1
|
D'Antongiovanni V, Fornai M, Colucci R, Nericcio A, Benvenuti L, Di Salvo C, Segnani C, Pierucci C, Ippolito C, Nemeth ZH, Haskó G, Bernardini N, Antonioli L, Pellegrini C. Enteric glial NLRP3 inflammasome contributes to gut mucosal barrier alterations in a mouse model of diet-induced obesity. Acta Physiol (Oxf) 2025; 241:e14232. [PMID: 39287080 DOI: 10.1111/apha.14232] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2024] [Revised: 08/12/2024] [Accepted: 09/02/2024] [Indexed: 09/19/2024]
Abstract
AIM In the present study, we investigated the involvement of NLRP3 inflammasome in the intestinal epithelial barrier (IEB) changes associated with obesity, and its role in the interplay between enteric glia and intestinal epithelial cells (IECs). METHODS Wild-type C57BL/6J and NLRP3-KO (-/-) mice were fed with high-fat diet (HFD) or standard diet for 8 weeks. Colonic IEB integrity and inflammasome activation were assessed. Immunolocalization of colonic mucosal GFAP- and NLRP3-positive cells along with in vitro coculture experiments with enteric glial cells (EGCs) and IECs allowed to investigate the potential link between altered IEB, enteric gliosis, and NLRP3 activation. RESULTS HFD mice showed increased body weight, altered IEB integrity, increased GFAP-positive glial cells, and NLRP3 inflammasome hyperactivation. HFD-NLRP3-/- mice showed a lower increase in body weight, an improvement in IEB integrity and an absence of enteric gliosis. Coculture experiments showed that palmitate and lipopolysaccharide contribute to IEB damage and promote enteric gliosis with consequent hyperactivation of enteric glial NLRP3/caspase-1/IL-1β signaling. Enteric glial-derived IL-1β release exacerbates the IEB alterations. Such an effect was abrogated upon incubation with anakinra (IL-1β receptor antagonist) and with conditioned medium derived from silenced-NLRP3 glial cells. CONCLUSION HFD intake elicits mucosal enteric gliotic processes characterized by a hyperactivation of NLRP3/caspase-1/IL-1β signaling pathway, that contributes to further exacerbate the disruption of intestinal mucosal barrier integrity. However, we cannot rule out the contribution of NLRP3 inflammasome activation from other cells, such as immune cells, in IEB alterations associated with obesity. Overall, our results suggest that enteric glial NLRP3 inflammasome might represent an interesting molecular target for the development of novel pharmacological approaches aimed at managing the enteric inflammation and intestinal mucosal dysfunctions associated with obesity.
Collapse
Affiliation(s)
- Vanessa D'Antongiovanni
- Unit of Histology and Medical Embryology, Department of Clinical and Experimental Medicine, University of Pisa, Pisa, Italy
| | - Matteo Fornai
- Unit of Pharmacology and Pharmacovigilance, Department of Clinical and Experimental Medicine, University of Pisa, Pisa, Italy
| | - Rocchina Colucci
- Department of Pharmaceutical and Pharmacological Sciences, University of Padova, Padova, Italy
| | - Anna Nericcio
- Department of Pharmaceutical and Pharmacological Sciences, University of Padova, Padova, Italy
| | - Laura Benvenuti
- Unit of Pharmacology and Pharmacovigilance, Department of Clinical and Experimental Medicine, University of Pisa, Pisa, Italy
| | - Clelia Di Salvo
- Unit of Pharmacology and Pharmacovigilance, Department of Clinical and Experimental Medicine, University of Pisa, Pisa, Italy
| | - Cristina Segnani
- Unit of Histology and Medical Embryology, Department of Clinical and Experimental Medicine, University of Pisa, Pisa, Italy
| | - Clarissa Pierucci
- Unit of Histology and Medical Embryology, Department of Clinical and Experimental Medicine, University of Pisa, Pisa, Italy
| | - Chiara Ippolito
- Unit of Histology and Medical Embryology, Department of Clinical and Experimental Medicine, University of Pisa, Pisa, Italy
| | - Zoltan H Nemeth
- Department of Anesthesiology, Columbia University Irving Medical Center, New York, New York, USA
- Department of Surgery, Morristown Medical Center, Morristown, New Jersey, USA
| | - György Haskó
- Department of Anesthesiology, Columbia University Irving Medical Center, New York, New York, USA
| | - Nunzia Bernardini
- Unit of Histology and Medical Embryology, Department of Clinical and Experimental Medicine, University of Pisa, Pisa, Italy
| | - Luca Antonioli
- Unit of Pharmacology and Pharmacovigilance, Department of Clinical and Experimental Medicine, University of Pisa, Pisa, Italy
| | - Carolina Pellegrini
- Unit of Histology and Medical Embryology, Department of Clinical and Experimental Medicine, University of Pisa, Pisa, Italy
| |
Collapse
|
2
|
Baidoo N, Sanger GJ. The human colon: Evidence for degenerative changes during aging and the physiological consequences. Neurogastroenterol Motil 2024:e14848. [PMID: 38887160 DOI: 10.1111/nmo.14848] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/18/2024] [Revised: 04/16/2024] [Accepted: 06/05/2024] [Indexed: 06/20/2024]
Abstract
BACKGROUND The incidence of constipation increases among the elderly (>65 years), while abdominal pain decreases. Causes include changes in lifestyle (e.g., diet and reduced exercise), disease and medications affecting gastrointestinal functions. Degenerative changes may also occur within the colo-rectum. However, most evidence is from rodents, animals with relatively high rates of metabolism and accelerated aging, with considerable variation in time course. In humans, cellular and non-cellular changes in the aging intestine are poorly investigated. PURPOSE To examine all available studies which reported the effects of aging on cellular and tissue functions of human isolated colon, noting the region studied, sex and age of tissue donors and study size. The focus on human colon reflects the ability to access full-thickness tissue over a wide age range, compared with other gastrointestinal regions. Details are important because of natural human variability. We found age-related changes within the muscle, in the enteric and nociceptor innervation, and in the submucosa. Some involve all regions of colon, but the ascending colon appears more vulnerable. Changes can be cell- and sublayer-dependent. Mechanisms are unclear but may include development of "senescent-like" and associated inflammaging, perhaps associated with increased mucosal permeability to harmful luminal contents. In summary, reduced nociceptor innervation can explain diminished abdominal pain among the elderly. Degenerative changes within the colon wall may have little impact on symptoms and colonic functions, because of high "functional reserve," but are likely to facilitate the development of constipation during age-related challenges (e.g., lifestyle, disease, and medications), now operating against a reduced functional reserve.
Collapse
Affiliation(s)
- Nicholas Baidoo
- School of Life Sciences, University of Westminster, London, UK
- Blizard Institute, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, London, UK
| | - Gareth J Sanger
- Blizard Institute, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, London, UK
| |
Collapse
|
3
|
Li HY, Yan WX, Li J, Ye J, Wu ZG, Hou ZK, Chen B. Global research status and trends of enteric glia: a bibliometric analysis. Front Pharmacol 2024; 15:1403767. [PMID: 38855748 PMCID: PMC11157232 DOI: 10.3389/fphar.2024.1403767] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2024] [Accepted: 05/08/2024] [Indexed: 06/11/2024] Open
Abstract
Background Enteric glia are essential components of the enteric nervous system. Previously believed to have a passive structural function, mounting evidence now suggests that these cells are indispensable for maintaining gastrointestinal homeostasis and exert pivotal influences on both wellbeing and pathological conditions. This study aimed to investigate the global status, research hotspots, and future directions of enteric glia. Methods The literature on enteric glia research was acquired from the Web of Science Core Collection. VOSviewer software (v1.6.19) was employed to visually represent co-operation networks among countries, institutions, and authors. The co-occurrence analysis of keywords and co-citation analysis of references were conducted using CiteSpace (v6.1.R6). Simultaneously, cluster analysis and burst detection of keywords and references were performed. Results A total of 514 publications from 36 countries were reviewed. The United States was identified as the most influential country. The top-ranked institutions were University of Nantes and Michigan State University. Michel Neunlist was the most cited author. "Purinergic signaling" was the largest co-cited reference cluster, while "enteric glial cells (EGCs)" was the cluster with the highest number of co-occurring keywords. As the keyword with the highest burst strength, Crohns disease was a hot topic in the early research on enteric glia. The burst detection of keywords revealed that inflammation, intestinal motility, and gut microbiota may be the research frontiers. Conclusion This study provides a comprehensive bibliometric analysis of enteric glia research. EGCs have emerged as a crucial link between neurons and immune cells, attracting significant research attention in neurogastroenterology. Their fundamental and translational studies on inflammation, intestinal motility, and gut microbiota may promote the treatment of some gastrointestinal and parenteral disorders.
Collapse
Affiliation(s)
- Huai-Yu Li
- Department of Gastroenterology, The First Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China
- Guangdong Clinical Research Academy of Chinese Medicine, Guangzhou, China
| | - Wei-Xin Yan
- Department of Gastroenterology, The First Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China
- Guangdong Clinical Research Academy of Chinese Medicine, Guangzhou, China
| | - Jia Li
- The First Clinical College, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Jing Ye
- School of Clinical Medicine, Jiangxi University of Chinese Medicine, Nanchang, China
| | - Zhi-Guo Wu
- Clinical Medical College of Acupuncture, Moxibustion and Rehabilitation, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Zheng-Kun Hou
- Department of Gastroenterology, The First Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China
- Guangdong Clinical Research Academy of Chinese Medicine, Guangzhou, China
| | - Bin Chen
- Department of Gastroenterology, The First Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China
- Guangdong Clinical Research Academy of Chinese Medicine, Guangzhou, China
| |
Collapse
|
4
|
Llorente C. The Imperative for Innovative Enteric Nervous System-Intestinal Organoid Co-Culture Models: Transforming GI Disease Modeling and Treatment. Cells 2024; 13:820. [PMID: 38786042 PMCID: PMC11119846 DOI: 10.3390/cells13100820] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2024] [Revised: 04/29/2024] [Accepted: 05/08/2024] [Indexed: 05/25/2024] Open
Abstract
This review addresses the need for innovative co-culture systems integrating the enteric nervous system (ENS) with intestinal organoids. The breakthroughs achieved through these techniques will pave the way for a transformative era in gastrointestinal (GI) disease modeling and treatment strategies. This review serves as an introduction to the companion protocol paper featured in this journal. The protocol outlines the isolation and co-culture of myenteric and submucosal neurons with small intestinal organoids. This review provides an overview of the intestinal organoid culture field to establish a solid foundation for effective protocol application. Remarkably, the ENS surpasses the number of neurons in the spinal cord. Referred to as the "second brain", the ENS orchestrates pivotal roles in GI functions, including motility, blood flow, and secretion. The ENS is organized into myenteric and submucosal plexuses. These plexuses house diverse subtypes of neurons. Due to its proximity to the gut musculature and its cell type complexity, there are methodological intricacies in studying the ENS. Diverse approaches such as primary cell cultures, three-dimensional (3D) neurospheres, and induced ENS cells offer diverse insights into the multifaceted functionality of the ENS. The ENS exhibits dynamic interactions with the intestinal epithelium, the muscle layer, and the immune system, influencing epithelial physiology, motility, immune responses, and the microbiome. Neurotransmitters, including acetylcholine (ACh), serotonin (5-HT), and vasoactive intestinal peptide (VIP), play pivotal roles in these intricate interactions. Understanding these dynamics is imperative, as the ENS is implicated in various diseases, ranging from neuropathies to GI disorders and neurodegenerative diseases. The emergence of organoid technology presents an unprecedented opportunity to study ENS interactions within the complex milieu of the small and large intestines. This manuscript underscores the urgent need for standardized protocols and advanced techniques to unravel the complexities of the ENS and its dynamic relationship with the gut ecosystem. The insights gleaned from such endeavors hold the potential to revolutionize GI disease modeling and treatment paradigms.
Collapse
Affiliation(s)
- Cristina Llorente
- Department of Medicine, University of California San Diego, MC0063, 9500 Gilman Drive, La Jolla, CA 92093, USA
| |
Collapse
|
5
|
Lu T, Huang C, Weng R, Wang Z, Sun H, Ma X. Enteric glial cells contribute to chronic stress-induced alterations in the intestinal microbiota and barrier in rats. Heliyon 2024; 10:e24899. [PMID: 38317901 PMCID: PMC10838753 DOI: 10.1016/j.heliyon.2024.e24899] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2023] [Revised: 12/13/2023] [Accepted: 01/16/2024] [Indexed: 02/07/2024] Open
Abstract
Background Emerging evidence has demonstrated the impact of psychological stress on intestinal microbiota, however, the precise mechanisms are not fully understood. Enteric glia, a unique type of peripheral glia found within the enteric nervous system (ENS), play an active role in enteric neural circuits and have profound effects on gut functions. In the present study, we tested the hypothesis that enteric glia are involved in the alterations in the intestinal microflora and barrier induced by chronic water-avoidance stress (WAS) in the gut. Methods and results Western blotting and immunohistochemical (IHC) staining were used to examine the expression of glial fibrillary acidic protein (GFAP), nitric oxide synthetase (NOS) and choline acety1transferase (ChAT) in colon tissues. 16S rDNA sequencing was performed to analyse the composition of the intestinal microbiota in rats. Changes in the tight junction proteins Occludin, Claudin1 and proliferating cell nuclear antigen (PCNA) in the colon tissues were detected after WAS. The abundance of Firmicutes, Proteobacteria, Lactobacillus and Lachnospiraceae_NK4A136 decreased significantly, whereas the abundance of Actinobacteria, Ruminococcaceae_UCG-005 and Christensenellaceae-R-7 increased significantly in stressed rats. Meanwhile, the expression of Occludin, Claudin1 and PCNA significantly decreased after WAS. Treatment with L-A-aminohexanedioic acid (L-AA), a gliotoxin that blunts astrocytic function, obviously decreased the abundance of Actinobacteria, Ruminococcaceae_UCG-005 and Christensenel-laceae_R-7 in stressed rats and significantly increased the abundance of Proteobacteria, Lactobacillus and Lachnospiraceae_NK4A136. In addition, the protein expression of colon Occludin, Claudin1, and PCNA increased after intraperitoneal injection of L-AA. Furthermore, the expression level of NOS in colon tissues was significantly decreased, whereas that of ChAT was significantly increased following L-AA treatment. Conclusions Our results showed that enteric glial cells may contribute to WAS-induced changes in the intestinal microbiota and barrier function by modulating the activity of NOS and cholinergic neurones in the ENS.
Collapse
Affiliation(s)
- Tong Lu
- Shandong Intelligent Technology Innovation Center, Central Hospital Affiliated to Shandong First Medical University, Jinan, 250013, China
| | - Chenxu Huang
- Key Laboratory of Animal Resistance Biology of Shandong Province, School of Life Science, Shandong Normal University, 88 Wenhua Road, Jinan, 250014, China
| | - Rongxin Weng
- Key Laboratory of Animal Resistance Biology of Shandong Province, School of Life Science, Shandong Normal University, 88 Wenhua Road, Jinan, 250014, China
| | - Zepeng Wang
- Key Laboratory of Animal Resistance Biology of Shandong Province, School of Life Science, Shandong Normal University, 88 Wenhua Road, Jinan, 250014, China
| | - Haiji Sun
- Shandong Intelligent Technology Innovation Center, Central Hospital Affiliated to Shandong First Medical University, Jinan, 250013, China
- Key Laboratory of Animal Resistance Biology of Shandong Province, School of Life Science, Shandong Normal University, 88 Wenhua Road, Jinan, 250014, China
| | - Xiaoli Ma
- Shandong Intelligent Technology Innovation Center, Central Hospital Affiliated to Shandong First Medical University, Jinan, 250013, China
| |
Collapse
|
6
|
Montalbán-Rodríguez A, Abalo R, López-Gómez L. From the Gut to the Brain: The Role of Enteric Glial Cells and Their Involvement in the Pathogenesis of Parkinson's Disease. Int J Mol Sci 2024; 25:1294. [PMID: 38279293 PMCID: PMC10816228 DOI: 10.3390/ijms25021294] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Revised: 01/10/2024] [Accepted: 01/11/2024] [Indexed: 01/28/2024] Open
Abstract
The brain-gut axis has been identified as an important contributor to the physiopathology of Parkinson's disease. In this pathology, inflammation is thought to be driven by the damage caused by aggregation of α-synuclein in the brain. Interestingly, the Braak's theory proposes that α-synuclein misfolding may originate in the gut and spread in a "prion-like" manner through the vagus nerve into the central nervous system. In the enteric nervous system, enteric glial cells are the most abundant cellular component. Several studies have evaluated their role in Parkinson's disease. Using samples obtained from patients, cell cultures, or animal models, the studies with specific antibodies to label enteric glial cells (GFAP, Sox-10, and S100β) seem to indicate that activation and reactive gliosis are associated to the neurodegeneration produced by Parkinson's disease in the enteric nervous system. Of interest, Toll-like receptors, which are expressed on enteric glial cells, participate in the triggering of immune/inflammatory responses, in the maintenance of intestinal barrier integrity and in the configuration of gut microbiota; thus, these receptors might contribute to Parkinson's disease. External factors like stress also seem to be relevant in its pathogenesis. Some authors have studied ways to reverse changes in EGCs with interventions such as administration of Tryptophan-2,3-dioxygenase inhibitors, nutraceuticals, or physical exercise. Some researchers point out that beyond being activated during the disease, enteric glial cells may contribute to the development of synucleinopathies. Thus, it is still necessary to further study these cells and their role in Parkinson's disease.
