1
|
Ram Soren K, Tripathi S, Hembram M, Kumar N, Konda K A, Gupta NC, Bharadwaj C, Prasad Dixit G. Network interactions with functional roles and evolutionary relationships for BURP domain-containing proteins in chickpea and model species. Bioinformation 2023; 19:1197-1211. [PMID: 38250539 PMCID: PMC10794749 DOI: 10.6026/973206300191197] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2023] [Revised: 12/31/2023] [Accepted: 12/31/2023] [Indexed: 01/23/2024] Open
Abstract
The functional significance and evolutionary relationships of BURP domain-containing genes unique to plants is of interest. Network analysis reveals different associations of BURP proteins with other proteins and functional terms, throwing light on their involvement in various biological processes and pathways. The gene expression data reveals that BURP genes are affected by salinity stress, reflecting diverse expression patterns in roots and shoots.
Collapse
Affiliation(s)
| | | | | | - Neeraj Kumar
- ICAR-Division of genetics, IARI, New Delhi, India
| | | | - NC Gupta
- National Institute of Plant Biotechnology, New Delhi, India
| | | | | |
Collapse
|
2
|
Khan HA, Sharma N, Siddique KH, Colmer TD, Sutton T, Baumann U. Comparative transcriptome analysis reveals molecular regulation of salt tolerance in two contrasting chickpea genotypes. FRONTIERS IN PLANT SCIENCE 2023; 14:1191457. [PMID: 37360702 PMCID: PMC10289292 DOI: 10.3389/fpls.2023.1191457] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/22/2023] [Accepted: 04/26/2023] [Indexed: 06/28/2023]
Abstract
Salinity is a major abiotic stress that causes substantial agricultural losses worldwide. Chickpea (Cicer arietinum L.) is an important legume crop but is salt-sensitive. Previous physiological and genetic studies revealed the contrasting response of two desi chickpea varieties, salt-sensitive Rupali and salt-tolerant Genesis836, to salt stress. To understand the complex molecular regulation of salt tolerance mechanisms in these two chickpea genotypes, we examined the leaf transcriptome repertoire of Rupali and Genesis836 in control and salt-stressed conditions. Using linear models, we identified categories of differentially expressed genes (DEGs) describing the genotypic differences: salt-responsive DEGs in Rupali (1,604) and Genesis836 (1,751) with 907 and 1,054 DEGs unique to Rupali and Genesis836, respectively, salt responsive DEGs (3,376), genotype-dependent DEGs (4,170), and genotype-dependent salt-responsive DEGs (122). Functional DEG annotation revealed that the salt treatment affected genes involved in ion transport, osmotic adjustment, photosynthesis, energy generation, stress and hormone signalling, and regulatory pathways. Our results showed that while Genesis836 and Rupali have similar primary salt response mechanisms (common salt-responsive DEGs), their contrasting salt response is attributed to the differential expression of genes primarily involved in ion transport and photosynthesis. Interestingly, variant calling between the two genotypes identified SNPs/InDels in 768 Genesis836 and 701 Rupali salt-responsive DEGs with 1,741 variants identified in Genesis836 and 1,449 variants identified in Rupali. In addition, the presence of premature stop codons was detected in 35 genes in Rupali. This study provides valuable insights into the molecular regulation underpinning the physiological basis of salt tolerance in two chickpea genotypes and offers potential candidate genes for the improvement of salt tolerance in chickpeas.
Collapse
Affiliation(s)
- Hammad Aziz Khan
- UWA School of Agriculture and Environment, The University of Western Australia, Perth, WA, Australia
- The UWA Institute of Agriculture, The University of Western Australia, Perth, WA, Australia
| | - Niharika Sharma
- NSW Department of Primary Industries, Orange Agricultural Institute, Orange, NSW, Australia
| | - Kadambot H.M. Siddique
- UWA School of Agriculture and Environment, The University of Western Australia, Perth, WA, Australia
- The UWA Institute of Agriculture, The University of Western Australia, Perth, WA, Australia
| | - Timothy David Colmer
- UWA School of Agriculture and Environment, The University of Western Australia, Perth, WA, Australia
- The UWA Institute of Agriculture, The University of Western Australia, Perth, WA, Australia
| | - Tim Sutton
- School of Agriculture, Food and Wine, University of Adelaide, Adelaide, SA, Australia
- Department of Primary Industries and Regions, South Australian Research and Development Institute (SARDI), Adelaide, SA, Australia
| | - Ute Baumann
- School of Agriculture, Food and Wine, University of Adelaide, Adelaide, SA, Australia
| |
Collapse
|
3
|
Frailey DC, Zhang Q, Wood DJ, Davis TM. Defining the mutation sites in chickpea nodulation mutants PM233 and PM405. BMC PLANT BIOLOGY 2022; 22:66. [PMID: 35139814 PMCID: PMC8827291 DOI: 10.1186/s12870-022-03446-7] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/29/2021] [Accepted: 01/20/2022] [Indexed: 05/17/2023]
Abstract
BACKGROUND Like most legumes, chickpeas form specialized organs called root nodules. These nodules allow for a symbiotic relationship with rhizobium bacteria. The rhizobia provide fixed atmospheric nitrogen to the plant in a usable form. It is of both basic and practical interest to understand the host plant genetics of legume root nodulation. Chickpea lines PM233 and PM405, which harbor the mutationally identified nodulation genes rn1 and rn4, respectively, both display nodulation-deficient phenotypes. Previous investigators identified the rn1 mutation with the chickpea homolog of Medicago truncatula nodulation gene NSP2, but were unable to define the mutant rn1 allele. We used Illumina and Nanopore sequencing reads to attempt to identify and characterize candidate mutation sites responsible for the PM233 and PM405 phenotypes. RESULTS We aligned Illumina reads to the available desi chickpea reference genome, and did a de novo contig assembly of Nanopore reads. In mutant PM233, the Nanopore contigs allowed us to identify the breakpoints of a ~ 35 kb deleted region containing the CaNSP2 gene, the Medicago truncatula homolog of which is involved in nodulation. In mutant PM405, we performed variant calling in read alignments and identified 10 candidate mutations. Genotyping of a segregating progeny population narrowed that pool down to a single candidate gene which displayed homology to M. truncatula nodulation gene NIN. CONCLUSIONS We have characterized the nodulation mutation sites in chickpea mutants PM233 and PM405. In mutant PM233, the rn1 mutation was shown to be due to deletion of the entire CaNSP2 nodulation gene, while in mutant PM405 the rn4 mutation was due to a single base deletion resulting in a frameshift mutation between the predicted RWP-RK and PB1 domains of the NIN nodulation gene. Critical to characterization of the rn1 allele was the generation of Nanopore contigs for mutant PM233 and its wild type parent ICC 640, without which the deletional boundaries could not be defined. Our results suggest that efforts of prior investigators were hampered by genomic misassemblies in the CaNSP2 region of both the desi and kabuli reference genomes.
Collapse
Affiliation(s)
- Daniel C. Frailey
- Department of Agriculture, Nutrition, and Food Systems, University of New Hampshire, Durham, NH 03824 USA
| | - Qian Zhang
- Department of Agriculture, Nutrition, and Food Systems, University of New Hampshire, Durham, NH 03824 USA
- Department of Forest Resources and Environmental Conservation, Virginia Polytechnic Institute and State University, Blacksburg, VA 24061 USA
| | - David J. Wood
- Department of Agriculture, Nutrition, and Food Systems, University of New Hampshire, Durham, NH 03824 USA
| | - Thomas M. Davis
- Department of Agriculture, Nutrition, and Food Systems, University of New Hampshire, Durham, NH 03824 USA
| |
Collapse
|
4
|
Zargar SM, Mir RA, Ebinezer LB, Masi A, Hami A, Manzoor M, Salgotra RK, Sofi NR, Mushtaq R, Rohila JS, Rakwal R. Physiological and Multi-Omics Approaches for Explaining Drought Stress Tolerance and Supporting Sustainable Production of Rice. FRONTIERS IN PLANT SCIENCE 2022; 12:803603. [PMID: 35154193 PMCID: PMC8829427 DOI: 10.3389/fpls.2021.803603] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/28/2021] [Accepted: 12/14/2021] [Indexed: 05/12/2023]
Abstract
Drought differs from other natural disasters in several respects, largely because of the complexity of a crop's response to it and also because we have the least understanding of a crop's inductive mechanism for addressing drought tolerance among all abiotic stressors. Overall, the growth and productivity of crops at a global level is now thought to be an issue that is more severe and arises more frequently due to climatic change-induced drought stress. Among the major crops, rice is a frontline staple cereal crop of the developing world and is critical to sustaining populations on a daily basis. Worldwide, studies have reported a reduction in rice productivity over the years as a consequence of drought. Plants are evolutionarily primed to withstand a substantial number of environmental cues by undergoing a wide range of changes at the molecular level, involving gene, protein and metabolite interactions to protect the growing plant. Currently, an in-depth, precise and systemic understanding of fundamental biological and cellular mechanisms activated by crop plants during stress is accomplished by an umbrella of -omics technologies, such as transcriptomics, metabolomics and proteomics. This combination of multi-omics approaches provides a comprehensive understanding of cellular dynamics during drought or other stress conditions in comparison to a single -omics approach. Thus a greater need to utilize information (big-omics data) from various molecular pathways to develop drought-resilient crop varieties for cultivation in ever-changing climatic conditions. This review article is focused on assembling current peer-reviewed published knowledge on the use of multi-omics approaches toward expediting the development of drought-tolerant rice plants for sustainable rice production and realizing global food security.
Collapse
Affiliation(s)
- Sajad Majeed Zargar
- Proteomics Laboratory, Division of Plant Biotechnology, Sher-e-Kashmir University of Agricultural Sciences and Technology of Kashmir, Srinagar, India
| | - Rakeeb Ahmad Mir
- Department of Biotechnology, School of Biosciences and Biotechnology, BGSB University, Rajouri, India
| | - Leonard Barnabas Ebinezer
- Department of Agronomy, Food, Natural Resources, Animals, and Environment, University of Padova, Padua, Italy
| | - Antonio Masi
- Department of Agronomy, Food, Natural Resources, Animals, and Environment, University of Padova, Padua, Italy
| | - Ammarah Hami
- Proteomics Laboratory, Division of Plant Biotechnology, Sher-e-Kashmir University of Agricultural Sciences and Technology of Kashmir, Srinagar, India
| | - Madhiya Manzoor
- Proteomics Laboratory, Division of Plant Biotechnology, Sher-e-Kashmir University of Agricultural Sciences and Technology of Kashmir, Srinagar, India
| | - Romesh K. Salgotra
- School of Biotechnology, Sher-e-Kashmir University of Agricultural Sciences and Technology of Jammu, Jammu, India
| | - Najeebul Rehman Sofi
- Division of Plant Breeding and Genetics, Sher-e-Kashmir University of Agricultural Sciences and Technology of Kashmir, Srinagar, India
| | - Roohi Mushtaq
- Department of Biotechnology and Bioinformatics, SP College, Cluster University Srinagar, Srinagar, India
| | - Jai Singh Rohila
- Dale Bumpers National Rice Research Center, United States Department of Agriculture (USDA)-Agricultural Research Service (ARS), Stuttgart, AR, United States
| | - Randeep Rakwal
- Faculty of Health and Sport Sciences, University of Tsukuba, Ibaraki, Japan
| |
Collapse
|
5
|
Singhal RK, Saha D, Skalicky M, Mishra UN, Chauhan J, Behera LP, Lenka D, Chand S, Kumar V, Dey P, Indu, Pandey S, Vachova P, Gupta A, Brestic M, El Sabagh A. Crucial Cell Signaling Compounds Crosstalk and Integrative Multi-Omics Techniques for Salinity Stress Tolerance in Plants. FRONTIERS IN PLANT SCIENCE 2021; 12:670369. [PMID: 34484254 PMCID: PMC8414894 DOI: 10.3389/fpls.2021.670369] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/21/2021] [Accepted: 05/28/2021] [Indexed: 10/29/2023]
Abstract
In the era of rapid climate change, abiotic stresses are the primary cause for yield gap in major agricultural crops. Among them, salinity is considered a calamitous stress due to its global distribution and consequences. Salinity affects plant processes and growth by imposing osmotic stress and destroys ionic and redox signaling. It also affects phytohormone homeostasis, which leads to oxidative stress and eventually imbalances metabolic activity. In this situation, signaling compound crosstalk such as gasotransmitters [nitric oxide (NO), hydrogen sulfide (H2S), hydrogen peroxide (H2O2), calcium (Ca), reactive oxygen species (ROS)] and plant growth regulators (auxin, ethylene, abscisic acid, and salicylic acid) have a decisive role in regulating plant stress signaling and administer unfavorable circumstances including salinity stress. Moreover, recent significant progress in omics techniques (transcriptomics, genomics, proteomics, and metabolomics) have helped to reinforce the deep understanding of molecular insight in multiple stress tolerance. Currently, there is very little information on gasotransmitters and plant growth regulator crosstalk and inadequacy of information regarding the integration of multi-omics technology during salinity stress. Therefore, there is an urgent need to understand the crucial cell signaling crosstalk mechanisms and integrative multi-omics techniques to provide a more direct approach for salinity stress tolerance. To address the above-mentioned words, this review covers the common mechanisms of signaling compounds and role of different signaling crosstalk under salinity stress tolerance. Thereafter, we mention the integration of different omics technology and compile recent information with respect to salinity stress tolerance.
Collapse
Affiliation(s)
| | - Debanjana Saha
- Department of Biotechnology, Centurion University of Technology and Management, Bhubaneswar, India
| | - Milan Skalicky
- Department of Botany and Plant Physiology, Faculty of Agrobiology, Food, and Natural Resources, Czech University of Life Sciences Prague, Prague, Czechia
| | - Udit N. Mishra
- Faculty of Agriculture, Sri Sri University, Cuttack, India
| | - Jyoti Chauhan
- Narayan Institute of Agricultural Sciences, Gopal Narayan Singh University, Jamuhar, India
| | - Laxmi P. Behera
- Department of Agriculture Biotechnology, Orissa University of Agriculture and Technology, Bhubaneswar, India
| | - Devidutta Lenka
- Department of Plant Breeding and Genetics, Orissa University of Agriculture and Technology, Bhubaneswar, India
| | - Subhash Chand
- ICAR-Indian Grassland and Fodder Research Institute, Jhansi, India
| | - Vivek Kumar
- Institute of Agriculture Sciences, Banaras Hindu University, Varanasi, India
| | - Prajjal Dey
- Faculty of Agriculture, Sri Sri University, Cuttack, India
| | - Indu
- ICAR-Indian Grassland and Fodder Research Institute, Jhansi, India
| | - Saurabh Pandey
- Department of Agriculture, Guru Nanak Dev University, Amritsar, India
| | - Pavla Vachova
- Department of Botany and Plant Physiology, Faculty of Agrobiology, Food, and Natural Resources, Czech University of Life Sciences Prague, Prague, Czechia
| | - Aayushi Gupta
- Department of Botany and Plant Physiology, Faculty of Agrobiology, Food, and Natural Resources, Czech University of Life Sciences Prague, Prague, Czechia
| | - Marian Brestic
- Department of Botany and Plant Physiology, Faculty of Agrobiology, Food, and Natural Resources, Czech University of Life Sciences Prague, Prague, Czechia
- Department of Plant Physiology, Slovak University of Agriculture in Nitra, Nitra, Slovakia
| | - Ayman El Sabagh
- Department of Agronomy, Faculty of Agriculture, University of Kafrelsheikh, Kafr El Sheikh, Egypt
- Department of Field Crops, Faculty of Agriculture, Siirt University, Siirt, Turkey
| |
Collapse
|
6
|
Ghangal R, Singh VK, Khemka NK, Rajkumar MS, Garg R, Jain M. Updates on Genomic Resources in Chickpea for Crop Improvement. Methods Mol Biol 2020; 2107:19-33. [PMID: 31893441 DOI: 10.1007/978-1-0716-0235-5_2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
In recent years, rapid advancement has been done in generation of genomic resources for the important legume crop chickpea. Here, we provide an update on important advancements made on availability of genomic resources for this crop. The availability of reference genome and transcriptome sequences, and resequencing of several accessions have enabled the discovery of gene space and molecular markers in chickpea. These resources have helped in elucidating evolutionary relationship and identification of quantitative trait loci for important agronomic traits. Gene expression in different tissues/organs during development and under abiotic/biotic stresses has been interrogated. In addition, single-base resolution DNA methylation patterns in different organs have been analyzed to understand gene regulation. Overall, we provide a consolidated overview of available genomic resources of chickpea that may help in fulfilling the promises for improvement of this important crop.
