation of connective tissue that can affect several important organs. Fibrosis in organ tissues is caused by an abnormal wound-healing process from repeated injuries. In our recent study using a mouse model of bleomycin-induced lung fibrosis, we examined the role of RNA-binding protein 7 (RBM7) on the development of lung fibrosis. RBM7 is upregulated in the injured lung epithelium and disturbs normal epithelial cell repair and regeneration by promoting apoptosis of damaged epithelial cells. RBM7 causes the decay of nuclear-enriched abundant transcript 1 (NEAT1), which results in apoptosis of lung epithelial cells. These apoptotic cells then produce C-X-C motif chemokine ligand 12 (CXCL12), which leads to the recruitment of a fibrosis-promoting monocyte population called segregated-nucleus-containing atypical monocytes (SatM) to the damaged area, followed by the initiation and promotion of lung fibrosis. Here, we review recent insights into the crosstalk between lung parenchymal cells and hematopoietic cells during the development of pulmonary fibrosis.
Collapse
Affiliation(s)
- Kiyoharu Fukushima
- Department of Host Defense, Research Institute for Microbial Diseases (RIMD), Osaka University, Osaka, Japan.,Laboratory of Host Defense, World Premier Institute Immunology Frontier Research Center (WPI-IFReC), Osaka University, Osaka, Japan.,Department of Respiratory Medicine and Clinical Immunology, Graduate School of Medicine, Osaka University, Osaka, Japan
| | - Shizuo Akira
- Department of Host Defense, Research Institute for Microbial Diseases (RIMD), Osaka University, Osaka, Japan.,Laboratory of Host Defense, World Premier Institute Immunology Frontier Research Center (WPI-IFReC), Osaka University, Osaka, Japan
| |
Collapse
|
26
|
Stainer A, Faverio P, Busnelli S, Catalano M, Della Zoppa M, Marruchella A, Pesci A, Luppi F. Molecular Biomarkers in Idiopathic Pulmonary Fibrosis: State of the Art and Future Directions. Int J Mol Sci 2021; 22:6255. [PMID: 34200784 PMCID: PMC8230407 DOI: 10.3390/ijms22126255] [Citation(s) in RCA: 40] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2021] [Revised: 06/07/2021] [Accepted: 06/07/2021] [Indexed: 12/12/2022] Open
Abstract
Idiopathic pulmonary fibrosis (IPF), the most lethal form of interstitial pneumonia of unknown cause, is associated with a specific radiological and histopathological pattern (the so-called "usual interstitial pneumonia" pattern) and has a median survival estimated to be between 3 and 5 years after diagnosis. However, evidence shows that IPF has different clinical phenotypes, which are characterized by a variable disease course over time. At present, the natural history of IPF is unpredictable for individual patients, although some genetic factors and circulating biomarkers have been associated with different prognoses. Since in its early stages, IPF may be asymptomatic, leading to a delayed diagnosis. Two drugs, pirfenidone and nintedanib, have been shown to modify the disease course by slowing down the decline in lung function. It is also known that 5-10% of the IPF patients may be affected by episodes of acute and often fatal decline. The acute worsening of disease is sometimes attributed to identifiable conditions, such as pneumonia or heart failure; but many of these events occur without an identifiable cause. These idiopathic acute worsenings are termed acute exacerbations of IPF. To date, clinical biomarkers, diagnostic, prognostic, and theranostic, are not well characterized. However, they could become useful tools helping facilitate diagnoses, monitoring disease progression and treatment efficacy. The aim of this review is to cover molecular mechanisms underlying IPF and research into new clinical biomarkers, to be utilized in diagnosis and prognosis, even in patients treated with antifibrotic drugs.
Collapse
Affiliation(s)
- Anna Stainer
- Department of Medicine and Surgery, University of Milano Bicocca, 20126 Milano, Italy; (A.S.); (P.F.); (M.C.); (A.P.)
- Respiratory Unit, San Gerardo Hospital, 20900 Monza, Italy; (S.B.); (A.M.)
| | - Paola Faverio
- Department of Medicine and Surgery, University of Milano Bicocca, 20126 Milano, Italy; (A.S.); (P.F.); (M.C.); (A.P.)
- Respiratory Unit, San Gerardo Hospital, 20900 Monza, Italy; (S.B.); (A.M.)
| | - Sara Busnelli
- Respiratory Unit, San Gerardo Hospital, 20900 Monza, Italy; (S.B.); (A.M.)
| | - Martina Catalano
- Department of Medicine and Surgery, University of Milano Bicocca, 20126 Milano, Italy; (A.S.); (P.F.); (M.C.); (A.P.)
| | - Matteo Della Zoppa
- Pulmonology Unit, Fondazione IRCCS Policlinico San Matteo, 27100 Pavia, Italy;
| | | | - Alberto Pesci
- Department of Medicine and Surgery, University of Milano Bicocca, 20126 Milano, Italy; (A.S.); (P.F.); (M.C.); (A.P.)
- Respiratory Unit, San Gerardo Hospital, 20900 Monza, Italy; (S.B.); (A.M.)
| | - Fabrizio Luppi
- Department of Medicine and Surgery, University of Milano Bicocca, 20126 Milano, Italy; (A.S.); (P.F.); (M.C.); (A.P.)
- Respiratory Unit, San Gerardo Hospital, 20900 Monza, Italy; (S.B.); (A.M.)
| |
Collapse
|
27
|
Zeng H, Gao H, Zhang M, Wang J, Gu Y, Wang Y, Zhang H, Liu P, Zhang X, Zhao L. Atractylon Treatment Attenuates Pulmonary Fibrosis via Regulation of the mmu_circ_0000981/miR-211-5p/TGFBR2 Axis in an Ovalbumin-Induced Asthma Mouse Model. Inflammation 2021; 44:1856-1864. [PMID: 33855682 DOI: 10.1007/s10753-021-01463-6] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2019] [Revised: 02/09/2020] [Accepted: 04/03/2021] [Indexed: 12/01/2022]
Abstract
Asthma-induced pulmonary fibrosis (PF) is an important public health concern that has few treatment options given its poorly understood etiology; however, the epithelial to mesenchymal transition (EMT) of pulmonary epithelial cells has been implicated to play an important role in inducing PF. Although previous studies have found atractylon (Atr) to have anti-inflammatory effects, whether Atr has anti-PF abilities remains unknown. The purpose of the current study was to validate the protective efficiency of Atr in both an animal model of ovalbumin (OVA)-induced asthma and an EMT model induced by transforming growth factor-β1 (TGF-β1) using TC-1 cells. The results of this study revealed that Atr treatment suppressed OVA-induced PF via fibrosis-related protein expression. Atr treatment suppressed OVA-induced circRNA-0000981 and TGFBR2 expression but promoted miR-211-5p expression. In vivo studies revealed that Atr suppressed TGF-β1-induced EMT and fibrosis-related protein expression via suppressing circRNA-0000981 and TGFBR2 expression. The results also suggested that the downregulation of circRNA-0000981 expression suppressed TGFBR2 by sponging miR-211-5p, which was validated by a luciferase reporter assay. Collectively, the findings of the present study suggest that Atr treatment attenuates PF by regulating the mmu_circ_0000981/miR-211-5p/TGFBR2 axis in an OVA-induced asthma mouse model.
Collapse
Affiliation(s)
- Haizhu Zeng
- Department of Respiratory Medicine, Shanghai Gongli Hospital, 219 Miao-Pu Road, Shanghai, 200135, People's Republic of China.
| | - Hongchang Gao
- Department of Respiratory Medicine, Shanghai Gongli Hospital, 219 Miao-Pu Road, Shanghai, 200135, People's Republic of China
| | - Meilan Zhang
- Department of Respiratory Medicine, Shanghai Gongli Hospital, 219 Miao-Pu Road, Shanghai, 200135, People's Republic of China
| | - Jinrui Wang
- Department of Respiratory Medicine, Shanghai Gongli Hospital, 219 Miao-Pu Road, Shanghai, 200135, People's Republic of China
| | - Yuxia Gu
- Department of Respiratory Medicine, Shanghai Gongli Hospital, 219 Miao-Pu Road, Shanghai, 200135, People's Republic of China
| | - Yumeng Wang
- Department of Respiratory Medicine, Shanghai Gongli Hospital, 219 Miao-Pu Road, Shanghai, 200135, People's Republic of China
| | - Huali Zhang
- Department of Respiratory Medicine, Shanghai Gongli Hospital, 219 Miao-Pu Road, Shanghai, 200135, People's Republic of China
| | - Panpan Liu
- Department of Respiratory Medicine, Shanghai Gongli Hospital, 219 Miao-Pu Road, Shanghai, 200135, People's Republic of China
| | - Xia Zhang
- Department of Respiratory Medicine, Shanghai Gongli Hospital, 219 Miao-Pu Road, Shanghai, 200135, People's Republic of China
| | - Lei Zhao
- Department of Respiratory Medicine, Shanghai Gongli Hospital, 219 Miao-Pu Road, Shanghai, 200135, People's Republic of China.
| |
Collapse
|
28
|
Li S, Shao L, Fang J, Zhang J, Chen Y, Yeo AJ, Lavin MF, Yu G, Shao H. Hesperetin attenuates silica-induced lung injury by reducing oxidative damage and inflammatory response. Exp Ther Med 2021; 21:297. [PMID: 33717240 PMCID: PMC7885076 DOI: 10.3892/etm.2021.9728] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2020] [Accepted: 12/11/2020] [Indexed: 02/07/2023] Open
Abstract
Oxidative stress and the inflammatory response are two important mechanisms of silica-induced lung injury. Hesperetin (HSP) is a natural flavonoid compound that is found in citrus fruits and has been indicated to exhibit strong antioxidant and anti-inflammatory properties. The current study evaluated the protective effect of HSP on lung injury in rats exposed to silica. The results indicated that the degree of alveolitis and pulmonary fibrosis in the HSP-treated group was significantly decreased compared with the silica model group. The content of hydroxyproline (HYP) was also revealed to decrease overall in the HSP treated group compared with the silica model group, indicating that the degree of pulmonary fibrosis was decreased compared with the silica model group. The present study also demonstrated that HSP reduced oxidation levels of malondialdehyde (MDA) and increased the activities of antioxidant enzymes superoxide dismutase (SOD), catalase (CAT) and glutathione peroxidase (GSH-PX). Total antioxidant capacity (T-AOC) was also increased following HSP treatment, indicating that HSP can alleviate oxidative stress in the lung tissue of silica-exposed rats. In addition, HSP was revealed to inhibit the synthesis and secretion of fibrogenic factor TGF-β1, reduce the production of pro-inflammatory cytokines IL-1β, IL-4, TNF-α and increase the levels of anti-inflammatory factors IFN-γ and IL-10. The current study demonstrated that HSP can effectively attenuate silica-induced lung injury by reducing oxidative damage and the inflammatory response.