Collapse
Affiliation(s)
- Alba Montalbán-Rodríguez
- Department of Basic Health Sciences, Faculty of Health Sciences, University Rey Juan Carlos (URJC), 28922 Alcorcon, Spain; (A.M.-R.); (L.L.-G.)
- High Performance Research Group in Physiopathology and Pharmacology of the Digestive System (NeuGut-URJC), University Rey Juan Carlos (URJC), 28922 Alcorcón, Spain
| | - Raquel Abalo
- Department of Basic Health Sciences, Faculty of Health Sciences, University Rey Juan Carlos (URJC), 28922 Alcorcon, Spain; (A.M.-R.); (L.L.-G.)
- High Performance Research Group in Physiopathology and Pharmacology of the Digestive System (NeuGut-URJC), University Rey Juan Carlos (URJC), 28922 Alcorcón, Spain
- Associated R+D+i Unit to the Institute of Medicinal Chemistry (IQM), Scientific Research Superior Council (CSIC), 28006 Madrid, Spain
- Working Group of Basic Sciences on Pain and Analgesia, Spanish Pain Society, 28046 Madrid, Spain
- Working Group of Basic Sciences on Cannabinoids, Spanish Pain Society, 28046 Madrid, Spain
| | - Laura López-Gómez
- Department of Basic Health Sciences, Faculty of Health Sciences, University Rey Juan Carlos (URJC), 28922 Alcorcon, Spain; (A.M.-R.); (L.L.-G.)
- High Performance Research Group in Physiopathology and Pharmacology of the Digestive System (NeuGut-URJC), University Rey Juan Carlos (URJC), 28922 Alcorcón, Spain
| |
Collapse
|
7
|
Bonaz B. The gut-brain axis in Parkinson's disease. Rev Neurol (Paris) 2024; 180:65-78. [PMID: 38129277 DOI: 10.1016/j.neurol.2023.11.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2023] [Revised: 11/28/2023] [Accepted: 11/29/2023] [Indexed: 12/23/2023]
Abstract
There is a bi-directional communication between the gut, including the microbiota, and the brain through the autonomic nervous system. Accumulating evidence has suggested a bidirectional link between gastrointestinal inflammation and neurodegeneration, in accordance with the concept of the gut-rain axis. An abnormal microbiota-gut-brain interaction contributes to the pathogeny of Parkinson's disease. This supports the hypothesis that Parkinson's disease originates in the gut to spread to the central nervous system, in particular through the vagus nerve. Targeting the gut-to-brain axis with vagus nerve stimulation, fecal microbiota transplantation, gut-selective antibiotics, as well as drugs targeting the leaky gut might be of interest in the management of Parkinson's disease.
Collapse
Affiliation(s)
- B Bonaz
- Service d'hépato-gastroentérologie, Grenoble institut neurosciences, université Grenoble-Alpes, Grenoble, France.
| |
Collapse
|
8
|
Bai X, De Palma G, Boschetti E, Nishiharo Y, Lu J, Shimbori C, Costanzini A, Saqib Z, Kraimi N, Sidani S, Hapfelmeier S, Macpherson AJ, Verdu EF, De Giorgio R, Collins SM, Bercik P. Vasoactive Intestinal Polypeptide Plays a Key Role in the Microbial-Neuroimmune Control of Intestinal Motility. Cell Mol Gastroenterol Hepatol 2023; 17:383-398. [PMID: 38061549 PMCID: PMC10825443 DOI: 10.1016/j.jcmgh.2023.11.012] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/16/2022] [Revised: 11/24/2023] [Accepted: 11/27/2023] [Indexed: 12/24/2023]
Abstract
BACKGROUND & AIMS Although chronic diarrhea and constipation are common, the treatment is symptomatic because their pathophysiology is poorly understood. Accumulating evidence suggests that the microbiota modulates gut function, but the underlying mechanisms are unknown. We therefore investigated the pathways by which microbiota modulates gastrointestinal motility in different sections of the alimentary tract. METHODS Gastric emptying, intestinal transit, muscle contractility, acetylcholine release, gene expression, and vasoactive intestinal polypeptide (VIP) immunoreactivity were assessed in wild-type and Myd88-/-Trif-/- mice in germ-free, gnotobiotic, and specific pathogen-free conditions. Effects of transient colonization and antimicrobials as well as immune cell blockade were investigated. VIP levels were assessed in human full-thickness biopsies by Western blot. RESULTS Germ-free mice had similar gastric emptying but slower intestinal transit compared with specific pathogen-free mice or mice monocolonized with Lactobacillus rhamnosus or Escherichia coli, the latter having stronger effects. Although muscle contractility was unaffected, its neural control was modulated by microbiota by up-regulating jejunal VIP, which co-localized with and controlled cholinergic nerve function. This process was responsive to changes in the microbial composition and load and mediated through toll-like receptor signaling, with enteric glia cells playing a key role. Jejunal VIP was lower in patients with chronic intestinal pseudo-obstruction compared with control subjects. CONCLUSIONS Microbial control of gastrointestinal motility is both region- and bacteria-specific; it reacts to environmental changes and is mediated by innate immunity-neural system interactions. By regulating cholinergic nerves, small intestinal VIP plays a key role in this process, thus providing a new therapeutic target for patients with motility disorders.
Collapse
Affiliation(s)
- Xiaopeng Bai
- Farncombe Family Digestive Health Research Institute, Department of Medicine, McMaster University, Hamilton, Ontario, Canada; Department of Medicine and Bioregulatory Science, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Giada De Palma
- Farncombe Family Digestive Health Research Institute, Department of Medicine, McMaster University, Hamilton, Ontario, Canada
| | - Elisa Boschetti
- Department of Biomedical and NeuroMotor Sciences, University of Bologna, Bologna, Italy
| | - Yuichiro Nishiharo
- Farncombe Family Digestive Health Research Institute, Department of Medicine, McMaster University, Hamilton, Ontario, Canada
| | - Jun Lu
- Farncombe Family Digestive Health Research Institute, Department of Medicine, McMaster University, Hamilton, Ontario, Canada
| | - Chiko Shimbori
- Farncombe Family Digestive Health Research Institute, Department of Medicine, McMaster University, Hamilton, Ontario, Canada
| | - Anna Costanzini
- IRCCS Azienda Ospedaliero-Universitaria di Bologna, Bologna, Italy
| | - Zarwa Saqib
- Farncombe Family Digestive Health Research Institute, Department of Medicine, McMaster University, Hamilton, Ontario, Canada
| | - Narjis Kraimi
- Farncombe Family Digestive Health Research Institute, Department of Medicine, McMaster University, Hamilton, Ontario, Canada
| | - Sacha Sidani
- Farncombe Family Digestive Health Research Institute, Department of Medicine, McMaster University, Hamilton, Ontario, Canada
| | | | - Andrew J Macpherson
- Department of Biomedical Research, University Hospital of Bern, Bern, Switzerland
| | - Elena F Verdu
- Farncombe Family Digestive Health Research Institute, Department of Medicine, McMaster University, Hamilton, Ontario, Canada
| | - Roberto De Giorgio
- Department of Translational Medicine, University of Ferrara, Ferrara, Italy
| | - Stephen M Collins
- Farncombe Family Digestive Health Research Institute, Department of Medicine, McMaster University, Hamilton, Ontario, Canada
| | - Premysl Bercik
- Farncombe Family Digestive Health Research Institute, Department of Medicine, McMaster University, Hamilton, Ontario, Canada.
| |
Collapse
|
9
|
van Baarle L, Stakenborg M, Matteoli G. Enteric neuro-immune interactions in intestinal health and disease. Semin Immunol 2023; 70:101819. [PMID: 37632991 DOI: 10.1016/j.smim.2023.101819] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/30/2022] [Revised: 07/19/2023] [Accepted: 08/11/2023] [Indexed: 08/28/2023]
Abstract
The enteric nervous system is an autonomous neuronal circuit that regulates many processes far beyond the peristalsis in the gastro-intestinal tract. This circuit, consisting of enteric neurons and enteric glial cells, can engage in many intercellular interactions shaping the homeostatic microenvironment in the gut. Perhaps the most well documented interactions taking place, are the intestinal neuro-immune interactions which are essential for the fine-tuning of oral tolerance. In the context of intestinal disease, compelling evidence demonstrates both protective and detrimental roles for this bidirectional neuro-immune signaling. This review discusses the different immune cell types that are recognized to engage in neuronal crosstalk during intestinal health and disease. Highlighting the molecular pathways involved in the neuro-immune interactions might inspire novel strategies to target intestinal disease.
Collapse
Affiliation(s)
- Lies van Baarle
- Department of Chronic Diseases and Metabolism (CHROMETA), Translational Research Center for Gastrointestinal Disorders (TARGID), KU Leuven, Herestraat 49, O&N1 box 701, 3000 Leuven, Belgium
| | - Michelle Stakenborg
- Department of Chronic Diseases and Metabolism (CHROMETA), Translational Research Center for Gastrointestinal Disorders (TARGID), KU Leuven, Herestraat 49, O&N1 box 701, 3000 Leuven, Belgium
| | - Gianluca Matteoli
- Department of Chronic Diseases and Metabolism (CHROMETA), Translational Research Center for Gastrointestinal Disorders (TARGID), KU Leuven, Herestraat 49, O&N1 box 701, 3000 Leuven, Belgium.
| |
Collapse
|
10
|
Li MY, Duan JQ, Wang XH, Liu M, Yang QY, Li Y, Cheng K, Liu HQ, Wang F. Inulin Inhibits the Inflammatory Response through Modulating Enteric Glial Cell Function in Type 2 Diabetic Mellitus Mice by Reshaping Intestinal Flora. ACS OMEGA 2023; 8:36729-36743. [PMID: 37841129 PMCID: PMC10568710 DOI: 10.1021/acsomega.3c03055] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/03/2023] [Accepted: 09/13/2023] [Indexed: 10/17/2023]
Abstract
Inulin, a commonly used dietary fiber supplement, is capable of modulating the gut microbiome. Chronic inflammation resulting from metabolic abnormalities and gut flora dysfunction plays a significant role in the development of type 2 diabetes mellitus (T2DM). Our research has demonstrated that inulin administration effectively reduced colonic inflammation in T2DM mice by inducing changes in the gut microbiota and increasing the concentration of butyric acid, which in turn modulated the function of enteric glial cells (EGCs). Experiments conducted on T2DM mice revealed that inulin administration led to an increase in the Bacteroidetes/Firmicutes ratio and the concentration of butyric acid in the colon. The anti-inflammatory effects of altered gastrointestinal flora and its metabolites were further confirmed through fecal microbiota transplantation. Butyric acid was found to inhibit the activation of the κB inhibitor kinase β/nuclear factor κB pathway, regulate the expression levels of interleukin-6 and tumor necrosis factor-α, suppress the abnormal activation of EGCs, and prevent the release of inflammatory factors by EGCs. Similar results were observed in vitro experiments with butyric acid. Our findings demonstrate that inulin, by influencing the intestinal flora, modifies the activity of EGCs to effectively reduce colonic inflammation in T2DM mice.
Collapse
Affiliation(s)
- Meng-Ying Li
- The
Ministry of Education Key Lab of Hazard Assessment and Control in
Special Operational Environment, The Shaanxi Provincial Key Laboratory
of Environmental Health Hazard Assessment and Protection, The Shaanxi
Provincial Key Laboratory of Free Radical Biology and Medicine, Department
of Health Education and Management, School of Preventive Medicine, Air Force Medical University, West Changle Road No. 169, Xi’an, Shaanxi 710032, China
- Department
of Endocrinology, Xijing Hospital, Air Force
Medical University, West
Changle Road No. 127, Xi’an, Shaanxi 710032, China
| | - Jia-Qi Duan
- The
Ministry of Education Key Lab of Hazard Assessment and Control in
Special Operational Environment, The Shaanxi Provincial Key Laboratory
of Environmental Health Hazard Assessment and Protection, The Shaanxi
Provincial Key Laboratory of Free Radical Biology and Medicine, Department
of Health Education and Management, School of Preventive Medicine, Air Force Medical University, West Changle Road No. 169, Xi’an, Shaanxi 710032, China
| | - Xiao-Hui Wang
- The
Ministry of Education Key Lab of Hazard Assessment and Control in
Special Operational Environment, The Shaanxi Provincial Key Laboratory
of Environmental Health Hazard Assessment and Protection, The Shaanxi
Provincial Key Laboratory of Free Radical Biology and Medicine, Department
of Health Education and Management, School of Preventive Medicine, Air Force Medical University, West Changle Road No. 169, Xi’an, Shaanxi 710032, China
| | - Meng Liu
- School
of Environmental and Municipal Engineering, Xi’an University of Architecture and Technology, Middle of Yanta Road No. 13, Xi’an 710055, China
| | - Qiao-Yi Yang
- The
Ministry of Education Key Lab of Hazard Assessment and Control in
Special Operational Environment, The Shaanxi Provincial Key Laboratory
of Environmental Health Hazard Assessment and Protection, The Shaanxi
Provincial Key Laboratory of Free Radical Biology and Medicine, Department
of Health Education and Management, School of Preventive Medicine, Air Force Medical University, West Changle Road No. 169, Xi’an, Shaanxi 710032, China
| | - Yan Li
- Department
of Anatomy, Histology and Embryology and K. K. Leung Brain Research
Centre, Air Force Medical University, West Changle Road No. 169, Xi’an, Shaanxi 710032, China
| | - Kun Cheng
- Department
of Endocrinology, Xijing Hospital, Air Force
Medical University, West
Changle Road No. 127, Xi’an, Shaanxi 710032, China
| | - Han-Qiang Liu
- The
Ministry of Education Key Lab of Hazard Assessment and Control in
Special Operational Environment, The Shaanxi Provincial Key Laboratory
of Environmental Health Hazard Assessment and Protection, The Shaanxi
Provincial Key Laboratory of Free Radical Biology and Medicine, Department
of Health Education and Management, School of Preventive Medicine, Air Force Medical University, West Changle Road No. 169, Xi’an, Shaanxi 710032, China
| | - Feng Wang
- The
Ministry of Education Key Lab of Hazard Assessment and Control in
Special Operational Environment, The Shaanxi Provincial Key Laboratory
of Environmental Health Hazard Assessment and Protection, The Shaanxi
Provincial Key Laboratory of Free Radical Biology and Medicine, Department
of Health Education and Management, School of Preventive Medicine, Air Force Medical University, West Changle Road No. 169, Xi’an, Shaanxi 710032, China
| |
Collapse
|
11
|
Cohen G, Gover O, Schwartz B. Phytocannabinoids Reduce Inflammation of Primed Macrophages and Enteric Glial Cells: An In Vitro Study. Int J Mol Sci 2023; 24:14628. [PMID: 37834076 PMCID: PMC10572654 DOI: 10.3390/ijms241914628] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2023] [Revised: 09/20/2023] [Accepted: 09/25/2023] [Indexed: 10/15/2023] Open
Abstract
Intestinal inflammation is mediated by a subset of cells populating the intestine, such as enteric glial cells (EGC) and macrophages. Different studies indicate that phytocannabinoids could play a possible role in the treatment of inflammatory bowel disease (IBD) by relieving the symptoms involved in the disease. Phytocannabinoids act through the endocannabinoid system, which is distributed throughout the mammalian body in the cells of the immune system and in the intestinal cells. Our in vitro study analyzed the putative anti-inflammatory effect of nine selected pure cannabinoids in J774A1 macrophage cells and EGCs triggered to undergo inflammation with lipopolysaccharide (LPS). The anti-inflammatory effect of several phytocannabinoids was measured by their ability to reduce TNFα transcription and translation in J774A1 macrophages and to diminish S100B and GFAP secretion and transcription in EGCs. Our results demonstrate that THC at the lower concentrations tested exerted the most effective anti-inflammatory effect in both J774A1 macrophages and EGCs compared to the other phytocannabinoids tested herein. We then performed RNA-seq analysis of EGCs exposed to LPS in the presence or absence of THC or THC-COOH. Transcriptomic analysis of these EGCs revealed 23 differentially expressed genes (DEG) compared to the treatment with only LPS. Pretreatment with THC resulted in 26 DEG, and pretreatment with THC-COOH resulted in 25 DEG. To evaluate which biological pathways were affected by the different phytocannabinoid treatments, we used the Ingenuity platform. We show that THC treatment affects the mTOR and RAR signaling pathway, while THC-COOH mainly affects the IL6 signaling pathway.
