1
|
Gracheva AS, Kashatnikova DA, Redkin IV, Zakharchenko VE, Kuzovlev AN, Salnikova LE. Genetics and Traumatic Brain Injury: Findings from an Exome-Based Study of a 50-Patient Case Series. Curr Issues Mol Biol 2024; 46:10351-10368. [PMID: 39329968 PMCID: PMC11430351 DOI: 10.3390/cimb46090616] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2024] [Revised: 09/14/2024] [Accepted: 09/16/2024] [Indexed: 09/28/2024] Open
Abstract
Traumatic brain injury (TBI) is the leading cause of global mortality and morbidity. Because TBI is accident-related, the role of genetics in predisposing to TBI has been largely unexplored. However, the likelihood of injury may not be entirely random and may be associated with certain physical and mental characteristics. In this study, we analyzed the exomes of 50 patients undergoing rehabilitation after TBI. Patients were divided into three groups according to rehabilitation outcome: improvement, no change, and deterioration/death. We focused on rare, potentially functional missense and high-impact variants in genes intolerant to these variants. The concordant results from the three independent groups of patients allowed for the suggestion of the existence of a genetic predisposition to TBI, associated with rare functional variations in intolerant genes, with a prevalent dominant mode of inheritance and neurological manifestations in the genetic phenotypes according to the OMIM database. Forty-four of the 50 patients had one or more rare, potentially deleterious variants in one or more neurological genes. Comparison of these results with those of a 50-sampled matched non-TBI cohort revealed significant differences: P = 2.6 × 10-3, OR = 4.89 (1.77-13.47). There were no differences in the distribution of the genes of interest between the TBI patient groups. Our exploratory study provides new insights into the impact of genetics on TBI risk and is the first to address potential genetic susceptibility to TBI.
Collapse
Affiliation(s)
- Alesya S Gracheva
- The Department of Population Genetics, Vavilov Institute of General Genetics, Russian Academy of Sciences, 119991 Moscow, Russia
- The Laboratory of Clinical Pathophysiology of Critical Conditions, Federal Research and Clinical Center of Intensive Care Medicine and Rehabilitology, 107031 Moscow, Russia
| | - Darya A Kashatnikova
- The Laboratory of Ecological Genetics, Vavilov Institute of General Genetics, Russian Academy of Sciences, 119991 Moscow, Russia
- The Laboratory of Molecular Pathophysiology, Lopukhin Federal Research and Clinical Center of Physical-Chemical Medicine of Federal Medical Biological Agency, 119435 Moscow, Russia
| | - Ivan V Redkin
- The Laboratory of Organoprotection in Critical Conditions, Federal Research and Clinical Center of Intensive Care Medicine and Rehabilitology, 107031 Moscow, Russia
| | - Vladislav E Zakharchenko
- The Department of Clinical Laboratory Diagnostics, Federal Research and Clinical Center of Intensive Care Medicine and Rehabilitology, 107031 Moscow, Russia
| | - Artem N Kuzovlev
- The Laboratory of Clinical Pathophysiology of Critical Conditions, Federal Research and Clinical Center of Intensive Care Medicine and Rehabilitology, 107031 Moscow, Russia
| | - Lyubov E Salnikova
- The Laboratory of Clinical Pathophysiology of Critical Conditions, Federal Research and Clinical Center of Intensive Care Medicine and Rehabilitology, 107031 Moscow, Russia
- The Laboratory of Ecological Genetics, Vavilov Institute of General Genetics, Russian Academy of Sciences, 119991 Moscow, Russia
- The Laboratory of Molecular Immunology, National Research Center of Pediatric Hematology, Oncology and Immunology, 117997 Moscow, Russia
| |
Collapse
|
2
|
Akbari-Lalimi H, Shafiei SA, Momennezhad M, Zare H, Talaei A, Naseri S. The effect of considering eye movement time in evaluating the efficiency of attentional networks. Psych J 2024; 13:588-597. [PMID: 38298162 DOI: 10.1002/pchj.734] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2023] [Accepted: 11/21/2023] [Indexed: 02/02/2024]
Abstract
The attention network test (ANT) is a tool for assessing the executive, alerting, and orienting components of attention. However, conflicting findings exist regarding the nature and correlation between attention networks. This study aims to investigate the influence of eye movement time on the assessment of attention network efficiency. Forty male students, with an average age of 20.8 ± 1.3 years, participated in the study. The revised attention network test was conducted concurrently with the recording of the electrooculogram signal. The electrooculogram signal was used to estimate eye placement time on target stimuli. Considering eye movement time for calculating the score of each network was proposed as a novel method. The study explored the nature of attention networks and their relationships, and revealed significant effects for attention networks with and without considering the eye movement time. Additionally, a significant correlation is observed between the alerting and orienting networks. However, no significant correlation is found between attention networks using the proposed method. Considering eye movement time alters the assessment of attention network efficiency and modifies the correlation among attention networks.
Collapse
Affiliation(s)
- Hossein Akbari-Lalimi
- Department of Medical Physics, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Seyed Ali Shafiei
- Neuroscience Research Center, Qom University of Medical Sciences, Qom, Iran
| | - Mahdi Momennezhad
- Nuclear Medicine Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Hoda Zare
- Department of Medical Physics, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
- Medical Physics Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Ali Talaei
- Psychiatry and Behavioral Sciences Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Shahrokh Naseri
- Department of Medical Physics, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| |
Collapse
|
3
|
Xiao L, Baetens K, Deroost N. Higher sensory processing sensitivity: increased cautiousness in attentional processing in conflict contexts. Cogn Emot 2024; 38:463-479. [PMID: 38186220 DOI: 10.1080/02699931.2023.2300751] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2023] [Accepted: 11/27/2023] [Indexed: 01/09/2024]
Abstract
While interest grows in investigating sensory processing sensitivity (SPS), few studies have employed objective behavioural measures to directly explore the underlying attentional processing. The present study utilised two modified versions of the Emotional Attention Networks Test Integration (E-ANTI) to investigate whether and how emotion interacts with three attentional networks associated with SPS when emotion information was target-irrelevant (Experiment 1) and target-relevant (Experiment 2), respectively. Both experiments involved four manipulated within-subject factors: Signal (tone vs. no-tone), Cue Validity (valid vs. invalid), Flanker Congruency (congruent vs. incongruent), and Emotion (fearful vs. happy). Linear mixed models were employed, and three attentional networks were successfully captured in both experiments. In Experiment 1, we observed that as SPS increased, the difference in reaction time between valid and invalid cue conditions decreased, especially in incongruent trials. Participants rated fearful faces as more arousing than happy faces as SPS increased. In Experiment 2, we found that slow responding to fearful faces reduced as SPS increased, particularly in incongruent trials. The observed effects related to SPS in both experiments were particularly pronounced in incongruent conditions, suggesting that SPS may modulate attentional processes in high-conflict situations. Overall, higher SPS may be associated with increased cautiousness in conflict contexts.
Collapse
Affiliation(s)
- Luchuan Xiao
- Brain, Body and Cognition (BBCO) Research Group, Faculty of Psychology and Educational Sciences, Vrije Universiteit Brussel, Brussel, Belgium
- Center for Neurosciences (C4N), Vrije Universiteit Brussel, Brussel, Belgium
- Brussels University Consultation Center (BRUCC), Vrije Universiteit Brussel, Brussel, Belgium
| | - Kris Baetens
- Brain, Body and Cognition (BBCO) Research Group, Faculty of Psychology and Educational Sciences, Vrije Universiteit Brussel, Brussel, Belgium
- Center for Neurosciences (C4N), Vrije Universiteit Brussel, Brussel, Belgium
- Brussels University Consultation Center (BRUCC), Vrije Universiteit Brussel, Brussel, Belgium
| | - Natacha Deroost
- Brain, Body and Cognition (BBCO) Research Group, Faculty of Psychology and Educational Sciences, Vrije Universiteit Brussel, Brussel, Belgium
- Center for Neurosciences (C4N), Vrije Universiteit Brussel, Brussel, Belgium
- Brussels University Consultation Center (BRUCC), Vrije Universiteit Brussel, Brussel, Belgium
| |
Collapse
|
4
|
Li S, May C, Pang TY, Churilov L, Hannan AJ, Johnson KA, Burrows EL. Mice with an autism-associated R451C mutation in neuroligin-3 show intact attention orienting but atypical responses to methylphenidate and atomoxetine in the mouse-Posner task. Psychopharmacology (Berl) 2024; 241:555-567. [PMID: 38170320 DOI: 10.1007/s00213-023-06520-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/27/2023] [Accepted: 12/18/2023] [Indexed: 01/05/2024]
Abstract
RATIONALE Atypical attention orienting has been associated with some autistic symptoms, but the neural mechanisms remain unclear. The human Posner task, a classic attention orienting paradigm, was recently adapted for use with mice, supporting the investigation of the neurobiological underpinnings of atypical attention orienting in preclinical mouse models. OBJECTIVE The current study tested mice expressing the autism-associated R451C gene mutation in neuroligin-3 (NL3) on the mouse-Posner (mPosner) task. METHODS NL3R451C and wild-type (WT) mice were trained to respond to a validly or invalidly cued target on a touchscreen. The cue was a peripheral non-predictive flash in the exogenous task and a central spatially predictive image in the endogenous task. The effects of dopaminergic- and noradrenergic-modulating drugs, methylphenidate and atomoxetine, on task performance were assessed. RESULTS In both tasks, mice were quicker and more accurate in the validly versus invalidly cued trials, consistent with results in the human Posner task. NL3R451C and WT mice showed similar response times and accuracy but responded differently when treated with methylphenidate and atomoxetine. Methylphenidate impaired exogenous attention disengagement in NL3R451C mice but did not significantly affect WT mice. Atomoxetine impaired endogenous orienting in WT mice but did not significantly affect NL3R451C mice. CONCLUSIONS NL3R451C mice demonstrated intact attention orienting but altered responses to the pharmacological manipulation of the dopaminergic and noradrenergic networks. These findings expand our understanding of the NL3R451C mutation by suggesting that this mutation may lead to selective alterations in attentional processes.
Collapse
Affiliation(s)
- Shuting Li
- Melbourne School of Psychological Sciences, The University of Melbourne, Parkville, VIC, 3010, Australia.
- Florey Institute of Neuroscience and Mental Health, The University of Melbourne, Parkville, VIC, 3052, Australia.
| | - Carlos May
- Florey Institute of Neuroscience and Mental Health, The University of Melbourne, Parkville, VIC, 3052, Australia
| | - Terence Y Pang
- Florey Institute of Neuroscience and Mental Health, The University of Melbourne, Parkville, VIC, 3052, Australia
- Department of Anatomy and Neuroscience, The University of Melbourne, Parkville, VIC, 3010, Australia
| | - Leonid Churilov
- Melbourne Medical School, The University of Melbourne, Parkville, VIC, 3010, Australia
| | - Anthony J Hannan
- Florey Institute of Neuroscience and Mental Health, The University of Melbourne, Parkville, VIC, 3052, Australia
- Department of Anatomy and Neuroscience, The University of Melbourne, Parkville, VIC, 3010, Australia
| | - Katherine A Johnson
- Melbourne School of Psychological Sciences, The University of Melbourne, Parkville, VIC, 3010, Australia
| | - Emma L Burrows
- Florey Institute of Neuroscience and Mental Health, The University of Melbourne, Parkville, VIC, 3052, Australia.
| |
Collapse
|
5
|
Schindler H, Jawinski P, Arnatkevičiūtė A, Markett S. Molecular signatures of attention networks. Hum Brain Mapp 2024; 45:e26588. [PMID: 38401136 PMCID: PMC10893969 DOI: 10.1002/hbm.26588] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2023] [Revised: 11/10/2023] [Accepted: 12/22/2023] [Indexed: 02/26/2024] Open
Abstract
Attention network theory proposes three distinct types of attention-alerting, orienting, and control-that are supported by separate brain networks and modulated by different neurotransmitters, that is, norepinephrine, acetylcholine, and dopamine. Here, we explore the extent of cortical, genetic, and molecular dissociation of these three attention systems using multimodal neuroimaging. We evaluated the spatial overlap between fMRI activation maps from the attention network test (ANT) and cortex-wide gene expression data from the Allen Human Brain Atlas. The goal was to identify genes associated with each of the attention networks in order to determine whether specific groups of genes were co-expressed with the corresponding attention networks. Furthermore, we analyzed publicly available PET-maps of neurotransmitter receptors and transporters to investigate their spatial overlap with the attention networks. Our analyses revealed a substantial number of genes (3871 for alerting, 6905 for orienting, 2556 for control) whose cortex-wide expression co-varied with the activation maps, prioritizing several molecular functions such as the regulation of protein biosynthesis, phosphorylation, and receptor binding. Contrary to the hypothesized associations, the ANT activation maps neither aligned with the distribution of norepinephrine, acetylcholine, and dopamine receptor and transporter molecules, nor with transcriptomic profiles that would suggest clearly separable networks. Independence of the attention networks appeared additionally constrained by a high level of spatial dependency between the network maps. Future work may need to reconceptualize the attention networks in terms of their segregation and reevaluate the presumed independence at the neural and neurochemical level.