Collapse
Affiliation(s)
- Shuxian Li
- Shandong Academy of Occupational Health and Occupational Medicine, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, Shandong 250062, P.R. China
| | - Linlin Shao
- Department of Neurology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong 250021, P.R. China
| | - Jinguo Fang
- Primary Health Department, Linqing Health Bureau, Linqing, Shandong 252600, P.R. China
| | - Juan Zhang
- Shandong Academy of Occupational Health and Occupational Medicine, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, Shandong 250062, P.R. China
| | - Yanqin Chen
- Shandong Academy of Occupational Health and Occupational Medicine, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, Shandong 250062, P.R. China
| | - Abrey J Yeo
- Centre for Clinical Research, The University of Queensland, Brisbane, Queensland 4072, Australia
| | - Martin F Lavin
- Centre for Clinical Research, The University of Queensland, Brisbane, Queensland 4072, Australia
| | - Gongchang Yu
- Shandong Academy of Occupational Health and Occupational Medicine, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, Shandong 250062, P.R. China
| | - Hua Shao
- Shandong Academy of Occupational Health and Occupational Medicine, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, Shandong 250062, P.R. China
| |
Collapse
|
29
|
Beck H, Thaler T, Meibom D, Meininghaus M, Jörißen H, Dietz L, Terjung C, Bairlein M, von Bühler CJ, Anlauf S, Fürstner C, Stellfeld T, Schneider D, Gericke KM, Buyck T, Lovis K, Münster U, Anlahr J, Kersten E, Levilain G, Marossek V, Kast R. Potent and Selective Human Prostaglandin F (FP) Receptor Antagonist (BAY-6672) for the Treatment of Idiopathic Pulmonary Fibrosis (IPF). J Med Chem 2020; 63:11639-11662. [PMID: 32969660 DOI: 10.1021/acs.jmedchem.0c00834] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Idiopathic pulmonary fibrosis (IPF) is a rare and devastating chronic lung disease of unknown etiology. Despite the approved treatment options nintedanib and pirfenidone, the medical need for a safe and well-tolerated antifibrotic treatment of IPF remains high. The human prostaglandin F receptor (hFP-R) is widely expressed in the lung tissue and constitutes an attractive target for the treatment of fibrotic lung diseases. Herein, we present our research toward novel quinoline-based hFP-R antagonists, including synthesis and detailed structure-activity relationship (SAR). Starting from a high-throughput screening (HTS) hit of our corporate compound library, multiple parameter improvements-including increase of the relative oral bioavailability Frel from 3 to ≥100%-led to a highly potent and selective hFP-R antagonist with complete oral absorption from suspension. BAY-6672 (46) represents-to the best of our knowledge-the first reported FP-R antagonist to demonstrate in vivo efficacy in a preclinical animal model of lung fibrosis, thus paving the way for a new treatment option in IPF.
Collapse
Affiliation(s)
- Hartmut Beck
- Research & Development, Pharmaceuticals, Bayer AG, 42096 Wuppertal, Germany
| | - Tobias Thaler
- Research & Development, Pharmaceuticals, Bayer AG, 42096 Wuppertal, Germany
| | - Daniel Meibom
- Research & Development, Pharmaceuticals, Bayer AG, 42096 Wuppertal, Germany
| | - Mark Meininghaus
- Research & Development, Pharmaceuticals, Bayer AG, 42096 Wuppertal, Germany
| | - Hannah Jörißen
- Research & Development, Pharmaceuticals, Bayer AG, 42096 Wuppertal, Germany
| | - Lisa Dietz
- Research & Development, Pharmaceuticals, Bayer AG, 42096 Wuppertal, Germany
| | - Carsten Terjung
- Research & Development, Pharmaceuticals, Bayer AG, 42096 Wuppertal, Germany
| | - Michaela Bairlein
- Research & Development, Pharmaceuticals, Bayer AG, 42096 Wuppertal, Germany
| | | | - Sonja Anlauf
- Research & Development, Pharmaceuticals, Bayer AG, 42096 Wuppertal, Germany
| | - Chantal Fürstner
- Research & Development, Pharmaceuticals, Bayer AG, 42096 Wuppertal, Germany
| | - Timo Stellfeld
- Research & Development, Pharmaceuticals, Bayer AG, 13353 Berlin, Germany
| | - Dirk Schneider
- Research & Development, Pharmaceuticals, Bayer AG, 42096 Wuppertal, Germany
| | - Kersten M Gericke
- Research & Development, Pharmaceuticals, Bayer AG, 42096 Wuppertal, Germany
| | - Thomas Buyck
- Research & Development, Pharmaceuticals, Bayer AG, 42096 Wuppertal, Germany
| | - Kai Lovis
- Research & Development, Pharmaceuticals, Bayer AG, 42096 Wuppertal, Germany
| | - Uwe Münster
- Research & Development, Pharmaceuticals, Bayer AG, 42096 Wuppertal, Germany
| | - Johanna Anlahr
- Research & Development, Pharmaceuticals, Bayer AG, 42096 Wuppertal, Germany
| | - Elisabeth Kersten
- Research & Development, Pharmaceuticals, Bayer AG, 42096 Wuppertal, Germany
| | - Guillaume Levilain
- Research & Development, Pharmaceuticals, Bayer AG, 42096 Wuppertal, Germany
| | - Virginia Marossek
- Research & Development, Pharmaceuticals, Bayer AG, 42096 Wuppertal, Germany
| | - Raimund Kast
- Research & Development, Pharmaceuticals, Bayer AG, 42096 Wuppertal, Germany
| |
Collapse
|
30
|
Yamanishi C, Parigoris E, Takayama S. Kinetic Analysis of Label-Free Microscale Collagen Gel Contraction Using Machine Learning-Aided Image Analysis. Front Bioeng Biotechnol 2020; 8:582602. [PMID: 33072731 PMCID: PMC7537788 DOI: 10.3389/fbioe.2020.582602] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2020] [Accepted: 09/02/2020] [Indexed: 11/17/2022] Open
Abstract
Pulmonary fibrosis is a deadly lung disease, wherein normal lung tissue is progressively replaced with fibrotic scar tissue. An aspect of this process can be recreated in vitro by embedding fibroblasts into a collagen matrix and providing a fibrotic stimulus. This work expands upon a previously described method to print microscale cell-laden collagen gels and combines it with live cell imaging and automated image analysis to enable high-throughput analysis of the kinetics of cell-mediated contraction of this collagen matrix. The image analysis method utilizes a plugin for FIJI, built around Waikato Environment for Knowledge Analysis (WEKA) Segmentation. After cross-validation of this automated image analysis with manual shape tracing, the assay was applied to primary human lung fibroblasts including cells isolated from idiopathic pulmonary fibrosis patients. In the absence of any exogenous stimuli, the analysis showed significantly faster and more extensive contraction of the diseased cells compared to the healthy ones. Upon stimulation with transforming growth factor beta 1 (TGF-β1), fibroblasts from the healthy donor showed significantly more contraction throughout the observation period while differences in the response of diseased cells was subtle and could only be detected during a smaller window of time. Finally, dose-response curves for the inhibition of collagen gel contraction were determined for 3 small molecules including the only 2 FDA-approved drugs for idiopathic pulmonary fibrosis.
Collapse
Affiliation(s)
- Cameron Yamanishi
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology, Atlanta, GA, United States
- The Parker H. Petit Institute of Bioengineering and Bioscience, Georgia Institute of Technology, Atlanta, GA, United States
| | - Eric Parigoris
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology, Atlanta, GA, United States
- The Parker H. Petit Institute of Bioengineering and Bioscience, Georgia Institute of Technology, Atlanta, GA, United States
| | - Shuichi Takayama
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology, Atlanta, GA, United States
- The Parker H. Petit Institute of Bioengineering and Bioscience, Georgia Institute of Technology, Atlanta, GA, United States
| |
Collapse
|
31
|
Zhu T, Ma Z, Wang H, Jia X, Wu Y, Fu L, Li Z, Zhang C, Yu G. YAP/TAZ affects the development of pulmonary fibrosis by regulating multiple signaling pathways. Mol Cell Biochem 2020; 475:137-149. [PMID: 32813142 DOI: 10.1007/s11010-020-03866-9] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2020] [Accepted: 07/31/2020] [Indexed: 12/20/2022]
Abstract
YAP and TAZ are important co-activators of various biological processes in human body. YAP/TAZ plays a vital role in the development of pulmonary fibrosis. Dysregulation of the YAP/TAZ signaling pathway is one of the most important causes of pulmonary fibrosis. Therefore, considering its crucial role, summary of the signal mechanism of YAP/TAZ is of certain guiding significance for the research of YAP/TAZ as a therapeutic target. The present review provided a detailed introduction to various YAP/TAZ-related signaling pathways and clarified the specific role of YAP/TAZ in these pathways. In the meantime, we summarized and evaluated possible applications of YAP/TAZ in the treatment of pulmonary fibrosis. Overall, our study is of guiding significance for future research on the functional mechanism of YAP/TAZ underlying lung diseases as well as for identification of novel therapeutic targets specific to pulmonary fibrosis.
