1
|
Şeker ME, Erol ÖD, Pervin B, Wagemaker G, van Til NP, Aerts-Kaya F. Assessment of non-myelotoxic agents as a preparatory regimen for hematopoietic stem cell gene therapy. Hum Cell 2024; 38:9. [PMID: 39460845 DOI: 10.1007/s13577-024-01130-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2024] [Accepted: 10/07/2024] [Indexed: 10/28/2024]
Abstract
RAG2 deficiency is characterized by a lack of B and T lymphocytes, causing severe lethal infections. Currently, RAG2 deficiency is treated with a Hematopoietic Stem Cell transplantation (HSCT). Most conditioning regimens used before HSCT consist of alkylating myelotoxic agents with or without irradiation and affect growth and development of pediatric patients. Here, we developed a non-myelotoxic regimen using G-CSF, VLA-4I or AMD3100. These agents are known HSC mobilizers or affect bone marrow (BM) permeability and may support the homing of HSCs to the BM, without inducing major side effects. Female Rag2-/- mice were pre-treated with Busulfan (BU), G-CSF, VLA-4I or AMD3100 and transplanted with male BM cells transduced with a lentiviral vector carrying codon optimized human RAG2 (RAG2co). Peripheral blood cell counts increased significantly after G-CSF, VLA-4I and AMD3100 treatment, but not after BU. Reconstitution of PB lymphocytes was comparable for all groups with full immune reconstitution at 6 months post transplantation, despite different methods of conditioning. Survival of mice pre-treated with non-myelotoxic agents was significantly higher than after BU treatment. Here, we show that the non-myelotoxic agents G-CSF, VLA-4I, and AMD3100 are highly effective as conditioning regimen before HSC gene therapy and can be used as an alternative to BU.
Collapse
Affiliation(s)
- Mehmet Emin Şeker
- Department of Stem Cell Sciences, Graduate School of Health Sciences, Hacettepe University, Ankara, Turkey
- Center for Stem Cell Research and Development, Hacettepe University, Ankara, Turkey
| | - Özgür Doğuş Erol
- Department of Stem Cell Sciences, Graduate School of Health Sciences, Hacettepe University, Ankara, Turkey
- Center for Stem Cell Research and Development, Hacettepe University, Ankara, Turkey
| | - Burcu Pervin
- Department of Stem Cell Sciences, Graduate School of Health Sciences, Hacettepe University, Ankara, Turkey
- Center for Stem Cell Research and Development, Hacettepe University, Ankara, Turkey
| | - Gerard Wagemaker
- Center for Stem Cell Research and Development, Hacettepe University, Ankara, Turkey
- Department of Hematology, Erasmus University Rotterdam, Rotterdam, The Netherlands
| | - Niek P van Til
- Amsterdam Leukodystrophy Center, Emma Children's Hospital, Amsterdam University Medical Center, Amsterdam Neuroscience, 1081 HV, Amsterdam, The Netherlands
- Department of Integrative Neurophysiology, Center for Neurogenomics and Cognitive Research, Vrije Universiteit, 1081 HV, Amsterdam, The Netherlands
| | - Fatima Aerts-Kaya
- Department of Stem Cell Sciences, Graduate School of Health Sciences, Hacettepe University, Ankara, Turkey.
- Center for Stem Cell Research and Development, Hacettepe University, Ankara, Turkey.
- Hacettepe University Experimental Animals Application and Research Center (HÜDHAM), Hacettepe University, Ankara, Turkey.
- Hacettepe University Advanced Techologies Application and Research Center (HÜNİTEK), Hacettepe University, Ankara, Turkey.
| |
Collapse
|
2
|
Sarmiento M, Salinas J, Rojas P, Gutierrez C, Vidal M, Jara V, Garcia MJ, Campbell MJ, Flores Y, Sandoval V, Vergara M, Palacios F, Ocqueteau M. Analysis of apheresis outcomes in a cohort of Chilean patients treated with autologous stem cell transplantation: A single center real-world experience. Transfus Apher Sci 2024; 63:103983. [PMID: 39098276 DOI: 10.1016/j.transci.2024.103983] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2024] [Revised: 07/29/2024] [Accepted: 08/01/2024] [Indexed: 08/06/2024]
Abstract
Adequate stem cell harvesting is required for autologous hematopoietic transplantation. In deficient mobilizer patients, the collection of stem cells can be challenging because of the impossibility of achieving satisfactory CD34 cell counts with GCSF + - chemotherapy. Plerixafor is a potent and expensive drug that promotes the release of stem cells from the medullary niche to the peripheral blood and allows satisfactory harvests. We performed a retrospective analysis of 370 patients with myeloma and lymphoma harvested at our institution. 99 % of patients achieved satisfactory apheresis using Plerixafor in 45 %. Satisfactory harvests were obtained in patients mobilized with GCSF or plerixafor. In patients who used plerixafor, it was necessary to perform fewer apheresis procedures (P = 0.05). In multivariate analysis, the only factor that predicted the need for plerixafor was the presence of less than 30,000 CD34 / ul on the day of apheresis (OR 0.3. p < 0.001). Since we adopted the plerixafor protocol guided by CD34 counts, the number of patients with harvest failure has decreased. In conclusion, the rational and standardized use of plerixafor favors satisfactory harvest in patients who require autologous transplantation in South-American patients.
Collapse
Affiliation(s)
- M Sarmiento
- Programa de trasplante hematopoyético del adulto, Red de Salud Christus UC, Pontificia Universidad Católica de Chile, Chile.
| | - J Salinas
- Programa de trasplante hematopoyético del adulto, Red de Salud Christus UC, Pontificia Universidad Católica de Chile, Chile
| | - P Rojas
- Programa de trasplante hematopoyético del adulto, Red de Salud Christus UC, Pontificia Universidad Católica de Chile, Chile
| | - C Gutierrez
- Programa de trasplante hematopoyético del adulto, Red de Salud Christus UC, Pontificia Universidad Católica de Chile, Chile
| | - M Vidal
- Programa de trasplante hematopoyético del adulto, Red de Salud Christus UC, Pontificia Universidad Católica de Chile, Chile
| | - V Jara
- Programa de trasplante hematopoyético del adulto, Red de Salud Christus UC, Pontificia Universidad Católica de Chile, Chile
| | - M J Garcia
- Programa de trasplante hematopoyético del adulto, Red de Salud Christus UC, Pontificia Universidad Católica de Chile, Chile
| | - M J Campbell
- Programa de trasplante hematopoyético del adulto, Red de Salud Christus UC, Pontificia Universidad Católica de Chile, Chile
| | - Y Flores
- Programa de trasplante hematopoyético del adulto, Red de Salud Christus UC, Pontificia Universidad Católica de Chile, Chile
| | - V Sandoval
- Programa de trasplante hematopoyético del adulto, Red de Salud Christus UC, Pontificia Universidad Católica de Chile, Chile
| | - M Vergara
- Programa de trasplante hematopoyético del adulto, Red de Salud Christus UC, Pontificia Universidad Católica de Chile, Chile
| | - F Palacios
- Programa de trasplante hematopoyético del adulto, Red de Salud Christus UC, Pontificia Universidad Católica de Chile, Chile
| | - M Ocqueteau
- Programa de trasplante hematopoyético del adulto, Red de Salud Christus UC, Pontificia Universidad Católica de Chile, Chile
| |
Collapse
|
3
|
Leonard A, Weiss MJ. Hematopoietic stem cell collection for sickle cell disease gene therapy. Curr Opin Hematol 2024; 31:104-114. [PMID: 38359264 PMCID: PMC11414477 DOI: 10.1097/moh.0000000000000807] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/17/2024]
Abstract
PURPOSE OF REVIEW Gene therapy for sickle cell disease (SCD) is advancing rapidly, with two transformative products recently approved by the US Food and Drug Administration and numerous others under study. All current gene therapy protocols require ex vivo modification of autologous hematopoietic stem cells (HSCs). However, several SCD-related problems impair HSC collection, including a stressed and damaged bone marrow, potential cytotoxicity by the major therapeutic drug hydroxyurea, and inability to use granulocyte colony stimulating factor, which can precipitate severe vaso-occlusive events. RECENT FINDINGS Peripheral blood mobilization of HSCs using the CXCR4 antagonist plerixafor followed by apheresis collection was recently shown to be safe and effective for most SCD patients and is the current strategy for mobilizing HSCs. However, exceptionally large numbers of HSCs are required to manufacture an adequate cellular product, responses to plerixafor are variable, and most patients require multiple mobilization cycles, increasing the risk for adverse events. For some, gene therapy is prohibited by the failure to obtain adequate numbers of HSCs. SUMMARY Here we review the current knowledge on HSC collection from individuals with SCD and potential improvements that may enhance the safety, efficacy, and availability of gene therapy for this disorder.
Collapse
Affiliation(s)
- Alexis Leonard
- Department of Hematology, St. Jude Children's Research Hospital, Memphis, Tennessee, USA
| | | |
Collapse
|
4
|
Sims NA, Lévesque JP. Oncostatin M: Dual Regulator of the Skeletal and Hematopoietic Systems. Curr Osteoporos Rep 2024; 22:80-95. [PMID: 38198032 PMCID: PMC10912291 DOI: 10.1007/s11914-023-00837-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 10/30/2023] [Indexed: 01/11/2024]
Abstract
PURPOSE OF THE REVIEW The bone and hematopoietic tissues coemerge during development and are functionally intertwined throughout mammalian life. Oncostatin M (OSM) is an inflammatory cytokine of the interleukin-6 family produced by osteoblasts, bone marrow macrophages, and neutrophils. OSM acts via two heterodimeric receptors comprising GP130 with either an OSM receptor (OSMR) or a leukemia inhibitory factor receptor (LIFR). OSMR is expressed on osteoblasts, mesenchymal, and endothelial cells and mice deficient for the Osm or Osmr genes have both bone and blood phenotypes illustrating the importance of OSM and OSMR in regulating these two intertwined tissues. RECENT FINDINGS OSM regulates bone mass through signaling via OSMR, adaptor protein SHC1, and transducer STAT3 to both stimulate osteoclast formation and promote osteoblast commitment; the effect on bone formation is also supported by action through LIFR. OSM produced by macrophages is an important inducer of neurogenic heterotopic ossifications in peri-articular muscles following spinal cord injury. OSM produced by neutrophils in the bone marrow induces hematopoietic stem and progenitor cell proliferation in an indirect manner via OSMR expressed by bone marrow stromal and endothelial cells that form hematopoietic stem cell niches. OSM acts as a brake to therapeutic hematopoietic stem cell mobilization in response to G-CSF and CXCR4 antagonist plerixafor. Excessive OSM production by macrophages in the bone marrow is a key contributor to poor hematopoietic stem cell mobilization (mobilopathy) in people with diabetes. OSM and OSMR may also play important roles in the progression of several cancers. It is increasingly clear that OSM plays unique roles in regulating the maintenance and regeneration of bone, hematopoietic stem and progenitor cells, inflammation, and skeletal muscles. Dysregulated OSM production can lead to bone pathologies, defective muscle repair and formation of heterotopic ossifications in injured muscles, suboptimal mobilization of hematopoietic stem cells, exacerbated inflammatory responses, and anti-tumoral immunity. Ongoing research will establish whether neutralizing antibodies or cytokine traps may be useful to correct pathologies associated with excessive OSM production.
Collapse
Affiliation(s)
- Natalie A Sims
- St. Vincent's Institute of Medical Research, 9 Princes St, Fitzroy, VIC, Australia
- Melbourne Medical School, The University of Melbourne, Melbourne, VIC, Australia
| | - Jean-Pierre Lévesque
- Translational Research Institute, Mater Research Institute - The University of Queensland, 37 Kent Street, Woolloongabba, QLD, Australia.
| |
Collapse
|
5
|
Tanaka M, Thoma J, Poisa-Beiro L, Wuchter P, Eckstein V, Dietrich S, Pabst C, Müller-Tidow C, Ohta T, Ho AD. Physical biomarkers for human hematopoietic stem and progenitor cells. Cells Dev 2023; 174:203845. [PMID: 37116713 DOI: 10.1016/j.cdev.2023.203845] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2023] [Revised: 04/18/2023] [Accepted: 04/21/2023] [Indexed: 04/30/2023]
Abstract
Adhesion of hematopoietic stem and progenitor cells (HSPCs) to the bone marrow niche plays critical roles in the maintenance of the most primitive HSPCs. The interactions of HSPC-niche interactions are clinically relevant in acute myeloid leukemia (AML), because (i) leukemia-initiating cells adhered to the marrow niche are protected from the cytotoxic effect by chemotherapy and (ii) mobilization of HSPCs from healthy donors' bone marrow is crucial for the effective stem cell transplantation. However, although many clinical agents have been developed for the HSPC mobilization, the effects caused by the extrinsic molecular cues were traditionally evaluated based on phenomenological observations. This review highlights the recent interdisciplinary challenges of hematologists, biophysicists and cell biologists towards the design of defined in vitro niche models and the development of physical biomarkers for quantitative indexing of differential effects of clinical agents on human HSPCs.