Collapse
|
12
|
Lefèvre MA, Soret R, Pilon N. Harnessing the Power of Enteric Glial Cells' Plasticity and Multipotency for Advancing Regenerative Medicine. Int J Mol Sci 2023; 24:12475. [PMID: 37569849 PMCID: PMC10419543 DOI: 10.3390/ijms241512475] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2023] [Revised: 07/31/2023] [Accepted: 08/03/2023] [Indexed: 08/13/2023] Open
Abstract
The enteric nervous system (ENS), known as the intrinsic nervous system of the gastrointestinal tract, is composed of a diverse array of neuronal and glial cell subtypes. Fascinating questions surrounding the generation of cellular diversity in the ENS have captivated ENS biologists for a considerable time, particularly with recent advancements in cell type-specific transcriptomics at both population and single-cell levels. However, the current focus of research in this field is predominantly restricted to the study of enteric neuron subtypes, while the investigation of enteric glia subtypes significantly lags behind. Despite this, enteric glial cells (EGCs) are increasingly recognized as equally important regulators of numerous bowel functions. Moreover, a subset of postnatal EGCs exhibits remarkable plasticity and multipotency, distinguishing them as critical entities in the context of advancing regenerative medicine. In this review, we aim to provide an updated overview of the current knowledge on this subject, while also identifying key questions that necessitate future exploration.
Collapse
Affiliation(s)
- Marie A. Lefèvre
- Département des Sciences Biologiques, Université du Québec à Montréal (UQAM), Montreal, QC H3C 3P8, Canada;
- Centre D’excellence en Recherche Sur Les Maladies Orphelines—Fondation Courtois (CERMO-FC), Université du Québec à Montréal, Montreal, QC H2X 3Y7, Canada
| | - Rodolphe Soret
- Département des Sciences Biologiques, Université du Québec à Montréal (UQAM), Montreal, QC H3C 3P8, Canada;
- Centre D’excellence en Recherche Sur Les Maladies Orphelines—Fondation Courtois (CERMO-FC), Université du Québec à Montréal, Montreal, QC H2X 3Y7, Canada
| | - Nicolas Pilon
- Département des Sciences Biologiques, Université du Québec à Montréal (UQAM), Montreal, QC H3C 3P8, Canada;
- Centre D’excellence en Recherche Sur Les Maladies Orphelines—Fondation Courtois (CERMO-FC), Université du Québec à Montréal, Montreal, QC H2X 3Y7, Canada
- Département de Pédiatrie, Université de Montréal, Montreal, QC H3T 1C5, Canada
| |
Collapse
|
13
|
Herath M, Cho E, Marklund U, Franks AE, Bornstein JC, Hill-Yardin EL. Quantitative Spatial Analysis of Neuroligin-3 mRNA Expression in the Enteric Nervous System Reveals a Potential Role in Neuronal-Glial Synapses and Reduced Expression in Nlgn3R451C Mice. Biomolecules 2023; 13:1063. [PMID: 37509099 PMCID: PMC10377306 DOI: 10.3390/biom13071063] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2023] [Revised: 06/23/2023] [Accepted: 06/25/2023] [Indexed: 07/30/2023] Open
Abstract
Mutations in the Neuroligin-3 (Nlgn3) gene are implicated in autism spectrum disorder (ASD) and gastrointestinal (GI) dysfunction, but cellular Nlgn3 expression in the enteric nervous system remains to be characterised. We combined RNAScope in situ hybridization and immunofluorescence to measure Nlgn3 mRNA expression in cholinergic and VIP-expressing submucosal neurons, nitrergic and calretinin-containing myenteric neurons and glial cells in both WT and Nlgn3R451C mutant mice. We measured Nlgn3 mRNA neuronal and glial expression via quantitative three-dimensional image analysis. To validate dual RNAScope/immunofluorescence data, we interrogated available single-cell RNA sequencing (scRNASeq) data to assess for Nlgn3, Nlgn1, Nlgn2 and their binding partners, Nrxn1-3, MGDA1 and MGDA2, in enteric neural subsets. Most submucosal and myenteric neurons expressed Nlgn3 mRNA. In contrast to other Nlgns and binding partners, Nlgn3 was strongly expressed in enteric glia, suggesting a role for neuroligin-3 in mediating enteric neuron-glia interactions. The autism-associated R451C mutation reduces Nlgn3 mRNA expression in cholinergic but not in VIPergic submucosal neurons. In the myenteric plexus, Nlgn3 mRNA levels are reduced in calretinin, nNOS-labelled neurons and S100 β -labelled glia. We provide a comprehensive cellular profile for neuroligin-3 expression in ileal neuronal subpopulations of mice expressing the R451C autism-associated mutation in Nlgn3, which may contribute to the understanding of the pathophysiology of GI dysfunction in ASD.
Collapse
Affiliation(s)
- Madushani Herath
- Department of Anatomy & Physiology, University of Melbourne, Parkville, VIC 3010, Australia
| | - Ellie Cho
- Biological Optical Microscopy Platform, University of Melbourne, Parkville, VIC 3010, Australia
| | - Ulrika Marklund
- Division of Molecular Neurobiology, Department of Medical Biochemistry and Biophysics, Karolinska Institute, 171 77 Stockholm, Sweden
| | - Ashley E Franks
- Department of Microbiology, Anatomy Physiology & Pharmacology, School of Agriculture, Biomedicine and Environment, La Trobe University, Bundoora, VIC 3086, Australia
| | - Joel C Bornstein
- Department of Anatomy & Physiology, University of Melbourne, Parkville, VIC 3010, Australia
| | - Elisa L Hill-Yardin
- School of Health and Biomedical Sciences, STEM College, RMIT University, Bundoora, VIC 3083, Australia
| |
Collapse
|
14
|
Wang L, Yuan PQ, Taché Y. Vasculature in the mouse colon and spatial relationships with the enteric nervous system, glia, and immune cells. Front Neuroanat 2023; 17:1130169. [PMID: 37332321 PMCID: PMC10272736 DOI: 10.3389/fnana.2023.1130169] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2022] [Accepted: 03/15/2023] [Indexed: 06/20/2023] Open
Abstract
The distribution, morphology, and innervation of vasculature in different mouse colonic segments and layers, as well as spatial relationships of the vasculature with the enteric plexuses, glia, and macrophages are far from being complete. The vessels in the adult mouse colon were stained by the cardiovascular perfusion of wheat germ agglutinin (WGA)-Alexa Fluor 448 and by CD31 immunoreactivity. Nerve fibers, enteric glia, and macrophages were immunostained in the WGA-perfused colon. The blood vessels entered from the mesentery to the submucosa and branched into the capillary networks in the mucosa and muscularis externa. The capillary net formed anastomosed rings at the orifices of mucosa crypts, and the capillary rings surrounded the crypts individually in the proximal colon and more than two crypts in the distal colon. Microvessels in the muscularis externa with myenteric plexus were less dense than in the mucosa and formed loops. In the circular smooth muscle layer, microvessels were distributed in the proximal, but not the distal colon. Capillaries did not enter the enteric ganglia. There were no significant differences in microvascular volume per tissue volume between the proximal and distal colon either in the mucosa or muscularis externa containing the myenteric plexus. PGP9.5-, tyrosine hydroxylase-, and calcitonin gene-related peptide (CGRP)-immunoreactive nerve fibers were distributed along the vessels in the submucosa. In the mucosa, PGP9.5-, CGRP-, and vasoactive intestinal peptide (VIP)-immunoreactive nerves terminated close to the capillary rings, while cells and processes labeled by S100B and glial fibrillary acidic protein were distributed mainly in the lamina propria and lower portion of the mucosa. Dense Iba1 immunoreactive macrophages were closely adjacent to the mucosal capillary rings. There were a few macrophages, but no glia in apposition to microvessels in the submucosa and muscularis externa. In conclusion, in the mouse colon, (1) the differences in vasculature between the proximal and distal colon were associated with the morphology, but not the microvascular amount per tissue volume in the mucosa and muscle layers; (2) the colonic mucosa contained significantly more microvessels than the muscularis externa; and (3) there were more CGRP and VIP nerve fibers found close to microvessels in the mucosa and submucosa than in the muscle layers.
Collapse
Affiliation(s)
- Lixin Wang
- Department of Medicine, Vatche and Tamar Manoukian Division of Digestive Diseases, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA, United States
- Veterans Affairs Greater Los Angeles Healthcare System, Los Angeles, CA, United States
| | - Pu-Qing Yuan
- Department of Medicine, Vatche and Tamar Manoukian Division of Digestive Diseases, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA, United States
- Veterans Affairs Greater Los Angeles Healthcare System, Los Angeles, CA, United States
| | - Yvette Taché
- Department of Medicine, Vatche and Tamar Manoukian Division of Digestive Diseases, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA, United States
- Veterans Affairs Greater Los Angeles Healthcare System, Los Angeles, CA, United States
| |
Collapse
|
15
|
Ribeiro Franco PI, do Carmo Neto JR, Miguel MP, Machado JR, Nunes Celes MR. Cancer and Trypanosoma cruzi: Tumor induction or protection? Biochimie 2023; 207:113-121. [PMID: 36368477 DOI: 10.1016/j.biochi.2022.10.019] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2022] [Revised: 10/28/2022] [Accepted: 10/31/2022] [Indexed: 11/09/2022]
Abstract
Trypanosoma cruzi causes Chagas disease, a neglected disease that can be divided, overall, into acute and chronic phases. Understanding the mechanisms underlying its progression is based on the parasite-host interactions occurring during the infection. Although the pathophysiology of the main symptomatic forms of Chagas disease has been the subject of several studies, little is known about their relationship with the development of different types of cancer. Therefore, knowledge regarding the molecular aspects of infection in the host, as well as the influence of the immune response in the parasite and the host, can help to understand the association between Chagas disease and tumor development. This review aims to summarize the main molecular mechanisms related to T. cruzi-dependent carcinogenic development and the mechanisms associated with tumor protection mediated by different parasite components.
Collapse
Affiliation(s)
- Pablo Igor Ribeiro Franco
- Department of Bioscience and Technology, Institute of Tropical Pathology and Public Health, Federal University of Goiás, 74605-050, Goiania, Goiás, Brazil.
| | - José Rodrigues do Carmo Neto
- Department of Bioscience and Technology, Institute of Tropical Pathology and Public Health, Federal University of Goiás, 74605-050, Goiania, Goiás, Brazil
| | - Marina Pacheco Miguel
- Department of Bioscience and Technology, Institute of Tropical Pathology and Public Health, Federal University of Goiás, 74605-050, Goiania, Goiás, Brazil; Veterinary and Animal Science School, Federal University of Goiás, 74605-050, Goiania, Goiás, Brazil
| | - Juliana Reis Machado
- Department of General Pathology, Institute of Biological and Natural Sciences, Federal University of Triângulo Mineiro, 38025-180, Uberaba, Minas Gerais, Brazil
| | - Mara Rúbia Nunes Celes
- Department of Bioscience and Technology, Institute of Tropical Pathology and Public Health, Federal University of Goiás, 74605-050, Goiania, Goiás, Brazil
| |
Collapse
|
16
|
Li Y, Li YR, Jin Y, Li MY, Zhang Q, Cao J, Li F, Zhang H, Chen J, Li YQ. Involvement of enteric glial cells in colonic motility in a rat model of irritable bowel syndrome with predominant diarrhea. J Chem Neuroanat 2023; 128:102235. [PMID: 36669707 DOI: 10.1016/j.jchemneu.2023.102235] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2022] [Revised: 01/15/2023] [Accepted: 01/16/2023] [Indexed: 01/19/2023]
Abstract
The enteric nervous system (ENS) is one of the important systems that regulate gastrointestinal function. The ENS is made up of enteric glial cells (EGCs) and neurons. For a long time, it was believed that the function of EGCs was only to give structural support to neurons. However, recent evidence indicates EGCs are involved in most gut functions, including the development and plasticity of the ENS, epithelial barrier, and motility. However, it remains unclear whether EGCs have the potential to modify colonic motility following irritable bowel syndrome (IBS) with predominant diarrhea (IBS-D). This study aimed to investigate changes in EGCs during IBS-D and assessed the effects of manipulating EGCs. An IBS-D rat model was constructed using acetic acid and restraint stress, and DL-fluorocitric acid (FC), an inhibitor of EGCs, was administered. The changes in EGCs and colonic motility were studied by employing techniques comprising morphological, molecular biological and functional experiments. The results showed significant activation of EGCs in the myenteric plexus (MP) of the IBS-D-induced rat colon with accelerated colonic motility. FC significantly reduced the activation of EGCs and colonic motility caused by acetic acid and restraint stress. Hypercontraction of the colon caused by IBS-D may be associated with activation of EGCs in the MP of the colon and this was prevented by FC. Therefore, regulating colon hypercontraction through interference with the activation of EGCs has significant prospects for clinical application to alleviate diarrhea in patients with IBS-D.
Collapse
Affiliation(s)
- Yan Li
- Department of Anatomy, Histology and Embryology and K. K. Leung Brain Research Centre, The Fourth Military Medical University, Xi'an 710032, China; Department of Geriatrics, Tangdu Hospital, The Fourth Military Medical University, Xi'an 710038, China; Department of Human Anatomy, Basic Medical College, Zunyi Medical University, Zunyi 563006, China
| | - Yan-Rong Li
- Department of Gastroenterology, The First Affiliated Hospital of Jinzhou Medical University, Jinzhou 121000, China
| | - Yuan Jin
- Department of Human Anatomy, Basic Medical College, Zunyi Medical University, Zunyi 563006, China
| | - Meng-Ying Li
- Department of Endocrinology and Metabolism, Xijing Hospital, The Fourth Medical University, Xi'an 710032, China
| | - Qian Zhang
- Department of Human Anatomy, Basic Medical College, Zunyi Medical University, Zunyi 563006, China
| | - Jing Cao
- Department of Human Anatomy, College of Preclinical Medical Sciences, Zhengzhou University, Zhengzhou 450001, China
| | - Fei Li
- Department of Anatomy, Histology and Embryology and K. K. Leung Brain Research Centre, The Fourth Military Medical University, Xi'an 710032, China
| | - Hua Zhang
- Department of Geriatrics, Tangdu Hospital, The Fourth Military Medical University, Xi'an 710038, China.
| | - Jing Chen
- Department of Anatomy, Histology and Embryology and K. K. Leung Brain Research Centre, The Fourth Military Medical University, Xi'an 710032, China.
| | - Yun-Qing Li
- Department of Anatomy, Histology and Embryology and K. K. Leung Brain Research Centre, The Fourth Military Medical University, Xi'an 710032, China; Department of Geriatrics, Tangdu Hospital, The Fourth Military Medical University, Xi'an 710038, China; Department of Human Anatomy, Basic Medical College, Zunyi Medical University, Zunyi 563006, China; Key Laboratory of Brain Science Research and Transformation in Tropical Environment of Hainan Province, Hainan Medical University, Haikou 571199, China.
| |
Collapse
|
17
|
Emmi A, Sandre M, Russo FP, Tombesi G, Garrì F, Campagnolo M, Carecchio M, Biundo R, Spolverato G, Macchi V, Savarino E, Farinati F, Parchi P, Porzionato A, Bubacco L, De Caro R, Kovacs GG, Antonini A. Duodenal alpha-Synuclein Pathology and Enteric Gliosis in Advanced Parkinson's Disease. Mov Disord 2023. [PMID: 36847308 DOI: 10.1002/mds.29358] [Citation(s) in RCA: 23] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2022] [Revised: 01/26/2023] [Accepted: 02/03/2023] [Indexed: 03/01/2023] Open
Abstract
BACKGROUND The role of the gut-brain axis has been recently highlighted as a major contributor to Parkinson's disease (PD) physiopathology, with numerous studies investigating bidirectional transmission of pathological protein aggregates, such as α-synuclein (αSyn). However, the extent and the characteristics of pathology in the enteric nervous system have not been fully investigated. OBJECTIVE We characterized αSyn alterations and glial responses in duodenum biopsies of patients with PD by employing topography-specific sampling and conformation-specific αSyn antibodies. METHODS We examined 18 patients with advanced PD who underwent Duodopa percutaneous endoscopic gastrostomy and jejunal tube procedure, 4 untreated patients with early PD (disease duration <5 years), and 18 age- and -sex-matched healthy control subjects undergoing routine diagnostic endoscopy. A mean of four duodenal wall biopsies were sampled from each patient. Immunohistochemistry was performed for anti-aggregated αSyn (5G4) and glial fibrillary acidic protein antibodies. Morphometrical semiquantitative analysis was performed to characterize αSyn-5G4+ and glial fibrillary acidic protein-positive density and size. RESULTS Immunoreactivity for aggregated α-Syn was identified in all patients with PD (early and advanced) compared with controls. αSyn-5G4+ colocalized with neuronal marker β-III-tubulin. Evaluation of enteric glial cells demonstrated an increased size and density when compared with controls, suggesting reactive gliosis. CONCLUSIONS We found evidence of synuclein pathology and gliosis in the duodenum of patients with PD, including early de novo cases. Future studies are required to evaluate how early in the disease process duodenal pathology occurs and its possible contribution to levodopa effect in chronic patients. © 2023 The Authors. Movement Disorders published by Wiley Periodicals LLC on behalf of International Parkinson and Movement Disorder Society.