Collapse
Affiliation(s)
- Ting Zhu
- Department of Thoracic Surgery, Shaoxing People's Hospital (Shaoxing Hospital, Zhejiang University School of Medicine), No. 568 Zhongxing North Road, Yuecheng District, Shaoxing, 312000, China
| | - Zhifeng Ma
- Department of Thoracic Surgery, Shaoxing People's Hospital (Shaoxing Hospital, Zhejiang University School of Medicine), No. 568 Zhongxing North Road, Yuecheng District, Shaoxing, 312000, China
| | - Haiyong Wang
- Department of Thoracic Surgery, Shaoxing People's Hospital (Shaoxing Hospital, Zhejiang University School of Medicine), No. 568 Zhongxing North Road, Yuecheng District, Shaoxing, 312000, China
| | - Xiaoxiao Jia
- Department of Pathology, Shaoxing People's Hospital (Shaoxing Hospital, Zhejiang University School of Medicine), Shaoxing, 312000, China
| | - Yuanlin Wu
- Department of Thoracic Surgery, Shaoxing People's Hospital (Shaoxing Hospital, Zhejiang University School of Medicine), No. 568 Zhongxing North Road, Yuecheng District, Shaoxing, 312000, China
| | - Linhai Fu
- Department of Thoracic Surgery, Shaoxing People's Hospital (Shaoxing Hospital, Zhejiang University School of Medicine), No. 568 Zhongxing North Road, Yuecheng District, Shaoxing, 312000, China
| | - Zhupeng Li
- Department of Thoracic Surgery, Shaoxing People's Hospital (Shaoxing Hospital, Zhejiang University School of Medicine), No. 568 Zhongxing North Road, Yuecheng District, Shaoxing, 312000, China
| | - Chu Zhang
- Department of Thoracic Surgery, Shaoxing People's Hospital (Shaoxing Hospital, Zhejiang University School of Medicine), No. 568 Zhongxing North Road, Yuecheng District, Shaoxing, 312000, China.
| | - Guangmao Yu
- Department of Thoracic Surgery, Shaoxing People's Hospital (Shaoxing Hospital, Zhejiang University School of Medicine), No. 568 Zhongxing North Road, Yuecheng District, Shaoxing, 312000, China.
| |
Collapse
|
32
|
Revisiting Cell Death Responses in Fibrotic Lung Disease: Crosstalk between Structured and Non-Structured Cells. Diagnostics (Basel) 2020; 10:diagnostics10070504. [PMID: 32708315 PMCID: PMC7400296 DOI: 10.3390/diagnostics10070504] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2020] [Revised: 07/16/2020] [Accepted: 07/20/2020] [Indexed: 02/06/2023] Open
Abstract
Fibrosis is a life-threatening disorder caused by excessive formation of connective tissue that can affect several critical organs. Innate immune cells are involved in the development of various disorders, including lung fibrosis. To date, several hematopoietic cell types have been implicated in fibrosis, including pro-fibrotic monocytes like fibrocytes and segregated-nucleus-containing atypical monocytes (SatMs), but the precise cellular and molecular mechanisms underlying its development remain unclear. Repetitive injury and subsequent cell death response are triggering events for lung fibrosis development. Crosstalk between lung structured and non-structured cells is known to regulate the key molecular event. We recently reported that RNA-binding motif protein 7 (RBM7) expression is highly upregulated in the fibrotic lung and plays fundamental roles in fibrosis development. RBM7 regulates nuclear degradation of NEAT1 non-coding RNA, resulting in sustained apoptosis in the lung epithelium and fibrosis. Apoptotic epithelial cells produce CXCL12, which leads to the recruitment of pro-fibrotic monocytes. Apoptosis is also the main source of autoantigens. Recent studies have revealed important functions for natural autoantibodies that react with specific sets of self-antigens and are unique to individual diseases. Here, we review recent insights into lung fibrosis development in association with crosstalk between structured cells like lung epithelial cells and non-structured cells like migrating immune cells, and discuss their relevance to acquired immunity through natural autoantibody production.
Collapse
|
33
|
Tanshinone IIA attenuates silica-induced pulmonary fibrosis via Nrf2-mediated inhibition of EMT and TGF-β1/Smad signaling. Chem Biol Interact 2020; 319:109024. [PMID: 32097614 DOI: 10.1016/j.cbi.2020.109024] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2019] [Revised: 01/09/2020] [Accepted: 02/21/2020] [Indexed: 12/28/2022]
Abstract
Silicosis is an occupational pulmonary fibrosis that is caused by inhalation of silica (SiO2), and there are no effective drugs to treat this disease. Tanshinone IIA (Tan IIA), a natural product, has been reported to possess antioxidant and anti-fibrotic properties in various diseases. The purpose of the current study was to examine Tan IIA's protective effects against silica-induced pulmonary fibrosis and to explore the underlying mechanisms. We found that in vivo treatment with Tan IIA significantly relieved silica-induced lung fibrosis in a silicosis rat model by histological and immunohistochemical analyses. Further, in vitro mechanistic investigations, mainly using western blot and immunofluorescence analyses, revealed that Tan IIA administration markedly inhibited the silica-induced epithelial-mesenchymal transition (EMT) and transforming growth factor-β1 (TGF-β1)/Smad signaling pathway and also reduced silica-induced oxidative stress and activated the nuclear factor erythroid 2-related factor-2 (Nrf2) signaling pathway in A549 and human bronchial epithelial (HBE) cells. Furthermore, through transfection with siRNA, we demonstrate that Nrf2 activation partially mediates the suppression effects of Tan IIA on EMT and TGF-β1/Smad signaling pathway activation induced by silica exposure, thus mediating the anti-fibrotic effects of Tan IIA against silica-induced pulmonary fibrosis. In our study, Tan IIA has been identified as a possible anti-oxidative and anti-fibrotic drug for silicosis.
Collapse
|
34
|
Li X, Liu S, Zhai Y, Cao X, Gao S, Huang M, Guo Y, Xie C, Zhou H. In vitro screening for compounds from Hypericum longistylum with anti-pulmonary fibrosis activity. Bioorg Med Chem Lett 2019; 29:126695. [PMID: 31606345 DOI: 10.1016/j.bmcl.2019.126695] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2019] [Revised: 08/28/2019] [Accepted: 09/14/2019] [Indexed: 12/17/2022]
Abstract
Idiopathic pulmonary fibrosis (IPF) is a progressive lung disease with a poor prognosis and limited therapies, and transforming growth factor-β1 (TGF-β1) plays a central role in the pathogenesis of IPF. Here, we aimed to investigate the chemical constituents and biological activities of Hypericum longistylum and detect whether the isolated compounds inhibit the TGF-β1/Smad3 signaling pathway to identify candidate compounds for the treatment of pulmonary fibrosis. Fifteen compounds (1-15) were isolated from H. longistylum and their structures were elucidated on the basis of spectroscopic analyses. An in vitro MTT assay was used to test the effect of these fifteen compounds on fibroblast cytotoxicity and vitality. Furthermore, their bioactivities were screened using a TGF-β1/Smad3 pathway luciferase reporter in vitro. MTT screening found that compounds 1-15 had no deleterious effects on normal mouse lung fibroblasts and no significant inhibition of vitality. Luciferase assay showed that compounds 14 and 15 could significantly inhibit the TGF-β1/Smad3 pathway with the inhibition rates of 67.92% and 93.10%, respectively. Both compounds can be used as lead compounds for structural modification and optimization to obtain more drug candidates for the treatment of pulmonary fibrosis.
Collapse
Affiliation(s)
- Xiaohe Li
- State Key Laboratory of Medicinal Chemical Biology, College of Pharmacy and Tianjin Key Laboratory of Molecular Drug Research, Nankai University, Haihe Education Park, 38 Tongyan Road, Tianjin 300353, People's Republic of China; Tianjin Key Laboratory of Molecular Drug Research, Tianjin International Joint Academy of Biomedicine, Tianjin 300457, People's Republic of China
| | - Shuaishuai Liu
- State Key Laboratory of Medicinal Chemical Biology, College of Pharmacy and Tianjin Key Laboratory of Molecular Drug Research, Nankai University, Haihe Education Park, 38 Tongyan Road, Tianjin 300353, People's Republic of China; Tianjin Key Laboratory of Molecular Drug Research, Tianjin International Joint Academy of Biomedicine, Tianjin 300457, People's Republic of China
| | - Yunqian Zhai
- State Key Laboratory of Medicinal Chemical Biology, College of Pharmacy and Tianjin Key Laboratory of Molecular Drug Research, Nankai University, Haihe Education Park, 38 Tongyan Road, Tianjin 300353, People's Republic of China
| | - Xiangrong Cao
- State Key Laboratory of Medicinal Chemical Biology, College of Pharmacy and Tianjin Key Laboratory of Molecular Drug Research, Nankai University, Haihe Education Park, 38 Tongyan Road, Tianjin 300353, People's Republic of China
| | - Shaoyan Gao
- State Key Laboratory of Medicinal Chemical Biology, College of Pharmacy and Tianjin Key Laboratory of Molecular Drug Research, Nankai University, Haihe Education Park, 38 Tongyan Road, Tianjin 300353, People's Republic of China; Tianjin Key Laboratory of Molecular Drug Research, Tianjin International Joint Academy of Biomedicine, Tianjin 300457, People's Republic of China
| | - Mengying Huang
- State Key Laboratory of Medicinal Chemical Biology, College of Pharmacy and Tianjin Key Laboratory of Molecular Drug Research, Nankai University, Haihe Education Park, 38 Tongyan Road, Tianjin 300353, People's Republic of China; Tianjin Key Laboratory of Molecular Drug Research, Tianjin International Joint Academy of Biomedicine, Tianjin 300457, People's Republic of China
| | - Yuanqiang Guo
- State Key Laboratory of Medicinal Chemical Biology, College of Pharmacy and Tianjin Key Laboratory of Molecular Drug Research, Nankai University, Haihe Education Park, 38 Tongyan Road, Tianjin 300353, People's Republic of China
| | - Chunfeng Xie
- State Key Laboratory of Medicinal Chemical Biology, College of Pharmacy and Tianjin Key Laboratory of Molecular Drug Research, Nankai University, Haihe Education Park, 38 Tongyan Road, Tianjin 300353, People's Republic of China; Tianjin Key Laboratory of Molecular Drug Research, Tianjin International Joint Academy of Biomedicine, Tianjin 300457, People's Republic of China.
