1
|
He WZ, Zhao L, Sun K, Feng Z, Zhou G, Rao Q. Transcriptomic profiling reveals the complex interaction between a bipartite begomovirus and a cucurbitaceous host plant. BMC Genomics 2024; 25:876. [PMID: 39294575 PMCID: PMC11409788 DOI: 10.1186/s12864-024-10781-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2024] [Accepted: 09/09/2024] [Indexed: 09/20/2024] Open
Abstract
BACKGROUND Begomoviruses are major constraint in the production of many crops. Upon infection, begomoviruses may substantially modulate plant biological processes. While how monopartite begomoviruses interact with their plant hosts has been investigated extensively, bipartite begomoviruses-plant interactions are understudied. Moreover, as one of the major groups of hosts, cucurbitaceous plants have been seldom examined in the interaction with begomoviruses. RESULTS We profiled the zucchini transcriptomic changes induced by a bipartite begomovirus squash leaf curl China virus (SLCCNV). We identified 2275 differentially-expressed genes (DEGs), of which 1310 were upregulated and 965 were downregulated. KEGG enrichment analysis of the DEGs revealed that many pathways related to primary and secondary metabolisms were enriched. qRT-PCR verified the transcriptional changes of twelve selected DEGs induced by SLCCNV infection. Close examination revealed that the expression levels of all the DEGs of the pathway Photosynthesis were downregulated upon SLCCNV infection. Most DEGs in the pathway Plant-pathogen interaction were upregulated, including some positive regulators of plant defenses. Moreover, the majority of DEGs in the MAPK signaling pathway-plant were upregulated. CONCLUSION Our findings indicates that SLCCNV actively interact with its cucurbitaceous plant host by suppressing the conversion of light energy to chemical energy and inducing immune responses. Our study not only provides new insights into the interactions between begomoviruses and host plants, but also adds to our knowledge on virus-plant interactions in general.
Collapse
Affiliation(s)
- Wen-Ze He
- Zhejiang Key Laboratory of Biology and Ecological Regulation of Crop Pathogens and Insects, Zhejiang A&F University, Hangzhou, 311300, China
| | - Li Zhao
- Hangzhou Agricultural Technology Extension Center, Hangzhou, 310058, China
| | - Kai Sun
- Zhejiang Provincial Key Laboratory of Biometrology and Inspection & Quarantine, College of Life Sciences, China Jiliang University, Hangzhou, 310018, China
| | - Zhen Feng
- Zhejiang Key Laboratory of Biology and Ecological Regulation of Crop Pathogens and Insects, Zhejiang A&F University, Hangzhou, 311300, China
| | - Gen Zhou
- Zhejiang Key Laboratory of Biology and Ecological Regulation of Crop Pathogens and Insects, Zhejiang A&F University, Hangzhou, 311300, China
| | - Qiong Rao
- Zhejiang Key Laboratory of Biology and Ecological Regulation of Crop Pathogens and Insects, Zhejiang A&F University, Hangzhou, 311300, China.
| |
Collapse
|
2
|
Chaowongdee S, Vannatim N, Malichan S, Kuncharoen N, Tongyoo P, Siriwan W. Comparative transcriptomics analysis reveals defense mechanisms of Manihot esculenta Crantz against Sri Lanka Cassava MosaicVirus. BMC Genomics 2024; 25:436. [PMID: 38698332 PMCID: PMC11067156 DOI: 10.1186/s12864-024-10315-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2023] [Accepted: 04/16/2024] [Indexed: 05/05/2024] Open
Abstract
BACKGROUND Cassava mosaic disease (CMD), caused by Sri Lankan cassava mosaic virus (SLCMV) infection, has been identified as a major pernicious disease in Manihot esculenta Crantz (cassava) plantations. It is widespread in Southeast Asia, especially in Thailand, which is one of the main cassava supplier countries. With the aim of restricting the spread of SLCMV, we explored the gene expression of a tolerant cassava cultivar vs. a susceptible cassava cultivar from the perspective of transcriptional regulation and the mechanisms underlying plant immunity and adaptation. RESULTS Transcriptomic analysis of SLCMV-infected tolerant (Kasetsart 50 [KU 50]) and susceptible (Rayong 11 [R 11]) cultivars at three infection stages-that is, at 21 days post-inoculation (dpi) (early/asymptomatic), 32 dpi (middle/recovery), and 67 dpi (late infection/late recovery)-identified 55,699 expressed genes. Differentially expressed genes (DEGs) between SLCMV-infected KU 50 and R 11 cultivars at (i) 21 dpi to 32 dpi (the early to middle stage), and (ii) 32 dpi to 67 dpi (the middle stage to late stage) were then identified and validated by real-time quantitative PCR (RT-qPCR). DEGs among different infection stages represent genes that respond to and regulate the viral infection during specific stages. The transcriptomic comparison between the tolerant and susceptible cultivars highlighted the role of gene expression regulation in tolerant and susceptible phenotypes. CONCLUSIONS This study identified genes involved in epigenetic modification, transcription and transcription factor activities, plant defense and oxidative stress response, gene expression, hormone- and metabolite-related pathways, and translation and translational initiation activities, particularly in KU 50 which represented the tolerant cultivar in this study.
Collapse
Affiliation(s)
- Somruthai Chaowongdee
- Center of Excellence on Agricultural Biotechnology (AG-BIO/MHESI), Bangkok, 10900, Thailand
- Center for Agricultural Biotechnology, Kasetsart University, Kamphaengsaen Campus, Nakhon Pathom, 73140, Thailand
| | - Nattachai Vannatim
- Department of Plant Pathology, Faculty of Agriculture, Kasetsart University, Bangkok, 10900, Thailand
| | - Srihunsa Malichan
- Department of Plant Pathology, Faculty of Agriculture, Kasetsart University, Bangkok, 10900, Thailand
| | - Nattakorn Kuncharoen
- Department of Plant Pathology, Faculty of Agriculture, Kasetsart University, Bangkok, 10900, Thailand
| | - Pumipat Tongyoo
- Center of Excellence on Agricultural Biotechnology (AG-BIO/MHESI), Bangkok, 10900, Thailand
- Center for Agricultural Biotechnology, Kasetsart University, Kamphaengsaen Campus, Nakhon Pathom, 73140, Thailand
| | - Wanwisa Siriwan
- Department of Plant Pathology, Faculty of Agriculture, Kasetsart University, Bangkok, 10900, Thailand.
| |
Collapse
|
3
|
Kozieł E, Otulak-Kozieł K, Rusin P. Glutathione-the "master" antioxidant in the regulation of resistant and susceptible host-plant virus-interaction. FRONTIERS IN PLANT SCIENCE 2024; 15:1373801. [PMID: 38533404 PMCID: PMC10963531 DOI: 10.3389/fpls.2024.1373801] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/20/2024] [Accepted: 02/23/2024] [Indexed: 03/28/2024]
Abstract
The interaction between plant hosts and plant viruses is a very unique and complex process, relying on dynamically modulated intercellular redox states and the generation of reactive oxygen species (ROS). Plants strive to precisely control this state during biotic stress, as optimal redox levels enable proper induction of defense mechanisms against plant viruses. One of the crucial elements of ROS regulation and redox state is the production of metabolites, such as glutathione, or the activation of glutathione-associated enzymes. Both of these elements play a role in limiting the degree of potential oxidative damage in plant cells. While the role of glutathione and specific enzymes is well understood in other types of abiotic and biotic stresses, particularly those associated with bacteria or fungi, recent advances in research have highlighted the significance of glutathione modulation and mutations in genes encoding glutathione-associated enzymes in triggering immunity or susceptibility against plant viruses. Apparently, glutathione-associated genes are involved in precisely controlling and protecting host cells from damage caused by ROS during viral infections, playing a crucial role in the host's response. In this review, we aim to outline the significant improvements made in research on plant viruses and glutathione, specifically in the context of their involvement in susceptible and resistant responses, as well as changes in the localization of glutathione. Analyses of essential glutathione-associated enzymes in susceptible and resistant responses have demonstrated that the levels of enzymatic activity or the absence of specific enzymes can impact the spread of the virus and activate host-induced defense mechanisms. This contributes to the complex network of the plant immune system. Although investigations of glutathione during the plant-virus interplay remain a challenge, the use of novel tools and approaches to explore its role will significantly contribute to our knowledge in the field.
Collapse
Affiliation(s)
- Edmund Kozieł
- *Correspondence: Edmund Kozieł, ; Katarzyna Otulak-Kozieł,
| | | | | |
Collapse
|
4
|
Jiang Z, Lozano-Durán R. Do plant histone variants stand idly by while DNA viruses invade the nucleus? STRESS BIOLOGY 2023; 3:46. [PMID: 37955829 PMCID: PMC10643808 DOI: 10.1007/s44154-023-00129-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/12/2023] [Accepted: 10/24/2023] [Indexed: 11/14/2023]
Affiliation(s)
- Zhihao Jiang
- Department of Plant Biochemistry, Center for Molecular Plant Biology (ZMBP), Eberhard-Karls University of Tübingen, Tübingen, Germany.
| | - Rosa Lozano-Durán
- Department of Plant Biochemistry, Center for Molecular Plant Biology (ZMBP), Eberhard-Karls University of Tübingen, Tübingen, Germany
| |
Collapse
|
5
|
Nalla MK, Schafleitner R, Pappu HR, Barchenger DW. Current status, breeding strategies and future prospects for managing chilli leaf curl virus disease and associated begomoviruses in Chilli ( Capsicum spp.). FRONTIERS IN PLANT SCIENCE 2023; 14:1223982. [PMID: 37936944 PMCID: PMC10626458 DOI: 10.3389/fpls.2023.1223982] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/16/2023] [Accepted: 10/09/2023] [Indexed: 11/09/2023]
Abstract
Chilli leaf curl virus disease caused by begomoviruses, has emerged as a major threat to global chilli production, causing severe yield losses and economic harm. Begomoviruses are a highly successful and emerging group of plant viruses that are primarily transmitted by whiteflies belonging to the Bemisia tabaci complex. The most effective method for mitigating chilli leaf curl virus disease losses is breeding for host resistance to Begomovirus. This review highlights the current situation of chilli leaf curl virus disease and associated begomoviruses in chilli production, stressing the significant issues that breeders and growers confront. In addition, the various breeding methods used to generate begomovirus resistant chilli cultivars, and also the complicated connections between the host plant, vector and the virus are discussed. This review highlights the importance of resistance breeding, emphasising the importance of multidisciplinary approaches that combine the best of traditional breeding with cutting-edge genomic technologies. subsequently, the article highlights the challenges that must be overcome in order to effectively deploy begomovirus resistant chilli varieties across diverse agroecological zones and farming systems, as well as understanding the pathogen thus providing the opportunities for improving the sustainability and profitability of chilli production.
Collapse
Affiliation(s)
- Manoj Kumar Nalla
- World Vegetable Center, South and Central Asia Regional Office, Hyderabad, India
| | | | - Hanu R. Pappu
- Department of Plant Pathology, Washington State University, Pullman, WA, United States
| | | |
Collapse
|
6
|
Das P, Chandra T, Negi A, Jaiswal S, Iquebal MA, Rai A, Kumar D. A comprehensive review on genomic resources in medicinally and industrially important major spices for future breeding programs: Status, utility and challenges. Curr Res Food Sci 2023; 7:100579. [PMID: 37701635 PMCID: PMC10494321 DOI: 10.1016/j.crfs.2023.100579] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2023] [Revised: 08/21/2023] [Accepted: 08/26/2023] [Indexed: 09/14/2023] Open
Abstract
In the global market, spices possess a high-value but low-volume commodities of commerce. The food industry depends largely on spices for taste, flavor, and therapeutic properties in replacement of cheap synthetic ones. The estimated growth rate for spices demand in the world is ∼3.19%. Since spices grow in limited geographical regions, India is one of the leading producer of spices, contributing 25-30 percent of total world trade. Hitherto, there has been no comprehensive review of the genomic resources of industrially important major medicinal spices to overcome major impediments in varietal improvement and management. This review focuses on currently available genomic resources of 24 commercially significant spices, namely, Ajwain, Allspice, Asafoetida, Black pepper, Cardamom large, Cardamom small, Celery, Chillies, Cinnamon, Clove, Coriander, Cumin, Curry leaf, Dill seed, Fennel, Fenugreek, Garlic, Ginger, Mint, Nutmeg, Saffron, Tamarind, Turmeric and Vanilla. The advent of low-cost sequencing machines has contributed immensely to the voluminous data generation of these spices, cracking the complex genomic architecture, marker discovery, and understanding comparative and functional genomics. This review of spice genomics resources concludes the perspective and way forward to provide footprints by uncovering genome assemblies, sequencing and re-sequencing projects, transcriptome-based studies, non-coding RNA-mediated regulation, organelles-based resources, developed molecular markers, web resources, databases and AI-directed resources in candidate spices for enhanced breeding potential in them. Further, their integration with molecular breeding could be of immense use in formulating a strategy to protect and expand the production of the spices due to increased global demand.
Collapse
Affiliation(s)
- Parinita Das
- Division of Agricultural Bioinformatics, ICAR-Indian Agricultural Statistics Research Institute, New Delhi, India
| | - Tilak Chandra
- Division of Agricultural Bioinformatics, ICAR-Indian Agricultural Statistics Research Institute, New Delhi, India
| | - Ankita Negi
- Division of Agricultural Bioinformatics, ICAR-Indian Agricultural Statistics Research Institute, New Delhi, India
| | - Sarika Jaiswal
- Division of Agricultural Bioinformatics, ICAR-Indian Agricultural Statistics Research Institute, New Delhi, India
| | - Mir Asif Iquebal
- Division of Agricultural Bioinformatics, ICAR-Indian Agricultural Statistics Research Institute, New Delhi, India
| | - Anil Rai
- Division of Agricultural Bioinformatics, ICAR-Indian Agricultural Statistics Research Institute, New Delhi, India
| | - Dinesh Kumar
- Division of Agricultural Bioinformatics, ICAR-Indian Agricultural Statistics Research Institute, New Delhi, India
| |
Collapse
|
7
|
Bokhale M, Mwaba I, Allie F. The selection and validation of reference genes for quantitative real-time PCR studies in near-isogenic susceptible and resistant tomato lines, infected with the geminivirus tomato curly stunt virus. PLoS One 2023; 18:e0284456. [PMID: 37498814 PMCID: PMC10374155 DOI: 10.1371/journal.pone.0284456] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2022] [Accepted: 04/03/2023] [Indexed: 07/29/2023] Open
Abstract
Quantitative real-time PCR (qPCR) is a sensitive and commonly used technique for gene expression profiling and provides insight into biological systems. Successful qPCR requires the use of appropriate reference genes for the normalization of data. In the present study, we aimed to identify and assess the best-suited reference genes in near-isogenic resistant (R) and susceptible (S) tomato lines infected with begomovirus Tomato curly stunt virus (ToCSV). Ten candidate reference genes namely, Actin7 (ACT), β-6 Tubulin (TUB), Ubiquitin 3 (UBI), Clathrin adaptor complexes medium subunit (CAC), Phytoene desaturase (PDS), Expressed protein (EXP), Glyceraldehyde-3-phosphate dehydrogenase (GAPDH), Adenine phosphoribosyl transferase-like protein (APT1), TAP42-interacting protein (TIP41) and Elongation factor 1-alpha (EF1α) were selected and evaluated for their expression stability in resistant and susceptible tomato leaves using the analytical tools geNorm, NormFinder, BestKeeper, and RefFinder. After ranking the reference genes from most to least stable, the results suggested that a combination of ACT, EXP, and EF1α in the S lines and a combination of TIP41, APT1, and ACT in the R line is appropriate for qPCR normalization. Furthermore, to validate the identified reference genes, iron superoxide dismutase (SOD), heat shock protein 70 (HSP70) and Glutathione-S-transferase (GST) were selected as targets for normalization. The relative expression of the target genes varied when normalized against the most stable reference genes in comparison to the least stable genes. These results highlight the importance of careful selection of reference genes for accurate normalization in qPCR studies.
