1
|
Blum K, Braverman ER, Gold MS, Dennen CA, Baron D, Thanos PK, Hanna C, Elman I, Gondre-Lewis MC, Ashford JW, Newberg A, Madigan MA, Jafari N, Zeine F, Sunder K, Giordano J, Barh D, Gupta A, Carney P, Bowirrat A, Badgaiyan RD. Addressing cortex dysregulation in youth through brain health check coaching and prophylactic brain development. INNOSC THERANOSTICS & PHARMACOLOGICAL SCIENCES 2024; 7:1472. [PMID: 38766548 PMCID: PMC11100020 DOI: 10.36922/itps.1472] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 05/22/2024]
Abstract
The Carter Center has estimated that the addiction crisis in the United States (US), if continues to worsen at the same rate, may cost the country approximately 16 trillion dollars by 2030. In recent years, the well-being of youth has been compromised by not only the coronavirus disease 2019 pandemic but also the alarming global opioid crisis, particularly in the US. Each year, deadly opioid drugs claim hundreds of thousands of lives, contributing to an ever-rising death toll. In addition, maternal usage of opioids and other drugs during pregnancy could compromise the neurodevelopment of children. A high rate of DNA polymorphic antecedents compounds the occurrence of epigenetic insults involving methylation of specific essential genes related to normal brain function. These genetic antecedent insults affect healthy DNA and mRNA transcription, leading to a loss of proteins required for normal brain development and function in youth. Myelination in the frontal cortex, a process known to extend until the late 20s, delays the development of proficient executive function and decision-making abilities. Understanding this delay in brain development, along with the presence of potential high-risk antecedent polymorphic variants or alleles and generational epigenetics, provides a clear rationale for embracing the Brain Research Commission's suggestion to mimic fitness programs with an adaptable brain health check (BHC). Implementing the BHC within the educational systems in the US and other countries could serve as an effective initiative for proactive therapies aimed at reducing juvenile mental health problems and eventually criminal activities, addiction, and other behaviors associated with reward deficiency syndrome.
Collapse
Affiliation(s)
- Kenneth Blum
- Division of Addiction Research and Education, Center for Sports, Exercise and Global Mental Health, Western University of Health Sciences, Pomona, California, United States of America
- The Kenneth Blum Behavioral and Neurogenetic Institute LLC, Austin, Texas, United States of America
- Faculty of Education and Psychology, Institute of Psychology, Eötvös Loránd University Budapest, Budapest, Hungary
- Department of Molecular Biology and Adelson School of Medicine, Ariel University, Ariel, Israel
- Division of Personalized Medicine, Cross-Cultural Research and Educational Institute, San Clemente, California, United States of America
- Centre for Genomics and Applied Gene Technology, Institute of Integrative Omics and Applied Biotechnology, Purba Medinipur, West Bengal, India
- Division of Personalized Recovery Science, Transplicegen Therapeutics, Llc., Austin, Tx., United of States
- Department of Psychiatry, University of Vermont, Burlington, Vermont, United States of America
- Department of Psychiatry, Boonshoft School of Medicine, Wright State University, Dayton, Ohio, United States of America
- Division of Personalized Medicine, Ketamine Clinic of South Florida, Pompano Beach, Florida, United States of America
| | - Eric R. Braverman
- The Kenneth Blum Behavioral and Neurogenetic Institute LLC, Austin, Texas, United States of America
| | - Mark S. Gold
- Department of Psychiatry, Washington University School of Medicine, St. Louis, Missouri, United States of America
| | - Catherine A. Dennen
- Department of Family Medicine, Jefferson Health Northeast, Philadelphia, Pennsylvania, United States of America
| | - David Baron
- Division of Addiction Research and Education, Center for Sports, Exercise and Global Mental Health, Western University of Health Sciences, Pomona, California, United States of America
| | - Panayotis K. Thanos
- Department of Psychology and Behavioral Neuropharmacology and Neuroimaging Laboratory on Addictions, Research Institute on Addictions, University of Buffalo, Buffalo, New York, United States of America
| | - Colin Hanna
- Department of Psychology and Behavioral Neuropharmacology and Neuroimaging Laboratory on Addictions, Research Institute on Addictions, University of Buffalo, Buffalo, New York, United States of America
| | - Igor Elman
- Cambridge Health Alliance, Harvard Medical School, Cambridge, Massachusetts, United States of America
| | - Marjorie C. Gondre-Lewis
- Department of Anatomy, Howard University School of Medicine, Washington, D.C., United States of America
| | - J. Wesson Ashford
- Department of Psychiatry and Behavioral Sciences, Stanford University, Palo Alto, California, United States of America
| | - Andrew Newberg
- Department of Integrative Medicine and Nutritional Sciences, Thomas Jefferson University and Hospital, Philadelphia, Pennsylvania, United States of America
| | - Margaret A. Madigan
- The Kenneth Blum Behavioral and Neurogenetic Institute LLC, Austin, Texas, United States of America
| | - Nicole Jafari
- Division of Personalized Medicine, Cross-Cultural Research and Educational Institute, San Clemente, California, United States of America
- Department of Human Development, California State University at Long Beach, Long Beach, California, United States of America
| | - Foojan Zeine
- Department of Human Development, California State University at Long Beach, Long Beach, California, United States of America
- Awareness Integration Institute, San Clemente, California, United States of America
| | - Keerthy Sunder
- Department of Health Science, California State University at Long Beach, Long Beach, California, United States of America
- Department of Psychiatry, University California, UC Riverside School of Medicine, Riverside, California, United States of America
| | - John Giordano
- Division of Personalized Medicine, Ketamine Clinic of South Florida, Pompano Beach, Florida, United States of America
| | - Debmayla Barh
- Centre for Genomics and Applied Gene Technology, Institute of Integrative Omics and Applied Biotechnology, Purba Medinipur, West Bengal, India
| | - Ashim Gupta
- Future Biologics, Lawrenceville, Georgia, United States of America
| | - Paul Carney
- Division of Pediatric Neurology, University of Missouri Health Care-Columbia, Columbia, Missouri, United States of America
| | - Abdalla Bowirrat
- Department of Molecular Biology and Adelson School of Medicine, Ariel University, Ariel, Israel
| | - Rajendra D. Badgaiyan
- Department of Psychiatry, Mt. Sinai School of Medicine, New York City, New York, United States of America
| |
Collapse
|
2
|
Blum K, Bowirrat A, Baron D, Elman I, Makale MT, Cadet JL, Thanos PK, Hanna C, Ahmed R, Gondre-Lewis MC, Dennen CA, Braverman ER, Soni D, Carney P, Khalsa J, Modestino EJ, Barh D, Bagchi D, Badgaiyan RD, McLaughlin T, Cortese R, Ceccanti M, Murphy KT, Gupta A, Makale MT, Sunder K, Gold MS. Identification of stress-induced epigenetic methylation onto dopamine D2 gene and neurological and behavioral consequences. GENE & PROTEIN IN DISEASE 2024; 3:10.36922/gpd.1966. [PMID: 38766604 PMCID: PMC11100097 DOI: 10.36922/gpd.1966] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/22/2024]
Abstract
The D2 dopamine receptor (DRD2) gene has garnered substantial attention as one of the most extensively studied genes across various neuropsychiatric disorders. Since its initial association with severe alcoholism in 1990, particularly through the identification of the DRD2 Taq A1 allele, numerous international investigations have been conducted to elucidate its role in different conditions. As of February 22, 2024, there are 5485 articles focusing on the DRD2 gene listed in PUBMED. There have been 120 meta-analyses with mixed results. In our opinion, the primary cause of negative reports regarding the association of various DRD2 gene polymorphisms is the inadequate screening of controls, not adequately eliminating many hidden reward deficiency syndrome behaviors. Moreover, pleiotropic effects of DRD2 variants have been identified in neuropsychologic, neurophysiologic, stress response, social stress defeat, maternal deprivation, and gambling disorder, with epigenetic DNA methylation and histone post-translational negative methylation identified as discussed in this article. There are 70 articles listed in PUBMED for DNA methylation and 20 articles listed for histone methylation as of October 19, 2022. For this commentary, we did not denote DNA and/or histone methylation; instead, we provided a brief summary based on behavioral effects. Based on the fact that Blum and Noble characterized the DRD2 Taq A1 allele as a generalized reward gene and not necessarily specific alcoholism, it now behooves the field to find ways to either use effector moieties to edit the neuroepigenetic insults or possibly harness the idea of potentially removing negative mRNA-reduced expression by inducing "dopamine homeostasis."
Collapse
Affiliation(s)
- Kenneth Blum
- Department of Molecular Biology, Adelson School of Medicine, Ariel University, Ariel, Israel
- Division of Addiction Research & Education, Center for Sports, Exercise & Mental Health, Western University of the Health Sciences, Pomona, CA, United States of America
- Institute of Psychology, ELTE Eötvös Loránd University, Budapest, Hungary
- Department of Psychiatry, University of Vermont, Burlington, VT 05405, United States of America
- Department of Psychiatry, Wright University Boonshoft School of Medicine, Dayton, OH, United States of America
- Division of Nutrigenomics, The Kenneth Blum Behavioral Neurogenetic Institute, Austin, TX United States of America
- Centre for Genomics and Applied Gene Technology, Institute of Integrative Omics and Applied Biotechnology, Nonakuri, Purba Medinipur, West Bengal, India
- Department of Nutrigenomic Research, Victory Nutrition International, Inc., Bonita Springs, FL, United States of America
- Division of Personalized Neuromodulation Research, Sunder Foundation, Palm Springs, CA, United States of America
| | - Abdalla Bowirrat
- Department of Molecular Biology, Adelson School of Medicine, Ariel University, Ariel, Israel
| | - David Baron
- Division of Addiction Research & Education, Center for Sports, Exercise & Mental Health, Western University of the Health Sciences, Pomona, CA, United States of America
| | - Igor Elman
- Division of Personalized Neuromodulation Research, Sunder Foundation, Palm Springs, CA, United States of America
- Cambridge Health Alliance, Harvard Medical School, Cambridge, MA, United States of America
| | - Milan T. Makale
- Department of Radiation Medicine and Applied Sciences, UC San Diego, 3855 Health Sciences Drive, La Jolla, CA 92093-0819, United States of America
| | - Jean Lud Cadet
- Molecular Neuropsychiatry Research Branch, National Institute on Drug Abuse, National Institutes of Health, Bethesda, MD., United States of America
| | - Panayotis K. Thanos
- Behavioral Neuropharmacology and Neuroimaging Laboratory on Addictions, Clinical Research Institute on Addictions, Department of Pharmacology and Toxicology, Jacobs School of Medicine and Biosciences, State University of New York at Buffalo, Buffalo, NY, United States of America; Department of Psychology, State University of New York at Buffalo, Buffalo, NY., United States of America
| | - Colin Hanna
- Behavioral Neuropharmacology and Neuroimaging Laboratory on Addictions, Clinical Research Institute on Addictions, Department of Pharmacology and Toxicology, Jacobs School of Medicine and Biosciences, State University of New York at Buffalo, Buffalo, NY, United States of America; Department of Psychology, State University of New York at Buffalo, Buffalo, NY., United States of America
| | - Rania Ahmed
- Behavioral Neuropharmacology and Neuroimaging Laboratory on Addictions, Clinical Research Institute on Addictions, Department of Pharmacology and Toxicology, Jacobs School of Medicine and Biosciences, State University of New York at Buffalo, Buffalo, NY, United States of America; Department of Psychology, State University of New York at Buffalo, Buffalo, NY., United States of America
| | - Marjorie C. Gondre-Lewis
- Department of Anatomy, Howard University College of Medicine, and Developmental Neuropsychopharmacology Laboratory, Howard University College of Medicine, Washington D.C., United States of America
| | - Catherine A. Dennen
- Department of Family Medicine, Jefferson Health Northeast, Philadelphia, PA, United States of America
| | - Eric R. Braverman
- Division of Nutrigenomics, The Kenneth Blum Behavioral Neurogenetic Institute, Austin, TX United States of America
| | - Diwanshu Soni
- Division of Addiction Research & Education, Center for Sports, Exercise & Mental Health, Western University of the Health Sciences, Pomona, CA, United States of America
| | - Paul Carney
- Division Pediatric Neurology, University of Missouri, School of Medicine, Columbia, MO., United States of America
| | - Jag Khalsa
- Department of Microbiology, Immunology and Tropical Medicine, George Washington University, School of Medicine and Health Sciences, Washington, DC, United States of America
| | - Edward J. Modestino
- Department of Psychology, Curry College, Milton, MA., United States of America
| | - Debmalya Barh
- Centre for Genomics and Applied Gene Technology, Institute of Integrative Omics and Applied Biotechnology, Nonakuri, Purba Medinipur, West Bengal, India
- Departamento de Genética, Ecologia e Evolução, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - Debasis Bagchi
- Department of Pharmaceutical Sciences, Texas Southern University College of Pharmacy and Health Sciences, Houston, TX, United States of America
| | - Rajendra D. Badgaiyan
- Department of Psychiatry, Case Western Reserve University School of Medicine, Cleveland OH., 44106, USA and Department of Psychiatry, Mt. Sinai School of Medicine, New York, NY, United States of America
| | - Thomas McLaughlin
- Division of Nutrigenomics, The Kenneth Blum Behavioral Neurogenetic Institute, Austin, TX United States of America
| | - Rene Cortese
- Department of Child Health – Child Health Research Institute, & Department of Obstetrics, Gynecology and Women’s Health School of Medicine, University of Missouri, MO, United States of America
| | - Mauro Ceccanti
- Alcohol Addiction Program, Latium Region Referral Center, Sapienza University of Rome, Roma, Italy
| | - Kevin T. Murphy
- Division of Personalized Neuromodulation and Patient Care, PeakLogic, LLC, Del Mar, CA, United States of America
| | - Ashim Gupta
- Future Biologics, Lawrenceville, Georgia, 30043, United States of America
| | - Miles T. Makale
- Department of Psychology, UC San Diego, 3855 Health Sciences Drive, La Jolla, CA 92093-0819, United States of America
| | - Keerthy Sunder
- Division of Personalized Neuromodulation Research, Sunder Foundation, Palm Springs, CA, United States of America
- Department of Psychiatry, UC Riverside School of Medicine, Riverside, CA, United States of America
| | - Mark S. Gold
- Department of Psychiatry, Washington University School of Medicine, St. Louis, MO, United States of America
| |
Collapse
|
3
|
Bowirrat A, Elman I, Dennen CA, Gondré-Lewis MC, Cadet JL, Khalsa J, Baron D, Soni D, Gold MS, McLaughlin TJ, Bagchi D, Braverman ER, Ceccanti M, Thanos PK, Modestino EJ, Sunder K, Jafari N, Zeine F, Badgaiyan RD, Barh D, Makale M, Murphy KT, Blum K. Neurogenetics and Epigenetics of Loneliness. Psychol Res Behav Manag 2023; 16:4839-4857. [PMID: 38050640 PMCID: PMC10693768 DOI: 10.2147/prbm.s423802] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2023] [Accepted: 11/14/2023] [Indexed: 12/06/2023] Open
Abstract
Loneliness, an established risk factor for both, mental and physical morbidity, is a mounting public health concern. However, the neurobiological mechanisms underlying loneliness-related morbidity are not yet well defined. Here we examined the role of genes and associated DNA risk polymorphic variants that are implicated in loneliness via genetic and epigenetic mechanisms and may thus point to specific therapeutic targets. Searches were conducted on PubMed, Medline, and EMBASE databases using specific Medical Subject Headings terms such as loneliness and genes, neuro- and epigenetics, addiction, affective disorders, alcohol, anti-reward, anxiety, depression, dopamine, cancer, cardiovascular, cognitive, hypodopaminergia, medical, motivation, (neuro)psychopathology, social isolation, and reward deficiency. The narrative literature review yielded recursive collections of scientific and clinical evidence, which were subsequently condensed and summarized in the following key areas: (1) Genetic Antecedents: Exploration of multiple genes mediating reward, stress, immunity and other important vital functions; (2) Genes and Mental Health: Examination of genes linked to personality traits and mental illnesses providing insights into the intricate network of interaction converging on the experience of loneliness; (3) Epigenetic Effects: Inquiry into instances of loneliness and social isolation that are driven by epigenetic methylations associated with negative childhood experiences; and (4) Neural Correlates: Analysis of loneliness-related affective states and cognitions with a focus on hypodopaminergic reward deficiency arising in the context of early life stress, eg, maternal separation, underscoring the importance of parental support early in life. Identification of the individual contributions by various (epi)genetic factors presents opportunities for the creation of innovative preventive, diagnostic, and therapeutic approaches for individuals who cope with persistent feelings of loneliness. The clinical facets and therapeutic prospects associated with the current understanding of loneliness, are discussed emphasizing the relevance of genes and DNA risk polymorphic variants in the context of loneliness-related morbidity.
Collapse
Affiliation(s)
- Abdalla Bowirrat
- Department of Molecular Biology, Adelson School of Medicine, Ariel University, Ariel, 40700, Israel
| | - Igor Elman
- Cambridge Health Alliance, Harvard Medical School, Cambridge, MA, 02139, USA
| | - Catherine A Dennen
- Department of Family Medicine, Jefferson Health Northeast, Philadelphia, PA, USA
| | - Marjorie C Gondré-Lewis
- Neuropsychopharmacology Laboratory, Department of Anatomy, Howard University College of Medicine, Washington, DC, 20059, USA
| | - Jean Lud Cadet
- Molecular Neuropsychiatry Research Branch, NIH National Institute on Drug Abuse, Bethesda, MD, 20892, USA
| | - Jag Khalsa
- Department of Microbiology, Immunology and Tropical Medicine, George Washington University, School of Medicine, Washington, DC, USA
| | - David Baron
- Division of Addiction Research & Education, Center for Sports, Exercise, and Mental Health, Western University of Health Sciences, Pomona, CA, 91766, USA
| | - Diwanshu Soni
- Western University Health Sciences School of Medicine, Pomona, CA, USA
| | - Mark S Gold
- Department of Psychiatry, Washington University School of Medicine, St. Louis, MO, 63110, USA
| | - Thomas J McLaughlin
- Division of Reward Deficiency Clinics, TranspliceGen Therapeutics, Inc, Austin, TX, USA
| | - Debasis Bagchi
- Department of Pharmaceutical Sciences, Texas Southern University College of Pharmacy, Houston, TX, USA
| | - Eric R Braverman
- Division of Clinical Neurology, The Kenneth Blum Institute of Neurogenetics & Behavior, LLC, Austin, TX, USA
| | - Mauro Ceccanti
- Alcohol Addiction Program, Latium Region Referral Center, Sapienza University of Rome, Roma, 00185, Italy
| | - Panayotis K Thanos
- Behavioral Neuropharmacology and Neuroimaging Laboratory on Addictions, Clinical Research Institute on Addictions, Department of Pharmacology and Toxicology, Jacobs School of Medicine and Biosciences, State University of New York at Buffalo, Buffalo, NY, 14203, USA
- Department of Psychology, State University of New York at Buffalo, Buffalo, NY, 14203, USA
| | | | - Keerthy Sunder
- Karma Doctors & Karma TMS, and Suder Foundation, Palm Springs, CA, USA
- Department of Medicine, University of California, Riverside School of Medicine, Riverside, CA, USA
| | - Nicole Jafari
- Department of Human Development, California State University at Long Beach, Long Beach, CA, USA
- Division of Personalized Medicine, Cross-Cultural Research and Educational Institute, San Clemente, CA, USA
| | - Foojan Zeine
- Awareness Integration Institute, San Clemente, CA, USA
- Department of Health Science, California State University at Long Beach, Long Beach, CA, USA
| | | | - Debmalya Barh
- Centre for Genomics and Applied Gene Technology, Institute of Integrative Omics and Applied Biotechnology (IIOAB), Purba Medinipur, WB, 721172, India
- Departamento de Genética, Ecologia e Evolução, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, 31270-901, Brazil
| | - Milan Makale
- Department of Radiation Medicine and Applied Sciences, UC San Diego, La Jolla, CA, 92093-0819, USA
| | - Kevin T Murphy
- Department of Radiation Oncology, University of California San Diego, La Jolla, CA, USA
| | - Kenneth Blum
- Department of Molecular Biology, Adelson School of Medicine, Ariel University, Ariel, 40700, Israel
- Division of Addiction Research & Education, Center for Sports, Exercise, and Mental Health, Western University of Health Sciences, Pomona, CA, 91766, USA
- Division of Reward Deficiency Clinics, TranspliceGen Therapeutics, Inc, Austin, TX, USA
- Division of Clinical Neurology, The Kenneth Blum Institute of Neurogenetics & Behavior, LLC, Austin, TX, USA
- Department of Medicine, University of California, Riverside School of Medicine, Riverside, CA, USA
- Division of Personalized Medicine, Cross-Cultural Research and Educational Institute, San Clemente, CA, USA
- Centre for Genomics and Applied Gene Technology, Institute of Integrative Omics and Applied Biotechnology (IIOAB), Purba Medinipur, WB, 721172, India
- Department of Psychiatry, University of Vermont School of Medicine, Burlington, VA, USA
- Institute of Psychology, ELTE Eötvös Loránd University, Budapest, Hungary
| |
Collapse
|
4
|
Blum K, Gold MS, Cadet JL, Gondre-Lewis MC, McLaughlin T, Braverman ER, Elman I, Paul Carney B, Cortese R, Abijo T, Bagchi D, Giordano J, Dennen CA, Baron D, Thanos PK, Soni D, Makale MT, Makale M, Murphy KT, Jafari N, Sunder K, Zeine F, Ceccanti M, Bowirrat A, Badgaiyan RD. Invited Expert Opinion- Bioinformatic and Limitation Directives to Help Adopt Genetic Addiction Risk Screening and Identify Preaddictive Reward Dysregulation: Required Analytic Evidence to Induce Dopamine Homeostatsis. MEDICAL RESEARCH ARCHIVES 2023; 11:10.18103/mra.v11i8.4211. [PMID: 37885438 PMCID: PMC10601302 DOI: 10.18103/mra.v11i8.4211] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 10/28/2023]
Abstract
Addiction, albeit some disbelievers like Mark Lewis [1], is a chronic, relapsing brain disease, resulting in unwanted loss of control over both substance and non- substance behavioral addictions leading to serious adverse consequences [2]. Addiction scientists and clinicians face an incredible challenge in combatting the current opioid and alcohol use disorder (AUD) pandemic throughout the world. Provisional data from the Centers for Disease Control and Prevention (CDC) shows that from July 2021-2022, over 100,000 individuals living in the United States (US) died from a drug overdose, and 77,237 of those deaths were related to opioid use [3]. This number is expected to rise, and according to the US Surgeon General it is highly conceivable that by 2025 approximately 165,000 Americans will die from an opioid overdose. Alcohol abuse, according to data from the World Health Organization (WHO), results in 3 million deaths worldwide every year, which represents 5.3% of all deaths globally [4].