Collapse
Affiliation(s)
| | | | - Aurina Arnatkevičiūtė
- Turner Institute for Brain and Mental Health, School of Psychological SciencesMonash UniversityMelbourneAustralia
| | | |
Collapse
|
6
|
Barnwell PV, Rattigan JA, Brennan KT, Fedorenko EJ, Contrada RJ. Exposure to conflicting COVID-19 information in undergraduates: Implications for pandemic-related information-seeking and concern, attention, and cognitive workload. JOURNAL OF AMERICAN COLLEGE HEALTH : J OF ACH 2023:1-12. [PMID: 37289990 DOI: 10.1080/07448481.2023.2220409] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/30/2021] [Revised: 01/13/2023] [Accepted: 05/17/2023] [Indexed: 06/10/2023]
Abstract
Objectives: To examine college students' conflicting COVID-19 information exposure, information-seeking, concern, and cognitive functioning. Participants: 179 undergraduates were recruited in March-April 2020, and 220 in September 2020 (Samples 1 and 2, respectively). Methods: Students completed the Attention Network Test, NASA Task Load Index, and COVID-related questions. Results: In Sample 1, exposure to conflicting information predicted poorer attentional performance and greater COVID-related information-seeking and concern; concern was correlated with workload. In Sample 2, conflicting information was associated with information-seeking. In Sample 1, but not Sample 2, cognitive effects of conflicting information were mediated by information-seeking and virus-related concern. Conclusions: Conflicting COVID-19 information may undermine students' cognitive functions, bearing implications for health, academic performance, and stress. Strategies for countering these effects include enhancing the clarity of institutional messaging, and tailoring course curricula and offering workshops to students, faculty, administrators, and counseling staff to augment students' capacity to comprehend and utilize COVID-related communications.
Collapse
Affiliation(s)
- Patrick V Barnwell
- Department of Psychology, Rutgers, The State University of New Jersey, New Brunswick, New Jersey, USA
| | - Jake A Rattigan
- Department of Psychology, Rutgers, The State University of New Jersey, New Brunswick, New Jersey, USA
| | - Kyle T Brennan
- Department of Psychology, Rutgers, The State University of New Jersey, New Brunswick, New Jersey, USA
| | - Erick J Fedorenko
- Department of Psychology, Rutgers, The State University of New Jersey, New Brunswick, New Jersey, USA
| | - Richard J Contrada
- Department of Psychology, Rutgers, The State University of New Jersey, New Brunswick, New Jersey, USA
| |
Collapse
|
7
|
Liu H, Zhao X, Xue G, Chen C, Dong Q, Gao X, Yang L, Chen C. TTLL11 gene is associated with sustained attention performance and brain networks: A genome-wide association study of a healthy Chinese sample. GENES, BRAIN, AND BEHAVIOR 2023; 22:e12835. [PMID: 36511133 PMCID: PMC9994169 DOI: 10.1111/gbb.12835] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/24/2022] [Revised: 11/21/2022] [Accepted: 11/29/2022] [Indexed: 12/15/2022]
Abstract
Genetic studies on attention have mainly focused on children with attention-deficit/hyperactivity disorder (ADHD), so little systematic research has been conducted on genetic correlates of attention performance and their potential brain mechanisms among healthy individuals. The current study included a genome-wide association study (GWAS, N = 1145 healthy young adults) aimed to identify genes associated with sustained attention and an imaging genetics study (an independent sample of 483 healthy young adults) to examine any identified genes' influences on brain function. The GWAS found that TTLL11 showed genome-wide significant associations with sustained attention, with rs13298112 as the most significant SNP and the GG homozygotes showing more impulsive but also more focused responses than the A allele carriers. A retrospective examination of previously published ADHD GWAS results confirmed an un-reported, small but statistically significant effect of TTLL11 on ADHD. The imaging genetics study replicated this association and showed that the TTLL11 gene was associated with resting state activity and connectivity of the somatomoter network, and can be predicted by dorsal attention network connectivity. Specifically, the GG homozygotes showed lower brain activity, weaker brain network connectivity, and non-significant brain-attention association compared to the A allele carriers. Expression database showed that expression of this gene is enriched in the brain and that the G allele is associated with lower expression level than the A allele. These results suggest that TTLL11 may play a major role in healthy individuals' attention performance and may also contribute to the etiology of ADHD.
Collapse
Affiliation(s)
- Hejun Liu
- State Key Laboratory of Cognitive Neuroscience and Learning & IDG/McGovern Institute for Brain Research, Beijing Normal University, Beijing, China
| | - Xiaoyu Zhao
- State Key Laboratory of Cognitive Neuroscience and Learning & IDG/McGovern Institute for Brain Research, Beijing Normal University, Beijing, China
| | - Gui Xue
- State Key Laboratory of Cognitive Neuroscience and Learning & IDG/McGovern Institute for Brain Research, Beijing Normal University, Beijing, China
| | - Chuansheng Chen
- Department of Psychological Science, University of California, Irvine, California, USA
| | - Qi Dong
- State Key Laboratory of Cognitive Neuroscience and Learning & IDG/McGovern Institute for Brain Research, Beijing Normal University, Beijing, China
| | - Xuping Gao
- Child and Adolescent Mental Health Centre, Peking University Sixth Hospital (Institute of Mental Health), National Clinical Research Center for Mental Disorders and NHC Key Laboratory of Mental Health (Peking University Sixth Hospital), Beijing, China
| | - Li Yang
- Child and Adolescent Mental Health Centre, Peking University Sixth Hospital (Institute of Mental Health), National Clinical Research Center for Mental Disorders and NHC Key Laboratory of Mental Health (Peking University Sixth Hospital), Beijing, China
| | - Chunhui Chen
- State Key Laboratory of Cognitive Neuroscience and Learning & IDG/McGovern Institute for Brain Research, Beijing Normal University, Beijing, China.,Beijing Key Laboratory of Brain Imaging and Connectomics, Beijing Normal University, Beijing, China
| |
Collapse
|
8
|
Huang F, Lin G, Meng Y, Lin Y, Zheng S. The role of alerting in the attentional boost effect. Front Psychol 2023; 14:1075979. [PMID: 37089742 PMCID: PMC10117126 DOI: 10.3389/fpsyg.2023.1075979] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2022] [Accepted: 03/02/2023] [Indexed: 04/25/2023] Open
Abstract
Stimuli presented simultaneously with behaviorally relevant events (e.g., targets) are better memorized, an unusual effect defined as the attentional boost effect (ABE). We hypothesized that all types of behaviorally relevant events, including attentional cues, can promote the encoding process for the stimuli paired with them, and the attentional alerting network can amplify the ABE. The two experiments we conducted demonstrated that not all behaviorally relevant events, including alerting cues, benefit the processing of concurrently paired stimuli. We also found that the presence of a cue prior to a target can extend the memory advantage produced by target detection, but this advantage can only be observed within a limited range of time. Overall, our study provides the first evidence that the alerting network plays an important role in the ABE.
Collapse
Affiliation(s)
- Fajie Huang
- School of Health, Fujian Medical University, Fuzhou, China
- School of Psychology, Fujian Normal University, Fuzhou, China
| | - Guyang Lin
- School of Psychology, Fujian Normal University, Fuzhou, China
| | - Yingfang Meng
- School of Psychology, Fujian Normal University, Fuzhou, China
- *Correspondence: Yingfang Meng,
| | - Yuanyuan Lin
- Education Research Institution of Fujian Province, Fuzhou, China
| | - Siqi Zheng
- School of Psychology, Fujian Normal University, Fuzhou, China
| |
Collapse
|
9
|
Thinking about attention: Successive approximations to a productive taxonomy. Cognition 2022; 225:105137. [PMID: 35568009 DOI: 10.1016/j.cognition.2022.105137] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2021] [Revised: 03/31/2022] [Accepted: 04/13/2022] [Indexed: 11/20/2022]
Abstract
Attention, the recruitment of processing resources, is viewed as pivotal for understanding normal behaviour and thought as well as the disorganizations associated with brain damage and disease. A brief history foreshadows aspects of a proposed taxonomy of attention that builds upon Posner's tripartite taxonomy. Posner's influential taxonomy views attention as a set of isolable neural systems (alerting, orienting and executive control), often working together to organize behaviour. For measuring the efficacy of these three networks, Posner and colleagues created the Attention Network Test (ANT). The impact of the taxonomy and this model task for exploring it is illustrated by the facts that they have spawned numerous variants designed for different purposes and that one or another variant has been used in almost a thousand publications. We have previously built upon this conceptual framework by considering: two modes of control over resource allocation which we labelled exogenous and endogenous and three domains over which these modes of control are presumed to operate (space, time and task or activity). The Combined Attention Systems Test (or CAST) was developed to measure the efficacy of the six kinds of attention implied by revised taxonomy. Lastly, this taxonomic effort is further developed by incorporating the distinction between overt, observable behaviour in the "real" world and covert "behaviour" in the realm of thought and imagination.
Collapse
|
10
|
Chen T, Mandal A, Zhu H, Liu R. Imaging Genetic Based Mediation Analysis for Human Cognition. Front Neurosci 2022; 16:824069. [PMID: 35573299 PMCID: PMC9097855 DOI: 10.3389/fnins.2022.824069] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2021] [Accepted: 03/23/2022] [Indexed: 11/30/2022] Open
Abstract
The brain connectome maps the structural and functional connectivity that forms an important neurobiological basis for the analysis of human cognitive traits while the genetic predisposition and our cognition ability are frequently found in close association. The issue of how genetic architecture and brain connectome causally affect human behaviors remains unknown. To seek for the potential causal relationship, in this paper, we carried out the causal pathway analysis from single nucleotide polymorphism (SNP) data to four common human cognitive traits, mediated by the brain connectome. Specifically, we selected 942 SNPs that are significantly associated with the brain connectome, and then estimated the direct and indirect effect on the human traits for each SNP. We found out that a majority of the selected SNPs have significant direct effects on human traits and discussed the trait-related brain regions and their implications.
Collapse
Affiliation(s)
- Tingan Chen
- Department of Statistics, Florida State University, Tallahassee, FL, United States
| | - Abhishek Mandal
- Department of Statistics, Florida State University, Tallahassee, FL, United States
| | - Hongtu Zhu
- Department of Biostatistics, University of North Carolina at Chapel Hill, Chapel Hill, NC, United States
| | - Rongjie Liu
- Department of Statistics, Florida State University, Tallahassee, FL, United States
| |
Collapse
|
11
|
The Attention Network Test in Parkinson and Lewy Body Disease: A Systematic Review. Cogn Behav Neurol 2022; 35:1-13. [PMID: 35239595 DOI: 10.1097/wnn.0000000000000292] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2020] [Accepted: 05/27/2021] [Indexed: 11/27/2022]
Abstract
BACKGROUND The Attention Network Test (ANT) is a well-established measure of efficiency for the alerting, orienting, and executive attentional networks. However, its novel application in Parkinson disease (PD) and Lewy body dementia (LBD) research more broadly has yet to be evaluated systematically. OBJECTIVE To compare and consolidate the outcomes of studies reporting use of the ANT in PD and LBD groups and to identify the methodological considerations for the conduct of such studies. METHOD We performed a systematic literature search for articles exploring attention in PD and LBD groups using the ANT. We excluded articles on the basis of irrelevant scope, non-English, and groups other than PD and LBD. Once the full text articles were identified, we extracted the data and assessed the studies' quality. RESULTS The final sample included 16 articles ranging from low to moderate quality. Behavioral findings suggested a general slowing of responses yet preserved accuracy from the PD group compared with controls. Overall, the evidence was inconclusive regarding the state of the alerting network in the PD and LBD groups, mostly supportive of an intact orienting network, and strongly suggestive of an impaired executive network. Differences in sample stratification, patient symptomatology, and dopaminergic medication levels were identified as influential factors in the attentional results across studies. CONCLUSION Although sparse, the existing evidence indicates that the ANT is a viable option for measuring attention in PD; it can also be harnessed to explore the impact of symptoms and medications on attentional networks in PD and LBD groups.
Collapse
|
12
|
Harnish SM, Diedrichs VA, Bartlett CW. EARLY CONSIDERATIONS OF GENETICS IN APHASIA REHABILITATION: A NARRATIVE REVIEW. APHASIOLOGY 2022; 37:835-853. [PMID: 37346093 PMCID: PMC10281715 DOI: 10.1080/02687038.2022.2043234] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/17/2021] [Accepted: 02/14/2022] [Indexed: 06/23/2023]
Abstract
Background Early investigations linking language and genetics were focused on the evolution of human communication in populations with developmental speech and language disorders. Recently, studies suggest that genes may also modulate recovery from post-stroke aphasia. Aims Our goal is to review current literature related to the influence of genetics on post-stroke recovery, and the implications for aphasia rehabilitation. We describe candidate genes implicated by empirical findings and address additional clinical considerations. Main Contribution We describe existing evidence and mechanisms supporting future investigations into how genetic factors may modulate aphasia recovery and propose that two candidate genes, brain derived neurotrophic factor (BDNF) and apolipoprotein E (APOE), may be important considerations for future research assessing response to aphasia treatment. Evidence suggests that BDNF is important for learning, memory, and neuroplasticity. APOE influences cognitive functioning and memory in older individuals and has also been implicated in neural repair. Moreover, recent data suggest an interaction between specific alleles of the BDNF and APOE genes in influencing episodic memory. Conclusions Genetic influences on recovery from aphasia have been largely unexplored in the literature despite evidence that genetic factors influence behaviour and recovery from brain injury. As researchers continue to explore prognostic factors that may influence response to aphasia treatment, it is time for genetic factors to be considered as a source of variability. As the field moves in the direction of personalized medicine, eventually allied health professionals may utilize genetic profiles to inform treatment decisions and education for patients and care partners.