Collapse
Affiliation(s)
- Mamokete Bokhale
- Department of Biochemistry, University of Johannesburg, Auckland Park, Johannesburg, South Africa
| | - Imanu Mwaba
- Department of Biochemistry, University of Johannesburg, Auckland Park, Johannesburg, South Africa
| | - Farhahna Allie
- Department of Biochemistry, University of Johannesburg, Auckland Park, Johannesburg, South Africa
| |
Collapse
|
8
|
Namgial T, Singh AK, Singh NP, Francis A, Chattopadhyay D, Voloudakis A, Chakraborty S. Differential expression of genes during recovery of Nicotiana tabacum from tomato leaf curl Gujarat virus infection. PLANTA 2023; 258:37. [PMID: 37405593 PMCID: PMC10322791 DOI: 10.1007/s00425-023-04182-4] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/17/2023] [Accepted: 06/10/2023] [Indexed: 07/06/2023]
Abstract
MAIN CONCLUSION Nicotiana tabacum exhibits recovery response towards tomato leaf curl Gujarat virus. Transcriptome analysis revealed the differential expression of defense-related genes. Genes encoding for cysteine protease inhibitor, hormonal- and stress-related to DNA repair mechanism are found to be involved in the recovery process. Elucidating the role of host factors in response to viral infection is crucial in understanding the plant host-virus interaction. Begomovirus, a genus in the family Geminiviridae, is reported throughout the globe and is known to cause serious crop diseases. Tomato leaf curl Gujarat virus (ToLCGV) infection in Nicotiana tabacum resulted in initial symptom expression followed by a quick recovery in the systemic leaves. Transcriptome analysis using next-generation sequencing (NGS) revealed a large number of differentially expressed genes both in symptomatic as well as recovered leaves when compared to mock-inoculated plants. The virus infected N. tabacum results in alteration of various metabolic pathways, phytohormone signaling pathway, defense related protein, protease inhibitor, and DNA repair pathway. RT-qPCR results indicated that Germin-like protein subfamily T member 2 (NtGLPST), Cysteine protease inhibitor 1-like (NtCPI), Thaumatin-like protein (NtTLP), Kirola-like (NtKL), and Ethylene-responsive transcription factor ERF109-like (NtERTFL) were down-regulated in symptomatic leaves when compared to recovered leaves of ToLCGV-infected plants. In contrast, the Auxin-responsive protein SAUR71-like (NtARPSL) was found to be differentially down-regulated in recovered leaves when compared to symptomatic leaves and the mock-inoculated plants. Lastly, Histone 2X protein like (NtHH2L) gene was found to be down-regulated, whereas Uncharacterized (NtUNCD) was up-regulated in both symptomatic as well as recovered leaves compared to the mock-inoculated plants. Taken together, the present study suggests potential roles of the differentially expressed genes that might govern tobacco's susceptibility and/or recovery response towards ToLCGV infection.
Collapse
Affiliation(s)
- T Namgial
- Laboratory of Plant Breeding and Biometry, Department of Crop Science, Agricultural University of Athens, Athens, 11855, Greece
- Molecular Virology Laboratory, School of Life Sciences, Jawaharlal Nehru University, New Delhi, 110067, India
| | - A K Singh
- Molecular Virology Laboratory, School of Life Sciences, Jawaharlal Nehru University, New Delhi, 110067, India
| | - N P Singh
- Laboratory of Plant Molecular Biology, National Institute of Plant Genome Research, New Delhi, 110067, India
| | - A Francis
- Laboratory of Plant Molecular Biology, National Institute of Plant Genome Research, New Delhi, 110067, India
| | - D Chattopadhyay
- Laboratory of Plant Molecular Biology, National Institute of Plant Genome Research, New Delhi, 110067, India
| | - A Voloudakis
- Laboratory of Plant Breeding and Biometry, Department of Crop Science, Agricultural University of Athens, Athens, 11855, Greece.
| | - S Chakraborty
- Molecular Virology Laboratory, School of Life Sciences, Jawaharlal Nehru University, New Delhi, 110067, India.
| |
Collapse
|
9
|
Jeevalatha A, Siddappa S, Kumar R, Tiwari RK, Lal MK, Sharma S, Chakrabarti SK, Singh BP. RNA-seq analysis reveals an early defense response to tomato leaf curl New Delhi virus in potato cultivar Kufri Bahar. Funct Integr Genomics 2023; 23:215. [PMID: 37389664 DOI: 10.1007/s10142-023-01138-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2023] [Revised: 06/06/2023] [Accepted: 06/15/2023] [Indexed: 07/01/2023]
Abstract
Potatoes in India are very susceptible to apical leaf curl disease, which causes severe symptoms and greater yield losses. Because the majority of potato cultivars are susceptible to the virus, it is crucial to discover sources of resistance and investigate the mechanism of resistance/susceptibility in potato cultivars. In this study, the gene expression profile of two potato cultivars, Kufri Bahar (resistant) and Kufri Pukhraj (susceptible), varying in their level of resistance to ToLCNDV, was analyzed using RNA-Seq. The Ion ProtonTM system was used to sequence eight RiboMinus RNA libraries from inoculated and uninoculated potato plants at 15 and 20 days after inoculation (DAI). The findings indicated that the majority of differentially expressed genes (DEGs) were cultivar-or time-specific. These DEGs included genes for proteins that interact with viruses, genes linked with the cell cycle, genes for proteins involved in defense, transcription and translation initiation factors, and plant hormone signaling pathway genes. Interestingly, defense responses were generated early in Kufri Bahar, at 15 DAI, which may have impeded the replication and spread of ToLCNDV. This research provides a genome-wide transcriptional analysis of two potato cultivars with variable levels of ToLCNDV resistance. At an early stage, we observed suppression of genes that interact with viral proteins, induction of genes associated with restriction of cell division, genes encoding defense proteins, AP2/ERF transcription factors, and altered expression of zinc finger protein genes, HSPs, JA, and SA pathway-related genes. Our findings add to a greater comprehension of the molecular basis of potato resistance to ToLCNDV and may aid in the development of more effective disease management techniques.
Collapse
Affiliation(s)
- Arjunan Jeevalatha
- ICAR- Central Potato Research Institute, Shimla, 171 001, Himachal Pradesh, India
- ICAR- Indian Institute of Spices Research, Kozhikode, 673 012, Kerala, India
| | - Sundaresha Siddappa
- ICAR- Central Potato Research Institute, Shimla, 171 001, Himachal Pradesh, India
| | - Ravinder Kumar
- ICAR- Central Potato Research Institute, Shimla, 171 001, Himachal Pradesh, India.
| | - Rahul Kumar Tiwari
- ICAR- Central Potato Research Institute, Shimla, 171 001, Himachal Pradesh, India.
| | - Milan Kumar Lal
- ICAR- Central Potato Research Institute, Shimla, 171 001, Himachal Pradesh, India
| | - Sanjeev Sharma
- ICAR- Central Potato Research Institute, Shimla, 171 001, Himachal Pradesh, India
| | | | - Bir Pal Singh
- ICAR- Central Potato Research Institute, Shimla, 171 001, Himachal Pradesh, India
| |
Collapse
|
10
|
Samaniego-Gámez BY, Valle-Gough RE, Garruña-Hernández R, Reyes-Ramírez A, Latournerie-Moreno L, Tun-Suárez JM, Villanueva-Alonzo HDJ, Nuñez-Ramírez F, Diaz LC, Samaniego-Gámez SU, Minero-García Y, Hernandez-Zepeda C, Moreno-Valenzuela OA. Induced Systemic Resistance in the Bacillus spp.- Capsicum chinense Jacq.-PepGMV Interaction, Elicited by Defense-Related Gene Expression. PLANTS (BASEL, SWITZERLAND) 2023; 12:plants12112069. [PMID: 37299048 DOI: 10.3390/plants12112069] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/06/2023] [Revised: 05/13/2023] [Accepted: 05/18/2023] [Indexed: 06/12/2023]
Abstract
Induced systemic resistance (ISR) is a mechanism involved in the plant defense response against pathogens. Certain members of the Bacillus genus are able to promote the ISR by maintaining a healthy photosynthetic apparatus, which prepares the plant for future stress situations. The goal of the present study was to analyze the effect of the inoculation of Bacillus on the expression of genes involved in plant responses to pathogens, as a part of the ISR, during the interaction of Capsicum chinense infected with PepGMV. The effects of the inoculation of the Bacillus strains in pepper plants infected with PepGMV were evaluated by observing the accumulation of viral DNA and the visible symptoms of pepper plants during a time-course experiment in greenhouse and in in vitro experiments. The relative expression of the defense genes CcNPR1, CcPR10, and CcCOI1 were also evaluated. The results showed that the plants inoculated with Bacillus subtilis K47, Bacillus cereus K46, and Bacillus sp. M9 had a reduction in the PepGMV viral titer, and the symptoms in these plants were less severe compared to the plants infected with PepGMV and non-inoculated with Bacillus. Additionally, an increase in the transcript levels of CcNPR1, CcPR10, and CcCOI1 was observed in plants inoculated with Bacillus strains. Our results suggest that the inoculation of Bacillus strains interferes with the viral replication, through the increase in the transcription of pathogenesis-related genes, which is reflected in a lowered plant symptomatology and an improved yield in the greenhouse, regardless of PepGMV infection status.
Collapse
Affiliation(s)
- Blancka Yesenia Samaniego-Gámez
- Institute of Agricultural Sciences, Autonomous University of Baja California, Delta Highway s/n Ejido Nuevo León, Mexicali P.O. Box 21705, Baja California, Mexico
| | - Raúl Enrique Valle-Gough
- Institute of Agricultural Sciences, Autonomous University of Baja California, Delta Highway s/n Ejido Nuevo León, Mexicali P.O. Box 21705, Baja California, Mexico
| | - René Garruña-Hernández
- CONACYT-National Technological Institute of Mexico, Technological Institute of Conkal, CONACYT, Tecnológico Ave. s/n, Conkal P.O. Box 97345, Yucatán, Mexico
| | - Arturo Reyes-Ramírez
- National Technological Institute of Mexico, Conkal Institute of Technology, Division of Graduate Studies and Research, Av. Tecnológico s/n, Conkal P.O. Box 97345, Yucatán, Mexico
| | - Luis Latournerie-Moreno
- National Technological Institute of Mexico, Conkal Institute of Technology, Division of Graduate Studies and Research, Av. Tecnológico s/n, Conkal P.O. Box 97345, Yucatán, Mexico
| | - José María Tun-Suárez
- National Technological Institute of Mexico, Conkal Institute of Technology, Division of Graduate Studies and Research, Av. Tecnológico s/n, Conkal P.O. Box 97345, Yucatán, Mexico
| | - Hernán de Jesús Villanueva-Alonzo
- Regional Research Center "Dr. Hideyo Noguchi", Cell Biology Laboratory, Autonomous University of Yucatan, Av. Itzáez, Nmbr. 490 by 59 St. Centro, Merida P.O. Box 97000, Yucatán, Mexico
| | - Fidel Nuñez-Ramírez
- Institute of Agricultural Sciences, Autonomous University of Baja California, Delta Highway s/n Ejido Nuevo León, Mexicali P.O. Box 21705, Baja California, Mexico
| | - Lourdes Cervantes Diaz
- Institute of Agricultural Sciences, Autonomous University of Baja California, Delta Highway s/n Ejido Nuevo León, Mexicali P.O. Box 21705, Baja California, Mexico
| | - Samuel Uriel Samaniego-Gámez
- Institute of Agricultural Sciences, Autonomous University of Baja California, Delta Highway s/n Ejido Nuevo León, Mexicali P.O. Box 21705, Baja California, Mexico
| | - Yereni Minero-García
- Yucatan Center of Scientific Research, Plant Biochemistry and Molecular Biology Unit, 43 St., Nmbr. 130, Chuburna de Hidalgo, Merida P.O. Box 97200, Yucatán, Mexico
| | - Cecilia Hernandez-Zepeda
- Yucatan Center of Scientific Research, Water Sciences Unit, 8 St., Nmbr. 39, SM 64, Mz. 29, Cancun P.O. Box 77500, Quintana Roo, Mexico
| | - Oscar A Moreno-Valenzuela
- Yucatan Center of Scientific Research, Plant Biochemistry and Molecular Biology Unit, 43 St., Nmbr. 130, Chuburna de Hidalgo, Merida P.O. Box 97200, Yucatán, Mexico
| |
Collapse
|
11
|
Flores-Díaz A, Escoto-Sandoval C, Cervantes-Hernández F, Ordaz-Ortiz JJ, Hayano-Kanashiro C, Reyes-Valdés H, Garcés-Claver A, Ochoa-Alejo N, Martínez O. Gene Functional Networks from Time Expression Profiles: A Constructive Approach Demonstrated in Chili Pepper ( Capsicum annuum L.). PLANTS (BASEL, SWITZERLAND) 2023; 12:1148. [PMID: 36904008 PMCID: PMC10005043 DOI: 10.3390/plants12051148] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Revised: 02/20/2023] [Accepted: 02/27/2023] [Indexed: 06/18/2023]
Abstract
Gene co-expression networks are powerful tools to understand functional interactions between genes. However, large co-expression networks are difficult to interpret and do not guarantee that the relations found will be true for different genotypes. Statistically verified time expression profiles give information about significant changes in expressions through time, and genes with highly correlated time expression profiles, which are annotated in the same biological process, are likely to be functionally connected. A method to obtain robust networks of functionally related genes will be useful to understand the complexity of the transcriptome, leading to biologically relevant insights. We present an algorithm to construct gene functional networks for genes annotated in a given biological process or other aspects of interest. We assume that there are genome-wide time expression profiles for a set of representative genotypes of the species of interest. The method is based on the correlation of time expression profiles, bound by a set of thresholds that assure both, a given false discovery rate, and the discard of correlation outliers. The novelty of the method consists in that a gene expression relation must be repeatedly found in a given set of independent genotypes to be considered valid. This automatically discards relations particular to specific genotypes, assuring a network robustness, which can be set a priori. Additionally, we present an algorithm to find transcription factors candidates for regulating hub genes within a network. The algorithms are demonstrated with data from a large experiment studying gene expression during the development of the fruit in a diverse set of chili pepper genotypes. The algorithm is implemented and demonstrated in a new version of the publicly available R package "Salsa" (version 1.0).