Collapse
Affiliation(s)
- Aron Emmi
- Institute of Human Anatomy, Department of Neuroscience, University of Padova, Padova, Italy
- Parkinson and Movement Disorders Unit, Centre for Rare Neurological Diseases, Padua Neuroscience Center (PNC), Department of Neuroscience, University of Padova, Padova, Italy
- Center for Neurodegenerative Disease Research (CESNE), Department of Neuroscience, University of Padova, Padova, Italy
| | - Michele Sandre
- Parkinson and Movement Disorders Unit, Centre for Rare Neurological Diseases, Padua Neuroscience Center (PNC), Department of Neuroscience, University of Padova, Padova, Italy
- Center for Neurodegenerative Disease Research (CESNE), Department of Neuroscience, University of Padova, Padova, Italy
| | - Francesco Paolo Russo
- Center for Neurodegenerative Disease Research (CESNE), Department of Neuroscience, University of Padova, Padova, Italy
- Department of Surgery, Oncology and Gastroenterology, Padova University Hospital, Padova, Italy
| | - Giulia Tombesi
- Department of Biology, University of Padova, Padova, Italy
| | - Federica Garrì
- Parkinson and Movement Disorders Unit, Centre for Rare Neurological Diseases, Padua Neuroscience Center (PNC), Department of Neuroscience, University of Padova, Padova, Italy
| | - Marta Campagnolo
- Parkinson and Movement Disorders Unit, Centre for Rare Neurological Diseases, Padua Neuroscience Center (PNC), Department of Neuroscience, University of Padova, Padova, Italy
- Center for Neurodegenerative Disease Research (CESNE), Department of Neuroscience, University of Padova, Padova, Italy
| | - Miryam Carecchio
- Parkinson and Movement Disorders Unit, Centre for Rare Neurological Diseases, Padua Neuroscience Center (PNC), Department of Neuroscience, University of Padova, Padova, Italy
- Center for Neurodegenerative Disease Research (CESNE), Department of Neuroscience, University of Padova, Padova, Italy
| | - Roberta Biundo
- Parkinson and Movement Disorders Unit, Centre for Rare Neurological Diseases, Padua Neuroscience Center (PNC), Department of Neuroscience, University of Padova, Padova, Italy
- Center for Neurodegenerative Disease Research (CESNE), Department of Neuroscience, University of Padova, Padova, Italy
- Department of General Psychology, University of Padova, Padova, Italy
| | - Gaya Spolverato
- Center for Neurodegenerative Disease Research (CESNE), Department of Neuroscience, University of Padova, Padova, Italy
- Department of Surgery, Oncology and Gastroenterology, Padova University Hospital, Padova, Italy
| | - Veronica Macchi
- Institute of Human Anatomy, Department of Neuroscience, University of Padova, Padova, Italy
- Center for Neurodegenerative Disease Research (CESNE), Department of Neuroscience, University of Padova, Padova, Italy
| | - Edoardo Savarino
- Center for Neurodegenerative Disease Research (CESNE), Department of Neuroscience, University of Padova, Padova, Italy
- Department of Surgery, Oncology and Gastroenterology, Padova University Hospital, Padova, Italy
| | - Fabio Farinati
- Center for Neurodegenerative Disease Research (CESNE), Department of Neuroscience, University of Padova, Padova, Italy
- Department of Surgery, Oncology and Gastroenterology, Padova University Hospital, Padova, Italy
| | - Piero Parchi
- Department of Pathobiology and Laboratory Medicine, University of Toronto, Toronto, Ontario, Canada
- IRCCS, Istituto delle Scienze Neurologiche di Bologna, Bologna, Italy
- Department of Biomedical and Neuromotor Sciences, University of Bologna, Bologna, Italy
| | - Andrea Porzionato
- Institute of Human Anatomy, Department of Neuroscience, University of Padova, Padova, Italy
- Center for Neurodegenerative Disease Research (CESNE), Department of Neuroscience, University of Padova, Padova, Italy
| | - Luigi Bubacco
- Center for Neurodegenerative Disease Research (CESNE), Department of Neuroscience, University of Padova, Padova, Italy
- Department of Biology, University of Padova, Padova, Italy
| | - Raffaele De Caro
- Institute of Human Anatomy, Department of Neuroscience, University of Padova, Padova, Italy
- Center for Neurodegenerative Disease Research (CESNE), Department of Neuroscience, University of Padova, Padova, Italy
| | - Gabor G Kovacs
- Tanz Centre for Research in Neurodegenerative Disease, University of Toronto, Toronto, Ontario, Canada
- Departments of Laboratory Medicine and Pathobiology and Medicine, University of Toronto, Toronto, Ontario, Canada
- Laboratory Medicine Program & Krembil Brain Institute, University Health Network, Toronto, Ontario, Canada
| | - Angelo Antonini
- Parkinson and Movement Disorders Unit, Centre for Rare Neurological Diseases, Padua Neuroscience Center (PNC), Department of Neuroscience, University of Padova, Padova, Italy
- Center for Neurodegenerative Disease Research (CESNE), Department of Neuroscience, University of Padova, Padova, Italy
| |
Collapse
|
18
|
Gala DS, Titlow JS, Teodoro RO, Davis I. Far from home: the role of glial mRNA localization in synaptic plasticity. RNA (NEW YORK, N.Y.) 2023; 29:153-169. [PMID: 36442969 PMCID: PMC9891262 DOI: 10.1261/rna.079422.122] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Neurons and glia are highly polarized cells, whose distal cytoplasmic functional subdomains require specific proteins. Neurons have axonal and dendritic cytoplasmic extensions containing synapses whose plasticity is regulated efficiently by mRNA transport and localized translation. The principles behind these mechanisms are equally attractive for explaining rapid local regulation of distal glial cytoplasmic projections, independent of their cell nucleus. However, in contrast to neurons, mRNA localization has received little experimental attention in glia. Nevertheless, there are many functionally diverse glial subtypes containing extensive networks of long cytoplasmic projections with likely localized regulation that influence neurons and their synapses. Moreover, glia have many other neuron-like properties, including electrical activity, secretion of gliotransmitters and calcium signaling, influencing, for example, synaptic transmission, plasticity and axon pruning. Here, we review previous studies concerning glial transcripts with important roles in influencing synaptic plasticity, focusing on a few cases involving localized translation. We discuss a variety of important questions about mRNA transport and localized translation in glia that remain to be addressed, using cutting-edge tools already available for neurons.
Collapse
Affiliation(s)
- Dalia S Gala
- Department of Biochemistry, The University of Oxford, Oxford OX1 3QU, United Kingdom
| | - Joshua S Titlow
- Department of Biochemistry, The University of Oxford, Oxford OX1 3QU, United Kingdom
| | - Rita O Teodoro
- iNOVA4Health, NOVA Medical School-Faculdade de Ciências Médicas, Universidade Nova de Lisboa, Lisboa 1169-056, Portugal
| | - Ilan Davis
- Department of Biochemistry, The University of Oxford, Oxford OX1 3QU, United Kingdom
| |
Collapse
|
19
|
Phuong-Nguyen K, McNeill BA, Aston-Mourney K, Rivera LR. Advanced Glycation End-Products and Their Effects on Gut Health. Nutrients 2023; 15:nu15020405. [PMID: 36678276 PMCID: PMC9867518 DOI: 10.3390/nu15020405] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2022] [Revised: 12/20/2022] [Accepted: 01/11/2023] [Indexed: 01/14/2023] Open
Abstract
Dietary advanced glycation end-products (AGEs) are a heterogeneous group of compounds formed when reducing sugars are heated with proteins, amino acids, or lipids at high temperatures for a prolonged period. The presence and accumulation of AGEs in numerous cell types and tissues are known to be prevalent in the pathology of many diseases. Modern diets, which contain a high proportion of processed foods and therefore a high level of AGE, cause deleterious effects leading to a multitude of unregulated intracellular and extracellular signalling and inflammatory pathways. Currently, many studies focus on investigating the chemical and structural aspects of AGEs and how they affect the metabolism and the cardiovascular and renal systems. Studies have also shown that AGEs affect the digestive system. However, there is no complete picture of the implication of AGEs in this area. The gastrointestinal tract is not only the first and principal site for the digestion and absorption of dietary AGEs but also one of the most susceptible organs to AGEs, which may exert many local and systemic effects. In this review, we summarise the current evidence of the association between a high-AGE diet and poor health outcomes, with a special focus on the relationship between dietary AGEs and alterations in the gastrointestinal structure, modifications in enteric neurons, and microbiota reshaping.
Collapse
|
20
|
Dong Z, Barraza G, Affolter KE, Witt BL, Jedrzkiewicz J. Distinguishing Gastrointestinal Leiomyomas From Muscularis Propria in Biopsy Specimens by Differential Expression of S100 Immunohistochemical Stain. Am J Clin Pathol 2023; 159:53-59. [PMID: 36367375 DOI: 10.1093/ajcp/aqac128] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2022] [Accepted: 09/13/2022] [Indexed: 11/12/2022] Open
Abstract
OBJECTIVES Interpreting small biopsy specimens or fine-needle aspirations of gastrointestinal tract (GI) smooth muscle lesions may be challenging when the differential diagnosis includes leiomyoma vs muscularis propria (MP). We evaluated the utility of S100 staining in distinguishing GI leiomyomas from MP. METHODS A search was conducted in our laboratory information system for cases of leiomyomas arising within the GI tract (2004-2021). Site-matched controls containing MP were selected (2018-2020). Five high-power fields (hpf) were counted on S100 immunohistochemical stains by two pathologists in the resections and by three different blinded pathologists in the biopsy specimens and analyzed. RESULTS The median S100 count was 2.5/5 hpf in leiomyoma resection cases (n = 38), which was significantly lower than the median count of 548/5 hpf in MP (n = 19) with a P value of <.0001. The median S100 count in biopsy specimens (n = 16) was 1.2/5 hpf and within the expected range of 1 to 104/5 hpf (minimum-maximum value) established by the leiomyoma resections. S100 counts in the normal MP were significantly higher than those observed in leiomyomas (P < .001). CONCLUSIONS S100 staining can aid in distinguishing a leiomyoma from MP in the GI tract, which is especially helpful when evaluating cases with limited sampling.
Collapse
Affiliation(s)
- Zachary Dong
- Department of Pathology, University of Utah, Salt Lake City, UT, USAand
| | - Gonzalo Barraza
- Department of Pathology, George E. Wahlen Department of Veterans Affairs Medical Center, Salt Lake City, UT, USA
| | - Kajsa E Affolter
- Department of Pathology, University of Utah, Salt Lake City, UT, USAand
| | - Benjamin L Witt
- Department of Pathology, University of Utah, Salt Lake City, UT, USAand
| | | |
Collapse
|
21
|
Felipe GZ, Teixeira LO, Pereira RM, Zanoni JN, Souza SRG, Nanni L, Cavalcanti GDC, Costa YMG. Cancer Identification in Enteric Nervous System Preclinical Images Using Handcrafted and Automatic Learned Features. Neural Process Lett 2022. [DOI: 10.1007/s11063-022-11114-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
|
22
|
Overexpression of microRNA-211 in Functional Dyspepsia via Downregulation of the Glial Cell Line-Derived Neurotrophic Factor (GDNF) by Increasing Phosphorylation of p38 MAPK Pathway. Can J Gastroenterol Hepatol 2022; 2022:9394381. [PMID: 36569394 PMCID: PMC9771656 DOI: 10.1155/2022/9394381] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/08/2022] [Revised: 11/09/2022] [Accepted: 11/11/2022] [Indexed: 12/15/2022] Open
Abstract
BACKGROUND Overexpression of miRNA-211 suppresses the differentiation of bone marrow stem cells into intestinal ganglion cells via downregulation of GDNF, a regulator of intestine barrier function. The study aimed to investigate the interaction between miR-211 and GDNF on intestinal epithelial cells. METHODS The expression levels of miR-211 and GDNF in duodenal biopsy specimens from FD patients and healthy controls were compared. Enteric glia cell (EGCs) cell line transfected with miR-211 mimics and inhibitors were used to clarify the expression levels of GDNF were analyzed by qRT-PCR and ELISA. Intestine epithelial cell (IECs) cell line cultured in medium from ECGs in different transfection conditions were used in wound healing assay, cell proliferation assay, and western blotting for evaluation of p38 MAPK phosphorylation level. RESULTS MiR-211 expression was significantly upregulated in the duodenal tissue of patients with FD compared to healthy subjects, whereas GDNF expression was significantly downregulated (both p < 0.05). Transfection with miR-211 mimics significantly decreased GDNF mRNA expression and protein secretion (p < 0.001). An inhibited intestinal epithelial cell wound healing (p < 0.05) and increased expression levels of phosphorylated p38 MAPK (p < 0.05) were found in IECs cultured with medium from EGCs transfected with miR-211 mimics. CONCLUSIONS MiR-211 may downregulates GDNF mRNA and protein expression via activation of the pp38 MAPK signaling pathway. Targeting miR-211 or the MAPK pathway may be a potential intervention for FD.
Collapse
|
23
|
Colonic mast cells trigger enteric neuronal death through the S100β/RAGE/NFκB pathway on Inflammatory Bowel Diseases. Med Hypotheses 2022. [DOI: 10.1016/j.mehy.2022.111004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
|
24
|
Chen W, Liao L, Huang Z, Lu Y, Lin Y, Pei Y, Yi S, Huang C, Cao H, Tan B. Patchouli alcohol improved diarrhea-predominant irritable bowel syndrome by regulating excitatory neurotransmission in the myenteric plexus of rats. Front Pharmacol 2022; 13:943119. [PMID: 36452228 PMCID: PMC9703083 DOI: 10.3389/fphar.2022.943119] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2022] [Accepted: 10/31/2022] [Indexed: 09/07/2023] Open
Abstract
Background and Purpose: Irritable bowel syndrome (IBS) is usually associated with chronic gastrointestinal disorders. Its most common subtype is accompanied with diarrhea (IBS-D). The enteric nervous system (ENS) modulates major gastrointestinal motility and functions whose aberration may induce IBS-D. The enteric neurons are susceptible to long-term neurotransmitter level alterations. The patchouli alcohol (PA), extracted from Pogostemonis Herba, has been reported to regulate neurotransmitter release in the ENS, while its effectiveness against IBS-D and the underlying mechanism remain unknown. Experimental Approach: In this study, we established an IBS-D model in rats through chronic restraint stress. We administered the rats with 5, 10, and 20 mg/kg of PA for intestinal and visceral examinations. The longitudinal muscle myenteric plexus (LMMP) neurons were further immunohistochemically stained for quantitative, morphological, and neurotransmitters analyses. Key Results: We found that PA decreased visceral sensitivity, diarrhea symptoms and intestinal transit in the IBS-D rats. Meanwhile, 10 and 20 mg/kg of PA significantly reduced the proportion of excitatory LMMP neurons in the distal colon, decreased the number of acetylcholine (Ach)- and substance P (SP)-positive neurons in the distal colon and restored the levels of Ach and SP in the IBS-D rats. Conclusion and Implications: These findings indicated that PA modulated LMMP excitatory neuron activities, improved intestinal motility and alleviated IBS-induced diarrheal symptoms, suggesting the potential therapeutic efficacy of PA against IBS-D.