Collapse
Affiliation(s)
- Kenneth Blum
- The Kenneth Blum Behavioral & Neurogenetic Institute, Austin, TX., USA
- Division of Addiction Research & Education, Center for Sports, Exercise & Psychiatry, Western University Health Sciences, Pomona, CA., USA
- Institute of Psychology, ELTE Eötvös Loránd University, Budapest, Hungary
- Department of Psychiatry, School of Medicine, University of Vermont, Burlington, VT.,USA
- Department of Psychiatry, Wright State University Boonshoft School of Medicine and Dayton VA Medical Centre, Dayton, OH, USA
- Division of Nutrigenomics Research, TranspliceGen Therapeutics, Inc., Austin, Tx., 78701, USA
- Department of Nutrigenomic Research, Victory Nutrition International, Inc., Bonita Springs, FL, USA
- Division of Personalized Medicine, Cross-Cultural Research and Educational Institute, San Clemente, CA., USA
- Sunder Foundation, Palm Springs, CA, USA
- Department of Molecular Biology and Adelson School of Medicine, Ariel University, Ariel, Israel
| | - Mark S Gold
- Department of Psychiatry, Washington University School of Medicine, St. Louis, MO., USA
| | - Jean Lud Cadet
- Molecular Neuropsychiatry Research Branch, National Institute on Drug Abuse, National Institutes of Health, Bethesda, MD., USA
| | - Marjorie C. Gondre-Lewis
- Neuropsychopharmacology Laboratory, Department of Anatomy, Howard University College of Medicine, Washington, DC., USA
| | - Thomas McLaughlin
- Division of Nutrigenomics Research, TranspliceGen Therapeutics, Inc., Austin, Tx., 78701, USA
| | - Eric R Braverman
- The Kenneth Blum Behavioral & Neurogenetic Institute, Austin, TX., USA
| | - Igor Elman
- Center for Pain and the Brain (P.A.I.N Group), Department of Anesthesiology, Critical Care & Pain Medicine, Boston Children’s Hospital, Boston, MA., USA
| | - B. Paul Carney
- Division Pediatric Neurology, University of Missouri, School of Medicine, Columbia, MO., USA
| | - Rene Cortese
- Department of Child Health – Child Health Research Institute, & Department of Obstetrics, Gynecology and Women’s Health School of Medicine, University of Missouri, MO., USA
| | - Tomilowo Abijo
- Neuropsychopharmacology Laboratory, Department of Anatomy, Howard University College of Medicine, Washington, DC., USA
| | - Debasis Bagchi
- Department of Pharmaceutical Sciences, Texas Southern University College of Pharmacy and Health Sciences, Houston, TX, USA
| | - John Giordano
- Division of Personalized Mental Illness Treatment & Research, Ketamine Infusion Clinics of South Florida, Pompano Beach, Fl., USA
| | - Catherine A. Dennen
- Department of Family Medicine, Jefferson Health Northeast, Philadelphia, PA, USA
| | - David Baron
- Institute of Psychology, ELTE Eötvös Loránd University, Budapest, Hungary
| | - Panayotis K Thanos
- Behavioral Neuropharmacology and Neuroimaging Laboratory on Addictions, Clinical Research Institute on Addictions, Department of Pharmacology and Toxicology, Jacobs School of Medicine and Biosciences, State University of New York at Buffalo, Buffalo, NY 14203, USA
- Department of Psychology, State University of New York at Buffalo, Buffalo, NY 14203, USA
| | - Diwanshu Soni
- College of Osteopathic Medicine of the Pacific, Western University of Health Sciences, Pomona, CA., USA
| | - Milan T. Makale
- Department of Radiation Medicine and Applied Sciences, UC San Diego, 3855 Health Sciences Drive, La Jolla, CA 92093-0819, USA
| | - Miles Makale
- Department of Psychology, UC San Diego, Health Sciences Drive, La Jolla, CA, 92093, USA
| | | | - Nicole Jafari
- Department of Human Development, California State University at long Beach, Long Beach, CA., USA
- Division of Personalized Medicine, Cross-Cultural Research and Educational Institute, San Clemente, CA., USA
| | - Keerthy Sunder
- Department of Psychiatry, Menifee Global Medical Center, Palm Desert, CA., USA
- Sunder Foundation, Palm Springs, CA, USA
| | - Foojan Zeine
- Awareness Integration Institute, San Clemente, CA., USA
- Department of Health Science, California State University at Long Beach, Long Beach, CA., USA
| | - Mauro Ceccanti
- Società Italiana per il Trattamento dell’Alcolismo e le sue Complicanze (SITAC), ASL Roma1, Sapienza University of Rome, Rome, Italy
| | - Abdalla Bowirrat
- Department of Molecular Biology and Adelson School of Medicine, Ariel University, Ariel, Israel
| | - Rajendra D. Badgaiyan
- Department of Psychiatry, South Texas Veteran Health Care System, Audie L. Murphy Memorial VA Hospital, Long School of Medicine, University of Texas Medical Center, San Antonio, TX., USA
- Department of Psychiatry, Mt Sinai University School of Medicine, New York, NY., USA
| |
Collapse
|
5
|
Blum K, Dennen CA, Baron D, Thanos PK, Badgaiyan RD. Offering a putative neurobiological "dopamine homeostatic" solution to overcome the perils of the reward deficiency syndrome pandemic: emergence of "precision behavioral management". ANNALS OF TRANSLATIONAL MEDICINE 2022; 10:1291. [PMID: 36618806 PMCID: PMC9816827 DOI: 10.21037/atm-2022-67] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/29/2022] [Accepted: 10/19/2022] [Indexed: 12/12/2022]
Affiliation(s)
- Kenneth Blum
- Division Of Addiction Research & Education, Center for Sports, Exercise and Global Mental Health, Western University Health Sciences, Pomona, CA, USA;,Department of Psychiatry, Wright University Boonshoft School of Medicine, Dayton, OH, USA;,The Kenneth Blum Institute of Behavior & Neurogenetics, Austin, TX, USA;,Department of Psychiatry, South Texas Veteran Health Care System, Audie L. Murphy Memorial VA Hospital, Long School of Medicine, University of Texas Medical Center, San Antonio, TX, USA
| | - Catherine A. Dennen
- Department of Family Medicine, Jefferson Health Northeast, Philadelphia, PA, USA
| | - David Baron
- Division Of Addiction Research & Education, Center for Sports, Exercise and Global Mental Health, Western University Health Sciences, Pomona, CA, USA
| | - Panayotis K. Thanos
- Department of Psychology, University of Buffalo, the State University of New York, Buffalo, NY, USA
| | - Rajendra D. Badgaiyan
- Department of Psychiatry, South Texas Veteran Health Care System, Audie L. Murphy Memorial VA Hospital, Long School of Medicine, University of Texas Medical Center, San Antonio, TX, USA
| |
Collapse
|
6
|
Blum K, Elman I, Dennen CA, McLaughlin T, Thanos PK, Baron D, Gold MS, Badgaiyan RD. "Preaddiction" construct and reward deficiency syndrome: genetic link via dopaminergic dysregulation. ANNALS OF TRANSLATIONAL MEDICINE 2022; 10:1181. [PMID: 36467361 PMCID: PMC9708493 DOI: 10.21037/atm-2022-32] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 08/19/2022] [Accepted: 10/21/2022] [Indexed: 09/10/2024]
Affiliation(s)
- Kenneth Blum
- Center for Sports and Mental Health, Western University Health Sciences, Pomona, CA, USA
- The Kenneth Blum Behavioral and Neurogenetic Institute, LLC, Austin, TX, USA
| | - Igor Elman
- Department of Psychiatry, Harvard School of Medicine, Cambridge, MA, USA
| | - Catherine A. Dennen
- Department of Family Medicine, Jefferson Health Northeast, Philadelphia, PA, USA
| | - Thomas McLaughlin
- The Kenneth Blum Behavioral and Neurogenetic Institute, LLC, Austin, TX, USA
| | - Panayotis K. Thanos
- Behavioral Neuropharmacology and Neuroimaging Laboratory on Addictions, Clinical Research Institute on Addictions, Department of Pharmacology and Toxicology, Jacobs School of Medicine and Biosciences, State University of New York at Buffalo, Buffalo, NY, USA
| | - David Baron
- Center for Sports and Mental Health, Western University Health Sciences, Pomona, CA, USA
| | - Mark S. Gold
- Department of Psychiatry, Washington University School of Medicine, St. Luis, MO, USA
| | - Rajendra D. Badgaiyan
- Department of Psychiatry, South Texas Veteran Health Care System, Audie L. Murphy Memorial VA Hospital, Long School of Medicine, University of Texas Health Science Center, San Antonio, TX, USA
| |
Collapse
|
7
|
Barreto C, Vila Irigoyen A, Lopez O, Gralnik L. Psychostimulants for the Treatment of Comorbid Post-traumatic Stress Disorder (PTSD) in a Patient With Attention-Deficit/Hyperactivity Disorder (ADHD): A Case Report and Literature Summary. Cureus 2022; 14:e28199. [PMID: 36158332 PMCID: PMC9484295 DOI: 10.7759/cureus.28199] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2022] [Accepted: 08/20/2022] [Indexed: 11/25/2022] Open
Abstract
We present a case of a 35-year-old female with an extensive history of attention-deficit/hyperactivity disorder (ADHD) who experienced a traumatic sexual and physical assault and later developed post-traumatic stress disorder (PTSD). The patient disclosed that her current medication (Vyvanse) used to treat ADHD has been the only treatment modality that has helped control her intrusive thoughts and nightmares. Decreased dopaminergic receptors are associated with developing PTSD and psychostimulants are known to have an effect of increasing Dopamine release. This case report shows promising results and potential off-label use of psychostimulants for the treatment of PTSD.
Collapse
|
8
|
Tseng PT, Jeng JS, Zeng BS, Stubbs B, Carvalho AF, Brunoni AR, Su KP, Tu YK, Wu YC, Chen TY, Lin PY, Liang CS, Hsu CW, Chen YW, Li CT. Efficacy of non-invasive brain stimulation interventions in reducing smoking frequency in patients with nicotine dependence: a systematic review and network meta-analysis of randomized controlled trials. Addiction 2022; 117:1830-1842. [PMID: 34347916 DOI: 10.1111/add.15624] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/15/2020] [Accepted: 06/09/2021] [Indexed: 12/29/2022]
Abstract
BACKGROUND AND AIMS Nicotine is a highly addictive substance in tobacco products that dysregulates several neurotransmitters in the brain and impairs executive function. Non-invasive brain stimulation (NIBS) methods such as repetitive transcranial magnetic stimulation (rTMS) and transcranial direct current stimulation (tDCS) are promising treatments for nicotine dependence. We investigated the efficacy and acceptability of NIBS in managing smoking cessation through a systematic review and network meta-analysis (NMA). METHODS We conducted a systematic review to identify randomized controlled trials (RCTs) that investigated the efficacy of NIBS for smoking cessation. All pairwise meta-analyses and NMA procedures were conducted using random-effects and frequentist models. The co-primary outcomes were (1) the change in number of cigarettes smoked per day (change in frequency of smoking) in patients with nicotine dependence after NIBS and (2) acceptability (the dropout rate). The effect sizes for co-primary outcomes of change in frequency of smoking and acceptability were assessed according to standardized mean difference (SMD) and odds ratio, respectively. RESULTS Twelve RCTs with 710 participants (mean age: 44.2 years, 31.2% female) were included. Compared with the sham control, 10-Hz rTMS over the left dorsolateral prefrontal cortex (DLPFC) was associated with the largest changes in smoking frequency [SMD = -1.22, 95% confidence interval (95% CI) = -1.77 to -0.66]. The 2-mA bifrontal tDCS (SMD = -0.97, 95% CI = -1.32 to -0.62) and 10-Hz deep rTMS over the bilateral DLPFC with cue provocation (SMD = -0.77, 95% CI = -1.20 to -0.34) were associated with a significantly larger decrease in smoking frequency versus the sham. None of the investigated NIBSs was associated with dropout rates significantly different from those of the sham control groups. CONCLUSION Prefrontal non-invasive brain stimulation interventions appear to reduce the number of cigarettes smoked with good acceptability.
Collapse
Affiliation(s)
- Ping-Tao Tseng
- Prospect Clinic for Otorhinolaryngology and Neurology, Kaohsiung, Taiwan.,Institute of Biomedical Sciences, National Sun Yat-sen University, Kaohsiung, Taiwan.,Department of Psychology, College of Medical and Health Science, Asia University, Taichung, Taiwan
| | - Jia-Shyun Jeng
- Department of Psychiatry, Taipei Veterans General Hospital, Taipei, Taiwan
| | - Bing-Syuan Zeng
- Department of Internal Medicine, E-Da Hospital, Kaohsiung, Taiwan
| | - Brendon Stubbs
- Department of Psychological Medicine, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, UK.,Physiotherapy Department, South London and Maudsley NHS Foundation Trust, London, UK.,Positive Ageing Research Institute (PARI), Faculty of Health, Social Care Medicine and Education, Anglia Ruskin University, Chelmsford, UK
| | - Andre F Carvalho
- IMPACT (Innovation in Mental and Physical Health and Clinical Treatment) Strategic Research Centre, School of Medicine, Barwon Health, Deakin University, Geelong, Australia
| | - Andre R Brunoni
- Service of Interdisciplinary, Neuromodulation, Department and Institute of Psychiatry, Laboratory of Neurosciences (LIM-27), University of Sao Paulo, Sao Paulo, Brazil.,Interdisciplinary Center for Applied Neuromodulation University Hospital, University of Sao Paulo, Sao Paulo, Brazil
| | - Kuan-Pin Su
- Department of Psychological Medicine, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, UK.,Department of Psychiatry and Mind-Body Interface Laboratory (MBI-Lab), China Medical University Hospital, Taichung, Taiwan.,College of Medicine, China Medical University, Taichung, Taiwan.,An-Nan Hospital, China Medical University, Tainan, Taiwan
| | - Yu-Kang Tu
- Institute of Epidemiology and Preventive Medicine, College of Public Health, National Taiwan University, Taipei, Taiwan.,Department of Dentistry, National Taiwan University Hospital, Taipei, Taiwan
| | - Yi-Cheng Wu
- Department of Sports Medicine, Landseed International Hospital, Taoyuan, Taiwan
| | - Tien-Yu Chen
- Department of Psychiatry, Tri-Service General Hospital, Taipei, Taiwan.,School of Medicine, National Defense Medical Center, Taipei, Taiwan.,Institute of Brain Science, National Yang Ming Chiao Tung University, Taipei, 112, Taiwan
| | - Pao-Yen Lin
- Department of Psychiatry, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine, Kaohsiung, Taiwan.,Institute for Translational Research in Biomedical Sciences, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine, Kaohsiung, Taiwan
| | - Chih-Sung Liang
- School of Medicine, National Defense Medical Center, Taipei, Taiwan.,Department of Psychiatry, Beitou Branch, Tri-Service General Hospital, Taipei, Taiwan.,Graduate Institute of Medical Sciences, National Defense Medical Center, Taipei, Taiwan
| | - Chih-Wei Hsu
- Department of Psychiatry, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine, Kaohsiung, Taiwan
| | - Yen-Wen Chen
- Prospect Clinic for Otorhinolaryngology and Neurology, Kaohsiung, Taiwan
| | - Cheng-Ta Li
- Department of Psychiatry, Taipei Veterans General Hospital, Taipei, Taiwan.,Institute of Brain Science, National Yang Ming Chiao Tung University, Taipei, 112, Taiwan.,Institute of Cognitive Neuroscience, National Central University, Jhongli, Taiwan.,Division of Psychiatry, School of Medicine, National Yang Ming Chiao Tung University, Taipei, Taiwan.,Brain Research Center, School of Medicine, National Yang Ming Chiao Tung University, Taipei, Taiwan
| |
Collapse
|
9
|
Blum K, Brodie MS, Pandey SC, Cadet JL, Gupta A, Elman I, Thanos PK, Gondre-Lewis MC, Baron D, Kazmi S, Bowirrat A, Febo M, Badgaiyan RD, Braverman ER, Dennen CA, Gold MS. Researching Mitigation of Alcohol Binge Drinking in Polydrug Abuse: KCNK13 and RASGRF2 Gene(s) Risk Polymorphisms Coupled with Genetic Addiction Risk Severity (GARS) Guiding Precision Pro-Dopamine Regulation. J Pers Med 2022; 12:jpm12061009. [PMID: 35743793 PMCID: PMC9224860 DOI: 10.3390/jpm12061009] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2022] [Revised: 06/12/2022] [Accepted: 06/16/2022] [Indexed: 11/22/2022] Open
Abstract
Excessive alcohol intake, e.g., binge drinking, is a serious and mounting public health problem in the United States and throughout the world. Hence the need for novel insights into the underlying neurobiology that may help improve prevention and therapeutic strategies. Therefore, our group employed a darkness-induced alcohol intake protocol to define the reward deficiency domains of alcohol and other substance use disorders in terms of reward pathways' reduced dopamine signaling and its restoration via specifically-designed therapeutic compounds. It has been determined that KCNK13 and RASGRF2 genes, respectively, code for potassium two pore domain channel subfamily K member 13 and Ras-specific guanine nucleotide-releasing factor 2, and both genes have important dopamine-related functions pertaining to alcohol binge drinking. We present a hypothesis that identification of KCNK13 and RASGRF2 genes' risk polymorphism, coupled with genetic addiction risk score (GARS)-guided precision pro-dopamine regulation, will mitigate binge alcohol drinking. Accordingly, we review published reports on the benefits of this unique approach and provide data on favorable outcomes for both binge-drinking animals and drunk drivers, including reductions in alcohol intake and prevention of relapse to drinking behavior. Since driving under the influence of alcohol often leads to incarceration rather than rehabilitation, there is converging evidence to support the utilization of GARS with or without KCNK13 and RASGRF2 risk polymorphism in the legal arena, whereby the argument that "determinism" overrides the "free will" account may be a plausible defense strategy. Obviously, this type of research is tantamount to helping resolve a major problem related to polydrug abuse.
Collapse
Affiliation(s)
- Kenneth Blum
- The Kenneth Blum Behavioral & Neurogenetic Institute, Austin, TX 78701, USA; (E.R.B.); (C.A.D.)
- Division of Addiction Research & Education, Center for Psychiatry, Medicine & Primary Care (Office of Provost), Western University Health Sciences, Pomona, CA 91766, USA; (D.B.); (M.F.)