Collapse
Affiliation(s)
- Alan Flores-Díaz
- Unidad de Genómica Avanzada (Langebio), Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional (Cinvestav), Irapuato 36824, Mexico
| | - Christian Escoto-Sandoval
- Unidad de Genómica Avanzada (Langebio), Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional (Cinvestav), Irapuato 36824, Mexico
| | - Felipe Cervantes-Hernández
- Unidad de Genómica Avanzada (Langebio), Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional (Cinvestav), Irapuato 36824, Mexico
| | - José J. Ordaz-Ortiz
- Unidad de Genómica Avanzada (Langebio), Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional (Cinvestav), Irapuato 36824, Mexico
| | - Corina Hayano-Kanashiro
- Departamento de Investigaciones Científicas y Tecnológicas de la Universidad de Sonora, Hermosillo 83000, Mexico
| | - Humberto Reyes-Valdés
- Department of Plant Breeding, Universidad Autónoma Agraria Antonio Narro, Saltillo 25315, Mexico
| | - Ana Garcés-Claver
- Unidad de Hortofruticultura, Centro de Investigación y Tecnología Agroalimentaria de Aragón, Instituto Agroalimentario de Aragón-IA2 (CITA-Universidad de Zaragoza), 50059 Zaragoza, Spain
| | - Neftalí Ochoa-Alejo
- Departamento de Ingeniería Genética, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional (Cinvestav), Irapuato 36824, Mexico
| | - Octavio Martínez
- Unidad de Genómica Avanzada (Langebio), Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional (Cinvestav), Irapuato 36824, Mexico
| |
Collapse
|
12
|
More P, Agarwal P, Agarwal PK. The Jatropha leaf curl Gujarat virus on infection in Jatropha regulates the sugar and tricarboxylic acid cycle metabolic pathways. 3 Biotech 2022; 12:275. [PMID: 36110567 PMCID: PMC9468196 DOI: 10.1007/s13205-022-03306-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2022] [Accepted: 08/10/2022] [Indexed: 11/25/2022] Open
Abstract
Jatropha, a popular biodiesel crop, suffers severe losses due to Jatropha leaf curl Gujarat virus (JLCuGV) infection in Gujarat (India). Metabolite profiling can help to understand the plant's innate immune response to geminivirus infection. Our study aims to compare metabolic profiles of an infected and healthy plant to unravel the changes in biochemical pathways on geminivirus infection in Jatropha. Gas chromatography-mass spectrometry (GC-MS) analysis was performed in healthy and infected tissue of Jatropha field plants which were identified to be infected with geminivirus. GC-MS analysis revealed that the metabolites like sugars, polyols, carboxylic acids, fatty acids, polyphenols, and amino acids were regulated on JLCuGV infection. The sugars (glucose, sucrose, and fructose) increased, while carboxylic acids (malic acid, citric acid and quinic acid) and polyols (galactinol, butanetriol, triethylene glycol, myo-inositol, erythritol) decreased remarkably in infected Jatropha tissue. All these metabolic variations indicated that sugar metabolism and tricarboxylic acid (TCA) cycle pathways are regulated as a defense response and a disease development response to geminivirus infection in Jatropha.
Collapse
Affiliation(s)
- Prashant More
- Plant Omics Division, CSIR-Central Salt and Marine Chemicals Research Institute (CSIR-CSMCRI), Council of Scientific & Industrial Research (CSIR), Gijubhai Badheka Marg, Bhavnagar, Gujarat 364 002 India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002 India
| | - Parinita Agarwal
- Plant Omics Division, CSIR-Central Salt and Marine Chemicals Research Institute (CSIR-CSMCRI), Council of Scientific & Industrial Research (CSIR), Gijubhai Badheka Marg, Bhavnagar, Gujarat 364 002 India
| | - Pradeep K. Agarwal
- Plant Omics Division, CSIR-Central Salt and Marine Chemicals Research Institute (CSIR-CSMCRI), Council of Scientific & Industrial Research (CSIR), Gijubhai Badheka Marg, Bhavnagar, Gujarat 364 002 India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002 India
| |
Collapse
|
13
|
Berka M, Kopecká R, Berková V, Brzobohatý B, Černý M. Regulation of heat shock proteins 70 and their role in plant immunity. JOURNAL OF EXPERIMENTAL BOTANY 2022; 73:1894-1909. [PMID: 35022724 PMCID: PMC8982422 DOI: 10.1093/jxb/erab549] [Citation(s) in RCA: 25] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/21/2021] [Accepted: 12/10/2021] [Indexed: 05/03/2023]
Abstract
Heat shock proteins 70 (HSP70s) are steadily gaining more attention in the field of plant biotic interactions. Though their regulation and activity in plants are much less well characterized than are those of their counterparts in mammals, accumulating evidence indicates that the role of HSP70-mediated defense mechanisms in plant cells is indispensable. In this review, we summarize current knowledge of HSP70 post-translational control in plants. We comment on the phytohormonal regulation of HSP70 expression and protein abundance, and identify a prominent role for cytokinin in HSP70 control. We outline HSP70s' subcellular localizations, chaperone activity, and chaperone-mediated protein degradation. We focus on the role of HSP70s in plant pathogen-associated molecular pattern-triggered immunity and effector-triggered immunity, and discuss the contribution of different HSP70 subfamilies to plant defense against pathogens.
Collapse
Affiliation(s)
- Miroslav Berka
- Department of Molecular Biology and Radiobiology, Faculty of AgriSciences, Mendel University in Brno, CZ-61300 Brno, Czech Republic
| | - Romana Kopecká
- Department of Molecular Biology and Radiobiology, Faculty of AgriSciences, Mendel University in Brno, CZ-61300 Brno, Czech Republic
| | - Veronika Berková
- Department of Molecular Biology and Radiobiology, Faculty of AgriSciences, Mendel University in Brno, CZ-61300 Brno, Czech Republic
| | - Břetislav Brzobohatý
- Department of Molecular Biology and Radiobiology, Faculty of AgriSciences, Mendel University in Brno, CZ-61300 Brno, Czech Republic
| | - Martin Černý
- Department of Molecular Biology and Radiobiology, Faculty of AgriSciences, Mendel University in Brno, CZ-61300 Brno, Czech Republic
- Correspondence:
| |
Collapse
|
14
|
Otulak-Kozieł K, Kozieł E, Przewodowski W, Ciacka K, Przewodowska A. Glutathione Modulation in PVY NTN Susceptible and Resistant Potato Plant Interactions. Int J Mol Sci 2022; 23:ijms23073797. [PMID: 35409157 PMCID: PMC8998174 DOI: 10.3390/ijms23073797] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2022] [Revised: 03/26/2022] [Accepted: 03/28/2022] [Indexed: 12/14/2022] Open
Abstract
Glutathione is a metabolite that plays an important role in plant response to biotic stress through its ability to remove reactive oxygen species, thereby limiting the degree of potential oxidative damage. It can couple changes in the intracellular redox state to the development, especially the defense responses, of plants. Several studies have focused on measuring glutathione levels in virus infected plants, but have not provided complete information. Therefore, we analyzed, for the first time, the content of glutathione as well as its ultrastructural distribution related to susceptible and hypersensitive potato–Potato virus Y NTN (PVYNTN) interaction, with an aim of providing new insight into interactive responses to PVYNTN stress. Our findings reported that the inoculation of PVYNTN caused a dynamic increase in the content of glutathione, not only in resistance but also in susceptible reaction, especially at the first steps of plant–virus interaction. Moreover, the increase in hypersensitive response was much more dynamic, and accompanied by a significant reduction in the content of PVYNTN. By contrast, in susceptible potato Irys, the content of glutathione decreased between 7 and 21 days after virus inoculation, which led to a significant increase in PVYNTN concentration. Additionally, our findings clearly indicated the steady induction of two selected potato glutathione S-transferase StGSTF1 and StGSTF2 genes after PVYNTN inoculation, regardless of the interaction type. However, the relative expression level of StGSTF1 did not significantly differ between resistant and susceptible plants, whereas the relative expression levels of StGSTF2 differed between susceptible and resistant reactions. Therefore, we proposed that StGSTF2 can act as a marker of the type of response to PVYNTN. Our observations indicated that glutathione is an important component of signaling as well as the regulatory network in the PVYNTN–potato pathosystem. In resistance responses to PVYNTN, this metabolite activates plant defenses by reducing potential damage to the host plant cell, causing a reduction in virus concentration, while it can also be involved in the development of PVYNTN elicited symptoms, as well as limiting oxidative stress, leading to systemic infection in susceptible potato plants.
Collapse
Affiliation(s)
- Katarzyna Otulak-Kozieł
- Department of Botany, Institute of Biology, Faculty of Biology and Biotechnology, Warsaw University of Life Sciences—SGGW, Nowoursynowska Street 159, 02-776 Warsaw, Poland
- Correspondence: (K.O.-K.); (E.K.)
| | - Edmund Kozieł
- Department of Botany, Institute of Biology, Faculty of Biology and Biotechnology, Warsaw University of Life Sciences—SGGW, Nowoursynowska Street 159, 02-776 Warsaw, Poland
- Correspondence: (K.O.-K.); (E.K.)
| | - Włodzimierz Przewodowski
- Laboratory of Potato Gene Resources and Tissue Culture, Bonin Research Center, Plant Breeding and Acclimatization Institute—National Research Institute, 76-009 Bonin, Poland; (W.P.); (A.P.)
| | - Katarzyna Ciacka
- Department of Plant Physiology, Institute of Biology, Faculty of Biology and Biotechnology, Warsaw University of Life Sciences—SGGW, Nowoursynowska Street 159, 02-776 Warsaw, Poland;
| | - Agnieszka Przewodowska
- Laboratory of Potato Gene Resources and Tissue Culture, Bonin Research Center, Plant Breeding and Acclimatization Institute—National Research Institute, 76-009 Bonin, Poland; (W.P.); (A.P.)
| |
Collapse
|
15
|
Gupta K, Rishishwar R, Dasgupta I. The interplay of plant hormonal pathways and geminiviral proteins: partners in disease development. Virus Genes 2022; 58:1-14. [PMID: 35034268 DOI: 10.1007/s11262-021-01881-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2021] [Accepted: 11/28/2021] [Indexed: 10/19/2022]
Abstract
Viruses belonging to the family Geminiviridae infect plants and are responsible for a number of diseases of crops in the tropical and sub-tropical regions of the World. The innate immune response of the plant assists in its defense against such viral pathogens by the recognition of pathogen/microbe-associated molecular patterns through pattern-recognition receptors. Phytohormone signalling pathways play a vital role in plant defense responses against these devastating viruses. Geminiviruses, however, have developed counter-defense strategies that prevail over the above defense pathways. The proteins encoded by geminiviruses act as suppressors of plant immunity by interacting with the signalling components of several hormones. In this review we focus on the molecular interplay of phytohormone pathways and geminiviral infection and try to find interesting parallels with similar mechanisms known in other plant-infecting viruses and strengthen the argument that this interplay is necessary for disease development.
Collapse
Affiliation(s)
- Kanika Gupta
- Department of Plant Molecular Biology, University of Delhi South Campus, New Delhi, -110021, India
| | - Rashmi Rishishwar
- Department of Botany, Bhagat Singh Government P.G. College, Jaora, Ratlam, Madhya Pradesh, 457226, India
| | - Indranil Dasgupta
- Department of Plant Molecular Biology, University of Delhi South Campus, New Delhi, -110021, India.
| |
Collapse
|
16
|
Study of Triticum aestivum Resistome in Response to Wheat dwarf India Virus Infection. Life (Basel) 2021; 11:life11090955. [PMID: 34575104 PMCID: PMC8469153 DOI: 10.3390/life11090955] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2021] [Revised: 09/09/2021] [Accepted: 09/10/2021] [Indexed: 02/07/2023] Open
Abstract
Susceptible and resistant germplasm respond differently to pathogenic attack, including virus infections. We compared the transcriptome changes between a resistant wheat cultivar, Sonalika, and a susceptible cultivar, WL711, to understand this process in wheat against wheat dwarf India virus (WDIV) infection. A total of 2760 and 1853 genes were differentially expressed in virus-infected and mock-inoculated Sonalika, respectively, compared to WL711. The overrepresentation of genes involved in signaling, hormone metabolism, enzymes, secondary metabolites, proteolysis, and transcription factors was documented, including the overexpression of multiple PR proteins. We hypothesize that the virus resistance in Sonalika is likely due to strong intracellular surveillance via the action of multiple PR proteins (PR1, RAR1, and RPM1) and ChiB. Other genes such as PIP1, LIP1, DnaJ, defensins, oxalate oxidase, ankyrin repeat protein, serine-threonine kinase, SR proteins, beta-1,3-glucanases, and O-methyltransferases had a significant differential expression and play roles in stress tolerance, may also be contributing towards the virus resistance in Sonalika. In addition, we identified putative genes with unknown functions, which are only expressed in response to WDIV infection in Sonalika. The role of these genes could be further validated and utilized in engineering resistance in wheat and other crops.
Collapse
|
17
|
Transcriptomic analysis of a wild and a cultivated varieties of Capsicum annuum over fruit development and ripening. PLoS One 2021; 16:e0256319. [PMID: 34428253 PMCID: PMC8384167 DOI: 10.1371/journal.pone.0256319] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2021] [Accepted: 08/03/2021] [Indexed: 12/13/2022] Open
Abstract
Chili pepper (Capsicum annuum) is one of the most important crops worldwide. Its fruits contain metabolites produced over the maturation process like capsaicinoids and carotenoids. This metabolic process produces internal changes in flavor, color, texture, and aroma in fruits to make them more attractive for seed dispersal organisms. The chiltepin (C. annuum L. var. glabriusculum) is a wild variety of the C. annuum L. species that is considered a source of genetic resources that could be used to improve the current chili crops. In this study, we performed a transcriptomic analysis on two fruit maturation stages: immature stage (green fruit) and mature stage (red fruit) of a wild and a cultivated pepper variety. We found 19,811 genes expressed, and 1,008 genes differentially expressed (DEGs) in at least one of the five contrast used; 730 DEGs were found only in one contrast, and most DEGs in all contrasts were downregulated. GO enrichment analysis showed that the majority of DEGs are related to stress responses. KEGG enrichment analysis detected differences in expression patterns in metabolic pathways related to phenylpropanoid biosynthesis, secondary metabolites, plant hormone signal transduction, carotenoid biosynthesis and sesquiterpenoid and triterpenoid biosynthesis. We selected 105 tomato fruit ripening-related genes, and found 53 pepper homologs differentially expressed related to shape, size, and secondary metabolite biosynthesis. According to the transcriptome analysis, the two peppers showed very similar gene expression patterns; differences in expression patterns of genes related to shape, size, ethylene and secondary metabolites biosynthesis suggest that changes produced by domestication of chilli pepper could be very specific to the expression of genes related to traits desired in commercial fruits.
Collapse
|
18
|
Devendran R, Kumar M, Ghosh D, Yogindran S, Karim MJ, Chakraborty S. Capsicum-infecting begomoviruses as global pathogens: host-virus interplay, pathogenesis, and management. Trends Microbiol 2021; 30:170-184. [PMID: 34215487 DOI: 10.1016/j.tim.2021.05.007] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2020] [Revised: 05/21/2021] [Accepted: 05/25/2021] [Indexed: 01/28/2023]
Abstract
Whitefly-transmitted begomoviruses are among the major threats to the cultivation of Capsicum spp. (Family: Solanaceae) worldwide. Capsicum-infecting begomoviruses (CIBs) have a broad host range and are commonly found in mixed infections, which, in turn, fuels the emergence of better-adapted species through intraspecies and interspecies recombination. Virus-encoded proteins hijack host factors to breach the well-coordinated antiviral response of plants. Epigenetic modifications of histones associated with viral minichromosomes play a critical role in this molecular arms race. Moreover, the association of DNA satellites further enhances the virulence of CIBs as the subviral agents aid the helper viruses to circumvent plant antiviral defense and facilitate expansion of their host range and disease development. The objective of this review is to provide a comprehensive overview on various aspects of CIBs such as their emergence, epidemiology, mechanism of pathogenesis, and the management protocols being employed for combating them.