Collapse
Affiliation(s)
- Motomu Tanaka
- Physical Chemistry of Biosystems, Institute of Physical Chemistry, INF253, Heidelberg University, 69120 Heidelberg, Germany; Center for Integrative Medicine and Physics, Institute for Advanced Study, Kyoto University, 606-8501 Kyoto, Japan.
| | - Judith Thoma
- Physical Chemistry of Biosystems, Institute of Physical Chemistry, INF253, Heidelberg University, 69120 Heidelberg, Germany
| | - Laura Poisa-Beiro
- Department of Medicine V, Heidelberg University, INF410, 69120 Heidelberg, Germany
| | - Patrick Wuchter
- Department of Medicine V, Heidelberg University, INF410, 69120 Heidelberg, Germany
| | - Volker Eckstein
- Department of Medicine V, Heidelberg University, INF410, 69120 Heidelberg, Germany
| | - Sascha Dietrich
- Department of Medicine V, Heidelberg University, INF410, 69120 Heidelberg, Germany
| | - Caroline Pabst
- Department of Medicine V, Heidelberg University, INF410, 69120 Heidelberg, Germany
| | - Carsten Müller-Tidow
- Department of Medicine V, Heidelberg University, INF410, 69120 Heidelberg, Germany
| | - Takao Ohta
- Center for Integrative Medicine and Physics, Institute for Advanced Study, Kyoto University, 606-8501 Kyoto, Japan
| | - Anthony D Ho
- Center for Integrative Medicine and Physics, Institute for Advanced Study, Kyoto University, 606-8501 Kyoto, Japan; Department of Medicine V, Heidelberg University, INF410, 69120 Heidelberg, Germany; Molecular Medicine Partnership Unit Heidelberg, European Molecular Biology Laboratory (EMBL), Heidelberg University, 69120 Heidelberg, Germany.
| |
Collapse
|
6
|
Kim J, Kim J, Park HJ, Jeon EJ, Cho SW. A microfluidic platform for simulating stem cell migration using in vivo-like gradients of stem cell mobilizer. KOREAN J CHEM ENG 2023. [DOI: 10.1007/s11814-023-1390-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/09/2023]
|
7
|
Mayani H. Cellular Therapies: Yesterday, Today, and Tomorrow. Stem Cells Dev 2023; 32:163-169. [PMID: 36727603 DOI: 10.1089/scd.2022.0294] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
Cellular therapy (CT) can be defined as the transference into a person of healthy cells to correct defective functions. Yesterday (1950-2010), CT consisted mostly of hematopoietic transplants for the treatment of a variety of hematological disorders. Interestingly, during that period of time other cell types with therapeutic potential-including certain lymphoid populations and other nonhematopoietic cells-were discovered and characterized; thus, CT became a promising discipline for the treatment of a broader diversity of diseases. Today (2011-2023), CT has significantly grownup through preclinical studies and clinical trials, and it is currently progressing toward its consolidation as one of the pillars of medicine in the 21st century. Indeed, different types of stem cells (e.g., hematopoietic, mesenchymal, neural, and pluripotent), as well as different lymphoid and myeloid cell populations (e.g., TILs, CAR-Ts, CAR-NKs, and DUOC-01) are being used in clinical settings or are being tested in clinical trials. For the past decade, several CT modalities have been developed, and today, many of them are being used in the clinic. Tomorrow (2024-2040), already established CT modalities will surely be improved and applied more frequently, and novel therapies (that will include cell types such as iPSCs) will enter and expand within the clinical ground. It is noteworthy, however, that despite significant advancements and achievements, problems still need to be solved and obstacles need to be overcome. Technical, ethical, and economic issues persist and they need to be addressed. Undoubtedly, exciting times of challenges and opportunities are coming ahead in the CT arena.
Collapse
Affiliation(s)
- Hector Mayani
- Oncology Research Unit, Oncology Hospital, IMSS National Medical Center, Mexican Institute of Social Security, Mexico City, Mexico
| |
Collapse
|
8
|
Predictors of Poor Haematopoietic Stem Cell Mobilisation In Patients With Haematological Malignancies at a South African Centre. Transfus Apher Sci 2022; 61:103419. [PMID: 35288051 DOI: 10.1016/j.transci.2022.103419] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2021] [Revised: 02/23/2022] [Accepted: 03/01/2022] [Indexed: 11/23/2022]
Abstract
BACKGROUND Autologous stem cell transplant (ASCT) is an established consolidation strategy in the treatment of haematological malignancies, however poor mobilisation (PM) can contribute to patient morbidity and high resource utilisation. Identifying the incidence, risk factors for PM and engraftment outcomes are important goals in our resource limited setting. METHODS We retrospectively analyzed patients with haematological malignancies that consecutively underwent ASCT at Groote Schuur hospital, Cape Town, South Africa from January 2013 to January 2019. RESULTS 146 patients - majority with multiple myeloma (MM)(41,8%), F:M= 1:2, underwent leukapheresis with median age of 32 years (range, 9 - 66 years). PM occurred in 25/146 (17%), mobilisation failure (MF) in 3/146 (2%) and super mobilisation (SMs) in 99/146 (68%), respectively. Risk factors for PM were: diagnosis of acute leukaemia (RR = 25, 95% CI 3.4 - 183, p = 0.002) and Hodgkin lymphoma (RR = 19, 95% CI 2.6 - 142, p = 0.004); low white cell count (WCC) at harvest (WCC < 9 × 109/L (RR=4.3, 95% CI 2.3 - 8.3, p < 0.0001) and two vs one line of prior therapy (RR = 3.1, 95% CI 1.45 - 6.7, p = 0.0037). Median days to neutrophil and platelet engraftment were 14 days (95% CI 14-15 days) and 16 days (95% CI 15-16 days) respectively. CONCLUSION PM occurred in 17% of a contemporary South African ASCT cohort, albeit with a low MF rate (2%). There was surprisingly high rate (68%) of SMs, possibly reflective of superfluous mobilisation strategy in MM patients. We identified predictive factors for PM that will lead to enhanced cost-effective use of plerixafor.
Collapse
|
9
|
Jamal A, Khan T, Zaidi U, Rizvi QA, Jahanzeb S, Salim A, Imam M, Shamsi T. Highly specific functional equivalence of XN-HPC for optimum CD34+ cell count in harvested allogeneic bone marrow stem cell products. Hematology 2022; 27:232-238. [DOI: 10.1080/16078454.2022.2030884] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022] Open
Affiliation(s)
- Aisha Jamal
- Department of Clinical Haematology, NIBD & BMT, Karachi, Pakistan
| | - Tahir Khan
- School of Public Health, DUHS, Karachi, Pakistan
| | - Uzma Zaidi
- Department of Bone Marrow Transplantation, NIBD & BMT, Karachi, Pakistan
| | | | - Shafaq Jahanzeb
- Department of Bone Marrow Transplantation, NIBD & BMT, Karachi, Pakistan
| | - Ali Salim
- Department of Clinical Haematology, NIBD & BMT, Karachi, Pakistan
| | - Mehjabeen Imam
- Department of Transplant Immunology, NIBD & BMT, Karachi, Pakistan
| | - Tahir Shamsi
- Department of Clinical Haematology, NIBD & BMT, Karachi, Pakistan
- Department of Bone Marrow Transplantation, NIBD & BMT, Karachi, Pakistan
| |
Collapse
|
10
|
Safety and Effectiveness of Plerixafor for Peripheral Blood Stem Cell Mobilization in Autologous Stem Cell Transplantation: Results of a Post-Marketing Surveillance Study. Drugs Real World Outcomes 2021; 9:63-78. [PMID: 34455570 PMCID: PMC8844333 DOI: 10.1007/s40801-021-00276-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/09/2021] [Indexed: 12/02/2022] Open
Abstract
Background Plerixafor was approved in Japan in 2016 for peripheral blood stem cell (PBSC) mobilization in autologous stem cell transplantation (A-SCT). Objective Our objective was to evaluate the safety and effectiveness of plerixafor in Japanese patients undergoing A-SCT for various indications in real-world practice. Patients and Methods This post-marketing surveillance study included Japanese patients initiating PBSC mobilization with plerixafor for A-SCT. Safety assessments included the incidence of adverse events (AEs) including serious AEs, adverse drug reactions (ADRs), and laboratory variables. Effectiveness assessments were the proportion of patients with the target CD34+ cell yield (≥2 × 106 cells/kg) ≤4 days after plerixafor administration and the number of days required to reach the target CD34+ cell yield. Results In total, 785 patients were registered, and the safety and effectiveness analysis sets comprised 764 and 717 patients, respectively. ADRs occurred in 12.2% of patients, with gastrointestinal disorders (5.5%), laboratory investigations (4.5%), and blood and lymphatic system disorders (3.0%) being the most common. A total of 71.1% of patients had the target CD34+ cell yield within ≤4 days of treatment, with a mean (standard deviation) of 1.3 (0.7) days to reach the target CD34+ cell yield. Over 80% of patients with a baseline CD34+ cell count >2 cells/μL had a target CD34+ cell yield within ≤4 days of treatment. Conclusions This large post-marketing surveillance study provided real-world evidence detailing the safety and effectiveness of plerixafor for PBSC mobilization in Japanese patients undergoing A-SCT. Importantly, no new safety concerns were identified, and the safety profile of plerixafor was consistent with the established profile of this drug. Supplementary Information The online version contains supplementary material available at 10.1007/s40801-021-00276-1.
Collapse
|
11
|
Disease severity impacts plerixafor-mobilized stem cell collection in patients with sickle cell disease. Blood Adv 2021; 5:2403-2411. [PMID: 33956057 DOI: 10.1182/bloodadvances.2021004232] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2021] [Accepted: 03/04/2021] [Indexed: 11/20/2022] Open
Abstract
Recent studies suggest that plerixafor mobilization and apheresis in patients with sickle cell disease (SCD) is safe and can allow collection of sufficient CD34+ hematopoietic stem cell (HSC) collection for clinical gene therapy applications. However, the quantities of plerixafor-mobilized CD34+ cells vary between different SCD patients for unknown reasons. Twenty-three participants with SCD underwent plerixafor mobilization followed by apheresis, processing, and HSC enrichment under a phase 1 safety and efficacy study conducted at 2 institutions. Linear regression or Spearman's correlation test was used to assess the relationships between various hematologic and clinical parameters with total CD34+ cells/kg collected. Median CD34+ cells/kg after 2 or fewer mobilization and apheresis cycles was 4.0 × 106 (range, 1.5-12.0). Similar to what is observed generally, CD34+ yield correlated negatively with age (P < .001) and positively with baseline (P = .003) and preapheresis blood CD34+ cells/µL (P < .001), and baseline white blood cell (P = .01) and platelet counts (P = .03). Uniquely for SCD, CD34+ cell yields correlated positively with the number of days hydroxyurea was held (for up to 5 weeks, P = .01) and negatively with markers of disease severity, including hospitalization frequency within the preceding year (P = .01) and the number of medications taken for chronic pain (P = .002). Unique SCD-specific technical challenges in apheresis were also associated with reduced CD34+ cell collection efficiency and purification. Here, we describe factors that impact plerixafor mobilization success in patients with SCD, confirming known factors as described in other populations in addition to reporting previously unknown disease specific factors in patients with SCD. This trial was registered at www.clinicaltrials.gov as #NCT03226691.
Collapse
|
12
|
Kalafati L, Chavakis T. Hematopoietic stem and progenitor cells take the route through the bone marrow endothelium. Haematologica 2020; 105:2700-2701. [PMID: 33256368 PMCID: PMC7716267 DOI: 10.3324/haematol.2020.262113] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Affiliation(s)
- Lydia Kalafati
- Institute for Clinical Chemistry and Laboratory Medicine, University Hospital and Faculty of Medicine, Technische Universität Dresden, Dresden; National Center for Tumor Diseases, Partner Site Dresden, Dresden and German Cancer Research Center Heidelberg, Heidelberg, Germany
| | - Triantafyllos Chavakis
- Institute for Clinical Chemistry and Laboratory Medicine, University Hospital and Faculty of Medicine, Technische Universität Dresden, Dresden.
| |
Collapse
|
13
|
Xu Y, Jiang Y, Xia C, Wang Y, Zhao Z, Li T. Stem cell therapy for osteonecrosis of femoral head: Opportunities and challenges. Regen Ther 2020; 15:295-304. [PMID: 33426232 PMCID: PMC7770428 DOI: 10.1016/j.reth.2020.11.003] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2020] [Revised: 11/05/2020] [Accepted: 11/12/2020] [Indexed: 12/18/2022] Open
Abstract
Osteonecrosis of the femoral head (ONFH) is a progressive disease with a complex etiology and unclear pathogenesis, resulting in severe hip pain and dysfunction mainly observed in young patients. Although total hip arthroplasty (THA) is the most effective treatment for patients with ONFH in the terminal stage, the results of THA in young patients or active populations are often not favorable, with some complications related to the prosthesis. With the development of biotechnology, an increasing number of studies pay attention to use of stem cells for the treatment of ONFH. Stem cells are characterized by the ability to self-renew and differentiate into multiple cell types, including differentiation into osteoblasts and endothelial cells to mediate bone repair and angiogenesis. Furthermore, stem cells can offer growth factors to promote blood supply in the necrotic regions by paracrine effects. Therefore, stem cell therapy has become one of the hip-preserving alternatives for ONFH. This review summarized the current trends in stem cell therapy for ONFH, from clinical applications to related basic research, and showed that an increasing number of studies have confirmed the effectiveness of stem cell therapy in ONFH. However, many unsolved problems and challenges in practical applications of stem cell therapy still exist, such as patient selection, standardized procedures, safety assessment, and the fate of transplanted cells in the body. Additional studies are required to find ideal cell sources, appropriate transplantation methods, and the optimal number of cells for transplantation. Diversities in repair processes present a challenge in the targeted treatment of ONFH. Osteogenesis and angiogenesis are the primary mechanisms of MSCs treatment in ONFH. Systematic safety assessment and cell tracing are necessary for stem cell therapy. Optimal numbers and methods of cell transplantation need to be further confirmed.