- Institute of Psychology, ELTE Eötvös Loránd University, Egyetem tér 1-3, 1053 Budapest, Hungary
- Department of Psychiatry, School of Medicine, University of Vermont, Burlington, VT 05405, USA
- Department of Psychiatry, Wright State University Boonshoft School of Medicine and Dayton VA Medical Centre, Dayton, OH 45324, USA
- Correspondence:
| | - Mark S. Brodie
- Center for Alcohol Research in Epigenetics, Departments of Physiology and Biophysics, and Psychiatry, University of Illinois at Chicago, Chicago, IL 60612, USA; (M.S.B.); (S.C.P.)
| | - Subhash C. Pandey
- Center for Alcohol Research in Epigenetics, Departments of Physiology and Biophysics, and Psychiatry, University of Illinois at Chicago, Chicago, IL 60612, USA; (M.S.B.); (S.C.P.)
| | - Jean Lud Cadet
- Molecular Neuropsychiatry Research Branch, National Institute on Drug Abuse, National Institutes of Health, Bethesda, MD 20892, USA;
| | - Ashim Gupta
- Future Biologics, Lawrenceville, GA 30043, USA;
| | - Igor Elman
- Center for Pain and the Brain (P.A.I.N Group), Department of Anesthesiology, Critical Care & Pain Medicine, Boston Children’s Hospital, Boston, MA 02115, USA;
| | - Panayotis K. Thanos
- Behavioral Neuropharmacology and Neuroimaging Laboratory on Addictions, Clinical Research Institute on Addictions, Department of Pharmacology and Toxicology, Jacobs School of Medicine and Biosciences, State University of New York at Buffalo, Buffalo, NY 14203, USA;
- Department of Psychology, State University of New York at Buffalo, Buffalo, NY 14203, USA
| | - Marjorie C. Gondre-Lewis
- Neuropsychopharmacology Laboratory, Department of Anatomy, Howard University College of Medicine, Washington, DC 20059, USA;
| | - David Baron
- Division of Addiction Research & Education, Center for Psychiatry, Medicine & Primary Care (Office of Provost), Western University Health Sciences, Pomona, CA 91766, USA; (D.B.); (M.F.)
| | - Shan Kazmi
- College of Osteopathic Medicine of the Pacific, Western University of Health Sciences, Pomona, CA 91766, USA;
| | - Abdalla Bowirrat
- Department of Molecular Biology and Adelson School of Medicine, Ariel University, Ariel 40700, Israel;
| | - Marcelo Febo
- Division of Addiction Research & Education, Center for Psychiatry, Medicine & Primary Care (Office of Provost), Western University Health Sciences, Pomona, CA 91766, USA; (D.B.); (M.F.)
| | - Rajendra D. Badgaiyan
- Department of Psychiatry, South Texas Veteran Health Care System, Audie L. Murphy Memorial VA Hospital, Long School of Medicine, University of Texas Medical Center, San Antonio, TX 78229, USA;
| | - Eric R. Braverman
- The Kenneth Blum Behavioral & Neurogenetic Institute, Austin, TX 78701, USA; (E.R.B.); (C.A.D.)
| | - Catherine A. Dennen
- The Kenneth Blum Behavioral & Neurogenetic Institute, Austin, TX 78701, USA; (E.R.B.); (C.A.D.)
| | - Mark S. Gold
- Department of Psychiatry, Washington University School of Medicine, St. Louis, MO 63110, USA;
| |
Collapse
|
10
|
Madigan MA, Gupta A, Bowirrat A, Baron D, Badgaiyan RD, Elman I, Dennen CA, Braverman ER, Gold MS, Blum K. Precision Behavioral Management (PBM) and Cognitive Control as a Potential Therapeutic and Prophylactic Modality for Reward Deficiency Syndrome (RDS): Is There Enough Evidence? INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2022; 19:ijerph19116395. [PMID: 35681980 PMCID: PMC9180535 DOI: 10.3390/ijerph19116395] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/23/2022] [Revised: 05/19/2022] [Accepted: 05/20/2022] [Indexed: 12/20/2022]
Abstract
This brief commentary aims to provide an overview of the available and relatively new precision management of reward deficiencies manifested as substance and behavioral disorders. Current and future advances, concepts, and the substantial evidential basis of this potential therapeutic and prophylactic treatment modality are presented. Precision Behavioral Management (PBM), conceptualized initially as Precision Addiction Management (PAM), certainly deserves consideration as an important modality for the treatment of impaired cognitive control in reward processing as manifested in people with neurobiologically expressed Reward Deficiency Syndrome (RDS).
Collapse
Affiliation(s)
- Margaret A. Madigan
- The Kenneth Blum Behavioral & Neurogenetic Institute, LLC., Austin, TX 78701, USA; (M.A.M.); (C.A.D.); (E.R.B.)
| | - Ashim Gupta
- Future Biologics, Lawrenceville, GA 30043, USA;
| | - Abdalla Bowirrat
- Department of Molecular Biology, Adelson School of Medicine, Ariel University, Ariel 40700, Israel;
| | - David Baron
- Center for Psychiatry, Medicine, & Primary Care (Office of Provost), Division of Addiction Research & Education, Western University Health Sciences, Pomona, CA 91766, USA;
| | - Rajendra D. Badgaiyan
- Department of Psychiatry, South Texas Veteran Health Care System, Audie L. Murphy Memorial VA Hospital, Long School of Medicine, University of Texas Medical Center, San Antonio, TX 78229, USA;
| | - Igor Elman
- Center for Pain and the Brain (P.A.I.N Group), Department of Anesthesiology, Critical Care & Pain Medicine, Boston Children’s Hospital, Harvard Medical School, Boston, MA 02115, USA;
| | - Catherine A. Dennen
- The Kenneth Blum Behavioral & Neurogenetic Institute, LLC., Austin, TX 78701, USA; (M.A.M.); (C.A.D.); (E.R.B.)
| | - Eric R. Braverman
- The Kenneth Blum Behavioral & Neurogenetic Institute, LLC., Austin, TX 78701, USA; (M.A.M.); (C.A.D.); (E.R.B.)
| | - Mark S. Gold
- Department of Psychiatry, Washington University School of Medicine, St. Louis, MO 63110, USA;
| | - Kenneth Blum
- The Kenneth Blum Behavioral & Neurogenetic Institute, LLC., Austin, TX 78701, USA; (M.A.M.); (C.A.D.); (E.R.B.)
- Center for Psychiatry, Medicine, & Primary Care (Office of Provost), Division of Addiction Research & Education, Western University Health Sciences, Pomona, CA 91766, USA;
- Institute of Psychology, ELTE Eötvös Loránd University, Egyetem tér 1-3, 1053 Budapest, Hungary
- Department of Psychiatry, School of Medicine, University of Vermont, Burlington, VT 05405, USA
- Department of Psychiatry, Wright State University Boonshoft School of Medicine, Dayton VA Medical Centre, Dayton, OH 45324, USA
- Correspondence:
| |
Collapse
|
11
|
Braverman ER, Dennen CA, Gold MS, Bowirrat A, Gupta A, Baron D, Roy AK, Smith DE, Cadet JL, Blum K. Proposing a "Brain Health Checkup (BHC)" as a Global Potential "Standard of Care" to Overcome Reward Dysregulation in Primary Care Medicine: Coupling Genetic Risk Testing and Induction of "Dopamine Homeostasis". INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2022; 19:5480. [PMID: 35564876 PMCID: PMC9099927 DOI: 10.3390/ijerph19095480] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/17/2022] [Revised: 04/26/2022] [Accepted: 04/28/2022] [Indexed: 12/27/2022]
Abstract
In 2021, over 100,000 people died prematurely from opioid overdoses. Neuropsychiatric and cognitive impairments are underreported comorbidities of reward dysregulation due to genetic antecedents and epigenetic insults. Recent genome-wide association studies involving millions of subjects revealed frequent comorbidity with substance use disorder (SUD) in a sizeable meta-analysis of depression. It found significant associations with the expression of NEGR1 in the hypothalamus and DRD2 in the nucleus accumbens, among others. However, despite the rise in SUD and neuropsychiatric illness, there are currently no standard objective brain assessments being performed on a routine basis. The rationale for encouraging a standard objective Brain Health Check (BHC) is to have extensive data available to treat clinical syndromes in psychiatric patients. The BHC would consist of a group of reliable, accurate, cost-effective, objective assessments involving the following domains: Memory, Attention, Neuropsychiatry, and Neurological Imaging. Utilizing primarily PUBMED, over 36 years of virtually all the computerized and written-based assessments of Memory, Attention, Psychiatric, and Neurological imaging were reviewed, and the following assessments are recommended for use in the BHC: Central Nervous System Vital Signs (Memory), Test of Variables of Attention (Attention), Millon Clinical Multiaxial Inventory III (Neuropsychiatric), and Quantitative Electroencephalogram/P300/Evoked Potential (Neurological Imaging). Finally, we suggest continuing research into incorporating a new standard BHC coupled with qEEG/P300/Evoked Potentials and genetically guided precision induction of "dopamine homeostasis" to diagnose and treat reward dysregulation to prevent the consequences of dopamine dysregulation from being epigenetically passed on to generations of our children.
Collapse
Affiliation(s)
- Eric R. Braverman
- The Kenneth Blum Institute on Behavior & Neurogenetics, Austin, TX 78701, USA; (E.R.B.); (C.A.D.)
| | - Catherine A. Dennen
- The Kenneth Blum Institute on Behavior & Neurogenetics, Austin, TX 78701, USA; (E.R.B.); (C.A.D.)
| | - Mark S. Gold
- Department of Psychiatry, Washington University School of Medicine, St. Louis, MO 63110, USA;
- Department of Psychiatry, Tulane School of Medicine, New Orleans, LA 70112, USA;
| | - Abdalla Bowirrat
- Department of Molecular Biology, Adelson School of Medicine, Ariel University, Ariel 40700, Israel;
| | - Ashim Gupta
- Future Biologics, Lawrenceville, GA 30043, USA;
| | - David Baron
- Division of Addiction Research & Education, Center for Psychiatry, Medicine & Primary Care (Office of Provost), Western University Health Sciences, Pomona, CA 91766, USA;
| | - A. Kenison Roy
- Department of Psychiatry, Tulane School of Medicine, New Orleans, LA 70112, USA;
| | - David E. Smith
- Department of Cellular and Molecular Pharmacology, University of California San Francisco, San Francisco, CA 94158, USA;
| | - Jean Lud Cadet
- The Molecular Neuropsychiatry Research Branch, NIH National Institute on Drug Abuse, Baltimore, MD 21224, USA;
| | - Kenneth Blum
- The Kenneth Blum Institute on Behavior & Neurogenetics, Austin, TX 78701, USA; (E.R.B.); (C.A.D.)
- Division of Addiction Research & Education, Center for Psychiatry, Medicine & Primary Care (Office of Provost), Western University Health Sciences, Pomona, CA 91766, USA;
| |
Collapse
|
12
|
Overcoming reward deficiency syndrome by the induction of “dopamine homeostasis” instead of opioids for addiction: illusion or reality? J Osteopath Med 2022; 122:333-337. [DOI: 10.1515/jom-2021-0026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2021] [Accepted: 02/03/2022] [Indexed: 11/15/2022]
Abstract
Abstract
Many individuals in the United States are plagued by addiction, and the rate at which it is affecting people in the United States only seems to be increasing. Research shows that addiction is a preventable disorder rather than a flaw in one’s moral fiber. It is driven by the imbalance of dopamine and the brain’s reward system. Although medication-assisted treatment (MAT), the most common treatment for addiction, are effective in reducing harm, they provide minimal aid in addressing the root cause of this preventable disorder. The authors aim to convey that the proper treatment should help restore dopamine balance so the quality of life can be improved in the recovering community. Osteopathic principles emphasize the importance of homeostasis and allostasis in allowing the body to heal itself. Viewing reward deficiency syndrome (RDS) through this osteopathic lens can bring about treatments that aim to restore the dopamine homeostasis. The article discusses various potential therapeutic modalities that can provide dopamine homeostasis via activation of dopaminergic pathways.
Collapse
|
13
|
Blum K, Steinberg B, Gondre-Lewis MC, Baron D, Modestino EJ, Badgaiyan RD, Downs BW, Bagchi D, Brewer R, McLaughlin T, Bowirrat A, Gold M. A Review of DNA Risk Alleles to Determine Epigenetic Repair of mRNA Expression to Prove Therapeutic Effectiveness in Reward Deficiency Syndrome (RDS): Embracing "Precision Behavioral Management". Psychol Res Behav Manag 2021; 14:2115-2134. [PMID: 34949945 PMCID: PMC8691196 DOI: 10.2147/prbm.s292958] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2021] [Accepted: 11/22/2021] [Indexed: 11/23/2022] Open
Abstract
This is a review of research on "Precision Behavioral Management" of substance use disorder (SUD). America is experiencing a high prevalence of substance use disorder, primarily involving legal and illegal opioid use. A 3000% increase in treatment for substance abuse has occurred between 2000 and 2016. Unfortunately, present day treatment of opioid abuse involves providing replacement therapy with powerful opioids to, at best, induce harm reduction, not prophylaxis. These interventions do not enhance gene expression and restore the balance of the brain reward system's neurotransmitters. We are proposing a generalized approach called "Precision Behavioral Management". This approach includes 1) using the Genetic Addiction Risk Severity (GARS, a 10 candidate polymorphic gene panel shown to predict ASI-alcohol and drug severity) to assess early pre-disposition to substance use disorder; 2) using a validated reward deficiency syndrome (RDS) questionnaire; 3) utilization of the Comprehensive Analysis of Reported Drugs (CARD™) to assess treatment compliance and abstinence from illicit drugs during treatment, and, importantly; 4) utilization of a "Pro-dopamine regulator (KB220)" (via IV or oral [KB220Z] delivery systems) to optimize gene expression, restore the balance of the Brain Reward Cascade's neurotransmitter systems and prevent relapse by induction of dopamine homeostasis, and; 5) utilization of targeted DNA polymorphic reward genes to direct mRNA genetic expression profiling during the treatment process. Incorporation of these events can be applied to not only the under-considered African-American RDS community, but all victims of RDS, as a demonstration of a paradigm shift that uniquely provides a novel putative "standard of care" based on DNA guided precision nutrition therapy to induce "dopamine homeostasis" and rebalance neurotransmitters in the Brain Reward Cascade. We are also developing a Reward Deficiency Syndrome Diagnostic Criteria (RDSDC) to assist in potential tertiary treatment.
Collapse
Affiliation(s)
- Kenneth Blum
- Center for Psychiatry, Medicine & Primary Care, Division of Addiction Research & Education, Graduate College, Western University Health Sciences, Pomona, CA, USA
- Eötvös Loránd University, Institute of Psychology, Budapest, Hungary
- Department of Psychiatry, Wright State University Boonshoft School of Medicine and Dayton VA Medical Center, Dayton, OH (IE), USA
- Department of Psychiatry, University of Vermont, Burlington, VT, USA
- Division of Nutrigenomics, The Kenneth Blum Behavioral & Neurogenetic Institute, Austin, TX, USA
| | | | - Marjorie C Gondre-Lewis
- Developmental Neuropsychopharmacology Laboratory, Department of Anatomy, Howard University College of Medicine, Washington, DC, USA
| | - David Baron
- Center for Psychiatry, Medicine & Primary Care, Division of Addiction Research & Education, Graduate College, Western University Health Sciences, Pomona, CA, USA
| | | | - Rajendra D Badgaiyan
- Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Department of Psychiatry, South Texas Veteran Health Care System, Audie L. Murphy Memorial VA Hospital, San Antonio, TX, USA
- Long School of Medicine, University of Texas Medical Center, San Antonio, TX, USA
| | - B William Downs
- Division of Nutrigenomics, Victory Nutrition International, Inc., Harleysville, PA, USA
| | - Debasis Bagchi
- Division of Nutrigenomics, Victory Nutrition International, Inc., Harleysville, PA, USA
| | - Raymond Brewer
- Division of Nutrigenomics, The Kenneth Blum Behavioral & Neurogenetic Institute, Austin, TX, USA
| | - Thomas McLaughlin
- Department of Psychopharmacology, Center for Psychiatric Medicine, Lawrence, MA, USA
| | - Abdalla Bowirrat
- Adelson School of Medicine & Department of Molecular Biology, Ariel University, Ariel, Israel
| | - Mark Gold
- Department of Psychiatry, Washington University, School of Medicine, St. Louis, MO, USA
| |
Collapse
|
14
|
Blum K, Thanos PK, Wang GJ, Bowirrat A, Gomez LL, Baron D, Jalali R, Gondré-Lewis MC, Gold MS. Dopaminergic and other genes related to reward induced overeating, Bulimia, Anorexia Nervosa, and Binge eating. EXPERT REVIEW OF PRECISION MEDICINE AND DRUG DEVELOPMENT 2021. [DOI: 10.1080/23808993.2021.1994186] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Affiliation(s)
- Kenneth Blum
- Division of Addiction Research & Education, Center for Psychiatry, Medicine & Primary Care (Office of the Provost), Western University Health Sciences Graduate School of Biomedical Sciences, Pomona, CA, USA
- Department of Precision Behavioral Management, The Kenneth Blum Behavioral Neurogenetic Institute (Division of Ivitalize Inc.), Austin, TX, USA
- Institute of Psychology, ELTE Eötvös Loránd University, Budapest, Hungary
- Department of Psychiatry, University of Vermont, Burlington, VM, USA
- Centre for Genomics and Applied Gene Technology, Institute of Integrative Omics and Applied Biotechnology, Nonakuri, India
| | - Panayotis K. Thanos
- Behavioral Neuropharmacology and Neuroimaging Laboratory on Addictions, Research Institute on Addictions, University at Buffalo, Buffalo, NY, USA
| | - Gene -Jack Wang
- Laboratory of Neuroimaging, National Institute of Alcohol Abuse and Alcoholism, Bethesda, MD, USA
| | - Abdalla Bowirrat
- Department of Molecular Biology and Adelson School of Medicine, Ariel University, Ariel, Israel
| | - Luis Llanos Gomez
- Department of Precision Behavioral Management, The Kenneth Blum Behavioral Neurogenetic Institute (Division of Ivitalize Inc.), Austin, TX, USA
| | - David Baron
- Division of Addiction Research & Education, Center for Psychiatry, Medicine & Primary Care (Office of the Provost), Western University Health Sciences Graduate School of Biomedical Sciences, Pomona, CA, USA
| | - Rehan Jalali
- Department of Precision Behavioral Management, The Kenneth Blum Behavioral Neurogenetic Institute (Division of Ivitalize Inc.), Austin, TX, USA
| | - Marjorie C Gondré-Lewis
- Neuropsychopharmacology Laboratory, Department of Anatomy, Howard University College of Medicine, Washington, Washington, DC, USA
| | - Mark S Gold
- Department of Psychiatry, School of Medicine, Washington University, St. Louis, MO, USA
| |
Collapse
|
15
|
Reward Deficiency Syndrome (RDS): A Cytoarchitectural Common Neurobiological Trait of All Addictions. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2021; 18:ijerph182111529. [PMID: 34770047 PMCID: PMC8582845 DOI: 10.3390/ijerph182111529] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/29/2021] [Revised: 09/09/2021] [Accepted: 09/10/2021] [Indexed: 02/07/2023]
Abstract
Alcohol and other substance use disorders share comorbidity with other RDS disorders, i.e., a reduction in dopamine signaling within the reward pathway. RDS is a term that connects addictive, obsessive, compulsive, and impulsive behavioral disorders. An estimated 2 million individuals in the United States have opioid use disorder related to prescription opioids. It is estimated that the overall cost of the illegal and legally prescribed opioid crisis exceeds one trillion dollars. Opioid Replacement Therapy is the most common treatment for addictions and other RDS disorders. Even after repeated relapses, patients are repeatedly prescribed the same opioid replacement treatments. A recent JAMA report indicates that non-opioid treatments fare better than chronic opioid treatments. Research demonstrates that over 50 percent of all suicides are related to alcohol or other drug use. In addition to effective fellowship programs and spirituality acceptance, nutrigenomic therapies (e.g., KB220Z) optimize gene expression, rebalance neurotransmitters, and restore neurotransmitter functional connectivity. KB220Z was shown to increase functional connectivity across specific brain regions involved in dopaminergic function. KB220/Z significantly reduces RDS behavioral disorders and relapse in human DUI offenders. Taking a Genetic Addiction Risk Severity (GARS) test combined with a the KB220Z semi-customized nutrigenomic supplement effectively restores dopamine homeostasis (WC 199).
Collapse
|
16
|
Blum K, Modestino EJ, Baron D, Brewer R, Thanos P, Elman I, Badgaiyan RD, Downs BW, Bagchi D, McLaughlin T, Bowirrat A, Roy AK, Gold MS. Endorphinergic Enhancement Attenuation of Post-traumatic Stress Disorder (PTSD) via Activation of Neuro-immunological Function in the Face of a Viral Pandemic. ACTA ACUST UNITED AC 2021; 10:86-97. [PMID: 34466374 DOI: 10.2174/2211556009999210104221215] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Introduction Polymorphic gene variants, particularly the genetic determinants of low dopamine function (hypodopaminergia), are known to associate with Substance Use Disorder (SUD) and a predisposition to PTSD. Addiction research and molecular genetic applied technologies supported by the National Institutes of Health (NIH) have revealed the complex functions of brain reward circuitry and its crucial role in addiction and PTSD symptomatology. Discussion It is noteworthy that Israeli researchers compared mice with a normal immune system with mice lacking adaptive immunity and found that the incidence of PTSD increased several-fold. It is well established that raising endorphinergic function increases immune response significantly. Along these lines, Blum's work has shown that D-Phenylalanine (DPA), an enkephalinase inhibitor, increases brain endorphins in animal models and reduces stress in humans. Enkephalinase inhibition with DPA treats Post Traumatic Stress Disorder (PTSD) by restoring endorphin function. The Genetic Addiction Risk Severity (GARS) can characterize relevant phenotypes, genetic risk for stress vulnerability vs. resilience. GARS could be used to pre-test military enlistees for adaptive immunity or as part of PTSD management with customized neuronutrient supplementation upon return from deployment. Conclusion Based on GARS values, with particular emphasis on enhancing immunological function, pro-dopamine regulation may restore dopamine homeostasis. Recognition of the immune system as a "sixth sense" and assisting adaptive immunity with Precision Behavioral Management (PBM), accompanied by other supportive interventions and therapies, may shift the paradigm in treating stress disorders.