Collapse
Affiliation(s)
- Rajesh Ghangal
- School of Computational & Integrative Sciences, Jawaharlal Nehru University, New Delhi, India
| | - Vikash K Singh
- School of Computational & Integrative Sciences, Jawaharlal Nehru University, New Delhi, India
| | - Niraj K Khemka
- School of Computational & Integrative Sciences, Jawaharlal Nehru University, New Delhi, India
| | - Mohan Singh Rajkumar
- School of Computational & Integrative Sciences, Jawaharlal Nehru University, New Delhi, India
| | - Rohini Garg
- Department of Life Sciences, School of Natural Sciences, Shiv Nadar University, Gautam Buddha Nagar, Uttar Pradesh, India
| | - Mukesh Jain
- School of Computational & Integrative Sciences, Jawaharlal Nehru University, New Delhi, India.
| |
Collapse
|
7
|
Ayra‐Pardo C, Ochagavía ME, Raymond B, Gulzar A, Rodríguez‐Cabrera L, Rodríguez de la Noval C, Morán Bertot I, Terauchi R, Yoshida K, Matsumura H, Téllez Rodríguez P, Hernández Hernández D, Borrás‐Hidalgo O, Wright DJ. HT-SuperSAGE of the gut tissue of a Vip3Aa-resistant Heliothis virescens (Lepidoptera: Noctuidae) strain provides insights into the basis of resistance. INSECT SCIENCE 2019; 26:479-498. [PMID: 28872766 PMCID: PMC6849831 DOI: 10.1111/1744-7917.12535] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/02/2017] [Revised: 06/29/2017] [Accepted: 07/12/2017] [Indexed: 06/07/2023]
Abstract
Multitoxin Bt-crops expressing insecticidal toxins with different modes of action, for example, Cry and Vip, are expected to improve resistance management in target pests. While Cry1A resistance has been relatively well characterized in some insect species, this is not the case for Vip3A, for which no mechanism of resistance has yet been identified. Here we applied HT-SuperSAGE to analyze the transcriptome of the gut tissue of tobacco budworm Heliothis virescens (F.) laboratory-selected for Vip3Aa resistance. From a total of 1 324 252 sequence reads, 5 895 126-bp tags were obtained representing 17 751 nonsingleton unique transcripts (UniTags) from genetically similar Vip3Aa-resistant (Vip-Sel) and susceptible control (Vip-Unsel) strains. Differential expression was significant (≥2.5 fold or ≤0.4; P < 0.05) for 1989 sequences (11.2% of total UniTags), where 420 represented overexpressed (OE) and 1569 underexpressed (UE) genes in Vip-Sel. BLASTN searches mapped 419 UniTags to H. virescens sequence contigs, of which, 416 (106 OE and 310 UE) were unambiguously annotated to proteins in NCBI nonredundant protein databases. Gene Ontology distributed 345 of annotated UniTags in 14 functional categories with metabolism (including serine-type hydrolases) and translation/ribosome biogenesis being the most prevalent. A UniTag homologous to a particular member of the REsponse to PAThogen (REPAT) family was found among most overexpressed, while UniTags related to the putative Vip3Aa-binding ribosomal protein S2 (RpS2) were underexpressed. qRT-PCR of a subset of UniTags validated the HT-SuperSAGE data. This study is the first providing lepidopteran gut transcriptome associated with Vip3Aa resistance and a foundation for future attempts to elucidate the resistance mechanism.
Collapse
Affiliation(s)
- Camilo Ayra‐Pardo
- Plant Division Centre for Genetic Engineering and Biotechnology (CIGB)HavanaCuba
| | - Maria E. Ochagavía
- Plant Division Centre for Genetic Engineering and Biotechnology (CIGB)HavanaCuba
| | - Ben Raymond
- Department of Life Sciences, Faculty of Natural SciencesImperial College LondonBerkshireUK
| | - Asim Gulzar
- Department of Life Sciences, Faculty of Natural SciencesImperial College LondonBerkshireUK
| | | | | | - Ivis Morán Bertot
- Plant Division Centre for Genetic Engineering and Biotechnology (CIGB)HavanaCuba
| | - Ryohei Terauchi
- Genetics and Genomics Research GroupIwate Biotechnology Research CenterKitakamiJapan
| | - Kentaro Yoshida
- Genetics and Genomics Research GroupIwate Biotechnology Research CenterKitakamiJapan
| | - Hideo Matsumura
- Genetics and Genomics Research GroupIwate Biotechnology Research CenterKitakamiJapan
| | | | | | | | - Denis J. Wright
- Department of Life Sciences, Faculty of Natural SciencesImperial College LondonBerkshireUK
| |
Collapse
|
8
|
Ruan J, Zhou Y, Zhou M, Yan J, Khurshid M, Weng W, Cheng J, Zhang K. Jasmonic Acid Signaling Pathway in Plants. Int J Mol Sci 2019; 20:ijms20102479. [PMID: 31137463 PMCID: PMC6566436 DOI: 10.3390/ijms20102479] [Citation(s) in RCA: 309] [Impact Index Per Article: 61.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2019] [Revised: 05/05/2019] [Accepted: 05/07/2019] [Indexed: 11/21/2022] Open
Abstract
Jasmonic acid (JA) and its precursors and dervatives, referred as jasmonates (JAs) are important molecules in the regulation of many physiological processes in plant growth and development, and especially the mediation of plant responses to biotic and abiotic stresses. JAs biosynthesis, perception, transport, signal transduction and action have been extensively investigated. In this review, we will discuss the initiation of JA signaling with a focus on environmental signal perception and transduction, JA biosynthesis and metabolism, transport of signaling molecules (local transmission, vascular bundle transmission, and airborne transportation), and biological function (JA signal receptors, regulated transcription factors, and biological processes involved).
Collapse
Affiliation(s)
- Jingjun Ruan
- College of Agriculture, Guizhou University, Guiyang 550025, China.
- Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing 100081, China.
| | - Yuexia Zhou
- College of Agriculture, Guizhou University, Guiyang 550025, China.
| | - Meiliang Zhou
- Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing 100081, China.
| | - Jun Yan
- Schools of Pharmacy and Bioengineering, Chengdu University, Chengdu 610106, China.
| | - Muhammad Khurshid
- Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing 100081, China.
- Institute of Biochemistry and Biotechnology, University of the Punjab, Lahore 54590, Pakistan.
| | - Wenfeng Weng
- College of Agriculture, Guizhou University, Guiyang 550025, China.
| | - Jianping Cheng
- College of Agriculture, Guizhou University, Guiyang 550025, China.
| | - Kaixuan Zhang
- Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing 100081, China.
| |
Collapse
|
9
|
Jha UC, Bohra A, Jha R, Parida SK. Salinity stress response and 'omics' approaches for improving salinity stress tolerance in major grain legumes. PLANT CELL REPORTS 2019; 38:255-277. [PMID: 30637478 DOI: 10.1007/s00299-019-02374-5] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/08/2018] [Accepted: 01/04/2019] [Indexed: 05/21/2023]
Abstract
Sustaining yield gains of grain legume crops under growing salt-stressed conditions demands a thorough understanding of plant salinity response and more efficient breeding techniques that effectively integrate modern omics knowledge. Grain legume crops are important to global food security being an affordable source of dietary protein and essential mineral nutrients to human population, especially in the developing countries. The global productivity of grain legume crops is severely challenged by the salinity stress particularly in the face of changing climates coupled with injudicious use of irrigation water and improper agricultural land management. Plants adapt to sustain under salinity-challenged conditions through evoking complex molecular mechanisms. Elucidating the underlying complex mechanisms remains pivotal to our knowledge about plant salinity response. Improving salinity tolerance of plants demand enriching cultivated gene pool of grain legume crops through capitalizing on 'adaptive traits' that contribute to salinity stress tolerance. Here, we review the current progress in understanding the genetic makeup of salinity tolerance and highlight the role of germplasm resources and omics advances in improving salt tolerance of grain legumes. In parallel, scope of next generation phenotyping platforms that efficiently bridge the phenotyping-genotyping gap and latest research advances including epigenetics is also discussed in context to salt stress tolerance. Breeding salt-tolerant cultivars of grain legumes will require an integrated "omics-assisted" approach enabling accelerated improvement of salt-tolerance traits in crop breeding programs.
Collapse
Affiliation(s)
- Uday Chand Jha
- ICAR-Indian Institute of Pulses Research (IIPR), Kanpur, 208024, India.
| | - Abhishek Bohra
- ICAR-Indian Institute of Pulses Research (IIPR), Kanpur, 208024, India.
| | - Rintu Jha
- ICAR-Indian Institute of Pulses Research (IIPR), Kanpur, 208024, India
| | - Swarup Kumar Parida
- National Institute of Plant Genome Research (NIPGR), New Delhi, 110067, India
| |
Collapse
|
10
|
Jha UC. Current advances in chickpea genomics: applications and future perspectives. PLANT CELL REPORTS 2018; 37:947-965. [PMID: 29860584 DOI: 10.1007/s00299-018-2305-6] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/22/2018] [Accepted: 05/23/2018] [Indexed: 05/27/2023]
Abstract
Chickpea genomics promises to illuminate our understanding of genome organization, structural variations, evolutionary and domestication-related insights and fundamental biology of legume crops. Unprecedented advancements of next generation sequencing (NGS) technologies have enabled in decoding of multiple chickpea genome sequences and generating huge genomic resources in chickpea both at functional and structural level. This review is aimed to update the current progress of chickpea genomics ranging from high density linkage map development, genome-wide association studies (GWAS), functional genomics resources for various traits, emerging role of abiotic stress responsive coding and non-coding RNAs after the completion of draft chickpea genome sequences. Additionally, the current efforts of whole genome re-sequencing (WGRS) approach of global chickpea germplasm to capture the global genetic diversity existing in the historically released varieties across the world and increasing the resolution of the previously identified candidate gene(s) of breeding importance have been discussed. Thus, the outcomes of these genomics resources will assist in genomics-assisted selection and facilitate breeding of climate-resilient chickpea cultivars for sustainable agriculture.
Collapse
Affiliation(s)
- Uday Chand Jha
- ICAR-Indian Institute of Pulses Research (IIPR), Kanpur, 208024, India.
| |
Collapse
|
11
|
Lazali M, Drevon JJ. Role of acid phosphatase in the tolerance of the rhizobial symbiosis with legumes to phosphorus deficiency. Symbiosis 2018. [DOI: 10.1007/s13199-018-0552-5] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
12
|
Kaashyap M, Ford R, Kudapa H, Jain M, Edwards D, Varshney R, Mantri N. Differential Regulation of Genes Involved in Root Morphogenesis and Cell Wall Modification is Associated with Salinity Tolerance in Chickpea. Sci Rep 2018; 8:4855. [PMID: 29555923 PMCID: PMC5859185 DOI: 10.1038/s41598-018-23116-9] [Citation(s) in RCA: 40] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2017] [Accepted: 03/06/2018] [Indexed: 12/18/2022] Open
Abstract
Salinity is a major constraint for intrinsically salt sensitive grain legume chickpea. Chickpea exhibits large genetic variation amongst cultivars, which show better yields in saline conditions but still need to be improved further for sustainable crop production. Based on previous multi-location physiological screening, JG 11 (salt tolerant) and ICCV 2 (salt sensitive) were subjected to salt stress to evaluate their physiological and transcriptional responses. A total of ~480 million RNA-Seq reads were sequenced from root tissues which resulted in identification of 3,053 differentially expressed genes (DEGs) in response to salt stress. Reproductive stage shows high number of DEGs suggesting major transcriptional reorganization in response to salt to enable tolerance. Importantly, cationic peroxidase, Aspartic ase, NRT1/PTR, phosphatidylinositol phosphate kinase, DREB1E and ERF genes were significantly up-regulated in tolerant genotype. In addition, we identified a suite of important genes involved in cell wall modification and root morphogenesis such as dirigent proteins, expansin and casparian strip membrane proteins that could potentially confer salt tolerance. Further, phytohormonal cross-talk between ERF and PIN-FORMED genes which modulate the root growth was observed. The gene set enrichment analysis and functional annotation of these genes suggests they may be utilised as potential candidates for improving chickpea salt tolerance.
Collapse
Affiliation(s)
- Mayank Kaashyap
- School of Science, The Pangenomics Group, RMIT University, Melbourne, Australia
| | - Rebecca Ford
- School of Natural Sciences, Environmental Futures Research Institute, Griffith University, Queensland, Australia
| | - Himabindu Kudapa
- International Crops Research Institute for the Semi-Arid Tropics (ICRISAT), Hyderabad, India
| | - Mukesh Jain
- National Institute of Plant Genome Research, New Delhi, India
| | - Dave Edwards
- School of Plant Biology, The University of Western Australia, Perth, Australia
| | - Rajeev Varshney
- International Crops Research Institute for the Semi-Arid Tropics (ICRISAT), Hyderabad, India.
| | - Nitin Mantri
- School of Science, The Pangenomics Group, RMIT University, Melbourne, Australia.
| |
Collapse
|
13
|
Kaashyap M, Ford R, Bohra A, Kuvalekar A, Mantri N. Improving Salt Tolerance of Chickpea Using Modern Genomics Tools and Molecular Breeding. Curr Genomics 2017; 18:557-567. [PMID: 29204084 PMCID: PMC5684649 DOI: 10.2174/1389202918666170705155252] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2016] [Revised: 11/28/2016] [Accepted: 12/15/2016] [Indexed: 11/22/2022] Open
Abstract
INTRODUCTION The high protein value, essential minerals, dietary fibre and notable ability to fix atmospheric nitrogen make chickpea a highly remunerative crop, particularly in low-input food production systems. Of the variety of constraints challenging chickpea productivity worldwide, salinity remains of prime concern owing to the intrinsic sensitivity of the crop. In view of the projected expansion of chickpea into arable and salt-stressed land by 2050, increasing attention is being placed on improving the salt tolerance of this crop. Considerable effort is currently underway to address salinity stress and substantial breeding progress is being made despite the seemingly highly-complex and environment-dependent nature of the tolerance trait. CONCLUSION This review aims to provide a holistic view of recent advances in breeding chickpea for salt tolerance. Initially, we focus on the identification of novel genetic resources for salt tolerance via extensive germplasm screening. We then expand on the use of genome-wide and cost-effective techniques to gain new insights into the genetic control of salt tolerance, including the responsive genes/QTL(s), gene(s) networks/cross talk and intricate signalling cascades.