Collapse
Affiliation(s)
- Ragunathan Devendran
- Molecular Virology Laboratory, School of Life Sciences, Jawaharlal Nehru University, New Delhi, 110067, India
| | - Manish Kumar
- Molecular Virology Laboratory, School of Life Sciences, Jawaharlal Nehru University, New Delhi, 110067, India
| | - Dibyendu Ghosh
- Molecular Virology Laboratory, School of Life Sciences, Jawaharlal Nehru University, New Delhi, 110067, India
| | - Sneha Yogindran
- Molecular Virology Laboratory, School of Life Sciences, Jawaharlal Nehru University, New Delhi, 110067, India
| | - Mir Jishan Karim
- Molecular Virology Laboratory, School of Life Sciences, Jawaharlal Nehru University, New Delhi, 110067, India
| | - Supriya Chakraborty
- Molecular Virology Laboratory, School of Life Sciences, Jawaharlal Nehru University, New Delhi, 110067, India.
| |
Collapse
|
19
|
Murphy JF, Hallmark HT, Ramaraj T, Sundararajan A, Schilkey F, Rashotte AM. Three Strains of Tobacco etch virus Distinctly Alter the Transcriptome of Apical Stem Tissue in Capsicum annuum during Infection. Viruses 2021; 13:v13050741. [PMID: 33922755 PMCID: PMC8145408 DOI: 10.3390/v13050741] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2021] [Revised: 04/12/2021] [Accepted: 04/20/2021] [Indexed: 11/16/2022] Open
Abstract
Tobacco etch virus (TEV; genus Potyvirus) is flexuous rod shaped with a single molecule of single-stranded RNA and causes serious yield losses in species in the Solanaceae. Three TEV strains (HAT, Mex21, and N) are genetically distinct and cause different disease symptoms in plants. Here, a transcriptomic RNA sequencing approach was taken for each TEV strain to evaluate gene expression of the apical stem segment of pepper plants during two stages of disease development. Distinct profiles of Differentially Expressed Genes (DEGs) were identified for each TEV strain. DEG numbers increased with degree of symptom severity: 24 from HAT, 1190 from Mex21, and 4010 from N. At 7 days post-inoculation (dpi), when systemic symptoms were similar, there were few DEGs for HAT- and Mex21-infected plants, whereas N-infected plants had 2516 DEGs. DEG patterns from 7 to 14 dpi corresponded to severity of disease symptoms: milder disease with smaller DEG changes for HAT and Mex21 and severe disease with larger DEG changes for N. Strikingly, in each of these comparisons, there are very few overlapping DEGs among the TEV strains, including no overlapping DEGs between all three strains at 7 or 14 dpi.
Collapse
Affiliation(s)
- John F. Murphy
- Department of Entomology & Plant Pathology, Auburn University, Auburn, AL 36849, USA
- Correspondence:
| | - H. Tucker Hallmark
- Department of Biological Sciences, Auburn University, Auburn, AL 36849, USA; (H.T.H.); (A.M.R.)
| | - Thiruvarangan Ramaraj
- National Center for Genome Resources, Santa Fe, NM 87505, USA; (T.R.); (A.S.); (F.S.)
- School of Computing, College of Computing & Digital Media, DePaul University, Chicago, IL 60604, USA
| | - Anitha Sundararajan
- National Center for Genome Resources, Santa Fe, NM 87505, USA; (T.R.); (A.S.); (F.S.)
| | - Faye Schilkey
- National Center for Genome Resources, Santa Fe, NM 87505, USA; (T.R.); (A.S.); (F.S.)
| | - Aaron M. Rashotte
- Department of Biological Sciences, Auburn University, Auburn, AL 36849, USA; (H.T.H.); (A.M.R.)
| |
Collapse
|
20
|
Ghosh D, Chakraborty S. Molecular interplay between phytohormones and geminiviruses: a saga of a never-ending arms race. JOURNAL OF EXPERIMENTAL BOTANY 2021; 72:2903-2917. [PMID: 33577676 DOI: 10.1093/jxb/erab061] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/11/2020] [Accepted: 02/06/2021] [Indexed: 05/14/2023]
Abstract
Geminiviruses can infect a wide range of plant hosts worldwide and have hence become an emerging global agroeconomic threat. The association of these viruses with satellite molecules and highly efficient insect vectors such as whiteflies further prime their devastating impacts. Plants elicit a strong antiviral immune response to restrict the invasion of these destructive pathogens. Phytohormones help plants to mount this response and occupy a key position in combating these biotrophs. These defense hormones not only inhibit geminiviral propagation but also hamper viral transmission by compromising the performance of their insect vectors. Nonetheless, geminiviruses have co-evolved to have a few multitasking virulence factors that readily remodel host cellular machineries to circumvent the phytohormone-mediated manifestation of the immune response. Furthermore, these obligate parasites exploit plant growth hormones to produce a cellular environment permissive for virus replication. In this review, we outline the current understanding of the roles and regulation of phytohormones in geminiviral pathogenesis.
Collapse
Affiliation(s)
- Dibyendu Ghosh
- Molecular Virology Laboratory, School of Life Sciences, Jawaharlal Nehru University, New Delhi 110067, India
| | - Supriya Chakraborty
- Molecular Virology Laboratory, School of Life Sciences, Jawaharlal Nehru University, New Delhi 110067, India
| |
Collapse
|
21
|
Deom CM, Alabady MS, Yang L. Early transcriptome changes induced by the Geminivirus C4 oncoprotein: setting the stage for oncogenesis. BMC Genomics 2021; 22:147. [PMID: 33653270 PMCID: PMC7923490 DOI: 10.1186/s12864-021-07455-y] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2020] [Accepted: 02/19/2021] [Indexed: 12/16/2022] Open
Abstract
BACKGROUND The Beet curly top virus C4 oncoprotein is a pathogenic determinant capable of inducing extensive developmental abnormalities. No studies to date have investigated how the transcriptional profiles differ between plants expressing or not expressing the C4 oncoprotein. RESULTS We investigated early transcriptional changes in Arabidopsis associated with expression of the Beet curly top virus C4 protein that represent initial events in pathogenesis via a comparative transcriptional analysis of mRNAs and small RNAs. We identified 48 and 94 differentially expressed genes at 6- and 12-h post-induction versus control plants. These early time points were selected to focus on direct regulatory effects of C4 expression. Since previous evidence suggested that the C4 protein regulated the brassinosteroid (BR)-signaling pathway, differentially expressed genes could be divided into two groups: those responsive to alterations in the BR-signaling pathway and those uniquely responsive to C4. Early transcriptional changes that disrupted hormone homeostasis, 18 and 19 differentially expressed genes at both 6- and 12-hpi, respectively, were responsive to C4-induced regulation of the BR-signaling pathway. Other C4-induced differentially expressed genes appeared independent of the BR-signaling pathway at 12-hpi, including changes that could alter cell development (4 genes), cell wall homeostasis (5 genes), redox homeostasis (11 genes) and lipid transport (4 genes). Minimal effects were observed on expression of small RNAs. CONCLUSION This work identifies initial events in genetic regulation induced by a geminivirus C4 oncoprotein. We provide evidence suggesting the C4 protein regulates multiple regulatory pathways and provides valuable insights into the role of the C4 protein in regulating initial events in pathogenesis.
Collapse
Affiliation(s)
- Carl Michael Deom
- Department of Plant Pathology, University of Georgia, Athens, GA, USA.
| | - Magdy S Alabady
- Department of Plant Biology, University of Georgia, Athens, GA, USA
| | - Li Yang
- Department of Plant Pathology, University of Georgia, Athens, GA, USA
| |
Collapse
|
22
|
Liu YL, Zheng HL. Physiological and Proteomic Analyses of Two Acanthus Species to Tidal Flooding Stress. Int J Mol Sci 2021; 22:ijms22031055. [PMID: 33494455 PMCID: PMC7865619 DOI: 10.3390/ijms22031055] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2020] [Revised: 01/16/2021] [Accepted: 01/18/2021] [Indexed: 12/16/2022] Open
Abstract
The mangrove plant Acanthus ilicifolius and its relative, Acanthus mollis, have been previously proved to possess diverse pharmacological effects. Therefore, evaluating the differentially expressed proteins of these species under tidal flooding stress is essential to fully exploit and benefit from their medicinal values. The roots of A. ilicifolius and A. mollis were exposed to 6 h of flooding stress per day for 10 days. The dry weight, hydrogen peroxide (H2O2) content, anatomical characteristics, carbon and energy levels, and two-dimensional electrophoresis coupled with MALDI-TOF/TOF MS technology were used to reveal the divergent flooding resistant strategies. A. ilicifolius performed better under tidal flooding stress, which was reflected in the integrity of the morphological structure, more efficient use of carbon and energy, and a higher percentage of up-regulated proteins associated with carbon and energy metabolism. A. mollis could not survive in flooding conditions for a long time, as revealed by disrupting cell structures of the roots, less efficient use of carbon and energy, and a higher percentage of down-regulated proteins associated with carbon and energy metabolism. Energy provision and flux balance played a role in the flooding tolerance of A. ilicifolius and A. mollis.
Collapse
|
23
|
Sáez C, Flores-León A, Montero-Pau J, Sifres A, Dhillon NPS, López C, Picó B. RNA-Seq Transcriptome Analysis Provides Candidate Genes for Resistance to Tomato Leaf Curl New Delhi Virus in Melon. FRONTIERS IN PLANT SCIENCE 2021; 12:798858. [PMID: 35116050 PMCID: PMC8805612 DOI: 10.3389/fpls.2021.798858] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/20/2021] [Accepted: 11/29/2021] [Indexed: 05/10/2023]
Abstract
Tomato leaf curl New Delhi virus (ToLCNDV) emerged in the Mediterranean Basin in 2012 as the first DNA bipartite begomovirus (Geminiviridae family), causing severe yield and economic losses in cucurbit crops. A major resistance locus was identified in the wild melon accession WM-7 (Cucumis melo kachri group), but the mechanisms involved in the resistant response remained unknown. In this work, we used RNA-sequencing to identify disease-associated genes that are differentially expressed in the course of ToLCNDV infection and could contribute to resistance. Transcriptomes of the resistant WM-7 genotype and the susceptible cultivar Piñonet Piel de Sapo (PS) (C. melo ibericus group) in ToLCNDV and mock inoculated plants were compared at four time points during infection (0, 3, 6, and 12 days post inoculation). Different gene expression patterns were observed over time in the resistant and susceptible genotypes in comparison to their respective controls. Differentially expressed genes (DEGs) in ToLCNDV-infected plants were classified using gene ontology (GO) terms, and genes of the categories transcription, DNA replication, and helicase activity were downregulated in WM-7 but upregulated in PS, suggesting that reduced activity of these functions reduces ToLCNDV replication and intercellular spread and thereby contributes to resistance. DEGs involved in the jasmonic acid signaling pathway, photosynthesis, RNA silencing, transmembrane, and sugar transporters entail adverse consequences for systemic infection in the resistant genotype, and lead to susceptibility in PS. The expression levels of selected candidate genes were validated by qRT-PCR to corroborate their differential expression upon ToLCNDV infection in resistant and susceptible melon. Furthermore, single nucleotide polymorphism (SNPs) with an effect on structural functionality of DEGs linked to the main QTLs for ToLCNDV resistance have been identified. The obtained results pinpoint cellular functions and candidate genes that are differentially expressed in a resistant and susceptible melon line in response to ToLCNDV, an information of great relevance for breeding ToLCNDV-resistant melon cultivars.
Collapse
Affiliation(s)
- Cristina Sáez
- Institute for the Conservation and Breeding of Agricultural Biodiversity, Universitat Politècnica de València, Valencia, Spain
- *Correspondence: Cristina Sáez,
| | - Alejandro Flores-León
- Institute for the Conservation and Breeding of Agricultural Biodiversity, Universitat Politècnica de València, Valencia, Spain
| | - Javier Montero-Pau
- Cavanilles Institute of Biodiversity and Evolutionary Biology, Universitat de València, Valencia, Spain
| | - Alicia Sifres
- Institute for the Conservation and Breeding of Agricultural Biodiversity, Universitat Politècnica de València, Valencia, Spain
| | - Narinder P. S. Dhillon
- World Vegetable Center, East and Southeast Asia, Research and Training Station, Kasetsart University, Nakhon Pathom, Thailand
| | - Carmelo López
- Institute for the Conservation and Breeding of Agricultural Biodiversity, Universitat Politècnica de València, Valencia, Spain
- Carmelo López,
| | - Belén Picó
- Institute for the Conservation and Breeding of Agricultural Biodiversity, Universitat Politècnica de València, Valencia, Spain
- Belén Picó,
| |
Collapse
|
24
|
Differential Response of Mycorrhizal Plants to Tomato bushy stunt virus and Tomato mosaic virus Infection. Microorganisms 2020; 8:microorganisms8122038. [PMID: 33352781 PMCID: PMC7766492 DOI: 10.3390/microorganisms8122038] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2020] [Accepted: 12/15/2020] [Indexed: 11/16/2022] Open
Abstract
Tomato bushy stunt virus (TBSV) and Tomato mosaic virus (ToMV) are important economic pathogens in tomato fields. Rhizoglomus irregulare is a species of arbuscular mycorrhizal (AM) fungus that provides nutrients to host plants. To understand the effect of R. irregulare on the infection by TBSV/ToMV in tomato plants, in a completely randomized design, five treatments, including uninfected control plants without AM fungi (C), uninfected control plants with AM fungi (M) TBSV/ToMV-infected plants without AM fungi (V), TBSV/ToMV-infected plants before mycorrhiza (VM) inoculation, and inoculated plants with mycorrhiza before TBSV/ToMV infection (MV), were studied. Factors including viral RNA accumulation and expression of Pathogenesis Related proteins (PR) coding genes including PR1, PR2, and PR3 in the young leaves were measured. For TBSV, a lower level of virus accumulation and a higher expression of PR genes in MV plants were observed compared to V and VM plants. In contrast, for ToMV, a higher level of virus accumulation and a lower expression of PR genes in MV plants were observed as compared to V and VM plants. These results indicated that mycorrhizal symbiosis reduces or increases the viral accumulation possibly via the regulation of PR genes in tomato plants.
Collapse
|
25
|
Characterization of Local and Systemic Impact of Whitefly ( Bemisia tabaci) Feeding and Whitefly-Transmitted Tomato Mottle Virus Infection on Tomato Leaves by Comprehensive Proteomics. Int J Mol Sci 2020; 21:ijms21197241. [PMID: 33008056 PMCID: PMC7583044 DOI: 10.3390/ijms21197241] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2020] [Revised: 09/21/2020] [Accepted: 09/26/2020] [Indexed: 11/23/2022] Open
Abstract
Tomato mottle virus (ToMoV) is a single-stranded DNA (ssDNA) begomovirus transmitted to solanaceous crops by the whitefly species complex (Bemisia tabaci), causing stunted growth, leaf mottling, and reduced yield. Using a genetic repertoire of seven genes, ToMoV pathogenesis includes the manipulation of multiple plant biological processes to circumvent antiviral defenses. To further understand the effects of whitefly feeding and whitefly-transmitted ToMoV infection on tomato plants (Solanum lycopersicum ‘Florida Lanai’), we generated comprehensive protein profiles of leaves subjected to feeding by either viruliferous whiteflies harboring ToMoV, or non-viruliferous whiteflies, or a no-feeding control. The effects of whitefly feeding and ToMoV infection were measured both locally and systemically by sampling either a mature leaf directly from the site of clip-cage confined whitefly feeding, or from a newly formed leaf 10 days post feeding (dpf). At 3 dpf, tomato’s response to ToMoV included proteins associated with translation initiation and elongation as well as plasmodesmata dynamics. In contrast, systemic impacts of ToMoV on younger leaves 10 dpf were more pronounced and included a virus-specific change in plant proteins associated with mRNA maturation and export, RNA-dependent DNA methylation, and other antiviral plant processes. Our analysis supports previous findings and provides novel insight into tomato’s local and systemic response to whitefly feeding and ToMoV infection.
Collapse
|
26
|
Sharma V, Lefeuvre P, Roumagnac P, Filloux D, Teycheney PY, Martin DP, Maumus F. Large-scale survey reveals pervasiveness and potential function of endogenous geminiviral sequences in plants. Virus Evol 2020; 6:veaa071. [PMID: 33391820 PMCID: PMC7758297 DOI: 10.1093/ve/veaa071] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
The family Geminiviridae contains viruses with single-stranded DNA genomes that have been found infecting a wide variety of angiosperm species. The discovery within the last 25 years of endogenous geminivirus-like (EGV) elements within the nuclear genomes of several angiosperms has raised questions relating to the pervasiveness of EGVs and their impacts on host biology. Only a few EGVs have currently been characterized and it remains unclear whether any of these have influenced, or are currently influencing, the evolutionary fitness of their hosts. We therefore undertook a large-scale search for evidence of EGVs within 134 genome and 797 transcriptome sequences of green plant species. We detected homologues of geminivirus replication-associated protein (Rep) genes in forty-two angiosperm species, including two monocots, thirty-nine dicots, and one ANITA-grade basal angiosperm species (Amborella trichopoda). While EGVs were present in the members of many different plant orders, they were particularly common within the large and diverse order, Ericales, with the highest copy numbers of EGVs being found in two varieties of tea plant (Camellia sinensis). Phylogenetic and clustering analyses revealed multiple highly divergent previously unknown geminivirus Rep lineages, two of which occur in C.sinensis alone. We find that some of the Camellia EGVs are likely transcriptionally active, sometimes co-transcribed with the same host genes across several Camellia species. Overall, our analyses expand the known breadths of both geminivirus diversity and geminivirus host ranges, and strengthens support for the hypothesis that EGVs impact the biology of their hosts.