Collapse
Key Words
- ALP, alkaline phosphatase
- AMSCs, adipose-derived MSCs
- BCP, biphasic calcium phosphate
- BMC, bone marrow concentrate
- BMMNCs, bone marrow mononuclear cells
- BMP-2, bone morphogenetic protein-2
- BMSCs, bone marrow-derived mesenchymal stem cells
- CD, Core decompression
- CPC, calcium phosphate
- CSS, cap-shaped separation
- Cell implantation
- Cell therapy
- DBM, demineralized bone matrix
- Femoral head
- HHS, Harris hip score
- IP-CHA, interconnected porous calcium hydroxyapatite
- MRI, magnetic resonance imaging
- MSCs, Mesenchymal stem cells
- MVD, microvessel density
- ONFH, Osteonecrosis of the femoral head
- Osteonecrosis
- PBMSCs, peripheral blood-derived MSCs
- PLGA, poly lactide-co-glycolide
- RCT, randomized controlled trial
- SCPP, strontium-doped calcium polyphosphate
- SVF, stromal vascular fractions
- Stem cells
- THA, total hip arthroplasty
- TMCs, transformed mesenchymal cells
- TNF, tumor necrosis factor
- Tissue engineering
- UCMSCs, umbilical cord-derived mesenchymal stem cells
- VAS, visual analogue scale
- VEGF, vascular endothelial growth factor
- WOMAC, Western Ontario and McMaster Universities Arthritis Index
- XACB, xenogeneic antigen-extracted cancellous bone
- bFGF, basic fibroblast growth factor
- β-TCP, beta-tricalcium phosphate
Collapse
Affiliation(s)
- Yingxing Xu
- Department of Joint Surgery, The Affiliated Hospital of Qingdao University, Qingdao, Shandong, 266003, China.,Qingdao University, Qingdao, Shandong, 266071, China.,Medical Department of Qingdao University, Qingdao, Shandong, 266071, China
| | - Yaping Jiang
- Department of Stomatology, The Affiliated Hospital of Qingdao University, Qingdao, Shandong, 266003, China.,Qingdao University, Qingdao, Shandong, 266071, China
| | - ChangSuo Xia
- Department of Joint Surgery, The Affiliated Hospital of Qingdao University, Qingdao, Shandong, 266003, China
| | - Yingzhen Wang
- Department of Joint Surgery, The Affiliated Hospital of Qingdao University, Qingdao, Shandong, 266003, China
| | - Zhiping Zhao
- Department of Joint Surgery, The Affiliated Hospital of Qingdao University, Qingdao, Shandong, 266003, China.,Qingdao University, Qingdao, Shandong, 266071, China.,Medical Department of Qingdao University, Qingdao, Shandong, 266071, China
| | - Tao Li
- Department of Joint Surgery, The Affiliated Hospital of Qingdao University, Qingdao, Shandong, 266003, China
| |
Collapse
|
14
|
Advantages of adipose tissue stem cells over CD34 + mobilization to decrease hepatic fibrosis in Wistar rats. Ann Hepatol 2020; 18:620-626. [PMID: 31147180 DOI: 10.1016/j.aohep.2018.12.005] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/25/2018] [Revised: 12/04/2018] [Accepted: 11/01/2018] [Indexed: 02/06/2023]
Abstract
INTRODUCTION AND OBJECTIVES Chronic liver inflammation may lead to hepatic cirrhosis, limiting its regenerative capacity. The clinical standard of care is transplantation, although stem cell therapy may be an alternative option. The study aim was to induce endogenous hematopoietic stem cells (HSCs) with granulocyte colony stimulating factor (G-CSF) and/or intravenous administration of adipose tissue-derived mesenchymal stem cells (MSCs) to decrease hepatic fibrosis in an experimental model. MATERIAL AND METHODS A liver fibrosis model was developed with female Wistar rats via multiple intraperitoneal doses of carbon tetrachloride. Three rats were selected to confirm cirrhosis, and the rest were set into experimental groups to evaluate single and combined therapies of G-CSF-stimulated HSC mobilization and intravenous MSC administration. RESULTS Treatment with MSCs and G-CSF significantly improved alanine amino transferase levels, while treatment with G-CSF, MSCs, and G-CSF+MSCs decreased aspartate amino transferase levels. Hepatocyte growth factor (HGF) and interleukin 10 levels increased with MSC treatment. Transforming growth factor β levels were lower with MSC treatment. Interleukin 1β and tumor necrosis factor alpha levels decreased in all treated groups. Histopathology showed that MSCs and G-CSF reduced liver fibrosis from F4 to F2. CONCLUSIONS MSC treatment improves liver function, decreases hepatic fibrosis, and plays an anti-inflammatory role; it promotes HGF levels and increased proliferating cell nuclear antigen when followed by MSC treatment mobilization using G-CSF. When these therapies were combined, however, fibrosis improvement was less evident.
Collapse
|
15
|
Arcangeli ML, Brault P, Bourhis JH, Kuhnowskie F, Henry E, Barroca V, Koscielny S, Pflumio F, Amsellem S. Combined G-CSF and Plerixafor enhance hematopoietic recovery of CD34 + cells from poor mobilizer patients in NSG mice. Exp Hematol 2020; 86:15-20.e2. [PMID: 32450206 DOI: 10.1016/j.exphem.2020.05.006] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2020] [Revised: 05/12/2020] [Accepted: 05/14/2020] [Indexed: 10/24/2022]
Abstract
Transplantable CD34+ hematopoietic stem/progenitor cells (HSPCs) are currently isolated mainly from peripheral blood after mobilization with granulocyte colony-stimulating factor (G-CSF). These mobilized CD34+ cells have the potential to generate all blood cell types. For autologous transplantation, the minimal number of mobilized CD34+ cells is 2 × 106 CD34+ cells/kg body weight. However, up to 30% of patients fail to mobilize enough peripheral CD34+ cells after G-CSF treatment. To overcome this limitation, a combination of G-CSF and Plerixafor, a CXCR4 chemokine receptor inhibitor, is proposed to enhance CD34+ cell mobilization in poor mobilizer patients. However, only limited data are available on quantification of the functional quality of such patients' mobilized hematopoietic stem cells. Here, for six poor mobilizer patients, a head-to-head comparison of their CD34+ cells mobilized without versus with Plerixafor was performed to assess their properties with respect to the reconstitution of human hematopoiesis in vivo in immune-deficient mice. Our results indicate that mobilized CD34+ cells recovered after the G-CSF + Plerixafor mobilization protocol have an enhanced intrinsic hematopoietic reconstitution potential compared with CD34+ cells mobilized with G-CSF alone.
Collapse
Affiliation(s)
- Marie-Laure Arcangeli
- Team Niche and Cancer in Hematopoiesis, U1274, INSERM, Fontenay-aux-Roses, France; Laboratory of Hematopoietic Stem Cells and Leukemia/Service Stem Cells and Radiation/iRCM/JACOB/DRF, CEA, Fontenay-aux-Roses, France; UMR Stabilité Génétique Cellules Souches et Radiations, Université de Paris, CEA, Fontenay-aux-Roses, France; UMR Stabilité Génétique Cellules Souches et Radiations, Université Paris-Saclay, CEA, Fontenay-aux-Roses, France.
| | | | - Jean-Henri Bourhis
- Blood and Marrow Transplantation Service, Department of Hematology, U1186, INSERM, Gustave Roussy Cancer Center, Villejuif Cedex, France
| | | | - Elia Henry
- Team Niche and Cancer in Hematopoiesis, U1274, INSERM, Fontenay-aux-Roses, France; Laboratory of Hematopoietic Stem Cells and Leukemia/Service Stem Cells and Radiation/iRCM/JACOB/DRF, CEA, Fontenay-aux-Roses, France; UMR Stabilité Génétique Cellules Souches et Radiations, Université de Paris, CEA, Fontenay-aux-Roses, France; UMR Stabilité Génétique Cellules Souches et Radiations, Université Paris-Saclay, CEA, Fontenay-aux-Roses, France
| | - Vilma Barroca
- Team Niche and Cancer in Hematopoiesis, U1274, INSERM, Fontenay-aux-Roses, France; Laboratory of Hematopoietic Stem Cells and Leukemia/Service Stem Cells and Radiation/iRCM/JACOB/DRF, CEA, Fontenay-aux-Roses, France; UMR Stabilité Génétique Cellules Souches et Radiations, Université de Paris, CEA, Fontenay-aux-Roses, France; UMR Stabilité Génétique Cellules Souches et Radiations, Université Paris-Saclay, CEA, Fontenay-aux-Roses, France
| | - Serge Koscielny
- Department of Biostatistics, Gustave Roussy Cancer Center, Villejuif Cedex, France
| | - Françoise Pflumio
- Team Niche and Cancer in Hematopoiesis, U1274, INSERM, Fontenay-aux-Roses, France; Laboratory of Hematopoietic Stem Cells and Leukemia/Service Stem Cells and Radiation/iRCM/JACOB/DRF, CEA, Fontenay-aux-Roses, France; UMR Stabilité Génétique Cellules Souches et Radiations, Université de Paris, CEA, Fontenay-aux-Roses, France; UMR Stabilité Génétique Cellules Souches et Radiations, Université Paris-Saclay, CEA, Fontenay-aux-Roses, France
| | - Sophie Amsellem
- Hematology/Immunology Unit, Gustave Roussy Cancer Center, Villejuif Cedex, France
| |
Collapse
|
16
|
Jamal A, Khan MT, Parveen S, Rizvi Q, Farzana T, Zaidi U, Borhany M, Siddiqui S, Ansari SH, Shamsi TS. Peripheral Blood Stem Cell Harvest HPC Count Is an Effective Surrogate Marker for CD34+ Cell Count in Allogeneic Stem Cell Transplant Setting. Transl Oncol 2020; 13:100788. [PMID: 32408157 PMCID: PMC7218209 DOI: 10.1016/j.tranon.2020.100788] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2019] [Accepted: 04/14/2020] [Indexed: 11/29/2022] Open
Abstract
OBJECTIVE: We assessed the predictive potential of XN-HPC for CD34+ cell count as obtained through Sysmex automated hematology analyzers (XN-1000). METHODS: This study was conducted at the National Institute of Blood Diseases and Bone Marrow Transplantation in 84 donors between December 2012 and December 2017 in the first phase and later validated in 112 donors between December 2017 and December 2018. Sysmex XN-1000 and BD FACS Calibur estimated XN-HPC and CD34+ cells of peripheral blood apheresis product, respectively. Spearman's correlation was assessed between XN-HPC and CD34+ cell count followed by receiver operating characteristic curve calculation to determine the XN-HPC cutoff for a CD34+ count of ≥2 million cells/kg of recipient's body weight RESULTS: There is a moderately positive correlation (P value = .003) between XN-HPC and CD34+ count. Receiver operating characteristic curve analyses demonstrated that a cutoff value for XN-HPC of ≥1·845×106cells/kg of recipient's body weight has a specificity and sensitivity of 100% and 78·2%, respectively, for predicting the CD34+ count of ≥2 million cells/kg of recipient's body weight. This cutoff value of XN-HPC was prospectively validated in 112 donors. The positive predictive value was found to be 100%, while negative predictive value was 17%. CONCLUSION: XN-HPC has a highly promising potential to serve as a cost-effective and time-saving surrogate for CD34+ cell count.
Collapse
Affiliation(s)
- Aisha Jamal
- Clinical Haematology, National Institute of Blood Disease and Bone Marrow Transplantation, ST, 2/A Block 17 Gulshan-e-Iqbal KDA Scheme 24, Karachi, 75300, Pakistan.
| | - Mohammad Tahir Khan
- School of Public Health, Dow University of Health Sciences, 111 Suparco Rd, Gulzar-e-Hijri Gulzar E Hijri Scheme 33, Karachi, Karachi, City, Sindh, Pakistan.
| | - Sadia Parveen
- Research, National Institute of Blood Disease and Bone Marrow Transplantation, ST, 2/A Block 17 Gulshan-e-Iqbal KDA Scheme 24, Karachi, 75300, Pakistan.
| | - Qurratulain Rizvi
- Clinical Haematology, National Institute of Blood Disease and Bone Marrow Transplantation, ST, 2/A Block 17 Gulshan-e-Iqbal KDA Scheme 24, Karachi, 75300, Pakistan.
| | - Tasneem Farzana
- Bone Marrow Transplantation, National Institute of Blood Disease and Bone Marrow Transplantation, ST, 2/A Block 17 Gulshan-e-Iqbal KDA Scheme 24, Karachi, 75300, Pakistan.
| | - Uzma Zaidi
- Bone Marrow Transplantation, National Institute of Blood Disease and Bone Marrow Transplantation, ST, 2/A Block 17 Gulshan-e-Iqbal KDA Scheme 24, Karachi, 75300, Pakistan.
| | - Munira Borhany
- Bone Marrow Transplantation, National Institute of Blood Disease and Bone Marrow Transplantation, ST, 2/A Block 17 Gulshan-e-Iqbal KDA Scheme 24, Karachi, 75300, Pakistan.
| | - Saima Siddiqui
- Transplant Immunology, National Institute of Blood Disease & Bone Marrow Transplantation, ST, 2/A Block 17 Gulshan-e-Iqbal KDA Scheme 24, Karachi, 75300, Pakistan.
| | - Saqib Hussain Ansari
- Bone Marrow Transplantation, National Institute of Blood Disease and Bone Marrow Transplantation, ST, 2/A Block 17 Gulshan-e-Iqbal KDA Scheme 24, Karachi, 75300, Pakistan.
| | - Tahir Sultan Shamsi
- Clinical Haematology, National Institute of Blood Disease and Bone Marrow Transplantation, ST, 2/A Block 17 Gulshan-e-Iqbal KDA Scheme 24, Karachi, 75300, Pakistan; Bone Marrow Transplantation, National Institute of Blood Disease and Bone Marrow Transplantation, ST, 2/A Block 17 Gulshan-e-Iqbal KDA Scheme 24, Karachi, 75300, Pakistan.
| |
Collapse
|
17
|
Abstract
Blood-derived progenitors have become the predominant source of hematopoietic stem cells for clinical transplantation. The main advantages compared to the bone marrow are as follows: harvesting blood stem cells is less painful for the donor, utilizes much less resources such as operating theater time and general anesthesia, and, above all, is associated with significantly accelerated reconstitution. The latter has ultimately improved patient safety as a consequence of significantly shortened aplastic phase and hence reduced morbidity and mortality after transplantation. Basic and translational research efforts in the 1960s to the mid-1980s have made the first blood stem cell transplantation in Heidelberg in 1985 possible. Diverse groups around the world have contributed to incremental knowledge that culminated in the first successful attempts in blood stem cell transplantation. These efforts have spawned modern research into stem cell biology and the immune modulatory effects of allogeneic transplantations.