Collapse
Affiliation(s)
- Stacy M Harnish
- Department of Speech and Hearing Science, The Ohio State University
| | | | - Christopher W Bartlett
- Battelle Center for Mathematical Medicine, Abigail Wexner Research Institute at Nationwide Children's Hospital and Department of Pediatrics, College of Medicine, The Ohio State University
| |
Collapse
|
13
|
Veríssimo J, Verhaeghen P, Goldman N, Weinstein M, Ullman MT. Evidence that ageing yields improvements as well as declines across attention and executive functions. Nat Hum Behav 2022; 6:97-110. [PMID: 34413509 DOI: 10.1038/s41562-021-01169-7] [Citation(s) in RCA: 37] [Impact Index Per Article: 18.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2020] [Accepted: 06/22/2021] [Indexed: 02/07/2023]
Abstract
Many but not all cognitive abilities decline during ageing. Some even improve due to lifelong experience. The critical capacities of attention and executive functions have been widely posited to decline. However, these capacities are composed of multiple components, so multifaceted ageing outcomes might be expected. Indeed, prior findings suggest that whereas certain attention/executive functions clearly decline, others do not, with hints that some might even improve. We tested ageing effects on the alerting, orienting and executive (inhibitory) networks posited by Posner and Petersen's influential theory of attention, in a cross-sectional study of a large sample (N = 702) of participants aged 58-98. Linear and nonlinear analyses revealed that whereas the efficiency of the alerting network decreased with age, orienting and executive inhibitory efficiency increased, at least until the mid-to-late 70s. Sensitivity analyses indicated that the patterns were robust. The results suggest variability in age-related changes across attention/executive functions, with some declining while others improve.
Collapse
Affiliation(s)
- João Veríssimo
- Center of Linguistics, School of Arts and Humanities, University of Lisbon, Lisbon, Portugal. .,Department of Linguistics, University of Potsdam, Potsdam, Germany.
| | - Paul Verhaeghen
- School of Psychology, Georgia Institute of Technology, Atlanta, GA, USA
| | - Noreen Goldman
- Office of Population Research, Princeton University, Princeton, NJ, USA
| | - Maxine Weinstein
- Center for Population and Health, Georgetown University, Washington, DC, USA
| | - Michael T Ullman
- Department of Neuroscience, Georgetown University, Washington, DC, USA.
| |
Collapse
|
14
|
Xu Y, Lin S, Tao J, Liu X, Zhou R, Chen S, Vyas P, Yang C, Chen B, Qian A, Wang M. Correlation research of susceptibility single nucleotide polymorphisms and the severity of clinical symptoms in attention deficit hyperactivity disorder. Front Psychiatry 2022; 13:1003542. [PMID: 36213906 PMCID: PMC9538111 DOI: 10.3389/fpsyt.2022.1003542] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/27/2022] [Accepted: 09/01/2022] [Indexed: 12/02/2022] Open
Abstract
OBJECTIVE To analyze the correlation between susceptibility single nucleotide polymorphisms (SNPs) and the severity of clinical symptoms in children with attention deficit hyperactivity disorder (ADHD), so as to supplement the clinical significance of gene polymorphism and increase our understanding of the association between genetic mutations and ADHD phenotypes. METHODS 193 children with ADHD were included in our study from February 2017 to February 2020 in the Children's ADHD Clinic of the author's medical institution. 23 ADHD susceptibility SNPs were selected based on the literature, and multiple polymerase chain reaction (PCR) targeted capture sequencing technology was used for gene analysis. A series of ADHD-related questionnaires were used to reflect the severity of the disease, and the correlation between the SNPs of specific sites and the severity of clinical symptoms was evaluated. R software was used to search for independent risk factors by multivariate logistic regression and the "corplot" package was used for correlation analysis. RESULTS Among the 23 SNP loci of ADHD children, no mutation was detected in 6 loci, and 2 loci did not conform to Hardy-Weinberg equilibrium. Of the remaining 15 loci, there were 9 SNPs, rs2652511 (SLC6A3 locus), rs1410739 (OBI1-AS1 locus), rs3768046 (TIE1 locus), rs223508 (MANBA locus), rs2906457 (ST3GAL3 locus), rs4916723 (LINC00461 locus), rs9677504 (SPAG16 locus), rs1427829 (intron) and rs11210892 (intron), correlated with the severity of clinical symptoms of ADHD. Specifically, rs1410739 (OBI1-AS1 locus) was found to simultaneously affect conduct problems, control ability and abstract thinking ability of children with ADHD. CONCLUSION There were 9 SNPs significantly correlated with the severity of clinical symptoms in children with ADHD, and the rs1410739 (OBI1-AS1 locus) may provide a new direction for ADHD research. Our study builds on previous susceptibility research and further investigates the impact of a single SNP on the severity of clinical symptoms of ADHD. This can help improve the diagnosis, prognosis and treatment of ADHD.
Collapse
Affiliation(s)
- Yunyu Xu
- Department of Radiology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Shuangxiang Lin
- Department of Radiology, The Second Affiliated Hospital Zhejiang University School of Medicine, Hangzhou, China
| | - Jiejie Tao
- Department of Radiology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Xinmiao Liu
- School of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou, China
| | - Ronghui Zhou
- Department of Radiology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Shuangli Chen
- Department of Radiology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Punit Vyas
- School of Medicine, Indiana University, Indianapolis, IN, United States
| | - Chuang Yang
- Department of Psychiatry, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Bicheng Chen
- Key Laboratory of Diagnosis and Treatment of Severe Hepato-Pancreatic Diseases of Zhejiang Province, Zhejiang Provincial Top Key Discipline in Surgery, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Andan Qian
- Department of Radiology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Meihao Wang
- Department of Radiology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China.,School of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou, China
| |
Collapse
|
15
|
Markett S, Nothdurfter D, Focsa A, Reuter M, Jawinski P. Attention networks and the intrinsic network structure of the human brain. Hum Brain Mapp 2021; 43:1431-1448. [PMID: 34882908 PMCID: PMC8837576 DOI: 10.1002/hbm.25734] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2021] [Revised: 11/15/2021] [Accepted: 11/24/2021] [Indexed: 11/09/2022] Open
Abstract
Attention network theory distinguishes three independent systems, each supported by its own distributed network: an alerting network to deploy attentional resources in anticipation, an orienting network to direct attention to a cued location, and a control network to select relevant information at the expense of concurrently available information. Ample behavioral and neuroimaging evidence supports the dissociation of the three attention domains. The strong assumption that each attentional system is realized through a separable network, however, raises the question how these networks relate to the intrinsic network structure of the brain. Our understanding of brain networks has advanced majorly in the past years due to the increasing focus on brain connectivity. The brain is intrinsically organized into several large‐scale networks whose modular structure persists across task states. Existing proposals on how the presumed attention networks relate to intrinsic networks rely mostly on anecdotal and partly contradictory arguments. We addressed this issue by mapping different attention networks at the level of cifti‐grayordinates. Resulting group maps were compared to the group‐level topology of 23 intrinsic networks, which we reconstructed from the same participants' resting state fMRI data. We found that all attention domains recruited multiple and partly overlapping intrinsic networks and converged in the dorsal fronto‐parietal and midcingulo‐insular network. While we observed a preference of each attentional domain for its own set of intrinsic networks, implicated networks did not match well to those proposed in the literature. Our results indicate a necessary refinement of the attention network theory.
Collapse
|
16
|
Healthy or not? The impact of conflicting health-related information on attentional resources. J Behav Med 2021; 45:306-317. [PMID: 34535867 DOI: 10.1007/s10865-021-00256-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2021] [Accepted: 09/01/2021] [Indexed: 12/19/2022]
Abstract
Despite its ubiquity, little is known about the impact of exposure to conflicting health information on cognitive efficiency. We hypothesized that it would reduce attentional capacity, as evidenced by (1) increased response errors during the Attention Network Test (ANT), (2) decreased efficiency of each ANT system (alerting, orienting, execute control), and (3) increased self-reported workload, (4) nutritional confusion and (5) nutritional backlash. A sample of 184 online participants were assigned randomly to read an article containing either congruent or conflicting health information. Subsequently, they completed the ANT and self-report measures of workload, nutritional confusion, and backlash at nutritional recommendations and research. Participants in the conflicting health information condition made more errors, had overall slower reaction times, and reported greater workload, nutritional confusion, and backlash. No differences were found for individual ANT systems. These findings suggest that exposure to conflicting health information can degrade attentional mechanisms responsible for accurate and prompt responding to incoming information.
Collapse
|
17
|
Gender Differences in Attention Adaptation after an 8-Week FIFA 11 + for Kids Training Program in Elementary School Children. CHILDREN-BASEL 2021; 8:children8090822. [PMID: 34572254 PMCID: PMC8472359 DOI: 10.3390/children8090822] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/14/2021] [Revised: 09/08/2021] [Accepted: 09/15/2021] [Indexed: 11/21/2022]
Abstract
School-based exercise intervention is recognized as an optimal tool for enhancing attentional performance in healthy school children. However, gender differences in the training adaptation regarding attentional capacities have not been elucidated clearly in the current literature. This study aimed to investigate the effects of an 8-week Fédération Internationale de Football Association (FIFA) 11+ for Kids training program on attentional performance in schoolboys and girls. Based on a quasi-experimental design, fifty-two children registered in year five of elementary school were assigned into the following groups: training boys (n = 13), training girls (n = 13), control boys (n = 13), and control girls (n = 13). The training groups undertook an 8-week FIFA 11+ Kids intervention with a training frequency of five times per week, whereas the control groups were deprived of any exercise during the study period. All the participants maintained their regular physical activity and weekly physical education (PE) lessons (two 50-min lessons per week of school curriculum) during the training period. The Chinese version of the Attention Scale for Elementary School Children (ASESC) test was used for attentional assessment at the baseline and one week after the interventional period. The Kruskal–Wallis H test was used for between-group comparison, whereas the Wilcoxon signed-rank test was used for within-group comparison. Significant differences in total scale, focused attention, selective attention, and alternating attention were found in group comparisons (p < 0.001). Furthermore, the training children significantly increased their values in relation to total scale, focused attention, sustained attention, and selective attention (p < 0.05). Only training girls significantly improved their divided attention after the training period (p < 0.001, MD = −0.77, ES = −0.12). In conclusion, the FIFA 11+ for Kids is an effective school-based exercise intervention for attentional improvement in school children. The schoolgirls demonstrated a positive outcome regarding divided attention after the interventional period.
Collapse
|
18
|
The Positive Modulation Effect of a 6-Week Consumption of an Anthocyanin-Rich Mulberry Milk on Working Memory, Cholinergic, and Monoaminergic Functions in Healthy Working-Age Adults. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2021; 2021:5520059. [PMID: 34484562 PMCID: PMC8416394 DOI: 10.1155/2021/5520059] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/21/2021] [Accepted: 08/10/2021] [Indexed: 12/28/2022]
Abstract
Due to the increase of stress-related memory impairment accompanying with the COVID-19 pandemic and financial crisis, the prevention of cognitive decline induced by stress has gained much attention. Based on the evidence that an anthocyanin-rich mulberry milk demonstrated the cognitive enhancing effect, we hypothesized that it should be able to enhance memory in working-age volunteers who are exposed to working stress. This study is an open-label, two-arm randomized study. Both men and women volunteers at age between 18 and 60 years old were randomly assigned to consume the tested product either 1 or 2 servings daily for 6 weeks. All subjects were assessed for cortisol, acetylcholinesterase (AChE), monoamine oxidase (MAO), monoamine oxidase type A (MAO-A), and monoamine oxidase type B (MAO-B) in saliva, and their working memory was determined both at baseline and at a 6-week period. The results showed that the working memory of subjects in both groups was enhanced at the end of the study period together with the reduction of saliva cortisol. The suppression of AChE, MAO, and MAO-A was also observed in subjects who consumed the tested product 2 servings daily. Therefore, we suggest the memory enhancing effect of an anthocyanin-rich mulberry milk. The possible mechanism may occur primarily via the suppression of cortisol. In addition, the high dose of mulberry milk also suppresses AChE, MAO, and MAO-A.
Collapse
|
19
|
Ortega-Mora EI, Caballero-Sánchez U, Román-López TV, Rosas-Escobar CB, González-Barrios JA, Romero-Hidalgo S, Méndez-Díaz M, Prospéro-García OE, Ruiz-Contreras AE. Allele-dosage genetic polymorphisms of cannabinoid receptor 1 predict attention, but not working memory performance in humans. Acta Psychol (Amst) 2021; 216:103299. [PMID: 33799104 DOI: 10.1016/j.actpsy.2021.103299] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2020] [Revised: 03/05/2021] [Accepted: 03/17/2021] [Indexed: 11/29/2022] Open
Abstract
Attention and working memory (WM) are under high genetic regulation. Single nucleotide polymorphisms (SNPs) of the CNR1 gene, that encode for CB1R, have previously been shown to be related with individual differences in attentional control and WM. However, it remains unclear whether there is an allele-dosage or a dominant contribution of polymorphisms of CNR1 affecting attention and WM performance. This study evaluated the associations between attention and WM performance and three SNPs of CNR1: rs1406977, rs2180619, and rs1049353, previously associated with both processes. Healthy volunteers (n = 127) were asked to perform the Attention Network Task (ANT) to evaluate their overall attention and alerting, orienting, and executive systems, and the n-back task for evaluating their WM. All subjects were genotyped using qPCR with TaqMan assays; and dominant and additive models were assessed using the risk alleles of each SNP as the predictor variable. Results showed an individual association of the three SNPs with attention performance, but the composite genotype by the three alleles had the greatest contribution. Moreover, the additive-dosage model showed that for each G-allele added to the genotypic configuration, there was an increase in the percentage of correct responses respect to carriers who have no risk alleles in their genotypic configuration. The number of risk alleles in the genotypic configurations did not predict efficiency in any of the attention systems, nor in WM performance. Our model showed a contribution of three single nucleotide polymorphisms of the CNR1 gene to explain 9% of the variance of attention in an additive manner.