Collapse
Affiliation(s)
- Kenneth Blum
- Western University Health Sciences, Graduate School of Biomedical Sciences, Pomona, CA, USA.,Institute of Psychology, ELTE Eötvös Loránd University, Budapest, Hungary.,Division of Precision Behavioral Management, Geneus Health, San Antonio, TX, USA.,Division of Nutrigenomics, Victory Nutrition International, Lederoch, PA., USA
| | | | - David Baron
- Western University Health Sciences, Graduate School of Biomedical Sciences, Pomona, CA, USA
| | - Raymond Brewer
- Division of Precision Behavioral Management, Geneus Health, San Antonio, TX, USA
| | - Panayotis Thanos
- Behavioral Neuropharmacology & Neuroimaging Laboratory on Addiction, Research Institute on Addictions, Department of Pharmacology and Toxicology, Jacobs School of Medicine and Biomedical Sciences, University of Buffalo, Buffalo, NY, USA
| | - Igor Elman
- Department of Psychiatry, Harvard School of Medicine, Cambridge MA, USA
| | - Rajendra D Badgaiyan
- Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, NY, USA.,Department of Psychiatry, South Texas Veteran Health Care System, Audie L. Murphy I Memorial VA Hospital, San Antonio, TX. and Long School of Medicine, University of Texas Medical Center, San Antonio TX, USA
| | - B William Downs
- Division of Nutrigenomics, Victory Nutrition International, Lederoch, PA., USA
| | - Debasis Bagchi
- Division of Nutrigenomics, Victory Nutrition International, Lederoch, PA., USA.,Department of Pharmaceutical Sciences, University of Houston, School of Pharmacy, Houston, TX., USA
| | | | - Abdalla Bowirrat
- Department of Neuroscience and Genetics, Interdisciplinary Center Herzliya, Herzliya, Israel
| | - A Kenison Roy
- Department of Psychiatry, University of Tulane School of Medicine, New Orleans, LA, USA
| | - Mark S Gold
- Department of Psychiatry, Washington University, School of Medicine, St. Louis, MO., USA
| |
Collapse
|
17
|
Blum K, Kazmi S, Modestino EJ, Downs BW, Bagchi D, Baron D, McLaughlin T, Green R, Jalali R, Thanos PK, Elman I, Badgaiyan RD, Bowirrat A, Gold MS. A Novel Precision Approach to Overcome the "Addiction Pandemic" by Incorporating Genetic Addiction Risk Severity (GARS) and Dopamine Homeostasis Restoration. J Pers Med 2021; 11:jpm11030212. [PMID: 33809702 PMCID: PMC8002215 DOI: 10.3390/jpm11030212] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2021] [Revised: 03/01/2021] [Accepted: 03/11/2021] [Indexed: 12/17/2022] Open
Abstract
This article describes a unique therapeutic precision intervention, a formulation of enkephalinase inhibitors, enkephalin, and dopamine-releasing neuronutrients, to induce dopamine homeostasis for detoxification and treatment of individuals genetically predisposed to developing reward deficiency syndrome (RDS). The formulations are based on the results of the addiction risk severity (GARS) test. Based on both neurogenetic and epigenetic evidence, the test evaluates the presence of reward genes and risk alleles. Existing evidence demonstrates that the novel genetic risk testing system can successfully stratify the potential for developing opioid use disorder (OUD) related risks or before initiating opioid analgesic therapy and RDS risk for people in recovery. In the case of opioid use disorders, long-term maintenance agonist treatments like methadone and buprenorphine may create RDS, or RDS may have been in existence, but not recognized. The test will also assess the potential for benefit from medication-assisted treatment with dopamine augmentation. RDS methodology holds a strong promise for reducing the burden of addictive disorders for individuals, their families, and society as a whole by guiding the restoration of dopamine homeostasisthrough anti-reward allostatic neuroadaptations. WC 175.
Collapse
Affiliation(s)
- Kenneth Blum
- College of Osteopathic Medicine of the Pacific, Western University of Health Sciences, Pomona, CA 91766, USA; (S.K.); (D.B.)
- Institute of Psychology, ELTE Eötvös Loránd University, 1117 Budapest, Hungary
- Division of Nutrigenomics, The Kenneth Blum Behavioral Neurogenetic Institute, Austin, TX 78712, USA; (T.M.); (R.G.); (R.J.)
- Department of Psychiatry, University of Vermont, Burlington, VT 05405, USA
- Department of Psychiatry, Wright University Boonshoff School of Medicine, Dayton, OH 45435, USA
- Division of Precision Nutrition, Victory Nutrition International, Lederach, PA 19450, USA; (B.W.D.); (D.B.)
- Center for Genomic Testing, Geneus Health LLC, San Antonio, TX 78249, USA
- Correspondence: ; Tel.: +1-619p-890-2167
| | - Shan Kazmi
- College of Osteopathic Medicine of the Pacific, Western University of Health Sciences, Pomona, CA 91766, USA; (S.K.); (D.B.)
| | | | - Bill William Downs
- Division of Precision Nutrition, Victory Nutrition International, Lederach, PA 19450, USA; (B.W.D.); (D.B.)
| | - Debasis Bagchi
- Division of Precision Nutrition, Victory Nutrition International, Lederach, PA 19450, USA; (B.W.D.); (D.B.)
- Department of Pharmaceutical Sciences, College of Pharmacy & Health Sciences, Texas Southern University, Houston, TX 77004, USA
| | - David Baron
- College of Osteopathic Medicine of the Pacific, Western University of Health Sciences, Pomona, CA 91766, USA; (S.K.); (D.B.)
| | - Thomas McLaughlin
- Division of Nutrigenomics, The Kenneth Blum Behavioral Neurogenetic Institute, Austin, TX 78712, USA; (T.M.); (R.G.); (R.J.)
| | - Richard Green
- Division of Nutrigenomics, The Kenneth Blum Behavioral Neurogenetic Institute, Austin, TX 78712, USA; (T.M.); (R.G.); (R.J.)
- Precision Translational Medicine (Division of Ivitalize), San Antonio, TX 78249, USA
| | - Rehan Jalali
- Division of Nutrigenomics, The Kenneth Blum Behavioral Neurogenetic Institute, Austin, TX 78712, USA; (T.M.); (R.G.); (R.J.)
- Center for Genomic Testing, Geneus Health LLC, San Antonio, TX 78249, USA
| | - Panayotis K. Thanos
- Department of Psychology & Behavioral Neuropharmacology and Neuroimaging Laboratory on Addictions (BNNLA), Research Institute on Addictions, University at Buffalo, Buffalo, NY 14260, USA;
| | - Igor Elman
- Department of Psychiatry, Harvard University, School of Medicine, Cambridge, MA 02142, USA;
| | - Rajendra D. Badgaiyan
- Department of Psychiatry, South Texas Veteran Health Care System, Audie L. Murphy Memorial VA Hospital and Long School of Medicine, University of Texas Health Science Center, San Antonio, TX 78249, USA;
- Department of Psychiatry, MT. Sinai School of Medicine, New York, NY 10003, USA
| | - Abdalla Bowirrat
- Department of Molecular Biology and Adelson School of Medicine, Ariel University, Ariel 40700, Israel;
| | - Mark S. Gold
- Department of Psychiatry, Washington University School of Medicine, St. Louis, MO 63110, USA;
| |
Collapse
|
18
|
Sauter M, Braun T, Mack W. Social Context and Gaming Motives Predict Mental Health Better Than Time Played: An Exploratory Regression Analysis with over 13,000 Video Game Players. CYBERPSYCHOLOGY BEHAVIOR AND SOCIAL NETWORKING 2021; 24:94-100. [DOI: 10.1089/cyber.2020.0234] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Affiliation(s)
- Marian Sauter
- Institute for Psychology, Bundeswehr University Munich, Neubiberg, Germany
| | - Tina Braun
- Institute for Psychology, Bundeswehr University Munich, Neubiberg, Germany
| | - Wolfgang Mack
- Institute for Psychology, Bundeswehr University Munich, Neubiberg, Germany
| |
Collapse
|
19
|
Blum K, Gold MS, Cadet JL, Baron D, Bowirrat A, Thanos PK, Brewer R, Badgaiyan RD, Gondré-Lewis MC. Dopaminylation in Psychostimulant Use Disorder Protects Against Psychostimulant Seeking Behavior by Normalizing Nucleus Accumbens (NAc) Dopamine Expression. CURRENT PSYCHOPHARMACOLOGY 2021; 11:11-17. [PMID: 36046837 PMCID: PMC9426774 DOI: 10.2174/2211556009666210108112737] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/14/2020] [Revised: 10/15/2020] [Accepted: 11/18/2020] [Indexed: 05/31/2023]
Abstract
BACKGROUND Repeated cocaine administration changes histone acetylation and methylation on Lys residues and Deoxyribonucleic acid (DNA) within the nucleus accumbens (NAc). Recently Nestler's group explored histone Arg (R) methylation in reward processing models. Damez-Werno et al. (2016) reported that during human investigations and animal self-administration experiments, the histone mark protein-R-methyltransferase-6 (PRMT6) and asymmetric dimethylation of R2 on histone H3 (H3R2me2a) decreased in the rodent and cocaine-dependent human NAc. Overexpression of PRMT6 in D2-MSNs in all NAc neurons increased cocaine seeking, whereas PRMT6 overexpression in D1-MSNs protects against cocaine-seeking. HYPOTHESIS The hypothesis is that dopaminylation (H3R2me2a binding) occurs in psychostimulant use disorder (PSU), and the binding inhibitor Srcin1, like the major DRD2 A2 allelic polymorphism, protects against psychostimulant seeking behavior by normalizing nucleus accumbens (NAc) dopamine expression. DISCUSSION Numerous publications confirmed the association between the DRD2 Taq A1 allele (30-40 lower D2 receptor numbers) and severe cocaine dependence. Lepack et al. (2020) found that acute cocaine increases dopamine in NAc synapses, and results in histone H3 glutamine 5 dopaminylation (H3Q5dop) and consequent inhibition of D2 expression. The inhibition increases with chronic cocaine use and accompanies cocaine withdrawal. They also found that the Src kinase signaling inhibitor 1 (Srcin1 or p140CAP) during cocaine withdrawal reduced H3R2me2a binding. Consequently, this inhibited dopaminylation induced a "homeostatic brake." CONCLUSION The decrease in Src signaling in NAc D2-MSNs, (like the DRD2 Taq A2 allele, a well-known genetic mechanism protective against SUD) normalizes the NAc dopamine expression and decreases cocaine reward and motivation to self-administer cocaine. The Srcin1 may be an important therapeutic target.
Collapse
Affiliation(s)
- Kenneth Blum
- Graduate College of Biomedical Sciences, Western University, Health Sciences, Pomona, CA., USA
| | - Mark S Gold
- Department of Psychiatry, Washington, University, School of Medicine, St. louis, MO., USA
| | - Jean L. Cadet
- Molecular Neuropsychiatry Research Branch, National Institute on Drug Abuse/NIH, Baltimore, MD, USA
| | - David Baron
- Graduate College of Biomedical Sciences, Western University, Health Sciences, Pomona, CA., USA
| | - Abdalla Bowirrat
- Department of Neuroscience and Genetics, In-terdisciplinary Center Herzliya, Israel
| | - Panayotis K. Thanos
- Behavioral Neuropharmacology & Neuroimaging Laboratory on Addiction, Research Institute on Addictions, Department of Pharmacology and Toxicology, Jacobs School of Medicine and Biomedical Sciences, University of Buffalo, Buffalo, NY, USA
| | - Raymond Brewer
- Division of Precision Nutrition, GARS, IP, LLC., Austin, TX., USA
| | - Rajendra D. Badgaiyan
- Department of Psychiatry, Icahn School of Medicine Mt Sinai, New York, NY, USA
- Department of Psychiatry, South Texas Veteran Health Care System, Audie L. Murphy Memorial VA Hospital, San Antonio, TX, Long School of Medicine, University of Texas Medical Center, San Antonio, TX, USA
| | - Marjorie C. Gondré-Lewis
- Department of Anatomy, Howard University, WashingtonD.C, USA
- Developmental Neuropsychopharmacology Laboratory, Howard University College of Medicine, WashingtonD.C., USA
| |
Collapse
|
20
|
Blum K, Baron D, Jalali R, Modestino EJ, Steinberg B, Elman I, Badgaiyan RD, Gold MS. Polygenic and multi locus heritability of alcoholism: Novel therapeutic targets to overcome psychological deficits. ACTA ACUST UNITED AC 2020; 7. [PMID: 34707891 PMCID: PMC8547332 DOI: 10.15761/jsin.1000240] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Kenneth Blum
- Western University Health Sciences, Pomona, CA, USA.,Institute of Psychology, ELTE Eotvos Lorand University, Budapest, Hungary.,Division of Nutrigenomics, Genomic Testing Center Geneus Health, LLC, San Antonio, TX, USA.,Department of Psychiatry, University of Vermont, VT, USA.,Department of Psychiatry, Wright University Boonshoff School of Medicine, Dayton, OH., USA.,The Kenneth Blum Behavioral Neurogenetic Institute (Division of iVitalize Inc.), Austin, Tx, USA
| | - David Baron
- Western University Health Sciences, Pomona, CA, USA
| | - Rehan Jalali
- The Kenneth Blum Behavioral Neurogenetic Institute (Division of iVitalize Inc.), Austin, Tx, USA
| | | | | | - Igor Elman
- Department of Psychiatry, Harvard School of Medicine, Cambridge, MA, USA
| | - Rajendra D Badgaiyan
- Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, NY, USA.,Department of Psychiatry, South Texas Veteran Health Care System, Audie L. Murphy I Memorial VA Hospital, San Antonio, TX. and Long School of Medicine, University of Texas Medical Center, San Antonio TX, USA
| | - Mark S Gold
- Department of Psychiatry, Washington University School of Medicine, St. Louis, Mo. USA
| |
Collapse
|
21
|
Koijam AS, Hijam AC, Singh AS, Jaiswal P, Mukhopadhyay K, Rajamma U, Haobam R. Association of Dopamine Transporter Gene with Heroin Dependence in an Indian Subpopulation from Manipur. J Mol Neurosci 2020; 71:122-136. [PMID: 32557146 DOI: 10.1007/s12031-020-01633-5] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2019] [Accepted: 06/11/2020] [Indexed: 01/11/2023]
Abstract
Dopamine transporter (DAT) or solute carrier family 6 member 3 (SLC6A3) is a transmembrane protein regulating dopaminergic neurotransmission. It has been implicated in playing important roles in the dopaminergic reward pathways, and thus, DAT1 is a strong candidate gene for association studies with heroin dependence. A case-control study involving 279 individuals (147 controls and 132 heroin-dependent cases) was conducted. Ten polymorphisms of the DAT1 (SLC6A3) gene were analysed for its association with heroin dependence. Following the Hardy-Weinberg equilibrium (HWE) test, genetic association analyses were performed for the study groups. The post hoc statistical power of the study was 0.655 (65.5%). Single-nucleotide polymorphism (SNP) rs246997 was found to be significantly associated with heroin dependence at allelic, genotypic, and haplotypic levels. A significant difference in the distribution of 11R allele and 10R/11R genotype of rs28363170 between heroin-dependent cases and controls was also observed. Nominal significance at degrees of freedom (df) = 5 was also observed for rs28363170. Five bimarker-based haplotype combinations were also found to be associated with heroin dependence. For the first time, 13R allele (7R/13R genotype) and 14R allele (7R/14R genotype) were identified for rs3836790 in the population. The study also reports that the 11R allele and 10R/11R genotype of rs28363170 is associated with protection against heroin dependence. 7R and 6R alleles were also found to be the common alleles of rs3836790 in the study population. The study provides evidence for the association of polymorphisms of DAT1 (SLC6A3) with heroin dependence.
Collapse
Affiliation(s)
- Arunkumar Singh Koijam
- Department of Biotechnology, Manipur University, Canchipur, Imphal, Manipur, 795003, India
| | - Aruna Chanu Hijam
- Department of Biotechnology, Manipur University, Canchipur, Imphal, Manipur, 795003, India
| | - Asem Surindro Singh
- Department of Pathology, University of Mississippi Medical Center, 2500 North State Street, Jackson, MS, USA
| | - Preeti Jaiswal
- Manovikas Biomedical Research & Diagnostic Centre, Manovikas Kendra, 482 Madudah, Plot I-24, Sector-J, EM Bypass, Kolkata, West Bengal, India
| | - Kanchan Mukhopadhyay
- Manovikas Biomedical Research & Diagnostic Centre, Manovikas Kendra, 482 Madudah, Plot I-24, Sector-J, EM Bypass, Kolkata, West Bengal, India
| | - Usha Rajamma
- Manovikas Biomedical Research & Diagnostic Centre, Manovikas Kendra, 482 Madudah, Plot I-24, Sector-J, EM Bypass, Kolkata, West Bengal, India.,Centre for Development & Aging Research, Inter University Centre for Biomedical Research & Super Speciality Hospital, MG University Campus, Thalappady, Rubber Board PO, Kottayam, Kerala, India
| | - Reena Haobam
- Department of Biotechnology, Manipur University, Canchipur, Imphal, Manipur, 795003, India.
| |
Collapse
|
22
|
Blum K, Gondré-Lewis MC, Modestino EJ, Lott L, Baron D, Siwicki D, McLaughlin T, Howeedy A, Krengel MH, Oscar-Berman M, Thanos PK, Elman I, Hauser M, Fried L, Bowirrat A, Badgaiyan RD. Understanding the Scientific Basis of Post-traumatic Stress Disorder (PTSD): Precision Behavioral Management Overrides Stigmatization. Mol Neurobiol 2019; 56:7836-7850. [PMID: 31124077 DOI: 10.1007/s12035-019-1600-8] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2018] [Accepted: 04/02/2019] [Indexed: 12/20/2022]
Abstract
Post-traumatic stress disorder (PTSD) is a severe polygenic disorder triggered by environmental factors. Many polymorphic genes, particularly the genetic determinants of hypodopaminergia (low dopamine function), associate with a predisposition to PTSD as well as substance use disorder. Support from the National Institutes of Health for neuroimaging research and molecular, genetic applied technologies has improved understanding of brain reward circuitry functions that have inspired the development of new innovative approaches to their early diagnosis and treatment of some PTSD symptomatology and addiction. This review presents psychosocial and genetic evidence that vulnerability or resilience to PTSD can theoretically be impacted by dopamine regulation. From a neuroscience perspective, dopamine is widely accepted as a major neurotransmitter. Questions about how to modulate dopamine clinically in order to treat and prevent PTSD and other types of reward deficiency disorders remain. Identification of genetic variations associated with the relevant genotype-phenotype relationships can be characterized using the Genetic Addiction Risk Score (GARS®) and psychosocial tools. Development of an advanced genetic panel is under study and will be based on a new array of genes linked to PTSD. However, for now, the recommendation is that enlistees for military duty be given the opportunity to voluntarily pre-test for risk of PTSD with GARS, before exposure to environmental triggers or upon return from deployment as part of PTSD management. Dopamine homeostasis may be achieved via customization of neuronutrient supplementation "Precision Behavioral Management" (PBM™) based on GARS test values and other pro-dopamine regulation interventions like exercise, mindfulness, biosensor tracking, and meditation.