Collapse
Affiliation(s)
- Vikas Sharma
- URGI, INRAE, Université Paris-Saclay, Plant Breeding Division, 78026, Versailles, France.,Forschungszentrum Jülich GmbH, Institute for Bio- and Geosciences 1, IBG1, 52425 Jülich, Germany
| | - Pierre Lefeuvre
- CIRAD, UMR PVBMT, Department of Biological Systems, F-97410 St Pierre, La Réunion, France
| | - Philippe Roumagnac
- CIRAD, BGPI, Department of Biological Systems, 34398 Montpellier CEDEX 5, France.,BGPI, INRAE, CIRAD, Institut Agro, Univ Montpellier, Department of Biological Systems, 34398 Montpellier CEDEX 5, France
| | - Denis Filloux
- CIRAD, BGPI, Department of Biological Systems, 34398 Montpellier CEDEX 5, France.,BGPI, INRAE, CIRAD, Institut Agro, Univ Montpellier, Department of Biological Systems, 34398 Montpellier CEDEX 5, France
| | - Pierre-Yves Teycheney
- CIRAD, UMR AGAP, Department of Biological Systems, F-97130, Capesterre Belle-Eau, Guadeloupe, France.,AGAP, Univ Montpellier, CIRAD, INRAE, Institut Agro, Department of Biological Systems, F-97130 Capesterre Belle-Eau, Guadeloupe, France
| | - Darren P Martin
- Division of Computational Biology, Department of Integrative Biomedical Sciences, Institute of infectious Diseases and molecular Medicine, University of Cape Town, OBSERVATORY 7925 Cape Town, South Africa
| | - Florian Maumus
- URGI, INRAE, Université Paris-Saclay, Plant Breeding Division, 78026, Versailles, France
| |
Collapse
|
27
|
Baba VY, Powell AF, Ivamoto-Suzuki ST, Pereira LFP, Vanzela ALL, Giacomin RM, Strickler SR, Mueller LA, Rodrigues R, Gonçalves LSA. Capsidiol-related genes are highly expressed in response to Colletotrichum scovillei during Capsicum annuum fruit development stages. Sci Rep 2020; 10:12048. [PMID: 32694584 PMCID: PMC7374708 DOI: 10.1038/s41598-020-68949-5] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2020] [Accepted: 07/03/2020] [Indexed: 11/23/2022] Open
Abstract
Capsicum annuum is one of the most important horticultural crops worldwide. Anthracnose disease (Colletotrichum spp.) is a major constraint for chili production, causing substantial losses. Capsidiol is a sesquiterpene phytoalexin present in pepper fruits that can enhance plant resistance. The genetic mechanisms involved in capisidiol biosynthesis are still poorly understood. In this study, a 3′ RNA sequencing approach was used to develop the transcriptional profile dataset of C. annuum genes in unripe (UF) and ripe fruits (RF) in response to C. scovillei infection. Results showed 4,845 upregulated and 4,720 downregulated genes in UF, and 2,560 upregulated and 1,762 downregulated genes in RF under fungus inoculation. Four capsidiol-related genes were selected for RT-qPCR analysis, two 5-epi-aristolochene synthase (CA12g05030, CA02g09520) and two 5-epi-aristolochene-1,3-dihydroxylase genes (CA12g05070, CA01g05990). CA12g05030 and CA01g05990 genes showed an early response to fungus infection in RF (24 h post-inoculation—HPI), being 68-fold and 53-fold more expressed at 96 HPI, respectively. In UF, all genes showed a late response, especially CA12g05030, which was 700-fold more expressed at 96 HPI compared to control plants. We are proving here the first high-throughput expression dataset of pepper fruits in response to anthracnose disease in order to contribute for future pepper breeding programs.
Collapse
Affiliation(s)
- Viviane Y Baba
- Laboratório de Ecofisiologia e Biotecnologia Agrícola, Programa de Pós-Graduação em Agronomia, Universidade Estadual de Londrina, Londrina, Brazil
| | | | - Suzana T Ivamoto-Suzuki
- Laboratório de Ecofisiologia e Biotecnologia Agrícola, Programa de Pós-Graduação em Agronomia, Universidade Estadual de Londrina, Londrina, Brazil.,Instituto de Biociências, Universidade Estadual Paulista, Rio Claro, Brazil
| | | | - André L L Vanzela
- Laboratório de Citogenética e Diversidade Vegetal, Universidade Estadual de Londrina, Londrina, Brazil
| | - Renata M Giacomin
- Laboratório de Ecofisiologia e Biotecnologia Agrícola, Programa de Pós-Graduação em Agronomia, Universidade Estadual de Londrina, Londrina, Brazil
| | | | | | - Rosana Rodrigues
- Genética e Melhoramento de Plantas, Universidade Estadual do Norte Fluminense Darcy Ribeiro, Campos dos Goytacazes, Brazil
| | - Leandro S A Gonçalves
- Laboratório de Ecofisiologia e Biotecnologia Agrícola, Programa de Pós-Graduação em Agronomia, Universidade Estadual de Londrina, Londrina, Brazil.
| |
Collapse
|
28
|
Patwa N, Chatterjee C, Basak J. Differential responses of Phaseolus vulgaris cultivars following mungbean yellow mosaic India virus infection. PHYSIOLOGY AND MOLECULAR BIOLOGY OF PLANTS : AN INTERNATIONAL JOURNAL OF FUNCTIONAL PLANT BIOLOGY 2020; 26:817-828. [PMID: 32255942 PMCID: PMC7113345 DOI: 10.1007/s12298-019-00741-w] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/21/2018] [Revised: 09/16/2019] [Accepted: 11/25/2019] [Indexed: 05/31/2023]
Abstract
Phaseolus vulgaris, commonly known as French bean is a vital leguminous crop worldwide and India stood 1st rank in dry bean and 4th rank in green bean production worldwide (FAOSTAT 2017). However, this production is severely affected by Mungbean yellow mosaic India virus (MYMIV) infection. Hence it is very important to identify MYMIV tolerant P. vulgaris cultivars. MYMIV infection results in the production of reactive oxygen species and plant cells have evolved complex defense mechanisms at different levels to overcome the damage. Our study for the first time focused on the changes at the morphological and biochemical level, as well as on the relative quantification of MYMIV genes in nine cultivars of P. vulgaris after MYMIV infection. Highest growth and the highest accumulation of four antioxidants of cv. 'Anupam' after MYMIV infection, established that cv. 'Anupam' was less affected by MYMIV infection amongst all nine cultivars. Relative quantification studies also correlated well with these results. Additionally, there is a consistent level of photosynthetic pigments content in mock- and MYMIV-treated seedlings of cv. 'Anupam' over early infection period. Combining all the results we conclude that cv. 'Anupam' is a MYMIV tolerant cultivar.
Collapse
Affiliation(s)
- Nisha Patwa
- Department of Biotechnology, Visva-Bharati, Siksha Bhavana, Santiniketan, West Bengal 731235 India
- Present Address: Horticultural Insects Research Laboratory, USDA-ARS, Application Technology Research Unit, 1680 Madison Ave., Wooster, OH 44691 USA
| | - Chitra Chatterjee
- Department of Biotechnology, Visva-Bharati, Siksha Bhavana, Santiniketan, West Bengal 731235 India
| | - Jolly Basak
- Department of Biotechnology, Visva-Bharati, Siksha Bhavana, Santiniketan, West Bengal 731235 India
| |
Collapse
|
29
|
Zaidi SS, Naqvi RZ, Asif M, Strickler S, Shakir S, Shafiq M, Khan AM, Amin I, Mishra B, Mukhtar MS, Scheffler BE, Scheffler JA, Mueller LA, Mansoor S. Molecular insight into cotton leaf curl geminivirus disease resistance in cultivated cotton (Gossypium hirsutum). PLANT BIOTECHNOLOGY JOURNAL 2020; 18:691-706. [PMID: 31448544 PMCID: PMC7004920 DOI: 10.1111/pbi.13236] [Citation(s) in RCA: 38] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/15/2018] [Revised: 08/01/2019] [Accepted: 08/15/2019] [Indexed: 05/21/2023]
Abstract
Cultivated cotton (Gossypium hirsutum) is the most important fibre crop in the world. Cotton leaf curl disease (CLCuD) is the major limiting factor and a threat to textile industry in India and Pakistan. All the local cotton cultivars exhibit moderate to no resistance against CLCuD. In this study, we evaluated an exotic cotton accession Mac7 as a resistance source to CLCuD by challenging it with viruliferous whiteflies and performing qPCR to evaluate the presence/absence and relative titre of CLCuD-associated geminiviruses/betasatellites. The results indicated that replication of pathogenicity determinant betasatellite is significantly attenuated in Mac7 and probably responsible for resistance phenotype. Afterwards, to decipher the genetic basis of CLCuD resistance in Mac7, we performed RNA sequencing on CLCuD-infested Mac7 and validated RNA-Seq data with qPCR on 24 independent genes. We performed co-expression network and pathway analysis for regulation of geminivirus/betasatellite-interacting genes. We identified nine novel modules with 52 hubs of highly connected genes in network topology within the co-expression network. Analysis of these hubs indicated the differential regulation of auxin stimulus and cellular localization pathways in response to CLCuD. We also analysed the differential regulation of geminivirus/betasatellite-interacting genes in Mac7. We further performed the functional validation of selected candidate genes via virus-induced gene silencing (VIGS). Finally, we evaluated the genomic context of resistance responsive genes and found that these genes are not specific to A or D sub-genomes of G. hirsutum. These results have important implications in understanding CLCuD resistance mechanism and developing a durable resistance in cultivated cotton.
Collapse
Affiliation(s)
- Syed Shan‐e‐Ali Zaidi
- National Institute for Biotechnology and Genetic EngineeringFaisalabadPakistan
- Boyce Thompson InstituteIthacaNYUSA
- Plant Genetics LabTERRA Teaching and Research CenterGembloux Agro-Bio TechUniversity of LiègeGemblouxBelgium
| | - Rubab Zahra Naqvi
- National Institute for Biotechnology and Genetic EngineeringFaisalabadPakistan
- Boyce Thompson InstituteIthacaNYUSA
| | - Muhammad Asif
- National Institute for Biotechnology and Genetic EngineeringFaisalabadPakistan
| | | | - Sara Shakir
- National Institute for Biotechnology and Genetic EngineeringFaisalabadPakistan
- Boyce Thompson InstituteIthacaNYUSA
- Plant Genetics LabTERRA Teaching and Research CenterGembloux Agro-Bio TechUniversity of LiègeGemblouxBelgium
| | - Muhammad Shafiq
- National Institute for Biotechnology and Genetic EngineeringFaisalabadPakistan
- Present address:
Department of BiotechnologyUniversity of OkaraOkaraPakistan
| | - Abdul Manan Khan
- National Institute for Biotechnology and Genetic EngineeringFaisalabadPakistan
| | - Imran Amin
- National Institute for Biotechnology and Genetic EngineeringFaisalabadPakistan
| | - Bharat Mishra
- Department of BiologyUniversity of Alabama at BirminghamBirminghamALUSA
| | - M. Shahid Mukhtar
- Department of BiologyUniversity of Alabama at BirminghamBirminghamALUSA
| | - Brian E. Scheffler
- Genomics and Bioinformatics Research UnitUnited States Department of Agriculture‐Agricultural Research Service (USDA‐ARS)StonevilleMSUSA
| | - Jodi A. Scheffler
- Crop Genetics Research UnitUnited States Department of Agriculture‐Agricultural Research Service (USDA‐ARS)StonevilleMSUSA
| | | | - Shahid Mansoor
- National Institute for Biotechnology and Genetic EngineeringFaisalabadPakistan
| |
Collapse
|
30
|
Wu M, Ding X, Fu X, Lozano-Duran R. Transcriptional reprogramming caused by the geminivirus Tomato yellow leaf curl virus in local or systemic infections in Nicotiana benthamiana. BMC Genomics 2019; 20:542. [PMID: 31272383 PMCID: PMC6611054 DOI: 10.1186/s12864-019-5842-7] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2019] [Accepted: 05/24/2019] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Viruses have evolved to create a cellular environment permissive for viral replication in susceptible hosts. Possibly both enabling and resulting from these virus-triggered changes, infected hosts undergo a dramatic transcriptional reprogramming, the analysis of which can shed light on the molecular processes underlying the outcome of virus-host interactions. The study of the transcriptional changes triggered by the plant DNA viruses geminiviruses is potentially hampered by the low representation of infected cells in the total population, a situation that becomes extreme in those cases, like that of Tomato yellow leaf curl virus (TYLCV), in which the virus is restricted to phloem companion cells. RESULTS In order to gain insight into how different the transcriptional landscapes of TYLCV-infected cells or whole tissues of TYLCV-infected plants might be, here we compare the transcriptional changes in leaf patches infected with TYLCV by agroinfiltration or in systemic leaves of TYLCV-infected plants in Nicotiana benthamiana. Our results show that, in agreement with previous works, infection by TYLCV induces a dramatic transcriptional reprogramming; the detected changes, however, are not equivalent in local and systemic infections, with a much larger number of genes differentially expressed locally, and some genes responding in an opposite manner. Interestingly, a transcriptional repression of the auxin signalling pathway and a transcriptional activation of the ethylene signalling pathway were detected in both local and systemically infected samples. A transcriptional activation of defence was also detectable in both cases. Comparison with the transcriptional changes induced by systemic infection by the geminivirus Tobacco curly shoot virus (TbSV) shows common subsets of up- and down-regulated genes similarly affected by both viral species, unveiling a common transcriptional repression of terpenoid biosynthesis, a process also suppressed by the geminivirus Tomato yellow leaf curl China virus. CONCLUSIONS Taken together, the results presented here not only offer insight into the transcriptional changes derived from the infection by TYLCV in N. benthamiana, but also demonstrate that the resolution provided by local and systemic infection approaches largely differs, highlighting the urge to come up with a better system to gain an accurate view of the molecular and physiological changes caused by the viral invasion.