Collapse
Affiliation(s)
- Elsa Ivett Ortega-Mora
- Lab. Neurogenómica Cognitiva, Coord. Psicobiología y Neurociencias, Fac. Psicología, Universidad Nacional Autónoma de México (UNAM), Mexico
| | - Ulises Caballero-Sánchez
- Lab. Neurogenómica Cognitiva, Coord. Psicobiología y Neurociencias, Fac. Psicología, Universidad Nacional Autónoma de México (UNAM), Mexico
| | - Talía V Román-López
- Lab. Neurogenómica Cognitiva, Coord. Psicobiología y Neurociencias, Fac. Psicología, Universidad Nacional Autónoma de México (UNAM), Mexico
| | - Cintia B Rosas-Escobar
- Lab. Neurogenómica Cognitiva, Coord. Psicobiología y Neurociencias, Fac. Psicología, Universidad Nacional Autónoma de México (UNAM), Mexico
| | - Juan Antonio González-Barrios
- Lab. Medicina Genómica, Hospital Regional 1o de Octubre, Instituto de Seguridad y Servicios Sociales de los Trabajadores del Estado (ISSSTE), Mexico
| | - Sandra Romero-Hidalgo
- Departamento de Genómica Computacional, Instituto Nacional de Medicina Genómica, Mexico
| | | | | | - Alejandra E Ruiz-Contreras
- Lab. Neurogenómica Cognitiva, Coord. Psicobiología y Neurociencias, Fac. Psicología, Universidad Nacional Autónoma de México (UNAM), Mexico.
| |
Collapse
|
20
|
Neural correlates of attentional deficits in Parkinson's disease patients with mild cognitive impairment. Parkinsonism Relat Disord 2021; 85:17-22. [PMID: 33647838 DOI: 10.1016/j.parkreldis.2021.02.009] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/24/2020] [Revised: 01/27/2021] [Accepted: 02/04/2021] [Indexed: 11/22/2022]
Abstract
INTRODUCTION Deficits in attentional processing observed in Parkinson's disease (PD) patients with mild cognitive impairment (MCI) increase risk of PD dementia. However, the neural basis of these attentional deficits are presently unknown. The present study aimed to explore the neural correlates of attention dysfunction in PD-MCI using the Attention Network Test (ANT) and functional Magnetic Resonance Imaging (fMRI). METHOD Fifteen (15) PD-MCI patients, 26 PD patients without MCI (PD-NC) and 22 healthy controls (HC) were scanned (3T Siemens PRISMA) whilst performing the ANT. Reaction time, accuracy and fMRI BOLD activation were compared between groups for the three attentional task components of 1) alerting, 2) orienting, and 3) executive control. RESULTS PD-MCI patients showed an overall slower reaction time compared to PD-NC and HC, and showed less interference of reaction time in the orienting effect than HC. fMRI data demonstrated greater activation in the bilateral cerebellum crus 1 during the alerting attention condition in both PD-MCI and PD-NC compared to HC. However, activation was supressed in the left postcentral gyrus in PD-MCI compared to PD-NC and HC. DISCUSSION Alterations in the alerting attention functional network despite intact task performance in PD-MCI suggests that functional brain changes may precede cognitive changes in the attention domain. Furthermore, increased activation in the cerebellum may reflect an attentional compensatory mechanism unique to the PD pathology. Taken together, the findings suggest that PD has a complex effect on attentional ability that can, at least in part, be elucidated using functional neuroimaging.
Collapse
|
21
|
Yoshimura S, Kobayashi K, Ueno T, Miyagi T, Oishi N, Murai T, Fujiwara H. Autistic traits are associated with the functional connectivity of between-but not within-attention systems in the general population. BMC Neurosci 2020; 21:49. [PMID: 33228525 PMCID: PMC7686764 DOI: 10.1186/s12868-020-00603-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2020] [Accepted: 11/16/2020] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Previous studies have demonstrated that individuals with autism spectrum disorder (ASD) exhibit dysfunction in the three attention systems (i.e., alerting, orienting, and executive control) as well as atypical relationships among these systems. Additionally, other studies have reported that individuals with subclinical but high levels of autistic traits show similar attentional tendencies to those observed in ASD. Based on these findings, it was hypothesized that autistic traits would affect the functions and relationships of the three attention systems in a general population. Resting-state functional magnetic resonance imaging (fMRI) was performed in 119 healthy adults to investigate relationships between autistic traits and within- and between-system functional connectivity (FC) among the three attention systems. Twenty-six regions of interest that were defined as components of the three attention systems by a previous task-based fMRI study were examined in terms of within- and between-system FC. We assessed autistic traits using the Autism-Spectrum Quotient. RESULTS Correlational analyses revealed that autistic traits were significantly correlated with between-system FC, but not with within-system FC. CONCLUSIONS Our results imply that a high autistic trait level, even when subclinical, is associated with the way the three attention systems interact.
Collapse
Affiliation(s)
- Sayaka Yoshimura
- Faculty of Human Health Science, Graduate School of Medicine, Kyoto University, 53 Shogoin-Kawaharacho, Sakyo-Ku, Kyoto, 606-8507, Japan.
| | - Kei Kobayashi
- Department of Neuropsychiatry, Graduate School of Medicine, Kyoto University, 54 Shogoin-Kawaharacho, Sakyo-Ku, Kyoto, 606-8507, Japan
| | - Tsukasa Ueno
- Department of Neuropsychiatry, Graduate School of Medicine, Kyoto University, 54 Shogoin-Kawaharacho, Sakyo-Ku, Kyoto, 606-8507, Japan
| | - Takashi Miyagi
- Department of Neuropsychiatry, Graduate School of Medicine, Kyoto University, 54 Shogoin-Kawaharacho, Sakyo-Ku, Kyoto, 606-8507, Japan
| | - Naoya Oishi
- Medical Innovation Center, Graduate School of Medicine, Kyoto University, 54 Shogoin-Kawaharacho, Sakyo-Ku, Kyoto, 606-8507, Japan
| | - Toshiya Murai
- Department of Neuropsychiatry, Graduate School of Medicine, Kyoto University, 54 Shogoin-Kawaharacho, Sakyo-Ku, Kyoto, 606-8507, Japan
| | - Hironobu Fujiwara
- Department of Neuropsychiatry, Graduate School of Medicine, Kyoto University, 54 Shogoin-Kawaharacho, Sakyo-Ku, Kyoto, 606-8507, Japan.,RIKEN Center for Advanced Intelligence Project, Artificial Intelligence Ethics and Society Team, Nihonbashi 1-chome Mitsui Building, 15th floor, 1-4-1 Nihonbashi, Chuo-Ku, Tokyo, 103-0027, Japan
| |
Collapse
|
22
|
Canales-Johnson A, Beerendonk L, Blain S, Kitaoka S, Ezquerro-Nassar A, Nuiten S, Fahrenfort J, van Gaal S, Bekinschtein TA. Decreased Alertness Reconfigures Cognitive Control Networks. J Neurosci 2020; 40:7142-7154. [PMID: 32801150 PMCID: PMC7480250 DOI: 10.1523/jneurosci.0343-20.2020] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2020] [Revised: 07/02/2020] [Accepted: 07/10/2020] [Indexed: 11/21/2022] Open
Abstract
Humans' remarkable capacity to flexibly adapt their behavior based on rapid situational changes is termed cognitive control. Intuitively, cognitive control is thought to be affected by the state of alertness; for example, when drowsy, we feel less capable of adequately implementing effortful cognitive tasks. Although scientific investigations have focused on the effects of sleep deprivation and circadian time, little is known about how natural daily fluctuations in alertness in the regular awake state affect cognitive control. Here we combined a conflict task in the auditory domain with EEG neurodynamics to test how neural and behavioral markers of conflict processing are affected by fluctuations in alertness. Using a novel computational method, we segregated alert and drowsy trials from two testing sessions and observed that, although participants (both sexes) were generally sluggish, the typical conflict effect reflected in slower responses to conflicting information compared with nonconflicting information, as well as the moderating effect of previous conflict (conflict adaptation), were still intact. However, the typical neural markers of cognitive control-local midfrontal theta-band power changes-that participants show during full alertness were no longer noticeable when alertness decreased. Instead, when drowsy, we found an increase in long-range information sharing (connectivity) between brain regions in the same frequency band. These results show the resilience of the human cognitive control system when affected by internal fluctuations of alertness and suggest that there are neural compensatory mechanisms at play in response to physiological pressure during diminished alertness.SIGNIFICANCE STATEMENT The normal variability in alertness we experience in daily tasks is rarely taken into account in cognitive neuroscience. Here we studied neurobehavioral dynamics of cognitive control with decreasing alertness. We used the classic Simon task where participants hear the word "left" or "right" in the right or left ear, eliciting slower responses when the word and the side are incongruent-the conflict effect. Participants performed the task both while fully awake and while getting drowsy, allowing for the characterization of alertness modulating cognitive control. The changes in the neural signatures of conflict from local theta oscillations to a long-distance distributed theta network suggest a reconfiguration of the underlying neural processes subserving cognitive control when affected by alertness fluctuations.
Collapse
Affiliation(s)
- Andrés Canales-Johnson
- Cambridge Consciousness and Cognition Laboratory, Department of Psychology, University of Cambridge, Cambridge CB2 3EB, United Kingdom
- Behavioural and Clinical Neuroscience Institute, University of Cambridge, Cambridge CB2 3EB, United Kingdom
- Department of Psychology, University of Amsterdam, 1018 WT, Amsterdam, The Netherlands
- Amsterdam Brain & Cognition, University of Amsterdam, 1018 WT, Amsterdam, The Netherlands
- Vicerrectoría de Investigación y Posgrado, Universidad Católica del Maule, Talca 3480112, Chile
| | - Lola Beerendonk
- Department of Psychology, University of Amsterdam, 1018 WT, Amsterdam, The Netherlands
- Amsterdam Brain & Cognition, University of Amsterdam, 1018 WT, Amsterdam, The Netherlands
| | - Salome Blain
- Cambridge Consciousness and Cognition Laboratory, Department of Psychology, University of Cambridge, Cambridge CB2 3EB, United Kingdom
| | - Shin Kitaoka
- Cambridge Consciousness and Cognition Laboratory, Department of Psychology, University of Cambridge, Cambridge CB2 3EB, United Kingdom
| | - Alejandro Ezquerro-Nassar
- Cambridge Consciousness and Cognition Laboratory, Department of Psychology, University of Cambridge, Cambridge CB2 3EB, United Kingdom
- Behavioural and Clinical Neuroscience Institute, University of Cambridge, Cambridge CB2 3EB, United Kingdom
| | - Stijn Nuiten
- Department of Psychology, University of Amsterdam, 1018 WT, Amsterdam, The Netherlands
- Amsterdam Brain & Cognition, University of Amsterdam, 1018 WT, Amsterdam, The Netherlands
| | - Johannes Fahrenfort
- Department of Psychology, University of Amsterdam, 1018 WT, Amsterdam, The Netherlands
- Amsterdam Brain & Cognition, University of Amsterdam, 1018 WT, Amsterdam, The Netherlands
| | - Simon van Gaal
- Department of Psychology, University of Amsterdam, 1018 WT, Amsterdam, The Netherlands
- Amsterdam Brain & Cognition, University of Amsterdam, 1018 WT, Amsterdam, The Netherlands
| | - Tristan A Bekinschtein
- Cambridge Consciousness and Cognition Laboratory, Department of Psychology, University of Cambridge, Cambridge CB2 3EB, United Kingdom
- Behavioural and Clinical Neuroscience Institute, University of Cambridge, Cambridge CB2 3EB, United Kingdom
| |
Collapse
|
23
|
Kuc K, Bielecki M, Racicka-Pawlukiewicz E, Czerwinski MB, Cybulska-Klosowicz A. The SLC6A3 gene polymorphism is related to the development of attentional functions but not to ADHD. Sci Rep 2020; 10:6176. [PMID: 32277231 PMCID: PMC7148317 DOI: 10.1038/s41598-020-63296-x] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2019] [Accepted: 03/27/2020] [Indexed: 02/07/2023] Open
Abstract
Neuropharmacological and human clinical studies have suggested that the brain dopaminergic system is substantively involved in normal and pathological phenotypes of attention. Dopamine transporter gene (SLC6A3) was proposed as a candidate gene for Attention-Deficit/Hyperactivity Disorder (ADHD). We investigated the effect of the SLC6A3 variants on cognitive performance in ADHD and healthy children and teenagers. Participants completed cognitive tasks measuring attentional switching, selective and sustained attention, and effectiveness of alerting, orienting and executive attention. We estimated the effects of 40 bp variable number of tandem repeat (VNTR) polymorphism located in the 3' untranslated region (3' UTR) (9-repeat vs 10-repeat allele) of the SLC6A3 gene, ADHD diagnosis, age, and their interactions as predictors of cognitive performance. ADHD children demonstrated deficits in most of the examined attention processes, persistent within the examined age range (9-16 years). No significant effects were observed for the interaction of ADHD and the SLC6A3 polymorphism, but the results revealed a significant main effect of SLC6A3 genotype in the entire research sample. Subjects carrying 9R allele performed the switching task significantly worse in comparison to children with 10R/10R or 10R/11R genotype. SLC6A3 polymorphism moderated age-related improvements in orienting and attentional switching. Results suggest that SLC6A3 genotype influence these attentional/cognitive functions which deficits are not the key symptoms in ADHD.