Collapse
Affiliation(s)
- Kenneth Blum
- Graduate School of Biomedical Sciences, Western University Health Sciences, Pomona, CA, USA. .,Institute of Psychology, ELTE Eötvös Loránd University, Budapest, Hungary. .,Department of Psychiatry, Boonshoft School of Medicine, Wright University, Dayton, OH, USA. .,Department of Precision Behavioral Management, Geneus Health, San Antonio, TX, USA. .,Division of Neurogenetic Research & Addiction Therapy, The Florida House Experience, Deerfield Beach, FL, USA. .,Division of Addiction Services, Dominion Diagnostics, North Kingston, RI, USA. .,Division of Neuroscience & Addiction Research, Pathway Healthcare, LLC., Burmingham, AL, USA.
| | - M C Gondré-Lewis
- Department of Anatomy, Developmental Neuropsychopharmacology Laboratory, Howard University College of Medicine, Washington, DC, USA
| | - E J Modestino
- Department of Psychology, Curry College, Milton, MA, USA
| | - L Lott
- Department of Precision Behavioral Management, Geneus Health, San Antonio, TX, USA
| | - D Baron
- Graduate School of Biomedical Sciences, Western University Health Sciences, Pomona, CA, USA
| | - D Siwicki
- Department of Precision Behavioral Management, Geneus Health, San Antonio, TX, USA.,Division of Addiction Services, Dominion Diagnostics, North Kingston, RI, USA
| | - T McLaughlin
- Center for Psychiatric Medicine, Lawrence, MA, USA
| | - A Howeedy
- Division of Neurogenetic Research & Addiction Therapy, The Florida House Experience, Deerfield Beach, FL, USA
| | - M H Krengel
- Department of Neurology, Boston University School of Medicine and VA Boston Healthcare System, Boston, MA, USA
| | - M Oscar-Berman
- Department of Neurology, Boston University School of Medicine and VA Boston Healthcare System, Boston, MA, USA
| | - P K Thanos
- Behavioral Neuropharmacology & Neuroimaging Laboratory on Addiction, Research Institute on Addictions, Department of Pharmacology and Toxicology, Jacobs School of Medicine and Biomedical Sciences, University of Buffalo, Buffalo, NY, USA
| | - I Elman
- Department of Psychiatry, Cooper University School of Medicine, Camden, NJ, USA
| | - M Hauser
- Division of Addiction Services, Dominion Diagnostics, North Kingston, RI, USA
| | - L Fried
- Department of Precision Behavioral Management, Geneus Health, San Antonio, TX, USA.,Transformations Treatment Center, Delray Beach, FL, USA
| | - A Bowirrat
- Division of Anatomy, Biochemistry and Genetics Faculty of Medicine and Health Sciences, An-Najah National University, Nablus, Palestine
| | - R D Badgaiyan
- Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| |
Collapse
|
23
|
Madeo G, Bonci A. Rewiring the Addicted Brain: Circuits-Based Treatment for Addiction. COLD SPRING HARBOR SYMPOSIA ON QUANTITATIVE BIOLOGY 2019; 83:173-184. [PMID: 31097615 DOI: 10.1101/sqb.2018.83.038158] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
The advent of the noninvasive brain stimulation (NIBS) technique has paved the way for neural circuit-based treatments for addiction. Recently, evidence from both preclinical and clinical studies has evaluated the use of transcranial magnetic stimulation (TMS) as a safe and cost-effective therapeutic tool for substance use disorders (SUDs). Indeed, repetitive TMS impacts on neural activity inducing short- and long-term effects involving neuroplasticity mechanisms locally within the target area of stimulation and the network level throughout the brain. Here, we provide an integrated view of evidence highlighting the mechanisms of TMS-induced effects on modulating the maladaptive brain circuitry of addiction. We then review the preclinical and clinical findings suggesting rTMS as an effective interventional tool for the treatment of SUDs.
Collapse
Affiliation(s)
- Graziella Madeo
- Novella Fronda Foundation, Human Science and Brain Research Piazza Castello, 16-35141 Padua, Italy.,Intramural Research Program, National Institute on Drug Abuse, National Institutes of Health, Baltimore, Maryland 21224, USA
| | - Antonello Bonci
- Intramural Research Program, National Institute on Drug Abuse, National Institutes of Health, Baltimore, Maryland 21224, USA.,Solomon H. Snyder Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, Maryland 21287, USA.,Department of Psychiatry and Behavioral Sciences, Johns Hopkins University School of Medicine, Baltimore, Maryland 21287, USA
| |
Collapse
|
24
|
Cruz B, Flores RJ, Uribe KP, Espinoza EJ, Spencer CT, Serafine KM, Nazarian A, O’Dell LE. Insulin modulates the strong reinforcing effects of nicotine and changes in insulin biomarkers in a rodent model of diabetes. Neuropsychopharmacology 2019; 44:1141-1151. [PMID: 30647447 PMCID: PMC6461916 DOI: 10.1038/s41386-018-0306-3] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/13/2018] [Revised: 11/17/2018] [Accepted: 12/15/2018] [Indexed: 11/09/2022]
Abstract
This study examined whether the strong reinforcing effects of nicotine and changes in insulin biomarkers observed in diabetic rats are modulated via insulin. A model of diabetes was employed involving administration of streptozotocin (STZ), which produces hypoinsulinemia in rats. The present study included vehicle- or STZ-treated rats that received sham surgery or insulin pellets. Two weeks later, the rats were given extended access to intravenous self-administration (IVSA) of saline or nicotine. Concomitant changes in food intake, water responses, and body weight were assessed during 12 days of IVSA. After the last session, plasma levels of insulin, leptin, amylin, and glucagon-like peptide-1 (GLP-1) were assessed using Luminex® technology. In a separate cohort, phosphorylated insulin receptor substrate-2 (pIRS-2) and insulin growth factor-1 receptor β (IGF-1Rβ) were assessed in the nucleus accumbens (NAc) and ventral tegmental area (VTA) of vehicle- or STZ-treated rats that received sham surgery or an insulin pellet. STZ-treated rats displayed an increase in glucose levels, a decrease in body weight, and an increase in nicotine, food, and water intake relative to controls. STZ-treated rats also displayed a decrease in plasma insulin and leptin levels and an increase in amylin and GLP-1 levels relative to controls. Importantly, all of the STZ-induced changes in behavior and insulin biomarkers were prevented by insulin supplementation. STZ-treated rats also displayed a decrease in pIRS-2 and IGF-1Rβ in the NAc (but not VTA), an effect that was also prevented by insulin. These data suggest that insulin systems in the NAc modulate the strong reinforcing effects of nicotine in male diabetic rats.
Collapse
Affiliation(s)
- Bryan Cruz
- 0000 0001 0668 0420grid.267324.6Department of Psychology, The University of Texas at El Paso, 500 West University Avenue, El Paso, TX USA
| | - Rodolfo J. Flores
- 0000 0001 0668 0420grid.267324.6Department of Psychology, The University of Texas at El Paso, 500 West University Avenue, El Paso, TX USA
| | - Kevin P. Uribe
- 0000 0001 0668 0420grid.267324.6Department of Psychology, The University of Texas at El Paso, 500 West University Avenue, El Paso, TX USA
| | - Evangelina J. Espinoza
- 0000 0001 0668 0420grid.267324.6Department of Psychology, The University of Texas at El Paso, 500 West University Avenue, El Paso, TX USA
| | - Charles T. Spencer
- 0000 0001 0668 0420grid.267324.6Department of Biological Sciences, The University of Texas at El Paso, 500 West University Avenue, El Paso, TX USA
| | - Katherine M. Serafine
- 0000 0001 0668 0420grid.267324.6Department of Psychology, The University of Texas at El Paso, 500 West University Avenue, El Paso, TX USA
| | - Arbi Nazarian
- 0000 0004 0455 5679grid.268203.dDepartment of Pharmaceutical Sciences, Western University of Health Sciences, Pomona, CA USA
| | - Laura E. O’Dell
- 0000 0001 0668 0420grid.267324.6Department of Psychology, The University of Texas at El Paso, 500 West University Avenue, El Paso, TX USA
| |
Collapse
|
25
|
Fujiwara H, Yoshimura S, Kobayashi K, Ueno T, Oishi N, Murai T. Neural Correlates of Non-clinical Internet Use in the Motivation Network and Its Modulation by Subclinical Autistic Traits. Front Hum Neurosci 2019; 12:493. [PMID: 30618678 PMCID: PMC6295452 DOI: 10.3389/fnhum.2018.00493] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2018] [Accepted: 11/22/2018] [Indexed: 12/02/2022] Open
Abstract
Background: Increasing evidence regarding the neural correlates of excessive or pathological internet use (IU) has accumulated in recent years, and comorbidity with depression and autism has been reported in multiple studies. However, psychological and neural correlates of non-clinical IU in healthy individuals remain unclear. Objectives: The aim of the current study was to investigate the relationships between non-clinical IU and functional connectivity (FC), focusing on the brain’s motivation network. We sought to clarify the influence of depression and autistic traits on these relationships in healthy individuals. Methods: Resting-state functional magnetic resonance imaging (fMRI) was performed in 119 healthy volunteers. IU, depression, and autistic traits were assessed using the Generalized Problematic Internet Use Scale 2 (GPIUS2), Beck Depression Inventory-II (BDI-II), and the autism spectrum quotient (AQ) scale, respectively. Correlational analyses were performed using CONN-software within the motivation-related network, which consisted of 22 brain regions defined by a previous response-conflict task-based fMRI study with a reward cue. We also performed mediation analyses via the bootstrap method. Results: Total GPIUS2 scores were positively correlated with FC between the (a) left middle frontal gyrus (MFG) and bilateral medial prefrontal cortex; (b) left MFG and right supplementary motor area (SMA); (c) left MFG and right anterior insula, and (d) right MFG and right insula. The “Mood Regulation” subscale of the GPIUS2 was positively correlated with FC between left MFG and right SMA. The “Deficient Self-Regulation” subscale was positively correlated with FC between right MFG and right anterior insula (statistical thresholds, FDR < 0.05). Among these significant correlations, those between GPIUS2 (total and “Mood Regulation” subscale) scores and FC became stronger after controlling for AQ scores (total and “Attention Switching” subscale), indicating significant mediation by AQ (95% CI < 0.05). In contrast, BDI-II had no mediating effect. Conclusion: Positive correlations between IU and FC in the motivation network may indicate health-promoting effects of non-clinical IU. However, this favorable association is attenuated in individuals with subclinical autistic traits, suggesting the importance of a personalized educational approach for these individuals in terms of adequate IU.
Collapse
Affiliation(s)
- Hironobu Fujiwara
- Integrated Clinical Education Center, Kyoto University Hospital, Kyoto, Japan.,Department of Neuropsychiatry, Graduate School of Medicine, Kyoto University, Kyoto, Japan.,Artificial Intelligence Ethics and Society Team, RIKEN Center for Advanced Intelligence Project, Tokyo, Japan
| | - Sayaka Yoshimura
- Department of Neurodevelopmental Psychiatry, Habilitation and Rehabilitation, Kyoto University, Kyoto, Japan
| | - Kei Kobayashi
- Department of Neuropsychiatry, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Tsukasa Ueno
- Department of Neuropsychiatry, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Naoya Oishi
- Medical Innovation Center, Kyoto University Graduate School of Medicine, Kyoto, Japan
| | - Toshiya Murai
- Department of Neuropsychiatry, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| |
Collapse
|
26
|
Blum K, Gondré-Lewis MC, Baron D, Thanos PK, Braverman ER, Neary J, Elman I, Badgaiyan RD. Introducing Precision Addiction Management of Reward Deficiency Syndrome, the Construct That Underpins All Addictive Behaviors. Front Psychiatry 2018; 9:548. [PMID: 30542299 PMCID: PMC6277779 DOI: 10.3389/fpsyt.2018.00548] [Citation(s) in RCA: 43] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/18/2018] [Accepted: 10/12/2018] [Indexed: 12/21/2022] Open
Affiliation(s)
- Kenneth Blum
- Graduate College of Biomedical Sciences, Western University of Health Sciences, Pomona, CA, United States
- Department of Psychiatry, Boonshoft School of Medicine, Dayton VA Medical Center, Wright State University, Dayton, OH, United States
- University of Vermont College of Medicine, Burlington, VM, United States
- Division of Addictive Services, Dominion Diagnostics, LLC, North Kingston, RI, United States
- Division of Precision Addiction Management, Geneus Health, LLC, San Antonio, TX, United States
- Institute of Psychology, University of Eötvös Loránd, Budapest, Hungary
- Department of Clinical Neurology, Path Foundation, New York, NY, United States
- Division of Neuroscience and Addiction Therapy, Summit Estate Recovery Center, Los Gatos, CA, United States
- Department of Neurogenetics Research and Addiction Therapy, The Florida House Experience, Deerfield Beach, FL, United States
- National Human Genome Center, Howard University, Washington, DC, United States
| | - Marjorie C. Gondré-Lewis
- Division of Precision Addiction Management, Geneus Health, LLC, San Antonio, TX, United States
- Department of Anatomy, Howard University College of Medicine, Washington, DC, United States
- Behavioral Neuropharmacology and Neuroimaging Laboratory on Addictions, Clinical and Research Institute on Addictions, Department of Pharmacology and Toxicology, Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, Buffalo, NY, United States
| | - David Baron
- Graduate College of Biomedical Sciences, Western University of Health Sciences, Pomona, CA, United States
- Division of Precision Addiction Management, Geneus Health, LLC, San Antonio, TX, United States
| | - Panayotis K. Thanos
- Division of Precision Addiction Management, Geneus Health, LLC, San Antonio, TX, United States
- Behavioral Neuropharmacology and Neuroimaging Laboratory on Addictions, Clinical and Research Institute on Addictions, Department of Pharmacology and Toxicology, Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, Buffalo, NY, United States
- Department of Psychology, University at Buffalo, Buffalo, NY, United States
| | - Eric R. Braverman
- Department of Clinical Neurology, Path Foundation, New York, NY, United States
| | - Jennifer Neary
- Division of Precision Addiction Management, Geneus Health, LLC, San Antonio, TX, United States
| | - Igor Elman
- Division of Precision Addiction Management, Geneus Health, LLC, San Antonio, TX, United States
- Department of Psychiatry, Cooper Medical School of Rowan University, Camden, NJ, United States
| | - Rajendra D. Badgaiyan
- Division of Precision Addiction Management, Geneus Health, LLC, San Antonio, TX, United States
- Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, NY, United States
| |
Collapse
|
27
|
Blum K, Modestino EJ, Lott L, Siwicki D, Baron D, Howeedy A, Badgaiyan RD. Introducing "Precision Addiction Management (PAM ®)" as an Adjunctive Genetic Guided Therapy for Abusable Drugs in America. OPEN ACCESS JOURNAL OF BEHAVIOURAL SCIENCE & PSYCHOLOGY 2018; 1:1-4. [PMID: 30662982 PMCID: PMC6335959] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Grants] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Affiliation(s)
- K Blum
- Western University Health Sciences, Graduate School of Biomedical Sciences, USA
- Division of Addiction Services, Dominion Diagnostics, USA
- Department of Precision Addiction Management, Geneus Health, USA
- Division of Neurogenetic Research and Addiction Therapy, Department of Psychology, Curry College, USA
| | - EJ Modestino
- Department of Psychiatry, Ichan Mount Sinai School of Medicine, USA
| | - L Lott
- Department of Precision Addiction Management, Geneus Health, USA
| | - D Siwicki
- Department of Precision Addiction Management, Geneus Health, USA
| | - D Baron
- Western University Health Sciences, Graduate School of Biomedical Sciences, USA
| | - A Howeedy
- Division of Neurogenetic Research and Addiction Therapy, Department of Psychology, Curry College, USA
| | - RD Badgaiyan
- Department of Psychiatry, Ichan Mount Sinai School of Medicine, USA
| |
Collapse
|
28
|
Abstract
In the past 2 decades, there has been substantial increase in availability and use of digital technologies, including the Internet, computer games, smart phones, and social media. Behavioral addiction to use of technologies spawned a body of related research. The recent inclusion of Internet gaming disorder as a condition for further study in the DSM-V invigorated a new wave of researchers, thereby expanding our understanding of these conditions. This article reviews current research, theory, and practice regarding the diagnosis, epidemiology, and neurobiology of Internet and video game addictions.
Collapse
|
29
|
Rivas-Grajales AM, Sawyer KS, Karmacharya S, Papadimitriou G, Camprodon JA, Harris GJ, Kubicki M, Oscar-Berman M, Makris N. Sexually dimorphic structural abnormalities in major connections of the medial forebrain bundle in alcoholism. Neuroimage Clin 2018; 19:98-105. [PMID: 30035007 PMCID: PMC6051309 DOI: 10.1016/j.nicl.2018.03.025] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2017] [Revised: 01/24/2018] [Accepted: 03/21/2018] [Indexed: 12/22/2022]
Abstract
Background The mesocorticolimbic system is particularly susceptible to the effects of chronic alcoholism. Disruption of this system has been linked to drug seeking and the development of Reward Deficiency Syndrome, a neurobiological framework for describing the development and relapsing patterns of addictions. In this study, we evaluated the association of alcoholism and sex with major connections of the medial forebrain bundle (MFB), a prominent mesocorticolimbic fiber pathway connecting the ventral tegmental area with the basal forebrain. Given sex differences in clinical consequences of alcohol consumption, we hypothesized that alcoholic men and women would differ in structural abnormalities of the MFB. Methods Diffusion magnetic resonance imaging (dMRI) data were acquired from 30 abstinent long-term alcoholic individuals (ALC; 9 men) and 25 non-alcoholic controls (NC; 8 men). Major connections of the MFB were extracted using multi-tensor tractography. We compared groups on MFB volume, fractional anisotropy (FA), radial diffusivity (RD), and axial diffusivity (AD), with hemisphere and sex as independent variables. We also evaluated associations between abnormal structural measures and drinking measures. Results Analyses revealed significant group-by-sex interactions for FA and RD: while ALC men had lower FA and higher RD compared to NC men, ALC women had higher FA and lower RD compared to NC women. We also detected a significant negative association between FA and number of daily drinks in ALC women. Conclusion Alcoholism is associated with sexually dimorphic structural abnormalities in the MFB. The results expand upon other findings of differences in brain reward circuitry of alcoholic men and women.
Collapse
Affiliation(s)
- Ana María Rivas-Grajales
- Department of Psychiatry, Psychiatry Neuroimaging Laboratory, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA; Department of Psychiatry, Massachusetts General Hospital, Harvard Medical School, Charlestown, MA, USA; Menninger Department of Psychiatry and Behavioral Sciences, Baylor College of Medicine, Houston, TX, USA
| | - Kayle S Sawyer
- Department of Anatomy & Neurobiology, Boston University School of Medicine, Boston, MA, USA; VA Boston Healthcare System, Boston, MA, USA; Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Harvard Medical School, Charlestown, MA, USA; Sawyer Scientific, LLC, Boston, MA, USA
| | - Sarina Karmacharya
- Department of Psychiatry, Psychiatry Neuroimaging Laboratory, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - George Papadimitriou
- Department of Psychiatry, Massachusetts General Hospital, Harvard Medical School, Charlestown, MA, USA; Center for Morphometric Analysis, Massachusetts General Hospital, Boston, MA, USA
| | - Joan A Camprodon
- Department of Psychiatry, Massachusetts General Hospital, Harvard Medical School, Charlestown, MA, USA; Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Harvard Medical School, Charlestown, MA, USA
| | - Gordon J Harris
- Center for Morphometric Analysis, Massachusetts General Hospital, Boston, MA, USA; Radiology Computer Aided Diagnostics Laboratory, Massachusetts General Hospital, Boston, MA, USA
| | - Marek Kubicki
- Department of Psychiatry, Psychiatry Neuroimaging Laboratory, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA; Department of Psychiatry, Massachusetts General Hospital, Harvard Medical School, Charlestown, MA, USA; Center for Morphometric Analysis, Massachusetts General Hospital, Boston, MA, USA
| | - Marlene Oscar-Berman
- Department of Anatomy & Neurobiology, Boston University School of Medicine, Boston, MA, USA; VA Boston Healthcare System, Boston, MA, USA; Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Harvard Medical School, Charlestown, MA, USA; Department of Neurology, Boston University School of Medicine, Boston, MA, USA; Department of Psychiatry, Boston University School of Medicine, Boston, MA, USA
| | - Nikos Makris
- Department of Psychiatry, Psychiatry Neuroimaging Laboratory, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA; Department of Psychiatry, Massachusetts General Hospital, Harvard Medical School, Charlestown, MA, USA; Department of Anatomy & Neurobiology, Boston University School of Medicine, Boston, MA, USA; Center for Morphometric Analysis, Massachusetts General Hospital, Boston, MA, USA.
| |
Collapse
|
30
|
Blum K, Modestino EJ, Gondre-Lewis M, Chapman EJ, Neary J, Siwicki D, Baron D, Hauser M, Smith DE, Roy AK, Thanos PK, Steinberg B, McLaughlin T, Fried L, Barh D, Dunston GA, Badgaiyan RD. The Benefits of Genetic Addiction Risk Score (GARS ™) Testing in Substance Use Disorder (SUD). INTERNATIONAL JOURNAL OF GENOMICS AND DATA MINING 2018; 2018. [PMID: 30198022 DOI: 10.29014/ijgd-115.000015] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Following 25 years of extensive research by many scientists worldwide, a panel of ten reward gene risk variants, called the Genetic Addiction Risk Score (GARS), has been developed. In unpublished work, when GARS was compared to the Addiction Severity Index (ASI), which has been used in many clinical settings, GARS significantly predicted the severity of both alcohol and drug dependency. In support of early testing for addiction and other RDS subtypes, parents caught up in the current demographic of 127 people, both young and old, dying daily from opiate/opioid overdose, need help. In the past, families would have never guessed that their loved ones would die or could be in real danger due to opiate addiction. Author, Bill Moyers, in Parade Magazine, reported that as he traveled around the United States, he found many children with ADHD and other spectrum disorders like Autism, and noted that many of these children had related conditions like substance abuse. He called for better ways to identify these children and treat them with approaches other than addictive pharmaceuticals. To our knowledge, GARS is the only panel of genes with established polymorphisms reflecting the Brain Reward Cascade (BRC), which has been correlated with the ASI-MV alcohol and drug risk severity score. While other studies are required to confirm and extend the GARS test to include other genes and polymorphisms that associate with an hypodopaminergic trait, these results provide clinicians with a non-invasive genetic test. Genomic testing, such as GARS, can improve clinical interactions and decision-making. Knowledge of precise polymorphic associations can help in the attenuation of guilt and denial, corroboration of family gene-o-grams; assistance in risk-severity-based decisions about appropriate therapies, including pain medications and risk for addiction; choice of the appropriate level of care placement (i.e., inpatient, outpatient, intensive outpatient, residential); determination of the length of stay in treatment; determination of genetic severity-based relapse and recovery liability and vulnerability; determination of pharmacogenetic medical monitoring for better clinical outcomes (e.g., the A1 allele of the DRD2 gene reduces the binding to opioid delta receptors in the brain, thus, reducing Naltrexone's clinical effectiveness); and supporting medical necessity for insurance scrutiny.