| | - Honggang Zhou
- State Key Laboratory of Medicinal Chemical Biology, College of Pharmacy and Tianjin Key Laboratory of Molecular Drug Research, Nankai University, Haihe Education Park, 38 Tongyan Road, Tianjin 300353, People's Republic of China; Tianjin Key Laboratory of Molecular Drug Research, Tianjin International Joint Academy of Biomedicine, Tianjin 300457, People's Republic of China.
| |
Collapse
|
35
|
Li X, Bi Z, Liu S, Gao S, Cui Y, Huang K, Huang M, Mao J, Li L, Gao J, Sun T, Zhou H, Yang C. Antifibrotic Mechanism of Cinobufagin in Bleomycin-Induced Pulmonary Fibrosis in Mice. Front Pharmacol 2019; 10:1021. [PMID: 31572194 PMCID: PMC6753632 DOI: 10.3389/fphar.2019.01021] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2018] [Accepted: 08/12/2019] [Indexed: 01/16/2023] Open
Abstract
Idiopathic pulmonary fibrosis (IPF) is a progressive and usually fatal lung disease that is characterized by fibroblast proliferation and extracellular matrix remodeling, which result in irreversible distortion of the lung's architecture and the formation of focal fibrous hyperplasia. The molecular mechanism by which pulmonary fibrosis develops is not fully understood, and no satisfactory treatment currently exists. However, many studies consider that aberrant activation of TGF-β1 frequently promotes epithelial-mesenchymal transition (EMT) and fibroblast activation in pulmonary fibrosis. Cinobufagin (CBG), a traditional Chinese medicine, has been widely used for long-term pain relief, cardiac stimulation, and anti-inflammatory and local anesthetic treatments. However, its role in pulmonary fibrosis has not yet been established. We investigated the hypothesis that cinobufagin plays an inhibitory role on TGF-β1 signaling using a luciferase-reporter assay. We further explored the effect of cinobufagin on pulmonary fibrosis both in vitro and in vivo. The in vitro experiments showed that cinobufagin suppresses TGF-β1/Smad3 signaling in a dose-dependent manner, attenuates the activation and differentiation of lung fibroblasts and inhibits EMT induced by TGF-β1 in alveolar epithelial cells. The in vivo experiments indicated that cinobufagin significantly alleviates bleomycin-induced collagen deposition and improves pulmonary function. Further study showed that cinobufagin could attenuate bleomycin-induced inflammation and inhibit fibroblast activation and the EMT process in vivo. In summary, cinobufagin attenuates bleomycin-induced pulmonary fibrosis in mice via suppressing inflammation, fibroblast activation and epithelial-mesenchymal transition.
Collapse
Affiliation(s)
- Xiaohe Li
- State Key Laboratory of Medicinal Chemical Biology, College of Pharmacy and Tianjin Key Laboratory of Molecular Drug Research, Nankai University, Haihe Education Park, Tianjin, China.,Tianjin Key Laboratory of Molecular Drug Research, Tianjin International Joint Academy of Biomedicine, Tianjin, China
| | - Zhun Bi
- State Key Laboratory of Medicinal Chemical Biology, College of Pharmacy and Tianjin Key Laboratory of Molecular Drug Research, Nankai University, Haihe Education Park, Tianjin, China
| | - Shuaishuai Liu
- State Key Laboratory of Medicinal Chemical Biology, College of Pharmacy and Tianjin Key Laboratory of Molecular Drug Research, Nankai University, Haihe Education Park, Tianjin, China.,Tianjin Key Laboratory of Molecular Drug Research, Tianjin International Joint Academy of Biomedicine, Tianjin, China
| | - Shaoyan Gao
- State Key Laboratory of Medicinal Chemical Biology, College of Pharmacy and Tianjin Key Laboratory of Molecular Drug Research, Nankai University, Haihe Education Park, Tianjin, China.,Tianjin Key Laboratory of Molecular Drug Research, Tianjin International Joint Academy of Biomedicine, Tianjin, China
| | - Yunyao Cui
- State Key Laboratory of Medicinal Chemical Biology, College of Pharmacy and Tianjin Key Laboratory of Molecular Drug Research, Nankai University, Haihe Education Park, Tianjin, China.,Tianjin Key Laboratory of Molecular Drug Research, Tianjin International Joint Academy of Biomedicine, Tianjin, China
| | - Kai Huang
- State Key Laboratory of Medicinal Chemical Biology, College of Pharmacy and Tianjin Key Laboratory of Molecular Drug Research, Nankai University, Haihe Education Park, Tianjin, China.,Tianjin Key Laboratory of Molecular Drug Research, Tianjin International Joint Academy of Biomedicine, Tianjin, China
| | - Mengying Huang
- State Key Laboratory of Medicinal Chemical Biology, College of Pharmacy and Tianjin Key Laboratory of Molecular Drug Research, Nankai University, Haihe Education Park, Tianjin, China.,Tianjin Key Laboratory of Molecular Drug Research, Tianjin International Joint Academy of Biomedicine, Tianjin, China
| | - Jiahe Mao
- State Key Laboratory of Medicinal Chemical Biology, College of Pharmacy and Tianjin Key Laboratory of Molecular Drug Research, Nankai University, Haihe Education Park, Tianjin, China.,Tianjin Key Laboratory of Molecular Drug Research, Tianjin International Joint Academy of Biomedicine, Tianjin, China
| | - Lixin Li
- Tianjin Key Laboratory of Molecular Drug Research, Tianjin International Joint Academy of Biomedicine, Tianjin, China
| | - Jingjing Gao
- Tianjin Key Laboratory of Molecular Drug Research, Tianjin International Joint Academy of Biomedicine, Tianjin, China
| | - Tao Sun
- State Key Laboratory of Medicinal Chemical Biology, College of Pharmacy and Tianjin Key Laboratory of Molecular Drug Research, Nankai University, Haihe Education Park, Tianjin, China.,Tianjin Key Laboratory of Molecular Drug Research, Tianjin International Joint Academy of Biomedicine, Tianjin, China
| | - Honggang Zhou
- State Key Laboratory of Medicinal Chemical Biology, College of Pharmacy and Tianjin Key Laboratory of Molecular Drug Research, Nankai University, Haihe Education Park, Tianjin, China.,Tianjin Key Laboratory of Molecular Drug Research, Tianjin International Joint Academy of Biomedicine, Tianjin, China
| | - Cheng Yang
- State Key Laboratory of Medicinal Chemical Biology, College of Pharmacy and Tianjin Key Laboratory of Molecular Drug Research, Nankai University, Haihe Education Park, Tianjin, China.,Tianjin Key Laboratory of Molecular Drug Research, Tianjin International Joint Academy of Biomedicine, Tianjin, China
| |
Collapse
|
36
|
Koyama K, Katayama S, Tonai K, Shima J, Koinuma T, Nunomiya S. Biomarker profiles of coagulopathy and alveolar epithelial injury in acute respiratory distress syndrome with idiopathic/immune-related disease or common direct risk factors. CRITICAL CARE : THE OFFICIAL JOURNAL OF THE CRITICAL CARE FORUM 2019; 23:283. [PMID: 31426849 PMCID: PMC6699073 DOI: 10.1186/s13054-019-2559-6] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/11/2019] [Accepted: 07/31/2019] [Indexed: 12/31/2022]
Abstract
BACKGROUND Altered coagulation and alveolar injury are the hallmarks of acute respiratory distress syndrome (ARDS). However, whether the biomarkers that reflect pathophysiology differ depending on the etiology of ARDS has not been examined. This study aimed to investigate the biomarker profiles of coagulopathy and alveolar epithelial injury in two subtypes of ARDS: patients with direct common risk factors (dARDS) and those with idiopathic or immune-related diseases (iARDS), which are classified as "ARDS without common risk factors" based on the Berlin definition. METHODS This retrospective, observational study included adult patients who were admitted to the intensive care unit (ICU) at a university hospital with a diagnosis of ARDS with no indirect risk factors. Plasma biomarkers (thrombin-antithrombin complex [TAT], plasminogen activator inhibitor [PAI]-1, protein C [PC] activity, procalcitonin [PCT], surfactant protein [SP]-D, and KL-6) were routinely measured during the first 5 days of the patient's ICU stay. RESULTS Among 138 eligible patients with ARDS, 51 were excluded based on the exclusion criteria (n = 41) or other causes of ARDS (n = 10). Of the remaining 87 patients, 56 were identified as having dARDS and 31 as having iARDS. Among the iARDS patients, TAT (marker of thrombin generation) and PAI-1 (marker of inhibited fibrinolysis) were increased, and PC activity was above normal. In contrast, PC activity was significantly decreased, and TAT or PAI-1 was present at much higher levels in dARDS compared with iARDS patients. Significant differences were also observed in PCT, SP-D, and KL-6 between patients with dARDS and iARDS. The receiver operating characteristic (ROC) analysis showed that areas under the ROC curve for PC activity, PAI-1, PCT, SP-D, and KL-6 were similarly high for distinguishing between dARDS and iARDS (PC 0.86, P = 0.33; PAI-1 0.89, P = 0.95; PCT 0.89, P = 0.66; and SP-D 0.88, P = 0.16 vs. KL-6 0.90, respectively). CONCLUSIONS Coagulopathy and alveolar epithelial injury were observed in both patients with dARDS and with iARDS. However, their biomarker profiles were significantly different between the two groups. The different patterns of PAI-1, PC activity, SP-D, and KL-6 may help in differentiating between these ARDS subtypes.