Collapse
Affiliation(s)
- Mayank Kaashyap
- School of Science, RMIT University, Melbourne, 3000, Victoria, Australia
| | - Rebecca Ford
- Environmental Futures Research Institute, School of Natural Sciences, Griffith University, Queensland 4111, Australia
| | - Abhishek Bohra
- Crop Improvement Division, Indian Institute of Pulses Research, Kanpur, India
| | - Aniket Kuvalekar
- Interactive Research School for Health Affairs, Bharati Vidyapeeth University, Pune-Satara Road, Pune, Maharashtra, 411043, India
| | - Nitin Mantri
- School of Science, RMIT University, Melbourne, 3000, Victoria, Australia
| |
Collapse
|
14
|
da Silva MD, de Oliveira Silva RL, Ferreira Neto JRC, Benko-Iseppon AM, Kido EA. Genotype-dependent regulation of drought-responsive genes in tolerant and sensitive sugarcane cultivars. Gene 2017; 633:17-27. [PMID: 28855118 DOI: 10.1016/j.gene.2017.08.022] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2017] [Revised: 07/28/2017] [Accepted: 08/23/2017] [Indexed: 12/20/2022]
Abstract
Drought is the most damaging among the major abiotic stresses. Transcriptomic studies allow a global overview of expressed genes, providing the basis for molecular markers development. Here, the HT-SuperSAGE technique allowed the evaluation of four drought-tolerant cultivars and four-sensitive cultivars, after 24h of irrigation suppression. We identified 9831 induced unitags from roots of the tolerant cultivars with different regulations by the -sensitive cultivars after the applied stress. These unitags allowed a proposal of 15 genes, whose expressed profiles were validated by RT-qPCR, evaluating each cultivar independently. These genes covered broad metabolic processes: ethylene stress attenuation (ACCD); root growth (β-EXP8); protein degradation [ubiquitination pathway (E2, 20SPβ4); plant proteases (AP, C13)]; oxidative detoxification (TRX); fatty acid synthesis (ACC); amino acid transport (AAT), and carbohydrate metabolism [glycolysis (PFK, TPI, FBA); TCA cycle (LDP, MDH); pentose phosphate pathway (TKT)]. The expressed profiles showed a genotype-dependent regulation of the target genes. Two drought-tolerant cultivars (SP83-2847; CTC6) presented each one, nine of the induced genes. Among the -sensitive cultivars, CTC13 induced only one, while SP90-1636 induced two genes. These genes should help breeders to identify accessions managing drought stress tolerance responses, showing better ethylene stress attenuation, energy allocation, amino acid transport, and protein homeostasis.
Collapse
Affiliation(s)
- Manassés Daniel da Silva
- Federal University of Pernambuco (UFPE), Bioscience Center, Department of Genetics, 50670-420 Recife, PE, Brazil
| | | | | | - Ana Maria Benko-Iseppon
- Federal University of Pernambuco (UFPE), Bioscience Center, Department of Genetics, 50670-420 Recife, PE, Brazil
| | - Ederson Akio Kido
- Federal University of Pernambuco (UFPE), Bioscience Center, Department of Genetics, 50670-420 Recife, PE, Brazil.
| |
Collapse
|
15
|
Transcriptomics analysis of salt stress tolerance in the roots of the mangrove Avicennia officinalis. Sci Rep 2017; 7:10031. [PMID: 28855698 PMCID: PMC5577154 DOI: 10.1038/s41598-017-10730-2] [Citation(s) in RCA: 37] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2017] [Accepted: 08/14/2017] [Indexed: 12/11/2022] Open
Abstract
Salinity affects growth and development of plants, but mangroves exhibit exceptional salt tolerance. With direct exposure to salinity, mangrove roots possess specific adaptations to tolerate salt stress. Therefore, studying the early effects of salt on mangrove roots can help us better understand the tolerance mechanisms. Using two-month-old greenhouse-grown seedlings of the mangrove tree Avicennia officinalis subjected to NaCl treatment, we profiled gene expression changes in the roots by RNA-sequencing. Of the 6547 genes that were differentially regulated in response to salt treatment, 1404 and 5213 genes were significantly up- and down-regulated, respectively. By comparative genomics, 93 key salt tolerance-related genes were identified of which 47 were up-regulated. Upon placing all the differentially expressed genes (DEG) in known signaling pathways, it was evident that most of the DEGs involved in ethylene and auxin signaling were up-regulated while those involved in ABA signaling were down-regulated. These results imply that ABA-independent signaling pathways also play a major role in salt tolerance of A. officinalis. Further, ethylene response factors (ERFs) were abundantly expressed upon salt treatment and the Arabidopsis mutant aterf115, a homolog of AoERF114 is characterized. Overall, our results would help in understanding the possible molecular mechanism underlying salt tolerance in plants.
Collapse
|
16
|
Barrios A, Caminero C, García P, Krezdorn N, Hoffmeier K, Winter P, Pérez de la Vega M. Deep Super-SAGE transcriptomic analysis of cold acclimation in lentil (Lens culinaris Medik.). BMC PLANT BIOLOGY 2017; 17:111. [PMID: 28666411 PMCID: PMC5493078 DOI: 10.1186/s12870-017-1057-8] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/20/2016] [Accepted: 06/14/2017] [Indexed: 05/24/2023]
Abstract
BACKGROUND Frost is one of the main abiotic stresses limiting plant distribution and crop production. To cope with the stress, plants evolved adaptations known as cold acclimation or chilling tolerance to maximize frost tolerance. Cold acclimation is a progressive acquisition of freezing tolerance by plants subjected to low non-freezing temperatures which subsequently allows them to survive exposure to frost. Lentil is a cool season grain legume that is challenged by winter frost in some areas of its cultivation. RESULTS To better understand the genetic base of frost tolerance differential gene expression in response to cold acclimation was investigated. Recombinant inbred lines (RILs) from the cross Precoz x WA8649041 were first classified as cold tolerant or cold susceptible according to their response to temperatures between -3 to -15 °C. Then, RILs from both extremes of the response curve were cold acclimated and the leaf transcriptomes of two bulks each of eight frost tolerant and seven cold susceptible RILs were investigated by Deep Super-SAGE transcriptome profiling. Thus, four RNA bulks were analysed: the acclimated susceptible, the acclimated tolerant and the respective controls (non-acclimated susceptible and non-acclimated tolerant). Approximately 16.5 million 26 nucleotide long Super-SAGE tags were sequenced in the four sets (between ~3 and 5.4 millions). In total, 133,077 different unitags, each representing a particular transcript isoform, were identified in these four sets. Tags which showed a significantly different abundance in any of the bulks (fold change ≥4.0 and a significant p-value <0.001) were selected and used to identify the corresponding lentil gene sequence. Three hundred of such lentil sequences were identified. Most of their known homologs coded for glycine-rich, cold and drought-regulated proteins, dormancy-associated proteins, proline-rich proteins (PRPs) and other membrane proteins. These were generally but not exclusively over-expressed in the acclimated tolerant lines. CONCLUSIONS This set of candidate genes implicated in the response to frost in lentil represents an useful base for deeper and more detailed investigations into this important agronomic trait in future.
Collapse
Affiliation(s)
- Abel Barrios
- Instituto Tecnológico Agrario de Castilla y León, Consejería de Agricultura y Ganadería, Junta de Castilla y León, Finca Zamadueñas, Ctra. Burgos km, 119, 47071 Valladolid, Spain
- Present Address: Escuela Universitaria de Ingeniería Agrícola I.N.E.A, Con. Viejo de Simancas, Km. 4.5, 47008 Valladolid, Spain
| | - Constantino Caminero
- Instituto Tecnológico Agrario de Castilla y León, Consejería de Agricultura y Ganadería, Junta de Castilla y León, Finca Zamadueñas, Ctra. Burgos km, 119, 47071 Valladolid, Spain
| | - Pedro García
- Area de Genética, Departamento de Biología Molecular, Universidad de León, 24071 León, Spain
| | | | - Klaus Hoffmeier
- GenXPro, Altenhöferallee 3, D-60438 Frankfurt am Main, Germany
| | - Peter Winter
- GenXPro, Altenhöferallee 3, D-60438 Frankfurt am Main, Germany
| | | |
Collapse
|
17
|
Exploring the heat-responsive chaperones and microsatellite markers associated with terminal heat stress tolerance in developing wheat. Funct Integr Genomics 2017; 17:621-640. [PMID: 28573536 DOI: 10.1007/s10142-017-0560-1] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2017] [Revised: 04/06/2017] [Accepted: 04/17/2017] [Indexed: 10/19/2022]
Abstract
Global warming is a major threat for agriculture and food security, and in many cases the negative impacts are already apparent. Wheat is one of the most important staple food crops and is highly sensitive to the heat stress (HS) during reproductive and grain-filling stages. Here, whole transcriptome analysis of thermotolerant wheat cv. HD2985 was carried out at the post-anthesis stage under control (22 ± 3 °C) and HS-treated (42 °C, 2 h) conditions using Illumina Hiseq and Roche GS-FLX 454 platforms. We assembled ~24 million (control) and ~23 million (HS-treated) high-quality trimmed reads using different assemblers with optimal parameters. De novo assembly yielded 52,567 (control) and 59,658 (HS-treated) unigenes. We observed 785 transcripts to be upregulated and 431 transcripts to be downregulated under HS; 78 transcripts showed >10-fold upregulation such as HSPs, metabolic pathway-related genes, etc. Maximum number of upregulated genes was observed to be associated with processes such as HS-response, protein-folding, oxidation-reduction and photosynthesis. We identified 2008 and 2483 simple sequence repeats (SSRs) markers from control and HS-treated samples; 243 SSRs were observed to be overlying on stress-associated genes. Polymorphic study validated four SSRs to be heat-responsive in nature. Expression analysis of identified differentially expressed transcripts (DETs) showed very high fold increase in the expression of catalytic chaperones (HSP26, HSP17, and Rca) in contrasting wheat cvs. HD2985 and HD2329 under HS. We observed positive correlation between RNA-seq and qRT-PCR expression data. The present study culminated in greater understanding of the heat-response of tolerant genotype and has provided good candidate genes for the marker development and screening of wheat germplasm for thermotolerance.
Collapse
|
18
|
Srivastava R, Bajaj D, Malik A, Singh M, Parida SK. Transcriptome landscape of perennial wild Cicer microphyllum uncovers functionally relevant molecular tags regulating agronomic traits in chickpea. Sci Rep 2016; 6:33616. [PMID: 27680662 PMCID: PMC5041113 DOI: 10.1038/srep33616] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2016] [Accepted: 08/26/2016] [Indexed: 01/03/2023] Open
Abstract
The RNA-sequencing followed by de-novo transcriptome assembly identified 11621 genes differentially xpressed in roots vs. shoots of a wild perennial Cicer microphyllum. Comparative analysis of transcriptomes between microphyllum and cultivated desi cv. ICC4958 detected 12772 including 3242 root- and 1639 shoot-specific microphyllum genes with 85% expression validation success rate. Transcriptional reprogramming of microphyllum root-specific genes implicates their possible role in regulating differential natural adaptive characteristics between wild and cultivated chickpea. The transcript-derived 5698 including 282 in-silico polymorphic SSR and 127038 SNP markers annotated at a genome-wide scale exhibited high amplification and polymorphic potential among cultivated (desi and kabuli) and wild accessions suggesting their utility in chickpea genomics-assisted breeding applications. The functional significance of markers was assessed based on their localization in non-synonymous coding and regulatory regions of microphyllum root-specific genes differentially expressed predominantly in ICC 4958 roots under drought stress. A high-density 490 genic SSR- and SNP markers-anchored genetic linkage map identified six major QTLs regulating drought tolerance-related traits, yield per plant and harvest-index in chickpea. The integration of high-resolution QTL mapping with comparative transcriptome profiling delineated five microphyllum root-specific genes with non-synonymous and regulatory SNPs governing drought-responsive yield traits. Multiple potential key regulators and functionally relevant molecular tags delineated can drive translational research and drought tolerance-mediated chickpea genetic enhancement.
Collapse
Affiliation(s)
- Rishi Srivastava
- National Institute of Plant Genome Research (NIPGR), Aruna Asaf Ali Marg, New Delhi 110067, India
| | - Deepak Bajaj
- National Institute of Plant Genome Research (NIPGR), Aruna Asaf Ali Marg, New Delhi 110067, India
| | - Ayushi Malik
- Faculty of Science, Jamia Hamdard University, Hamdard Nagar, New Delhi 110062, India
| | - Mohar Singh
- National Bureau of Plant Genetic Resources Regional Station, Shimla, Himachal Pradesh 171004, India
| | - Swarup K. Parida
- National Institute of Plant Genome Research (NIPGR), Aruna Asaf Ali Marg, New Delhi 110067, India
| |
Collapse
|
19
|
Casado-Díaz A, Anter J, Müller S, Winter P, Quesada-Gómez JM, Dorado G. Transcriptomic Analyses of Adipocyte Differentiation From Human Mesenchymal Stromal-Cells (MSC). J Cell Physiol 2016; 232:771-784. [PMID: 27349923 DOI: 10.1002/jcp.25472] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2016] [Accepted: 06/27/2016] [Indexed: 12/20/2022]
Abstract
Adipogenesis is a physiological process required for fat-tissue development, mainly involved in regulating the organism energetic-state. Abnormal distribution-changes and dysfunctions in such tissue are associated to different pathologies. Adipocytes are generated from progenitor cells, via a complex differentiating process not yet well understood. Therefore, we investigated differential mRNA and miRNA expression patterns of human mesenchymal stromal-cells (MSC) induced and not induced to differentiate into adipocytes by next (second)-generation sequencing. A total of 2,866 differentially expressed genes (101 encoding miRNA) were identified, with 705 (46 encoding miRNA) being upregulated in adipogenesis. They were related to different pathways, including PPARG, lipid, carbohydrate and energy metabolism, redox, membrane-organelle biosynthesis, and endocrine system. Downregulated genes were related to extracellular matrix and cell migration, proliferation, and differentiation. Analyses of mRNA-miRNA interaction showed that repressed miRNA-encoding genes can act downregulating PPARG-related genes; mostly the PPARG activator (PPARGC1A). Induced miRNA-encoding genes regulate downregulated genes related to TGFB1. These results shed new light to understand adipose-tissue differentiation and physiology, increasing our knowledge about pathologies like obesity, type-2 diabetes and osteoporosis. J. Cell. Physiol. 232: 771-784, 2017. © 2016 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Antonio Casado-Díaz
- Unidad de Gestión Clínica de Endocrinología y Nutrición, Instituto Maimónides de Investigación Biomédica de Córdoba (IMIBIC), Hospital Universitario Reina Sofía, Córdoba, Spain
| | - Jaouad Anter
- Dep. Genética, Universidad de Córdoba, Córdoba, Spain
| | | | | | - José Manuel Quesada-Gómez
- Unidad de Gestión Clínica de Endocrinología y Nutrición, Instituto Maimónides de Investigación Biomédica de Córdoba (IMIBIC), Hospital Universitario Reina Sofía, Córdoba, Spain
| | - Gabriel Dorado
- Dep. Bioquímica y Biología Molecular, Campus de Rabanales C6-1-E17, Campus de Excelencia Internacional Agroalimentario (ceiA3), Universidad de Córdoba, Córdoba, Spain
| |
Collapse
|
20
|
Jin H, Dong D, Yang Q, Zhu D. Salt-Responsive Transcriptome Profiling of Suaeda glauca via RNA Sequencing. PLoS One 2016; 11:e0150504. [PMID: 26930632 PMCID: PMC4773115 DOI: 10.1371/journal.pone.0150504] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2015] [Accepted: 02/15/2016] [Indexed: 12/04/2022] Open
Abstract
Background Suaeda glauca, a succulent halophyte of the Chenopodiaceae family, is widely distributed in coastal areas of China. Suaeda glauca is highly resistant to salt and alkali stresses. In the present study, the salt-responsive transcriptome of Suaeda glauca was analyzed to identify genes involved in salt tolerance and study halophilic mechanisms in this halophyte. Results Illumina HiSeq 2500 was used to sequence cDNA libraries from salt-treated and control samples with three replicates each treatment. De novo assembly of the six transcriptomes identified 75,445 unigenes. A total of 23,901 (31.68%) unigenes were annotated. Compared with transcriptomes from the three salt-treated and three salt-free samples, 231 differentially expressed genes (DEGs) were detected (including 130 up-regulated genes and 101 down-regulated genes), and 195 unigenes were functionally annotated. Based on the Gene Ontology (GO), Clusters of Orthologous Groups (COG) and Kyoto Encyclopedia of Genes and Genomes (KEGG) classifications of the DEGs, more attention should be paid to transcripts associated with signal transduction, transporters, the cell wall and growth, defense metabolism and transcription factors involved in salt tolerance. Conclusions This report provides a genome-wide transcriptional analysis of a halophyte, Suaeda glauca, under salt stress. Further studies of the genetic basis of salt tolerance in halophytes are warranted.