Collapse
Affiliation(s)
- Mengshi Wu
- Shanghai Center for Plant Stress Biology, CAS Center for Excellence in Molecular Plant Sciences, Chinese Academy of Sciences, Shanghai, 201602 China
- University of the Chinese Academy of Sciences, Beijing, 100049 China
| | - Xue Ding
- Shanghai Center for Plant Stress Biology, CAS Center for Excellence in Molecular Plant Sciences, Chinese Academy of Sciences, Shanghai, 201602 China
- University of the Chinese Academy of Sciences, Beijing, 100049 China
| | - Xing Fu
- Shanghai Center for Plant Stress Biology, CAS Center for Excellence in Molecular Plant Sciences, Chinese Academy of Sciences, Shanghai, 201602 China
| | - Rosa Lozano-Duran
- Shanghai Center for Plant Stress Biology, CAS Center for Excellence in Molecular Plant Sciences, Chinese Academy of Sciences, Shanghai, 201602 China
| |
Collapse
|
31
|
Luo C, Wang ZQ, Liu X, Zhao L, Zhou X, Xie Y. Identification and Analysis of Potential Genes Regulated by an Alphasatellite (TYLCCNA) that Contribute to Host Resistance against Tomato Yellow Leaf Curl China Virus and Its Betasatellite (TYLCCNV/TYLCCNB) Infection in Nicotiana benthamiana. Viruses 2019; 11:E442. [PMID: 31096636 PMCID: PMC6563268 DOI: 10.3390/v11050442] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2019] [Revised: 05/12/2019] [Accepted: 05/14/2019] [Indexed: 01/13/2023] Open
Abstract
Recently, begomovirus/betasatellite disease complexes were found to be associated with alphasatellites, and their presence modulated disease symptoms and/or viral DNA accumulation in infected plants. However, the biological functions of alphasatellites during begomovirus/betasatellite infections remain unclear. Tomato yellow leaf curl China virus (TYLCCNV) associated with a betasatellite (TYLCCNB) is a widespread monopartite begomovirus in China. In the Yunnan province of China, the TYLCCNV/TYLCCNB disease complex is found in association with an alphasatellite (TYLCCNA). In this study, in order to explain the mechanisms underlying TYLCCNV/TYLCCNB infection and reductions in viral DNA accumulation caused by TYLCCNA, we analyzed the transcriptome profiles of Nicotiana benthamiana seedlings challenged by TYLCCNV/TYLCCNB or TYLCCNV/TYLCCNB/TYLCCNA using RNA sequencing. In total, 2272 and 1207 differentially expressed genes (DEGs) were identified to respond to TYLCCNV/TYLCCNB and TYLCCNV/TYLCCNB/TYLCCNA infections, respectively. Compared with the DEGs in the TYLCCNV/TYLCCNB-infected N. benthamiana seedlings, the number of DEGs in plants co-infected with TYLCCNV/TYLCCNB + TYLCCNA was significantly reduced. Additionally, 36 DEGs were identified to be regulated by TYLCCNA, six of which were further analyzed using the virus-induced gene silencing (VIGS) approach. Silencing of these six TYLCCNA responsive DEGs caused more severe disease symptoms and higher viral DNA accumulation levels, suggesting that TYLCCNA responsive DEGs may attenuate TYLCCNV/TYLCCNB infection.
Collapse
Affiliation(s)
- Chaohu Luo
- State Key Laboratory of Rice Biology, Institute of Biotechnology, Zhejiang University, Hangzhou 310058, China.
| | - Zhan Qi Wang
- Key Laboratory of Vector Biology and Pathogen Control of Zhejiang Province, College of Life Sciences, Huzhou University, Huzhou 313000, China.
| | - Xianan Liu
- State Key Laboratory of Rice Biology, Institute of Biotechnology, Zhejiang University, Hangzhou 310058, China.
| | - Liling Zhao
- State Key Laboratory of Rice Biology, Institute of Biotechnology, Zhejiang University, Hangzhou 310058, China.
| | - Xueping Zhou
- State Key Laboratory of Rice Biology, Institute of Biotechnology, Zhejiang University, Hangzhou 310058, China.
- Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China.
| | - Yan Xie
- State Key Laboratory of Rice Biology, Institute of Biotechnology, Zhejiang University, Hangzhou 310058, China.
| |
Collapse
|
32
|
Chandan RK, Singh AK, Patel S, Swain DM, Tuteja N, Jha G. Silencing of tomato CTR1 provides enhanced tolerance against Tomato leaf curl virus infection. PLANT SIGNALING & BEHAVIOR 2019; 14:e1565595. [PMID: 30661468 PMCID: PMC6422369 DOI: 10.1080/15592324.2019.1565595] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/03/2018] [Revised: 12/23/2018] [Accepted: 12/27/2018] [Indexed: 05/27/2023]
Abstract
Tomato leaf curl virus (ToLCV) belonging to Begomovirus family of Geminivirus is known to cause one of the most destructive diseases in tomato. Amongst various ToLCVs, a monopartite Tomato leaf curl Joydebpur virus (ToLCJoV) is most prevalent in eastern part of India. In the present study, we observed induced expression of one of the negative regulators of ethylene signaling pathway gene (LeCTR1) in ToLCJoV infected plants. The Tobacco rattle virus (TRV) induced silencing of the LeCTR1 gene provided enhanced tolerance to ToLCJoV infections. The leaf curling as well as ROS accumulation was significantly reduced in the viral infected LeCTR1 silenced plants. Induction of several defense marker genes (NPR1, PR1, PR5, AOS2, EIN2, EIN3 and ERF5) reinforced enhanced tolerance against ToLCJoV infection in the LeCTR1 silenced tomato. Overall, the present study provides evidence that silencing of LeCTR1 can be deployed to protect tomato from ToLCJoV infections.
Collapse
Affiliation(s)
- Ravindra K. Chandan
- School of Life Sciences, Central University of Gujarat, Gandhinagar, Gujarat, India
- Plant Microbe Interactions Laboratory, National Institute of Plant Genome Research, New Delhi, India
| | - Achuit K. Singh
- Division of Crop Improvement, Indian Institute of Vegetable Research, Varanasi, Uttar Pradesh, India
| | - Sunita Patel
- School of Life Sciences, Central University of Gujarat, Gandhinagar, Gujarat, India
| | - Durga Madhab Swain
- Plant Microbe Interactions Laboratory, National Institute of Plant Genome Research, New Delhi, India
| | - Narendra Tuteja
- Plant Molecular Biology group, International Centre for Genetic Engineering and Biotechnology, New Delhi, India
| | - Gopaljee Jha
- Plant Microbe Interactions Laboratory, National Institute of Plant Genome Research, New Delhi, India
| |
Collapse
|
33
|
Jasrotia RS, Iquebal MA, Yadav PK, Kumar N, Jaiswal S, Angadi UB, Rai A, Kumar D. Development of transcriptome based web genomic resources of yellow mosaic disease in Vigna mungo. PHYSIOLOGY AND MOLECULAR BIOLOGY OF PLANTS : AN INTERNATIONAL JOURNAL OF FUNCTIONAL PLANT BIOLOGY 2017; 23:767-777. [PMID: 29158627 PMCID: PMC5671452 DOI: 10.1007/s12298-017-0470-7] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/24/2017] [Revised: 09/06/2017] [Accepted: 09/11/2017] [Indexed: 05/27/2023]
Abstract
Vigna mungo (Urdbean) is cultivated in the tropical and sub-tropical continental region of Asia. It is not only important source of dietary protein and nutritional elements, but also of immense value to human health due to medicinal properties. Yellow mosaic disease caused by Mungbean Yellow Mosaic India Virus is known to incur huge loss to crop, adversely affecting crop yield. Contrasting genotypes are ideal source for knowledge discovery of plant defence mechanism and associated candidate genes for varietal improvement. Whole genome sequence of this crop is yet to be completed. Moreover, genomic resources are also not freely accessible, thus available transcriptome data can be of immense use. V. mungo Transcriptome database, accessible at http://webtom.cabgrid.res.in/vmtdb/ has been developed using available data of two contrasting varieties viz., cv. VM84 (resistant) and cv. T9 (susceptible). De novo assembly was carried out using Trinity and CAP3. Out of total 240,945 unigenes, 165,894 (68.8%) showed similarity with known genes against NR database, and remaining 31.2% were found to be novel. We found 22,101 differentially expressed genes in all datasets, 44,335 putative genic SSR markers, 4105 SNPs and Indels, 64,964 transcriptional factor, 546 mature miRNA target prediction in 703 differentially expressed unigenes and 137 pathways. MAPK, salicylic acid-binding protein 2-like, pathogenesis-related protein and NBS-LRR domain were found which may play an important role in defence against pathogens. This is the first web genomic resource of V. mungo for future genome annotation as well as ready to use markers for future variety improvement program.
Collapse
Affiliation(s)
- Rahul Singh Jasrotia
- Centre for Agricultural Bioinformatics, ICAR-Indian Agricultural Statistics Research Institute, New Delhi, 110012 India
- Department of Computational Biology & Bioinformatics, Sam Higginbottom University of Agriculture, Technology & Sciences (SHUATS), Allahabad, 211007 India
| | - Mir Asif Iquebal
- Centre for Agricultural Bioinformatics, ICAR-Indian Agricultural Statistics Research Institute, New Delhi, 110012 India
| | - Pramod Kumar Yadav
- Department of Computational Biology & Bioinformatics, Sam Higginbottom University of Agriculture, Technology & Sciences (SHUATS), Allahabad, 211007 India
| | - Neeraj Kumar
- Centre for Agricultural Bioinformatics, ICAR-Indian Agricultural Statistics Research Institute, New Delhi, 110012 India
| | - Sarika Jaiswal
- Centre for Agricultural Bioinformatics, ICAR-Indian Agricultural Statistics Research Institute, New Delhi, 110012 India
| | - U. B. Angadi
- Centre for Agricultural Bioinformatics, ICAR-Indian Agricultural Statistics Research Institute, New Delhi, 110012 India
| | - Anil Rai
- Centre for Agricultural Bioinformatics, ICAR-Indian Agricultural Statistics Research Institute, New Delhi, 110012 India
| | - Dinesh Kumar
- Centre for Agricultural Bioinformatics, ICAR-Indian Agricultural Statistics Research Institute, New Delhi, 110012 India
| |
Collapse
|
34
|
Huang C, Cun Y, Yu H, Tong Z, Xiao B, Song Z, Wang B, Li Y, Liu Y. Transcriptomic profile of tobacco in response to Tomato zonate spot orthotospovirus infection. Virol J 2017; 14:153. [PMID: 28807054 PMCID: PMC5557316 DOI: 10.1186/s12985-017-0821-6] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2017] [Accepted: 08/07/2017] [Indexed: 01/04/2023] Open
Abstract
BACKGROUND Tomato zonate spot virus (TZSV), a dominant species of thrips-transmitted orthotospoviruses in Yunnan and Guangxi provinces in China, causes significant loss of yield in lots of crops and is a major threat to incomes of rural families. However, the detailed molecular mechanism of crop disease caused by TZSV remains obscure. METHODS Next-generation sequencing (NGS)-based transcriptome analysis (RNA-seq) was performed to investigate and compare the gene expression changes in systemic leaves of tobacco upon infection with TZSV and mock-inoculated plants as a control. RESULTS De novo assembly and analysis of tobacco transcriptome data by RNA-Seq identified 135,395 unigenes. 2102 differentially expressed genes (DEGs) were obtained in tobacco with TZSV infection, among which 1518 DEGs were induced and 584 were repressed. Gene Ontology enrichment analysis revealed that these DEGs were associated with multiple biological functions, including metabolic process, oxidation-reduction process, photosynthesis process, protein kinase activity. The KEGG pathway analysis of these DEGs indicated that pathogenesis caused by TZSV may affect multiple processes including primary and secondary metabolism, photosynthesis and plant-pathogen interactions. CONCLUSION Our global survey of transcriptional changes in TZSV infected tobacco provides crucial information into the precise molecular mechanisms underlying pathogenesis and symptom development. This is the first report on the relationships in the TZSV-plant interaction using transcriptome analysis. Findings of present study will significantly help enhance our understanding of the complicated mechanisms of plant responses to orthotospoviral infection.
Collapse
Affiliation(s)
- Changjun Huang
- Yunnan Academy of Tobacco Agricultural Sciences, Key Laboratory of Tobacco Biotechnological Breeding, National Tobacco Genetic Engineering Research Center, Kunming, 650021 China
| | - Yupeng Cun
- Yunnan Academy of Tobacco Agricultural Sciences, Key Laboratory of Tobacco Biotechnological Breeding, National Tobacco Genetic Engineering Research Center, Kunming, 650021 China
| | - Haiqin Yu
- Yunnan Academy of Tobacco Agricultural Sciences, Key Laboratory of Tobacco Biotechnological Breeding, National Tobacco Genetic Engineering Research Center, Kunming, 650021 China
| | - Zhijun Tong
- Yunnan Academy of Tobacco Agricultural Sciences, Key Laboratory of Tobacco Biotechnological Breeding, National Tobacco Genetic Engineering Research Center, Kunming, 650021 China
| | - Bingguang Xiao
- Yunnan Academy of Tobacco Agricultural Sciences, Key Laboratory of Tobacco Biotechnological Breeding, National Tobacco Genetic Engineering Research Center, Kunming, 650021 China
| | - Zhongbang Song
- Yunnan Academy of Tobacco Agricultural Sciences, Key Laboratory of Tobacco Biotechnological Breeding, National Tobacco Genetic Engineering Research Center, Kunming, 650021 China
| | - Bingwu Wang
- Yunnan Academy of Tobacco Agricultural Sciences, Key Laboratory of Tobacco Biotechnological Breeding, National Tobacco Genetic Engineering Research Center, Kunming, 650021 China
| | - Yongping Li
- Yunnan Academy of Tobacco Agricultural Sciences, Key Laboratory of Tobacco Biotechnological Breeding, National Tobacco Genetic Engineering Research Center, Kunming, 650021 China
| | - Yong Liu
- Yunnan Academy of Tobacco Agricultural Sciences, Key Laboratory of Tobacco Biotechnological Breeding, National Tobacco Genetic Engineering Research Center, Kunming, 650021 China
| |
Collapse
|
35
|
Jeevalatha A, Siddappa S, Kumar A, Kaundal P, Guleria A, Sharma S, Nagesh M, Singh BP. An insight into differentially regulated genes in resistant and susceptible genotypes of potato in response to tomato leaf curl New Delhi virus-[potato] infection. Virus Res 2017; 232:22-33. [PMID: 28115198 DOI: 10.1016/j.virusres.2017.01.015] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2016] [Revised: 01/04/2017] [Accepted: 01/08/2017] [Indexed: 12/13/2022]
Abstract
Apical leaf curl disease, caused by tomato leaf curl New Delhi virus-[potato] (ToLCNDV-[potato]) is one of the most important viral diseases of potato in India. Genetic resistance source for ToLCNDV in potato is not identified so far. However, the cultivar Kufri Bahar is known to show lowest seed degeneration even under high vector levels. Hence, microarray analysis was performed to identify differentially regulated genes during ToLCNDV-[potato] infection in a resistant (Kufri Bahar) and a susceptible cultivar (Kufri Pukhraj). Under artificial inoculation conditions, in Kufri Pukhraj, symptom expressions started at 15days after inoculation (DAI) and then progressed to severe symptoms, whereas no or only very mild symptoms were observed in Kufri Bahar up to 35 DAI. Correspondingly, qPCR assay indicated a high viral load in Kufri Pukhraj and a very low viral load in Kufri Bahar. Microarray analysis showed that a total of 1111 genes and 2588 genes were differentially regulated (|log2 (Fold Change)|>2) in Kufri Bahar and Kufri Pukhraj, respectively, following ToLCNDV-[potato] infection. Gene ontology and mapman analyses revealed that these altered transcripts were involved in various biological & metabolic processes. Several genes with unknown functions were 5 to 100 fold expressed after virus infection and further experiments are necessary to ascertain their role in disease resistance or susceptibility. This study gives an insight into differentially regulated genes in response to ToLCNDV-[potato] infection in resistant and susceptible cultivars and could serve as the basis for the development of new strategies for disease management.