Collapse
Affiliation(s)
- Katarzyna Kuc
- Department of Psychology, SWPS University of Social Sciences and Humanities, Warsaw, Poland.
| | - Maksymilian Bielecki
- Department of Psychology, SWPS University of Social Sciences and Humanities, Warsaw, Poland
| | | | - Michał B Czerwinski
- Laboratory of Neuroinformatics, Nencki Institute of Experimental Biology, Polish Academy of Sciences, Warsaw, Poland
| | - Anita Cybulska-Klosowicz
- Laboratory of Neuroplasticity, Nencki Institute of Experimental Biology, Polish Academy of Sciences, Warsaw, Poland
| |
Collapse
|
24
|
Noguera C, Carmona D, Rueda A, Fernández R, Cimadevilla JM. Shall We Dance? Dancing Modulates Executive Functions and Spatial Memory. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2020; 17:ijerph17061960. [PMID: 32192128 PMCID: PMC7143315 DOI: 10.3390/ijerph17061960] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/17/2020] [Revised: 03/10/2020] [Accepted: 03/12/2020] [Indexed: 12/23/2022]
Abstract
BACKGROUND Aging is generally considered to be related to physical and cognitive decline. This is especially prominent in the frontal and parietal lobes, underlying executive functions and spatial memory, respectively. This process could be successfully mitigated in certain ways, such as through the practice of aerobic sports. With regard to this, dancing integrates physical exercise with music and involves retrieval of complex sequences of steps and movements creating choreographies. METHODS In this study, we compared 26 non-professional salsa dancers (mean age 55.3 years, age-range 49-70 years) with 20 non-dancers (mean age 57.6 years, age-range 49-70 years) by assessing two variables: their executive functions and spatial memory performance. RESULTS results showed that dancers scored better that non-dancers in our tests, outperforming controls in executive functions-related tasks. Groups did not differ in spatial memory performance. CONCLUSIONS This work suggests that dancing can be a valid way of slowing down the natural age-related cognitive decline. A major limitation of this study is the lack of fitness assessment in both groups. In addition, since dancing combines multiple factors like social contact, aerobic exercise, cognitive work with rhythms, and music, it is difficult to determine the weight of each variable.
Collapse
Affiliation(s)
- Carmen Noguera
- Department of Psychology, University of Almeria, 04120 Almería, Spain; (C.N.); (D.C.); (A.R.)
- Health Research Center, University of Almeria, 04120 Almería, Spain;
| | - Dolores Carmona
- Department of Psychology, University of Almeria, 04120 Almería, Spain; (C.N.); (D.C.); (A.R.)
| | - Adrián Rueda
- Department of Psychology, University of Almeria, 04120 Almería, Spain; (C.N.); (D.C.); (A.R.)
| | - Rubén Fernández
- Health Research Center, University of Almeria, 04120 Almería, Spain;
- Department of Nursing, Physiotherapy and Medicine, University of Almeria, 04120 Almería, Spain
| | - José Manuel Cimadevilla
- Department of Psychology, University of Almeria, 04120 Almería, Spain; (C.N.); (D.C.); (A.R.)
- Health Research Center, University of Almeria, 04120 Almería, Spain;
- Correspondence: ; Tel.: +34-950-214-637
| |
Collapse
|
25
|
Perosa V, de Boer L, Ziegler G, Apostolova I, Buchert R, Metzger C, Amthauer H, Guitart-Masip M, Düzel E, Betts MJ. The Role of the Striatum in Learning to Orthogonalize Action and Valence: A Combined PET and 7 T MRI Aging Study. Cereb Cortex 2020; 30:3340-3351. [PMID: 31897476 DOI: 10.1093/cercor/bhz313] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Pavlovian biases influence instrumental learning by coupling reward seeking with action invigoration and punishment avoidance with action suppression. Using a probabilistic go/no-go task designed to orthogonalize action (go/no-go) and valence (reward/punishment), recent studies have shown that the interaction between the two is dependent on the striatum and its key neuromodulator dopamine. Using this task, we sought to identify how structural and neuromodulatory age-related differences in the striatum may influence Pavlovian biases and instrumental learning in 25 young and 31 older adults. Computational modeling revealed a significant age-related reduction in reward and punishment sensitivity and marked (albeit not significant) reduction in learning rate and lapse rate (irreducible noise). Voxel-based morphometry analysis using 7 Tesla MRI images showed that individual differences in learning rate in older adults were related to the volume of the caudate nucleus. In contrast, dopamine synthesis capacity in the dorsal striatum, assessed using [18F]-DOPA positron emission tomography in 22 of these older adults, was not associated with learning performance and did not moderate the relationship between caudate volume and learning rate. This multiparametric approach suggests that age-related differences in striatal volume may influence learning proficiency in old age.
Collapse
Affiliation(s)
- Valentina Perosa
- Institute of Cognitive Neurology and Dementia Research, Otto-von-Guericke-University Magdeburg, Leipzigerstr. 44, 39120, Magdeburg, Germany.,German Center for Neurodegenerative Diseases (DZNE), Leipzigerstr. 44 39120, Magdeburg, Germany.,Department of Neurology, Otto-von-Guericke University, Leipzigerstr. 44, 39120, Magdeburg, Germany
| | - Lieke de Boer
- Ageing Research Centre, Karolinska Institute, SE-11330 Stockholm, Sweden
| | - Gabriel Ziegler
- Institute of Cognitive Neurology and Dementia Research, Otto-von-Guericke-University Magdeburg, Leipzigerstr. 44, 39120, Magdeburg, Germany.,German Center for Neurodegenerative Diseases (DZNE), Leipzigerstr. 44 39120, Magdeburg, Germany
| | - Ivayla Apostolova
- Department of Radiology and Nuclear Medicine, University Hospital Hamburg-Eppendorf, Germany
| | - Ralph Buchert
- Department of Radiology and Nuclear Medicine, University Hospital Hamburg-Eppendorf, Germany.,Max Planck UCL Centre for Computational Psychiatry and Ageing Research, University College London, London WC1B 5EH, UK
| | - Coraline Metzger
- Institute of Cognitive Neurology and Dementia Research, Otto-von-Guericke-University Magdeburg, Leipzigerstr. 44, 39120, Magdeburg, Germany.,German Center for Neurodegenerative Diseases (DZNE), Leipzigerstr. 44 39120, Magdeburg, Germany
| | - Holger Amthauer
- Department of Nuclear Medicine, Charité-Universitätsmedizin Berlin, Augustenburger Platz 1, 13353 Berlin, Germany
| | - Marc Guitart-Masip
- Ageing Research Centre, Karolinska Institute, SE-11330 Stockholm, Sweden.,Max Planck UCL Centre for Computational Psychiatry and Ageing Research, University College London, London WC1B 5EH, UK
| | - Emrah Düzel
- Institute of Cognitive Neurology and Dementia Research, Otto-von-Guericke-University Magdeburg, Leipzigerstr. 44, 39120, Magdeburg, Germany.,German Center for Neurodegenerative Diseases (DZNE), Leipzigerstr. 44 39120, Magdeburg, Germany.,Institute of Cognitive Neuroscience, University College London, 17 Queen Square, London, UK
| | - Matthew J Betts
- Institute of Cognitive Neurology and Dementia Research, Otto-von-Guericke-University Magdeburg, Leipzigerstr. 44, 39120, Magdeburg, Germany.,German Center for Neurodegenerative Diseases (DZNE), Leipzigerstr. 44 39120, Magdeburg, Germany
| |
Collapse
|
26
|
Barclay NL, Rowley S, Robson A, Akram U, Myachykov A. Sleep duration, sleep variability, and impairments of visual attention. Q J Exp Psychol (Hove) 2019; 73:868-880. [PMID: 31813326 DOI: 10.1177/1747021819895771] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Attentional networks are sensitive to sleep deprivation. However, variation in attentional performance as a function of normal sleep parameters is understudied. We examined whether attentional performance is influenced by (a) individual differences in sleep duration, (b) sleep duration variability, and/or (c) their interaction. A total of 57 healthy participants (61.4% female, Mage = 32.37 years, SD = 8.68) completed questionnaires, wore wrist actigraphy for 1 week, and subsequently completed the attention network test. Sleep duration and sleep duration variability did not predict orienting score, executive control score, or error rates. Sleep duration variability appeared to moderate the association between sleep duration with overall reaction time (β = -.34, t = -2.13, p = .04) and alerting scores (β = .43, t = 2.94, p = .01), though further inspection of the data suggested that these were spurious findings. Time of testing was a significant predictor of alerting score (β = .35, t = 2.96, p = .01), chronotype of orienting (β = .31, t = 2.28, p = .03), and age of overall reaction time (β = .35, t = 2.70, p = .01). Our results highlight the importance of examining the associations between variations in sleep-wake patterns and attentional networks in samples with greater variation in sleep, as well as the importance of rigorously teasing apart mechanisms of the sleep homeostat from those related to the circadian rhythm in studies examining cognition.
Collapse
Affiliation(s)
- Nicola L Barclay
- Sleep and Circadian Neuroscience Institute (SCNi), Nuffield Department of Clinical Neurosciences, Sir William Dunn School of Pathology, University of Oxford, Oxford, UK * †
| | - Susan Rowley
- Department of Psychology, Faculty of Health and Life Sciences, Northumbria University, Newcastle, UK †
| | - Anna Robson
- Department of Psychology, Sociology and Politics, Sheffield Hallam University, Sheffield, UK †
| | - Umair Akram
- Department of Psychology, Sociology and Politics, Sheffield Hallam University, Sheffield, UK †
| | - Andriy Myachykov
- Department of Psychology, Faculty of Health and Life Sciences, Northumbria University, Newcastle, UK †.,Centre for Cognition and Decision Making, National Research University Higher School of Economics, Moscow, Russian Federation
| |
Collapse
|
27
|
Asanowicz D, Wołoszyn K, Panek B, Wronka E. On the locus of the effect of alerting on response conflict: An event-related EEG study with a speed-accuracy tradeoff manipulation. Biol Psychol 2019; 145:62-75. [DOI: 10.1016/j.biopsycho.2019.04.005] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2018] [Revised: 03/05/2019] [Accepted: 04/15/2019] [Indexed: 11/27/2022]
|
28
|
Fan W, Zhang S, Hu J, Liu B, Wen L, Gong M, Wang G, Yang L, Chen Y, Chen H, Guo H, Zhang D. Aberrant Brain Function in Active-Stage Ulcerative Colitis Patients: A Resting-State Functional MRI Study. Front Hum Neurosci 2019; 13:107. [PMID: 31001097 PMCID: PMC6457314 DOI: 10.3389/fnhum.2019.00107] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2018] [Accepted: 03/11/2019] [Indexed: 12/13/2022] Open
Abstract
Background: Patients with ulcerative colitis (UC) usually display cognitive impairments, such as memory loss, attention deficits, and declining executive functions, particularly during the active stage of the disease. However, the potential neurological mechanisms of these symptoms remain unclear. Method: Forty-one patients with mildly to moderately active UC, as well as 42 matched healthy controls, were recruited for an examination using psychological scales, cognitive function tests and resting-state functional magnetic resonance imaging (rs-fMRI). Seed points were identified via analysis of amplitude of low-frequency fluctuation (ALFF), and functional connectivity (FC) was calculated between these seed regions and other voxels in the whole brain. Correlation analyses were performed among clinical indexes, neuropsychological assessments and neuroimaging data. Result: Compared with the healthy controls, patients with UC exhibited lower ALFF values in the bilateral hippocampal/parahippocampal (HIPP/ParaHIPP) region and higher ALFF values in the left posterior cingulate cortex (PCC.L) and left middle frontal gyrus (MFG.L). With HIPP/ParaHIPP as the seed point, the strengths of the FC in the bilateral middle frontal gyri (MFG), anterior cingulate cortex (ACC), and left caudate nucleus (CAU.L) increased; using the PCC.L as the seed point, the strengths of the FC in the middle cingulate cortex (MCC) and the left angular gyrus (AUG.L) increased. These abnormal brain regions were mainly located in the limbic system. By analyzing the correlations between these brain regions and behavioral data, we observed a close correlation between decreased HIPP/ParaHIPP activity and memory loss; increased PCC activity and strength of FC with the AUG.L were related to dysfunction of executive function and attention network in patients with UC. Conclusion: Based on these results, the limbic lobe might be the core of the brain-gut axis (BGA) and play an important role in cognitive impairments, suggesting potential mechanisms for cognitive impairment in patients with UC in the active stage of the disease.