Collapse
Affiliation(s)
- Hangxia Jin
- Zhejiang Academy of Agricultural Science, Institute of Crops and Nuclear Technology Utilization, Hangzhou Zhejiang 310021, People’s Republic of China
| | - Dekun Dong
- Zhejiang Academy of Agricultural Science, Institute of Crops and Nuclear Technology Utilization, Hangzhou Zhejiang 310021, People’s Republic of China
| | - Qinghua Yang
- Zhejiang Academy of Agricultural Science, Institute of Crops and Nuclear Technology Utilization, Hangzhou Zhejiang 310021, People’s Republic of China
| | - Danhua Zhu
- Zhejiang Academy of Agricultural Science, Institute of Crops and Nuclear Technology Utilization, Hangzhou Zhejiang 310021, People’s Republic of China
- * E-mail:
| |
Collapse
|
21
|
Montiel J, Szűcs A, Boboescu IZ, Gherman VD, Kondorosi É, Kereszt A. Terminal Bacteroid Differentiation Is Associated With Variable Morphological Changes in Legume Species Belonging to the Inverted Repeat-Lacking Clade. MOLECULAR PLANT-MICROBE INTERACTIONS : MPMI 2016; 29:210-9. [PMID: 26713350 DOI: 10.1094/mpmi-09-15-0213-r] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/06/2023]
Abstract
Medicago and closely related legume species from the inverted repeat-lacking clade (IRLC) impose terminal differentiation onto their bacterial endosymbionts, manifested in genome endoreduplication, cell enlargement, and loss of cell-division capacity. Nodule-specific cysteine-rich (NCR) secreted host peptides are plant effectors of this process. As bacteroids in other IRLC legumes, such as Cicer arietinum and Glycyrrhiza lepidota, were reported not to display features of terminal differentiation, we investigated the fate of bacteroids in species from these genera as well as in four other species representing distinct genera of the phylogenetic tree for this clade. Bacteroids in all tested legumes proved to be larger in size and DNA content than cultured cells; however, the degree of cell elongation was rather variable in the different species. In addition, the reproductive ability of the bacteroids isolated from these legumes was remarkably reduced. In all IRLC species with available sequence data, the existence of NCR genes was found. These results indicate that IRLC legumes provoke terminal differentiation of their endosymbionts with different morphotypes, probably with the help of NCR peptides.
Collapse
Affiliation(s)
- Jesús Montiel
- 1 Institute of Biochemistry, Biological Research Center of the Hungarian Academy of Sciences, Temesvári krt. 62, 6726 Szeged, Hungary
| | - Attila Szűcs
- 1 Institute of Biochemistry, Biological Research Center of the Hungarian Academy of Sciences, Temesvári krt. 62, 6726 Szeged, Hungary
| | - Iulian Z Boboescu
- 1 Institute of Biochemistry, Biological Research Center of the Hungarian Academy of Sciences, Temesvári krt. 62, 6726 Szeged, Hungary
- 2 Research Institute for Renewable Energy, Polytechnic University of Timisoara. Piaţa Victoriei Nr. 2, 300006 Timisoara, Romania
| | - Vasile D Gherman
- 2 Research Institute for Renewable Energy, Polytechnic University of Timisoara. Piaţa Victoriei Nr. 2, 300006 Timisoara, Romania
| | - Éva Kondorosi
- 1 Institute of Biochemistry, Biological Research Center of the Hungarian Academy of Sciences, Temesvári krt. 62, 6726 Szeged, Hungary
| | - Attila Kereszt
- 1 Institute of Biochemistry, Biological Research Center of the Hungarian Academy of Sciences, Temesvári krt. 62, 6726 Szeged, Hungary
| |
Collapse
|
22
|
Janiak A, Kwaśniewski M, Szarejko I. Gene expression regulation in roots under drought. JOURNAL OF EXPERIMENTAL BOTANY 2016; 67:1003-14. [PMID: 26663562 DOI: 10.1093/jxb/erv512] [Citation(s) in RCA: 88] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/19/2023]
Abstract
Stress signalling and regulatory networks controlling expression of target genes are the basis of plant response to drought. Roots are the first organs exposed to water deficiency in the soil and are the place of drought sensing. Signalling cascades transfer chemical signals toward the shoot and initiate molecular responses that lead to the biochemical and morphological changes that allow plants to be protected against water loss and to tolerate stress conditions. Here, we present an overview of signalling network and gene expression regulation pathways that are actively induced in roots under drought stress. In particular, the role of several transcription factor (TF) families, including DREB, AP2/ERF, NAC, bZIP, MYC, CAMTA, Alfin-like and Q-type ZFP, in the regulation of root response to drought are highlighted. The information provided includes available data on mutual interactions between these TFs together with their regulation by plant hormones and other signalling molecules. The most significant downstream target genes and molecular processes that are controlled by the regulatory factors are given. These data are also coupled with information about the influence of the described regulatory networks on root traits and root development which may translate to enhanced drought tolerance. This is the first literature survey demonstrating the gene expression regulatory machinery that is induced by drought stress, presented from the perspective of roots.
Collapse
Affiliation(s)
- Agnieszka Janiak
- Department of Genetics, University of Silesia, Jagiellońska 28, 40-032 Katowice, Poland
| | - Mirosław Kwaśniewski
- Department of Genetics, University of Silesia, Jagiellońska 28, 40-032 Katowice, Poland
| | - Iwona Szarejko
- Department of Genetics, University of Silesia, Jagiellońska 28, 40-032 Katowice, Poland
| |
Collapse
|
23
|
Garg R, Shankar R, Thakkar B, Kudapa H, Krishnamurthy L, Mantri N, Varshney RK, Bhatia S, Jain M. Transcriptome analyses reveal genotype- and developmental stage-specific molecular responses to drought and salinity stresses in chickpea. Sci Rep 2016; 6:19228. [PMID: 26759178 PMCID: PMC4725360 DOI: 10.1038/srep19228] [Citation(s) in RCA: 122] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2015] [Accepted: 12/09/2015] [Indexed: 01/31/2023] Open
Abstract
Drought and salinity are the major factors that limit chickpea production worldwide. We performed whole transcriptome analyses of chickpea genotypes to investigate the molecular basis of drought and salinity stress response/adaptation. Phenotypic analyses confirmed the contrasting responses of the chickpea genotypes to drought or salinity stress. RNA-seq of the roots of drought and salinity related genotypes was carried out under control and stress conditions at vegetative and/or reproductive stages. Comparative analysis of the transcriptomes revealed divergent gene expression in the chickpea genotypes at different developmental stages. We identified a total of 4954 and 5545 genes exclusively regulated in drought-tolerant and salinity-tolerant genotypes, respectively. A significant fraction (~47%) of the transcription factor encoding genes showed differential expression under stress. The key enzymes involved in metabolic pathways, such as carbohydrate metabolism, photosynthesis, lipid metabolism, generation of precursor metabolites/energy, protein modification, redox homeostasis and cell wall component biogenesis, were affected by drought and/or salinity stresses. Interestingly, transcript isoforms showed expression specificity across the chickpea genotypes and/or developmental stages as illustrated by the AP2-EREBP family members. Our findings provide insights into the transcriptome dynamics and components of regulatory network associated with drought and salinity stress responses in chickpea.
Collapse
Affiliation(s)
- Rohini Garg
- Functional and Applied Genomics Laboratory, National Institute of Plant Genome Research (NIPGR), Aruna Asaf Ali Marg, New Delhi, India
| | - Rama Shankar
- Functional and Applied Genomics Laboratory, National Institute of Plant Genome Research (NIPGR), Aruna Asaf Ali Marg, New Delhi, India
| | - Bijal Thakkar
- Functional and Applied Genomics Laboratory, National Institute of Plant Genome Research (NIPGR), Aruna Asaf Ali Marg, New Delhi, India
| | - Himabindu Kudapa
- International Crops Research Institute for the Semi-Arid Tropics (ICRISAT), Patancheru, Telangana, India
| | - Lakshmanan Krishnamurthy
- International Crops Research Institute for the Semi-Arid Tropics (ICRISAT), Patancheru, Telangana, India
| | - Nitin Mantri
- School of Applied Sciences, RMIT University, Victoria, Australia
| | - Rajeev K Varshney
- International Crops Research Institute for the Semi-Arid Tropics (ICRISAT), Patancheru, Telangana, India
| | - Sabhyata Bhatia
- Functional and Applied Genomics Laboratory, National Institute of Plant Genome Research (NIPGR), Aruna Asaf Ali Marg, New Delhi, India
| | - Mukesh Jain
- Functional and Applied Genomics Laboratory, National Institute of Plant Genome Research (NIPGR), Aruna Asaf Ali Marg, New Delhi, India.,School of Computational &Integrative Sciences, Jawaharlal Nehru University, New Delhi, India
| |
Collapse
|
24
|
Kumar RR, Goswami S, Sharma SK, Kala YK, Rai GK, Mishra DC, Grover M, Singh GP, Pathak H, Rai A, Chinnusamy V, Rai RD. Harnessing Next Generation Sequencing in Climate Change: RNA-Seq Analysis of Heat Stress-Responsive Genes in Wheat (Triticum aestivum L.). OMICS-A JOURNAL OF INTEGRATIVE BIOLOGY 2015; 19:632-47. [PMID: 26406536 DOI: 10.1089/omi.2015.0097] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
Wheat is a staple food worldwide and provides 40% of the calories in the diet. Climate change and global warming pose a threat to wheat production, however, and demand a deeper understanding of how heat stress might impact wheat production and wheat biology. However, it is difficult to identify novel heat stress associated genes when the genomic information is not available. Wheat has a very large and complex genome that is about 37 times the size of the rice genome. The present study sequenced the whole transcriptome of the wheat cv. HD2329 at the flowering stage, under control (22°±3°C) and heat stress (42°C, 2 h) conditions using Illumina HiSeq and Roche GS-FLX 454 platforms. We assembled more than 26.3 and 25.6 million high-quality reads from the control and HS-treated tissues transcriptome sequences respectively. About 76,556 (control) and 54,033 (HS-treated) contigs were assembled and annotated de novo using different assemblers and a total of 21,529 unigenes were obtained. Gene expression profile showed significant differential expression of 1525 transcripts under heat stress, of which 27 transcripts showed very high (>10) fold upregulation. Cellular processes such as metabolic processes, protein phosphorylation, oxidations-reductions, among others were highly influenced by heat stress. In summary, these observations significantly enrich the transcript dataset of wheat available on public domain and show a de novo approach to discover the heat-responsive transcripts of wheat, which can accelerate the progress of wheat stress-genomics as well as the course of wheat breeding programs in the era of climate change.
Collapse
Affiliation(s)
- Ranjeet R Kumar
- 1 Division of Biochemistry, Indian Agricultural Research Institute , New Delhi, India
| | - Suneha Goswami
- 1 Division of Biochemistry, Indian Agricultural Research Institute , New Delhi, India
| | - Sushil K Sharma
- 1 Division of Biochemistry, Indian Agricultural Research Institute , New Delhi, India
| | - Yugal K Kala
- 2 Division of Genetics, Indian Agricultural Research Institute , New Delhi, India
| | - Gyanendra K Rai
- 3 Sher-e-Kashmir University of Agricultural Sciences and Technology , Jammu, India
| | - Dwijesh C Mishra
- 4 Centre for Agricultural Bio-Informatics (CAB-in), Indian Agricultural Statistics Research Institute (IASRI) , New Delhi, India
| | - Monendra Grover
- 4 Centre for Agricultural Bio-Informatics (CAB-in), Indian Agricultural Statistics Research Institute (IASRI) , New Delhi, India
| | | | - Himanshu Pathak
- 6 Division of CESCRA, Indian Agricultural Research Institute , New Delhi, India
| | - Anil Rai
- 4 Centre for Agricultural Bio-Informatics (CAB-in), Indian Agricultural Statistics Research Institute (IASRI) , New Delhi, India
| | - Viswanathan Chinnusamy
- 7 Division of Plant Physiology, Indian Agricultural Research Institute , New Delhi, India
| | - Raj D Rai
- 1 Division of Biochemistry, Indian Agricultural Research Institute , New Delhi, India
| |
Collapse
|
25
|
Adnane B, Mainassara ZA, Mohamed F, Mohamed L, Jean-Jacques D, Rim MT, Georg C. Physiological and Molecular Aspects of Tolerance to Environmental Constraints in Grain and Forage Legumes. Int J Mol Sci 2015; 16:18976-9008. [PMID: 26287163 PMCID: PMC4581282 DOI: 10.3390/ijms160818976] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2015] [Revised: 07/09/2015] [Accepted: 08/05/2015] [Indexed: 12/04/2022] Open
Abstract
Despite the agronomical and environmental advantages of the cultivation of legumes, their production is limited by various environmental constraints such as water or nutrient limitation, frost or heat stress and soil salinity, which may be the result of pedoclimatic conditions, intensive use of agricultural lands, decline in soil fertility and environmental degradation. The development of more sustainable agroecosystems that are resilient to environmental constraints will therefore require better understanding of the key mechanisms underlying plant tolerance to abiotic constraints. This review provides highlights of legume tolerance to abiotic constraints with a focus on soil nutrient deficiencies, drought, and salinity. More specifically, recent advances in the physiological and molecular levels of the adaptation of grain and forage legumes to abiotic constraints are discussed. Such adaptation involves complex multigene controlled-traits which also involve multiple sub-traits that are likely regulated under the control of a number of candidate genes. This multi-genetic control of tolerance traits might also be multifunctional, with extended action in response to a number of abiotic constraints. Thus, concrete efforts are required to breed for multifunctional candidate genes in order to boost plant stability under various abiotic constraints.