Collapse
Affiliation(s)
- Arjunan Jeevalatha
- ICAR-Central Potato Research Institute, Shimla 171 001, Himachal Pradesh, India.
| | - Sundaresha Siddappa
- ICAR-Central Potato Research Institute, Shimla 171 001, Himachal Pradesh, India
| | - Ashwani Kumar
- ICAR-Central Potato Research Institute, Shimla 171 001, Himachal Pradesh, India
| | - Priyanka Kaundal
- ICAR-Central Potato Research Institute, Shimla 171 001, Himachal Pradesh, India
| | - Anupama Guleria
- ICAR-Central Potato Research Institute, Shimla 171 001, Himachal Pradesh, India
| | - Sanjeev Sharma
- ICAR-Central Potato Research Institute, Shimla 171 001, Himachal Pradesh, India
| | - Mandadi Nagesh
- ICAR-Central Potato Research Institute, Shimla 171 001, Himachal Pradesh, India
| | - Bir Pal Singh
- ICAR-Central Potato Research Institute, Shimla 171 001, Himachal Pradesh, India
| |
Collapse
|
36
|
Karthikeyan C, Patil BL, Borah BK, Resmi TR, Turco S, Pooggin MM, Hohn T, Veluthambi K. Emergence of a Latent Indian Cassava Mosaic Virus from Cassava Which Recovered from Infection by a Non-Persistent Sri Lankan Cassava Mosaic Virus. Viruses 2016; 8:E264. [PMID: 27690084 PMCID: PMC5086600 DOI: 10.3390/v8100264] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2016] [Revised: 09/18/2016] [Accepted: 09/19/2016] [Indexed: 11/25/2022] Open
Abstract
The major threat for cassava cultivation on the Indian subcontinent is cassava mosaic disease (CMD) caused by cassava mosaic geminiviruses which are bipartite begomoviruses with DNA A and DNA B components. Indian cassava mosaic virus (ICMV) and Sri Lankan cassava mosaic virus (SLCMV) cause CMD in India. Two isolates of SLCMV infected the cassava cultivar Sengutchi in the fields near Malappuram and Thiruvananthapuram cities of Kerala State, India. The Malappuram isolate was persistent when maintained in the Madurai Kamaraj University (MKU, Madurai, Tamil Nadu, India) greenhouse, whereas the Thiruvananthapuram isolate did not persist. The recovered cassava plants with the non-persistent SLCMV, which were maintained vegetative in quarantine in the University of Basel (Basel, Switzerland) greenhouse, displayed re-emergence of CMD after a six-month period. Interestingly, these plants did not carry SLCMV but carried ICMV. It is interpreted that the field-collected, SLCMV-infected cassava plants were co-infected with low levels of ICMV. The loss of SLCMV in recovered cassava plants, under greenhouse conditions, then facilitated the re-emergence of ICMV. The partial dimer clones of the persistent and non-persistent isolates of SLCMV and the re-emerged isolate of ICMV were infective in Nicotiana benthamiana upon agroinoculation. Studies on pseudo-recombination between SLCMV and ICMV in N. benthamiana provided evidence for trans-replication of ICMV DNA B by SLCMV DNA A.
Collapse
Affiliation(s)
- Chockalingam Karthikeyan
- Department of Plant Biotechnology, School of Biotechnology, Madurai Kamaraj University, Madurai-625021, Tamil Nadu, India.
- Institute of Botany, University of Basel, Schöenbeinstrasse 6, Basel 4056, Switzerland.
| | - Basavaprabhu L Patil
- Institute of Botany, University of Basel, Schöenbeinstrasse 6, Basel 4056, Switzerland.
- Present address: ICAR-National Research Centre on Plant Biotechnology, PusaCampus, New Delhi110012, India.
| | - Basanta K Borah
- Institute of Botany, University of Basel, Schöenbeinstrasse 6, Basel 4056, Switzerland.
- Present address: Department of Agricultural Biotechnology, Assam Agricultural University, Jorhat 785013, India.
| | - Thulasi R Resmi
- Department of Plant Biotechnology, School of Biotechnology, Madurai Kamaraj University, Madurai-625021, Tamil Nadu, India.
- Institute of Botany, University of Basel, Schöenbeinstrasse 6, Basel 4056, Switzerland.
| | - Silvia Turco
- Institute of Botany, University of Basel, Schöenbeinstrasse 6, Basel 4056, Switzerland.
| | - Mikhail M Pooggin
- Institute of Botany, University of Basel, Schöenbeinstrasse 6, Basel 4056, Switzerland.
| | - Thomas Hohn
- Institute of Botany, University of Basel, Schöenbeinstrasse 6, Basel 4056, Switzerland.
| | - Karuppannan Veluthambi
- Department of Plant Biotechnology, School of Biotechnology, Madurai Kamaraj University, Madurai-625021, Tamil Nadu, India.
| |
Collapse
|
37
|
Carmo LST, Murad AM, Resende RO, Boiteux LS, Ribeiro SG, Jorrín-Novo JV, Mehta A. Plant responses to tomato chlorotic mottle virus: Proteomic view of the resistance mechanisms to a bipartite begomovirus in tomato. J Proteomics 2016; 151:284-292. [PMID: 27457268 DOI: 10.1016/j.jprot.2016.07.018] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2015] [Revised: 07/17/2016] [Accepted: 07/18/2016] [Indexed: 12/27/2022]
Abstract
Tomato chlorotic mottle virus (ToCMoV) is a widespread bipartite Begomovirus species found in tomato fields in Brazil. In this study, plant responses and putative mechanisms associated with the 'Tyking'-derived recessive resistance to ToCMoV were investigated. Changes in the protein profile in the inoculated plants of two near isogenic tomato lines resistant ('LAM 157') and susceptible ('Santa Clara') to ToCMoV were analyzed. Seedlings were biolistically inoculated with an infectious ToCMoV clone. Leaves from infected plants (confirmed by PCR) were sampled at 15days after inoculation. Proteins were extracted using phenol and analyzed by shotgun MS (2D-nanoUPLC/HDMSE). Out of the 534 identified proteins, 82 presented statistically significant differences in abundance, including 35 unique proteins displayed in the resistant tomato inoculated with ToCMoV. Proteins associated to chromatin structure, cytoskeleton structure, cuticle biosynthesis, and ubiquitin pathway were identified and their putative roles during virus infection process were discussed. The protein profile analysis allowed for the development of a hypothetical model showing how the resistant host cell responds to ToCMoV infection. The data obtained provide a better understanding of resistant mechanisms used by the host plant to contain viral infection and could be the basis for further investigation in other plant-begomovirus pathosystems. BIOLOGICAL SIGNIFICANCE In this study we propose a model of resistance to begomovirus in tomato and highlight host proteins, which could be targets for future investigations in plant-begomovirus pathosystems.
Collapse
Affiliation(s)
- Lílian S T Carmo
- Embrapa Recursos Genéticos e Biotecnologia, Brasília, DF, Brazil; Departamento de Biologia Celular, Instituto de Biologia, Universidade de Brasília, Brasília, DF, Brazil
| | - André M Murad
- Embrapa Recursos Genéticos e Biotecnologia, Brasília, DF, Brazil
| | - Renato O Resende
- Departamento de Biologia Celular, Instituto de Biologia, Universidade de Brasília, Brasília, DF, Brazil
| | | | - Simone G Ribeiro
- Embrapa Recursos Genéticos e Biotecnologia, Brasília, DF, Brazil
| | | | - Angela Mehta
- Embrapa Recursos Genéticos e Biotecnologia, Brasília, DF, Brazil.
| |
Collapse
|
38
|
García-Esquivel M, Esquivel-Naranjo EU, Hernández-Oñate MA, Ibarra-Laclette E, Herrera-Estrella A. The Trichoderma atroviride cryptochrome/photolyase genes regulate the expression of blr1-independent genes both in red and blue light. Fungal Biol 2016; 120:500-512. [PMID: 27020152 DOI: 10.1016/j.funbio.2016.01.007] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2015] [Revised: 12/10/2015] [Accepted: 01/08/2016] [Indexed: 12/11/2022]
Abstract
Quantitative transcriptome analysis led to the identification of 331 transcripts regulated by white light. Evaluation of the response to white light in mutants affected in the previously characterized blue-light receptor Blr1, demonstrated the existence of both Blr1-dependent and independent responses. Functional categorization of the light responsive genes indicated the effect of light on regulation of various transcription factors, regulators of chromatin structure, signaling pathways, genes related to different kinds of stress, metabolism, redox adjustment, and cell cycle among others. In order to establish the participation of other photoreceptors, gene expression was validated in response to different wavelengths. Gene regulation by blue and red light suggests the involvement of several photoreceptors in integrating light signals of different wavelengths in Trichoderma atroviride. Functional analysis of potential blue light photoreceptors suggests that several perception systems for different wavelengths are involved in the response to light. Deletion of cry1, one of the potential photoreceptors, resulted in severe reduction in the photoreactivation capacity of the fungus, as well as a change in gene expression under blue and red light.
Collapse
Affiliation(s)
- Mónica García-Esquivel
- Laboratorio Nacional de Genómica para la Biodiversidad, Cinvestav Campus Guanajuato, Km 9.6 Libramiento Norte, Carretera Irapuato-León, 36821 Irapuato, Gto., Mexico
| | - Edgardo U Esquivel-Naranjo
- Laboratorio Nacional de Genómica para la Biodiversidad, Cinvestav Campus Guanajuato, Km 9.6 Libramiento Norte, Carretera Irapuato-León, 36821 Irapuato, Gto., Mexico
| | - Miguel A Hernández-Oñate
- Laboratorio Nacional de Genómica para la Biodiversidad, Cinvestav Campus Guanajuato, Km 9.6 Libramiento Norte, Carretera Irapuato-León, 36821 Irapuato, Gto., Mexico
| | - Enrique Ibarra-Laclette
- Laboratorio Nacional de Genómica para la Biodiversidad, Cinvestav Campus Guanajuato, Km 9.6 Libramiento Norte, Carretera Irapuato-León, 36821 Irapuato, Gto., Mexico; Instituto de Ecología A.C., Carretera Antigua a Coatepec 351, El Haya, Xalapa 91070, Ver., Mexico
| | - Alfredo Herrera-Estrella
- Laboratorio Nacional de Genómica para la Biodiversidad, Cinvestav Campus Guanajuato, Km 9.6 Libramiento Norte, Carretera Irapuato-León, 36821 Irapuato, Gto., Mexico.
| |
Collapse
|
39
|
Rosas-Díaz T, Macho AP, Beuzón CR, Lozano-Durán R, Bejarano ER. The C2 Protein from the Geminivirus Tomato Yellow Leaf Curl Sardinia Virus Decreases Sensitivity to Jasmonates and Suppresses Jasmonate-Mediated Defences. PLANTS 2016; 5:plants5010008. [PMID: 27135228 PMCID: PMC4844413 DOI: 10.3390/plants5010008] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/30/2015] [Revised: 01/11/2016] [Accepted: 01/11/2016] [Indexed: 12/30/2022]
Abstract
An increasing body of evidence points at a role of the plant hormones jasmonates (JAs) in determining the outcome of plant-virus interactions. Geminiviruses, small DNA viruses infecting a wide range of plant species worldwide, encode a multifunctional protein, C2, which is essential for full pathogenicity. The C2 protein has been shown to suppress the JA response, although the current view on the extent of this effect and the underlying molecular mechanisms is incomplete. In this work, we use a combination of exogenous hormone treatments, microarray analysis, and pathogen infections to analyze, in detail, the suppression of the JA response exerted by C2. Our results indicate that C2 specifically affects certain JA-induced responses, namely defence and secondary metabolism, and show that plants expressing C2 are more susceptible to pathogen attack. We propose a model in which C2 might interfere with the JA response at several levels.
Collapse
Affiliation(s)
- Tábata Rosas-Díaz
- Departamento de Biología Celular, Genética y Fisiología, Instituto de Hortofruticultura Subtropical y Mediterránea, Universidad de Málaga-Consejo Superior de Investigaciones Científicas, Campus de Teatinos, E-29071 Malaga, Spain.
- Shanghai Center for Plant Stress Biology (PSC), Shanghai Institutes of Biological Sciences, Chinese Academy of Sciences, Shanghai 201602, China.
| | - Alberto P Macho
- Departamento de Biología Celular, Genética y Fisiología, Instituto de Hortofruticultura Subtropical y Mediterránea, Universidad de Málaga-Consejo Superior de Investigaciones Científicas, Campus de Teatinos, E-29071 Malaga, Spain.
- Shanghai Center for Plant Stress Biology (PSC), Shanghai Institutes of Biological Sciences, Chinese Academy of Sciences, Shanghai 201602, China.
| | - Carmen R Beuzón
- Departamento de Biología Celular, Genética y Fisiología, Instituto de Hortofruticultura Subtropical y Mediterránea, Universidad de Málaga-Consejo Superior de Investigaciones Científicas, Campus de Teatinos, E-29071 Malaga, Spain.
| | - Rosa Lozano-Durán
- Departamento de Biología Celular, Genética y Fisiología, Instituto de Hortofruticultura Subtropical y Mediterránea, Universidad de Málaga-Consejo Superior de Investigaciones Científicas, Campus de Teatinos, E-29071 Malaga, Spain.
- Shanghai Center for Plant Stress Biology (PSC), Shanghai Institutes of Biological Sciences, Chinese Academy of Sciences, Shanghai 201602, China.
| | - Eduardo R Bejarano
- Departamento de Biología Celular, Genética y Fisiología, Instituto de Hortofruticultura Subtropical y Mediterránea, Universidad de Málaga-Consejo Superior de Investigaciones Científicas, Campus de Teatinos, E-29071 Malaga, Spain.
| |
Collapse
|
40
|
Mejía-Teniente L, Joaquin-Ramos ADJ, Torres-Pacheco I, Rivera-Bustamante RF, Guevara-Olvera L, Rico-García E, Guevara-Gonzalez RG. Silencing of a Germin-Like Protein Gene (CchGLP) in Geminivirus-Resistant Pepper (Capsicum chinense Jacq.) BG-3821 Increases Susceptibility to Single and Mixed Infections by Geminiviruses PHYVV and PepGMV. Viruses 2015; 7:6141-51. [PMID: 26610554 PMCID: PMC4690854 DOI: 10.3390/v7122930] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2015] [Revised: 11/11/2015] [Accepted: 11/12/2015] [Indexed: 11/16/2022] Open
Abstract
Germin-like proteins (GLPs) are encoded by a family of genes found in all plants, and in terms of function, the GLPs are implicated in the response of plants to biotic and abiotic stresses. CchGLP is a gene encoding a GLP identified in a geminivirus-resistant Capsicum chinense Jacq accession named BG-3821, and it is important in geminivirus resistance when transferred to susceptible tobacco in transgenic experiments. To characterize the role of this GLP in geminivirus resistance in the original accession from which this gene was identified, this work aimed at demonstrating the possible role of CchGLP in resistance to geminiviruses in Capsicum chinense Jacq. BG-3821. Virus-induced gene silencing studies using a geminiviral vector based in PHYVV component A, displaying that silencing of CchGLP in accession BG-3821, increased susceptibility to geminivirus single and mixed infections. These results suggested that CchGLP is an important factor for geminivirus resistance in C. chinense BG-3821 accession.