Collapse
Affiliation(s)
- Kenneth Blum
- Department of Psychiatry & McKnight Brain Institute, University of Florida College of Medicine, Gainesville, FL, USA.,Department of Psychiatry and Behavioral Sciences, Keck Medicine University of Southern California, Los Angeles, CA, USA.,Division of Applied Clinical Research & Education, Dominion Diagnostics, LLC, North Kingstown, RI, USA.,Department of Neurogenetics, Igene, LLC, Austin, TX, USA.,Division of Neuroscience Based Addiction Therapy, The Shores Treatment & Recovery Center, Port Saint Lucie, FL, USA.,Eötvös Loránd University, Institute of Psychology, Budapest, Hungary.,Department of Psychiatry, Wright State University Boonshoft School of Medicine and Dayton VA Medical Center, Dayton, OH (IE), USA.,Division of Precision Medicine, Geneus Health, LLC, USA.,Department of Psychiatry, Human Integrated Services Unit University of Vermont Center for Clinical & Translational Science, College of Medicine, Burlington, VT, USA.,Center for Genomics and Applied Gene Technology, Institute of Integrative Omics and applied Biotechnology (IIOAB), Nonakuri, Purbe Medinpur, West Bengal, India.,NeuroPsychoSocial Genomics Core, National Human Genome Center, Howard University, Washington, DC, USA
| | | | - Marjorie Gondre-Lewis
- NeuroPsychoSocial Genomics Core, National Human Genome Center, Howard University, Washington, DC, USA.,Developmental Neuropsychopharmacology Laboratory, Department of Anatomy, Howard University College of Medicine, Washington, DC, USA.,Department of Psychiatry and Behavioral Sciences, Howard University College of Medicine, Washington, DC, USA
| | - Edwin J Chapman
- Department of Medicine, Howard University College of Medicine, Washington, DC, USA
| | | | - David Siwicki
- Division of Precision Medicine, Geneus Health, LLC, USA
| | - David Baron
- Department of Psychiatry and Behavioral Sciences, Keck Medicine University of Southern California, Los Angeles, CA, USA
| | - Mary Hauser
- Division of Applied Clinical Research & Education, Dominion Diagnostics, LLC, North Kingstown, RI, USA
| | - David E Smith
- David E. Smith Associates, San Francisco, CA, & Institute of Health & Aging University of California, San Francisco, CA, USA
| | | | - Panayotis K Thanos
- Behavioral Neuropharmacology and Neuroimaging Laboratory on Addictions, Research Institute on Addictions, University at Buffalo, Buffalo, NY, USA
| | | | | | - Lyle Fried
- Division of Neuroscience Based Addiction Therapy, The Shores Treatment & Recovery Center, Port Saint Lucie, FL, USA
| | - Debmalya Barh
- Center for Genomics and Applied Gene Technology, Institute of Integrative Omics and applied Biotechnology (IIOAB), Nonakuri, Purbe Medinpur, West Bengal, India
| | - Georgia A Dunston
- NeuroPsychoSocial Genomics Core, National Human Genome Center, Howard University, Washington, DC, USA
| | - Rajendra D Badgaiyan
- Department of Psychiatry & McKnight Brain Institute, University of Florida College of Medicine, Gainesville, FL, USA.,Department of Psychiatry and Behavioral Sciences, Keck Medicine University of Southern California, Los Angeles, CA, USA.,Division of Applied Clinical Research & Education, Dominion Diagnostics, LLC, North Kingstown, RI, USA.,Department of Neurogenetics, Igene, LLC, Austin, TX, USA.,Division of Neuroscience Based Addiction Therapy, The Shores Treatment & Recovery Center, Port Saint Lucie, FL, USA.,Eötvös Loránd University, Institute of Psychology, Budapest, Hungary.,Department of Psychiatry, Wright State University Boonshoft School of Medicine and Dayton VA Medical Center, Dayton, OH (IE), USA.,Division of Precision Medicine, Geneus Health, LLC, USA.,Department of Psychiatry, Human Integrated Services Unit University of Vermont Center for Clinical & Translational Science, College of Medicine, Burlington, VT, USA.,Center for Genomics and Applied Gene Technology, Institute of Integrative Omics and applied Biotechnology (IIOAB), Nonakuri, Purbe Medinpur, West Bengal, India.,Department of Psychology, Curry College, Milton, MA, USA.,NeuroPsychoSocial Genomics Core, National Human Genome Center, Howard University, Washington, DC, USA.,Developmental Neuropsychopharmacology Laboratory, Department of Anatomy, Howard University College of Medicine, Washington, DC, USA.,Department of Psychiatry and Behavioral Sciences, Howard University College of Medicine, Washington, DC, USA.,Department of Medicine, Howard University College of Medicine, Washington, DC, USA.,David E. Smith Associates, San Francisco, CA, & Institute of Health & Aging University of California, San Francisco, CA, USA.,Addiction Recovery Resources, Inc. New Orleans, LA, USA.,Behavioral Neuropharmacology and Neuroimaging Laboratory on Addictions, Research Institute on Addictions, University at Buffalo, Buffalo, NY, USA.,Center for Psychiatric Medicine Lawrence, MA, USA
| |
Collapse
|
31
|
Rachid F. Neurostimulation techniques in the treatment of cocaine dependence: A review of the literature. Addict Behav 2018; 76:145-155. [PMID: 28822321 DOI: 10.1016/j.addbeh.2017.08.004] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2017] [Revised: 07/06/2017] [Accepted: 08/08/2017] [Indexed: 12/13/2022]
Abstract
OBJECTIVE Cocaine use disorder is a very common condition that represents a substantial public health problem, and no effective pharmacological or psychological therapies have been identified to date. Urgent therapeutic alternatives are therefore needed such as neurostimulation techniques. The purpose of this review is to describe and discuss studies that have evaluated the safety and efficacy of these techniques for the treatment of cocaine dependence. METHODS The electronic literature on repetitive transcranial magnetic stimulation, theta-burst stimulation, deep transcranial magnetic stimulation, transcranial direct current stimulation, magnetic seizure therapy, electroconvulsive therapy, cranial electro-stimulation, and deep brain stimulation in the treatment of cocaine addiction were reviewed. RESULTS Most of these studies which are few in numbers and with limited sample sizes found that some of these neurostimulation techniques, particularly transcranial magnetic stimulation, and transcranial direct current stimulation are safe and potentially effective in the reduction of craving to cocaine. Although deep brain stimulation showed some good results in one patient, no conclusion can be drawn so far concerning the efficacy and safety of this approach. CONCLUSION Given the somewhat promising results of some of the studies, future controlled studies with larger samples, and optimal stimulus parameters should be designed to confirm the short- and long-term safety and efficacy of neurostimulation techniques to treat cocaine addiction.
Collapse
|
32
|
González-Castro TB, Hernández-Díaz Y, Juárez-Rojop IE, López-Narváez ML, Tovilla-Zárate CA, Ramírez-Bello J, Pérez-Hernández N, Genis-Mendoza AD, Fresan A, Guzmán-Priego CG. The role of COMT gene Val108/158Met polymorphism in suicidal behavior: systematic review and updated meta-analysis. Neuropsychiatr Dis Treat 2018; 14:2485-2496. [PMID: 30319259 PMCID: PMC6167979 DOI: 10.2147/ndt.s172243] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/26/2022] Open
Abstract
BACKGROUND It is accepted that there is a genetic factor that influences the risk of suicidal behavior. The catechol-O-methyltransferase (COMT) gene, especially the Val108/158Met polymorphism, has been associated with suicide; however, no conclusive outcome has been attained. Therefore, the aim of the present study was to assess the role of COMT Val108/158Met in suicidal behavior throughout an updated meta-analysis. METHODS We performed an online search using PubMed and Web of Science (up to March 2017). Our systematic review included case-control studies of individuals who attempted suicide and completed suicide. We tested allelic, homozygous, heterozygous, dominant, and recessive inheritance models. The meta-analysis was performed in accordance with the statement of Preferred Reporting Items for Systematic Reviews and Meta-Analyses. RESULTS The meta-analysis comprised 17 studies, which included 3,282 cases and 3,774 controls, and showed that when evaluating the overall population, the Val108/158Met polymorphism of COMT was not associated with suicidal behavior in any of the inheritance models; however, the subanalyses showed that this polymorphism exhibits a risk factor in males and a protective effect in females. Additionally, it conveyed a risk factor in Asian populations when using the allelic (OR 1.25; CI: 1.04-1.51) and recessive models (OR 1.32; CI: 1.03-1.68). CONCLUSION Our updated meta-analysis suggests a possible association between COMT Val108/158Met and suicidal behavior in Asian populations. However, in view of the small number of studies, these results should be considered exploratory. We recommend that more studies be performed with larger samples.
Collapse
Affiliation(s)
- Thelma Beatriz González-Castro
- Multidisciplinary Academic Division of Jalpa de Méndez, Juarez Autonomous University of Tabasco, Jalpa de Méndez, Tabasco, Mexico
| | - Yazmín Hernández-Díaz
- Multidisciplinary Academic Division of Jalpa de Méndez, Juarez Autonomous University of Tabasco, Jalpa de Méndez, Tabasco, Mexico
| | - Isela Esther Juárez-Rojop
- Multidisciplinary Academic Division of Health Sciences, Juarez Autonomous University of Tabasco, Villahermosa, Tabasco, Mexico
| | | | - Carlos Alfonso Tovilla-Zárate
- Multidisciplinary Academic Division of Comalcalco, Juarez Autonomous University of Tabasco, Comalcalco, Tabasco, Mexico,
| | - Julian Ramírez-Bello
- Research Unit, Juárez Hospital of Mexico, Ministry of Health, Mexico City, Mexico
| | | | - Alma Delia Genis-Mendoza
- Psychiatric Care Services, National Institute of Genomic Medicine (INMEGEN), Health Secretary, Ministry of Health, Mexico City, Mexico
| | - Ana Fresan
- Sub-direction of Clinical Research, Children's Psychiatric Hospital "Dr. Juan N. Navarro", Mexico City, Mexico
| | | |
Collapse
|
33
|
Blum K, Gold M, Modestino EJ, Baron D, Boyett B, Siwicki D, Lott L, Podesta A, Roy AK, Hauser M, Downs BW, Badgaiyan RD. Would induction of dopamine homeostasis via coupling genetic addiction risk score (GARS®) and pro-dopamine regulation benefit benzodiazepine use disorder (BUD)? ACTA ACUST UNITED AC 2018; 4. [PMID: 31750006 PMCID: PMC6865059 DOI: 10.15761/jsin.1000196] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
Prescriptions for Benzodiazepines (BZDs) have risen continually. According to national statistics, the combination of BZDs with opioids has increased since 1999. BZDs (sometimes called “benzos”) work to calm or sedate a person by raising the level of the inhibitory neurotransmitter GABA in the brain. In terms of neurochemistry, BZDs act at the GABAA receptors to inhibit excitatory neurons, reducing VTA glutaminergic drive to reduce dopamine release at the Nucleus accumbens. Benzodiazepine Use Disorder (BUD) is very difficult to treat, partly because BZDs are used to reduce anxiety which paradoxically induces hypodopaminergia. Considering this, we are proposing a paradigm shift. Instead of simply targeting chloride channel direct GABAA receptors for replacement or substitution therapy, we propose the induction of dopamine homeostasis. Our rationale is supported by the well-established notion that the root cause of drug and non-drug addictions (i.e. Reward Deficiency Syndrome [RDS]), at least in adults, involve dopaminergic dysfunction and heightened stress. This proposition involves coupling the Genetic Addiction Risk Score (GARS) with a subsequent polymorphic matched genetic customized Pro-Dopamine Regulator known as KB220ZPBM (Precision Behavioral Management). Induction of dopamine homeostasis will be clinically beneficial in attempts to combat BUD for at least three reasons: 1) During detoxification of alcoholism, the potential induction of dopamine regulation reduces the need for BZDs; 2) A major reason for BZD abuse is because people want to achieve stress reduction and subsequently, the potential induction of dopamine regulation acts as an anti-stress factor; and 3) BUD and OUD are known to reduce resting state functional connectivity, and as such, potential induction of dopamine regulation enhances resting state functional connectivity. Future randomized placebo-controlled studies will investigate this forward thinking proposed novel modality.
Collapse
Affiliation(s)
- K Blum
- Western University Health Sciences, Graduate School of Biomedical Sciences, Pomona, CA, USA.,Division of Nutrigenomics, Geneus Health, LLC., San Antonio, TX, USA.,Division of Neuroscience & Addiction Research, Pathway Healthcare, LLc., Birmingham, AL, USA.,Division of Addiction Services, Dominion Diagnostics, LLC. North Kingstown, RI, USA.,Division of Nutrigenomic Research, Victory Nutrition International, Lederach, PA, USA
| | - M Gold
- Department of Psychiatry, Washington University School of Medicine, St. Louis, Mo, USA
| | - E J Modestino
- Department of Psychology, Curry College, Milton, MA, USA
| | - D Baron
- Western University Health Sciences, Graduate School of Biomedical Sciences, Pomona, CA, USA.,Division of Nutrigenomics, Geneus Health, LLC., San Antonio, TX, USA
| | - B Boyett
- Division of Neuroscience & Addiction Research, Pathway Healthcare, LLc., Birmingham, AL, USA
| | - D Siwicki
- Division of Nutrigenomics, Geneus Health, LLC., San Antonio, TX, USA
| | - L Lott
- Division of Nutrigenomics, Geneus Health, LLC., San Antonio, TX, USA
| | - A Podesta
- Department of psychiatry, Tulane University School of Medicine, New Orleans, LA, USA
| | - A K Roy
- Department of psychiatry, Tulane University School of Medicine, New Orleans, LA, USA
| | - M Hauser
- Division of Addiction Services, Dominion Diagnostics, LLC. North Kingstown, RI, USA
| | - B W Downs
- Division of Nutrigenomic Research, Victory Nutrition International, Lederach, PA, USA
| | - R D Badgaiyan
- Department of Psychiatry, Veterans Administration Hospital at San Antonio, San Antonio, TX, USA
| |
Collapse
|
34
|
Blum K, Modestino EJ, Gondré-Lewis M, Downs BW, Baron D, Steinberg B, Siwicki D, Giordano J, McLaughlin T, Neary J, Hauser M, Fried L, Badgaiyan RD. "Dopamine homeostasis" requires balanced polypharmacy: Issue with destructive, powerful dopamine agents to combat America's drug epidemic. ACTA ACUST UNITED AC 2017; 3. [PMID: 30197787 PMCID: PMC6128292 DOI: 10.15761/jsin.1000183] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
The well-researched pro-dopamine regulator KB220 and variants result in increased functional connectivity in both animal and human brains, and prolonged neuroplasticity (brain cell repair) having been observed in rodents. Moreover, in addition to increased functional connectivity, recent studies show that KB220Z increases overall brain connectivity volume, enhances neuronal dopamine firing, and eliminates lucid dreams in humans over a prolonged period. An unprecedented number of clinical studies validating this patented nutrigenomic technology in re-balancing brain chemistry and optimizing dopamine sensitivity and function have been published. On another note, it is sad that unsuspecting consumers could be deceived and endangered by false promises of knock-off marketers with look- and- sound-alike products. Products containing ingredients having potential dangers (i.e., combinations of potent D2 agonists including L-Dopa and L-Theanine) threaten the credibility and reputation of validated, authentic, and ethical products. We encourage clinicians and neuroscientists to continue to embrace the concept of “dopamine homeostasis” and search for safe, effective, validated and authentic means to achieve a lifetime of recovery, instead of reverting to anti-dopaminergic agents doomed to fail in the war against the devastating drug epidemic, or promoting powerful D2 agonists that compromise needed balance.
Collapse
Affiliation(s)
- Kenneth Blum
- Department of Psychiatry, University of Florida & McKnight Brain Institute, College of Florida, Gainesville, FL, USA.,Department of Psychiatry, Human Integrated Services Unit University of Vermont Center for Clinical & Translational Science, College of Medicine, Burlington, VT, USA.,Dominion Diagnostics, LLC, North Kingstown, RI, USA.,Department of Psychiatry, Wright State University, Boonshoft School of Medicine, Dayton, OH USA.,Division of Genetic Testing, Geneus Health LLC, San Antonio, Texas, USA.,Center for Genomics and Applied Gene Technology, Institute of Integrative Omics and Applied Biotechnology (IIOAB), Nonakuri, Purba Medinipur, West Bengal, India.,Institute of Psychology, Eötvös Loránd University Budapest, Hungary.,Department of Psychiatry, University of Southern California, Keck School of Medicine, Los Angeles, CA, USA.,Division of Addiction Research & Therapy, The Shores Treatment & Recovery Center, Port St Lucie, Fl, USA.,Victory Nutition International, Inc., Lederach, PA, USA.,John Giordano's Life Enhancement Aftercare Recovery Center, Ft. Lauderdale, FL, USA
| | | | - Marjorie Gondré-Lewis
- Departments of Anatomy and Psychiatry and Behavioral Sciences, Howard University, Washington, DC, USA
| | | | - David Baron
- Department of Psychiatry, University of Southern California, Keck School of Medicine, Los Angeles, CA, USA
| | | | - David Siwicki
- Division of Genetic Testing, Geneus Health LLC, San Antonio, Texas, USA
| | - John Giordano
- John Giordano's Life Enhancement Aftercare Recovery Center, Ft. Lauderdale, FL, USA
| | | | - Jennifer Neary
- Division of Genetic Testing, Geneus Health LLC, San Antonio, Texas, USA
| | - Mary Hauser
- Dominion Diagnostics, LLC, North Kingstown, RI, USA
| | - Lyle Fried
- Division of Addiction Research & Therapy, The Shores Treatment & Recovery Center, Port St Lucie, Fl, USA
| | | |
Collapse
|
35
|
Pipkin JA, Cruz B, Flores RJ, Hinojosa CA, Carcoba LM, Ibarra M, Francis W, Nazarian A, O'Dell LE. Both nicotine reward and withdrawal are enhanced in a rodent model of diabetes. Psychopharmacology (Berl) 2017; 234:1615-1622. [PMID: 28342091 PMCID: PMC5437741 DOI: 10.1007/s00213-017-4592-y] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/05/2016] [Accepted: 03/07/2017] [Indexed: 01/09/2023]
Abstract
RATIONALE It is presently unclear whether diabetic rats experience greater rewarding effects of nicotine and/or negative affective states produced by nicotine withdrawal. OBJECTIVE The present study utilized a rodent model of diabetes to examine the rewarding effects of nicotine and negative affective states and physical signs produced by withdrawal. METHODS Separate groups of rats received systemic administration of either vehicle or streptozotocin (STZ), which destroys insulin-producing beta cells in the pancreas and elevates glucose levels. Place conditioning procedures were utilized to compare the rewarding effects of nicotine (conditioned place preference; CPP) and negative affective states produced by withdrawal (conditioned place aversion; CPA) in vehicle- and STZ-treated rats. CPA and physical signs of withdrawal were compared after administration of the nicotinic receptor antagonist mecamylamine to precipitate withdrawal in nicotine-dependent rats. A subsequent study utilized elevated plus maze (EPM) procedures to compare anxiety-like behavior produced by nicotine withdrawal in vehicle- and STZ-treated rats. RESULTS STZ-treated rats displayed greater rewarding effects of nicotine and a larger magnitude of aversive effects and physical signs produced by withdrawal as compared to vehicle-treated controls. STZ-treated rats also displayed higher levels of anxiety-like behavior on the EPM during nicotine withdrawal as compared to controls. CONCLUSION The finding that both nicotine reward and withdrawal are enhanced in a rodent model of diabetes implies that the strong behavioral effects of nicotine promote tobacco use in persons with metabolic disorders, such as diabetes.