Collapse
Affiliation(s)
- Bargaz Adnane
- Department of Biosystems and Technology, Swedish University of Agricultural Sciences, Box 103, SE-23053 Alnarp, Sweden.
| | - Zaman-Allah Mainassara
- International Maize and Wheat Improvement Center (CIMMYT), Southern Africa Regional Office, MP163 Harare, Zimbabwe.
| | - Farissi Mohamed
- Polyvalent Laboratory for Research & Development, Polydisciplinary Faculty, Sultan Moulay Sliman University, 23000 Beni-Mellal, Morocco.
| | - Lazali Mohamed
- Faculté des Sciences de la Nature et de la Vie & des Sciences de la Terre, Université de Khemis Miliana, 44225 Ain Defla, Algeria.
| | - Drevon Jean-Jacques
- Unité mixte de recherche, Écologie Fonctionnelle & Biogéochimie des Sols et Agroécosystèmes, Institut National de la Recherche Agronomique, 34060 Montpellier, France.
| | - Maougal T Rim
- Laboratoire de génétique Biochimie et biotechnologies végétales Faculté des Sciences de la Nature et de la Vie, Université des frères Mentouri, 25017 Constantine, Algeria.
| | - Carlsson Georg
- Department of Biosystems and Technology, Swedish University of Agricultural Sciences, Box 103, SE-23053 Alnarp, Sweden.
| |
Collapse
|
26
|
Afonso-Grunz F, Hoffmeier K, Müller S, Westermann AJ, Rotter B, Vogel J, Winter P, Kahl G. Dual 3'Seq using deepSuperSAGE uncovers transcriptomes of interacting Salmonella enterica Typhimurium and human host cells. BMC Genomics 2015; 16:323. [PMID: 25927313 PMCID: PMC4480994 DOI: 10.1186/s12864-015-1489-1] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2015] [Accepted: 03/25/2015] [Indexed: 11/10/2022] Open
Abstract
Background The interaction of eukaryotic host and prokaryotic pathogen cells is linked to specific changes in the cellular proteome, and consequently to infection-related gene expression patterns of the involved cells. To simultaneously assess the transcriptomes of both organisms during their interaction we developed dual 3’Seq, a tag-based sequencing protocol that allows for exact quantification of differentially expressed transcripts in interacting pro- and eukaryotic cells without prior fixation or physical disruption of the interaction. Results Human epithelial cells were infected with Salmonella enterica Typhimurium as a model system for invasion of the intestinal epithelium, and the transcriptional response of the infected host cells together with the differential expression of invading and intracellular pathogen cells was determined by dual 3’Seq coupled with the next-generation sequencing-based transcriptome profiling technique deepSuperSAGE (deep Serial Analysis of Gene Expression). Annotation to reference transcriptomes comprising the operon structure of the employed S. enterica Typhimurium strain allowed for in silico separation of the interacting cells including quantification of polycistronic RNAs. Eighty-nine percent of the known loci are found to be transcribed in prokaryotic cells prior or subsequent to infection of the host, while 75% of all protein-coding loci are represented in the polyadenylated transcriptomes of human host cells. Conclusions Dual 3’Seq was alternatively coupled to MACE (Massive Analysis of cDNA ends) to assess the advantages and drawbacks of a library preparation procedure that allows for sequencing of longer fragments. Additionally, the identified expression patterns of both organisms were validated by qRT-PCR using three independent biological replicates, which confirmed that RELB along with NFKB1 and NFKB2 are involved in the initial immune response of epithelial cells after infection with S. enterica Typhimurium. Electronic supplementary material The online version of this article (doi:10.1186/s12864-015-1489-1) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Fabian Afonso-Grunz
- Institute for Molecular BioSciences, Goethe University Frankfurt am Main, Frankfurt am Main, Germany. .,GenXPro GmbH, Frankfurt Biotechnology Innovation Center (FIZ), Frankfurt am Main, Germany.
| | - Klaus Hoffmeier
- GenXPro GmbH, Frankfurt Biotechnology Innovation Center (FIZ), Frankfurt am Main, Germany.
| | - Sören Müller
- Institute for Molecular BioSciences, Goethe University Frankfurt am Main, Frankfurt am Main, Germany. .,GenXPro GmbH, Frankfurt Biotechnology Innovation Center (FIZ), Frankfurt am Main, Germany.
| | | | - Björn Rotter
- GenXPro GmbH, Frankfurt Biotechnology Innovation Center (FIZ), Frankfurt am Main, Germany.
| | - Jörg Vogel
- Institute for Molecular Infection Biology, University of Würzburg, Würzburg, Germany.
| | - Peter Winter
- GenXPro GmbH, Frankfurt Biotechnology Innovation Center (FIZ), Frankfurt am Main, Germany.
| | - Günter Kahl
- Institute for Molecular BioSciences, Goethe University Frankfurt am Main, Frankfurt am Main, Germany. .,GenXPro GmbH, Frankfurt Biotechnology Innovation Center (FIZ), Frankfurt am Main, Germany.
| |
Collapse
|
27
|
|
28
|
Matsumura H, Krüger DH, Kahl G, Terauchi R. SuperSAGE as an analytical tool for host and viral gene expression. Methods Mol Biol 2015; 1236:181-95. [PMID: 25287504 DOI: 10.1007/978-1-4939-1743-3_14] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
SuperSAGE is a tag-based transcript profiling method, which allows to analyze the expression of thousands of genes at a time. In SuperSAGE, 26 bp tags are extracted from cDNA using the type III restriction enzyme, EcoP15I. In SuperSAGE, the amount of transcripts was represented by tag counts. Taking advantage of uniqueness of the 26 bp tags, host and virus transcripts can be monitored in virus-infected cells. Combining next generation sequencing technology, we established High-throughput SuperSAGE (Ht-SuperSAGE), which allows the analysis of multiple samples with reduced time and cost. In this chapter, we present the protocol of Ht-SuperSAGE involving a recently available benchtop type next generation sequencer.
Collapse
Affiliation(s)
- Hideo Matsumura
- Gene Research Center, Shinshu University, 3-15-1 Tokita, Ueda, Nagano, 386-8567, Japan,
| | | | | | | |
Collapse
|
29
|
Garcia de la Garma J, Fernandez-Garcia N, Bardisi E, Pallol B, Asensio-Rubio JS, Bru R, Olmos E. New insights into plant salt acclimation: the roles of vesicle trafficking and reactive oxygen species signalling in mitochondria and the endomembrane system. THE NEW PHYTOLOGIST 2015; 205:216-39. [PMID: 25187269 DOI: 10.1111/nph.12997] [Citation(s) in RCA: 53] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/06/2014] [Accepted: 07/14/2014] [Indexed: 05/19/2023]
Abstract
In this study, we investigated the cellular and molecular mechanisms that regulate salt acclimation. The main objective was to obtain new insights into the molecular mechanisms that control salt acclimation. Therefore, we carried out a multidisciplinary study using proteomic, transcriptomic, subcellular and physiological techniques. We obtained a Nicotiana tabacum BY-2 cell line acclimated to be grown at 258 mM NaCl as a model for this study. The proteomic and transcriptomic data indicate that the molecular response to stress (chaperones, defence proteins, etc.) is highly induced in these salt-acclimated cells. The subcellular results show that salt induces sodium compartmentalization in the cell vacuoles and seems to be mediated by vesicle trafficking in tobacco salt-acclimated cells. Our results demonstrate that abscisic acid (ABA) and proline metabolism are crucial in the cellular signalling of salt acclimation, probably regulating reactive oxygen species (ROS) production in the mitochondria. ROS may act as a retrograde signal, regulating the cell response. The network of endoplasmic reticulum and Golgi apparatus is highly altered in salt-acclimated cells. The molecular and subcellular analysis suggests that the unfolded protein response is induced in salt-acclimated cells. Finally, we propose that this mechanism may mediate cell death in salt-acclimated cells.
Collapse
|
30
|
Md-Mustafa ND, Khalid N, Gao H, Peng Z, Alimin MF, Bujang N, Ming WS, Mohd-Yusuf Y, Harikrishna JA, Othman RY. Transcriptome profiling shows gene regulation patterns in a flavonoid pathway in response to exogenous phenylalanine in Boesenbergia rotunda cell culture. BMC Genomics 2014; 15:984. [PMID: 25407215 PMCID: PMC4289260 DOI: 10.1186/1471-2164-15-984] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2013] [Accepted: 09/26/2014] [Indexed: 11/19/2022] Open
Abstract
Background Panduratin A extracted from Boesenbergia rotunda is a flavonoid reported to possess a range of medicinal indications which include anti-dengue, anti-HIV, anti-cancer, antioxidant and anti-inflammatory properties. Boesenbergia rotunda is a plant from the Zingiberaceae family commonly used as a food ingredient and traditional medicine in Southeast Asia and China. Reports on the health benefits of secondary metabolites extracted from Boesenbergia rotunda over the last few years has resulted in rising demands for panduratin A. However large scale extraction has been hindered by the naturally low abundance of the compound and limited knowledge of its biosynthetic pathway. Results Transcriptome sequencing and digital gene expression (DGE) analysis of native and phenylalanine treated Boesenbergia rotunda cell suspension cultures were carried out to elucidate the key genes differentially expressed in the panduratin A biosynthetic pathway. Based on experiments that show increase in panduratin A production after 14 days post treatment with exogenous phenylalanine, an aromatic amino acid derived from the shikimic acid pathway, total RNA of untreated and 14 days post-phenylalanine treated cell suspension cultures were extracted and sequenced using next generation sequencing technology employing an Illumina-Solexa platform. The transcriptome data generated 101, 043 unigenes with 50, 932 (50.41%) successfully annotated in the public protein databases; including 49.93% (50, 447) in the non-redundant (NR) database, 34.63% (34, 989) in Swiss-Prot, 24,07% (24, 316) in Kyoto Encyclopedia of Genes and Genomes (KEGG) and 16.26% (16, 426) in Clusters of Orthologous Groups (COG). Through DGE analysis, we found that 14, 644 unigenes were up-regulated and 14, 379 unigenes down-regulated in response to exogenous phenylalanine treatment. In the phenylpropanoid pathway leading to the proposed panduratin A production, 2 up-regulated phenylalanine ammonia-lyase (PAL), 3 up-regulated 4-coumaroyl:coenzyme A ligase (4CL) and 1 up-regulated chalcone synthase (CHS) were found. Conclusions This is the first report of Boesenbergia rotunda de novo transcriptome data that could serve as a reference for gene or enzyme functional studies in the Zingiberaceae family. Although enzymes that are directly involved in the panduratin A biosynthetic pathway were not completely elucidated, the data provides an overall picture of gene regulation patterns leading to panduratin A production. Electronic supplementary material The online version of this article (doi:10.1186/1471-2164-15-984) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | - Rofina Yasmin Othman
- Centre for Research in Biotechnology for Agriculture (CEBAR), University of Malaya, 50603 Kuala Lumpur, Malaysia.
| |
Collapse
|
31
|
Thudi M, Gaur PM, Krishnamurthy L, Mir RR, Kudapa H, Fikre A, Kimurto P, Tripathi S, Soren KR, Mulwa R, Bharadwaj C, Datta S, Chaturvedi SK, Varshney RK. Genomics-assisted breeding for drought tolerance in chickpea. FUNCTIONAL PLANT BIOLOGY : FPB 2014; 41:1178-1190. [PMID: 32481067 DOI: 10.1071/fp13318] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/30/2013] [Accepted: 05/23/2014] [Indexed: 06/11/2023]
Abstract
Terminal drought is one of the major constraints in chickpea (Cicer arietinum L.), causing more than 50% production losses. With the objective of accelerating genetic understanding and crop improvement through genomics-assisted breeding, a draft genome sequence has been assembled for the CDC Frontier variety. In this context, 544.73Mb of sequence data were assembled, capturing of 73.8% of the genome in scaffolds. In addition, large-scale genomic resources including several thousand simple sequence repeats and several million single nucleotide polymorphisms, high-density diversity array technology (15360 clones) and Illumina GoldenGate assay genotyping platforms, high-density genetic maps and transcriptome assemblies have been developed. In parallel, by using linkage mapping approach, one genomic region harbouring quantitative trait loci for several drought tolerance traits has been identified and successfully introgressed in three leading chickpea varieties (e.g. JG 11, Chefe, KAK 2) by using a marker-assisted backcrossing approach. A multilocation evaluation of these marker-assisted backcrossing lines provided several lines with 10-24% higher yield than the respective recurrent parents.Modern breeding approaches like marker-assisted recurrent selection and genomic selection are being deployed for enhancing drought tolerance in chickpea. Some novel mapping populations such as multiparent advanced generation intercross and nested association mapping populations are also being developed for trait mapping at higher resolution, as well as for enhancing the genetic base of chickpea. Such advances in genomics and genomics-assisted breeding will accelerate precision and efficiency in breeding for stress tolerance in chickpea.
Collapse
Affiliation(s)
- Mahendar Thudi
- International Crops Research Institute for the Semi-Arid Tropics (ICRISAT), Patancheru, Hyderabad 502 324, India
| | - Pooran M Gaur
- International Crops Research Institute for the Semi-Arid Tropics (ICRISAT), Patancheru, Hyderabad 502 324, India
| | - Lakshmanan Krishnamurthy
- International Crops Research Institute for the Semi-Arid Tropics (ICRISAT), Patancheru, Hyderabad 502 324, India
| | - Reyazul R Mir
- International Crops Research Institute for the Semi-Arid Tropics (ICRISAT), Patancheru, Hyderabad 502 324, India
| | - Himabindu Kudapa
- International Crops Research Institute for the Semi-Arid Tropics (ICRISAT), Patancheru, Hyderabad 502 324, India
| | - Asnake Fikre
- Ethiopian Institute of Agricultural Research (EIAR), Debre Zeit, PO Box 2003, Ethiopia
| | | | - Shailesh Tripathi
- Indian Agricultural Research Institute (IARI), New Delhi 110 012, India
| | - Khela R Soren
- Indian Institute of Pulses Research (IIPR), Kanpur 208 024, India
| | | | | | - Subhojit Datta
- Indian Institute of Pulses Research (IIPR), Kanpur 208 024, India
| | | | - Rajeev K Varshney
- International Crops Research Institute for the Semi-Arid Tropics (ICRISAT), Patancheru, Hyderabad 502 324, India
| |
Collapse
|
32
|
Yu Y, Huang W, Chen H, Wu G, Yuan H, Song X, Kang Q, Zhao D, Jiang W, Liu Y, Wu J, Cheng L, Yao Y, Guan F. Identification of differentially expressed genes in flax (Linum usitatissimum L.) under saline-alkaline stress by digital gene expression. Gene 2014; 549:113-22. [PMID: 25058012 DOI: 10.1016/j.gene.2014.07.053] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2014] [Revised: 07/17/2014] [Accepted: 07/19/2014] [Indexed: 01/04/2023]
Abstract
The salinization and alkalization of soil are widespread environmental problems, and alkaline salt stress is more destructive than neutral salt stress. Therefore, understanding the mechanism of plant tolerance to saline-alkaline stress has become a major challenge. However, little attention has been paid to the mechanism of plant alkaline salt tolerance. In this study, gene expression profiling of flax was analyzed under alkaline-salt stress (AS2), neutral salt stress (NSS) and alkaline stress (AS) by digital gene expression. Three-week-old flax seedlings were placed in 25 mM Na2CO3 (pH11.6) (AS2), 50mM NaCl (NSS) and NaOH (pH11.6) (AS) for 18 h. There were 7736, 1566 and 454 differentially expressed genes in AS2, NSS and AS compared to CK, respectively. The GO category gene enrichment analysis revealed that photosynthesis was particularly affected in AS2, carbohydrate metabolism was particularly affected in NSS, and the response to biotic stimulus was particularly affected in AS. We also analyzed the expression pattern of five categories of genes including transcription factors, signaling transduction proteins, phytohormones, reactive oxygen species proteins and transporters under these three stresses. Some key regulatory gene families involved in abiotic stress, such as WRKY, MAPKKK, ABA, PrxR and ion channels, were differentially expressed. Compared with NSS and AS, AS2 triggered more differentially expressed genes and special pathways, indicating that the mechanism of AS2 was more complex than NSS and AS. To the best of our knowledge, this was the first transcriptome analysis of flax in response to saline-alkaline stress. These data indicate that common and diverse features of saline-alkaline stress provide novel insights into the molecular mechanisms of plant saline-alkaline tolerance and offer a number of candidate genes as potential markers of tolerance to saline-alkaline stress.