Collapse
Affiliation(s)
- Weijie Fan
- Department of Radiology, XinQiao Hosptial, Third Military Medical University, ChongQing, China
| | - Si Zhang
- Department of Radiology, XinQiao Hosptial, Third Military Medical University, ChongQing, China
| | - Junhao Hu
- Department of Radiology, XinQiao Hosptial, Third Military Medical University, ChongQing, China
| | - Bo Liu
- Department of Radiology, XinQiao Hosptial, Third Military Medical University, ChongQing, China
| | - Li Wen
- Department of Radiology, XinQiao Hosptial, Third Military Medical University, ChongQing, China
| | - Mingfu Gong
- Department of Radiology, XinQiao Hosptial, Third Military Medical University, ChongQing, China
| | - Guangxian Wang
- Department of Radiology, XinQiao Hosptial, Third Military Medical University, ChongQing, China
| | - Li Yang
- Department of Gastroenterology, XinQiao Hosptial, Third Military Medical University, ChongQing, China
| | - Yuyang Chen
- Department of Gastroenterology, XinQiao Hosptial, Third Military Medical University, ChongQing, China
| | - Heng Chen
- Department of Gastroenterology, XinQiao Hosptial, Third Military Medical University, ChongQing, China
| | - Hong Guo
- Department of Gastroenterology, XinQiao Hosptial, Third Military Medical University, ChongQing, China
| | - Dong Zhang
- Department of Radiology, XinQiao Hosptial, Third Military Medical University, ChongQing, China
| |
Collapse
|
29
|
Im S, Jeong J, Jin G, Yeom J, Jekal J, Lee SI, Cho JA, Lee S, Lee Y, Kim DH, Bae M, Heo J, Moon C, Lee CH. MAOA variants differ in oscillatory EEG & ECG activities in response to aggression-inducing stimuli. Sci Rep 2019; 9:2680. [PMID: 30804379 PMCID: PMC6390082 DOI: 10.1038/s41598-019-39103-7] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2018] [Accepted: 01/17/2019] [Indexed: 01/11/2023] Open
Abstract
Among the genetic variations in the monoamine oxidase A (MAOA) gene, upstream variable number tandem repeats (uVNTRs) of the promoter have been associated with individual differences in human physiology and aggressive behaviour. However, the evidence for a molecular or neural link between MAOA uVNTRs and aggression remains ambiguous. Additionally, the use of inconsistent promoter constructs in previous studies has added to the confusion. Therefore, it is necessary to demonstrate the genetic function of MAOA uVNTR and its effects on multiple aspects of aggression. Here, we identified three MAOA alleles in Koreans: the predominant 3.5R and 4.5R alleles, as well as the rare 2.5R allele. There was a minor difference in transcriptional efficiency between the 3.5R and 4.5R alleles, with the greatest value for the 2.5R allele, in contrast to existing research. Psychological indices of aggression did not differ among MAOA genotypes. However, our electroencephalogram and electrocardiogram results obtained under aggression-related stimulation revealed oscillatory changes as novel phenotypes that vary with the MAOA genotype. In particular, we observed prominent changes in frontal γ power and heart rate in 4.5R carriers of men. Our findings provide genetic insights into MAOA function and offer a neurobiological basis for various socio-emotional mechanisms in healthy individuals.
Collapse
Affiliation(s)
- SeungYeong Im
- School of Undergraduate Studies, DGIST, Daegu, Korea
- Department of Brain and Cognitive Sciences, Graduate School, DGIST, Daegu, Korea
| | - Jinju Jeong
- Undergraduate School Administration Team, DGIST, Daegu, Korea
- Well Aging Research Center, DGIST, Daegu, Korea
| | - Gwonhyu Jin
- School of Undergraduate Studies, DGIST, Daegu, Korea
| | - Jiwoo Yeom
- School of Undergraduate Studies, DGIST, Daegu, Korea
| | | | - Sang-Im Lee
- School of Undergraduate Studies, DGIST, Daegu, Korea
| | - Jung Ah Cho
- School of Undergraduate Studies, DGIST, Daegu, Korea
| | - Sukkyoo Lee
- School of Undergraduate Studies, DGIST, Daegu, Korea
| | - Youngmi Lee
- School of Undergraduate Studies, DGIST, Daegu, Korea
| | - Dae-Hwan Kim
- School of Undergraduate Studies, DGIST, Daegu, Korea
| | - Mijeong Bae
- School of Undergraduate Studies, DGIST, Daegu, Korea
| | - Jinhwa Heo
- School of Undergraduate Studies, DGIST, Daegu, Korea
| | - Cheil Moon
- Department of Brain and Cognitive Sciences, Graduate School, DGIST, Daegu, Korea.
| | - Chang-Hun Lee
- School of Undergraduate Studies, DGIST, Daegu, Korea.
| |
Collapse
|
30
|
Gilmour G, Porcelli S, Bertaina-Anglade V, Arce E, Dukart J, Hayen A, Lobo A, Lopez-Anton R, Merlo Pich E, Pemberton DJ, Havenith MN, Glennon JC, Harel BT, Dawson G, Marston H, Kozak R, Serretti A. Relating constructs of attention and working memory to social withdrawal in Alzheimer’s disease and schizophrenia: issues regarding paradigm selection. Neurosci Biobehav Rev 2019; 97:47-69. [DOI: 10.1016/j.neubiorev.2018.09.025] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2017] [Revised: 08/29/2018] [Accepted: 09/27/2018] [Indexed: 12/12/2022]
|
31
|
Jaffee SR. Lead exposure and child maltreatment as models for how to conceptualize early-in-life risk factors for violence. Infant Ment Health J 2019; 40:23-38. [DOI: 10.1002/imhj.21756] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
|
32
|
Sánchez-Morán M, Hernández JA, Duñabeitia JA, Estévez A, Bárcena L, González-Lahera A, Bajo MT, Fuentes LJ, Aransay AM, Carreiras M. Genetic association study of dyslexia and ADHD candidate genes in a Spanish cohort: Implications of comorbid samples. PLoS One 2018; 13:e0206431. [PMID: 30379906 PMCID: PMC6209299 DOI: 10.1371/journal.pone.0206431] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2017] [Accepted: 10/13/2018] [Indexed: 01/21/2023] Open
Abstract
Dyslexia and attention deficit hyperactivity disorder (ADHD) are two complex neuro-behaviorally disorders that co-occur more often than expected, so that reading disability has been linked to inattention symptoms. We examined 4 SNPs located on genes previously associated to dyslexia (KIAA0319, DCDC2, DYX1C1 and FOXP2) and 3 SNPs within genes related to ADHD (COMT, MAOA and DBH) in a cohort of Spanish children (N = 2078) that met the criteria of having one, both or none of these disorders (dyslexia and ADHD). We used a case-control approach comparing different groups of samples based on each individual diagnosis. In addition, we also performed a quantitative trait analysis with psychometric measures on the general population (N = 3357). The results indicated that the significance values for some markers change depending on the phenotypic groups compared and/or when considering pair-wise marker interactions. Furthermore, our quantitative trait study showed significant genetic associations with specific cognitive processes. These outcomes advocate the importance of establishing rigorous and homogeneous criteria for the diagnosis of cognitive disorders, as well as the relevance of considering cognitive endophenotypes.
Collapse
Affiliation(s)
- Mirian Sánchez-Morán
- BCBL-Basque Center on Cognition Brain and Language, Donostia-San Sebastian, Gipuzkoa, Spain
- CIC bioGUNE, Derio, Bizkaia, Spain
| | | | - Jon Andoni Duñabeitia
- BCBL-Basque Center on Cognition Brain and Language, Donostia-San Sebastian, Gipuzkoa, Spain
| | | | | | | | - María Teresa Bajo
- Research Center for Brain, Mind & Behavior, Universidad de Granada, Granada, Spain
| | | | - Ana M. Aransay
- CIC bioGUNE, Derio, Bizkaia, Spain
- CIBERehd, Instituto de Salud Carlos III, Madrid, Spain
| | - Manuel Carreiras
- BCBL-Basque Center on Cognition Brain and Language, Donostia-San Sebastian, Gipuzkoa, Spain
- Ikerbasque, Basque Foundation for Science, Bilbao, Spain
- Universidad del Pais Vasco UPV/EHU, Leioa, Bizkaia, Spain
| |
Collapse
|
33
|
Selective attention network impairment during the interictal period of migraine without aura. J Clin Neurosci 2018; 60:73-78. [PMID: 30327224 DOI: 10.1016/j.jocn.2018.10.002] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2018] [Accepted: 10/03/2018] [Indexed: 10/28/2022]
Abstract
Attention deficits have been demonstrated in migraine patients during the interictal period, but these findings are not consistent across all studies. These inconsistencies may arise due to the different aspects of attention measured by various psychometric tests. Current theories divide attention into three separate domains subserved by separate networks: alerting, orienting, and executive control. The attention network test (ANT) was developed to measure all three attention networks and so may reveal more specific attention deficits among migraineurs. The aim of this study was to evaluate the attention function of migraine without aura (MwoA) patients using a series of neuropsychological scales and the ANT, and to assess the relationships between attention function and headache characteristics (e.g., history, frequency, and duration of each attack). Our results showed that MwoA patients exhibited significantly longer response times (RTs) of the executive control network, whereas no significant differences were observed in alerting and orienting network RTs between groups. MwoA patients also exhibited poorer performance than health control (HC) on the Stroop III and Shape Trail test B (STT B) tests. Spearman's analysis revealed positive correlations between executive control network RTs and both frequency and duration of migraine attack. MwoA patients demonstrate impairments of the executive control network, which appear to be exacerbated by more frequent and longer migraine attacks.
Collapse
|
34
|
Liu B, Wen L, Ran Q, Zhang S, Hu J, Gong M, Zhang D. Dysregulation within the salience network and default mode network in hyperthyroid patients: a follow-up resting-state functional MRI study. Brain Imaging Behav 2018; 14:30-41. [PMID: 30259292 DOI: 10.1007/s11682-018-9961-6] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
This study investigated the aberrant connectivity of the salience network (SN) and default mode network (DMN) and the relevance between these abnormalities and symptom improvement in hyperthyroid patients using resting-state functional magnetic resonance imaging (rs-fMRI). Seed-based functional connectivity (FC) analyses were performed on state fMRI data to reveal possible differences in critical node connectivity in the SN and DMN between 41 new-onset, untreated hyperthyroid patients and 41 healthy controls. Subsequently, follow-up data were available for 25 patients treated with methimazole for one month. Compared with the healthy controls, the patients exhibited abnormal internetwork FC from the SN to the DMN and the executive control network (ECN) and decreased intra-network FC within the SN. Relative to the hyperthyroid state, the antithyroid therapy induced reversible connectivity of the left insula to the dorsal anterior cingulate cortex(dACC)and ECN, and persistently increased connectivity between the SN and DMN in patients with improved thyroid function. Finally, Pearson's correlation analyses were performed among the abnormal FC, neuropsychological assessment and serum free triiodothyronine(FT3)level data. The results indicated that aberrant intra- and internetwork FC in the SN and DMN might underlie the pathogenesis of hyperthyroidism, and antithyroid treatment could regulate the FC of certain key brain regions within the SN and DMN in hyperthyroid patients.
Collapse
Affiliation(s)
- Bo Liu
- Department of Radiology, XinQiao Hosptial, Third Military Medical University, ChongQing, 400037, People's Republic of China
| | - Li Wen
- Department of Radiology, XinQiao Hosptial, Third Military Medical University, ChongQing, 400037, People's Republic of China
| | - Qian Ran
- Department of Radiology, XinQiao Hosptial, Third Military Medical University, ChongQing, 400037, People's Republic of China
| | - Si Zhang
- Department of Radiology, XinQiao Hosptial, Third Military Medical University, ChongQing, 400037, People's Republic of China
| | - Junhao Hu
- Department of Radiology, XinQiao Hosptial, Third Military Medical University, ChongQing, 400037, People's Republic of China
| | - Mingfu Gong
- Department of Radiology, XinQiao Hosptial, Third Military Medical University, ChongQing, 400037, People's Republic of China
| | - Dong Zhang
- Department of Radiology, XinQiao Hosptial, Third Military Medical University, ChongQing, 400037, People's Republic of China.
| |
Collapse
|
35
|
Bruya B, Tang YY. Is Attention Really Effort? Revisiting Daniel Kahneman's Influential 1973 Book Attention and Effort. Front Psychol 2018; 9:1133. [PMID: 30237773 PMCID: PMC6136270 DOI: 10.3389/fpsyg.2018.01133] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2018] [Accepted: 06/13/2018] [Indexed: 12/28/2022] Open
Abstract
Daniel Kahneman was not the first to suggest that attention and effort are closely associated, but his 1973 book Attention and Effort, which claimed that attention can be identified with effort, cemented the association as a research paradigm in the cognitive sciences. Since then, the paradigm has rarely been questioned and appears to have set the research agenda so that it is self-reinforcing. In this article, we retrace Kahneman’s argument to understand its strengths and weaknesses. The central notion of effort is not clearly defined in the book, so we proceed by constructing the most secure inferences we can from Kahneman’s argument regarding effort: it is cognitive, objective, metabolic expenditure, and it is attention. Continuing, we find from Kahneman’s argument that effort-attention must be a special case of sympathetic dominance of the autonomic nervous system that is also an increase in metabolic activity in the brain that has crossed a threshold of magnitude. We then weigh this conception of effort against evidence in Kahneman’s book and against more recent evidence, finding that it does not warrant the conclusion that effort can be equated with attention. In support of an alternative perspective, we briefly review diverse studies of behavior, physiology, and neuroscience on attention and effort, including meditation and studies of the LC-NE system, where we find evidence for the following: (1) Attention seems to be associated not with the utilization of metabolic resources per se but with the readying of metabolic resources in the form of adaptive gain modulation. This occurs under sympathetic dominance and can be experienced as effortful. (2) Attention can also occur under parasympathetic dominance, in which case it is likely to be experienced as effortless.
Collapse
Affiliation(s)
- Brian Bruya
- Department of History and Philosophy, Eastern Michigan University, Ypsilanti, MI, United States
| | - Yi-Yuan Tang
- Department of Psychological Sciences, Texas Tech University, Lubbock, TX, United States.,Center for Advanced Study in the Behavioral Sciences, Stanford University, Stanford, CA, United States
| |
Collapse
|
36
|
Liu L, Cheng J, Su Y, Ji N, Gao Q, Li H, Yang L, Sun L, Qian Q, Wang Y. Deficiency of Sustained Attention in ADHD and Its Potential Genetic Contributor MAOA. J Atten Disord 2018; 22:878-885. [PMID: 25784069 DOI: 10.1177/1087054715574832] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
OBJECTIVE To investigate the genetic contributors to ADHD sustained attention deficit among noradrenergic genes responsible for the synthesis (dopamine-β-hydroxylase gene, DBH), transport (norepinephrine transporter gene, NET1), reception (alpha-2A adrenergic receptor gene, ADRA2A), and metabolism (monoamine oxidase A gene, MAOA) of noradrenalin (NE). METHOD A total of 456 children with ADHD and 108 normal controls were included in a digit cancellation test (DCT). DNA was collected from 242 participants and genotyped for 14 single nucleotide polymorphisms (SNPs) of noradrenergic genes. RESULTS Compared with normal controls, children with ADHD showed a lower total score and higher mean error rate in the DCT, indicating poorer sustained attention function. Analysis of covariance showed an association between MAOA genotypes and ADHD performance in DCT, with poorer performance in risk allele carriers. No association was found for other noradrenergic genes. CONCLUSION Children with ADHD presented with a sustained attention deficit compared with normal controls. The sustained attention deficit of children with ADHD may be associated with genetic variant of MAOA.