Collapse
Affiliation(s)
- Joseph A Pipkin
- Department of Psychology, The University of Texas at El Paso, 500 West University Avenue, El Paso, TX, 79902, USA
| | - Bryan Cruz
- Department of Psychology, The University of Texas at El Paso, 500 West University Avenue, El Paso, TX, 79902, USA
| | - Rodolfo J Flores
- Department of Psychology, The University of Texas at El Paso, 500 West University Avenue, El Paso, TX, 79902, USA
| | - Cecilia A Hinojosa
- Department of Psychology, The University of Texas at El Paso, 500 West University Avenue, El Paso, TX, 79902, USA
| | - Luis M Carcoba
- Department of Psychology, The University of Texas at El Paso, 500 West University Avenue, El Paso, TX, 79902, USA
| | - Melissa Ibarra
- Department of Psychology, The University of Texas at El Paso, 500 West University Avenue, El Paso, TX, 79902, USA
| | - Wendy Francis
- Department of Psychology, The University of Texas at El Paso, 500 West University Avenue, El Paso, TX, 79902, USA
| | - Arbi Nazarian
- Department of Pharmaceutical Sciences, Western University of Health Sciences, 309 East Second Street, Pomona, CA, 91766, USA
| | - Laura E O'Dell
- Department of Psychology, The University of Texas at El Paso, 500 West University Avenue, El Paso, TX, 79902, USA.
| |
Collapse
|
36
|
Blum K, Fried L, Madigan MA, Giordano J, Modestino EJ, Steinberg B, Baron D, DeLeon M, McLaughlin T, Hauser M, Badgaiyan RD. Critical Analysis of White House Anti-Drug Plan. ACTA ACUST UNITED AC 2017; 1. [PMID: 29057394 PMCID: PMC5649359 DOI: 10.19080/gjarm.2017.01.555568] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
Affiliation(s)
- Kenneth Blum
- Department of Psychiatry & McKnight Brain Institute, University of Florida College of Medicine, USA.,Department of Psychiatry and Behavioral Sciences, Keck Medicine University of Southern California, USA.,Division of Applied Clinical Research & Education, Dominion Diagnostics, LLC, USA.,Geneus Health LLC, USA.,Division of Reward Deficiency Syndrome and Addiction Therapy, Nupathways, Inc., USA.,Department of Clinical Neurology, Path Foundation NY, USA.,Division of Neuroscience-Based Addiction Therapy, The Shores Treatment & Recovery Center, USA.,Eötvös Loránd University, Institute of Psychology, Europe.,Department of Psychiatry, Wright State University Boonshoft School of Medicine and Dayton VA Medical Center, USA.,National Foundation For Holistic Addiction Studies, USA
| | - Lyle Fried
- Division of Neuroscience-Based Addiction Therapy, The Shores Treatment & Recovery Center, USA
| | | | - John Giordano
- National Foundation For Holistic Addiction Studies, USA
| | | | | | - David Baron
- Department of Psychiatry and Behavioral Sciences, Keck Medicine University of Southern California, USA
| | - Michael DeLeon
- Steer Straight Inc., Vinland, NJ USA and Banyan Treatment Center, USA
| | | | - Mary Hauser
- Division of Applied Clinical Research & Education, Dominion Diagnostics, LLC, USA
| | - Rajendra D Badgaiyan
- Department of Psychiatry, Wright State University Boonshoft School of Medicine and Dayton VA Medical Center, USA
| |
Collapse
|
37
|
Blum K, Madigan MA, Fried L, Braverman ER, Giordano J, Badgaiyan RD. Coupling Genetic Addiction Risk Score (GARS) and Pro Dopamine Regulation (KB220) to Combat Substance Use Disorder (SUD). ACTA ACUST UNITED AC 2017; 1. [PMID: 29399668 DOI: 10.19080/gjarm.2017.01.555556] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Affiliation(s)
- Kenneth Blum
- Department of Psychiatry & McKnight Brain Institute, University of Florida College of Medicine, USA.,Department of Psychiatry and Behavioral Sciences, Keck Medicine University of Southern California, USA.,Division of Applied Clinical Research & Education, Dominion Diagnostics, USA.,Department of Neurogenetics, Igene, USA.,National Institute for Holistic Addiction Studies, USA.,Department of Clinical Neurology, Path Foundation NY, USA.,Division of Neuroscience Based Addiction Therapy, The Shores Treatment & Recovery Center, USA.,Eötvös Loránd University, Institute of Psychology, Europe.,Department of Psychiatry, Wright State University Boonshoft School of Medicine and Dayton VA Medical Center, US.,Division of Reward Deficiency Syndrome, Nupathways, Inc., Innsbrook, MO, USA
| | | | - Lyle Fried
- Division of Neuroscience Based Addiction Therapy, The Shores Treatment & Recovery Center, USA
| | | | - John Giordano
- National Institute for Holistic Addiction Studies, USA
| | - Rajendra D Badgaiyan
- Department of Psychiatry, Wright State University Boonshoft School of Medicine and Dayton VA Medical Center, US
| |
Collapse
|
38
|
Pro-Dopamine Regulator - (KB220) to Balance Brain Reward Circuitry in Reward Deficiency Syndrome (RDS). JOURNAL OF REWARD DEFICIENCY SYNDROME AND ADDICTION SCIENCE 2017; 3:3-13. [PMID: 28804788 PMCID: PMC5551501] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
Abstract
We are faced with a worldwide opiate/opioid epidemic that is devastating. According to the Centers for Disease Control and Prevention (CDC), at least 127 people, young and old, are dying every day in America due to narcotic overdose. The Food and Drug Administration (FDA) has approved Medication-Assisted Treatments (MATs) for opiate/opioids as well as alcohol and nicotine. The mechanism of action of most MATS favors either blocking of dopaminergic function or a form of Opiate Substitution Therapy (OST). These treatment options are adequate for short-term treatment of the symptoms of addiction and harm reduction but fail long-term to deal with the cause or lead to recovery. There is a need to continue to seek better treatment options. This mini-review is the history of the development of one such treatment; a glutaminergic-dopaminergic optimization complex called KB220. Growing evidence indicates that brain reward circuitry controls drug addiction, in conjunction with "anti-reward systems" as the "anti-reward systems" can be affected by both glutaminergic and dopaminergic transmission. KB220 may likely alter the function of these regions and provide for the possible eventual balancing the brain reward system and the induction of "dopamine homeostasis." Many of these concepts have been reported elsewhere and have become an integral part of the addiction science literature. However, the concise review may encourage readership to reconsider these facts and stimulate further research focused on the impact that the induction of "dopamine homeostasis" may have on recovery and relapse prevention.
Collapse
|
39
|
Blum K, Febo M, Badgaiyan RD. Fifty Years in the Development of a Glutaminergic-Dopaminergic Optimization Complex (KB220) to Balance Brain Reward Circuitry in Reward Deficiency Syndrome: A Pictorial. AUSTIN ADDICTION SCIENCES 2016; 1:1006. [PMID: 27840857 PMCID: PMC5103643] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
Dopamine along with other chemical messengers like serotonin, cannabinoids, endorphins and glutamine, play significant roles in brain reward processing. There is a devastating opiate/opioid epidemicin the United States. According to the Centers for Disease Control and Prevention (CDC), at least 127 people, young and old, are dying every day due to narcotic overdose and alarmingly heroin overdose is on the rise. The Food and Drug Administration (FDA) has approved some Medication-Assisted Treatments (MATs) for alcoholism, opiate and nicotine dependence, but nothing for psychostimulant and cannabis abuse. While these pharmaceuticals are essential for the short-term induction of "psychological extinction," in the long-term caution is necessary because their use favors blocking dopaminergic function indispensable for achieving normal satisfaction in life. The two institutions devoted to alcoholism and drug dependence (NIAAA & NIDA) realize that MATs are not optimal and continue to seek better treatment options. We review, herein, the history of the development of a glutaminergic-dopaminergic optimization complex called KB220 to provide for the possible eventual balancing of the brain reward system and the induction of "dopamine homeostasis." This complex may provide substantial clinical benefit to the victims of Reward Deficiency Syndrome (RDS) and assist in recovery from iatrogenically induced addiction to unwanted opiates/opioids and other addictive behaviors.
Collapse
Affiliation(s)
- K Blum
- Department of Psychiatry and McKnight Brain Institute, University of Florida College of Medicine, USA; Division of Addiction Services, Dominion Diagnostics, USA; Igene, LLC, Austin, USA; Departments of Psychiatry and Behavioral Sciences, Keck School of Medicine of USC, USA; Division of Neuroscience Research and Addiction Therapy, Shores Treatment and Recovery Center, USA; Human Integrated Services Unit, University of Vermont Centre for Clinical and Translational Science, USA; Eötvös Loránd University, Institute of Psychology, Hungary; Division of Clinical Neurology, PATH Foundation NY, USA; Division of Nutrigenomics, LaVita RDS, USA
| | - M Febo
- Department of Psychiatry and McKnight Brain Institute, University of Florida College of Medicine, USA
| | - R D Badgaiyan
- Department of Psychiatry, Wright State University BoonShoft School of Medicine, USA
| |
Collapse
|
40
|
Blum K, Marcelo F, Dushaj K, Fried L, Badgaiyan RD. "Pro-dopamine regulation (KB220Z™)" as a long-term therapeutic modality to overcome reduced resting state dopamine tone in opiate/opioid epidemic in America. JOURNAL OF SYSTEMS AND INTEGRATIVE NEUROSCIENCE 2016; 2:162-165. [PMID: 28491463 PMCID: PMC5421552 DOI: 10.15761/jsin.1000129] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Since it is known that relapse, morality, and hospitalizations have been tied to the presence of the Dopamine D2 Receptor A1 allele, as one example, and carriers of this gene variant have a proclivity to favor amino-acid therapy, it seems intuitive that the incorporation of modalities to provide a balance and or restoration of hypodopaminergia should be considered as a front-line tactic to overcome the current American opiate/opioid epidemic, saving millions from death and unwanted locked-in-addiction. If we continue down the prim road path of fighting addiction to narcotics with narcotics, we are doomed to fail. This lesson can also have global interest.
Collapse
Affiliation(s)
- K Blum
- Department of Psychiatry & McKnight Brain Institute, University of Florida College of Medicine, Gainesville, FL, USA
- Department of Psychiatry & Behavioral Sciences, Keck School of Medicine of USC, Los Angeles, CA, USA
- Division of Applied Clinical Research & Education, Dominion Diagnostics, LLC., North Kingstown, RI, USA
- Synaptamine, Inc., Austin, TX, USA
- Division of Clinical Neurology, PATH Foundation NY, New York, NY, USA
- Division of Personalized Medicine, IGENE, LLC., Austin, TX, USA
- Division of Molecular Neurobiology, LaVitaRDS, Salt Lake City, UT, USA
- Division of Neuroscience Research and Addiction Therapy, Shores Treatment & Recovery Center, Port Saint Lucie, FL, USA
- Department of Clinical Psychology and Addiction, Eötvös Loránd University, Hungary
| | - F Marcelo
- Department of Psychiatry & McKnight Brain Institute, University of Florida College of Medicine, Gainesville, FL, USA
| | - K Dushaj
- Division of Clinical Neurology, PATH Foundation NY, New York, NY, USA
| | - L Fried
- Division of Neuroscience Research and Addiction Therapy, Shores Treatment & Recovery Center, Port Saint Lucie, FL, USA
| | - R D Badgaiyan
- Department of Psychiatry, Laboratory of Molecular and Functional Imaging, University at Minnesota, Minneapolis, MN, USA
| |
Collapse
|
41
|
Blum K, Downs B, Dushaj K, Li M, Braverman ER, Fried L, Waite R, Demotrovics Z, Badgaiyan RD. THE BENEFITS OF CUSTOMIZED DNA DIRECTED NUTRITION TO BALANCE THE BRAIN REWARD CIRCUITRY AND REDUCE ADDICTIVE BEHAVIORS. PRECISION MEDICINE 2016; 1:18-33. [PMID: 28066828 PMCID: PMC5210211] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
DNA Customization of nutraceutical products is here. In the truest sense, "Gene Guided Precision Nutrition™" and KB220 variants (a complex mixture of amino-acids, trace metals, and herbals) are the pioneers and standard-bearers for a state of the art DNA customization. Findings by both, Kenneth Blum, Ph.D. and Ernest Noble, Ph.D. concerning the role of genes in shaping cravings and pleasure- seeking, opened the doors to comprehension of how genetics control our actions and effect our mental and physical health. Moreover, technology that is related to KB220 variants in order to reduce or eradicate excessive cravings by influencing gene expression is a cornerstone in the pioneering of the practical applications of nutrigenomics. Continuing discoveries have been an important catalyst for the evolution, expansion, and scientific recognition of the significance of nutrigenomics and its remarkable contributions to human health. Neuro-Nutrigenomics is now a very important field of scientific investigation that offers great promise to improving the human condition. In the forefront is the development of the Genetic Addiction Risk Score (GARS™), which unlike 23andMe, has predictive value for the severity of drug and alcohol abuse as well as other non-substance related addictive behaviors. While customization of neuronutrients has not yet been commercialized, there is emerging evidence that in the future, the concept will be developed and could have a significant impact in addiction medicine.
Collapse
Affiliation(s)
- Kenneth Blum
- Department of Psychiatry & McKnight Brain Institute, University of Florida College of Medicine, Gainesville, FL, USA
- Departments of Psychiatry & Behavioral Sciences, Keck School of Medicine of USC, Los Angeles, CA, USA
- Department of Clinical Neurology, PATH Foundation NY, New York, NY, USA
- Human Integrated Services Unit, University of Vermont Centre for Clinical & Translational Science, College of Medicine, Burlington, VT, USA
- Division of Addiction Services, Dominion Diagnostics, LLC., North Kingstown, RI, USA
- Division of Neuroscience-based Therapy, Summit Estate Recovery Center, Los Gatos, CA, USA
- The Shores Treatment & Recovery, Port Saint Lucie, FL, USA
- Department of Precision Medicine, IGENE, LLC., Austin, TX, USA
- Division of Nutrigenomics, LaVitaRDS, Draper, UT, USA
- Institute of Psychology, Eötvös Loránd University Budapest, HUNGARY
| | - B.W. Downs
- Victory Nutrition International, Lederoch, PA, USA
| | - Kristina Dushaj
- Department of Clinical Neurology, PATH Foundation NY, New York, NY, USA
| | - Mona Li
- Department of Clinical Neurology, PATH Foundation NY, New York, NY, USA
| | - Eric R. Braverman
- Department of Clinical Neurology, PATH Foundation NY, New York, NY, USA
| | - Lyle Fried
- The Shores Treatment & Recovery, Port Saint Lucie, FL, USA
| | - Roger Waite
- Division of Nutrigenomics, LaVitaRDS, Draper, UT, USA
| | | | - Rajendra D. Badgaiyan
- Department of Psychiatry, Laboratory of Molecular and Functional Imaging, University at Minnesota, Minneapolis, MN, USA
| |
Collapse
|
42
|
Blum K, Badgaiyan RD, Braverman ER, Dushaj K, Li M, Thanos PK, Demetrovics Z, Febo M. Hypothesizing that, A Pro-Dopamine Regulator (KB220Z) Should Optimize, but Not Hyper-Activate the Activity of Trace Amine-Associated Receptor 1 (TAAR-1) and Induce Anti-Craving of Psychostimulants in the Long-Term. JOURNAL OF REWARD DEFICIENCY SYNDROME AND ADDICTION SCIENCE 2016; 2:14-21. [PMID: 28317038 PMCID: PMC5351297 DOI: 10.17756/jrdsas.2016-023] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Unlike other drugs of abuse such as alcohol, nicotine, opiates/opioids, the FDA has not approved any agent to treat psychostimulant dependence. Certainly, it is widely acceptable that dopaminergic signaling is a key factor in both the initiation and continued motivation to abuse this class of stimulant substances. It is also well accepted that psychostimulants such as cocaine affect not only the release of neuronal dopamine at the nucleus accumbens (NAc), but also has powerful inhibitory actions on the dopamine transporter system. Understandably, certain individuals are at high risk and very vulnerable to abuse this class of substances. Trace-amine-associated receptor 1 (TAAR1) is a G -protein coupled receptor activated by trace amines. The encoded protein responds little or not at all to dopamine, serotonin, epinephrine, or histamine, but responds well to beta-phenylethylamine, p-tyramine, octopamine, and tryptamine. This gene is thought to be intronless. TAAR1 agonists reduce the neurochemical effects of cocaine and amphetamines as well as attenuate addiction and abuse associated with these two psychostimulants. The mechanism involves blocking the firing rate of dopamine in the limbic system thereby decreasing a hyperdopaminergic trait/state, whereby the opposite is true for TAAR1 antagonists. Based on many studies, it is accepted that in Reward Deficiency Syndrome (RDS), there is weakened tonic and improved phasic dopamine discharge leading to a hypodopaminergic/glutamatergic trait. The dopamine pro-complex mixture KB220, following many clinical trials including neuroimaging studies, has been shown to enhance resting state functional connectivity in humans (abstinent heroin addicts), naïve rodent models, and regulates extensive theta action in the cingulate gyrus of abstinent psychostimulant abusers. In this article, we are hypothesizing that KB220 may induce its action on resting state functional connectivity, for example, by actually balancing (optimizing) the effects of TAAR1 on the glutamatergic system allowing for optimization of this system. This will lead to a normalized and homeostatic release of NAc dopamine. This proposed optimization, and not enhanced activation of TAAR1, should lead to well-being of the individual. Hyper-activation instead of optimizing the TAAR1 system unfortunately will lead to a prolonged hypodopaminergic state and as such, will cause enhanced craving for not only psychoactive substances, but also other drug-related and even non-drug related RDS behaviors. This hypothesis will require extensive research, which seems warranted based on the global epidemic of drug and behavioral addictions.
Collapse
Affiliation(s)
- Kenneth Blum
- Department of Psychiatry & McKnight Brain Institute, University of Florida College of Medicine, PO Box 100256, 1149 Newell Dr, L4-100, Gainesville, FL 32611, USA
- Division of Applied Clinical Research and Education, Dominion Diagnostics, LLC., 211 Circuit Dr, North Kingstown, RI 02852, USA
- Division of Neuroscience-Based Therapy, Summit Estate Recovery Center, 399 Old Mill Pond Rd, Los Gatos, CA 95033, USA
- Division of Clinical Neurology, PATH Foundation NY, 304 Park Ave South, Floor 6, New York, NY 10010, USA
- Division of Nutrigenomics, LaVita RDS, 1878 W 12800S, Ste 314, Averton, UT 84085, USA
- Department of Psychiatry & Behavioral Sciences, Keck School of Medicine of USC, Los Angeles, CA 90033, USA
- Division of Neuroscience Research & Addiction Therapy, Shores Recovery & Treatment Center, Port Saint Louie, FL 34952, USA
- Department of Clinical Psychology and Addiction, Eötvös Loránd University, 1064 Budapest, Izabella Street 46, Hungary
| | - Rajendra D. Badgaiyan
- Department of Psychiatry and Neuroimaging, University of Minnesota, F282/2A West, 2450 Riverside Avenue South, Minneapolis, MN 55454, USA
| | - Eric R. Braverman
- Division of Clinical Neurology, PATH Foundation NY, 304 Park Ave South, Floor 6, New York, NY 10010, USA
| | - Kristina Dushaj
- Division of Clinical Neurology, PATH Foundation NY, 304 Park Ave South, Floor 6, New York, NY 10010, USA
| | - Mona Li
- Division of Clinical Neurology, PATH Foundation NY, 304 Park Ave South, Floor 6, New York, NY 10010, USA
| | - Peter K. Thanos
- Research Institute on Addictions, University of Buffalo, 1021 Main Street, Buffalo, NY 14203, USA
| | - Zsolt Demetrovics
- Department of Clinical Psychology and Addiction, Eötvös Loránd University, 1064 Budapest, Izabella Street 46, Hungary
| | - Marcelo Febo
- Department of Psychiatry & McKnight Brain Institute, University of Florida College of Medicine, PO Box 100256, 1149 Newell Dr, L4-100, Gainesville, FL 32611, USA
| |
Collapse
|
43
|
Duquette LL, Mattiace F, Blum K, Waite RL, Boland T, McLaughlin T, Dushaj K, Febo M, Badgaiyan RD. Neurobiology of KB220Z-Glutaminergic-Dopaminergic Optimization Complex [GDOC] as a Liquid Nano: Clinical Activation of Brain in a Highly Functional Clinician Improving Focus, Motivation and Overall Sensory Input Following Chronic Intake. ACTA ACUST UNITED AC 2016; 3. [PMID: 29214221 PMCID: PMC5714519 DOI: 10.23937/2378-3656/1410104] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Background With neurogenetic and epigenetic tools utilized in research and neuroimaging, we are unraveling the mysteries of brain function, especially as it relates to Reward Deficiency (RDS). We encourage the development of pharmaceuticals or nutraceuticals that promote a reduction in dopamine resistance and balance brain neurochemistry, leading to dopamine homeostasis. We disclose self-assessment of a highly functional professional under work-related stress following KB220Z use, a liquid (aqua) nano glutaminergic-dopaminergic optimization complex (GDOC). Case presentation Subject took GDOC for one month. Subject self-administered GDOC using one-half-ounce twice a day. During first three days, unique brain activation occurred; resembling white noise after 30 minutes and sensation was strong for 45 minutes and then dissipated. He described effect as if his eyesight improved slightly and pointed out that his sense of smell and sleep greatly improved. Subject experienced a calming effect similar to meditation that could be linked to dopamine release. He also reported control of going over the edge after a hard day’s work, which was coupled with a slight increase in energy, increased motivation to work, increased focus and multi-tasking, with clearer purpose of task at hand. Subject felt less inhibited in a social setting and suggested Syndrome that GDOC increased his Behavior Activating System (reward), while having a decrease in the Behavior Inhibition System (caution). Conclusion These results and other related studies reveal an improved mood, work-related focus, and sleep. These effects as a subjective feeling of brain activation maybe due to direct or indirect dopaminergic interaction. While this case is encouraging, we must await more research in a larger randomized placebo-controlled study to map the role of GDOC, especially in a nano-sized product, to determine the possible effects on circuit inhibitory control and memory banks and the induction of dopamine homeostasis independent of either hypo- or hyper-dopaminergic traits/states.