Collapse
|
18
|
Abstract
A new method to quantify the influence of mobilization agents on the dynamics of human hematopoietic stem and progenitor cells (HSPC) is introduced. Different from the microscopy-based high-content screening relying on multiple staining, machine learning, and molecular-level perturbation, the proposed method sheds light on the "dynamics" of HSPC in the presence of extrinsic factors, including SDF1α and mobilization agents. A well-defined model of the bone marrow niche is fabricated by the deposition of planar lipid membranes on glass slides (called supported membranes) displaying ligand molecules at precisely controlled surface densities. The dynamics of human HSPC, CD34+ cells from umbilical cord blood or peripheral blood, are monitored by time-lapse, live cell imaging with a standard phase-contrast microscopy or a specially designed microinterferometry in the absence or presence of mobilization agents. After extracting the contour of each cell, one can analyze the dynamics of cell "shapes" step-by-step, yielding various levels of information ranging from the principal mode of deformation, the persistence of deformation patterns, and the energy consumption by HSPC in the absence and presence of mobilization agents. Moreover, by tracking the migration trajectories of HSPC, one can gain insight how mobilization agents influence the "motion" of HSPC. As these readouts can be connected to a theoretical model, this strategy enables one to classify the influence of not only mobilization agents but also target-specific inhibitors or other treatments in quantitative indices.
Collapse
|
19
|
Yiğenoğlu TN, Başcı S, Bakırtaş M, Ulu BU, Kılınç A, Şahin D, Darçın T, Yıldız J, Merdin A, Baysal NA, İskender D, Çakar MK, Dal MS, Hacıbekiroğlu T, Altuntaş F. The effect of serum vitamin B12, folate, ferritin levels and transferrin saturation on stem cell mobilization in allogeneic donors. Transfus Apher Sci 2020; 59:102726. [PMID: 32008954 DOI: 10.1016/j.transci.2020.102726] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2019] [Revised: 11/27/2019] [Accepted: 12/23/2019] [Indexed: 10/25/2022]
Abstract
INTRODUCTION Peripheric blood derived stem cells are used in 75 % of allogeneic stem cell transplantations. Iron, vitamin B12 and folate involve in hematopoiesis. Therefore serum levels of iron, vitamin B12 and folat may effect stem cell mobilization. We aimed to analyze the effects of iron status, vitamin B12 and folate levels on peripheric blood stem cell mobilization in healthy donors. METHOD The mobilization results of 218 allogeneic donors were analyzed retrospectively. RESULTS In 64 donors, serum ferritin level was <15 μg / L and transferrin saturation was <20 %. When we compared the donors with iron deficiency to the donors without iron deficiency, the number of collected CD34 + cell was significantly higher in donors without iron deficiency. We did not find any impact of serum vitamin B12 and folate level on CD34+ cells collected. CONCLUSION Our study shows that serum ferritin and transferrin saturation have a greater effect on the amount of CD34+ cells collected from donors than serum vitamin B12 and folate levels. Consequently, when compliance tests of allogeneic donors are performed, the evaluation of vitamin B12 and folate levels is not necessary; whereas iron deficiency must be assessed and -if possible- corrected before apheresis is performed.
Collapse
Affiliation(s)
- Tuğçe Nur Yiğenoğlu
- Department of Hematology and Bone Marrow Transplantation Center, Ankara Dr. Abdurrahman Yurtaslan Oncology Training and Research Hospital, University of Health Sciences, Ankara, Turkey
| | - Semih Başcı
- Department of Hematology and Bone Marrow Transplantation Center, Ankara Dr. Abdurrahman Yurtaslan Oncology Training and Research Hospital, University of Health Sciences, Ankara, Turkey.
| | - Mehmet Bakırtaş
- Department of Hematology and Bone Marrow Transplantation Center, Ankara Dr. Abdurrahman Yurtaslan Oncology Training and Research Hospital, University of Health Sciences, Ankara, Turkey
| | - Bahar Uncu Ulu
- Department of Hematology and Bone Marrow Transplantation Center, Ankara Dr. Abdurrahman Yurtaslan Oncology Training and Research Hospital, University of Health Sciences, Ankara, Turkey
| | - Ali Kılınç
- Department of Hematology and Bone Marrow Transplantation Center, Ankara Dr. Abdurrahman Yurtaslan Oncology Training and Research Hospital, University of Health Sciences, Ankara, Turkey
| | - Derya Şahin
- Department of Hematology and Bone Marrow Transplantation Center, Ankara Dr. Abdurrahman Yurtaslan Oncology Training and Research Hospital, University of Health Sciences, Ankara, Turkey
| | - Tahir Darçın
- Department of Hematology and Bone Marrow Transplantation Center, Ankara Dr. Abdurrahman Yurtaslan Oncology Training and Research Hospital, University of Health Sciences, Ankara, Turkey
| | - Jale Yıldız
- Department of Hematology and Bone Marrow Transplantation Center, Ankara Dr. Abdurrahman Yurtaslan Oncology Training and Research Hospital, University of Health Sciences, Ankara, Turkey
| | - Alparslan Merdin
- Department of Hematology and Bone Marrow Transplantation Center, Ankara Dr. Abdurrahman Yurtaslan Oncology Training and Research Hospital, University of Health Sciences, Ankara, Turkey
| | - Nuran Ahu Baysal
- Department of Hematology and Bone Marrow Transplantation Center, Ankara Dr. Abdurrahman Yurtaslan Oncology Training and Research Hospital, University of Health Sciences, Ankara, Turkey
| | - Dicle İskender
- Department of Hematology and Bone Marrow Transplantation Center, Ankara Dr. Abdurrahman Yurtaslan Oncology Training and Research Hospital, University of Health Sciences, Ankara, Turkey
| | - Merih Kızıl Çakar
- Department of Hematology and Bone Marrow Transplantation Center, Ankara Dr. Abdurrahman Yurtaslan Oncology Training and Research Hospital, University of Health Sciences, Ankara, Turkey
| | - Mehmet Sinan Dal
- Department of Hematology and Bone Marrow Transplantation Center, Ankara Dr. Abdurrahman Yurtaslan Oncology Training and Research Hospital, University of Health Sciences, Ankara, Turkey
| | - Tuba Hacıbekiroğlu
- Department of Hematology, Sakarya University Hospital, Medical Faculty, Sakarya, Turkey
| | - Fevzi Altuntaş
- Department of Hematology and Bone Marrow Transplantation Center, Ankara Dr. Abdurrahman Yurtaslan Oncology Training and Research Hospital, University of Health Sciences, Ankara, Turkey
| |
Collapse
|
20
|
Yiğenoğlu TN, Başcı S, Ulu BU, Bakırtaş M, Kılınç A, Şahin D, Darçın T, Yıldız J, Baysal NA, İskender D, Çakar MK, Dal MS, Hacıbekiroğlu T, Altuntaş F. Inferior prognosis in poor mobilizing myeloma patients. Transfus Apher Sci 2020; 59:102722. [PMID: 32014363 DOI: 10.1016/j.transci.2020.102722] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2019] [Revised: 12/16/2019] [Accepted: 12/30/2019] [Indexed: 12/14/2022]
Abstract
INTRODUCTION Induction treatment followed by autologous stem cell transplantation (ASCT) has been accepted as the standard treatment for multiple myeloma (MM) patients. Granulocyte colony stimulating agent (G-CSF), chemotherapy or agents likes plerixafor are being used for the mobilization of stem cells from bone marrow. In this study, we evaluated the impact of the mobilization methods on the outcome of MM patients after ASCT. METHOD The data of 205 MM patients who underwent ASCT at our center between December 2009 and January 2019 were retrospectively analyzed. Patients were divided into 2 groups as good mobilizers (patients who were mobilized with G-CSF alone) and poor mobilizers (patients who were failed to mobilize with G-CSF alone and mobilized with G-CSF + cylophosphomide or G-CSF + plerixafor). RESULTS The median progression free survival (PFS) was 18.27 ± 3.22 months in good mobilizers and 14.22 ± 3.7 months in poor mobilizers. In G-CSF + cyclophosphamide method median PFS was 15.4 ± 4.9 months wheras it was only 4 months in G-CSF + plerixafor method. We did not find a statistically significant difference between good and poor mobilizers regarding median PFS (p: 0.342). The median overall survival (OS) was found 34.48 ± 4.2 months in good mobilizers and 15.13 ± 5.78 months in poor mobilizers. In G-CSF + cyclophosphamide method median OS was 17 ± 14.01 months wheras it was 10.66 ± 7.68 months in G-CSF + plerixafor method. We found a statistically significant difference between good and poor mobilizers regarding median OS (p: 0.007*). CONCLUSION Our study shows that difficulty in stem cell mobilization is correlated with worse outcome.
Collapse
Affiliation(s)
- Tuğçe Nur Yiğenoğlu
- Department of Hematology and Bone Marrow Transplantation Center, Ankara Dr. Abdurrahman Yurtaslan Oncology Training and Research Hospital, University of Health Sciences, Ankara, Turkey
| | - Semih Başcı
- Department of Hematology and Bone Marrow Transplantation Center, Ankara Dr. Abdurrahman Yurtaslan Oncology Training and Research Hospital, University of Health Sciences, Ankara, Turkey.
| | - Bahar Uncu Ulu
- Department of Hematology and Bone Marrow Transplantation Center, Ankara Dr. Abdurrahman Yurtaslan Oncology Training and Research Hospital, University of Health Sciences, Ankara, Turkey
| | - Mehmet Bakırtaş
- Department of Hematology and Bone Marrow Transplantation Center, Ankara Dr. Abdurrahman Yurtaslan Oncology Training and Research Hospital, University of Health Sciences, Ankara, Turkey
| | - Ali Kılınç
- Department of Hematology and Bone Marrow Transplantation Center, Ankara Dr. Abdurrahman Yurtaslan Oncology Training and Research Hospital, University of Health Sciences, Ankara, Turkey
| | - Derya Şahin
- Department of Hematology and Bone Marrow Transplantation Center, Ankara Dr. Abdurrahman Yurtaslan Oncology Training and Research Hospital, University of Health Sciences, Ankara, Turkey
| | - Tahir Darçın
- Department of Hematology and Bone Marrow Transplantation Center, Ankara Dr. Abdurrahman Yurtaslan Oncology Training and Research Hospital, University of Health Sciences, Ankara, Turkey
| | - Jale Yıldız
- Department of Hematology and Bone Marrow Transplantation Center, Ankara Dr. Abdurrahman Yurtaslan Oncology Training and Research Hospital, University of Health Sciences, Ankara, Turkey
| | - Nuran Ahu Baysal
- Department of Hematology and Bone Marrow Transplantation Center, Ankara Dr. Abdurrahman Yurtaslan Oncology Training and Research Hospital, University of Health Sciences, Ankara, Turkey
| | - Dicle İskender
- Department of Hematology and Bone Marrow Transplantation Center, Ankara Dr. Abdurrahman Yurtaslan Oncology Training and Research Hospital, University of Health Sciences, Ankara, Turkey
| | - Merih Kızıl Çakar
- Department of Hematology and Bone Marrow Transplantation Center, Ankara Dr. Abdurrahman Yurtaslan Oncology Training and Research Hospital, University of Health Sciences, Ankara, Turkey
| | - Mehmet Sinan Dal
- Department of Hematology and Bone Marrow Transplantation Center, Ankara Dr. Abdurrahman Yurtaslan Oncology Training and Research Hospital, University of Health Sciences, Ankara, Turkey
| | - Tuba Hacıbekiroğlu
- Department of Hematology, Sakarya University Medical Faculty, Sakarya, Turkey
| | - Fevzi Altuntaş
- Department of Hematology and Bone Marrow Transplantation Center, Ankara Dr. Abdurrahman Yurtaslan Oncology Training and Research Hospital, University of Health Sciences, Ankara, Turkey
| |
Collapse
|
21
|
Brignier A, Ader V, Bellegarde K, Giraud C, Guerout-Verite MA, Hamzy F, Huynh TNP, Levavasseur A, Nacimento F, Rousseau Y, Vincent L, Yakoub-Agha I, De Vos J. Modalités de mobilisation des cellules souches hématopoïétiques autologues et objectifs cellulaires en cellules CD34 + : recommandations de la Société francophone de greffe de mœlle et de thérapie cellulaire (SFGM-TC). Bull Cancer 2020; 107:S44-S51. [DOI: 10.1016/j.bulcan.2019.08.007] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2019] [Revised: 08/22/2019] [Accepted: 08/29/2019] [Indexed: 01/08/2023]
|
22
|
Low baseline platelet count predicts poor response to plerixafor in patients with multiple myeloma undergoing autologous stem cell mobilization. Cytotherapy 2019; 22:16-20. [PMID: 31879152 DOI: 10.1016/j.jcyt.2019.10.008] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2019] [Revised: 10/15/2019] [Accepted: 10/23/2019] [Indexed: 11/23/2022]
Abstract
BACKGROUND AIMS Baseline platelet count has been shown to be a sensitive predictor of autologous peripheral blood progenitor cell collection yield in patients with multiple myeloma mobilized with granulocyte colony-stimulating factor (G-CSF). Patients who mobilize poorly with G-CSF are often treated with plerixafor to enhance mobilization. There are no surrogate markers available to predict response to plerixafor. METHODS We retrospectively analyzed data from 73 patients with multiple myeloma who did not have adequate mobilization with G-CSF alone and were treated with plerixafor as a rescue agent. RESULTS We found that baseline platelet count directly correlated with peripheral blood CD34+ (PB-CD34+) count after plerixafor treatment (r = 0.36, P < 0.0001) and the number of PB-CD34+ cells collected on the first day of apheresis and inversely correlated with the number of apheresis sessions needed to collect the target number of PB-CD34+ cells (P = 0.0015). Baseline platelet count of 153 000/µL or less was associated with 90% specificity of predicting poor response to plerixafor with a sensitivity of 33%. CONCLUSIONS Baseline platelet count is a good predictor of mobilization response to plerixafor in patients with multiple myeloma.