Collapse
Affiliation(s)
- Lu Liu
- 1 Peking University Sixth Hospital/Institute of Mental Health; Key Laboratory of Mental Health, Ministry of Health (Peking University), Beijing, China
| | - Jia Cheng
- 1 Peking University Sixth Hospital/Institute of Mental Health; Key Laboratory of Mental Health, Ministry of Health (Peking University), Beijing, China
| | - Yi Su
- 1 Peking University Sixth Hospital/Institute of Mental Health; Key Laboratory of Mental Health, Ministry of Health (Peking University), Beijing, China
| | - Ning Ji
- 1 Peking University Sixth Hospital/Institute of Mental Health; Key Laboratory of Mental Health, Ministry of Health (Peking University), Beijing, China
| | - Qian Gao
- 1 Peking University Sixth Hospital/Institute of Mental Health; Key Laboratory of Mental Health, Ministry of Health (Peking University), Beijing, China
| | - Haimei Li
- 1 Peking University Sixth Hospital/Institute of Mental Health; Key Laboratory of Mental Health, Ministry of Health (Peking University), Beijing, China
| | - Li Yang
- 1 Peking University Sixth Hospital/Institute of Mental Health; Key Laboratory of Mental Health, Ministry of Health (Peking University), Beijing, China
| | - Li Sun
- 1 Peking University Sixth Hospital/Institute of Mental Health; Key Laboratory of Mental Health, Ministry of Health (Peking University), Beijing, China
| | - Qiujin Qian
- 1 Peking University Sixth Hospital/Institute of Mental Health; Key Laboratory of Mental Health, Ministry of Health (Peking University), Beijing, China
| | - Yufeng Wang
- 1 Peking University Sixth Hospital/Institute of Mental Health; Key Laboratory of Mental Health, Ministry of Health (Peking University), Beijing, China
| |
Collapse
|
37
|
Gonçalves ÓF, Rêgo G, Conde T, Leite J, Carvalho S, Lapenta OM, Boggio PS. Mind Wandering and Task-Focused Attention: ERP Correlates. Sci Rep 2018; 8:7608. [PMID: 29765144 PMCID: PMC5953943 DOI: 10.1038/s41598-018-26028-w] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2017] [Accepted: 05/03/2018] [Indexed: 11/16/2022] Open
Abstract
Previous studies looking at how Mind Wandering (MW) impacts performance in distinct Focused Attention (FA) systems, using the Attention Network Task (ANT), showed that the presence of pure MW thoughts did not impact the overall performance of ANT (alert, orienting and conflict) performance. However, it still remains unclear if the lack of interference of MW in the ANT, reported at the behavioral level, has a neurophysiological correspondence. We hypothesize that a distinct cortical processing may be required to meet attentional demands during MW. The objective of the present study was to test if, given similar levels of ANT performance, individuals predominantly focusing on MW or FA show distinct cortical processing. Thirty-three healthy participants underwent an EEG high-density acquisition while they were performing the ANT. MW was assessed following the ANT using an adapted version of the Resting State Questionnaire (ReSQ). The following ERP’s were analyzed: pN1, pP1, P1, N1, pN, and P3. At the behavioral level, participants were slower and less accurate when responding to incongruent than to congruent targets (conflict effect), benefiting from the presentation of the double (alerting effect) and spatial (orienting effect) cues. Consistent with the behavioral data, ERP’s waves were discriminative of distinct attentional effects. However, these results remained true irrespective of the MW condition, suggesting that MW imposed no additional cortical demand in alert, orienting, and conflict attention tasks.
Collapse
Affiliation(s)
- Óscar F Gonçalves
- Psychological Neuroscience Laboratory- CIPsi, School of Psychology, University of Minho, Braga, Portugal. .,Spaulding Neuromodulation Center, Department of Physical Medicine & Rehabilitation, Spaulding Rehabilitation Hospital and Massachusetts General Hospital. Harvard Medical School, Boston, USA. .,Social and Cognitive Neuroscience Laboratory, Center for Health and Biological Sciences, Mackenzie Presbyterian University, São Paulo, Brazil.
| | - Gabriel Rêgo
- Social and Cognitive Neuroscience Laboratory, Center for Health and Biological Sciences, Mackenzie Presbyterian University, São Paulo, Brazil
| | - Tatiana Conde
- Social and Cognitive Neuroscience Laboratory, Center for Health and Biological Sciences, Mackenzie Presbyterian University, São Paulo, Brazil.,Faculdade de Psicologia, Universidade de Lisboa, Lisbon, Portugal
| | - Jorge Leite
- Psychological Neuroscience Laboratory- CIPsi, School of Psychology, University of Minho, Braga, Portugal.,Spaulding Neuromodulation Center, Department of Physical Medicine & Rehabilitation, Spaulding Rehabilitation Hospital and Massachusetts General Hospital. Harvard Medical School, Boston, USA.,Portucalense Institute for Human Development (INPP), Universidade Portucalense, Porto, Portugal
| | - Sandra Carvalho
- Psychological Neuroscience Laboratory- CIPsi, School of Psychology, University of Minho, Braga, Portugal.,Spaulding Neuromodulation Center, Department of Physical Medicine & Rehabilitation, Spaulding Rehabilitation Hospital and Massachusetts General Hospital. Harvard Medical School, Boston, USA
| | - Olívia Morgan Lapenta
- Social and Cognitive Neuroscience Laboratory, Center for Health and Biological Sciences, Mackenzie Presbyterian University, São Paulo, Brazil.,The MARCS Institute for Brain, Behaviour & Development, Western Sydney University, Penrith, Australia
| | - Paulo S Boggio
- Social and Cognitive Neuroscience Laboratory, Center for Health and Biological Sciences, Mackenzie Presbyterian University, São Paulo, Brazil
| |
Collapse
|
38
|
Influence of Catechol-O-methyltransferase on Executive Functioning Longitudinally After Early Childhood Traumatic Brain Injury: Preliminary Findings. J Head Trauma Rehabil 2018; 31:E1-9. [PMID: 26394291 DOI: 10.1097/htr.0000000000000162] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
OBJECTIVE To elucidate the association of a functional catechol-O-methyltransferase (COMT) genotype (rs4680) with recovery of executive functions up to 18 months after early childhood traumatic brain injury (TBI) compared with an orthopedic injury (OI) group. SETTING Outpatient. PARTICIPANTS A total of 134 children with a moderate to severe TBI (n = 63) or OI (n = 71) between the ages of 3 and 6 years who were followed 18 months postinjury. DESIGN Case-comparison, longitudinal cohort MAIN MEASURES : The Behavior Rating Inventory of Executive Function, developmental NEuroPSYchological Assessment (NEPSY) of Verbal Fluency, and a modified Stroop Test for young children (Shape School). RESULTS The low-activity COMT enzyme genotype (AA) was associated with better scores on the developmental NEPSY of Verbal Fluency (F = 3.80; P = .02) and the Shape School (F = 2.89; P = .06) in all participants when controlling for injury type (TBI vs OI) over the first 18 months after injury. Injury type (TBI vs OI) did not significantly moderate the effect of the COMT genotypes on executive function recovery. CONCLUSION This study provides preliminary evidence for a role of COMT genotypes in long-term recovery of executive function after pediatric TBI and OI. Larger studies are needed to determine the exact link between genetic variation in the COMT gene and TBI recovery in children.
Collapse
|
39
|
Ross RS, Smolen A, Curran T, Nyhus E. MAO-A Phenotype Effects Response Sensitivity and the Parietal Old/New Effect during Recognition Memory. Front Hum Neurosci 2018; 12:53. [PMID: 29487517 PMCID: PMC5816743 DOI: 10.3389/fnhum.2018.00053] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2017] [Accepted: 01/31/2018] [Indexed: 11/13/2022] Open
Abstract
A critical problem for developing personalized treatment plans for cognitive disruptions is the lack of understanding how individual differences influence cognition. Recognition memory is one cognitive ability that varies from person to person and that variation may be related to different genetic phenotypes. One gene that may impact recognition memory is the monoamine oxidase A gene (MAO-A), which influences the transcription rate of MAO-A. Examination of how MAO-A phenotypes impact behavioral and event-related potentials (ERPs) correlates of recognition memory may help explain individual differences in recognition memory performance. Therefore, the current study uses electroencephalography (EEG) in combination with genetic phenotyping of the MAO-A gene to determine how well-characterized ERP components of recognition memory, the early frontal old/new effect, left parietal old/new effect, late frontal old/new effect, and the late posterior negativity (LPN) are impacted by MAO-A phenotype during item and source memory. Our results show that individuals with the MAO-A phenotype leading to increased transcription have lower response sensitivity during both item and source memory. Additionally, during item memory the left parietal old/new effect is not present due to increased ERP amplitude for correct rejections. The results suggest that MAO-A phenotype changes EEG correlates of recognition memory and influences how well individuals differentiate between old and new items.
Collapse
Affiliation(s)
- Robert S Ross
- Neuroscience and Behavior Program, Department of Psychology, University of New Hampshire, Durham, NH, United States
| | - Andrew Smolen
- Institute for Behavioral Genetics, University of Colorado Boulder, Boulder, CO, United States
| | - Tim Curran
- Department of Psychology and Neuroscience, University of Colorado Boulder, Boulder, CO, United States
| | - Erika Nyhus
- Department of Psychology and Program in Neuroscience, Bowdoin College, Brunswick, ME, United States
| |
Collapse
|
40
|
Gilsoul J, Simon J, Hogge M, Collette F. Do attentional capacities and processing speed mediate the effect of age on executive functioning? AGING NEUROPSYCHOLOGY AND COGNITION 2018; 26:282-317. [DOI: 10.1080/13825585.2018.1432746] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Affiliation(s)
- Jessica Gilsoul
- GIGA-CRC in Vivo Imaging, University of Liège, Liège, Belgium
- Psychology and Neuroscience of Cognition, University of Liège, Liège, Belgium
| | - Jessica Simon
- GIGA-CRC in Vivo Imaging, University of Liège, Liège, Belgium
- Psychology and Neuroscience of Cognition, University of Liège, Liège, Belgium
| | - Michaël Hogge
- Psychology and Neuroscience of Cognition, University of Liège, Liège, Belgium
| | - Fabienne Collette
- GIGA-CRC in Vivo Imaging, University of Liège, Liège, Belgium
- Psychology and Neuroscience of Cognition, University of Liège, Liège, Belgium
| |
Collapse
|
41
|
Rampino A, Marakhovskaia A, Soares-Silva T, Torretta S, Veneziani F, Beaulieu JM. Antipsychotic Drug Responsiveness and Dopamine Receptor Signaling; Old Players and New Prospects. Front Psychiatry 2018; 9:702. [PMID: 30687136 PMCID: PMC6338030 DOI: 10.3389/fpsyt.2018.00702] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/27/2018] [Accepted: 12/03/2018] [Indexed: 12/27/2022] Open
Abstract
Antipsychotic drugs targeting dopamine neurotransmission are still the principal mean of therapeutic intervention for schizophrenia. However, about one third of people do not respond to dopaminergic antipsychotics. Genome wide association studies (GWAS), have shown that multiple genetic factors play a role in schizophrenia pathophysiology. Most of these schizophrenia risk variants are not related to dopamine or antipsychotic drugs mechanism of action. Genetic factors have also been implicated in defining response to antipsychotic medication. In contrast to disease risk, variation of genes coding for molecular targets of antipsychotics have been associated with treatment response. Among genes implicated, those involved in dopamine signaling mediated by D2-class dopamine receptor, including DRD2 itself and its molecular effectors, have been implicated as key genetic predictors of response to treatments. Studies have also reported that genetic variation in genes coding for proteins that cross-talk with DRD2 at the molecular level, such as AKT1, GSK3B, Beta-catenin, and PPP2R2B are associated with response to antipsychotics. In this review we discuss the relative contribution to antipsychotic drug responsiveness of candidate genes and GWAS identified genes encoding proteins involved in dopamine responses. We also suggest that in addition of these older players, a deeper investigation of new GWAS identified schizophrenia risk genes such as FXR1 can provide new prospects that are not clearly engaged in dopamine function while being targeted by dopamine-associated signaling molecules. Overall, further examination of genes proximally or distally related to signaling mechanisms engaged by medications and associated with disease risk and/or treatment responsiveness may uncover an interface between genes involved in disease causation with those affecting disease remediation. Such a nexus would provide realistic targets for therapy and further the development of genetically personalized approaches for schizophrenia.