Collapse
Affiliation(s)
- Kansuke Koyama
- Division of Intensive Care, Department of Anesthesiology & Intensive Care Medicine, Jichi Medical University School of Medicine, 3311-1 Yakushiji, Shimotsuke, Tochigi, 329-0498, Japan.
| | - Shinshu Katayama
- Division of Intensive Care, Department of Anesthesiology & Intensive Care Medicine, Jichi Medical University School of Medicine, 3311-1 Yakushiji, Shimotsuke, Tochigi, 329-0498, Japan
| | - Ken Tonai
- Division of Intensive Care, Department of Anesthesiology & Intensive Care Medicine, Jichi Medical University School of Medicine, 3311-1 Yakushiji, Shimotsuke, Tochigi, 329-0498, Japan
| | - Jun Shima
- Division of Intensive Care, Department of Anesthesiology & Intensive Care Medicine, Jichi Medical University School of Medicine, 3311-1 Yakushiji, Shimotsuke, Tochigi, 329-0498, Japan
| | - Toshitaka Koinuma
- Division of Intensive Care, Department of Anesthesiology & Intensive Care Medicine, Jichi Medical University School of Medicine, 3311-1 Yakushiji, Shimotsuke, Tochigi, 329-0498, Japan
| | - Shin Nunomiya
- Division of Intensive Care, Department of Anesthesiology & Intensive Care Medicine, Jichi Medical University School of Medicine, 3311-1 Yakushiji, Shimotsuke, Tochigi, 329-0498, Japan
| |
Collapse
|
37
|
Nagaraja MR, Tiwari N, Shetty SK, Marudamuthu AS, Fan L, Ostrom RS, Fu J, Gopu V, Radhakrishnan V, Idell S, Shetty S. p53 Expression in Lung Fibroblasts Is Linked to Mitigation of Fibrotic Lung Remodeling. THE AMERICAN JOURNAL OF PATHOLOGY 2019; 188:2207-2222. [PMID: 30253845 DOI: 10.1016/j.ajpath.2018.07.005] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/28/2017] [Revised: 06/11/2018] [Accepted: 07/02/2018] [Indexed: 02/06/2023]
Abstract
Idiopathic pulmonary fibrosis (IPF) is a debilitating, incurable, and life-threatening disease. A cardinal feature of the pathogenesis of IPF is excessive extracellular matrix deposition attributable to proliferation of activated fibrotic lung fibroblasts (fLfs). To assess the underlying mechanism, we analyzed the status of the tumor suppressor protein p53 in fLfs from the lungs of IPF patients or mice with bleomycin-induced established PF. We report that basal expression of p53 is markedly reduced in fLfs. Forced expression of caveolin-1 in fLfs increased basal p53 and reduced profibrogenic proteins, including collagen-1. Transduction of fLfs with adenovirus expressing p53 reduced expression of these proteins. Conversely, inhibition of baseline p53 in control lung fibroblasts from lung tissues increased profibrogenic protein expression. Lung transduction of adenovirus expressing p53 reduced bleomycin-induced PF in wild-type or caveolin-1-deficient mice. Furthermore, treatment of fLfs or fibrotic lung tissues with caveolin-1 scaffolding domain peptide (CSP) or its fragment, CSP7, restored p53 and reduced profibrogenic proteins. Treatment of wild-type mice with i.p. CSP or CSP7 resolved bleomycin-induced PF. These peptides failed to resolve PF in inducible conditional knockout mice lacking p53 in fLfs, indicating the induction of baseline fLf p53 as the basis of the antifibrotic effects.
Collapse
Affiliation(s)
- M R Nagaraja
- Texas Lung Injury Institute, Department of Medicine, University of Texas Health Science Center at Tyler, Tyler, Texas
| | - Nivedita Tiwari
- Texas Lung Injury Institute, Department of Medicine, University of Texas Health Science Center at Tyler, Tyler, Texas
| | - Shwetha K Shetty
- Texas Lung Injury Institute, Department of Medicine, University of Texas Health Science Center at Tyler, Tyler, Texas
| | - Amarnath S Marudamuthu
- Texas Lung Injury Institute, Department of Medicine, University of Texas Health Science Center at Tyler, Tyler, Texas
| | - Liang Fan
- Texas Lung Injury Institute, Department of Medicine, University of Texas Health Science Center at Tyler, Tyler, Texas
| | - Rennolds S Ostrom
- Department of Pharmacology, Chapman University School of Pharmacy, Irvine, California
| | - Jian Fu
- Center for Research on Environmental Disease and Toxicology, College of Medicine, University of Kentucky, Lexington, Kentucky
| | - Venkadesaperumal Gopu
- Texas Lung Injury Institute, Department of Medicine, University of Texas Health Science Center at Tyler, Tyler, Texas
| | - Vijay Radhakrishnan
- Texas Lung Injury Institute, Department of Medicine, University of Texas Health Science Center at Tyler, Tyler, Texas
| | - Steven Idell
- Texas Lung Injury Institute, Department of Medicine, University of Texas Health Science Center at Tyler, Tyler, Texas
| | - Sreerama Shetty
- Texas Lung Injury Institute, Department of Medicine, University of Texas Health Science Center at Tyler, Tyler, Texas.
| |
Collapse
|
38
|
Abstract
Biofabrication techniques have enabled the formation of complex models of many biological tissues. We present a framework to contextualize biofabrication techniques within a disease modeling application. Fibrosis is a progressive disease interfering with tissue structure and function, which stems from an aberrant wound healing response. Epithelial injury and clot formation lead to fibroblast invasion and activation, followed by contraction and remodeling of the extracellular matrix. These stages have healthy wound healing variants in addition to the pathogenic analogs that are seen in fibrosis. This review evaluates biofabrication of a variety of phenotypic cell-based fibrosis assays. By recapitulating different contributors to fibrosis, these assays are able to evaluate biochemical pathways and therapeutic candidates for specific stages of fibrosis pathogenesis. Biofabrication of these culture models may enable phenotypic screening for improved understanding of fibrosis biology as well as improved screening of anti-fibrotic therapeutics.
Collapse
Affiliation(s)
- Cameron Yamanishi
- Wallace H Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory School of Medicine, Atlanta, United States of America
- The Parker H Petit Institute of Bioengineering and Bioscience, Georgia Institute of Technology, Atlanta, United States of America
| | - Stephen Robinson
- Wallace H Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory School of Medicine, Atlanta, United States of America
- The Parker H Petit Institute of Bioengineering and Bioscience, Georgia Institute of Technology, Atlanta, United States of America
| | - Shuichi Takayama
- Wallace H Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory School of Medicine, Atlanta, United States of America
- The Parker H Petit Institute of Bioengineering and Bioscience, Georgia Institute of Technology, Atlanta, United States of America
| |
Collapse
|
39
|
Correll KA, Edeen KE, Zemans RL, Redente EF, Serban KA, Curran-Everett D, Edelman BL, Mikels-Vigdal A, Mason RJ. Transitional human alveolar type II epithelial cells suppress extracellular matrix and growth factor gene expression in lung fibroblasts. Am J Physiol Lung Cell Mol Physiol 2019; 317:L283-L294. [PMID: 31166130 DOI: 10.1152/ajplung.00337.2018] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
Epithelial-fibroblast interactions are thought to be very important in the adult lung in response to injury, but the specifics of these interactions are not well defined. We developed coculture systems to define the interactions of adult human alveolar epithelial cells with lung fibroblasts. Alveolar type II cells cultured on floating collagen gels reduced the expression of type 1 collagen (COL1A1) and α-smooth muscle actin (ACTA2) in fibroblasts. They also reduced fibroblast expression of hepatocyte growth factor (HGF), fibroblast growth factor 7 (FGF7, KGF), and FGF10. When type II cells were cultured at an air-liquid interface to maintain high levels of surfactant protein expression, this inhibitory activity was lost. When type II cells were cultured on collagen-coated tissue culture wells to reduce surfactant protein expression further and increase the expression of some type I cell markers, the epithelial cells suppressed transforming growth factor-β (TGF-β)-stimulated ACTA2 and connective tissue growth factor (CTGF) expression in lung fibroblasts. Our results suggest that transitional alveolar type II cells and likely type I cells but not fully differentiated type II cells inhibit matrix and growth factor expression in fibroblasts. These cells express markers of both type II cells and type I cells. This is probably a normal homeostatic mechanism to inhibit the fibrotic response in the resolution phase of wound healing. Defining how transitional type II cells convert activated fibroblasts into a quiescent state and inhibit the effects of TGF-β may provide another approach to limiting the development of fibrosis after alveolar injury.
Collapse
Affiliation(s)
| | | | - Rachel L Zemans
- National Jewish Health, Denver, Colorado.,Division of Pulmonary and Critical Care Medicine/Department of Medicine, University of Michigan, Ann Arbor, Michigan
| | | | | | | | | | | | | |
Collapse
|
40
|
Wang H, Xie Q, Ou-Yang W, Zhang M. Integrative analyses of genes associated with idiopathic pulmonary fibrosis. J Cell Biochem 2019; 120:8648-8660. [PMID: 30506760 DOI: 10.1002/jcb.28153] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2018] [Accepted: 11/09/2018] [Indexed: 01/24/2023]
Abstract
Idiopathic pulmonary fibrosis (IPF), characterized by irreversible scarring and progressive destruction of the lung tissue, is one of the most common types of idiopathic interstitial pneumonia worldwide. However, there are no reliable candidates for curative therapies. Hence, elucidation of the mechanisms of IPF genesis and exploration of potential biomarkers and prognostic indicators are essential for accurate diagnosis and treatment of IPF. Recently, efficient microarray and bioinformatics analyses have promoted an understanding of the molecular mechanisms of disease occurrence and development, which is necessary to explore genetic alternations and identify potential diagnostic biomarkers. However, high false-positive rates results have been observed based on single microarray datasets. In the current study, we performed a comprehensive analysis of the differential expression, biological functions, and interactions of IPF-related genes. Three publicly available microarray datasets including 54 IPF samples and 34 normal samples were integrated by performing gene set enrichment analysis and analyzing differentially expressed genes (DEGs). Our results identified 350 DEGs genetically associated with IPF. Gene ontology analyses revealed that the changes in the modules were mostly enriched in the positive regulation of smooth muscle cell proliferation, positive regulation of inflammatory responses, and the extracellular space. Kyoto encyclopedia of genes and genomes enrichment analysis of DEGs revealed that IPF involves the TNF signaling pathway, NOD-like receptor signaling pathway, and PPAR signaling pathway. To identify key genes related to IPF in the protein-protein interaction network, 20 hub genes were screened out with highest scores. Our results provided a framework for developing new pathological molecular networks related to specific diseases in silico.