Collapse
Affiliation(s)
- Ying Yu
- Heilongjiang Academy of Agricultural Sciences Postdoctoral Programme, Harbin 150086, PR China; Institute of Industrial Crops, Heilongjiang Academy of Agricultural Sciences, Harbin 150086, PR China
| | - Wengong Huang
- Institute of Industrial Crops, Heilongjiang Academy of Agricultural Sciences, Harbin 150086, PR China
| | - Hongyu Chen
- College of Life Science, Northeast Agricultural University, Harbin 150030, PR China
| | - Guangwen Wu
- Institute of Industrial Crops, Heilongjiang Academy of Agricultural Sciences, Harbin 150086, PR China
| | - Hongmei Yuan
- Heilongjiang Academy of Agricultural Sciences Postdoctoral Programme, Harbin 150086, PR China; Institute of Industrial Crops, Heilongjiang Academy of Agricultural Sciences, Harbin 150086, PR China
| | - Xixia Song
- Institute of Industrial Crops, Heilongjiang Academy of Agricultural Sciences, Harbin 150086, PR China
| | - Qinghua Kang
- Institute of Industrial Crops, Heilongjiang Academy of Agricultural Sciences, Harbin 150086, PR China
| | - Dongsheng Zhao
- Institute of Industrial Crops, Heilongjiang Academy of Agricultural Sciences, Harbin 150086, PR China
| | - Weidong Jiang
- Institute of Industrial Crops, Heilongjiang Academy of Agricultural Sciences, Harbin 150086, PR China
| | - Yan Liu
- Institute of Industrial Crops, Heilongjiang Academy of Agricultural Sciences, Harbin 150086, PR China
| | - Jianzhong Wu
- Institute of Industrial Crops, Heilongjiang Academy of Agricultural Sciences, Harbin 150086, PR China
| | - Lili Cheng
- Institute of Industrial Crops, Heilongjiang Academy of Agricultural Sciences, Harbin 150086, PR China
| | - Yubo Yao
- Institute of Industrial Crops, Heilongjiang Academy of Agricultural Sciences, Harbin 150086, PR China
| | - Fengzhi Guan
- Heilongjiang Academy of Agricultural Sciences Postdoctoral Programme, Harbin 150086, PR China; Institute of Industrial Crops, Heilongjiang Academy of Agricultural Sciences, Harbin 150086, PR China.
| |
Collapse
|
33
|
Liu CW, Chang TS, Hsu YK, Wang AZ, Yen HC, Wu YP, Wang CS, Lai CC. Comparative proteomic analysis of early salt stress responsive proteins in roots and leaves of rice. Proteomics 2014; 14:1759-75. [PMID: 24841874 DOI: 10.1002/pmic.201300276] [Citation(s) in RCA: 57] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2013] [Revised: 04/01/2014] [Accepted: 05/15/2014] [Indexed: 11/11/2022]
Abstract
Growth and productivity of rice (Oryza sativa L.) are severely affected by salinity. Understanding the mechanisms that protect rice and other important cereal crops from salt stress will help in the development of salt-stress-tolerant strains. In this study, rice seedlings of the same genetic species with various salt tolerances were studied. We first used 2DE to resolve the expressed proteome in rice roots and leaves and then used nanospray liquid chromatography/tandem mass spectrometry to identify the differentially expressed proteins in rice seedlings after salt treatment. The 2DE assays revealed that there were 104 differentially expressed protein spots in rice roots and 59 in leaves. Then, we identified 83 proteins in rice roots and 61 proteins in rice leaves by MS analysis. Functional classification analysis revealed that the differentially expressed proteins from roots could be classified into 18 functional categories while those from leaves could be classified into 11 functional categories. The proteins from rice seedlings that most significantly contributed to a protective effect against increased salinity were cysteine synthase, adenosine triphosphate synthase, quercetin 3-O-methyltransferase 1, and lipoxygenase 2. Further analysis demonstrated that the primary mechanisms underlying the ability of rice seedlings to tolerate salt stress were glycolysis, purine metabolism, and photosynthesis. Thus, we suggest that differentially expressed proteins may serve as marker group for the salt tolerance of rice.
Collapse
Affiliation(s)
- Chih-Wei Liu
- Institute of Molecular Biology, National Chung Hsing University, Taichung, Taiwan
| | | | | | | | | | | | | | | |
Collapse
|
34
|
Lazali M, Drevon JJ. The nodule conductance to O₂ diffusion increases with phytase activity in N₂-fixing Phaseolus vulgaris L. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2014; 80:53-9. [PMID: 24727788 DOI: 10.1016/j.plaphy.2014.03.023] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/29/2013] [Accepted: 03/22/2014] [Indexed: 05/26/2023]
Abstract
To understand the relationship between phosphorus use efficiency (PUE) and respiration for symbiotic nitrogen fixation (SNF) in legume nodules, six recombinant inbred lines of common bean (RIL Phaseolus vulgaris L.), contrasting in PUE for SNF, were inoculated with Rhizobium tropici CIAT899, and grown under hydroaeroponic culture with sufficient versus deficient P supply (250 versus 75 μmol P plant(-1) week(-1)). At the flowering stage, the biomass of plants and phytase activity in nodules were analyzed after measuring O2 uptake by nodulated roots. Our results show that the P-deficiency significantly increased the phytase activity in nodules of all RILs though with highest extent for RILs 147, 29 and 83 (ca 45%). This increase in phytase activity was associated with an increase in nodule respiration (ca 22%) and in use of the rhizobial symbiosis (ca 21%). A significant correlation was found under P-deficiency between nodule O2 permeability and phytase activity in nodules for RILs 104, 34 and 115. This observation is to our knowledge the first description of a correlation between O2 permeability and phytase activity of a legume nodule. It is concluded that the variation of phytase activity in nodules can increase the internal utilization of P and might be involved in the regulation of nodule permeability for the respiration linked with SNF and the adaptation to P-deficiency.
Collapse
Affiliation(s)
- Mohamed Lazali
- Université de Khemis Miliana, Faculté des Sciences de la Nature et de la Vie & des Sciences de la Terre, Route Theniet El Had, 44225 Khemis Miliana, Algerie; Institut National de la Recherche Agronomique, UMR Ecologie Fonctionnelle & Biogéochimie des Sols et Agroécosystèmes, INRA-IRD-CIRAD-SupAgro, Place Pierre Viala, 34060 Montpellier, France.
| | - Jean Jacques Drevon
- Institut National de la Recherche Agronomique, UMR Ecologie Fonctionnelle & Biogéochimie des Sols et Agroécosystèmes, INRA-IRD-CIRAD-SupAgro, Place Pierre Viala, 34060 Montpellier, France
| |
Collapse
|
35
|
El Kelish A, Zhao F, Heller W, Durner J, Winkler JB, Behrendt H, Traidl-Hoffmann C, Horres R, Pfeifer M, Frank U, Ernst D. Ragweed (Ambrosia artemisiifolia) pollen allergenicity: SuperSAGE transcriptomic analysis upon elevated CO2 and drought stress. BMC PLANT BIOLOGY 2014; 14:176. [PMID: 24972689 PMCID: PMC4084800 DOI: 10.1186/1471-2229-14-176] [Citation(s) in RCA: 60] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/10/2014] [Accepted: 06/18/2014] [Indexed: 05/18/2023]
Abstract
BACKGROUND Pollen of common ragweed (Ambrosia artemisiifolia) is a main cause of allergic diseases in Northern America. The weed has recently become spreading as a neophyte in Europe, while climate change may also affect the growth of the plant and additionally may also influence pollen allergenicity. To gain better insight in the molecular mechanisms in the development of ragweed pollen and its allergenic proteins under global change scenarios, we generated SuperSAGE libraries to identify differentially expressed transcripts. RESULTS Ragweed plants were grown in a greenhouse under 380 ppm CO2 and under elevated level of CO2 (700 ppm). In addition, drought experiments under both CO2 concentrations were performed. The pollen viability was not altered under elevated CO2, whereas drought stress decreased its viability. Increased levels of individual flavonoid metabolites were found under elevated CO2 and/or drought. Total RNA was isolated from ragweed pollen, exposed to the four mentioned scenarios and four SuperSAGE libraries were constructed. The library dataset included 236,942 unique sequences, showing overlapping as well as clear differently expressed sequence tags (ESTs). The analysis targeted ESTs known in Ambrosia, as well as in pollen of other plants. Among the identified ESTs, those encoding allergenic ragweed proteins (Amb a) increased under elevated CO2 and drought stress. In addition, ESTs encoding allergenic proteins in other plants were also identified. CONCLUSIONS The analysis of changes in the transcriptome of ragweed pollen upon CO2 and drought stress using SuperSAGE indicates that under global change scenarios the pollen transcriptome was altered, and impacts the allergenic potential of ragweed pollen.
Collapse
Affiliation(s)
- Amr El Kelish
- Institute of Biochemical Plant Pathology, Helmholtz Zentrum München, German Research Center for Environmental Health, 85764 Neuherberg, Germany
- Botany Department, Faculty of Science, Suez Canal University, Ismailia, Egypt
| | - Feng Zhao
- Institute of Biochemical Plant Pathology, Helmholtz Zentrum München, German Research Center for Environmental Health, 85764 Neuherberg, Germany
| | - Werner Heller
- Institute of Biochemical Plant Pathology, Helmholtz Zentrum München, German Research Center for Environmental Health, 85764 Neuherberg, Germany
| | - Jörg Durner
- Institute of Biochemical Plant Pathology, Helmholtz Zentrum München, German Research Center for Environmental Health, 85764 Neuherberg, Germany
- Biochemical Plant Pathology, Technische Universität München, Center of Life and Food Sciences Weihenstephan, 85350 Freising-Weihenstephan, Germany
| | - J Barbro Winkler
- Research Unit for Environmental Simulation, Helmholtz Zentrum München, German Research Center for Environmental Health, 85764 Neuherberg, Germany
| | - Heidrun Behrendt
- Center of Allergy & Environment München (ZAUM), Technische Universität and Helmholtz Zentrum München, 85764 Neuherberg, Germany
- CK-CARE, Christine Kühne – Center for Allergy Research and Education, Davos, Switzerland
| | - Claudia Traidl-Hoffmann
- CK-CARE, Christine Kühne – Center for Allergy Research and Education, Davos, Switzerland
- Institute of Environmental Medicine, UNIKA-T, Technische Universität München, Munich, Germany
| | - Ralf Horres
- GenXPro GmbH, 60438 Frankfurt am Main, Germany
| | - Matthias Pfeifer
- Institute of Bioinformatics and Systems Biology, Helmholtz Zentrum München, German Research Center for Environmental Health, 85764 Neuherberg, Germany
| | - Ulrike Frank
- Institute of Biochemical Plant Pathology, Helmholtz Zentrum München, German Research Center for Environmental Health, 85764 Neuherberg, Germany
- CK-CARE, Christine Kühne – Center for Allergy Research and Education, Davos, Switzerland
| | - Dieter Ernst
- Institute of Biochemical Plant Pathology, Helmholtz Zentrum München, German Research Center for Environmental Health, 85764 Neuherberg, Germany
- CK-CARE, Christine Kühne – Center for Allergy Research and Education, Davos, Switzerland
| |
Collapse
|
36
|
Validation of novel reference genes for reverse transcription quantitative real-time PCR in drought-stressed sugarcane. ScientificWorldJournal 2014; 2014:357052. [PMID: 24987730 PMCID: PMC4060590 DOI: 10.1155/2014/357052] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2014] [Revised: 04/20/2014] [Accepted: 04/21/2014] [Indexed: 12/22/2022] Open
Abstract
One of the most challenging aspects of RT-qPCR data analysis is the identification of reliable reference genes. Ideally, they should be neither induced nor repressed under different experimental conditions. To date, few reference genes have been adequately studied for sugarcane (Saccharum spp.) using statistical approaches. In this work, six candidate genes (αTUB, GAPDH, H1, SAMDC, UBQ, and 25S rRNA) were tested for gene expression normalization of sugarcane root tissues from drought-tolerant and -sensitive accessions after continuous dehydration (24 h). By undergoing different approaches (GeNorm, NormFinder, and BestKeeper), it was shown that most of them could be used in combinations for normalization purposes, with the exception of SAMDC. Nevertheless three of them (H1, αTUB, and GAPDH) were considered the most reliable reference genes. Their suitability as reference genes validated the expression profiles of two targets (AS and PFPα1), related to SuperSAGE unitags, in agreement with results revealed by previous in silico analysis. The other two sugarcane unitags (ACC oxidase and PIP1-1), after salt stress (100 mM NaCl), presented their expressions validated in the same way. In conclusion, these reference genes will be useful for dissecting gene expression in sugarcane roots under abiotic stress, especially in transcriptomic studies using SuperSAGE or RNAseq approaches.
Collapse
|
37
|
Maougal RT, Bargaz A, Sahel C, Amenc L, Djekoun A, Plassard C, Drevon JJ. Localization of the Bacillus subtilis beta-propeller phytase transcripts in nodulated roots of Phaseolus vulgaris supplied with phytate. PLANTA 2014; 239:901-908. [PMID: 24407511 DOI: 10.1007/s00425-013-2023-9] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/28/2013] [Accepted: 12/19/2013] [Indexed: 06/03/2023]
Abstract
Soil organic phosphorus (Po) such as phytate, which comprises up to 80 % of total Po, must be hydrolyzed by specific enzymes called phytases to be used by plants. In contrast to plants, bacteria, such as Bacillus subtilis, have the ability to use phytate as the sole source of P due to the excretion of a beta-propeller phytase (BPP). In order to assess whether the B. subtilis BPP could make P available from phytate for the benefit of a nodulated legume, the P-sensitive recombinant inbred line RIL147 of Phaseolus vulgaris was grown under hydroaeroponic conditions with either 12.5 μM phytate (C₆H₁₈O₂₄P₆) or 75 μmol Pi (K₂HPO₄), and inoculated with Rhizobium tropici CIAT899 alone, or co-inoculated with both B. subtilis DSM 10 and CIAT899. The in situ RT-PCR of BPP genes displayed the most intense fluorescent BPP signal on root tips. Some BPP signal was found inside the root cortex and the endorhizosphere of the root tip, suggesting endophytic bacteria expressing BPP. However, the co-inoculation with B. subtilis was associated with a decrease in plant P content, nodulation and the subsequent plant growth. Such a competitive effect of B. subtilis on P acquisition from phytate in symbiotic nitrogen fixation might be circumvented if the rate of inoculation were reasoned in order to avoid the inhibition of nodulation by excess B. subtilis proliferation. It is concluded that B. subtilis BPP gene is expressed in P. vulgaris rhizosphere.
Collapse
Affiliation(s)
- Rim Tinhinen Maougal
- Institut National de la Recherche Agronomique, UMR1222 Ecologie Fonctionnelle & Biogéochimie des Sols & des Agroécosystèmes, INRA-IRD-CIRAD-SupAgro, 1 Place Pierre Viala, 34060, Montpellier Cedex, France,
| | | | | | | | | | | | | |
Collapse
|
38
|
Hiz MC, Canher B, Niron H, Turet M. Transcriptome analysis of salt tolerant common bean (Phaseolus vulgaris L.) under saline conditions. PLoS One 2014; 9:e92598. [PMID: 24651267 PMCID: PMC3961409 DOI: 10.1371/journal.pone.0092598] [Citation(s) in RCA: 54] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2013] [Accepted: 02/24/2014] [Indexed: 12/02/2022] Open
Abstract
Salinity is one of the important abiotic stress factors that limit crop production. Common bean, Phaseolus vulgaris L., a major protein source in developing countries, is highly affected by soil salinity and the information on genes that play a role in salt tolerance is scarce. We aimed to identify differentially expressed genes (DEGs) and related pathways by comprehensive analysis of transcriptomes of both root and leaf tissues of the tolerant genotype grown under saline and control conditions in hydroponic system. We have generated a total of 158 million high-quality reads which were assembled into 83,774 all-unigenes with a mean length of 813 bp and N50 of 1,449 bp. Among the all-unigenes, 58,171 were assigned with Nr annotations after homology analyses. It was revealed that 6,422 and 4,555 all-unigenes were differentially expressed upon salt stress in leaf and root tissues respectively. Validation of the RNA-seq quantifications (RPKM values) was performed by qRT-PCR (Quantitative Reverse Transcription PCR) analyses. Enrichment analyses of DEGs based on GO and KEGG databases have shown that both leaf and root tissues regulate energy metabolism, transmembrane transport activity, and secondary metabolites to cope with salinity. A total of 2,678 putative common bean transcription factors were identified and classified under 59 transcription factor families; among them 441 were salt responsive. The data generated in this study will help in understanding the fundamentals of salt tolerance in common bean and will provide resources for functional genomic studies.