Collapse
Affiliation(s)
- Wanyu Chen
- Research Centre of Basic Intergrative Medicine, School of Basic Medical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Lu Liao
- Shenzhen Hospital of Shanghai University of Traditional Chinese Medicine, Guangzhou, China
| | - Zitong Huang
- Research Centre of Basic Intergrative Medicine, School of Basic Medical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Yulin Lu
- Research Centre of Basic Intergrative Medicine, School of Basic Medical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Yukang Lin
- College of Integrated Chinese and Western Medicines, Hunan University of Chinese Medicine, Changsha, Hunan, China
| | - Ying Pei
- Research Centre of Basic Intergrative Medicine, School of Basic Medical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Shulin Yi
- Research Centre of Basic Intergrative Medicine, School of Basic Medical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Chen Huang
- Research Centre of Basic Intergrative Medicine, School of Basic Medical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Hongying Cao
- School of Chinese Materia Medica, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Bo Tan
- Research Centre of Basic Intergrative Medicine, School of Basic Medical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, China
| |
Collapse
|
25
|
Liu G, Khan I, Li Y, Yang Y, Lu X, Wang Y, Li J, Zhang C. Overcoming Anxiety Disorder by Probiotic Lactiplantibacillus plantarum LZU-J-TSL6 through Regulating Intestinal Homeostasis. Foods 2022; 11:foods11223596. [PMID: 36429192 PMCID: PMC9689226 DOI: 10.3390/foods11223596] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2022] [Revised: 10/14/2022] [Accepted: 11/04/2022] [Indexed: 11/16/2022] Open
Abstract
Lactiplantibacillus plantarum LZU-J-TSL6 with high γ-aminobutyric acid (GABA) production (3.838 g/L) was screened and isolated from the Chinese fermented food snack “Jiangshui”. The improvement effect on anxiety disorder was explored using mice as animal models. In vitro results revealed that LZU-J-TSL6 had the potential to colonize the intestine (p < 0.01) and the anxiety-like behavior of the mice after seven days’ gavage with LZU-J-TSL6 was significantly improved (p < 0.01) when compared to the model group. LZU-J-TSL6 was able to effectively increase the GABA content in the mice hippocampus (p < 0.0001) and restore some markers related to anxiety such as brain-derived neurotrophic factor (BDNF), glial fibrillary acidic protein (GFAP), and 5-hydroxytryptamine (5-HT). Simultaneously, it had a certain repair effect on Nissl bodies and colon tissue in mice hippocampus. In addition, LZU-J-TSL6 increased the relative abundance of beneficial bacteria Bacteroides and Muribaculum, thereby regulating the imbalance of intestinal microbiota caused by anxiety disorder. It also affects the nerve pathway and intestinal mucosal barrier by increasing the content of glutamine and γ-aminobutyric acid and other related metabolites, thereby improving anxiety. Therefore, the GABA-producing Lactobacillus plantus LZU-J-TSL6 can be used as a probiotic to exert an indirect or direct anti-anxiety effect by maintaining the balance of the intestinal environment, producing related metabolites that affect nerve pathways and repair the intestinal mucosal barrier. It can be used as an adjuvant treatment to improve anxiety disorders.
Collapse
Affiliation(s)
- Guanlan Liu
- School of Life Sciences, Lanzhou University, Lanzhou 730000, China
- Key Laboratory of Cell Activities and Stress Adaptations, Ministry of Education, Lanzhou University, Lanzhou 730000, China
- Gansu Key Laboratory of Biomonitoring and Bioremediation for Environmental Pollution, Lanzhou University, Lanzhou 730000, China
| | - Israr Khan
- School of Life Sciences, Lanzhou University, Lanzhou 730000, China
- Key Laboratory of Cell Activities and Stress Adaptations, Ministry of Education, Lanzhou University, Lanzhou 730000, China
- Gansu Key Laboratory of Biomonitoring and Bioremediation for Environmental Pollution, Lanzhou University, Lanzhou 730000, China
| | - Yuxi Li
- School of Life Sciences, Lanzhou University, Lanzhou 730000, China
- Key Laboratory of Cell Activities and Stress Adaptations, Ministry of Education, Lanzhou University, Lanzhou 730000, China
- Gansu Key Laboratory of Biomonitoring and Bioremediation for Environmental Pollution, Lanzhou University, Lanzhou 730000, China
| | - Yun Yang
- School of Pharmacy, Lanzhou University, Lanzhou 730000, China
| | - Xuerui Lu
- School of Pharmacy, Lanzhou University, Lanzhou 730000, China
| | - Yafei Wang
- School of Pharmacy, Lanzhou University, Lanzhou 730000, China
| | - Junxiang Li
- School of Pharmacy, Lanzhou University, Lanzhou 730000, China
| | - Chunjiang Zhang
- School of Life Sciences, Lanzhou University, Lanzhou 730000, China
- Key Laboratory of Cell Activities and Stress Adaptations, Ministry of Education, Lanzhou University, Lanzhou 730000, China
- Gansu Key Laboratory of Biomonitoring and Bioremediation for Environmental Pollution, Lanzhou University, Lanzhou 730000, China
- Gansu Key Laboratory of Functional Genomics and Molecular Diagnosis, Lanzhou University, Lanzhou 730000, China
- Correspondence:
| |
Collapse
|
26
|
Heng Y, Li YY, Wen L, Yan JQ, Chen NH, Yuan YH. Gastric Enteric Glial Cells: A New Contributor to the Synucleinopathies in the MPTP-Induced Parkinsonism Mouse. Molecules 2022; 27:7414. [PMID: 36364248 PMCID: PMC9656042 DOI: 10.3390/molecules27217414] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2022] [Revised: 10/20/2022] [Accepted: 10/20/2022] [Indexed: 05/19/2024] Open
Abstract
Accumulating evidence has shown that Parkinson's disease (PD) is a systemic disease other than a mere central nervous system (CNS) disorder. One of the most important peripheral symptoms is gastrointestinal dysfunction. The enteric nervous system (ENS) is regarded as an essential gateway to the environment. The discovery of the prion-like behavior of α-synuclein makes it possible for the neurodegenerative process to start in the ENS and spread via the gut-brain axis to the CNS. We first confirmed that synucleinopathies existed in the stomachs of chronic 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP)/probenecid (MPTP/p)-induced PD mice, as indicated by the significant increase in abnormal aggregated and nitrated α-synuclein in the TH-positive neurons and enteric glial cells (EGCs) of the gastric myenteric plexus. Next, we attempted to clarify the mechanisms in single MPTP-injected mice. The stomach naturally possesses high monoamine oxidase-B (MAO-B) activity and low superoxide dismutase (SOD) activity, making the stomach susceptible to MPTP-induced oxidative stress, as indicated by the significant increase in reactive oxygen species (ROS) in the stomach and elevated 4-hydroxynonenal (4-HNE) in the EGCs after MPTP exposure for 3 h. Additionally, stomach synucleinopathies appear before those of the nigrostriatal system, as determined by Western blotting 12 h after MPTP injection. Notably, nitrated α-synuclein was considerably increased in the EGCs after 3 h and 12 h of MPTP exposure. Taken together, our work demonstrated that the EGCs could be new contributors to synucleinopathies in the stomach. The early-initiated synucleinopathies might further influence neighboring neurons in the myenteric plexus and the CNS. Our results offer a new experimental clue for interpreting the etiology of PD.
Collapse
Affiliation(s)
- Yang Heng
- State Key Laboratory of Bioactive Substances and Functions of Natural Medicines, Department of Pharmacology, Institute of Materia Medica & Neuroscience Center, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China
| | - Yan-Yan Li
- State Key Laboratory of Bioactive Substances and Functions of Natural Medicines, Department of Pharmacology, Institute of Materia Medica & Neuroscience Center, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China
| | - Lu Wen
- State Key Laboratory of Bioactive Substances and Functions of Natural Medicines, Department of Pharmacology, Institute of Materia Medica & Neuroscience Center, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China
| | - Jia-Qing Yan
- Department of Pharmacy, National Cancer Center/National, Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union, Medical College, Beijing 100021, China
| | - Nai-Hong Chen
- State Key Laboratory of Bioactive Substances and Functions of Natural Medicines, Department of Pharmacology, Institute of Materia Medica & Neuroscience Center, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China
| | - Yu-He Yuan
- State Key Laboratory of Bioactive Substances and Functions of Natural Medicines, Department of Pharmacology, Institute of Materia Medica & Neuroscience Center, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China
| |
Collapse
|
27
|
The Enteric Glia and Its Modulation by the Endocannabinoid System, a New Target for Cannabinoid-Based Nutraceuticals? MOLECULES (BASEL, SWITZERLAND) 2022; 27:molecules27196773. [PMID: 36235308 PMCID: PMC9570628 DOI: 10.3390/molecules27196773] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/01/2022] [Revised: 09/21/2022] [Accepted: 09/26/2022] [Indexed: 11/29/2022]
Abstract
The enteric nervous system (ENS) is a part of the autonomic nervous system that intrinsically innervates the gastrointestinal (GI) tract. Whereas enteric neurons have been deeply studied, the enteric glial cells (EGCs) have received less attention. However, these are immune-competent cells that contribute to the maintenance of the GI tract homeostasis through supporting epithelial integrity, providing neuroprotection, and influencing the GI motor function and sensation. The endogenous cannabinoid system (ECS) includes endogenous classical cannabinoids (anandamide, 2-arachidonoylglycerol), cannabinoid-like ligands (oleoylethanolamide (OEA) and palmitoylethanolamide (PEA)), enzymes involved in their metabolism (FAAH, MAGL, COX-2) and classical (CB1 and CB2) and non-classical (TRPV1, GPR55, PPAR) receptors. The ECS participates in many processes crucial for the proper functioning of the GI tract, in which the EGCs are involved. Thus, the modulation of the EGCs through the ECS might be beneficial to treat some dysfunctions of the GI tract. This review explores the role of EGCs and ECS on the GI tract functions and dysfunctions, and the current knowledge about how EGCs may be modulated by the ECS components, as possible new targets for cannabinoids and cannabinoid-like molecules, particularly those with potential nutraceutical use.
Collapse
|
28
|
Santos AAQA, Costa DVS, Foschetti DA, Duarte ASG, Martins CS, Soares PMG, Castelucci P, Brito GAC. P2X7 receptor blockade decreases inflammation, apoptosis, and enteric neuron loss during Clostridioides difficile toxin A-induced ileitis in mice. World J Gastroenterol 2022; 28:4075-4088. [PMID: 36157120 PMCID: PMC9403433 DOI: 10.3748/wjg.v28.i30.4075] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/09/2021] [Revised: 05/04/2022] [Accepted: 07/11/2022] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND Clostridioides difficile (C. difficile) is the most common pathogen causing health care-associated infections. C. difficile TcdA and TcdB have been shown to activate enteric neurons; however, what population of these cells is more profoundly influenced and the mechanism underlying these effects remain unknown.
AIM To characterize a specific population of TcdA-affected myenteric neurons and investigate the role of the P2X7 receptor in TcdA-induced ileal inflammation, cell death, and the changes in the enteric nervous system in mice.
METHODS Swiss mice were used to model TcdA-induced ileitis in ileal loops exposed to TcdA (50 μg/Loop) for 4 h. To investigate the role of the P2X7 receptor, Brilliant Blue G (50 mg/kg, i.p.), which is a nonspecific P2X7 receptor antagonist, or A438079 (0.7 μg/mouse, i.p.), which is a competitive P2X7 receptor antagonist, were injected one hour prior to TcdA challenge. Ileal samples were collected to analyze the expression of the P2X7 receptor (by quantitative real-time polymerase chain reaction and immunohistochemistry), the population of myenteric enteric neurons (immunofluorescence), histological damage, intestinal inflammation, cell death (terminal deoxynucleotidyltransferase-mediated dUTP-biotin nick end labeling), neuronal loss, and S100B synthesis (immunohistochemistry).
RESULTS TcdA upregulated (P < 0.05) the expression of the P2X7 receptor gene in the ileal tissues, increasing the level of this receptor in myenteric neurons compared to that in control mice. Comparison with the control mice indicated that TcdA promoted (P < 0.05) the loss of myenteric calretinin+ (Calr) and choline acetyltransferase+ neurons and increased the number of nitrergic+ and Calr+ neurons expressing the P2X7 receptor. Blockade of the P2X7 receptor decreased TcdA-induced intestinal damage, cytokine release [interleukin (IL)-1β, IL-6, IL-8, and tumor necrosis factor-α], cell death, enteric neuron loss, and S100B synthesis in the mouse ileum.
CONCLUSION Our findings demonstrated that TcdA induced the upregulation of the P2X7 receptor, which promoted enteric neuron loss, S100B synthesis, tissue damage, inflammation, and cell death in the mouse ileum. These findings contribute to the future directions in understanding the mechanism involved in intestinal dysfunction reported in patients after C. difficile infection.
Collapse
Affiliation(s)
- Ana A Q A Santos
- Department of Morphology, School of Medicine, Federal University of Ceara, Fortaleza 60430-170, Ceara, Brazil
| | - Deiziane V S Costa
- Department of Morphology, School of Medicine, Federal University of Ceara, Fortaleza 60430-170, Ceara, Brazil
- Department of Physiology and Pharmacology, School of Medicine, Federal University of Ceará, Fortaleza 60430-170, Ceara, Brazil
| | - Danielle A Foschetti
- Department of Pathology and Legal Medicine, School of Medicine, Federal University of Ceara, Fortaleza 60430-170, Ceara, Brazil
| | - Antoniella S G Duarte
- Department of Morphology (UFC), Federal University of Ceara, Fortaleza 60430-170, Ceara, Brazil
| | - Conceição S Martins
- Department of Morphology, School of Medicine, Federal University of Ceara, Fortaleza 60430-170, Ceara, Brazil
| | - Pedro M G Soares
- Department of Morphology, School of Medicine, Federal University of Ceara, Fortaleza 60430-170, Ceara, Brazil
| | - Patricia Castelucci
- Department of Anatomy, Institute of Biomedical Sciences, University of São Paulo, Sao Paulo 05508-270, Brazil
| | - Gerly A C Brito
- Department of Morphology, Federal University of Ceara, Fortaleza 60140-170, Ceara, Brazil
| |
Collapse
|
29
|
Sui C, Tao L, Bai C, Shao L, Miao J, Chen K, Wang M, Hu Q, Wang F. Molecular and cellular mechanisms underlying postoperative paralytic ileus by various immune cell types. Front Pharmacol 2022; 13:929901. [PMID: 35991871 PMCID: PMC9385171 DOI: 10.3389/fphar.2022.929901] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2022] [Accepted: 06/29/2022] [Indexed: 11/13/2022] Open
Abstract
Postoperative ileus (POI) is a well-known complication following gut manipulation or surgical trauma, leading to an impaired gut motility and prolonged postoperative recovery time. Few current therapeutic strategies can prevent POI, and this disorder remains to be a major clinical challenge for patients undergoing surgery. Comprehensive understanding of cellular and molecular mechanisms related to the pathogenesis of POI stimulates the discovery of more promising targets for treatment. POI is closely associated with a series of inflammatory events within the bowel wall, and as key components of inflammatory mechanisms, different types of immune cells, including macrophages, dendritic cells, and T lymphocytes, play significant roles during the development of POI. A variety of immune cells are recruited into the manipulation sites after surgery, contributing to early inflammatory events or impaired gut motility. Our review intends to summarize the specific relationship between different immune cells and POI, mainly focusing on the relevant mechanisms underlying this disorder.
Collapse
Affiliation(s)
- Chao Sui
- Department of Gastrointestinal Surgery, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Nanjing, China
- Medical School of Nanjing University, Nanjing, China
| | - Liang Tao
- Department of Gastrointestinal Surgery, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Nanjing, China
| | - Chunhua Bai
- Department of Gastrointestinal Surgery, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Nanjing, China
- Medical School of Nanjing University, Nanjing, China
| | - Lihua Shao
- Department of Gastrointestinal Surgery, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Nanjing, China
| | - Ji Miao
- Department of Gastrointestinal Surgery, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Nanjing, China
| | - Kai Chen
- Department of Gastrointestinal Surgery, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Nanjing, China
- Medical School of Nanjing University, Nanjing, China
| | - Meng Wang
- Department of Gastrointestinal Surgery, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Nanjing, China
- *Correspondence: Meng Wang, ; Qiongyuan Hu, ; Feng Wang,
| | - Qiongyuan Hu
- Department of Gastrointestinal Surgery, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Nanjing, China
- Medical School of Nanjing University, Nanjing, China
- *Correspondence: Meng Wang, ; Qiongyuan Hu, ; Feng Wang,
| | - Feng Wang
- Department of Gastrointestinal Surgery, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Nanjing, China
- *Correspondence: Meng Wang, ; Qiongyuan Hu, ; Feng Wang,
| |
Collapse
|
30
|
Enteric glia: extent, cohesion, axonal contacts, membrane separations and mitochondria in Auerbach's ganglia of guinea pigs. Cell Tissue Res 2022; 389:409-426. [PMID: 35729372 PMCID: PMC9436829 DOI: 10.1007/s00441-022-03656-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2022] [Accepted: 06/14/2022] [Indexed: 11/04/2022]
Abstract
Studied by electron microscopy and morphometry, Auerbach’s ganglia comprise nerve cell bodies that occupy ~ 40% of volume; of the neuropil, little over 30% is neural processes (axons, dendrites) and little less than 30% is glia (cell bodies, processes). The amount of surface membrane of neural elements only marginally exceeds that of glia. Glial cells extend laminar processes radially between axons, reaching the ganglion’s surface with specialized membrane domains. Nerve cells and glia are tightly associated, eliminating any free space in ganglia. Glia expands maximally its cell membrane with a minimum of cytoplasm, contacting a maximal number of axons, which, with their near-circular profile, have minimal surface for a given volume. Shape of glia is moulded by the neural elements (predominantly concave the first, predominantly convex the second); the glia extends its processes to maximize contact with neural elements. Yet, a majority of axons is not reached by glia and only few are wrapped by it. Despite the large number of cells, the glia is not sufficiently developed to wrap around or just contact many of the neural elements. Mitochondria are markedly fewer in glia than in neurons, indicating a lower metabolic rate. Compactness of ganglia, their near-circular profile, absence of spaces between elements and ability to withstand extensive deformation suggest strong adhesion between the cellular elements, holding them together and keeping them at a fixed distance. Many axonal varicosities, with vesicles and membrane densities, abut on non-specialized areas of glia, suggesting the possibility of neurotransmitters being released outside synaptic sites.