Collapse
|
23
|
Rohner N, Passweg JR, Tsakiris DA, Halter JP, Heim D, Buser AS, Infanti L, Holbro A. The value of the post-thaw CD34+ count with and without DMSO removal in the setting of autologous stem cell transplantation. Transfusion 2018; 59:1052-1060. [PMID: 30556582 DOI: 10.1111/trf.15107] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2018] [Revised: 11/06/2018] [Accepted: 11/12/2018] [Indexed: 11/28/2022]
Abstract
BACKGROUND CD34+ cell count correlates with engraftment potency after autologous stem cell transplantation. Assessment of CD34+ mainly occurs after apheresis and before cryopreservation with dimethyl sulfoxide (DMSO). The influence of postthaw CD34+ cell numbers over time to engraftment is not well studied, and determination of postthaw CD34+ cell counts is challenging for a variety of reasons. The aim of this retrospective study was to systematically assess the value of postthaw CD34+ cell counts in autologous grafts with and without DMSO removal. STUDY DESIGN AND METHODS Between January 2008 and December 2015, 236 adult patients underwent a total of 292 autologous stem cell transplantations. Median age at transplantation was 56 years, and the main indication was multiple myeloma (60%). DMSO removal was done in 96 grafts (33%), either by centrifugation or by Sepax method. RESULTS Patients receiving grafts containing DMSO showed a significantly faster platelet (p = 0.02) and RBC (p = 0.001) engraftment. DMSO removal was not associated with fewer infusion-related adverse events. We observed a good correlation between CD34+ cell count after apheresis and CD34+ cell count after thawing/washing (r = 0.931). Ninety grafts (31%) showed a significant loss of viable CD34+ cells, which translated into a delayed engraftment. CONCLUSION DMSO removal was associated with delayed platelet and RBC engraftment without preventing adverse events. CD34+ cell enumeration after thawing remains difficult to perform, but grafts showing higher cell loss during cryopreservation and thawing are associated with slower engraftment. Prospective studies on the role of DMSO removal and postthaw CD34+ enumeration using defined protocols are needed.
Collapse
Affiliation(s)
- Nicolai Rohner
- Division of Hematology, University Hospital Basel, Switzerland
| | - Jakob R Passweg
- Division of Hematology, University Hospital Basel, Switzerland
| | | | - Jörg P Halter
- Division of Hematology, University Hospital Basel, Switzerland
| | - Dominik Heim
- Division of Hematology, University Hospital Basel, Switzerland
| | - Andreas S Buser
- Division of Hematology, University Hospital Basel, Switzerland.,Blood Transfusion Center, Swiss Red Cross, Basel, Switzerland
| | - Laura Infanti
- Division of Hematology, University Hospital Basel, Switzerland.,Blood Transfusion Center, Swiss Red Cross, Basel, Switzerland
| | - Andreas Holbro
- Division of Hematology, University Hospital Basel, Switzerland.,Blood Transfusion Center, Swiss Red Cross, Basel, Switzerland
| |
Collapse
|
24
|
Kim J, Kim NK, Park SR, Choi BH. GM-CSF Enhances Mobilization of Bone Marrow Mesenchymal Stem Cells via a CXCR4-Medicated Mechanism. Tissue Eng Regen Med 2018; 16:59-68. [PMID: 30815351 DOI: 10.1007/s13770-018-0163-5] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2018] [Revised: 09/05/2018] [Accepted: 10/03/2018] [Indexed: 12/14/2022] Open
Abstract
Background This study was conducted to investigate the effect of granulocyte-macrophage colony-stimulating factor (GM-CSF) on the mobilization of mesenchymal stem cells (MSCs) from the bone marrow (BM) into the peripheral blood (PB) in rats. Methods GM-CSF was administered subcutaneously to rats at 50 μg/kg body weight for 5 consecutive days. The BM and PB of rats were collected at 1, 3, and 5 days during the administration for analysis. Results Upon GM-CSF administration, the number of mononuclear cells increased rapidly at day 1 both in the BM and PB. This number decreased gradually over time in the BM to below the initial amount by day 5, but was maintained at a high level in the PB until day 5. The colony-forming unit-fibroblasts were increased in the PB by 10.3-fold at day 5 of GM-CSF administration, but decreased in the BM. Compared to GM-CSF, granulocyte-colony stimulating factor (G-CSF) stimulated lower levels of MSC mobilization from the BM to the PB. Immunohistochemical analysis revealed that GM-CSF induced a hypoxic and proteolytic microenvironment and increased C-X-C chemokine receptor type 4 (CXCR4) expression in the BM. GM-CSF added to BM MSCs in vitro dose-dependently increased CXCR4 expression and cell migration. G-CSF and stromal cell derived factor-1 (SDF-1) showed similar results in these in vitro assays. Know-down of CXCR4 expression with siRNA significantly abolished GM-CSF- and G-CSF-induced MSC migration in vitro, indicating the involvement of the SDF-1-CXCR4 interaction in the mechanism. Conclusion These results suggest that GM-CSF is a useful tool for mobilizing BM MSCs into the PB.
Collapse
Affiliation(s)
- Jiyoung Kim
- 1Department of Physiology and Biophysics, Inha University College of Medicine, 100 Inha-ro Nam-gu, Incheon, 22212 Korea
| | - Na Kyeong Kim
- 1Department of Physiology and Biophysics, Inha University College of Medicine, 100 Inha-ro Nam-gu, Incheon, 22212 Korea
| | - So Ra Park
- 1Department of Physiology and Biophysics, Inha University College of Medicine, 100 Inha-ro Nam-gu, Incheon, 22212 Korea
| | - Byung Hyune Choi
- 2Department of Biomedical Sciences, Inha University College of Medicine, 100 Inha-ro Nam-gu, Incheon, 22212 Korea
| |
Collapse
|
25
|
The effects of lower CD34 yields after lowe dose G-CSF induction on long-term autologous stem cell transplantation outcome: A single center study. Transfus Apher Sci 2018; 57:265-271. [PMID: 29605509 DOI: 10.1016/j.transci.2018.03.007] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2017] [Revised: 03/15/2018] [Accepted: 03/18/2018] [Indexed: 12/15/2022]
Abstract
Peripheral blood stem cell transplantation (PBSCT) is an effective treatment for hematological malignancies. Mobilization of peripheral blood stem cells performs in different ways among transplantation centers. Since the Effects of lower CD34+ cells dose after low dose G-CSF induction on autologous stem cell transplantation outcomes are not studied much, so this study was performed for this purpose. 735 autologous stem cell transplanted patients with diagnoses of multiple myeloma (n = 330), Hodgkin lymphoma (n = 200), non-Hodgkin lymphoma (n = 129), acute myeloid leukemia (n = 54) and solid tumors (n = 22) were retrospectively evaluated. G-CSF was administered at the dose of 5 μg/kg/day during mobilization and all patients except acute myeloid leukemia received 10 μg/kg/day on the last day. Peripheral blood stem cells were harvested in one session for all patients. The amount of injected CD34+ cells/kg for patients were divided and studied in four groups: <0.5 × 106 (n = 36), 0.5-1.0 × 106, (n = 132), 1.0-2.0 × 106 (n = 226) and >2.0 × 106 (n = 305). The median time of follow up was 26.9 months. The amount of CD34+ cells dose were a significant predictor of platelet engraftment, but overall survival, relapse-free survival and also relapse rate was not associated with cells yield. More platelet transfusion (P = 0.003) and antibiotics prescription (P = 0.001) in transplanted patients with lower CD34 cells dose should be balanced with risks of higher G-CSF doses administration and also its side effects. Our results declare that lower CD34 yields after lowe dose G-CSF induction are probably not a troublesome issue affecting transplantation outcomes.
Collapse
|
26
|
Monzel C, Becker AS, Saffrich R, Wuchter P, Eckstein V, Ho AD, Tanaka M. Dynamic cellular phynotyping defines specific mobilization mechanisms of human hematopoietic stem and progenitor cells induced by SDF1α versus synthetic agents. Sci Rep 2018; 8:1841. [PMID: 29382856 PMCID: PMC5789976 DOI: 10.1038/s41598-018-19557-x] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2017] [Accepted: 01/03/2018] [Indexed: 02/06/2023] Open
Abstract
Efficient mobilization of hematopoietic stem and progenitor cells (HSPC) is one of the most crucial issues for harvesting an adequate amount of peripheral HSPC for successful clinical transplantation. Applying well-defined surrogate models for the bone marrow niche, live cell imaging techniques, and novel tools in statistical physics, we have quantified the functionality of two mobilization agents that have been applied in the clinic, NOX-A12 and AMD3100 (plerixafor), as compared to a naturally occurring chemokine in the bone marrow, SDF1α. We found that NOX-A12, an L-enantiomeric RNA oligonucleotide to SDF1, significantly reduced the adhesion of HSPC to the niche surface mediated via the CXCR4-SDF1α axis, and stretched the migration trajectories of the HSPC. We found that the stretching of trajectories by NOX-A12 was more prominent than that by SDF1α. In contrast, plerixafor exhibited no detectable interference with adhesion and migration. We also found that the deformation of HSPC induced by SDF1α or plerixafor was also drastically suppressed in the presence of NOX-A12. This novel technology of quantitative assessment of "dynamic phenotypes" by physical tools has therefore enabled us to define different mechanisms of function for various extrinsic factors compared to naturally occurring chemokines.
Collapse
Affiliation(s)
- Cornelia Monzel
- Physical Chemistry of Biosystems, Institute of Physical Chemistry, Heidelberg University, 69120, Heidelberg, Germany.,Laboratoire Physico-Chimie, Institut Curie, CNRS UMR168, 75005, Paris, France
| | - Alexandra S Becker
- Physical Chemistry of Biosystems, Institute of Physical Chemistry, Heidelberg University, 69120, Heidelberg, Germany
| | - Rainer Saffrich
- Department of Medicine V, Heidelberg University, 69120, Heidelberg, Germany.,Institute of Transfusion Medicine and Immunology, Medical Faculty Mannheim, Heidelberg University, German Red Cross Blood Service Baden-Württemberg - Hessen, 68167, Mannheim, Germany
| | - Patrick Wuchter
- Department of Medicine V, Heidelberg University, 69120, Heidelberg, Germany.,Institute of Transfusion Medicine and Immunology, Medical Faculty Mannheim, Heidelberg University, German Red Cross Blood Service Baden-Württemberg - Hessen, 68167, Mannheim, Germany
| | - Volker Eckstein
- Department of Medicine V, Heidelberg University, 69120, Heidelberg, Germany
| | - Anthony D Ho
- Department of Medicine V, Heidelberg University, 69120, Heidelberg, Germany.
| | - Motomu Tanaka
- Physical Chemistry of Biosystems, Institute of Physical Chemistry, Heidelberg University, 69120, Heidelberg, Germany. .,Institute for Integrated Cell-Material Sciences, Kyoto University, 606-8501, Kyoto, Japan.
| |
Collapse
|
27
|
Current Perspectives Regarding Stem Cell-Based Therapy for Liver Cirrhosis. Can J Gastroenterol Hepatol 2018; 2018:4197857. [PMID: 29670867 PMCID: PMC5833156 DOI: 10.1155/2018/4197857] [Citation(s) in RCA: 46] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/22/2017] [Accepted: 01/16/2018] [Indexed: 12/12/2022] Open
Abstract
Liver cirrhosis is a major cause of mortality and a common end of various progressive liver diseases. Since the effective treatment is currently limited to liver transplantation, stem cell-based therapy as an alternative has attracted interest due to promising results from preclinical and clinical studies. However, there is still much to be understood regarding the precise mechanisms of action. A number of stem cells from different origins have been employed for hepatic regeneration with different degrees of success. The present review presents a synopsis of stem cell research for the treatment of patients with liver cirrhosis according to the stem cell type. Clinical trials to date are summarized briefly. Finally, issues to be resolved and future perspectives are discussed with regard to clinical applications.
Collapse
|
28
|
|
29
|
Mild E, Lázár E, Köpeczi JB, Kakucs E, Găzdac M, Pakucs A, Tudor C, Benedek I. Stem Cell Mobilization and Harvesting Failure in Case of Heavily Pretreated Patients. JOURNAL OF INTERDISCIPLINARY MEDICINE 2017. [DOI: 10.1515/jim-2017-0100] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
Abstract
Background: High-dose chemotherapy and autologous stem cell transplantation have become a standard curative treatment in various hematologic malignancies. Many factors can affect the success of mobilization and hematopoietic stem cell harvesting.
Aim: The aim of this study was to analyze factors that lead to mobilization failure.
Material and Methods: We conducted a retrospective study on 19 patients with failure of stem cell harvesting. All patients were administered high doses of GCS-F (filgrastim, 15 μg/kg/day) and 0.24 mg/kg of plerixafor on day +5 or +10 of harvesting.
Results: The median age of the study population was 51 years (range 35–67) and 52.6% (n = 10) were males. The study group included 4 (21%) subjects with multiple myeloma, 6 (31.5%) with Hodgkin lymphoma, 8 cases (42.1%) with non-Hodgkin lymphoma and 1 patient with chronic lymphocytic leukemia. Each patient received 2.78 (range 1–5) lines of chemotherapy, administered in 11.57 (range 2 to over 20) cycles of treatment.
Conclusion: In hematologic malignancies it is very important to collect stem cells in time, in order to reduce mobilization failure. As we have shown in our studied cases, multiple lines of polychemotherapy with or without radiotherapy lead to mobilization failure.