Collapse
Affiliation(s)
- Mahmut Can Hiz
- Bogazici University Department of Molecular Biology and Genetics, Istanbul, Turkey
- * E-mail:
| | - Balkan Canher
- Bogazici University Department of Molecular Biology and Genetics, Istanbul, Turkey
| | - Harun Niron
- Bogazici University Department of Molecular Biology and Genetics, Istanbul, Turkey
| | - Muge Turet
- Bogazici University Department of Molecular Biology and Genetics, Istanbul, Turkey
| |
Collapse
|
39
|
Afonso-Grunz F, Molina C, Hoffmeier K, Rycak L, Kudapa H, Varshney RK, Drevon JJ, Winter P, Kahl G. Genome-based analysis of the transcriptome from mature chickpea root nodules. FRONTIERS IN PLANT SCIENCE 2014; 5:325. [PMID: 25071808 PMCID: PMC4093793 DOI: 10.3389/fpls.2014.00325] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/27/2014] [Accepted: 06/21/2014] [Indexed: 05/07/2023]
Abstract
Symbiotic nitrogen fixation (SNF) in root nodules of grain legumes such as chickpea is a highly complex process that drastically affects the gene expression patterns of both the prokaryotic as well as eukaryotic interacting cells. A successfully established symbiotic relationship requires mutual signaling mechanisms and a continuous adaptation of the metabolism of the involved cells to varying environmental conditions. Although some of these processes are well understood today many of the molecular mechanisms underlying SNF, especially in chickpea, remain unclear. Here, we reannotated our previously published transcriptome data generated by deepSuperSAGE (Serial Analysis of Gene Expression) to the recently published draft genome of chickpea to assess the root- and nodule-specific transcriptomes of the eukaryotic host cells. The identified gene expression patterns comprise up to 71 significantly differentially expressed genes and the expression of twenty of these was validated by quantitative real-time PCR with the tissues from five independent biological replicates. Many of the differentially expressed transcripts were found to encode proteins implicated in sugar metabolism, antioxidant defense as well as biotic and abiotic stress responses of the host cells, and some of them were already known to contribute to SNF in other legumes. The differentially expressed genes identified in this study represent candidates that can be used for further characterization of the complex molecular mechanisms underlying SNF in chickpea.
Collapse
Affiliation(s)
- Fabian Afonso-Grunz
- Institute for Molecular BioSciences, Goethe University Frankfurt am MainFrankfurt am Main, Germany
- GenXPro GmbH, Frankfurt Biotechnology Innovation Center (FIZ)Frankfurt am Main, Germany
- *Correspondence: Fabian Afonso-Grunz, Laboratory of Prof. Dr. Günter Kahl, Goethe University Frankfurt am Main, Institute for Molecular BioSciences, Max-von-Laue-Str. 9, 60438 Frankfurt am Main, Germany e-mail:
| | - Carlos Molina
- GenXPro GmbH, Frankfurt Biotechnology Innovation Center (FIZ)Frankfurt am Main, Germany
- Plant Breeding Institute, Christian-Albrechts-University KielKiel, Germany
| | - Klaus Hoffmeier
- GenXPro GmbH, Frankfurt Biotechnology Innovation Center (FIZ)Frankfurt am Main, Germany
| | - Lukas Rycak
- GenXPro GmbH, Frankfurt Biotechnology Innovation Center (FIZ)Frankfurt am Main, Germany
| | - Himabindu Kudapa
- International Crops Research Institute for the Semi-Arid TropicsHyderabad, India
| | - Rajeev K. Varshney
- International Crops Research Institute for the Semi-Arid TropicsHyderabad, India
| | - Jean-Jacques Drevon
- French National Institute for Agricultural Research (INRA), Eco&SolsMontpellier-Cedex, France
| | - Peter Winter
- GenXPro GmbH, Frankfurt Biotechnology Innovation Center (FIZ)Frankfurt am Main, Germany
| | - Günter Kahl
- Institute for Molecular BioSciences, Goethe University Frankfurt am MainFrankfurt am Main, Germany
- GenXPro GmbH, Frankfurt Biotechnology Innovation Center (FIZ)Frankfurt am Main, Germany
| |
Collapse
|
40
|
Kudapa H, Ramalingam A, Nayakoti S, Chen X, Zhuang WJ, Liang X, Kahl G, Edwards D, Varshney RK. Functional genomics to study stress responses in crop legumes: progress and prospects. FUNCTIONAL PLANT BIOLOGY : FPB 2013; 40:1221-1233. [PMID: 32481190 DOI: 10.1071/fp13191] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/25/2013] [Accepted: 08/22/2013] [Indexed: 06/11/2023]
Abstract
Legumes are important food crops worldwide, contributing to more than 33% of human dietary protein. The production of crop legumes is frequently impacted by abiotic and biotic stresses. It is therefore important to identify genes conferring resistance to biotic stresses and tolerance to abiotic stresses that can be used to both understand molecular mechanisms of plant response to the environment and to accelerate crop improvement. Recent advances in genomics offer a range of approaches such as the sequencing of genomes and transcriptomes, gene expression microarray as well as RNA-seq based gene expression profiling, and map-based cloning for the identification and isolation of biotic and abiotic stress-responsive genes in several crop legumes. These candidate stress associated genes should provide insights into the molecular mechanisms of stress tolerance and ultimately help to develop legume varieties with improved stress tolerance and productivity under adverse conditions. This review provides an overview on recent advances in the functional genomics of crop legumes that includes the discovery as well as validation of candidate genes.
Collapse
Affiliation(s)
- Himabindu Kudapa
- International Crops Research Institute for the Semiarid Tropics (ICRISAT), Patancheru 502324, India
| | - Abirami Ramalingam
- International Crops Research Institute for the Semiarid Tropics (ICRISAT), Patancheru 502324, India
| | - Swapna Nayakoti
- International Crops Research Institute for the Semiarid Tropics (ICRISAT), Patancheru 502324, India
| | - Xiaoping Chen
- Crops Research Institute, Guangdong Academy of Agricultural Sciences, Guangzhou, China
| | - Wei-Jian Zhuang
- Fujian Provincial Key Laboratory of Plant Molecular and Cell Biology, Fujian Agriculture and Forestry University, Fuzhou 350002, PR China
| | - Xuanqiang Liang
- Crops Research Institute, Guangdong Academy of Agricultural Sciences, Guangzhou, China
| | - Guenter Kahl
- Goethe University Frankfurt am Main, Institute for Molecular BioSciences, Max-von-Laue-Str. 9, Frankfurt am Main 60438, Germany
| | - David Edwards
- School of Agriculture and Food Sciences, University of Queensland, Brisbane, St Lucia, Qld 4072, Australia
| | - Rajeev K Varshney
- International Crops Research Institute for the Semiarid Tropics (ICRISAT), Patancheru 502324, India
| |
Collapse
|
41
|
Laohavisit A, Richards SL, Shabala L, Chen C, Colaço RD, Swarbreck SM, Shaw E, Dark A, Shabala S, Shang Z, Davies JM. Salinity-induced calcium signaling and root adaptation in Arabidopsis require the calcium regulatory protein annexin1. PLANT PHYSIOLOGY 2013; 163:253-62. [PMID: 23886625 PMCID: PMC3762646 DOI: 10.1104/pp.113.217810] [Citation(s) in RCA: 101] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/05/2023]
Abstract
Salinity (NaCl) stress impairs plant growth and inflicts severe crop losses. In roots, increasing extracellular NaCl causes Ca²⁺ influx to elevate cytosolic free Ca²⁺ ([Ca²⁺](cyt)) as a second messenger for adaptive signaling. Amplification of the signal involves plasma membrane reduced nicotinamide adenine dinucleotide phosphate oxidase activation, with the resultant reactive oxygen species triggering Ca²⁺ influx. The genetic identities of the Ca²⁺-permeable channels involved in generating the [Ca²⁺](cyt) signal are unknown. Potential candidates in the model plant Arabidopsis (Arabidopsis thaliana) include annexin1 (AtANN1). Here, luminescent detection of [Ca²⁺](cyt) showed that AtANN1 responds to high extracellular NaCl by mediating reactive oxygen species-activated Ca²⁺ influx across the plasma membrane of root epidermal protoplasts. Electrophysiological analysis revealed that root epidermal plasma membrane Ca²⁺ influx currents activated by NaCl are absent from the Atann1 loss-of-function mutant. Both adaptive signaling and salt-responsive production of secondary roots are impaired in the loss-of-function mutant, thus identifying AtANN1 as a key component of root cell adaptation to salinity.
Collapse
|
42
|
Bargaz A, Ghoulam C, Drevon JJ. Specific expression and activity of acid phosphatases in common bean nodules. PLANT SIGNALING & BEHAVIOR 2013; 8:e25022. [PMID: 23733065 PMCID: PMC4004617 DOI: 10.4161/psb.25022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/15/2013] [Accepted: 05/10/2013] [Indexed: 06/02/2023]
Abstract
Under phosphorus (P) deficiency, sensitivity of the N 2-fixing legumes increases since the large amount of P-dependent carbon and energy turnover required during N 2 fixation are not satisfied. However, despites the fact that these crops have been widely characterized under P-deficiency and a number of tolerance traits have been identified, abilities of the nodules to cope with this environmental constraint have still to be further investigated. Increases both of activity and gene expression of acid phosphatases (APases) are among mechanisms that lead to increase both of N 2 fixation and nodule respiration under P-deficiency. Our findings have revealed that expression of phosphoenol pyruvate phosphatase (PEPase) and trehalose 6P phosphatase (TPP) genes and activities of the corresponding enzymes were positively correlated with increases both of the rhizobial symbiosis efficiency in use of P for N 2 fixation and nodule O 2 permeability. Under P-deficiency, this positive correlation was more significant for the recombinant inbred line (RIL) of Phaseolus vulgaris RIL115 that is tolerant to P-deficiency than the sensitive RIL147. Overall, the present work suggests that the tissue-specific localized PEPase and TPP transcripts of infected cells and nodule cortex play a role in adaptation to P-deficiency and are likely involved in nodule respiration linked to symbiotic nitrogen fixation (SNF).
Collapse
Affiliation(s)
- Adnane Bargaz
- Swedish University of Agricultural Sciences; Department of Biosystems and Technology; Alnarp, Sweden
| | - Cherki Ghoulam
- Team of Plant Biotechnology and Agro-physiology of Symbiosis; Faculty of Sciences and Techniques; Marrakech, Morocco
| | - Jean-Jacques Drevon
- INRA; UMR Ecologie Fonctionnelle & Biogéochimie des Sols & des Agroécosystèmes; Montpellier, France
| |
Collapse
|
43
|
Bargaz A, Lazali M, Amenc L, Abadie J, Ghoulam C, Farissi M, Faghire M, Drevon JJ. Differential expression of trehalose 6-P phosphatase and ascorbate peroxidase transcripts in nodule cortex of Phaseolus vulgaris and regulation of nodule O2 permeability. PLANTA 2013; 238:107-119. [PMID: 23575967 DOI: 10.1007/s00425-013-1877-1] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/30/2012] [Accepted: 03/28/2013] [Indexed: 06/02/2023]
Abstract
Although the role of phosphatases and antioxidant enzymes have been documented in phosphorus (P) deficiency tolerance, gene expression differences in the nodules of nitrogen fixing legumes should also affect tolerance to this soil constraint. In this study, root nodules were induced by Rhizobium tropici CIAT899 in two Phaseolus vulgaris recombinant inbred lines (RIL); RIL115 (low P-tolerant) and RIL147 (low P-sensitive) under hydroaeroponic culture with sufficient versus deficient P supply. Trehalose 6-P phosphatase and ascorbate peroxidase transcripts were localized within nodules in which O2 permeability was measured. Results indicate that differential tissues-specific expression of trehalose 6-P phosphatase and ascorbate peroxidase transcripts within nodules was detected particularly in infected zone and cortical cells. Under P-deficiency, trehalose 6-P phosphatase transcript was increased and mainly localized in infected zone and outer cortex of RIL115 as compared to RIL147. Ascorbate peroxidase transcript was highly expressed under P-sufficiency in the infected zone, inner cortex and vascular traces of RIL115 rather than RIL147. In addition, significant correlations were found between nodule O2 permeability and both peroxidase (r = 0.66*) and trehalose 6-P phosphatase enzyme activities (r = 0.79*) under sufficient and deficient P conditions, respectively. The present findings suggest that the tissue-specific localized trehalose 6-P phosphatase and ascorbate peroxidase transcripts of infected cells and nodule cortex are involved in nitrogen fixation efficiency and are likely to play a role in nodule respiration and adaptation to P-deficiency.
Collapse
Affiliation(s)
- Adnane Bargaz
- Institut National de la Recherche Agronomique INRA, UMR1222 Ecologie Fonctionnelle and Biogéochimie des Sols and des Agroécosystèmes, INRA-IRD-CIRAD-SupAgro, 2 Place Pierre Viala, 34060, Montpellier Cedex, France.
| | | | | | | | | | | | | | | |
Collapse
|
44
|
Cheng CK, Au CH, Wilke SK, Stajich JE, Zolan ME, Pukkila PJ, Kwan HS. 5'-Serial Analysis of Gene Expression studies reveal a transcriptomic switch during fruiting body development in Coprinopsis cinerea. BMC Genomics 2013; 14:195. [PMID: 23514374 PMCID: PMC3606632 DOI: 10.1186/1471-2164-14-195] [Citation(s) in RCA: 51] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2012] [Accepted: 03/08/2013] [Indexed: 12/02/2022] Open
Abstract
Background The transition from the vegetative mycelium to the primordium during fruiting body development is the most complex and critical developmental event in the life cycle of many basidiomycete fungi. Understanding the molecular mechanisms underlying this process has long been a goal of research on basidiomycetes. Large scale assessment of the expressed transcriptomes of these developmental stages will facilitate the generation of a more comprehensive picture of the mushroom fruiting process. In this study, we coupled 5'-Serial Analysis of Gene Expression (5'-SAGE) to high-throughput pyrosequencing from 454 Life Sciences to analyze the transcriptomes and identify up-regulated genes among vegetative mycelium (Myc) and stage 1 primordium (S1-Pri) of Coprinopsis cinerea during fruiting body development. Results We evaluated the expression of >3,000 genes in the two respective growth stages and discovered that almost one-third of these genes were preferentially expressed in either stage. This identified a significant turnover of the transcriptome during the course of fruiting body development. Additionally, we annotated more than 79,000 transcription start sites (TSSs) based on the transcriptomes of the mycelium and stage 1 primoridum stages. Patterns of enrichment based on gene annotations from the GO and KEGG databases indicated that various structural and functional protein families were uniquely employed in either stage and that during primordial growth, cellular metabolism is highly up-regulated. Various signaling pathways such as the cAMP-PKA, MAPK and TOR pathways were also identified as up-regulated, consistent with the model that sensing of nutrient levels and the environment are important in this developmental transition. More than 100 up-regulated genes were also found to be unique to mushroom forming basidiomycetes, highlighting the novelty of fruiting body development in the fungal kingdom. Conclusions We implicated a wealth of new candidate genes important to early stages of mushroom fruiting development, though their precise molecular functions and biological roles are not yet fully known. This study serves to advance our understanding of the molecular mechanisms of fruiting body development in the model mushroom C. cinerea.