Collapse
|
31
|
Immunohistochemical visualisation of the enteric nervous system architecture in the germ-free piglets. J Mol Histol 2022; 53:773-780. [PMID: 35689149 DOI: 10.1007/s10735-022-10079-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2021] [Accepted: 05/23/2022] [Indexed: 10/18/2022]
Abstract
The enteric nervous system (ENS), considered as separate branch of the autonomic nervous system, is located throughout the length of the gastrointestinal tract as a series of interconnected ganglionic plexuses. Recently, the ENS is getting more in the focus of gastrointestinal research. For years, the main interest and research was aimed to the enteric neurons and their functional properties in normal conditions, less attention has been paid to the germ-free animals. Germ-free (GF) piglets have clear microbiological background and are reared in sterile environment. GF piglets are regarded as clinically relevant models for studying of human diseases, as these piglets' manifest similar clinical symptoms to humans. In this study we briefly summarised the main characteristics in immunohistochemical distribution of ENS elements in the wall of jejunum and colon of germ-free piglets.
Collapse
|
32
|
Nguyen VTT, Taheri N, Chandra A, Hayashi Y. Aging of enteric neuromuscular systems in gastrointestinal tract. Neurogastroenterol Motil 2022; 34:e14352. [PMID: 35279912 PMCID: PMC9308104 DOI: 10.1111/nmo.14352] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/18/2021] [Revised: 01/12/2022] [Accepted: 02/09/2022] [Indexed: 12/13/2022]
Abstract
BACKGROUND Aging is a complex biological process and associated with a progressive decline in functions of most organs including the gastrointestinal (GI) tract. Age-related GI motor disorders/dysfunctions include esophageal reflux, dysphagia, constipation, fecal incontinence, reduced compliance, and accommodation. Although the incidence and severity of these diseases and conditions increase with age, they are often underestimated due in part to nonspecific and variable symptoms and lack of sufficient medical attention. They negatively affect quality of life and predispose the elderly to other diseases, sarcopenia, and frailty. The mechanisms underlying aging-associated GI dysfunctions remain unclear, and there is limited data examining the effect of aging on GI motor functions. Many studies on aging-associated changes to cells within the tunica muscularis including enteric neurons, smooth muscles, and interstitial cells have proposed that cell loss and/or molecular changes may be involved in the pathogenesis of age-related GI motor disorders/dysfunctions. There is also evidence that the aging contributes to phenotypic changes in innate immune cells, which are physically and functionally linked to other cells in the tunica muscularis and can alter GI (patho) physiology. However, various patterns of changes have been reported, some of which are contradictory, indicating a need for additional work in this area. PURPOSE Although GI infection due to intestinal bacterial overgrowth, bleeding, and cancers are also important and common problems in the elderly patients, this mini-review focuses on data obtained from enteric neuromuscular aging research with the goal of better understanding the cellular and molecular mechanisms of enteric neuromuscular aging to enhance future therapy.
Collapse
Affiliation(s)
- Vy Truong Thuy Nguyen
- Enteric Neuroscience Program and Department of Physiology and Biomedical Engineering, Mayo Clinic College of Medicine, Rochester, Minnesota, USA,Gastroenterology Research Unit, Mayo Clinic College of Medicine, Rochester, Minnesota, USA
| | - Negar Taheri
- Enteric Neuroscience Program and Department of Physiology and Biomedical Engineering, Mayo Clinic College of Medicine, Rochester, Minnesota, USA,Gastroenterology Research Unit, Mayo Clinic College of Medicine, Rochester, Minnesota, USA
| | - Abhishek Chandra
- Division of Geriatric Medicine and Gerontology, Department of Medicine, Mayo Clinic College of Medicine, Rochester, Minnesota, USA,Robert and Arlene Kogod Center on Aging, Mayo Clinic College of Medicine, Rochester, Minnesota, USA
| | - Yujiro Hayashi
- Enteric Neuroscience Program and Department of Physiology and Biomedical Engineering, Mayo Clinic College of Medicine, Rochester, Minnesota, USA,Gastroenterology Research Unit, Mayo Clinic College of Medicine, Rochester, Minnesota, USA
| |
Collapse
|
33
|
Sampath C, Raju AV, Freeman ML, Srinivasan S, Gangula PR. Nrf2 attenuates hyperglycemia-induced nNOS impairment in adult mouse primary enteric neuronal crest cells and normalizes stomach function. Am J Physiol Gastrointest Liver Physiol 2022; 322:G368-G382. [PMID: 35084215 PMCID: PMC8897013 DOI: 10.1152/ajpgi.00323.2021] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
Enteric neuronal cells play a vital role in gut motility in humans and experimental rodent models. Patients with diabetes are more vulnerable to gastrointestinal dysfunction due to enteric neuronal degeneration. In this study, we examined the mechanistic role and regulation of nuclear factor-erythroid 2-related factor 2 (Nrf2) in hyperglycemia-induced enteric neuronal cell apoptosis in vitro by using adult mouse primary enteric neuronal crest cells (pENCs). Our data show that hyperglycemia (HG) or inhibition of Nrf2 induces apoptosis by elevating proinflammatory cytokines, reactive oxygen species (ROS) and suppresses neuronal nitric oxide synthase (nNOS-α) via PI3K/Nrf2-mediated signaling. Conversely, treating pENCs with cinnamaldehyde (CNM), a naturally occurring Nrf2 activator, prevented HG-induced apoptosis. These novel data reveal a negative feedback mechanism for GSK-3 activation. To further demonstrate that loss of Nrf2 leads to inflammation, oxidative stress, and reduces nNOS-mediated gastric function, we have used streptozotocin (STZ)-induced diabetic and Nrf2 null female mice. In vivo activation of Nrf2 with CNM (50 mg/kg, 3 days a week, ip) attenuated impaired nitrergic relaxation and delayed gastric emptying (GE) in conventional type 1 diabetic but not in Nrf2 null female mice. Supplementation of CNM normalized diabetes-induced altered gastric antrum protein expression of 1) p-AKT/p-p38MAPK/p-GSK-3β, 2) BH4 (cofactor of nNOS) biosynthesis enzyme GCH-1, 3) nNOSα, 4) TLR4, NF-κB, and 5) inflammatory cytokines (TNF-α, IL-1β, IL-6). We conclude that activation of Nrf2 prevents hyperglycemia-induced apoptosis in pENCs and restores nitrergic-mediated gastric motility and GE in STZ-induced diabetes female mice.NEW & NOTEWORTHY Primary neuronal cell crust (pENCs) in the intestine habitats nNOS and Nrf2, which was suppressed in diabetic gastroparesis. Activation of Nrf2 restored nNOS by suppressing inflammatory markers in pENCs cells. Inhibition of Nrf2 reveals a negative feedback mechanism for the activation of GSK-3. Activation of Nrf2 alleviates STZ-induced delayed gastric emptying and nitrergic relaxation in female mice. Activation of Nrf2 restored impaired gastric BH4 biosynthesis enzyme GCH-1, nNOSα expression thus regulating nitric oxide levels.
Collapse
Affiliation(s)
- Chethan Sampath
- 1Department of ODS and Research, School of Dentistry, Meharry Medical College, Nashville, Tennessee
| | - Abhinav V. Raju
- 2Division of Digestive Diseases, Department of Medicine, Emory University, Atlanta, Georgia
| | - Michael L. Freeman
- 4Department of Radiation Oncology, Vanderbilt University Medical Center, Nashville, Tennessee
| | - Shanthi Srinivasan
- 2Division of Digestive Diseases, Department of Medicine, Emory University, Atlanta, Georgia,3Atlanta Veterans Affairs Health Care System, Atlanta, Georgia
| | - Pandu R. Gangula
- 1Department of ODS and Research, School of Dentistry, Meharry Medical College, Nashville, Tennessee
| |
Collapse
|
34
|
Keller J, Wedel T, Seidl H, Kreis ME, van der Voort I, Gebhard M, Langhorst J, Lynen Jansen P, Schwandner O, Storr M, van Leeuwen P, Andresen V, Preiß JC, Layer P, Allescher H, Andus T, Bischoff SC, Buderus S, Claßen M, Ehlert U, Elsenbruch S, Engel M, Enninger A, Fischbach W, Freitag M, Frieling T, Gillessen A, Goebel-Stengel M, Gschossmann J, Gundling F, Haag S, Häuser W, Helwig U, Hollerbach S, Holtmann G, Karaus M, Katschinski M, Krammer H, Kruis W, Kuhlbusch-Zicklam R, Lynen Jansen P, Madisch A, Matthes H, Miehlke S, Mönnikes H, Müller-Lissner S, Niesler B, Pehl C, Pohl D, Posovszky C, Raithel M, Röhrig-Herzog G, Schäfert R, Schemann M, Schmidt-Choudhury A, Schmiedel S, Schweinlin A, Schwille-Kiuntke J, Stengel A, Tesarz J, Voderholzer W, von Boyen G, von Schönfeld J. Update S3-Leitlinie Intestinale Motilitätsstörungen: Definition, Pathophysiologie, Diagnostik und Therapie. Gemeinsame Leitlinie der Deutschen Gesellschaft für Gastroenterologie, Verdauungs- und Stoffwechselkrankheiten (DGVS) und der Deutschen Gesellschaft für Neurogastroenterologie und Motilität (DGNM). ZEITSCHRIFT FUR GASTROENTEROLOGIE 2022; 60:192-218. [PMID: 35148561 DOI: 10.1055/a-1646-1279] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Affiliation(s)
- Jutta Keller
- Medizinische Klinik, Israelitisches Krankenhaus in Hamburg, Hamburg, Deutschland
| | - Thilo Wedel
- Institut für Anatomie, Christian-Albrechts-Universität Kiel, Kiel, Deutschland
| | - Holger Seidl
- Klinik für Gastroenterologie, Hepatologie und Gastroenterologische Onkologie, Isarklinikum München, München, Deutschland
| | - Martin E Kreis
- Klinik für Allgemein-, Viszeral- und Gefäßchirurgie, Charité, Campus Benjamin Franklin, Berlin, Deutschland
| | - Ivo van der Voort
- Klinik für Innere Medizin - Gastroenterologie und Diabetologie, Jüdisches Krankenhaus Berlin, Deutschland
| | | | - Jost Langhorst
- Klinik für Integrative Medizin und Naturheilkunde, Klinikum Bamberg, Bamberg, Deutschland
| | - Petra Lynen Jansen
- Deutsche Gesellschaft für Gastroenterologie, Verdauungs- und Stoffwechselkrankheiten, Berlin, Deutschland
| | - Oliver Schwandner
- Abteilung für Proktologie, Krankenhaus Barmherzige Brüder, Regensburg
| | - Martin Storr
- Zentrum für Endoskopie, Gesundheitszentrum Starnberger See, Starnberg
| | - Pia van Leeuwen
- Deutsche Gesellschaft für Gastroenterologie, Verdauungs- und Stoffwechselkrankheiten, Berlin, Deutschland
| | - Viola Andresen
- Medizinische Klinik, Israelitisches Krankenhaus in Hamburg, Hamburg, Deutschland
| | - Jan C Preiß
- Klinik für Innere Medizin - Gastroenterologie, Diabetologie und Hepatologie, Klinikum Neukölln, Berlin
| | - Peter Layer
- Medizinische Klinik, Israelitisches Krankenhaus in Hamburg, Hamburg, Deutschland
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
35
|
Almeida PPD, Thomasi BBDM, Costa NDS, Valdetaro L, Pereira AD, Gomes ALT, Stockler-Pinto MB. Brazil Nut ( Bertholletia excelsa H.B.K) Retards Gastric Emptying and Modulates Enteric Glial Cells in a Dose-Dependent Manner. JOURNAL OF THE AMERICAN NUTRITION ASSOCIATION 2022; 41:157-165. [PMID: 33301378 DOI: 10.1080/07315724.2020.1852981] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/21/2020] [Revised: 11/04/2020] [Accepted: 11/15/2020] [Indexed: 12/16/2022]
Abstract
BACKGROUND The role of food and nutrients in the regulation of enteric glial cell functions is unclear. Some foods influence enteric neurophysiology and can affect glial cell functions that include regulation of the intestinal barrier, gastric emptying, and colonic transit. Brazil nuts are the most abundant natural source of selenium, unsaturated fatty acids, fibers, and polyphenols. OBJECTIVE The study investigated the effects of a Brazil nut-enriched diet on enteric glial cells and gastrointestinal transit. METHODS Two-month-old male Wistar rats were randomized to a standard diet (control group, CG), standard diet containing 5% (wt/wt) Brazil nut (BN5), and standard diet containing 10% (wt/wt) Brazil nut (BN10) (n = 9 per group). After eight weeks, the animals underwent constipation and gastric emptying tests to assess motility. Evaluations of colonic immunofluorescence staining for glial fibrillary acidic protein (GFAP) and myenteric ganglia area were performed. RESULTS The BN5 group showed increased weight gain while the BN10 group did not (p < 0.0001). The BN10 group showed higher gastric residue amounts compared to the other groups (p = 0.0008). The colon exhibited an increase in GFAP immunoreactivity in the BN5 group compared to that in the other groups (p = 0.0016), and the BN10 group presented minor immunoreactivity compared to the CG (p = 0.04). The BN10 group presented a minor ganglia area compared to the CG (p = 0.0155). CONCLUSION The Brazil nut-enriched diet modified the gastric residual, colonic GFAP immunoreactivity, and myenteric ganglia area after eight weeks in healthy male Wistar rats.
Collapse
Affiliation(s)
| | | | - Nathalia da Silva Costa
- Postgraduate Program in Cardiovascular Sciences, Fluminense Federal University (UFF), Niterói, RJ, Brazil
| | - Luisa Valdetaro
- Postgraduate Program in Neurosciences, Fluminense Federal University (UFF), Niterói, RJ, Brazil
| | - Aline D'Avila Pereira
- Postgraduate Program in Medical Sciences, Fluminense Federal University (UFF), Niterói, RJ, Brazil
| | - Ana Lúcia Tavares Gomes
- Postgraduate Program in Neurosciences, Fluminense Federal University (UFF), Niterói, RJ, Brazil
| | - Milena Barcza Stockler-Pinto
- Postgraduate Program in Cardiovascular Sciences, Fluminense Federal University (UFF), Niterói, RJ, Brazil
- Postgraduate Program in Nutrition Sciences, Fluminense Federal University (UFF), Niterói, RJ, Brazil
| |
Collapse
|
36
|
Hao W, Hao C, Wu C, Xu Y, Jin C. Aluminum induced intestinal dysfunction via mechanical, immune, chemical and biological barriers. CHEMOSPHERE 2022; 288:132556. [PMID: 34648793 DOI: 10.1016/j.chemosphere.2021.132556] [Citation(s) in RCA: 37] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/03/2021] [Revised: 09/18/2021] [Accepted: 10/10/2021] [Indexed: 06/13/2023]
Abstract
Aluminum is the most abundant metal element in the Earth's crust, which exists naturally in the form of aluminum compounds. Aluminum is mainly absorbed through the gastrointestinal tract, which varies with different aluminum compounds. During this process, aluminum could induce the disruption of intestinal mucosa barrier. However, its underlying mechanism has not been elucidated yet. Previous studies have reported that aluminum can firstly promote the apoptosis of intestinal epithelial cells, destroy the structure of tight-junction proteins, and increase the intestinal permeability, injuring the mechanical barrier of gut. Also, it can induce the activation of immune cells to secrete inflammatory factors, and trigger immune responses, interfering with immune barrier. Moreover, aluminum treatment can regulate intestinal composition and bio-enzyme activity, impairing the function of chemical barrier. In addition, aluminum accumulation can induce an imbalance of the intestinal flora, inhibit the growth of beneficial bacteria, and promote the proliferation of harmful bacteria, which ultimately disrupting biological barrier. Collectively, aluminum may do extensive damage to intestinal barrier function covering mechanical barrier, immune barrier, chemical barrier and biological barrier.