Collapse
Affiliation(s)
- Lucien L Duquette
- New Pathway Counseling Services Inc., Paramus, NJ, USA.,Behavior Wellness Center, Englewood, NJ, USA
| | | | - Kenneth Blum
- Department of Psychiatry & McKnight Brain Institute, University of Florida College of Medicine, Gainesville, FL, USA.,Division of Addiction Services, Dominion Diagnostics, LLC., North Kingstown, RI, USA.,Division of Neuroscience-Based Therapy, Summit Estate Recovery Center, Los Gatos, CA, USA.,Department of Psychiatry & Behavioral Sciences, Keck School of Medicine of USC, Los Angeles, CA, USA.,Department of Clinical Neurology, PATH Foundation NY, New York, NY, USA.,Department of Nutrigenomic Translational Research, LaVita RDS, Salt Lake City, UT, USA.,Division of Neuroscience Research & Addiction Therapy, Shores Treatment & Recovery Center, Port Saint Lucie, FL, USA
| | - Roger L Waite
- Department of Nutrigenomic Translational Research, LaVita RDS, Salt Lake City, UT, USA
| | | | | | - Kristina Dushaj
- Department of Clinical Neurology, PATH Foundation NY, New York, NY, USA
| | - Marcelo Febo
- Department of Psychiatry & McKnight Brain Institute, University of Florida College of Medicine, Gainesville, FL, USA
| | - Rajendra D Badgaiyan
- Department of Psychiatry, Laboratory of Molecular and Functional Imaging, University of Minnesota, Minneapolis, MN, USA
| |
Collapse
|
44
|
Yavari F, Shahbabaie A, Leite J, Carvalho S, Ekhtiari H, Fregni F. Noninvasive brain stimulation for addiction medicine: From monitoring to modulation. PROGRESS IN BRAIN RESEARCH 2015; 224:371-99. [PMID: 26822367 DOI: 10.1016/bs.pbr.2015.08.007] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Addiction is a chronic relapsing brain disease with significant economical and medical burden on the societies but with limited effectiveness in the available treatment options. Better understanding of the chemical, neuronal, regional, and network alterations of the brain due to drug abuse can ultimately lead to tailoring individualized and more effective interventions. To this end, employing new assessment and intervention procedures seems crucial. Noninvasive brain stimulation (NIBS) techniques including transcranial electrical and magnetic stimulations (tES and TMS) have provided promising opportunities for the addiction medicine in two main domains: (1) providing new insights into neurochemical and neural circuit changes in the human brain cortex and (2) understanding the role of different brain regions by using NIBS and modulating cognitive functions, such as drug craving, risky decision making, inhibitory control and executive functions to obtain specific treatment outcomes. In spite of preliminary positive results, there are several open questions, which need to be addressed before routine clinical utilization of NIBS techniques in addiction to medicine, such as how to account for interindividual differences, define optimal cognitive and neural targets, optimize stimulation protocols, and integrate NIBS with other therapeutic methods. Therefore, in this chapter we revise the available literature on the use of NIBS (TMS and tES) in the diagnostic, prognostic, and therapeutic aspects of the addiction medicine.
Collapse
Affiliation(s)
- Fatemeh Yavari
- Neurocognitive Laboratory, Iranian National Center for Addiction Studies (INCAS), Tehran University of Medical Sciences, Tehran, Iran
| | - Alireza Shahbabaie
- Neurocognitive Laboratory, Iranian National Center for Addiction Studies (INCAS), Tehran University of Medical Sciences, Tehran, Iran; Translational Neuroscience Program, Institute for Cognitive Science Studies (ICSS), Tehran, Iran; Neuroimaging and Analysis Group, Research Center for Molecular and Cellular Imaging (RCMCI), Tehran University of Medical Sciences, Tehran, Iran
| | - Jorge Leite
- Department of Physical Medicine and Rehabilitation, Laboratory of Neuromodulation, Spaulding Rehabilitation Hospital and Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA; Neuropsychophysiology Laboratory, CIPsi, School of Psychology (EPsi), University of Minho, Braga, Portugal
| | - Sandra Carvalho
- Department of Physical Medicine and Rehabilitation, Laboratory of Neuromodulation, Spaulding Rehabilitation Hospital and Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA; Neuropsychophysiology Laboratory, CIPsi, School of Psychology (EPsi), University of Minho, Braga, Portugal
| | - Hamed Ekhtiari
- Neurocognitive Laboratory, Iranian National Center for Addiction Studies (INCAS), Tehran University of Medical Sciences, Tehran, Iran; Translational Neuroscience Program, Institute for Cognitive Science Studies (ICSS), Tehran, Iran; Neuroimaging and Analysis Group, Research Center for Molecular and Cellular Imaging (RCMCI), Tehran University of Medical Sciences, Tehran, Iran.
| | - Felipe Fregni
- Department of Physical Medicine and Rehabilitation, Laboratory of Neuromodulation, Spaulding Rehabilitation Hospital and Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA.
| |
Collapse
|
45
|
Yildirim BO, Derksen JJL. Mesocorticolimbic dopamine functioning in primary psychopathy: A source of within-group heterogeneity. Psychiatry Res 2015; 229:633-77. [PMID: 26277034 DOI: 10.1016/j.psychres.2015.07.005] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/25/2014] [Revised: 04/08/2015] [Accepted: 07/05/2015] [Indexed: 01/17/2023]
Abstract
Despite similar emotional deficiencies, primary psychopathic individuals can be situated on a continuum that spans from controlled to disinhibited. The constructs on which primary psychopaths are found to diverge, such as self-control, cognitive flexibility, and executive functioning, are crucially regulated by dopamine (DA). As such, the goal of this review is to examine which specific alterations in the meso-cortico-limbic DA system and corresponding genes (e.g., TH, DAT, COMT, DRD2, DRD4) might bias development towards a more controlled or disinhibited expression of primary psychopathy. Based on empirical data, it is argued that primary psychopathy is generally related to a higher tonic and population activity of striatal DA neurons and lower levels of D2-type DA receptors in meso-cortico-limbic projections, which may boost motivational drive towards incentive-laden goals, dampen punishment sensitivity, and increase future reward-expectancy. However, increasingly higher levels of DA activity in the striatum (moderate versus pathological elevations), lower levels of DA functionality in the prefrontal cortex, and higher D1-to-D2-type receptor ratios in meso-cortico-limbic projections may lead to increasingly disinhibited and impetuous phenotypes of primary psychopathy. Finally, in order to provide a more coherent view on etiological mechanisms, we discuss interactions between DA and serotonin that are relevant for primary psychopathy.
Collapse
Affiliation(s)
- Bariş O Yildirim
- Department of Clinical Psychology, Radboud University Nijmegen, De Kluyskamp 1002, 6545 JD Nijmegen, The Netherlands.
| | - Jan J L Derksen
- Department of Clinical Psychology, Room: A.07.04B, Radboud University Nijmegen, Montessorilaan 3, 6525 HR Nijmegen, The Netherlands.
| |
Collapse
|
46
|
Blum K, Oscar-Berman M, Braverman ER, Febo M, Li M, Gold MS. Enhancing Brain Pregnenolone May Protect Cannabis Intoxication but Should Not Be Considered as an Anti-addiction Therapeutic: Hypothesizing Dopaminergic Blockade and Promoting Anti-Reward. JOURNAL OF REWARD DEFICIENCY SYNDROME 2015; 1:20-23. [PMID: 26306328 PMCID: PMC4545660 DOI: 10.17756/jrds.2015-005] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
Many US states now embrace the medical and recreational use of Cannabis. Changes in the laws have heightened interest and encouraged research into both cannabinoid products and the potential harms of Cannabis use, addiction, and intoxication. Some research into those harms will be reviewed here and misgivings about the use of Pregnenolone, to treat cannabis addiction and intoxication explained. Pregnenolone considered the inactive precursor of all steroid hormones, has recently been shown to protect the brain from Cannabis intoxication. The major active ingredient of Cannabis sativa (marijuana), Δ9-tetrahydrocannabinol (THC) enhances Pregnenolone synthesis in the brain via stimulation of the type-1 cannabinoid (CB1) receptor. This steroid has been shown to inhibit the activity of the CB1 receptor thereby reducing many of the effects of THC. While this mechanism seems correct, in our opinion, Vallee et al., incorrectly suggest that blocking CB1 receptors could open unforeseen approaches to the treatment of cannabis intoxication and addiction. In this hypothesis, we caution the scientific community that, other CB1 receptor blockers, such as, Rimonabant (SR141718) have been pulled off the market in Europe. In addition, CB1 receptor blockers were rejected by the FDA due to mood changes including suicide ideation. Blocking CB1 receptors would result in reduced neuronal release of Dopamine by disinhibition of GABA signaling. Long-term blockade of cannabinoid receptors could occur with raising Pregnenolone brain levels, may induce a hypodopaminergic state, and lead to aberrant substance and non-substance (behavioral) addictions.
Collapse
Affiliation(s)
- Kenneth Blum
- Department of Psychiatry & Mcknight Brain Institute, University of Florida College of Medicine, Gainesville, FL, USA
- Department of Addiction Research & Therapy, Malibu Beach Recovery Center, Malibu Beach, CA, USA
- Department of Psychiatry, University of Vermont, Burlington, VT, USA
- Department of Clinical Neurology, Path Foundation NY, NY, USA
| | - Marlene Oscar-Berman
- Departments of Psychiatry, Neurology, and Anatomy & Neurobiology, Boston University School of Medicine, and Boston VA Healthcare System, Boston, MA, USA
| | - Eric R. Braverman
- Department of Psychiatry & Mcknight Brain Institute, University of Florida College of Medicine, Gainesville, FL, USA
- Department of Clinical Neurology, Path Foundation NY, NY, USA
| | - Marcelo Febo
- Department of Psychiatry & Mcknight Brain Institute, University of Florida College of Medicine, Gainesville, FL, USA
| | - Mona Li
- Department of Clinical Neurology, Path Foundation NY, NY, USA
| | - Mark S. Gold
- Director of Research, Drug Enforcement Administration (DEA) Educational Foundation, Washington, D.C, USA
- Departments of Psychiatry & Behavioral Sciences at the Keck, University of Southern California, School of Medicine, Los Angeles, CA, USA
| |
Collapse
|
47
|
Blum K, Thompson B, Demotrovics Z, Femino J, Giordano J, Oscar-Berman M, Teitelbaum S, Smith DE, Roy AK, Agan G, Fratantonio J, Badgaiyan RD, Gold MS. The Molecular Neurobiology of Twelve Steps Program & Fellowship: Connecting the Dots for Recovery. JOURNAL OF REWARD DEFICIENCY SYNDROME 2015; 1:46-64. [PMID: 26306329 PMCID: PMC4545669 DOI: 10.17756/jrds.2015-008] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
There are some who suggest that alcoholism and drug abuse are not diseases at all and that they are not consequences of a brain disorder as espoused recently by the American Society of Addiction Medicine (ASAM). Some would argue that addicts can quit on their own and moderate their alcohol and drug intake. When they present to a treatment program or enter the 12 Step Program & Fellowship, many addicts finally achieve complete abstinence. However, when controlled drinking fails, there may be successful alternatives that fit particular groups of individuals. In this expert opinion, we attempt to identify personal differences in recovery, by clarifying the molecular neurobiological basis of each step of the 12 Step Program. We explore the impact that the molecular neurobiological basis of the 12 steps can have on Reward Deficiency Syndrome (RDS) despite addiction risk gene polymorphisms. This exploration has already been accomplished in part by Blum and others in a 2013 Springer Neuroscience Brief. The purpose of this expert opinion is to briefly, outline the molecular neurobiological and genetic links, especially as they relate to the role of epigenetic changes that are possible in individuals who regularly attend AA meetings. It begs the question as to whether "12 steps programs and fellowship" does induce neuroplasticity and continued dopamine D2 receptor proliferation despite carrying hypodopaminergic type polymorphisms such as DRD2 A1 allele. "Like-minded" doctors of ASAM are cognizant that patients in treatment without the "psycho-social-spiritual trio," may not be obtaining the important benefits afforded by adopting 12-step doctrines. Are we better off with coupling medical assisted treatment (MAT) that favors combining dopamine agonist modalities (DAM) as possible histone-deacetylase activators with the 12 steps followed by a program that embraces either one or the other? While there are many unanswered questions, at least we have reached a time when "science meets recovery," and in doing so, can further redeem joy in recovery.
Collapse
Affiliation(s)
- Kenneth Blum
- Department of Psychiatry, School of Medicine and McKnight Brain Institute, University of Florida, Gainesville, FL, USA
- Department of Addiction Research and Therapy, Malibu Beach Recovery Center, Malibu Beach, CA, USA
- Dominion Diagnostics, Inc., North Kingstown, RI, USA
- IGENE, LLC., Austin, TX, USA
- RDSolutions, Del Mar, CA, USA
- National Institute for Holistic Medicine, North Miami Beach, FL, USA
| | - Benjamin Thompson
- Behavioral Neuroscience Program, Boston University School of Medicine, and Boston VA Healthcare System, Boston, MA, USA
| | - Zsolt Demotrovics
- Eötvös Loránd University, Institute of Psychology, Budapest, Hungary
| | - John Femino
- Dominion Diagnostics, Inc., North Kingstown, RI, USA
- Meadows Edge Recovery Center, North Kingstown, RI, USA
| | - John Giordano
- National Institute for Holistic Medicine, North Miami Beach, FL, USA
| | - Marlene Oscar-Berman
- Departments of Psychiatry, Neurology, and Anatomy & Neurobiology, Boston University School of Medicine, and Boston VA Healthcare System, Boston, MA, USA
| | - Scott Teitelbaum
- Department of Psychiatry, School of Medicine and McKnight Brain Institute, University of Florida, Gainesville, FL, USA
| | - David E. Smith
- Dominion Diagnostics, Inc., North Kingstown, RI, USA
- Institute of Health & Aging, University of California at San Francisco, San Francisco, CA, USA
| | | | - Gozde Agan
- Dominion Diagnostics, Inc., North Kingstown, RI, USA
| | | | - Rajendra D. Badgaiyan
- Department of Psychiatry, University of Minnesota College of Medicine, Minneapolis, MN, USA
| | - Mark S. Gold
- Director of Research, Drug Enforcement Administration (DEA) Educational Foundation, Washington, D.C, USA
- Departments of Psychiatry & Behavioral Sciences at the Keck, University of Southern California, School of Medicine, CA, USA
| |
Collapse
|
48
|
Gao J, Zhu N, Feng M, Meng X, Sui N. Intra-nucleus-accumbens SKF38393 improved the impaired acquisition of morphine-conditioned place preference in depression-like rats. Psych J 2015; 1:2-14. [PMID: 26272664 DOI: 10.1002/pchj.9] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2011] [Accepted: 04/10/2012] [Indexed: 12/25/2022]
Abstract
Dopaminergic activity in the nucleus accumbens (NAc) and the globus pallidus (GP) is important for the interaction between depression and addiction, with D1- and D2-like receptors playing different roles. Here, we address the effect of depression on morphine reward and its underlying D1- and D2-like effects in the NAc and/or the GP. Novelty-seeking behaviors and the forced open-space swimming test were used to assess a depression-like state in rats that had undergone chronic mild restraint. Depression-like rats were then trained with morphine-induced conditioned place preference (CPP, 3 mg/kg, 4 days), and showed impaired acquisition of the CPP compared with controls. To examine the receptor-specific dopaminergic mechanism underlying this phenomenon, we microinjected the D1-like agonist SKF38393 (1 μg/side) or the D2-like agonist quinpirole (1 μg/side) into the NAc or the GP. The impairment in acquisition of CPP was reversed only by injecting the D1- but not the D2-like agonist in the NAc. These results suggest that enhancement of dopaminergic transmission in the NAc (via D1-like receptors) may be effective in recovering impaired reward learning during a depression-like state.
Collapse
Affiliation(s)
- Jun Gao
- Key Laboratory of Mental Health, Institute of Psychology, Chinese Academy of Sciences, Beijing, China.,Graduate University of Chinese Academy of Sciences, Beijing, China
| | - Ning Zhu
- Key Laboratory of Mental Health, Institute of Psychology, Chinese Academy of Sciences, Beijing, China
| | - Min Feng
- Key Laboratory of Mental Health, Institute of Psychology, Chinese Academy of Sciences, Beijing, China.,Graduate University of Chinese Academy of Sciences, Beijing, China
| | - Xiaolu Meng
- Key Laboratory of Mental Health, Institute of Psychology, Chinese Academy of Sciences, Beijing, China.,Graduate University of Chinese Academy of Sciences, Beijing, China
| | - Nan Sui
- Key Laboratory of Mental Health, Institute of Psychology, Chinese Academy of Sciences, Beijing, China
| |
Collapse
|
49
|
Miller DK, Bowirrat A, Manka M, Miller M, Stokes S, Manka D, Allen C, Gant C, Downs BW, Smolen A, Stevens E, Yeldandi S, Blum K. Acute Intravenous Synaptamine Complex Variant KB220™ “Normalizes” Neurological Dysregulation in Patients during Protracted Abstinence from Alcohol and Opiates as Observed Using Quantitative Electroencephalographic and Genetic Analysis for Reward Polymorphisms: Part 1, Pilot Study with 2 Case Reports. Postgrad Med 2015; 122:188-213. [DOI: 10.3810/pgm.2010.11.2236] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
|
50
|
Blum K, Liu Y, Wang W, Wang Y, Zhang Y, Oscar-Berman M, Smolen A, Febo M, Han D, Simpatico T, Cronjé FJ, Demetrovics Z, Gold MS. rsfMRI effects of KB220Z™ on neural pathways in reward circuitry of abstinent genotyped heroin addicts. Postgrad Med 2014; 127:232-41. [PMID: 25526228 DOI: 10.1080/00325481.2015.994879] [Citation(s) in RCA: 77] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Recently, Willuhn et al. reported that cocaine use and even non-substance-related addictive behavior increases as dopaminergic function is reduced. Chronic cocaine exposure has been associated with decreases in D2/D3 receptors and was also associated with lower activation of cues in occipital cortex and cerebellum, in a recent PET study by Volkow's et al. Therefore, treatment strategies, like dopamine agonist therapy, that might conserve dopamine function may be an interesting approach to relapse prevention in psychoactive drug and behavioral addictions. To this aim, we evaluated the effect of KB220Z™ on reward circuitry of 10 heroin addicts undergoing protracted abstinence (average 16.9 months). In a randomized placebo-controlled crossover study of KB220Z, five subjects completed a triple-blinded experiment in which the subject, the person administering the treatment, and the person evaluating the response to treatment were blinded to the treatment that any particular subject was receiving. In addition, nine subjects were genotyped utilizing the GARSDX™ test. We preliminarily report that KB220Z induced an increase in BOLD activation in caudate-accumbens-dopaminergic pathways compared to placebo following 1-hour acute administration. Furthermore, KB220Z also reduced resting-state activity in the putamen of abstinent heroin addicts. In the second phase of this pilot study of all 10 abstinent heroin-dependent subjects, we observed that three brain regions of interest were significantly activated from resting state by KB220Z compared to placebo (p < 0.05). Increased functional connectivity was observed in a putative network that included the dorsal anterior cingulate, medial frontal gyrus, nucleus accumbens, posterior cingulate, occipital cortical areas, and cerebellum. These results and other quantitative electroencephalogy (qEEG) study results suggest a putative anti-craving/anti-relapse role of KB220Z in addiction by direct or indirect dopaminergic interaction. Due to small sample size, we caution definitive interpretation of these preliminary results, and confirmation with additional research and ongoing rodent and human studies of KB220Z is required.
Collapse
Affiliation(s)
- Kenneth Blum
- Department of Psychiatry & McKnight Brain Institute, University of Florida, College of Medicine , Gainesville, FL , USA
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|