Collapse
Affiliation(s)
- Eszter Mild
- Clinic of Hematology and Bone Marrow Transplantation Unit , Tîrgu Mureş , Romania
| | - Erzsébet Lázár
- Clinic of Hematology and Bone Marrow Transplantation Unit , Tîrgu Mureş , Romania
- University of Medicine and Pharmacy , Tîrgu Mureş , Romania
| | - Judit-Beáta Köpeczi
- Clinic of Hematology and Bone Marrow Transplantation Unit , Tîrgu Mureş , Romania
| | - Enikő Kakucs
- Clinic of Hematology and Bone Marrow Transplantation Unit , Tîrgu Mureş , Romania
| | - Marius Găzdac
- Clinic of Hematology and Bone Marrow Transplantation Unit , Tîrgu Mureş , Romania
| | - Annamária Pakucs
- Clinic of Hematology and Bone Marrow Transplantation Unit , Tîrgu Mureş , Romania
- University of Medicine and Pharmacy , Tîrgu Mureş , Romania
| | - Cezara Tudor
- Clinic of Hematology and Bone Marrow Transplantation Unit , Tîrgu Mureş , Romania
| | - István Benedek
- Clinic of Hematology and Bone Marrow Transplantation Unit , Tîrgu Mureş , Romania
- University of Medicine and Pharmacy , Tîrgu Mureş , Romania
| |
Collapse
|
30
|
|
31
|
Yamamoto C, Ogawa H, Fukuda T, Igarashi A, Okumura H, Uchida N, Hidaka M, Nakamae H, Matsuoka KI, Eto T, Ichinohe T, Atsuta Y, Kanda Y. Impact of a Low CD34 + Cell Dose on Allogeneic Peripheral Blood Stem Cell Transplantation. Biol Blood Marrow Transplant 2017; 24:708-716. [PMID: 29196077 DOI: 10.1016/j.bbmt.2017.10.043] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2017] [Accepted: 10/14/2017] [Indexed: 11/29/2022]
Abstract
Although the CD34+ cell dose in allogeneic peripheral blood stem cell transplantation (PBSCT) is considered to be associated with transplantation outcomes, a lower acceptable threshold has not been defined. We retrospectively analyzed 2919 adult patients with hematologic malignancies who underwent related PBSCT in Japan between 2001 and 2014. According to the number of CD34+ cells in the graft, we categorized 2494 patients in the standard group (2 to 5 × 106 cells/kg), 377 patient in the low group (1 to 2 × 106 cells/kg), and 48 patients in the very low group (<1 × 106 cells/kg). Compared with the standard group, the low and very low groups showed delayed neutrophil recovery (93.8%, 89.5%, and 78.3%, respectively at day +28; P < .001) and platelet recovery (69.3%, 53.0%, and 45.5%, respectively at day +28; P < .001). The 2-year overall survival (OS) in the 3 groups was 45.5%, 45.3%, and 29.8%, respectively, with inferior survival in the very low group. However, a higher percentage of high-risk patients may account for the inferior survival in the very low group, and no significant difference in OS was found in a multivariate analysis. There were no differences in relapse, nonrelapse mortality, or the development of graft-versus-host disease among the 3 groups. In conclusion, allogeneic PBSCT with low CD34+ cell doses of 1 to 2 × 106 cells/kg gives acceptable results, whereas further investigations are needed to evaluate the effects of lower doses of <1 × 106 cells/kg owing to the smaller number and the higher percentage of patients with adverse prognostic factors in this cohort.
Collapse
Affiliation(s)
- Chihiro Yamamoto
- Division of Hematology, Department of Medicine, Jichi Medical University, Shimotsuke, Japan
| | - Hiroyasu Ogawa
- Division of Hematology, Department of Internal Medicine, Hyogo College of Medicine, Nishinomiya, Japan
| | - Takahiro Fukuda
- Department of Hematopoietic Stem Cell Transplantation, National Cancer Center Hospital, Tokyo, Japan
| | - Aiko Igarashi
- Hematology Division, Tokyo Metropolitan Cancer and Infectious Diseases Center, Komagome Hospital, Tokyo, Japan
| | - Hirokazu Okumura
- Department of Internal Medicine (Hematology), Toyama Prefectural Central Hospital, Toyama, Japan
| | - Naoyuki Uchida
- Department of Hematology, Toranomon Hospital, Tokyo, Japan
| | - Michihiro Hidaka
- Department of Hematology, National Hospital Organization Kumamoto Medical Center, Kumamoto, Japan
| | - Hirohisa Nakamae
- Department of Hematology, Osaka City University Hospital, Osaka, Japan
| | - Ken-Ichi Matsuoka
- Department of Hematology and Oncology, Okayama University Hospital, Okayama, Japan
| | - Tetsuya Eto
- Department of Hematology, Hamanomachi Hospital, Fukuoka, Japan
| | - Tatsuo Ichinohe
- Department of Hematology and Oncology, Research Institute for Radiation Biology and Medicine, Hiroshima University, Hiroshima, Japan
| | - Yoshiko Atsuta
- Japanese Data Center for Hematopoietic Cell Transplantation, Nagoya, Japan; Nagoya University Graduate School of Medicine, Department of Healthcare Administration, Nagoya, Japan
| | - Yoshinobu Kanda
- Division of Hematology, Department of Medicine, Jichi Medical University, Shimotsuke, Japan.
| |
Collapse
|
32
|
Di Tullio A, Rouault-Pierre K, Abarrategi A, Mian S, Grey W, Gribben J, Stewart A, Blackwood E, Bonnet D. The combination of CHK1 inhibitor with G-CSF overrides cytarabine resistance in human acute myeloid leukemia. Nat Commun 2017; 8:1679. [PMID: 29162833 PMCID: PMC5698422 DOI: 10.1038/s41467-017-01834-4] [Citation(s) in RCA: 36] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2017] [Accepted: 10/19/2017] [Indexed: 12/30/2022] Open
Abstract
Cytarabine (AraC) represents the most effective single agent treatment for AML. Nevertheless, overriding AraC resistance in AML remains an unmet medical need. Here we show that the CHK1 inhibitor (CHK1i) GDC-0575 enhances AraC-mediated killing of AML cells both in vitro and in vivo, thus abrogating any potential chemoresistance mechanisms involving DNA repair. Importantly, this combination of drugs does not affect normal long-term hematopoietic stem/progenitors. Moreover, the addition of CHK1i to AraC does not generate de novo mutations and in patients' samples where AraC is mutagenic, addition of CHK1i appears to eliminate the generation of mutant clones. Finally, we observe that persistent residual leukemic cells are quiescent and can become responsive to the treatment when forced into cycle via granulocyte colony-stimulating factor (G-CSF) administration. This drug combination (AraC+CHK1i+G-CSF) will open the doors for a more efficient treatment of AML in the clinic.
Collapse
MESH Headings
- Animals
- Antineoplastic Combined Chemotherapy Protocols/administration & dosage
- Cell Line, Tumor
- Checkpoint Kinase 1/antagonists & inhibitors
- Cytarabine/administration & dosage
- Drug Resistance, Neoplasm
- Female
- Granulocyte Colony-Stimulating Factor/administration & dosage
- HL-60 Cells
- Hematopoiesis/drug effects
- Humans
- Leukemia, Myeloid, Acute/drug therapy
- Leukemia, Myeloid, Acute/genetics
- Leukemia, Myeloid, Acute/pathology
- Male
- Mice
- Mice, Inbred NOD
- Mice, SCID
- Mutation/drug effects
- Piperidines/administration & dosage
- Protein Kinase Inhibitors/administration & dosage
- Pyridines/administration & dosage
- Pyrroles/administration & dosage
- U937 Cells
- Xenograft Model Antitumor Assays
Collapse
Affiliation(s)
- Alessandro Di Tullio
- Hematopoietic Stem Cell Laboratory, The Francis Crick Institute, 1 Midland Road, NW1 1AT, London, UK
| | - Kevin Rouault-Pierre
- Hematopoietic Stem Cell Laboratory, The Francis Crick Institute, 1 Midland Road, NW1 1AT, London, UK
- Department of Haemato-Oncology, Barts Cancer Institute, Queen Mary University of London, Chaterhouse Square, EC1M 6BQ, London, UK
| | - Ander Abarrategi
- Hematopoietic Stem Cell Laboratory, The Francis Crick Institute, 1 Midland Road, NW1 1AT, London, UK
| | - Syed Mian
- Hematopoietic Stem Cell Laboratory, The Francis Crick Institute, 1 Midland Road, NW1 1AT, London, UK
- King's College London School of Medicine, Department of Haematological Medicine, The Rayne Institute, 123 Coldharbour Lane, SE5 9NU, London, UK
| | - William Grey
- Hematopoietic Stem Cell Laboratory, The Francis Crick Institute, 1 Midland Road, NW1 1AT, London, UK
| | - John Gribben
- Department of Haemato-Oncology, Barts Cancer Institute, Queen Mary University of London, Chaterhouse Square, EC1M 6BQ, London, UK
| | - Aengus Stewart
- Bioinformatic Core, The Francis Crick Institute, 1 Midland Road, NW1 1AT, London, UK
| | | | - Dominique Bonnet
- Hematopoietic Stem Cell Laboratory, The Francis Crick Institute, 1 Midland Road, NW1 1AT, London, UK.
| |
Collapse
|
33
|
Ghosh S, Indracanti N, Joshi J, Indraganti PK. Rescuing Self: Transient Isolation and Autologous Transplantation of Bone Marrow Mitigates Radiation-Induced Hematopoietic Syndrome and Mortality in Mice. Front Immunol 2017; 8:1180. [PMID: 28993772 PMCID: PMC5622201 DOI: 10.3389/fimmu.2017.01180] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2017] [Accepted: 09/06/2017] [Indexed: 01/19/2023] Open
Abstract
The inflamed bone marrow niche shortly after total body irradiation (TBI) is known to contribute to loss of hematopoietic stem cells in terms of their number and function. In this study, autologous bone marrow transfer (AL-BMT) was evaluated as a strategy for mitigating hematopoietic form of the acute radiation syndrome by timing the collection phase (2 h after irradiation) and reinfusion (24 h after irradiation) using mice as a model system. Collection of bone marrow (BM) cells (0.5 × 106 total marrow cells) 2 h after lethal TBI rescued different subclasses of hematopoietic stem and progenitor cells (HSPCs) from the detrimental inflammatory and damaging milieu in vivo. Cryopreservation of collected graft and its reinfusion 24 h after TBI significantly rescued mice from lethal effects of irradiation (65% survival against 0% in TBI group on day 30th) and hematopoietic depression. Transient hypometabolic state (HMS) induced 2 h after TBI effectively preserved the functional status of HSPCs and improved hematopoietic recovery even when BM was collected 8 h after TBI. Homing studies suggested that AL-BMT yielded similar percentages for different subsets of HSPCs when compared to syngeneic bone marrow transfer. The results suggest that the timing of collection, and reinfusion of graft is crucial for the success of AL-BMT.
Collapse
Affiliation(s)
- Subhajit Ghosh
- Division of Radiation Biosciences, Institute of Nuclear Medicine and Allied Sciences, Delhi, India.,S.N. Pradhan Centre for Neuroscience-University of Calcutta, Kolkata, India
| | - Namita Indracanti
- Division of Radiation Biosciences, Institute of Nuclear Medicine and Allied Sciences, Delhi, India
| | - Jayadev Joshi
- Division of Radiation Biosciences, Institute of Nuclear Medicine and Allied Sciences, Delhi, India.,S.N. Pradhan Centre for Neuroscience-University of Calcutta, Kolkata, India
| | - Prem Kumar Indraganti
- Division of Radiation Biosciences, Institute of Nuclear Medicine and Allied Sciences, Delhi, India
| |
Collapse
|
34
|
Reduced BUCY 2 and G-CSF-primed bone marrow associates with low graft-versus-host-disease and transplant-related mortality in allogeneic HSCT. Ann Hematol 2017; 96:1525-1531. [DOI: 10.1007/s00277-017-3056-0] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2016] [Accepted: 06/25/2017] [Indexed: 12/14/2022]
|
35
|
Papy-Garcia D, Albanese P. Heparan sulfate proteoglycans as key regulators of the mesenchymal niche of hematopoietic stem cells. Glycoconj J 2017; 34:377-391. [PMID: 28577070 DOI: 10.1007/s10719-017-9773-8] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2016] [Revised: 05/01/2017] [Accepted: 05/04/2017] [Indexed: 12/21/2022]
Abstract
The complex microenvironment that surrounds hematopoietic stem cells (HSCs) in the bone marrow niche involves different coordinated signaling pathways. The stem cells establish permanent interactions with distinct cell types such as mesenchymal stromal cells, osteoblasts, osteoclasts or endothelial cells and with secreted regulators such as growth factors, cytokines, chemokines and their receptors. These interactions are mediated through adhesion to extracellular matrix compounds also. All these signaling pathways are important for stem cell fates such as self-renewal, proliferation or differentiation, homing and mobilization, as well as for remodeling of the niche. Among these complex molecular cues, this review focuses on heparan sulfate (HS) structures and functions and on the role of enzymes involved in their biosynthesis and turnover. HS associated to core protein, constitute the superfamily of heparan sulfate proteoglycans (HSPGs) present on the cell surface and in the extracellular matrix of all tissues. The key regulatory effects of major medullar HSPGs are described, focusing on their roles in the interactions between hematopoietic stem cells and their endosteal niche, and on their ability to interact with Heparin Binding Proteins (HBPs). Finally, according to the relevance of HS moieties effects on this complex medullar niche, we describe recent data that identify HS mimetics or sulfated HS signatures as new glycanic tools and targets, respectively, for hematopoietic and mesenchymal stem cell based therapeutic applications.
Collapse
Affiliation(s)
- Dulce Papy-Garcia
- CRRET Laboratory, Université Paris Est, EA 4397 Université Paris Est Créteil, ERL CNRS 9215, F-94010, Créteil, France
| | - Patricia Albanese
- CRRET Laboratory, Université Paris Est, EA 4397 Université Paris Est Créteil, ERL CNRS 9215, F-94010, Créteil, France.
| |
Collapse
|
36
|
Constantinou VC, Bouinta A, Karponi G, Zervou F, Papayanni PG, Stamatoyannopoulos G, Anagnostopoulos A, Yannaki E. Poor stem cell harvest may not always be related to poor mobilization: lessons gained from a mobilization study in patients with β-thalassemia major. Transfusion 2017; 57:1031-1039. [PMID: 27987208 PMCID: PMC5386803 DOI: 10.1111/trf.13951] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2016] [Revised: 10/29/2016] [Accepted: 11/08/2016] [Indexed: 12/11/2022]
Abstract
BACKGROUND Hematopoietic stem cell mobilization and leukapheresis in adult patients with β-thalassemia have recently been optimized in the context of clinical trials for obtaining hematopoietic stem cells for thalassemia gene therapy. In some patients, however, the yield of cluster of differentiation 34-positive (CD34+) cells was poor despite successful mobilization, and a modification of apheresis settings was mandatory for harvest rescue. STUDY DESIGN AND METHODS Data were analyzed from 20 adult patients with β-thalassemia who were enrolled in a clinical trial of optimizing mobilization strategies for stem cell gene therapy. The aim of this post-hoc analysis was to assess how certain hematological and/or clinical parameters may correlate with low collection efficiency in the presence of adequate numbers of circulating stem cells after pharmacological mobilization and standard leukapheresis procedures. RESULTS Among 19 patients who achieved optimal mobilization with Plerixafor, four who underwent splenectomy demonstrated disproportionately poor CD34+ cell harvests, as determined by their circulating CD34+ cell counts after mobilization. All four patients who underwent splenectomy presented at baseline and before first apheresis with lymphocytosis resulting in lymphocyte/neutrophil ratios well above 1 and marked reticulocytosis compared with patients who achieved optimal mobilization/CD34+ cell harvest. Such unexpected expansion of specific cell populations disrupted the normal cell layer separation and necessitated modification of the apheresis settings to rescue the harvests. CONCLUSIONS By close examination of certain hematological and/or clinical parameters before leukapheresis, patients who, despite adequate mobilization, are at risk for poor CD34+ cell harvests may be identified, and harvest failure can be prevented by adjusting the apheresis settings.