Collapse
Affiliation(s)
- Huimei Wang
- Department of Integrative Medicine and Neurobiology, State Key Laboratory of Medical Neurobiology, Institute of Brain Science, School of Basic Medical Sciences, Shanghai Medical College, Fudan University, Shanghai, PR China
| | - Qiqi Xie
- Department of Orthopaedics, Second Hospital of Lanzhou University, Lanzhou, Gansu, PR China
| | - Wen Ou-Yang
- The Second Clinical Medical College, Zhujiang Hospital, Southern Medical University, Guangzhou, PR China
| | - Mingwei Zhang
- Department of Radiotherapy, First Affiliated Hospital of Fujian Medical University, Fuzhou, Fujian, PR China
| |
Collapse
|
41
|
Mamazhakypov A, Schermuly RT, Schaefer L, Wygrecka M. Lipids - two sides of the same coin in lung fibrosis. Cell Signal 2019; 60:65-80. [PMID: 30998969 DOI: 10.1016/j.cellsig.2019.04.007] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2019] [Revised: 04/07/2019] [Accepted: 04/12/2019] [Indexed: 12/16/2022]
Abstract
Idiopathic pulmonary fibrosis (IPF) is characterized by progressive extracellular matrix deposition in the lung parenchyma leading to the destruction of lung structure, respiratory failure and premature death. Recent studies revealed that the pathogenesis of IPF is associated with alterations in the synthesis and the activity of lipids, lipid regulating proteins and cell membrane lipid transporters and receptors in different lung cells. Furthermore, deregulated lipid metabolism was found to contribute to the profibrotic phenotypes of lung fibroblasts and alveolar epithelial cells. Consequently, several pharmacological agents, targeting lipids, lipid mediators, and lipoprotein receptors, was successfully tested in the animal models of lung fibrosis and entered early phase clinical trials. In this review, we highlight new therapeutic options to counteract disturbed lipid hemostasis in the maladaptive lung remodeling.
Collapse
Affiliation(s)
- Argen Mamazhakypov
- Department of Internal Medicine, Universities of Giessen and Marburg Lung Center, Giessen, Germany.
| | - Ralph T Schermuly
- Department of Internal Medicine, Universities of Giessen and Marburg Lung Center, Giessen, Germany.
| | - Liliana Schaefer
- Goethe University School of Medicine, Frankfurt am Main, Germany.
| | - Malgorzata Wygrecka
- Department of Biochemistry, Universities of Giessen and Marburg Lung Center, Giessen, Germany.
| |
Collapse
|
42
|
Bonham CA, Hrusch CL, Blaine KM, Manns ST, Vij R, Oldham JM, Churpek MM, Strek ME, Noth I, Sperling AI. T cell Co-Stimulatory molecules ICOS and CD28 stratify idiopathic pulmonary fibrosis survival. RESPIRATORY MEDICINE: X 2019; 1. [PMID: 32455343 PMCID: PMC7243672 DOI: 10.1016/j.yrmex.2019.100002] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/02/2022] Open
Abstract
Idiopathic pulmonary fibrosis (IPF) is a devastating disease that kills as many Americans as breast cancer each year. This study investigated whether lung function decline and survival associates with adaptive immunity in patients with IPF, specifically the expression of checkpoint molecules ICOS, CD28 and PD-1 on circulating CD4 T cells. Clinical data, blood samples and pulmonary function tests were collected prospectively and longitudinally from 59 patients with IPF over a study period of 5 years. Patients were followed until death, lung transplantation, or study end, and cell surface expression of CD45RO, CD28, ICOS, and PD-1 was measured on CD4 T cells via flow cytometry. Repeated measures of ICOS and CD28 on CD4 T cells revealed significant associations between declining ICOS and CD28 expression, and declining lung function parameters FVC and DLCO, independent of age, sex, race, smoking history, or immunosuppressant use. Strikingly, patients in the highest quintile of ICOS at study entry had markedly improved survival, while those with low CD28 fared poorly. No change in PD-1 expression was found. Analysis of ICOS and CD28 from the first blood draw identified three populations of IPF patients; those at high risk for early death, those with intermediate risk, and those at low risk. These results highlight the role of T cell mediated immunity in IPF survival, finding the assessment of two T cell stimulatory checkpoint molecules, CD28 and ICOS, was sufficient to discriminate three distinct survival trajectories over 5 years of patient follow up.
Collapse
Affiliation(s)
- Catherine A Bonham
- Pulmonary and Critical Care Medicine, Department of Medicine, University of Chicago, Chicago, IL, USA
| | - Cara L Hrusch
- Pulmonary and Critical Care Medicine, Department of Medicine, University of Chicago, Chicago, IL, USA
| | - Kelly M Blaine
- Pulmonary and Critical Care Medicine, Department of Medicine, University of Chicago, Chicago, IL, USA
| | - Stephenie T Manns
- Pulmonary and Critical Care Medicine, Department of Medicine, University of Chicago, Chicago, IL, USA
| | - Rekha Vij
- Pulmonary and Critical Care Medicine, Department of Medicine, University of Chicago, Chicago, IL, USA
| | - Justin M Oldham
- Pulmonary and Critical Care Medicine, Department of Medicine, University of Chicago, Chicago, IL, USA
| | - Matthew M Churpek
- Pulmonary and Critical Care Medicine, Department of Medicine, University of Chicago, Chicago, IL, USA
| | - Mary E Strek
- Pulmonary and Critical Care Medicine, Department of Medicine, University of Chicago, Chicago, IL, USA
| | - Imre Noth
- Pulmonary and Critical Care Medicine, Department of Medicine, University of Chicago, Chicago, IL, USA
| | - Anne I Sperling
- Pulmonary and Critical Care Medicine, Department of Medicine, University of Chicago, Chicago, IL, USA.,Committee of Immunology, University of Chicago, Chicago, IL, USA
| |
Collapse
|
43
|
Sood S, Russell TD, Shifren A. Biomarkers in Idiopathic Pulmonary Fibrosis. Respir Med 2019. [DOI: 10.1007/978-3-319-99975-3_10] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
44
|
Zheng Q, Tong M, Ou B, Liu C, Hu C, Yang Y. Isorhamnetin protects against bleomycin-induced pulmonary fibrosis by inhibiting endoplasmic reticulum stress and epithelial-mesenchymal transition. Int J Mol Med 2018; 43:117-126. [PMID: 30387812 PMCID: PMC6257865 DOI: 10.3892/ijmm.2018.3965] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2018] [Accepted: 10/10/2018] [Indexed: 02/06/2023] Open
Abstract
The present study aimed to determine whether isorhamnetin (Isor), a natural antioxidant polyphenol, has antifibrotic effects in a murine model of bleomycin-induced pulmonary fibrosis. A C57 mouse model of pulmonary fibrosis was established by intraperitoneal injection of a single dose of bleomycin (3.5 U/kg), and then Isor (10 and 30 mg/kg) was administered intragastrically. The level of fibrosis was assessed by hematoxylin and eosin and Sirius red staining. α-smooth muscle actin and type I collagen levels in lung tissues were determined by western blotting and immunohistochemistry (IHC). Epithelial-mesenchymal transition (EMT), endoplasmic reticulum stress (ERS) and related signaling pathways were examined by western blotting and IHC. In vitro, human bronchial epithelial cells (HBECs) and A549 cells were treated with transforming growth factor (TGF)β1 with or without Isor, and collagen deposition and the expression levels of EMT- and ERS-related genes or proteins were analyzed by reverse transcription-quantitative polymerase chain reaction, western blotting, and immunofluorescence. The results demonstrated that Isor inhibited bleomycin-induced collagen deposition, reduced type I collagen and α-SMA expression, and alleviated EMT and ERS in vivo. Furthermore, incubation of HBECs and A549 cells with TGFβ1 activated EMT and ERS, and this effect was reversed by Isor. In conclusion, Isor treatment attenuated bleomycin-induced EMT and pulmonary fibrosis and suppressed bleomycin-induced ERS and the activation of PERK signaling.