Collapse
Affiliation(s)
- Chi Keung Cheng
- Food Research Centre and Food and Nutrition Sciences Programme, School of Life Sciences, Faculty of Science, The Chinese University of Hong Kong, Shatin, S.A.R., Hong Kong
| | | | | | | | | | | | | |
Collapse
|
45
|
Zhao Q, Zhang H, Wang T, Chen S, Dai S. Proteomics-based investigation of salt-responsive mechanisms in plant roots. J Proteomics 2013; 82:230-53. [PMID: 23385356 DOI: 10.1016/j.jprot.2013.01.024] [Citation(s) in RCA: 108] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2012] [Revised: 01/10/2013] [Accepted: 01/25/2013] [Indexed: 12/29/2022]
Abstract
Salinity is one of the major abiotic stresses that limits agricultural productivity worldwide. Plant roots function as the primary site of salinity perception. Salt responses in roots are essential for maintaining root functionality, as well as for transmitting the salt signal to shoot for proper salt response and adaptation in the entire plant. Therefore, a thorough understanding of signaling and metabolic mechanisms of salt response in roots is critical for improving plant salt tolerance. Current proteomic studies have provided salt-responsive expression patterns of 905 proteins in 14 plant species. Through integrative analysis of salt-responsive proteins and previous physiological and molecular findings, this review summarizes current understanding of salt responses in roots and highlights proteomic findings on the molecular mechanisms in the fine-tuned salt-responsive networks. At the proteome level, the following processes become dominant in root salt response: (i) salt signal perception and transduction; (ii) detoxification of reactive oxygen species (ROS); (iii) salt uptake/exclusion and compartmentalization; (iv) protein translation and/or turnover dynamics; (v) cytoskeleton/cell wall dynamics; (vi) carbohydrate and energy metabolism; and (vii) other salt-responsive metabolisms. These processes work together to gain cellular homeostasis in roots and determine the overall phenotype of plant growth and development under salt stress.
Collapse
Affiliation(s)
- Qi Zhao
- Alkali Soil Natural Environmental Science Center, Northeast Forestry University, Harbin 150040, China
| | | | | | | | | |
Collapse
|
46
|
Dong Z, Shi L, Wang Y, Chen L, Cai Z, Wang Y, Jin J, Li X. Identification and Dynamic Regulation of microRNAs Involved in Salt Stress Responses in Functional Soybean Nodules by High-Throughput Sequencing. Int J Mol Sci 2013; 14:2717-38. [PMID: 23358256 PMCID: PMC3588011 DOI: 10.3390/ijms14022717] [Citation(s) in RCA: 58] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2012] [Revised: 01/09/2013] [Accepted: 01/15/2013] [Indexed: 01/02/2023] Open
Abstract
Both symbiosis between legumes and rhizobia and nitrogen fixation in functional nodules are dramatically affected by salt stress. Better understanding of the molecular mechanisms that regulate the salt tolerance of functional nodules is essential for genetic improvement of nitrogen fixation efficiency. microRNAs (miRNAs) have been implicated in stress responses in many plants and in symbiotic nitrogen fixation (SNF) in soybean. However, the dynamic regulation of miRNAs in functioning nodules during salt stress response remains unknown. We performed deep sequencing of miRNAs to understand the miRNA expression profile in normal or salt stressed-soybean mature nodules. We identified 110 known miRNAs belonging to 61 miRNA families and 128 novel miRNAs belonging to 64 miRNA families. Among them, 104 miRNAs were dramatically differentially expressed (>2-fold or detected only in one library) during salt stress. qRT-PCR analysis of eight miRNAs confirmed that these miRNAs were dynamically regulated in response to salt stress in functional soybean nodules. These data significantly increase the number of miRNAs known to be expressed in soybean nodules, and revealed for the first time a dynamic regulation of miRNAs during salt stress in functional nodules. The findings suggest great potential for miRNAs in functional soybean nodules during salt stress.
Collapse
Affiliation(s)
- Zhanghui Dong
- Key State Laboratory of Plant Cell & Chromosome Engineering, Center of Agricultural Resources Research, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Shijiazhuang 050021, Hebei, China; E-Mails: (Z.D.); (L.S.); (L.C.); (Z.C.); (Y.W.)
- Graduate School of Chinese Academy of Sciences, 19A Yuquanlu Shijingshanqu, Beijing 100049, China
- Shijiazhuang Academy of Agriculture and Forestry Sciences, Shijiazhuang 050041, Hebei, China
| | - Lei Shi
- Key State Laboratory of Plant Cell & Chromosome Engineering, Center of Agricultural Resources Research, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Shijiazhuang 050021, Hebei, China; E-Mails: (Z.D.); (L.S.); (L.C.); (Z.C.); (Y.W.)
| | - Yanwei Wang
- National Engineering Laboratory for Tree Breeding, Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants, College of Biological Sciences and Biotechnology, Beijing Forestry University, Beijing 100083, China; E-Mail:
| | - Liang Chen
- Key State Laboratory of Plant Cell & Chromosome Engineering, Center of Agricultural Resources Research, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Shijiazhuang 050021, Hebei, China; E-Mails: (Z.D.); (L.S.); (L.C.); (Z.C.); (Y.W.)
| | - Zhaoming Cai
- Key State Laboratory of Plant Cell & Chromosome Engineering, Center of Agricultural Resources Research, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Shijiazhuang 050021, Hebei, China; E-Mails: (Z.D.); (L.S.); (L.C.); (Z.C.); (Y.W.)
- Graduate School of Chinese Academy of Sciences, 19A Yuquanlu Shijingshanqu, Beijing 100049, China
| | - Youning Wang
- Key State Laboratory of Plant Cell & Chromosome Engineering, Center of Agricultural Resources Research, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Shijiazhuang 050021, Hebei, China; E-Mails: (Z.D.); (L.S.); (L.C.); (Z.C.); (Y.W.)
| | - Jingbo Jin
- Key Laboratory of Plant Molecular Physiology, Institute of Botany, Chinese Academy of Sciences; Beijing 100093, China; E-Mail:
| | - Xia Li
- Key State Laboratory of Plant Cell & Chromosome Engineering, Center of Agricultural Resources Research, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Shijiazhuang 050021, Hebei, China; E-Mails: (Z.D.); (L.S.); (L.C.); (Z.C.); (Y.W.)
- Author to whom correspondence should be addressed; E-Mail: ; Tel.: +86-0311-8587-1744; Fax: +86-0311-8581-5093
| |
Collapse
|
47
|
Agarwal G, Jhanwar S, Priya P, Singh VK, Saxena MS, Parida SK, Garg R, Tyagi AK, Jain M. Comparative analysis of kabuli chickpea transcriptome with desi and wild chickpea provides a rich resource for development of functional markers. PLoS One 2012; 7:e52443. [PMID: 23300670 PMCID: PMC3531472 DOI: 10.1371/journal.pone.0052443] [Citation(s) in RCA: 102] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2012] [Accepted: 11/13/2012] [Indexed: 11/25/2022] Open
Abstract
Chickpea (Cicer arietinum L.) is an important crop legume plant with high nutritional value. The transcriptomes of desi and wild chickpea have already been sequenced. In this study, we sequenced the transcriptome of kabuli chickpea, C. arietinum (genotype ICCV2), having higher commercial value, using GS-FLX Roche 454 and Illumina technologies. The assemblies of both Roche 454 and Illumina datasets were optimized using various assembly programs and parameters. The final optimized hybrid assembly generated 43,389 transcripts with an average length of 1065 bp and N50 length of 1653 bp representing 46.2 Mb of kabuli chickpea transcriptome. We identified a total of 5409 simple sequence repeats (SSRs) in these transcript sequences. Among these, at least 130 and 493 SSRs were polymorphic with desi (ICC4958) and wild (PI489777) chickpea, respectively. In addition, a total of 1986 and 37,954 single nucleotide polymorphisms (SNPs) were predicted in kabuli/desi and kabuli/wild genotypes, respectively. The SNP frequency was 0.043 SNP per kb for kabuli/desi and 0.821 SNP per kb for kabuli/wild, reflecting very low genetic diversity in chickpea. Further, SSRs and SNPs present in tissue-specific and transcription factor encoding transcripts have been identified. The experimental validation of a selected set of polymorphic SSRs and SNPs exhibited high intra-specific polymorphism potential between desi and kabuli chickpea, suggesting their utility in large-scale genotyping applications. The kabuli chickpea gene index assembled, and SSRs and SNPs identified in this study will serve as useful genomic resource for genetic improvement of chickpea.
Collapse
Affiliation(s)
- Gaurav Agarwal
- Functional and Applied Genomics Laboratory, National Institute of Plant Genome Research (NIPGR), New Delhi, India
| | - Shalu Jhanwar
- Functional and Applied Genomics Laboratory, National Institute of Plant Genome Research (NIPGR), New Delhi, India
| | - Pushp Priya
- Functional and Applied Genomics Laboratory, National Institute of Plant Genome Research (NIPGR), New Delhi, India
| | - Vikash K. Singh
- Functional and Applied Genomics Laboratory, National Institute of Plant Genome Research (NIPGR), New Delhi, India
| | - Maneesha S. Saxena
- Functional and Applied Genomics Laboratory, National Institute of Plant Genome Research (NIPGR), New Delhi, India
| | - Swarup K. Parida
- Functional and Applied Genomics Laboratory, National Institute of Plant Genome Research (NIPGR), New Delhi, India
| | - Rohini Garg
- Functional and Applied Genomics Laboratory, National Institute of Plant Genome Research (NIPGR), New Delhi, India
| | - Akhilesh K. Tyagi
- Functional and Applied Genomics Laboratory, National Institute of Plant Genome Research (NIPGR), New Delhi, India
| | - Mukesh Jain
- Functional and Applied Genomics Laboratory, National Institute of Plant Genome Research (NIPGR), New Delhi, India
- * E-mail:
| |
Collapse
|
48
|
Ma Y, Qin F, Tran LSP. Contribution of genomics to gene discovery in plant abiotic stress responses. MOLECULAR PLANT 2012; 5:1176-8. [PMID: 22930735 DOI: 10.1093/mp/sss085] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/06/2023]
Affiliation(s)
- Yun Ma
- Key Laboratory of Plant Molecular Physiology, Institute of Botany, Chinese Academy of Sciences, Beijing, 100039, China
| | | | | |
Collapse
|
49
|
Bargaz A, Ghoulam C, Amenc L, Lazali M, Faghire M, Abadie J, Drevon J. A phosphoenol pyruvate phosphatase transcript is induced in the root nodule cortex of Phaseolus vulgaris under conditions of phosphorus deficiency. JOURNAL OF EXPERIMENTAL BOTANY 2012; 63:4723-30. [PMID: 22771853 PMCID: PMC3428000 DOI: 10.1093/jxb/ers151] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/04/2023]
Abstract
Although previous studies on N2-fixing legumes have demonstrated the contribution of acid phosphatases to their phosphorus (P) use efficiency under P-deficient growth conditions, localization of these enzymes in bean nodules has not been demonstrated. In this study, phosphoenol pyruvate phosphatase (PEPase) gene transcripts were localized within the nodule tissues of two recombinant inbred lines, RIL115 (P-deficiency tolerant) and RIL147 (P-deficiency sensitive), of Phaseolus vulgaris. Nodules were induced by Rhizobium tropici CIAT899 under hydroaeroponic conditions with a sufficient versus a deficient P supply. The results indicated that PEPase transcripts were particularly abundant in the nodule infected zone and cortex of both RILs. Analysis of fluorescence intensity indicated that nodule PEPase was induced under conditions of P deficiency to a significantly higher extent in RIL147 than in RIL115, and more in the inner cortex (91%) than in the outer cortex (71%) or the infected zone (79%). In addition, a significant increase (39%) in PEPase enzyme activity in the P-deficient RIL147 correlated with an increase (58%) in the efficiency of use in rhizobial symbiosis. It was concluded that nodule PEPase is upregulated under conditions of P deficiency in the P-deficiency-sensitive RIL147, and that this gene may contribute to adaptation of rhizobial symbiosis to low-P environments.
Collapse
Affiliation(s)
- A. Bargaz
- INRA, UMR Eco&Sols – Ecologie Fonctionnelle & Biogéochimie des Sols & Agroécosystèmes2 Place Viala, F34060, Montpellier, France
- Equipe de Biotechnologie Végétale et Agrophysiologie des Symbioses, Faculté des Sciences et Techniques GuélizBP 549, 40000, Marrakech, Maroc
| | - C. Ghoulam
- Equipe de Biotechnologie Végétale et Agrophysiologie des Symbioses, Faculté des Sciences et Techniques GuélizBP 549, 40000, Marrakech, Maroc
| | - L. Amenc
- INRA, UMR Eco&Sols – Ecologie Fonctionnelle & Biogéochimie des Sols & Agroécosystèmes2 Place Viala, F34060, Montpellier, France
| | - M. Lazali
- INRA, UMR Eco&Sols – Ecologie Fonctionnelle & Biogéochimie des Sols & Agroécosystèmes2 Place Viala, F34060, Montpellier, France
| | - M. Faghire
- Equipe de Biotechnologie Végétale et Agrophysiologie des Symbioses, Faculté des Sciences et Techniques GuélizBP 549, 40000, Marrakech, Maroc
| | - J. Abadie
- INRA, UMR Eco&Sols – Ecologie Fonctionnelle & Biogéochimie des Sols & Agroécosystèmes2 Place Viala, F34060, Montpellier, France
| | - J.J. Drevon
- INRA, UMR Eco&Sols – Ecologie Fonctionnelle & Biogéochimie des Sols & Agroécosystèmes2 Place Viala, F34060, Montpellier, France
| |
Collapse
|
50
|
Kido ÉA, Ferreira Neto JRC, Silva RLDO, Pandolfi V, Guimarães ACR, Veiga DT, Chabregas SM, Crovella S, Benko-Iseppon AM. New insights in the sugarcane transcriptome responding to drought stress as revealed by superSAGE. ScientificWorldJournal 2012; 2012:821062. [PMID: 22629208 PMCID: PMC3353566 DOI: 10.1100/2012/821062] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2011] [Accepted: 12/02/2011] [Indexed: 12/30/2022] Open
Abstract
In the scope of the present work, four SuperSAGE libraries have been generated, using bulked root tissues from four drought-tolerant accessions as compared with four bulked sensitive genotypes, aiming to generate a panel of differentially expressed stress-responsive genes. Both groups were submitted to 24 hours of water deficit stress. The SuperSAGE libraries produced 8,787,315 tags (26 bp) that, after exclusion of singlets, allowed the identification of 205,975 unitags. Most relevant BlastN matches comprised 567,420 tags, regarding 75,404 unitags with 164,860 different ESTs. To optimize the annotation efficiency, the Gene Ontology (GO) categorization was carried out for 186,191 ESTs (BlastN against Uniprot-SwissProt), permitting the categorization of 118,208 ESTs (63.5%). In an attempt to elect a group of the best tags to be validated by RTqPCR, the GO categorization of the tag-related ESTs allowed the in silico identification of 213 upregulated unitags responding basically to abiotic stresses, from which 145 presented no hits after BlastN analysis, probably concerning new genes still uncovered in previous studies. The present report analyzes the sugarcane transcriptome under drought stress, using a combination of high-throughput transcriptome profiling by SuperSAGE with the Solexa sequencing technology, allowing the identification of potential target genes during the stress response.
Collapse
Affiliation(s)
- Éderson Akio Kido
- Department of Genetics, Federal University of Pernambuco, 50670-901 Recife, PE, Brazil.
| | | | | | | | | | | | | | | | | |
Collapse
|