Collapse
Affiliation(s)
- Varnavas C. Constantinou
- Gene and Cell Therapy Center, Hematology Department-BMT Unit, George Papanicolaou Hospital, Thessaloniki, Greece
- Hematology Department-BMT Unit, George Papanicolaou Hospital, Thessaloniki, Greece
| | - Asimina Bouinta
- Hematology Department-BMT Unit, George Papanicolaou Hospital, Thessaloniki, Greece
| | - Garyfalia Karponi
- Gene and Cell Therapy Center, Hematology Department-BMT Unit, George Papanicolaou Hospital, Thessaloniki, Greece
| | - Fani Zervou
- Gene and Cell Therapy Center, Hematology Department-BMT Unit, George Papanicolaou Hospital, Thessaloniki, Greece
| | - Penelope-Georgia Papayanni
- Gene and Cell Therapy Center, Hematology Department-BMT Unit, George Papanicolaou Hospital, Thessaloniki, Greece
| | | | - Achilles Anagnostopoulos
- Gene and Cell Therapy Center, Hematology Department-BMT Unit, George Papanicolaou Hospital, Thessaloniki, Greece
- Hematology Department-BMT Unit, George Papanicolaou Hospital, Thessaloniki, Greece
| | - Evangelia Yannaki
- Gene and Cell Therapy Center, Hematology Department-BMT Unit, George Papanicolaou Hospital, Thessaloniki, Greece
- Hematology Department-BMT Unit, George Papanicolaou Hospital, Thessaloniki, Greece
- Department of Medicine, University of Washington, Seattle, WA, USA
| |
Collapse
|
37
|
Dorokhina EI, Magomedova AU, Galtseva IV, Dvirnyk VN, Glinkina SA, Kulikov SM, Kravchenko SK. [Numbers of early CD34+ progenitors of bone marrow hematopoiesis in patients with diffuse large B-cell lymphoma]. TERAPEVT ARKH 2017; 89:43-48. [PMID: 28252626 DOI: 10.17116/terarkh201789143-48] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
AIM To estimate the number of early progenitors of bone marrow (BM) hematopoiesis in patients with diffuse large B-cell lymphoma (DLBCL) in the late period after high-dose chemotherapy (HDCT) according to the mNHL-BFM-90 program. SUBJECTS AND METHODS The investigators analyzed the results of BM immunophenotypic and histological studies in 40 patients (median age, 57 years) with DLBCL who received HDCT according to the mNHL-BFM-90 program at the Hematology Research Center (HRC), Ministry of Health of the Russian Federation (MHRF), in the period 2002 to 2009. A comparison group consisted of 19 patients (median age, 70 years) treated according to the CHOP/R-CHOP program at HRC, MHRF, in the same period. The median follow-up period was 6 years. The results of BM examination were analyzed before and 5-10 years after the end of HDCT. Immunophenotypic study determined the number of early CD34+ hematopoietic progenitors. BM cellularity, the size of erythroid, granulocytic and megakaryocytic lineages, their ratio, the presence of dysplasia signs, and secondary stromal changes were histologically determined. The BM toxic injury signs found for the first time were evaluated as manifestations of late myelotoxicity. RESULTS At 5-to-10-year follow-ups after the end of HDCT according to the mNHL-BFM-90 program, the patients showed a smaller number of early CD34+ progenitors of BM hematopoiesis in 31 (78%) cases than those treated according to the CHOP/R-CHOP-21 program (n=8 (2%)) (p=0.005). Myelopoiesis with decreased CD34+ cell count was characterized by hypocellularity in 8 (26%) patients (p=0.07), the narrowing of megakaryocytic lineage in 14 (45%) (p=0.006), erythroid one in 7 (23%) (p=0.01), and granulocytic one in 8 (26%) (p=0.92), pronounced secondary stromal changes in 15 (48%) (p=0.03), and grade 1 thrombocytopenia in 13 (42%); p=0.02). CONCLUSION There is evidence that the number of early CD34+ progenitors of BM hematopoiesis decreased in patients with DLBCL in the late period after HDCT. The investigation shows the relationship of the reduction in the number of early CD34+ progenitors of BM hematopoiesis in the late follow-up period to the presence of pronounced secondary changes in the BM stroma (p=0.02). There was no statistically significant relationship of the decreased number of CD34+ cells to the age younger or older than 60 years, to the period after the end of chemotherapy, to gender or presence of specific BM injury.
Collapse
Affiliation(s)
- E I Dorokhina
- Hematology Research Center, Ministry of Health of Russia, Moscow, Russia
| | - A U Magomedova
- Hematology Research Center, Ministry of Health of Russia, Moscow, Russia
| | - I V Galtseva
- Hematology Research Center, Ministry of Health of Russia, Moscow, Russia
| | - V N Dvirnyk
- Hematology Research Center, Ministry of Health of Russia, Moscow, Russia
| | - S A Glinkina
- Hematology Research Center, Ministry of Health of Russia, Moscow, Russia
| | - S M Kulikov
- Hematology Research Center, Ministry of Health of Russia, Moscow, Russia
| | - S K Kravchenko
- Hematology Research Center, Ministry of Health of Russia, Moscow, Russia
| |
Collapse
|
38
|
Strömberg A, Rullman E, Jansson E, Gustafsson T. Exercise-induced upregulation of endothelial adhesion molecules in human skeletal muscle and number of circulating cells with remodeling properties. J Appl Physiol (1985) 2017; 122:1145-1154. [PMID: 28183821 DOI: 10.1152/japplphysiol.00956.2016] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2016] [Revised: 01/23/2017] [Accepted: 02/01/2017] [Indexed: 11/22/2022] Open
Abstract
Multipotent cells have received great interest because of their potential capacity to repair and remodel peripheral tissues. We examined the effect of an acute exercise bout on the number of circulating cells with known remodeling properties and the level of factors in plasma and skeletal muscle tissue with potential to recruit these cells. Twenty healthy male subjects performed a 60-min cycling exercise. Blood samples for flow cytometry were drawn from 10 subjects (group 1) before and up to 2 h after exercise, and absolute cell counts of the classical (CD14++CD16-), intermediate (CD14++CD16+), and nonclassical (CD14+CD16++) monocyte (MO) subpopulations and of CD45dimCD34+VEGFR2+ endothelial progenitor cells (EPCs) were measured by bead-based determination. Plasma samples and vastus lateralis muscle biopsies were obtained from the other 10 subjects (group 2). In group 1, all MO subsets were increased directly after exercise, with CD14+CD16++ MOs showing the greatest fold increase. After 2 h, only CD14++CD16- MOs were increased compared with resting levels. The number of EPCs showed a trend toward increasing with exercise (P = 0.08). In group 2, the mRNA levels of the endothelial adhesion molecules ICAM-1, VCAM-1, and E-selectin increased in the skeletal muscle tissue. VEGF-A increased in exercised skeletal muscle and stimulated the expression of VCAM-1 and E-selectin in human umbilical vein endothelial cells. In conclusion, exercise increases MO subsets with different temporal patterns and enhances the capacity of skeletal muscle tissue to recruit circulating cells as shown by increased expression of endothelial adhesion molecules.NEW & NOTEWORTHY In the present study we showed for the first time that the adhesion molecules ICAM-1, VCAM-1, and E-selectin, known to be able to recruit circulating cells to the peripheral tissue, increased in exercised human skeletal muscle concurrently with increased circulating levels of cells shown to have importance for skeletal muscle remodeling. These findings support the concept of cell recruitment from the circulation playing a role in skeletal muscle adaptation to exercise.
Collapse
Affiliation(s)
- Anna Strömberg
- Division of Clinical Physiology, Department of Laboratory Medicine, Karolinska Institutet, Karolinska University Hospital Huddinge, Stockholm, Sweden
| | - Eric Rullman
- Division of Clinical Physiology, Department of Laboratory Medicine, Karolinska Institutet, Karolinska University Hospital Huddinge, Stockholm, Sweden
| | - Eva Jansson
- Division of Clinical Physiology, Department of Laboratory Medicine, Karolinska Institutet, Karolinska University Hospital Huddinge, Stockholm, Sweden
| | - Thomas Gustafsson
- Division of Clinical Physiology, Department of Laboratory Medicine, Karolinska Institutet, Karolinska University Hospital Huddinge, Stockholm, Sweden
| |
Collapse
|
39
|
Levesque JP, Winkler IG. Cell Adhesion Molecules in Normal and Malignant Hematopoiesis: from Bench to Bedside. CURRENT STEM CELL REPORTS 2016. [DOI: 10.1007/s40778-016-0066-0] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
40
|
Yuan S, Wang S. How do we mobilize and collect autologous peripheral blood stem cells? Transfusion 2016; 57:13-23. [PMID: 27731496 DOI: 10.1111/trf.13868] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2016] [Revised: 08/24/2016] [Accepted: 08/24/2016] [Indexed: 12/15/2022]
Abstract
Autologous stem cell transplantation (ASCT) with mobilized peripheral blood stem cells (PBSCs) has become a widely applied therapeutic approach for many hematologic and nonhematologic diseases. Adequate PBSC mobilization is critical to the success of ASCT. However, many factors can contribute to poor mobilization. Plerixafor is an effective yet costly adjunct agent that has been increasingly used to improve mobilization in a variety of diagnoses and clinical settings. However, to achieve both optimal cell collection yields and cost-effectiveness, the role of plerixafor in PBSC mobilization needs to be well defined in terms of triggers for initiating its use and criteria for monitoring response. As one of the largest hematopoietic transplant centers in the country, we have developed an approach to PBSC mobilization and collection that incorporates patient laboratory assessments, monitoring of the collection yields, and judicious use of plerixafor as well as various patient support and education programs. These measures have resulted in an increase in our collection success rate and a decrease in the mean number of collection days. In this article we describe our approach to autologous PBSC mobilization and collection. Pertinent reports in the literature are also reviewed and discussed.
Collapse
Affiliation(s)
- Shan Yuan
- Division of Transfusion Medicine, Department of Pathology and Laboratory Medicine, City of Hope National Medical Center, Duarte, California
| | - Shirong Wang
- Division of Transfusion Medicine, Department of Pathology and Laboratory Medicine, City of Hope National Medical Center, Duarte, California
| |
Collapse
|
41
|
Kandalla PK, Sarrazin S, Molawi K, Berruyer C, Redelberger D, Favel A, Bordi C, de Bentzmann S, Sieweke MH. M-CSF improves protection against bacterial and fungal infections after hematopoietic stem/progenitor cell transplantation. J Exp Med 2016; 213:2269-2279. [PMID: 27811055 PMCID: PMC5068229 DOI: 10.1084/jem.20151975] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2015] [Accepted: 09/01/2016] [Indexed: 02/01/2023] Open
Abstract
Myeloablative treatment preceding hematopoietic stem cell (HSC) and progenitor cell (HS/PC) transplantation results in severe myeloid cytopenia and susceptibility to infections in the lag period before hematopoietic recovery. We have previously shown that macrophage colony-stimulating factor (CSF-1; M-CSF) directly instructed myeloid commitment in HSCs. In this study, we tested whether this effect had therapeutic benefit in improving protection against pathogens after HS/PC transplantation. M-CSF treatment resulted in an increased production of mature myeloid donor cells and an increased survival of recipient mice infected with lethal doses of clinically relevant opportunistic pathogens, namely the bacteria Pseudomonas aeruginosa and the fungus Aspergillus fumigatus M-CSF treatment during engraftment or after infection efficiently protected from these pathogens as early as 3 days after transplantation and was effective as a single dose. It was more efficient than granulocyte CSF (G-CSF), a common treatment of severe neutropenia, which showed no protective effect under the tested conditions. M-CSF treatment showed no adverse effect on long-term lineage contribution or stem cell activity and, unlike G-CSF, did not impede recovery of HS/PCs, thrombocyte numbers, or glucose metabolism. These results encourage potential clinical applications of M-CSF to prevent severe infections after HS/PC transplantation.