Collapse
Affiliation(s)
- Qing Zheng
- Department of Geriatrics, The Second Xiangya Hospital of Central South University, Changsha, Hunan 410011, P.R. China
| | - Ming Tong
- Department of Infectious Diseases, Hunan Provincial People's Hospital, Hunan Normal University, Changsha, Hunan 410005, P.R. China
| | - Baiqing Ou
- Department of Geriatrics, Hunan Provincial People's Hospital, Hunan Normal University, Changsha, Hunan 410005, P.R. China
| | - Cuizhong Liu
- Department of Geriatrics, Hunan Provincial People's Hospital, Hunan Normal University, Changsha, Hunan 410005, P.R. China
| | - Changping Hu
- Department of Pharmacology, Xiangya School of Pharmaceutical Sciences, Central South University, Changsha, Hunan 410078, P.R. China
| | - Yu Yang
- Department of Geriatrics, The Second Xiangya Hospital of Central South University, Changsha, Hunan 410011, P.R. China
| |
Collapse
|
45
|
Identification of MMP28 as a biomarker for the differential diagnosis of idiopathic pulmonary fibrosis. PLoS One 2018; 13:e0203779. [PMID: 30208119 PMCID: PMC6135486 DOI: 10.1371/journal.pone.0203779] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2018] [Accepted: 08/27/2018] [Indexed: 12/24/2022] Open
Abstract
Background and objective Idiopathic Pulmonary Fibrosis (IPF) is a progressive disease of unknown etiology. The diagnosis is based on the identification of a pattern of usual interstitial pneumonia either by high resolution computed tomography and/or histology. However, a similar pattern can be observed in other fibrotic lung disorders, and precise diagnosis remains challenging. Studies on biomarkers contributing to the differential diagnosis are scanty, and still in an exploratory phase. Our aim was to evaluate matrix metalloproteinase (MMP)-28, which has been implicated in abnormal wound healing, as a biomarker for distinguishing IPF from fibrotic non-IPF patients. Methods The cell localization of MMP28 in lungs was examined by immunohistochemistry and its serum concentration was measured by ELISA in two different populations. The derivation cohort included 82 IPF and 69 fibrotic non-IPF patients. The validation cohort involved 42 IPF and 41 fibrotic non-IPF patients. Results MMP28 was detected mainly in IPF lungs and localized in epithelial cells. In both cohorts, serum concentrations of MMP28 were significantly higher in IPF versus non-IPF (mostly with lung fibrosis associated to autoimmune diseases and chronic hypersensitivity pneumonitis) and healthy controls (ANOVA, p<0.0001). The AUC of the derivation cohort was 0.718 (95%CI, 0.635–0.800). With a cutoff point of 4.5 ng/mL, OR was 5.32 (95%CI, 2.55–11.46), and sensitivity and specificity of 70.9% and 69% respectively. The AUC of the validation cohort was 0.690 (95%CI, 0.581–0.798), OR 4.57 (95%CI, 1.76–12.04), and sensitivity and specificity of 69.6% and 66.7%. Interestingly, we found that IPF patients with definite UIP pattern on HRCT showed higher serum concentrations of MMP28 than non-IPF patients with the same pattern (7.8±4.4 versus 4.9±4.4; p = 0.04). By contrast, no differences were observed when IPF with possible UIP-pattern were compared (4.7±3.2 versus 3.9±3.0; p = 0.43). Conclusion These findings indicate that MMP28 might be a useful biomarker to improve the diagnostic certainty of IPF.
Collapse
|
46
|
Micropillar-based culture platform induces epithelial-mesenchymal transition in the alveolar epithelial cell line. J Biomed Mater Res A 2018; 106:3165-3174. [DOI: 10.1002/jbm.a.36511] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2018] [Revised: 07/01/2018] [Accepted: 07/12/2018] [Indexed: 12/20/2022]
|
47
|
Sisson TH, Christensen PJ, Muraki Y, Dils AJ, Chibucos L, Subbotina N, Tohyama K, Horowitz JC, Matsuo T, Bailie M, Nikam S, Hazama M. Phosphodiesterase 4 inhibition reduces lung fibrosis following targeted type II alveolar epithelial cell injury. Physiol Rep 2018; 6:e13753. [PMID: 29952109 PMCID: PMC6021279 DOI: 10.14814/phy2.13753] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2018] [Revised: 05/18/2018] [Accepted: 05/18/2018] [Indexed: 12/17/2022] Open
Abstract
Fibrosis of the lung constitutes a major clinical challenge and novel therapies are required to alleviate the associated morbidity and mortality. Investigating the antifibrotic efficacy of drugs that are already in clinical practice offers an efficient strategy to identify new therapies. The phosphodiesterase 4 (PDE4) inhibitors, approved for the treatment of chronic obstructive pulmonary disease, harbor therapeutic potential for pulmonary fibrosis by augmenting the activity of endogenous antifibrotic mediators that signal through cyclic AMP. In this study, we tested the efficacy of several PDE4 inhibitors including a novel compound (Compound 1) in a murine model of lung fibrosis that results from a targeted type II alveolar epithelial cell injury. We also compared the antifibrotic activity of PDE4 inhibition to the two therapies that are FDA-approved for idiopathic pulmonary fibrosis (pirfenidone and nintedanib). We found that both preventative (day 0-21) and therapeutic (day 11-21) dosing regimens of the PDE4 inhibitors significantly ameliorated the weight loss and lung collagen accumulation that are the sequelae of targeted epithelial cell damage. In a therapeutic protocol, the reduction in lung fibrosis with PDE4 inhibitor administration was equivalent to pirfenidone and nintedanib. Treatment with this class of drugs also resulted in a decrease in plasma surfactant protein D concentration, a reduction in the plasma levels of several chemokines implicated in lung fibrosis, and an in vitro inhibition of fibroblast profibrotic gene expression. These results motivate further investigation of PDE4 inhibition as a treatment for patients with fibrotic lung disease.
Collapse
Affiliation(s)
- Thomas H. Sisson
- Pulmonary and Critical Care DivisionDepartment of Internal MedicineUniversity of Michigan Medical CenterAnn ArborMichigan
| | - Paul J. Christensen
- Division of Pulmonary & Critical Care MedicineDepartment of Internal MedicineWilliam Beaumont Medical CenterTroyMichigan
| | - Yo Muraki
- Takeda Pharmaceutical Company LimitedFujisawaJapan
| | - Anthony J. Dils
- Pulmonary and Critical Care DivisionDepartment of Internal MedicineUniversity of Michigan Medical CenterAnn ArborMichigan
| | - Lauren Chibucos
- Pulmonary and Critical Care DivisionDepartment of Internal MedicineUniversity of Michigan Medical CenterAnn ArborMichigan
| | - Natalya Subbotina
- Pulmonary and Critical Care DivisionDepartment of Internal MedicineUniversity of Michigan Medical CenterAnn ArborMichigan
| | | | - Jeffrey C. Horowitz
- Pulmonary and Critical Care DivisionDepartment of Internal MedicineUniversity of Michigan Medical CenterAnn ArborMichigan
| | | | - Marc Bailie
- In Vivo FacilityDepartment of Pharmacology and ToxicologyMichigan State UniversityEast LansingMichigan
| | - Sham Nikam
- Takeda Pharmaceutical Company LimitedFujisawaJapan
| | | |
Collapse
|
48
|
Vongphouttha C, Zhu J, Deng S, Tai W, Wu W, Li Z, Lei W, Wang Y, Dong Z, Zhang T. Rapamycin protects against paraquat-induced pulmonary epithelial-mesenchymal transition via the Wnt/β-catenin signaling pathway. Exp Ther Med 2018; 15:3045-3051. [PMID: 29599839 DOI: 10.3892/etm.2018.5795] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2017] [Accepted: 11/17/2017] [Indexed: 12/26/2022] Open
Abstract
Paraquat (PQ) is a herbicide that is widely used in developing countries, and pulmonary fibrosisis one of the most typical features of PQ poisoning. The molecular mechanism underlying PQ toxicity is largely unknown, which makes it difficult to treat. In the present study, western blot analysis, reverse transcription-quantitative polymerase chain reaction and fluorescent immunostaining were used to analyze the effects of rapamycin on PQ-induced epithelial-mesenchymal transition (EMT) in A549 and MRC-5 cells. It was revealed that rapamycin significantly downregulated the mesenchymal cell marker, α-smooth muscle actin, and significantly upregulated the epithelial cell marker, E-cadherin, at mRNA and protein expression levels compared with the PQ group. Treatment with PQ significantly increased Wnt1, low-density lipoprotein receptor-related protein (LRP)5, LRP6 and β-catenin expression levels in A549 cells, while rapamycin significantly inhibited these effects of PQ. Activation of the Wnt signaling pathway using lithium chloride attenuated the inhibitory effects of rapamycin on PQ-induced EMT. In conclusion, rapamycin protects against PQ-induced pulmonary EMT via the Wnt/β-catenin signaling pathway.