Collapse
Affiliation(s)
- Antonio Rampino
- Department of Basic Medical Science, Neuroscience and Sense Organs, University of Bari "Aldo Moro", Bari, Italy.,Azienda Ospedaliero-Universitaria Consorziale Policlinico di Bari, Bari, Italy
| | | | - Tiago Soares-Silva
- Department of Pharmacology and Toxicology, University of Toronto, Toronto, ON, Canada
| | - Silvia Torretta
- Department of Basic Medical Science, Neuroscience and Sense Organs, University of Bari "Aldo Moro", Bari, Italy
| | - Federica Veneziani
- Department of Basic Medical Science, Neuroscience and Sense Organs, University of Bari "Aldo Moro", Bari, Italy
| | - Jean Martin Beaulieu
- Department of Pharmacology and Toxicology, University of Toronto, Toronto, ON, Canada
| |
Collapse
|
42
|
Liu B, Ran Q, Liu D, Zhang S, Zhang D. Changes in Resting-State Cerebral Activity in Patients with Hyperthyroidism: A Short-Term Follow-Up Functional MR Imaging Study. Sci Rep 2017; 7:10627. [PMID: 28878279 PMCID: PMC5587688 DOI: 10.1038/s41598-017-10747-7] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2017] [Accepted: 08/14/2017] [Indexed: 12/20/2022] Open
Abstract
To investigate the brain functional abnormality of hyperthyroid patients before and after treatment for one month using resting-state functional magnetic resonance imaging (rs-fMRI). Amplitude of low-frequency fluctuation (ALFF) and seed-based functional connectivity (FC) analysis were performed in 27 new-onset untreated hyperthyroid patients relative to 30 healthy controls. In addition, follow-up data were available for 19 patients treated with methimazole for one month. Compared with healthy controls, patients exhibited lower ALFF in the right posterior cingulate cortex (PCC); increased FC in the bilateral anterior insula (AI), bilateral posterior insula (PI) and left anterior lobe of the cerebellum (ALC); and decreased FC in the bilateral lateral prefrontal cortex (LPFC), the right medial temporal gyrus (MTG) and the bilateral PCC. Compared with the hyperthyroid status, patients with improved thyroid function showed increased FC in the right LPFC and right dorsolateral prefrontal cortex (DLPFC). Subsequently, Pearson’s correlation analyses were performed between abnormal ALFF, FC, neuropsychological assessment and serum free triiodothyronine (FT3) levels. The results indicated that the alterations in regional and network-level brain functions, which might underlie different psychiatric complications were dynamic and interactional processes in hyperthyroidism. Moreover, the improvement in regional brain FC was correlated with the efficacy of anti-thyroid medication.
Collapse
Affiliation(s)
- Bo Liu
- Department of Radiology, XinQiao Hosptial, Third Military Medical University, ChongQing, 400037, P.R. China
| | - Qian Ran
- Department of Radiology, XinQiao Hosptial, Third Military Medical University, ChongQing, 400037, P.R. China
| | - Daihong Liu
- Department of Radiology, Southwest Hosptial, Third Military Medical University, ChongQing, 400038, P.R. China
| | - Si Zhang
- Department of Radiology, XinQiao Hosptial, Third Military Medical University, ChongQing, 400037, P.R. China
| | - Dong Zhang
- Department of Radiology, XinQiao Hosptial, Third Military Medical University, ChongQing, 400037, P.R. China.
| |
Collapse
|
43
|
Rothbart MK, Posner MI, Rueda MR, Sheese BE, Tang Y. Enhancing Self - Regulation in School and Clinic. MINNESOTA SYMPOSIA ON CHILD PSYCHOLOGY 2017. [DOI: 10.1002/9781119466864.ch4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
|
44
|
Cognitive performance of juvenile monkeys after chronic fluoxetine treatment. Dev Cogn Neurosci 2017; 26:52-61. [PMID: 28521247 PMCID: PMC5557667 DOI: 10.1016/j.dcn.2017.04.008] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2016] [Revised: 04/25/2017] [Accepted: 04/26/2017] [Indexed: 02/01/2023] Open
Abstract
Potential long term effects on brain development are a concern when drugs are used to treat depression and anxiety in childhood. In this study, male juvenile rhesus monkeys (three-four years of age) were dosed with fluoxetine or vehicle (N=16/group) for two years. Histomorphometric examination of cortical dendritic spines conducted after euthanasia at one year postdosing (N=8/group) suggested a trend toward greater dendritic spine synapse density in prefrontal cortex of the fluoxetine-treated monkeys. During dosing, subjects were trained for automated cognitive testing, and evaluated with a test of sustained attention. After dosing was discontinued, sustained attention, recognition memory and cognitive flexibility were evaluated. Sustained attention was affected by fluoxetine, both during and after dosing, as indexed by omission errors. Response accuracy was not affected by fluoxetine in post-dosing recognition memory and cognitive flexibility tests, but formerly fluoxetine-treated monkeys compared to vehicle controls had more missed trial initiations and choices during testing. Drug treatment also interacted with genetic and environmental variables: MAOA genotype (high- and low transcription rate polymorphisms) and testing location (upper or lower tier of cages). Altered development of top-down cortical regulation of effortful attention may be relevant to this pattern of cognitive test performance after juvenile fluoxetine treatment.
Collapse
|
45
|
Abstract
Although rates of child maltreatment are declining, more than 600,000 children in the United States are substantiated victims of abuse or neglect. The focus of this review is on the relationship between maltreatment and mental health problems in childhood and adulthood. Children and adults who are exposed to abuse or neglect in childhood are at risk for a range of poor mental health outcomes, including internalizing and externalizing psychopathology, posttraumatic stress disorder, psychotic symptoms, and personality disorders. I review three potential mechanisms by which maltreatment may increase risk for various forms of psychopathology, (a) hypervigilance to threat, (b) deficits in emotion recognition and understanding, and (c) low responsivity to reward. I also review genetic and psychosocial factors that moderate the relationship between maltreatment and risk for psychopathology. Finally, I discuss methodological limitations of the literature on maltreatment, with an emphasis on the challenges associated with establishing a causal role for maltreatment (and moderators or mediators of maltreatment) in the development of mental health problems and the reliance of many studies on retrospective self-reports.
Collapse
Affiliation(s)
- Sara R Jaffee
- Department of Psychology, University of Pennsylvania, Philadelphia, Pennsylvania 19104;
| |
Collapse
|
46
|
|
47
|
Impact of DRD2/ANKK1 and COMT Polymorphisms on Attention and Cognitive Functions in Schizophrenia. PLoS One 2017; 12:e0170147. [PMID: 28085950 PMCID: PMC5235377 DOI: 10.1371/journal.pone.0170147] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2016] [Accepted: 12/29/2016] [Indexed: 11/19/2022] Open
Abstract
BACKGROUND Cognitive deficits such as poor selective attention and executive functions decline have been reported in patients with schizophrenia. Many studies have emphasized the role of dopamine in regulating cognitive functions in the general population as well as in schizophrenia. However, the relationship between cognitive processes, schizophrenia and dopaminergic candidate genes is an original approach given interesting results. The purpose of the current exploratory study was to examine the interaction of dopaminergic genes (coding for dopamine receptor D2, DRD2, and for Catecholamine-O-Methyl-Transferase, COMT) with the diagnostic of schizophrenia in (i) the executive control of attention, (ii) selective attention, and (iii) executive functions. METHODS AND RESULTS We recruited 52 patients with schizophrenia and 53 healthy controls who performed the Stroop Color-Word Test, the Attention Network Test and the Wisconsin Card Sorting test. Four single nucleotide polymorphisms (SNPs) in the DRD2 gene (rs6275, rs6277, rs2242592 and rs1800497) and two SNPs in the COMT gene (rs4680 and rs165599) have been genotyped. Patients with schizophrenia performed significantly worse than controls in all cognitive performance, taking into account demographic variables. A significant gene by disease interaction was found for the Stroop interference (p = 0.002) for rs6275 of the DRD2 gene. The COMT Val/Val genotype and schizophrenia were associated with increased number of perseverative errors (p = 0.01). CONCLUSIONS In our study, the DRD2 gene is involved in attention while the COMT gene is implicated in executive functions in patients with schizophrenia.
Collapse
|
48
|
Gonçalves ÓF, Rêgo G, Oliveira-Silva P, Leite J, Carvalho S, Fregni F, Amaro E, Boggio PS. Mind wandering and the attention network system. Acta Psychol (Amst) 2017; 172:49-54. [PMID: 27886519 DOI: 10.1016/j.actpsy.2016.11.008] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2016] [Revised: 11/11/2016] [Accepted: 11/18/2016] [Indexed: 11/18/2022] Open
Abstract
Attention and mind wandering are often seen as anticorrelated. However, both attention and mind wandering are multi-component processes, and their relationship may be more complex than previously thought. In this study, we tested the interference of different types of thoughts as measured by a Thought Identification Task - TIT (on task thoughts, task related interference thoughts, external distractions, stimulus independent and task unrelated thoughts) on different components of the attention network system - ANT (alerting, orienting, executive). Results show that, during the ANT, individuals were predominantly involved in task related interference thoughts which, along with external distractors, significantly impaired their performance accuracy. However, mind wandering (i.e., stimulus independent and task unrelated thoughts) did not significantly interfere with accuracy in the ANT. No significant relationship was found between type of thoughts and alerting, orienting, or executive effects in the ANT. While task related interference thoughts and external distractions seemed to impair performance on the attention task, mind wandering was still compatible with satisfactory performance in the ANT. The present results confirmed the importance of differentiating type of "out of task" thoughts in studying the relationship between though distractors and attention.
Collapse
Affiliation(s)
- Óscar F Gonçalves
- Neuropsychophysiology Lab - CIPsi, School of Psychology, University of Minho, Braga, Portugal; Spaulding Neuromodulation Center, Department of Physical Medicine & Rehabilitation, Spaulding Rehabilitation Hospital and Massachusetts General Hospital, Harvard Medical School, Boston, USA; Social and Cognitive Neuroscience Laboratory, Center for Health and Biological Sciences, Mackenzie Presbyterian University, São Paulo, Brazil.
| | - Gabriel Rêgo
- Social and Cognitive Neuroscience Laboratory, Center for Health and Biological Sciences, Mackenzie Presbyterian University, São Paulo, Brazil
| | - Patrícia Oliveira-Silva
- Neuropsychophysiology Lab - CIPsi, School of Psychology, University of Minho, Braga, Portugal; Human Neurobehavioral Laboratory, Centre for Studies in Human Development (CEDH), Faculdade de Educação e Psicologia - Universidade Católica Portuguesa (FEP-UCP), Porto, Portugal
| | - Jorge Leite
- Neuropsychophysiology Lab - CIPsi, School of Psychology, University of Minho, Braga, Portugal; Spaulding Neuromodulation Center, Department of Physical Medicine & Rehabilitation, Spaulding Rehabilitation Hospital and Massachusetts General Hospital, Harvard Medical School, Boston, USA
| | - Sandra Carvalho
- Neuropsychophysiology Lab - CIPsi, School of Psychology, University of Minho, Braga, Portugal; Spaulding Neuromodulation Center, Department of Physical Medicine & Rehabilitation, Spaulding Rehabilitation Hospital and Massachusetts General Hospital, Harvard Medical School, Boston, USA
| | - Felipe Fregni
- Spaulding Neuromodulation Center, Department of Physical Medicine & Rehabilitation, Spaulding Rehabilitation Hospital and Massachusetts General Hospital, Harvard Medical School, Boston, USA
| | - Edson Amaro
- Department of Radiology, Clinical Hospital, University of São Paulo School of Medicine, São Paulo, Brazil
| | - Paulo S Boggio
- Social and Cognitive Neuroscience Laboratory, Center for Health and Biological Sciences, Mackenzie Presbyterian University, São Paulo, Brazil
| |
Collapse
|
49
|
Trautwein FM, Singer T, Kanske P. Stimulus-Driven Reorienting Impairs Executive Control of Attention: Evidence for a Common Bottleneck in Anterior Insula. Cereb Cortex 2016; 26:4136-4147. [PMID: 27550866 PMCID: PMC5066828 DOI: 10.1093/cercor/bhw225] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2016] [Revised: 06/24/2016] [Accepted: 06/29/2016] [Indexed: 11/21/2022] Open
Abstract
A classical model of human attention holds that independent neural networks realize stimulus-driven reorienting and executive control of attention. Questioning full independence, the two functions do, however, engage overlapping networks with activations in cingulo-opercular regions such as anterior insula (AI) and a reverse pattern of activation (stimulus-driven reorienting), and deactivation (executive control) in temporoparietal junction (TPJ). To test for independent versus shared neural mechanisms underlying stimulus-driven and executive control of attention, we used fMRI and a task that isolates individual from concurrent demands in both functions. Results revealed super-additive increases of left AI activity and behavioral response costs under concurrent demands, suggesting a common bottleneck for stimulus-driven reorienting and executive control of attention. These increases were mirrored by non-additive decreases of activity in the default mode network (DMN), including posterior TPJ, regions where activity increased with off-task processes. The deactivations in posterior TPJ were spatially separated from stimulus-driven reorienting related activation in anterior TPJ, a differentiation that replicated in task-free resting state. Furthermore, functional connectivity indicated inhibitory coupling between posterior TPJ and AI during concurrent attention demands. These results demonstrate a role of AI in stimulus-driven and executive control of attention that involves down-regulation of internally directed processes in DMN.
Collapse
Affiliation(s)
- Fynn-Mathis Trautwein
- Department of Social Neuroscience, Max Planck Institute for Human Cognitive and Brain Sciences, 04103Leipzig, Germany
| | - Tania Singer
- Department of Social Neuroscience, Max Planck Institute for Human Cognitive and Brain Sciences, 04103Leipzig, Germany
| | - Philipp Kanske
- Department of Social Neuroscience, Max Planck Institute for Human Cognitive and Brain Sciences, 04103Leipzig, Germany
| |
Collapse
|
50
|
The Attention Network Test-Interaction (ANT-I): reliability and validity in healthy older adults. Exp Brain Res 2015; 234:815-27. [DOI: 10.1007/s00221-015-4493-4] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2015] [Accepted: 11/02/2015] [Indexed: 10/22/2022]
|