Collapse
Affiliation(s)
- Wudi Hao
- Department of Toxicology, School of Public Health, China Medical University, Shenyang, 110122, PR China
| | - Chenyu Hao
- Department of Toxicology, School of Public Health, China Medical University, Shenyang, 110122, PR China
| | - Chengrong Wu
- Department of Toxicology, School of Public Health, China Medical University, Shenyang, 110122, PR China
| | - Yuqing Xu
- Department of Toxicology, School of Public Health, China Medical University, Shenyang, 110122, PR China
| | - Cuihong Jin
- Department of Toxicology, School of Public Health, China Medical University, Shenyang, 110122, PR China.
| |
Collapse
|
37
|
Abstract
Chemotherapy-induced gastrointestinal dysfunction is a common occurrence associated with many different classes of chemotherapeutic agents. Gastrointestinal toxicity includes mucositis, diarrhea, and constipation, and can often be a dose-limiting complication, induce cessation of treatment and could be life threatening. The gastrointestinal epithelium is rich in rapidly dividing cells and hence is a prime target for chemotherapeutic drugs. The incidence of gastrointestinal toxicity, including diarrhea and mucositis, is extremely high for a wide array of chemotherapeutic and radiation regimens. In fact, 60%-100% of patients on high-dose chemotherapy suffer from gastrointestinal side effects. Unfortunately, treatment options are limited, and therapy is often restricted to palliative care. Therefore, there is a great unmet therapeutic need for preventing and treating chemotherapy-induced gastrointestinal toxicities in the clinic. In this review, we discuss our current understanding of the mechanisms underlying chemotherapy-induced diarrhea and mucositis, and emerging mechanisms involving the enteric nervous system, smooth muscle cells and enteric immune cells. Recent evidence has also implicated gut dysbiosis in the pathogenesis of not only chemotherapy-induced mucositis and diarrhea, but also chemotherapy-induced peripheral neuropathy. Oxidative stress induced by chemotherapeutic agents results in post-translational modification of ion channels altering neuronal excitability. Thus, investigating how chemotherapy-induced changes in the gut- microbiome axis may lead to gut-related toxicities will be critical in the discovery of new drug targets for mitigating adverse gastrointestinal effects associated with chemotherapy treatment.
Collapse
Affiliation(s)
- Hamid I Akbarali
- Department of Pharmacology and Toxicology, School of Medicine, Virginia Commonwealth University, Richmond, VA, United States.
| | - Karan H Muchhala
- Department of Pharmacology and Toxicology, School of Medicine, Virginia Commonwealth University, Richmond, VA, United States
| | - Donald K Jessup
- Department of Pharmacology and Toxicology, School of Medicine, Virginia Commonwealth University, Richmond, VA, United States
| | - Stanley Cheatham
- Department of Pharmacology and Toxicology, School of Medicine, Virginia Commonwealth University, Richmond, VA, United States
| |
Collapse
|
38
|
Enteric Glia and Enteric Neurons, Associated. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2022; 1383:179-190. [PMID: 36587157 DOI: 10.1007/978-3-031-05843-1_17] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
Peripheral neurons are never found alone and are invariably accompanied by glial cells, with which they are intimately associated in compact, highly deformable structures.Myenteric ganglia of the guinea-pig, examined in situ by electron microscopy, show that in their neuropil (axons and dendrites, and glial cells and processes) the glia constitutes almost half of the volume and almost half of membrane extent.In the glia, the expanse of the cell membrane predominates over that of their cytoplasm, the opposite being the case with the neural elements.The profile of the glial elements is passive and is dictated by the surrounding elements, mainly the axons, and hence it is predominantly concave.The enteric glia is widely developed; however, it is not sufficient to form a full wrapping around all neurons and around all axons (unlike what is found in other autonomic ganglia).Glial processes are radially expanding laminae, irregularly tapering, branching, and penetrating between axons.Some processes have a specialized termination attached to the basal lamina of the ganglion.Mitochondria are markedly more abundant in neural element that in the glia (up to a factor of 2).Many expanded axons, laden with vesicles clustered beneath membrane sites, abut on glial cells and processes, while these show no matching structural specializations.
Collapse
|
39
|
Vicentini FA, Keenan CM, Wallace LE, Woods C, Cavin JB, Flockton AR, Macklin WB, Belkind-Gerson J, Hirota SA, Sharkey KA. Intestinal microbiota shapes gut physiology and regulates enteric neurons and glia. MICROBIOME 2021; 9:210. [PMID: 34702353 PMCID: PMC8549243 DOI: 10.1186/s40168-021-01165-z] [Citation(s) in RCA: 157] [Impact Index Per Article: 39.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/10/2021] [Accepted: 09/15/2021] [Indexed: 05/05/2023]
Abstract
BACKGROUND The intestinal microbiota plays an important role in regulating gastrointestinal (GI) physiology in part through interactions with the enteric nervous system (ENS). Alterations in the gut microbiome frequently occur together with disturbances in enteric neural control in pathophysiological conditions. However, the mechanisms by which the microbiota regulates GI function and the structure of the ENS are incompletely understood. Using a mouse model of antibiotic (Abx)-induced bacterial depletion, we sought to determine the molecular mechanisms of microbial regulation of intestinal function and the integrity of the ENS. Spontaneous reconstitution of the Abx-depleted microbiota was used to assess the plasticity of structure and function of the GI tract and ENS. Microbiota-dependent molecular mechanisms of ENS neuronal survival and neurogenesis were also assessed. RESULTS Adult male and female Abx-treated mice exhibited alterations in GI structure and function, including a longer small intestine, slower transit time, increased carbachol-stimulated ion secretion, and increased intestinal permeability. These alterations were accompanied by the loss of enteric neurons in the ileum and proximal colon in both submucosal and myenteric plexuses. A reduction in the number of enteric glia was only observed in the ileal myenteric plexus. Recovery of the microbiota restored intestinal function and stimulated enteric neurogenesis leading to increases in the number of enteric glia and neurons. Lipopolysaccharide (LPS) supplementation enhanced neuronal survival alongside bacterial depletion, but had no effect on neuronal recovery once the Abx-induced neuronal loss was established. In contrast, short-chain fatty acids (SCFA) were able to restore neuronal numbers after Abx-induced neuronal loss, demonstrating that SCFA stimulate enteric neurogenesis in vivo. CONCLUSIONS Our results demonstrate a role for the gut microbiota in regulating the structure and function of the GI tract in a sex-independent manner. Moreover, the microbiota is essential for the maintenance of ENS integrity, by regulating enteric neuronal survival and promoting neurogenesis. Molecular determinants of the microbiota, LPS and SCFA, regulate enteric neuronal survival, while SCFA also stimulates neurogenesis. Our data reveal new insights into the role of the gut microbiota that could lead to therapeutic developments for the treatment of enteric neuropathies. Video abstract.
Collapse
Affiliation(s)
- Fernando A. Vicentini
- Hotchkiss Brain Institute, University of Calgary, Calgary, AB T2N 4N1 Canada
- Snyder Institute for Chronic Diseases, University of Calgary, Calgary, AB T2N 4N1 Canada
- Inflammation Research Network, University of Calgary, Calgary, AB T2N 4N1 Canada
- Department of Physiology and Pharmacology, Cumming School of Medicine, University of Calgary, 3330 Hospital Drive NW, Calgary, AB T2N 4N1 Canada
| | - Catherine M. Keenan
- Hotchkiss Brain Institute, University of Calgary, Calgary, AB T2N 4N1 Canada
- Snyder Institute for Chronic Diseases, University of Calgary, Calgary, AB T2N 4N1 Canada
- Department of Physiology and Pharmacology, Cumming School of Medicine, University of Calgary, 3330 Hospital Drive NW, Calgary, AB T2N 4N1 Canada
| | - Laurie E. Wallace
- Hotchkiss Brain Institute, University of Calgary, Calgary, AB T2N 4N1 Canada
- Snyder Institute for Chronic Diseases, University of Calgary, Calgary, AB T2N 4N1 Canada
- Department of Physiology and Pharmacology, Cumming School of Medicine, University of Calgary, 3330 Hospital Drive NW, Calgary, AB T2N 4N1 Canada
| | - Crystal Woods
- Department of Pediatrics, Section of Gastroenterology, Hepatology and Nutrition, University of Colorado, Aurora, CO 80045 USA
| | - Jean-Baptiste Cavin
- Hotchkiss Brain Institute, University of Calgary, Calgary, AB T2N 4N1 Canada
- Snyder Institute for Chronic Diseases, University of Calgary, Calgary, AB T2N 4N1 Canada
- Inflammation Research Network, University of Calgary, Calgary, AB T2N 4N1 Canada
- Department of Physiology and Pharmacology, Cumming School of Medicine, University of Calgary, 3330 Hospital Drive NW, Calgary, AB T2N 4N1 Canada
| | - Amanda R. Flockton
- Department of Pediatrics, Section of Gastroenterology, Hepatology and Nutrition, University of Colorado, Aurora, CO 80045 USA
| | - Wendy B. Macklin
- Department of Cell and Developmental Biology, University of Colorado School of Medicine, Aurora, CO 80045 USA
| | - Jaime Belkind-Gerson
- Department of Pediatrics, Section of Gastroenterology, Hepatology and Nutrition, University of Colorado, Aurora, CO 80045 USA
- Neurogastroenterology and Motility Program, Digestive Health Institute, Children’s Hospital Colorado, Aurora, CO 80045 USA
| | - Simon A. Hirota
- Snyder Institute for Chronic Diseases, University of Calgary, Calgary, AB T2N 4N1 Canada
- Inflammation Research Network, University of Calgary, Calgary, AB T2N 4N1 Canada
- Department of Physiology and Pharmacology, Cumming School of Medicine, University of Calgary, 3330 Hospital Drive NW, Calgary, AB T2N 4N1 Canada
- Alberta Children’s Hospital Research Institute, University of Calgary, Calgary, AB T2N 4N1 Canada
| | - Keith A. Sharkey
- Hotchkiss Brain Institute, University of Calgary, Calgary, AB T2N 4N1 Canada
- Snyder Institute for Chronic Diseases, University of Calgary, Calgary, AB T2N 4N1 Canada
- Department of Physiology and Pharmacology, Cumming School of Medicine, University of Calgary, 3330 Hospital Drive NW, Calgary, AB T2N 4N1 Canada
| |
Collapse
|
40
|
D'Antongiovanni V, Pellegrini C, Antonioli L, Benvenuti L, Di Salvo C, Flori L, Piccarducci R, Daniele S, Martelli A, Calderone V, Martini C, Fornai M. Palmitoylethanolamide Counteracts Enteric Inflammation and Bowel Motor Dysfunctions in a Mouse Model of Alzheimer's Disease. Front Pharmacol 2021; 12:748021. [PMID: 34658885 PMCID: PMC8511319 DOI: 10.3389/fphar.2021.748021] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2021] [Accepted: 09/20/2021] [Indexed: 12/20/2022] Open
Abstract
Palmitoylethanolamide (PEA), an endogenous lipid mediator, is emerging as a promising pharmacological agent in multiple neurodegenerative disorders for its anti-inflammatory and neuroprotective properties. However, its effects on enteric inflammation and colonic dysmotility associated with Alzheimer’s disease (AD) are lacking. This study was designed to investigate the beneficial effect of PEA administration in counteracting the enteric inflammation and relieving the bowel motor dysfunctions in an AD mouse model, SAMP8 mice. In addition, the ability of PEA in modulating the activation of enteric glial cells (EGCs), pivotally involved in the pathophysiology of bowel dysfunctions associated with inflammatory conditions, has also been examined. SAMP8 mice at 4 months of age were treated orally with PEA (5 mg/kg/day) for 2 months. SAMR1 animals were employed as controls. At the end of treatment, parameters dealing with colonic motility, inflammation, barrier integrity and AD protein accumulation were evaluated. The effect of PEA on EGCs was tested in cultured cells treated with lipopolysaccharide (LPS) plus β-amyloid 1–42 (Aβ). SAMP8 treated with PEA displayed: 1) an improvement of in vitro colonic motor activity, citrate synthase activity and intestinal epithelial barrier integrity and 2) a decrease in colonic Aβ and α-synuclein (α-syn) accumulation, S100-β expression as well as enteric IL-1β and circulating LPS levels, as compared with untreated SAMP8 mice. In EGCs, treatment with PEA counteracted the increment of S100-β, TLR-4, NF-κB p65 and IL-1β release induced by LPS and Aβ. These results suggest that PEA, under a condition of cognitive decline, prevents the enteric glial hyperactivation, reduces AD protein accumulation and counteracts the onset and progression of colonic inflammatory condition, as well as relieves intestinal motor dysfunctions and improves the intestinal epithelial barrier integrity. Therefore, PEA represents a viable approach for the management of the enteric inflammation and motor contractile abnormalities associated with AD.
Collapse
Affiliation(s)
| | - Carolina Pellegrini
- Department of Clinical and Experimental Medicine, University of Pisa, Pisa, Italy
| | - Luca Antonioli
- Department of Clinical and Experimental Medicine, University of Pisa, Pisa, Italy
| | - Laura Benvenuti
- Department of Clinical and Experimental Medicine, University of Pisa, Pisa, Italy
| | - Clelia Di Salvo
- Department of Clinical and Experimental Medicine, University of Pisa, Pisa, Italy
| | - Lorenzo Flori
- Department of Pharmacy, University of Pisa, Pisa, Italy
| | | | | | - Alma Martelli
- Department of Pharmacy, University of Pisa, Pisa, Italy.,Interdepartmental Research Center "Nutrafood: Nutraceutica e Alimentazione per la Salute", University of Pisa, Pisa, Italy.,Interdepartmental Research Center "Biology and Pathology of Ageing", University of Pisa, Pisa, Italy
| | - Vincenzo Calderone
- Department of Pharmacy, University of Pisa, Pisa, Italy.,Interdepartmental Research Center "Nutrafood: Nutraceutica e Alimentazione per la Salute", University of Pisa, Pisa, Italy.,Interdepartmental Research Center "Biology and Pathology of Ageing", University of Pisa, Pisa, Italy
| | | | - Matteo Fornai
- Department of Clinical and Experimental Medicine, University of Pisa, Pisa, Italy
| |
Collapse
|
41
|
Galiazzo G, Tagliavia C, Giancola F, Rinnovati R, Sadeghinezhad J, Bombardi C, Grandis A, Pietra M, Chiocchetti R. Localisation of Cannabinoid and Cannabinoid-Related Receptors in the Horse Ileum. J Equine Vet Sci 2021; 104:103688. [PMID: 34416995 DOI: 10.1016/j.jevs.2021.103688] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2020] [Revised: 06/04/2021] [Accepted: 06/07/2021] [Indexed: 02/05/2023]
Abstract
Colic is a common digestive disorder in horses and one of the most urgent problems in equine medicine. A growing body of literature has indicated that the activation of cannabinoid receptors could exert beneficial effects on gastrointestinal inflammation and visceral hypersensitivity. The localisation of cannabinoid and cannabinoid-related receptors in the intestine of the horse has not yet been investigated. The purpose of this study was to immunohistochemically localise the cellular distribution of canonical and putative cannabinoid receptors in the ileum of healthy horses. Distal ileum specimens were collected from six horses at the slaughterhouse. The tissues were fixed and processed to obtain cryosections which were used to investigate the immunoreactivity of canonical cannabinoid receptors 1 (CB1R) and 2 (CB2R), and three putative cannabinoid-related receptors: nuclear peroxisome proliferator-activated receptor-alpha (PPARα), transient receptor potential ankyrin 1 and serotonin 5-HT1a receptor (5-HT1aR). Cannabinoid and cannabinoid-related receptors showed a wide distribution in the ileum of the horse. The epithelial cells showed immunoreactivity for CB1R, CB2R and 5-HT1aR. Lamina propria inflammatory cells showed immunoreactivity for CB2R and 5-HT1aR. The enteric neurons showed immunoreactivity for CB1R, transient receptor potential ankyrin 1 and PPARα. The enteric glial cells showed immunoreactivity for CB1R and PPARα. The smooth muscle cells of the tunica muscularis and the blood vessels showed immunoreactivity for PPARα. The present study represents a histological basis which could support additional studies regarding the distribution of cannabinoid receptors during gastrointestinal inflammatory diseases as well as studies assessing the effects of non-psychotic cannabis-derived molecules in horses for the management of intestinal diseases.