Collapse
Affiliation(s)
- Chanthasone Vongphouttha
- Department of Respiratory Medicine, The Second Affiliated Hospital of Kunming Medical University, Kunming, Yunnan 650101, P.R. China
| | - Jie Zhu
- Department of Internal Medicine, Beijing Capital International Airport Hospital, Beijing 100621, P.R. China
| | - Shuhao Deng
- Department of Respiratory Medicine, The Second Affiliated Hospital of Kunming Medical University, Kunming, Yunnan 650101, P.R. China
| | - Wenlin Tai
- Department of Clinical Laboratory, Yunnan Molecular Diagnostic Center, The Second Affiliated Hospital of Kunming Medical University, Kunming, Yunnan 650101, P.R. China
| | - Wenjuan Wu
- Department of Respiratory Medicine, The Second Affiliated Hospital of Kunming Medical University, Kunming, Yunnan 650101, P.R. China
| | - Zhenkun Li
- Department of Respiratory Medicine, The Second Affiliated Hospital of Kunming Medical University, Kunming, Yunnan 650101, P.R. China
| | - Wen Lei
- Department of Respiratory Medicine, The Second Affiliated Hospital of Kunming Medical University, Kunming, Yunnan 650101, P.R. China
| | - Yin Wang
- Department of Respiratory Medicine, The Second Affiliated Hospital of Kunming Medical University, Kunming, Yunnan 650101, P.R. China
| | - Zhaoxing Dong
- Department of Respiratory Medicine, The Second Affiliated Hospital of Kunming Medical University, Kunming, Yunnan 650101, P.R. China
| | - Tao Zhang
- Department of Respiratory Medicine, The Second Affiliated Hospital of Kunming Medical University, Kunming, Yunnan 650101, P.R. China
| |
Collapse
|
49
|
Tan JL, Lau SN, Leaw B, Nguyen HPT, Salamonsen LA, Saad MI, Chan ST, Zhu D, Krause M, Kim C, Sievert W, Wallace EM, Lim R. Amnion Epithelial Cell-Derived Exosomes Restrict Lung Injury and Enhance Endogenous Lung Repair. Stem Cells Transl Med 2018; 7:180-196. [PMID: 29297621 PMCID: PMC5788876 DOI: 10.1002/sctm.17-0185] [Citation(s) in RCA: 133] [Impact Index Per Article: 22.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2017] [Accepted: 10/20/2017] [Indexed: 02/06/2023] Open
Abstract
Idiopathic pulmonary fibrosis (IPF) is characterized by chronic inflammation, severe scarring, and stem cell senescence. Stem cell‐based therapies modulate inflammatory and fibrogenic pathways by release of soluble factors. Stem cell‐derived extracellular vesicles should be explored as a potential therapy for IPF. Human amnion epithelial cell‐derived exosomes (hAEC Exo) were isolated and compared against human lung fibroblasts exosomes. hAEC Exo were assessed as a potential therapy for lung fibrosis. Exosomes were isolated and evaluated for their protein and miRNA cargo. Direct effects of hAEC Exo on immune cell function, including macrophage polarization, phagocytosis, neutrophil myeloperoxidase activity and T cell proliferation and uptake, were measured. Their impact on immune response, histological outcomes, and bronchioalveolar stem cell (BASC) response was assessed in vivo following bleomycin challenge in young and aged mice. hAEC Exo carry protein cargo enriched for MAPK signaling pathways, apoptotic and developmental biology pathways and miRNA enriched for PI3K‐Akt, Ras, Hippo, TGFβ, and focal adhesion pathways. hAEC Exo polarized and increased macrophage phagocytosis, reduced neutrophil myeloperoxidases, and suppressed T cell proliferation directly. Intranasal instillation of 10 μg hAEC Exo 1 day following bleomycin challenge reduced lung inflammation, while treatment at day 7 improved tissue‐to‐airspace ratio and reduced fibrosis. Administration of hAEC Exo coincided with the proliferation of BASC. These effects were reproducible in bleomycin‐challenged aged mice. The paracrine effects of hAECs can be largely attributed to their exosomes and exploitation of hAEC Exo as a therapy for IPF should be explored further. Stem Cells Translational Medicine2018;7:180–196
Collapse
Affiliation(s)
- Jean L Tan
- The Ritchie Centre, Hudson Institute of Medical Research, Clayton, Victoria, Australia
| | - Sin N Lau
- The Ritchie Centre, Hudson Institute of Medical Research, Clayton, Victoria, Australia
| | - Bryan Leaw
- The Ritchie Centre, Hudson Institute of Medical Research, Clayton, Victoria, Australia
| | - Hong P T Nguyen
- Centre for Reproductive Health, Hudson Institute of Medical Research, Clayton, Victoria, Australia
| | - Lois A Salamonsen
- Centre for Reproductive Health, Hudson Institute of Medical Research, Clayton, Victoria, Australia
| | - Mohamed I Saad
- The Ritchie Centre, Hudson Institute of Medical Research, Clayton, Victoria, Australia
| | - Siow T Chan
- The Ritchie Centre, Hudson Institute of Medical Research, Clayton, Victoria, Australia
| | - Dandan Zhu
- The Ritchie Centre, Hudson Institute of Medical Research, Clayton, Victoria, Australia
| | - Mirja Krause
- The Ritchie Centre, Hudson Institute of Medical Research, Clayton, Victoria, Australia
| | - Carla Kim
- Stem Cell Program, Children's Hospital Boston, Boston, Massachusetts, USA
| | - William Sievert
- Centre for Inflammatory Disease, Monash University, Clayton, Victoria, Australia
| | - Euan M Wallace
- The Ritchie Centre, Hudson Institute of Medical Research, Clayton, Victoria, Australia.,Department of Obstetrics and Gynaecology, Monash University, Clayton, Victoria, Australia
| | - Rebecca Lim
- The Ritchie Centre, Hudson Institute of Medical Research, Clayton, Victoria, Australia.,Department of Obstetrics and Gynaecology, Monash University, Clayton, Victoria, Australia
| |
Collapse
|
50
|
Beltramo G, Thabut G, Peron N, Nicaise P, Cazes A, Debray MP, Joannes A, Castier Y, Mailleux AA, Frija J, Pradère P, Justet A, Borie R, Dombret MC, Taille C, Aubier M, Crestani B. Anti-parietal cell autoimmunity is associated with an accelerated decline of lung function in IPF patients. Respir Med 2018; 135:15-21. [PMID: 29414448 DOI: 10.1016/j.rmed.2017.12.011] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/11/2017] [Revised: 11/26/2017] [Accepted: 12/26/2017] [Indexed: 12/27/2022]
Abstract
BACKGROUND Autoantibodies against lung epithelial antigens are often detected in patients with Idiopathic Pulmonary Fibrosis (IPF). Anti-Parietal Cell Antibodies (APCA) target the H+/K+ATPase (proton pump). APCA prevalence and lung H+/K+ATPase expression was never studied in IPF patients. METHODS We retrospectively collected clinical, lung function and imaging data from APCA positive patients (APCA+IPF) and compared them with APCA negative IPF patients matched on the date of diagnostic assessment. H+/K+ATPase expression was assessed with immunohistochemistry and PCR. RESULTS Among 138 IPF patients diagnosed between 2007 and 2014 and tested for APCA, 19 (13.7%) APCA+ patients were identified. APCA+IPF patients were 16 men and 3 women, mean age 71 years. The median titer of APCA was 1:160. A pernicious anemia was present in 5 patients and preceded the fibrosis in 3 cases. With a mean follow up of 31 months, 2 patients had an exacerbation and 7 patients died. As compared with 19 APCA- IPF patients, APCA+IPF patients had a less severe disease with better DLCO (57% vs 43% predicted), preserved PaO2 (85 ± 8 mmHg vs 74 ± 11 mmHg), a lower rate of honeycombing on HRCT (58% vs 89%), but they experienced an accelerated decline of FVC (difference 61.4 ml/year; p = .0002). The H+/K+ATPase was strongly expressed by hyperplastic alveolar epithelial cells in the fibrotic lung. CONCLUSION Anti-parietal cell autoimmunity is detected in some IPF patients and is associated with an accelerated decline of lung function. Anti-parietal cell autoimmunity may promote lung fibrosis progression.
Collapse
Affiliation(s)
- Guillaume Beltramo
- Assistance Publique-Hôpitaux de Paris, DHU FIRE (Fibrosis, Inflammation and Remodeling), Hôpital Bichat, Service de Pneumologie A, 75018 Paris, France
| | - Gabriel Thabut
- Assistance Publique-Hôpitaux de Paris, Hôpital Bichat, Service de Pneumologie et Transplantation, 75018 Paris, France; INSERM UMR 1152, Labex Inflamex, Paris, France; Université Paris Diderot, Paris, France
| | - Nicolas Peron
- Assistance Publique-Hôpitaux de Paris, DHU FIRE (Fibrosis, Inflammation and Remodeling), Hôpital Bichat, Service de Pneumologie A, 75018 Paris, France
| | - Pascale Nicaise
- Assistance Publique-Hôpitaux de Paris, Hôpital Bichat, Département d'Hématologie et Immunologie UF Autoimmunité et Hypersensibilités, 75018 Paris, France
| | - Aurélie Cazes
- INSERM UMR 1152, Labex Inflamex, Paris, France; Université Paris Diderot, Paris, France; Assistance Publique-Hôpitaux de Paris, Hôpital Bichat, Département d'Anatomie Pathologique, 75018 Paris, France
| | - Marie-Pierre Debray
- Assistance Publique-Hôpitaux de Paris, Hôpital Bichat, Service de Radiologie, Paris, France
| | - Audrey Joannes
- INSERM UMR 1152, Labex Inflamex, Paris, France; Université Paris Diderot, Paris, France
| | - Yves Castier
- INSERM UMR 1152, Labex Inflamex, Paris, France; Université Paris Diderot, Paris, France; Assistance Publique-Hôpitaux de Paris, Hôpital Bichat, Service de Chirurgie Vasculaire et Thoracique 75018 Paris, France
| | - Arnaud A Mailleux
- INSERM UMR 1152, Labex Inflamex, Paris, France; Université Paris Diderot, Paris, France
| | - Justine Frija
- Université Paris Diderot, Paris, France; Assistance Publique-Hôpitaux de Paris, Hôpital Bichat, Service d'Explorations Fonctionnelles Multidisciplinaires, 75018 Paris, France
| | - Pauline Pradère
- Assistance Publique-Hôpitaux de Paris, DHU FIRE (Fibrosis, Inflammation and Remodeling), Hôpital Bichat, Service de Pneumologie A, 75018 Paris, France
| | - Aurélien Justet
- Assistance Publique-Hôpitaux de Paris, DHU FIRE (Fibrosis, Inflammation and Remodeling), Hôpital Bichat, Service de Pneumologie A, 75018 Paris, France; INSERM UMR 1152, Labex Inflamex, Paris, France; Université Paris Diderot, Paris, France
| | - Raphaël Borie
- Assistance Publique-Hôpitaux de Paris, DHU FIRE (Fibrosis, Inflammation and Remodeling), Hôpital Bichat, Service de Pneumologie A, 75018 Paris, France; INSERM UMR 1152, Labex Inflamex, Paris, France; Université Paris Diderot, Paris, France
| | - Marie-Christine Dombret
- Assistance Publique-Hôpitaux de Paris, DHU FIRE (Fibrosis, Inflammation and Remodeling), Hôpital Bichat, Service de Pneumologie A, 75018 Paris, France; INSERM UMR 1152, Labex Inflamex, Paris, France; Université Paris Diderot, Paris, France
| | - Camille Taille
- Assistance Publique-Hôpitaux de Paris, DHU FIRE (Fibrosis, Inflammation and Remodeling), Hôpital Bichat, Service de Pneumologie A, 75018 Paris, France; INSERM UMR 1152, Labex Inflamex, Paris, France; Université Paris Diderot, Paris, France
| | - Michel Aubier
- Assistance Publique-Hôpitaux de Paris, DHU FIRE (Fibrosis, Inflammation and Remodeling), Hôpital Bichat, Service de Pneumologie A, 75018 Paris, France; INSERM UMR 1152, Labex Inflamex, Paris, France; Université Paris Diderot, Paris, France
| | - Bruno Crestani
- Assistance Publique-Hôpitaux de Paris, DHU FIRE (Fibrosis, Inflammation and Remodeling), Hôpital Bichat, Service de Pneumologie A, 75018 Paris, France; INSERM UMR 1152, Labex Inflamex, Paris, France; Université Paris Diderot, Paris, France.
| |
Collapse
|