Collapse
Affiliation(s)
- Prashanth K Kandalla
- Centre National de la Recherche Scientifique, Institut National de la Santé et de la Recherche Médicale, Centre d'Immunologie de Marseille-Luminy, Aix Marseille Université, 13288 Marseille, France
| | - Sandrine Sarrazin
- Centre National de la Recherche Scientifique, Institut National de la Santé et de la Recherche Médicale, Centre d'Immunologie de Marseille-Luminy, Aix Marseille Université, 13288 Marseille, France
| | - Kaaweh Molawi
- Centre National de la Recherche Scientifique, Institut National de la Santé et de la Recherche Médicale, Centre d'Immunologie de Marseille-Luminy, Aix Marseille Université, 13288 Marseille, France.,Max-Delbrück-Centrum für Molekulare Medizin in der Helmholtzgemeinschaft, 13125 Berlin, Germany
| | - Carole Berruyer
- Centre National de la Recherche Scientifique, Institut National de la Santé et de la Recherche Médicale, Centre d'Immunologie de Marseille-Luminy, Aix Marseille Université, 13288 Marseille, France
| | - David Redelberger
- Centre National de la Recherche Scientifique, Laboratoire d' Ingenierie des Systemes Macromoleculaires, Institut de Microbiologie de la Mediterranee, Aix Marseille Université, 13402 Marseille, France
| | - Anne Favel
- Institute National de la Recherche Agronomique, Unite Mixte de Recherche 1163 BBF, Aix Marseille Université, 13288 Marseille, France
| | - Christophe Bordi
- Centre National de la Recherche Scientifique, Laboratoire d' Ingenierie des Systemes Macromoleculaires, Institut de Microbiologie de la Mediterranee, Aix Marseille Université, 13402 Marseille, France
| | - Sophie de Bentzmann
- Centre National de la Recherche Scientifique, Laboratoire d' Ingenierie des Systemes Macromoleculaires, Institut de Microbiologie de la Mediterranee, Aix Marseille Université, 13402 Marseille, France
| | - Michael H Sieweke
- Centre National de la Recherche Scientifique, Institut National de la Santé et de la Recherche Médicale, Centre d'Immunologie de Marseille-Luminy, Aix Marseille Université, 13288 Marseille, France .,Max-Delbrück-Centrum für Molekulare Medizin in der Helmholtzgemeinschaft, 13125 Berlin, Germany
| |
Collapse
|
42
|
Stewart DA, Guo D, Luider J, Auer I, Klassen J, Morris D, Chaudhry A, Brown C, Glück S, Russell JA. A Low CD34+ Cell Dose Predicts Relapse and Death Early following Autologous Blood Stem Cell Transplantation. Hematology 2016; 6:19-27. [DOI: 10.1080/10245332.2001.11746549] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022] Open
Affiliation(s)
- D. A. Stewart
- Department of Medicine, Tom Baker Cancer Centre, Foothills Hospital, and University of Calgary, Calgary, Alberta, Canada
| | - D. Guo
- Department of Epidemiology, Tom Baker Cancer Centre, Foothills Hospital, and University of Calgary, Calgary, Alberta, Canada
| | - J. Luider
- Department of Flow Cytometry, Tom Baker Cancer Centre, Foothills Hospital, and University of Calgary, Calgary, Alberta, Canada
| | - I. Auer
- Department of Pathology Tom Baker Cancer Centre, Foothills Hospital, and University of Calgary, Calgary, Alberta, Canada
| | - J. Klassen
- Department of Apheresis, and Alberta Bone Marrow Transplant Program, Tom Baker Cancer Centre, Foothills Hospital, and University of Calgary, Calgary, Alberta, Canada
| | - D. Morris
- Department of Medicine, Tom Baker Cancer Centre, Foothills Hospital, and University of Calgary, Calgary, Alberta, Canada
| | - A. Chaudhry
- Department of Medicine, Tom Baker Cancer Centre, Foothills Hospital, and University of Calgary, Calgary, Alberta, Canada
| | - C. Brown
- Department of Medicine, Tom Baker Cancer Centre, Foothills Hospital, and University of Calgary, Calgary, Alberta, Canada
| | - S. Glück
- Department of Medicine, Tom Baker Cancer Centre, Foothills Hospital, and University of Calgary, Calgary, Alberta, Canada
| | - J. A. Russell
- Department of Medicine, Tom Baker Cancer Centre, Foothills Hospital, and University of Calgary, Calgary, Alberta, Canada
| |
Collapse
|
43
|
Mattox TW. Specialized Nutrition Management of Patients Receiving Hematopoietic Stem Cell Transplantation. Nutr Clin Pract 2016. [DOI: 10.1177/088453369901400102] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
|
44
|
Gallagher KA, Goldstein LJ, Thom SR, Velazquez OC. Hyperbaric Oxygen and Bone Marrow–Derived Endothelial Progenitor Cells in Diabetic Wound Healing. Vascular 2016; 14:328-37. [PMID: 17150153 DOI: 10.2310/6670.2006.00057] [Citation(s) in RCA: 60] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Endothelial progenitor cells (EPCs) are the key cellular effectors of postnatal vasculogenesis and play a central role in wound healing. In diabetes, there is a significant impairment in the number and function of circulating and wound-tissue EPC. Recent evidence indicates, that tissue-level hyperoxia achieved by therapeutic hyperbaric oxygen protocols (HBO2) can increase the mobilization of EPC from the bone marrow into peripheral blood. In this paper we review the recent reports on hyperoxia-mediated mobilization of bone marrow-derived EPC and postulate avenues of future research in this area as it applies to improving healing in chronic wounds affected by diabetes and peripheral arterial disease (PAD).
Collapse
Affiliation(s)
- Katherine A Gallagher
- Department of Surgery, Institute for Environmental Medicine, University of Pennsylvania Medical Center, Philadelphia 19124, USA
| | | | | | | |
Collapse
|
45
|
Kresnik PK, Krasna M, Rozman P, Vrtovec B, Malicev E. Collection and immunoselection of CD34+ cells: the impact of age, sex, and diabetes in patients with chronic heart failure. Transfusion 2016; 56:1792-800. [PMID: 27185200 DOI: 10.1111/trf.13646] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2015] [Revised: 03/29/2016] [Accepted: 04/04/2016] [Indexed: 12/13/2022]
Abstract
BACKGROUND Mobilized peripheral blood is the most common source of CD34+ cells intended for transplantations. The collection and enrichment of CD34+ cells could be affected by various factors and there are some controversies regarding the effects of patient-related factors. The aim of this study was to assess the impact of age, sex, and diabetes on the CD34+ cell grafts in patients with chronic heart failure. STUDY DESIGN AND METHODS Cell grafts from 100 adult patients scheduled for autologous CD34+ cell transplantation were investigated. The CD34+ cells were collected using leukapheresis after granulocyte-colony-stimulating factor mobilization and further enriched using the immunomagnetic CD34+ selection. The number of CD34+ cells and their viability were determined by flow cytometry. RESULTS Older patients had significantly lower CD34+ cell counts than younger patients. The differences between men and women were not found. There was a trend toward an inverse relationship between diabetes and the CD34+ cell count, however, without any significance. No differences in the CD34+ cell viability (97.6% before and 97.9% after selection) were found. The mean CD34+ cell recovery was 59.7% and was not statistically different between age groups, sex, and diabetic patients. CONCLUSION Before the CD34+ cells are collected the patient's age should be considered. The study did not demonstrate a significant impact of sex and diabetes on the CD34+ cell count. While age and sex did not affect the immunoselection process, diabetes slightly reduced cell recovery. Cell viabilities before and after the cell enrichment were comparable between the tested samples.
Collapse
Affiliation(s)
| | - Metka Krasna
- Blood Transfusion Centre of Slovenia, Ljubljana, Slovenia
| | - Primoz Rozman
- Blood Transfusion Centre of Slovenia, Ljubljana, Slovenia
| | - Bojan Vrtovec
- Advanced Heart Failure and Transplantation Centre, UMC Ljubljana, Ljubljana, Slovenia
| | - Elvira Malicev
- Blood Transfusion Centre of Slovenia, Ljubljana, Slovenia
| |
Collapse
|
46
|
Psatha N, Karponi G, Yannaki E. Optimizing autologous cell grafts to improve stem cell gene therapy. Exp Hematol 2016; 44:528-39. [PMID: 27106799 DOI: 10.1016/j.exphem.2016.04.007] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2016] [Revised: 04/06/2016] [Accepted: 04/08/2016] [Indexed: 10/21/2022]
Abstract
Over the past decade, stem cell gene therapy has achieved unprecedented curative outcomes for several genetic disorders. Despite the unequivocal success, clinical gene therapy still faces challenges. Genetically engineered hematopoietic stem cells are particularly vulnerable to attenuation of their repopulating capacity once exposed to culture conditions, ultimately leading to low engraftment levels posttransplant. This becomes of particular importance when transduction rates are low or/and competitive transplant conditions are generated by reduced-intensity conditioning in the absence of a selective advantage of the transduced over the unmodified cells. These limitations could partially be overcome by introducing megadoses of genetically modified CD34(+) cells into conditioned patients or by transplanting hematopoietic stem cells hematopoietic stem cells with high engrafting and repopulating potential. On the basis of the lessons gained from cord blood transplantation, we summarize the most promising approaches to date of increasing either the numbers of hematopoietic stem cells for transplantation or/and their engraftability, as a platform toward the optimization of engineered stem cell grafts.
Collapse
Affiliation(s)
- Nikoletta Psatha
- Gene and Cell Therapy Center, Hematology Department-BMT Unit, George Papanicolaou Hospital, Thessaloniki, Greece; Department of Medicine, University of Washington, Seattle, WA
| | - Garyfalia Karponi
- Gene and Cell Therapy Center, Hematology Department-BMT Unit, George Papanicolaou Hospital, Thessaloniki, Greece
| | - Evangelia Yannaki
- Gene and Cell Therapy Center, Hematology Department-BMT Unit, George Papanicolaou Hospital, Thessaloniki, Greece; Department of Medicine, University of Washington, Seattle, WA.
| |
Collapse
|
47
|
RUNX1 haploinsufficiency results in granulocyte colony-stimulating factor hypersensitivity. Blood Cancer J 2016; 6:e379. [PMID: 26745853 PMCID: PMC4742622 DOI: 10.1038/bcj.2015.105] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2015] [Accepted: 11/17/2015] [Indexed: 01/01/2023] Open
Abstract
RUNX1/AML1 is among the most commonly mutated genes in human leukemia. Haploinsufficiency of RUNX1 causes familial platelet disorder with predisposition to myeloid malignancies (FPD/MM). However, the molecular mechanism of FPD/MM remains unknown. Here we show that murine Runx1+/− hematopoietic cells are hypersensitive to granulocyte colony-stimulating factor (G-CSF), leading to enhanced expansion and mobilization of stem/progenitor cells and myeloid differentiation block. Upon G-CSF stimulation, Runx1+/− cells exhibited a more pronounced phosphorylation of STAT3 as compared with Runx1+/+ cells, which may be due to reduced expression of Pias3, a key negative regulator of STAT3 signaling, and reduced physical sequestration of STAT3 by RUNX1. Most importantly, blood cells from a FPD patient with RUNX1 mutation exhibited similar G-CSF hypersensitivity. Taken together, Runx1 haploinsufficiency appears to predispose FPD patients to MM by expanding the pool of stem/progenitor cells and blocking myeloid differentiation in response to G-CSF.
Collapse
|
48
|
Xu SM, Liang T. Clinical observation of the application of autologous peripheral blood stem cell transplantation for the treatment of diabetic foot gangrene. Exp Ther Med 2015; 11:283-288. [PMID: 26889255 DOI: 10.3892/etm.2015.2888] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2014] [Accepted: 08/20/2015] [Indexed: 01/27/2023] Open
Abstract
The aim of the present study was to investigate the optimal mobilization plan in autologous peripheral blood stem cell transplantation for the treatment of diabetic foot and to observe its clinical curative effect. A total of 127 patients with diabetic foot were treated with different doses of granulocyte colony stimulating factor (G-CSF) to mobilize their hematopoietic stem cells. Subsequently, the extracted stem cell suspension was injected into the ischemic lower extremities along the blood vessels in the areas presenting with pathological changes. Following the treatment, the intermittent claudication distance, skin temperature, ankle brachial index and pain scores of the patients were evaluated. In addition, the associations among the mobilization time, doses and peripheral blood CD34+ level were analyzed. The collection efficiency of the stem cells was associated with the dose of G-CSF and the mobilization time. Following the injection of the autologous peripheral blood stem cell suspension, the ischemic area of the patients was improved significantly. In conclusion, autologous peripheral blood stem cell transplantation can promote the establishment of collateral circulation in patients with diabetic foot, and the optimal time for gathering stem cells is closely correlated with the peripheral blood CD34+ level.
Collapse
Affiliation(s)
- Shi-Min Xu
- Department of Orthopedics, Weifang People's Hospital, Weifang, Shandong 261041, P.R. China
| | - Ting Liang
- Department of Administration, People's Hospital of Langfang, Langfang, Hebei 065000, P.R. China
| |
Collapse
|
49
|
Bhatt VR, Armitage JO. Autologous and allogeneic hematopoietic stem cell transplantation in follicular lymphoma. Expert Opin Biol Ther 2015; 16:57-66. [DOI: 10.1517/14712598.2016.1096341] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
|
50
|
Salvino MA, Ruiz J. Hematopoietic progenitor cell mobilization for autologous transplantation - a literature review. Rev Bras Hematol Hemoter 2015; 38:28-36. [PMID: 26969772 PMCID: PMC4786760 DOI: 10.1016/j.bjhh.2015.07.011] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2015] [Revised: 06/30/2015] [Accepted: 07/17/2015] [Indexed: 12/27/2022] Open
Abstract
The use of high-dose chemotherapy with autologous support of hematopoietic progenitor cells is an effective strategy to treat various hematologic neoplasms, such as non-Hodgkin lymphomas and multiple myeloma. Mobilized peripheral blood progenitor cells are the main source of support for autologous transplants, and collection of an adequate number of hematopoietic progenitor cells is a critical step in the autologous transplant procedure. Traditional strategies, based on the use of growth factors with or without chemotherapy, have limitations even when remobilizations are performed. Granulocyte colony-stimulating factor is the most widely used agent for progenitor cell mobilization. The association of plerixafor, a C-X-C Chemokine receptor type 4 (CXCR4) inhibitor, to granulocyte colony stimulating factor generates rapid mobilization of hematopoietic progenitor cells. A literature review was performed of randomized studies comparing different mobilization schemes in the treatment of multiple myeloma and lymphomas to analyze their limitations and effectiveness in hematopoietic progenitor cell mobilization for autologous transplant. This analysis showed that the addition of plerixafor to granulocyte colony stimulating factor is well tolerated and results in a greater proportion of patients with non-Hodgkin lymphomas or multiple myeloma reaching optimal CD34+ cell collections with a smaller number of apheresis compared the use of granulocyte colony stimulating factor alone.
Collapse
|