Collapse
Affiliation(s)
- Giorgia Galiazzo
- Department of Veterinary Medical Sciences (UNI EN ISO 9001:2008), University of Bologna, Italy
| | - Claudio Tagliavia
- Department of Veterinary Medical Sciences (UNI EN ISO 9001:2008), University of Bologna, Italy
| | - Fiorella Giancola
- Department of Veterinary Medical Sciences (UNI EN ISO 9001:2008), University of Bologna, Italy
| | - Riccardo Rinnovati
- Department of Veterinary Medical Sciences (UNI EN ISO 9001:2008), University of Bologna, Italy
| | - Javad Sadeghinezhad
- Department of Basic Sciences, Faculty of Veterinary Medicine, University of Tehran, Tehran, Iran
| | - Cristiano Bombardi
- Department of Veterinary Medical Sciences (UNI EN ISO 9001:2008), University of Bologna, Italy
| | - Annamaria Grandis
- Department of Veterinary Medical Sciences (UNI EN ISO 9001:2008), University of Bologna, Italy
| | - Marco Pietra
- Department of Veterinary Medical Sciences (UNI EN ISO 9001:2008), University of Bologna, Italy
| | - Roberto Chiocchetti
- Department of Veterinary Medical Sciences (UNI EN ISO 9001:2008), University of Bologna, Italy.
| |
Collapse
|
42
|
Abstract
Glia, the non-neuronal cells of the nervous system, were long considered secondary cells only necessary for supporting the functions of their more important neuronal neighbors. Work by many groups over the past two decades has completely overturned this notion, revealing the myriad and vital functions of glia in nervous system development, plasticity, and health. The largest population of glia outside the brain is in the enteric nervous system, a division of the autonomic nervous system that constitutes a key node of the gut-brain axis. Here, we review the latest in the understanding of these enteric glia in mammals with a focus on their putative roles in human health and disease.
Collapse
Affiliation(s)
- Harry J. Rosenberg
- Department of Pathology, Beth Israel Deaconess Medical Center, Boston, MA 02115, USA
- Department of Pediatrics, Boston Children's Hospital and Harvard Medical School, Boston, MA 02115, USA
| | - Meenakshi Rao
- Department of Pediatrics, Boston Children's Hospital and Harvard Medical School, Boston, MA 02115, USA
| |
Collapse
|
43
|
The Interplay between Nutrition, Innate Immunity, and the Commensal Microbiota in Adaptive Intestinal Morphogenesis. Nutrients 2021; 13:nu13072198. [PMID: 34206809 PMCID: PMC8308283 DOI: 10.3390/nu13072198] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2021] [Revised: 06/20/2021] [Accepted: 06/23/2021] [Indexed: 12/15/2022] Open
Abstract
The gastrointestinal tract is a functionally and anatomically segmented organ that is colonized by microbial communities from birth. While the genetics of mouse gut development is increasingly understood, how nutritional factors and the commensal gut microbiota act in concert to shape tissue organization and morphology of this rapidly renewing organ remains enigmatic. Here, we provide an overview of embryonic mouse gut development, with a focus on the intestinal vasculature and the enteric nervous system. We review how nutrition and the gut microbiota affect the adaptation of cellular and morphologic properties of the intestine, and how these processes are interconnected with innate immunity. Furthermore, we discuss how nutritional and microbial factors impact the renewal and differentiation of the epithelial lineage, influence the adaptation of capillary networks organized in villus structures, and shape the enteric nervous system and the intestinal smooth muscle layers. Intriguingly, the anatomy of the gut shows remarkable flexibility to nutritional and microbial challenges in the adult organism.
Collapse
|
44
|
Nutraceuticals and Enteric Glial Cells. Molecules 2021; 26:molecules26123762. [PMID: 34205534 PMCID: PMC8234579 DOI: 10.3390/molecules26123762] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2021] [Revised: 06/11/2021] [Accepted: 06/15/2021] [Indexed: 12/21/2022] Open
Abstract
Until recently, glia were considered to be a structural support for neurons, however further investigations showed that glial cells are equally as important as neurons. Among many different types of glia, enteric glial cells (EGCs) found in the gastrointestinal tract, have been significantly underestimated, but proved to play an essential role in neuroprotection, immune system modulation and many other functions. They are also said to be remarkably altered in different physiopathological conditions. A nutraceutical is defined as any food substance or part of a food that provides medical or health benefits, including prevention and treatment of the disease. Following the description of these interesting peripheral glial cells and highlighting their role in physiological and pathological changes, this article reviews all the studies on the effects of nutraceuticals as modulators of their functions. Currently there are only a few studies available concerning the effects of nutraceuticals on EGCs. Most of them evaluated molecules with antioxidant properties in systemic conditions, whereas only a few studies have been performed using models of gastrointestinal disorders. Despite the scarcity of studies on the topic, all agree that nutraceuticals have the potential to be an interesting alternative in the prevention and/or treatment of enteric gliopathies (of systemic or local etiology) and their associated gastrointestinal conditions.
Collapse
|
45
|
Felipe GZ, Zanoni JN, Sehaber-Sierakowski CC, Bossolani GDP, Souza SRG, Flores FC, Oliveira LES, Pereira RM, Costa YMG. Automatic chronic degenerative diseases identification using enteric nervous system images. Neural Comput Appl 2021; 33:15373-15395. [PMID: 34177126 PMCID: PMC8211315 DOI: 10.1007/s00521-021-06164-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2020] [Accepted: 05/24/2021] [Indexed: 12/26/2022]
Abstract
Studies recently accomplished on the Enteric Nervous System have shown that chronic degenerative diseases affect the Enteric Glial Cells (EGC) and, thus, the development of recognition methods able to identify whether or not the EGC are affected by these type of diseases may be helpful in its diagnoses. In this work, we propose the use of pattern recognition and machine learning techniques to evaluate if a given animal EGC image was obtained from a healthy individual or one affect by a chronic degenerative disease. In the proposed approach, we have performed the classification task with handcrafted features and deep learning-based techniques, also known as non-handcrafted features. The handcrafted features were obtained from the textural content of the ECG images using texture descriptors, such as the Local Binary Pattern (LBP). Moreover, the representation learning techniques employed in the approach are based on different Convolutional Neural Network (CNN) architectures, such as AlexNet and VGG16, with and without transfer learning. The complementarity between the handcrafted and non-handcrafted features was also evaluated with late fusion techniques. The datasets of EGC images used in the experiments, which are also contributions of this paper, are composed of three different chronic degenerative diseases: Cancer, Diabetes Mellitus, and Rheumatoid Arthritis. The experimental results, supported by statistical analysis, show that the proposed approach can distinguish healthy cells from the sick ones with a recognition rate of 89.30% (Rheumatoid Arthritis), 98.45% (Cancer), and 95.13% (Diabetes Mellitus), being achieved by combining classifiers obtained on both feature scenarios.
Collapse
Affiliation(s)
- Gustavo Z Felipe
- Universidade Estadual de Maringá (UEM), Av. Colombo 5790, 87020-900 Maringá, PR Brazil
| | - Jacqueline N Zanoni
- Universidade Estadual de Maringá (UEM), Av. Colombo 5790, 87020-900 Maringá, PR Brazil
| | | | - Gleison D P Bossolani
- Universidade Estadual de Maringá (UEM), Av. Colombo 5790, 87020-900 Maringá, PR Brazil
| | - Sara R G Souza
- Universidade Estadual de Maringá (UEM), Av. Colombo 5790, 87020-900 Maringá, PR Brazil
| | - Franklin C Flores
- Universidade Estadual de Maringá (UEM), Av. Colombo 5790, 87020-900 Maringá, PR Brazil
| | - Luiz E S Oliveira
- Universidade Federal do Paraná (UFPR), Rua Cel. Francisco H. dos Santos 100, 81531-990 Curitiba, PR Brazil
| | - Rodolfo M Pereira
- Instituto Federal do Paraná (IFPR), R. Humberto de A. C. Branco 1575, 83330-200 Pinhais, PR Brazil
| | - Yandre M G Costa
- Universidade Estadual de Maringá (UEM), Av. Colombo 5790, 87020-900 Maringá, PR Brazil
| |
Collapse
|
46
|
Homeostasis of mucosal glial cells in human gut is independent of microbiota. Sci Rep 2021; 11:12796. [PMID: 34140608 PMCID: PMC8211706 DOI: 10.1038/s41598-021-92384-9] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2020] [Accepted: 06/07/2021] [Indexed: 12/13/2022] Open
Abstract
In mammals, neural crest cells populate the gut and form the enteric nervous system (ENS) early in embryogenesis. Although the basic ENS structure is highly conserved across species, we show important differences between mice and humans relating to the prenatal and postnatal development of mucosal enteric glial cells (mEGC), which are essential ENS components. We confirm previous work showing that in the mouse mEGCs are absent at birth, and that their appearance and homeostasis depends on postnatal colonization by microbiota. In humans, by contrast, a network of glial cells is already present in the fetal gut. Moreover, in xenografts of human fetal gut maintained for months in immuno-compromised mice, mEGCs persist following treatment with antibiotics that lead to the disappearance of mEGCs from the gut of the murine host. Single cell RNAseq indicates that human and mouse mEGCs differ not only in their developmental dynamics, but also in their patterns of gene expression.
Collapse
|
47
|
Hanscom M, Loane DJ, Shea-Donohue T. Brain-gut axis dysfunction in the pathogenesis of traumatic brain injury. J Clin Invest 2021; 131:143777. [PMID: 34128471 PMCID: PMC8203445 DOI: 10.1172/jci143777] [Citation(s) in RCA: 83] [Impact Index Per Article: 20.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Traumatic brain injury (TBI) is a chronic and progressive disease, and management requires an understanding of both the primary neurological injury and the secondary sequelae that affect peripheral organs, including the gastrointestinal (GI) tract. The brain-gut axis is composed of bidirectional pathways through which TBI-induced neuroinflammation and neurodegeneration impact gut function. The resulting TBI-induced dysautonomia and systemic inflammation contribute to the secondary GI events, including dysmotility and increased mucosal permeability. These effects shape, and are shaped by, changes in microbiota composition and activation of resident and recruited immune cells. Microbial products and immune cell mediators in turn modulate brain-gut activity. Importantly, secondary enteric inflammatory challenges prolong systemic inflammation and worsen TBI-induced neuropathology and neurobehavioral deficits. The importance of brain-gut communication in maintaining GI homeostasis highlights it as a viable therapeutic target for TBI. Currently, treatments directed toward dysautonomia, dysbiosis, and/or systemic inflammation offer the most promise.
Collapse
Affiliation(s)
- Marie Hanscom
- School of Biochemistry and Immunology, Trinity Biomedical Sciences Institute, Trinity College, Dublin, Ireland
- Department of Anesthesiology and Shock, Trauma and Anesthesiology Research Center, University of Maryland School of Medicine, Baltimore, Maryland, USA
| | - David J. Loane
- School of Biochemistry and Immunology, Trinity Biomedical Sciences Institute, Trinity College, Dublin, Ireland
- Department of Anesthesiology and Shock, Trauma and Anesthesiology Research Center, University of Maryland School of Medicine, Baltimore, Maryland, USA
| | - Terez Shea-Donohue
- Division of Digestive Diseases and Nutrition, National Institute of Diabetes and Digestive and Kidney Diseases, NIH, Bethesda, Maryland, USA
| |
Collapse
|
48
|
Abstract
The enteric nervous system (ENS) is the largest division of the peripheral nervous system and closely resembles components and functions of the central nervous system. Although the central role of the ENS in congenital enteric neuropathic disorders, including Hirschsprung disease and inflammatory and functional bowel diseases, is well acknowledged, its role in systemic diseases is less understood. Evidence of a disordered ENS has accumulated in neurodegenerative diseases ranging from amyotrophic lateral sclerosis, Alzheimer disease and multiple sclerosis to Parkinson disease as well as neurodevelopmental disorders such as autism. The ENS is a key modulator of gut barrier function and a regulator of enteric homeostasis. A 'leaky gut' represents the gateway for bacterial and toxin translocation that might initiate downstream processes. Data indicate that changes in the gut microbiome acting in concert with the individual genetic background can modify the ENS, central nervous system and the immune system, impair barrier function, and contribute to various disorders such as irritable bowel syndrome, inflammatory bowel disease or neurodegeneration. Here, we summarize the current knowledge on the role of the ENS in gastrointestinal and systemic diseases, highlighting its interaction with various key players involved in shaping the phenotypes. Finally, current flaws and pitfalls related to ENS research in addition to future perspectives are also addressed.
Collapse
|
49
|
Brun P, Conti J, Zatta V, Russo V, Scarpa M, Kotsafti A, Porzionato A, De Caro R, Scarpa M, Fassan M, Calistri A, Castagliuolo I. Persistent Herpes Simplex Virus Type 1 Infection of Enteric Neurons Triggers CD8 + T Cell Response and Gastrointestinal Neuromuscular Dysfunction. Front Cell Infect Microbiol 2021; 11:615350. [PMID: 34094993 PMCID: PMC8169984 DOI: 10.3389/fcimb.2021.615350] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2020] [Accepted: 04/29/2021] [Indexed: 01/07/2023] Open
Abstract
Behind the central nervous system, neurotropic viruses can reach and persist even in the enteric nervous system (ENS), the neuronal network embedded in the gut wall. We recently reported that immediately following orogastric (OG) administration, Herpes simplex virus (HSV)-1 infects murine enteric neurons and recruits mononuclear cells in the myenteric plexus. In the current work, we took those findings a step forward by investigating the persistence of HSV-1 in the ENS and the local adaptive immune responses against HSV-1 that might contribute to neuronal damage in an animal model. Our study demonstrated specific viral RNA transcripts and proteins in the longitudinal muscle layer containing the myenteric plexus (LMMP) up to 10 weeks post HSV-1 infection. CD3+CD8+INFγ+ lymphocytes skewed towards HSV-1 antigens infiltrated the myenteric ganglia starting from the 6th week of infection and persist up to 10 weeks post-OG HSV-1 inoculation. CD3+CD8+ cells isolated from the LMMP of the infected mice recognized HSV-1 antigens expressed by infected enteric neurons. In vivo, infiltrating activated lymphocytes were involved in controlling viral replication and intestinal neuromuscular dysfunction. Indeed, by depleting the CD8+ cells by administering specific monoclonal antibody we observed a partial amelioration of intestinal dysmotility in HSV-1 infected mice but increased expression of viral genes. Our findings demonstrate that HSV-1 persistently infects enteric neurons that in turn express viral antigens, leading them to recruit activated CD3+CD8+ lymphocytes. The T-cell responses toward HSV-1 antigens persistently expressed in enteric neurons can alter the integrity of the ENS predisposing to neuromuscular dysfunction.
Collapse
Affiliation(s)
- Paola Brun
- Department of Molecular Medicine, University of Padova, Padova, Italy
| | - Jessica Conti
- Department of Molecular Medicine, University of Padova, Padova, Italy
| | - Veronica Zatta
- Department of Molecular Medicine, University of Padova, Padova, Italy
| | - Venera Russo
- Department of Molecular Medicine, University of Padova, Padova, Italy
| | - Melania Scarpa
- Laboratory of Advanced Translational Research, Veneto Institute of Oncology IOV - IRCCS, Padova, Italy
| | - Andromachi Kotsafti
- Laboratory of Advanced Translational Research, Veneto Institute of Oncology IOV - IRCCS, Padova, Italy
| | | | - Raffaele De Caro
- Department of Neurosciences, University of Padova, Padova, Italy
| | - Marco Scarpa
- General Surgery Unit, Azienda Ospedaliera di Padova, Padova, Italy
| | - Matteo Fassan
- Department of Medicine, Surgical Pathology & Cytopathology Unit, University of Padua, Padua, Italy
| | - Arianna Calistri
- Department of Molecular Medicine, University of Padova, Padova, Italy
| | | |
Collapse
|
50
|
Lerner A. The intestinal luminal sources of α-synuclein: a gastroenterologist perspective. Nutr Rev 2021; 80:282-293. [PMID: 33942062 DOI: 10.1093/nutrit/nuab024] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Parkinson's disease is characterized by nonmotor/motor dysfunction, midbrain dopaminergic neuronal death, and α-synuclein (aSN) deposits. The current hypothesis is that aSN accumulates in the enteric nervous system to reach the brain. However, invertebrate, vertebrate, and nutritional sources of aSN reach the luminal compartment. Submitted to local amyloidogenic forces, the oligomerized proteins' cargo can be sensed and sampled by a specialized mucosal cell to be transmitted to the adjacent enteric nervous system, starting their upward journey to the brain. The present narrative review extends the current mucosal origin of Parkinson's disease, presenting the possibility that the disease starts in the intestinal lumen. If substantiated, eliminating the nutritional sources of aSN (eg, applying a vegetarian diet) might revolutionize the currently used dopaminergic pharmacologic therapy.
Collapse
Affiliation(s)
- Aaron Lerner
- A. Lerner is with the Zabludowicz Center for Autoimmune Diseases, Chaim Sheba Medical Center, Tel-Hashomer, Israel
| |
Collapse
|