Collapse
Affiliation(s)
- Laura Mejía-Teniente
- C.A. Ingeniería de Biosistemas, Facultad de Ingeniería-Campus Amazcala, Carretera a Chichimequillas, Km. 1, S/N, El Marques, Queretaro C.P. 76229, Mexico.
| | - Ahuizolt de Jesús Joaquin-Ramos
- Instituto Tecnológico de Roque, Departamento de Ingeniería en Industrias Alimentarias, Km. 8 Carr. Celaya-J. Rosas, Roque, Celaya, Gto C.P. 38110, Mexico.
| | - Irineo Torres-Pacheco
- C.A. Ingeniería de Biosistemas, Facultad de Ingeniería-Campus Amazcala, Carretera a Chichimequillas, Km. 1, S/N, El Marques, Queretaro C.P. 76229, Mexico.
| | - Rafael F Rivera-Bustamante
- Departamento de Ingeniería Genética, Centro de Investigación y de Estudios Avanzados (CINVESTAV)-Unidad Irapuato, Carretera Irapuato-Leon, Km 9.6, Libramiento norte, Irapuato, Guanajuato A.P. 629, Mexico.
| | - Lorenzo Guevara-Olvera
- Departamento de Ingeniería Bioquímica, Instituto Tecnológico de Celaya, Ave. Tecnológico y A, Garcia-Cubas, S/N, Col. FOVISSSTE, Celaya, Gto A.P. 57, Mexico.
| | - Enrique Rico-García
- C.A. Ingeniería de Biosistemas, Facultad de Ingeniería-Campus Amazcala, Carretera a Chichimequillas, Km. 1, S/N, El Marques, Queretaro C.P. 76229, Mexico.
| | - Ramon G Guevara-Gonzalez
- C.A. Ingeniería de Biosistemas, Facultad de Ingeniería-Campus Amazcala, Carretera a Chichimequillas, Km. 1, S/N, El Marques, Queretaro C.P. 76229, Mexico.
| |
Collapse
|
41
|
Expression of genes involved in the salicylic acid pathway in type h1 thioredoxin transiently silenced pepper plants during a begomovirus compatible interaction. Mol Genet Genomics 2015; 291:819-30. [PMID: 26606929 DOI: 10.1007/s00438-015-1148-x] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2015] [Accepted: 11/13/2015] [Indexed: 12/31/2022]
Abstract
The type-h thioredoxins (TRXs) play a fundamental role in oxidative stress tolerance and defense responses against pathogens. In pepper plants, type-h TRXs participate in the defense mechanism against Cucumber mosaic virus. The goal of this study was to analyze the role of the CaTRXh1-cicy gene in pepper plants during compatible interaction with a DNA virus, the Euphorbia mosaic virus-Yucatan Peninsula (EuMV-YP). The effects of a transient silencing of the CaTRXh1-cicy gene in pepper plants wëre evaluated by observing the accumulation of viral DNA and the visible symptoms of pepper plants under different treatments. The accumulation of salicylic acid (SA) and the relative expression of the defense genes NPR1 and PR10 were also evaluated. Results showed that viral DNA accumulation was higher in transiently CaTRXh1-cicy silenced plants that were also infected with EuMV-YP. Symptoms in these plants were more severe compared to the non-silenced plants infected with EuMV-YP. The SA levels in the EuMV-YP-infected plants were rapidly induced at 1 h post infection (hpi) in comparison to the non-silenced plants inoculated with EuMV-YP. Additionally, in pepper plants infected with EuMV-YP, the expression of NPR1 decreased by up to 41 and 58 % at 28 days post infection (dpi) compared to the non-silenced pepper plants infected with only EuMV-YP and healthy non-inoculated pepper plants, respectively. PR10 gene expression decreased by up to 70 % at 28 dpi. Overall, the results indicate that the CaTRXh1-cicy gene participates in defense mechanisms during the compatible interaction of pepper plants with the EuMV-YP DNA virus.
Collapse
|
42
|
Bengyella L, Waikhom SD, Allie F, Rey C. Virus tolerance and recovery from viral induced-symptoms in plants are associated with transcriptome reprograming. PLANT MOLECULAR BIOLOGY 2015; 89:243-52. [PMID: 26358043 DOI: 10.1007/s11103-015-0362-6] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/27/2015] [Accepted: 08/08/2015] [Indexed: 05/07/2023]
Abstract
Plant recovery from viral infection is characterized by initial severe systemic symptoms which progressively decrease, leading to reduced symptoms or symptomless leaves at the apices. A key feature to plant recovery from invading nucleic acids such as viruses is the degree of the host's initial basal immunity response. We review current links between RNA silencing, recovery and tolerance, and present a model in which, in addition to regulation of resistance (R) and other defence-related genes by RNA silencing, viral infections incite perturbations of the host physiological state that trigger reprogramming of host responses to by-pass severe symptom development, leading to partial or complete recovery. Recovery, in particular in perennial hosts, may trigger tolerance or virus accommodation. We discuss evidence suggesting that plant viruses can avoid total clearance but persistently replicate at low levels, thereby modulating the host transcriptome response which minimizes fitness cost and triggers recovery from viral-symptoms. In some cases a susceptible host may fail to recover from initial viral systemic symptoms, yet, accommodates the persistent virus throughout the life span, a phenomenon herein referred to as non-recovery accommodation, which differs from tolerance in that there is no distinct recovery phase, and differs from susceptibility in that the host is not killed. Recent advances in plant recovery from virus-induced symptoms involving host transcriptome reprogramming are discussed.
Collapse
Affiliation(s)
- Louis Bengyella
- School of Molecular and Cell Biology, University of the Witwatersrand, 1, Jan Smuts 6, Ave, Johannesburg, Braamfontein, 2000, South Africa
| | - Sayanika D Waikhom
- Centre of Advanced Study in Life Sciences, Manipur University, Imphal, Manipur, 795003, India
- School of Basic and Biomedical Science, University of Health and Allied Sciences, PMB 31, Ho, Volta Region, Ghana
| | - Farhahna Allie
- School of Molecular and Cell Biology, University of the Witwatersrand, 1, Jan Smuts 6, Ave, Johannesburg, Braamfontein, 2000, South Africa
| | - Chrissie Rey
- School of Molecular and Cell Biology, University of the Witwatersrand, 1, Jan Smuts 6, Ave, Johannesburg, Braamfontein, 2000, South Africa.
| |
Collapse
|
43
|
Ibarra-Laclette E, Zamudio-Hernández F, Pérez-Torres CA, Albert VA, Ramírez-Chávez E, Molina-Torres J, Fernández-Cortes A, Calderón-Vázquez C, Olivares-Romero JL, Herrera-Estrella A, Herrera-Estrella L. De novo sequencing and analysis of Lophophora williamsii transcriptome, and searching for putative genes involved in mescaline biosynthesis. BMC Genomics 2015; 16:657. [PMID: 26330142 PMCID: PMC4557841 DOI: 10.1186/s12864-015-1821-9] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2014] [Accepted: 08/07/2015] [Indexed: 12/04/2022] Open
Abstract
Background Lophophora williamsii (commonly named peyote) is a small, spineless cactus with psychoactive alkaloids, particularly mescaline. Peyote utilizes crassulacean acid metabolism (CAM), an alternative form of photosynthesis that exists in succulents such as cacti and other desert plants. Therefore, its transcriptome can be considered an important resource for future research focused on understanding how these plants make more efficient use of water in marginal environments and also for research focused on better understanding of the overall mechanisms leading to production of plant natural products and secondary metabolites. Results In this study, two cDNA libraries were generated from L. williamsii. These libraries, representing buttons (tops of stems) and roots were sequenced using different sequencing platforms (GS-FLX, GS-Junior and PGM, respectively). A total of 5,541,550 raw reads were generated, which were assembled into 63,704 unigenes with an average length of 564.04 bp. A total of 25,149 unigenes (62.19 %) was annotated using public databases. 681 unigenes were found to be differentially expressed when comparing the two libraries, where 400 were preferentially expressed in buttons and 281 in roots. Some of the major alkaloids, including mescaline, were identified by GC-MS and relevant metabolic pathways were reconstructed using the Kyoto encyclopedia of genes and genomes database (KEGG). Subsequently, the expression patterns of preferentially expressed genes putatively involved in mescaline production were examined and validated by qRT-PCR. Conclusions High throughput transcriptome sequencing (RNA-seq) analysis allowed us to efficiently identify candidate genes involved in mescaline biosynthetic pathway in L. williamsii; these included tyrosine/DOPA decarboxylase, hydroxylases, and O-methyltransferases. This study sets the theoretical foundation for bioassay design directed at confirming the participation of these genes in mescaline production. Electronic supplementary material The online version of this article (doi:10.1186/s12864-015-1821-9) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Enrique Ibarra-Laclette
- Laboratorio Nacional de Genómica para la Biodiversidad (LANGEBIO), Centro de Investigación y Estudios Avanzados del IPN, 36500, Irapuato, Guanajuato, México. .,Red de Estudios Moleculares Avanzados, Instituto de Ecología A.C., 91070, Xalapa, Veracruz, México.
| | - Flor Zamudio-Hernández
- Laboratorio Nacional de Genómica para la Biodiversidad (LANGEBIO), Centro de Investigación y Estudios Avanzados del IPN, 36500, Irapuato, Guanajuato, México.
| | - Claudia Anahí Pérez-Torres
- Laboratorio Nacional de Genómica para la Biodiversidad (LANGEBIO), Centro de Investigación y Estudios Avanzados del IPN, 36500, Irapuato, Guanajuato, México. .,Red de Estudios Moleculares Avanzados, Instituto de Ecología A.C., 91070, Xalapa, Veracruz, México. .,Investigador Cátedra CONACyT, Instituto de Ecología A.C., 91070, Xalapa, Veracruz, México.
| | - Victor A Albert
- Department of Biological Sciences, University at Buffalo, Buffalo, New York, 14260, USA.
| | - Enrique Ramírez-Chávez
- Departamento de Biotecnología y Bioquímica, Unidad Irapuato, Centro de Investigación y de Estudios Avanzados del IPN, 36821, Irapuato, Guanajuato, México.
| | - Jorge Molina-Torres
- Departamento de Biotecnología y Bioquímica, Unidad Irapuato, Centro de Investigación y de Estudios Avanzados del IPN, 36821, Irapuato, Guanajuato, México.
| | - Araceli Fernández-Cortes
- Laboratorio Nacional de Genómica para la Biodiversidad (LANGEBIO), Centro de Investigación y Estudios Avanzados del IPN, 36500, Irapuato, Guanajuato, México.
| | - Carlos Calderón-Vázquez
- Centro Interdisciplinario de Investigación para el Desarrollo Integral Regional (CIIDIR), Instituto Politécnico Nacional, 81000, Guasave, Sinaloa, México.
| | | | - Alfredo Herrera-Estrella
- Laboratorio Nacional de Genómica para la Biodiversidad (LANGEBIO), Centro de Investigación y Estudios Avanzados del IPN, 36500, Irapuato, Guanajuato, México.
| | - Luis Herrera-Estrella
- Laboratorio Nacional de Genómica para la Biodiversidad (LANGEBIO), Centro de Investigación y Estudios Avanzados del IPN, 36500, Irapuato, Guanajuato, México.
| |
Collapse
|
44
|
Lacerda ALM, Fonseca LN, Blawid R, Boiteux LS, Ribeiro SG, Brasileiro ACM. Reference Gene Selection for qPCR Analysis in Tomato-Bipartite Begomovirus Interaction and Validation in Additional Tomato-Virus Pathosystems. PLoS One 2015; 10:e0136820. [PMID: 26317870 PMCID: PMC4552598 DOI: 10.1371/journal.pone.0136820] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2014] [Accepted: 08/09/2015] [Indexed: 12/15/2022] Open
Abstract
Quantitative Polymerase Chain Reaction (qPCR) is currently the most sensitive technique used for absolute and relative quantification of a target gene transcript, requiring the use of appropriated reference genes for data normalization. To accurately estimate the relative expression of target tomato (Solanum lycopersicum L.) genes responsive to several virus species in reverse transcription qPCR analysis, the identification of reliable reference genes is mandatory. In the present study, ten reference genes were analyzed across a set of eight samples: two tomato contrasting genotypes ('Santa Clara', susceptible, and its near-isogenic line 'LAM 157', resistant); subjected to two treatments (inoculation with Tomato chlorotic mottle virus (ToCMoV) and its mock-inoculated control) and in two distinct times after inoculation (early and late). Reference genes stability was estimated by three statistical programs (geNorm, NormFinder and BestKeeper). To validate the results over broader experimental conditions, a set of ten samples, corresponding to additional three tomato-virus pathosystems that included tospovirus, crinivirus and tymovirus + tobamovirus, was analyzed together with the tomato-ToCMoV pathosystem dataset, using the same algorithms. Taking into account the combined analyses of the ranking order outputs from the three algorithms, TIP41 and EF1 were identified as the most stable genes for tomato-ToCMoV pathosystem, and TIP41 and EXP for the four pathosystems together, and selected to be used as reference in the forthcoming expression qPCR analysis of target genes in experimental conditions involving the aforementioned tomato-virus pathosystems.
Collapse
Affiliation(s)
- Ana L. M. Lacerda
- Embrapa Recursos Genéticos e Biotecnologia, Embrapa, Brasília, DF, Brazil
| | | | - Rosana Blawid
- Embrapa Recursos Genéticos e Biotecnologia, Embrapa, Brasília, DF, Brazil
| | | | - Simone G. Ribeiro
- Embrapa Recursos Genéticos e Biotecnologia, Embrapa, Brasília, DF, Brazil
| | | |
Collapse
|
45
|
Symptom recovery in virus-infected plants: Revisiting the role of RNA silencing mechanisms. Virology 2015; 479-480:167-79. [DOI: 10.1016/j.virol.2015.01.008] [Citation(s) in RCA: 100] [Impact Index Per Article: 11.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2014] [Revised: 01/02/2015] [Accepted: 01/08/2015] [Indexed: 01/11/2023]
|
46
|
Chilli leaf curl virus infection highlights the differential expression of genes involved in protein homeostasis and defense in resistant chilli plants. Appl Microbiol Biotechnol 2015; 99:4757-70. [DOI: 10.1007/s00253-015-6415-6] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2014] [Revised: 01/15/2015] [Accepted: 01/17/2015] [Indexed: 01/22/2023]
|
47
|
Ishihara T, Sato Y, Takahashi H. Microarray analysis of R-gene-mediated resistance to viruses. Methods Mol Biol 2015; 1236:197-218. [PMID: 25287505 DOI: 10.1007/978-1-4939-1743-3_15] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/04/2022]
Abstract
The complex process for host-plant resistance to viruses is precisely regulated by a number of genes and signaling compounds. Thus, global gene expression analysis can provide a powerful tool to grasp the complex molecular network for resistance to viruses. The procedures for comparative global gene expression profiling of virus-resistant and control plants by microarray analysis include RNA extraction, cDNA synthesis, cRNA labeling, hybridization, array scanning, and data mining steps. There are several platforms for the microarray analysis. Commercial services for the steps from cDNA synthesis to array scanning are now widely available; however, the data manipulation step is highly dependent on the experimental design and research focus. The protocols presented here are optimized for analyzing global gene expression during the R gene-conferred defense response using commercial oligonucleotide-based arrays. We also demonstrate a technique to screen for differentially expressed genes using Excel software and a simple Internet tool-based data mining approach for characterizing the identified genes.
Collapse
Affiliation(s)
- Takeaki Ishihara
- National Agricultural Research Center, National Agriculture and Food Research Organization, Tsukuba, Ibaraki, Japan
| | | | | |
Collapse
|
48
|
Allie F, Pierce EJ, Okoniewski MJ, Rey C. Transcriptional analysis of South African cassava mosaic virus-infected susceptible and tolerant landraces of cassava highlights differences in resistance, basal defense and cell wall associated genes during infection. BMC Genomics 2014; 15:1006. [PMID: 25412561 PMCID: PMC4253015 DOI: 10.1186/1471-2164-15-1006] [Citation(s) in RCA: 58] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2014] [Accepted: 10/23/2014] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Cassava mosaic disease is caused by several distinct geminivirus species, including South African cassava mosaic virus-[South Africa:99] (SACMV). To date, there is limited gene regulation information on viral stress responses in cassava, and global transcriptome profiling in SACMV-infected cassava represents an important step towards understanding natural host responses to plant geminiviruses. RESULTS A RNA-seq time course (12, 32 and 67 dpi) study, monitoring gene expression in SACMV-challenged susceptible (T200) and tolerant (TME3) cassava landraces, was performed using the Applied Biosystems (ABI) SOLiD next-generation sequencing platform. The multiplexed paired end sequencing run produced a total of 523 MB and 693 MB of paired-end reads for SACMV-infected susceptible and tolerant cDNA libraries, respectively. Of these, approximately 50.7% of the T200 reads and 55.06% of TME3 reads mapped to the cassava reference genome available in phytozome. Using a log2 fold cut-off (p<0.05), comparative analysis between the six normalized cDNA libraries showed that 4181 and 1008 transcripts in total were differentially expressed in T200 and TME3, respectively, across 12, 32 and 67 days post infection, compared to mock-inoculated. The number of responsive transcripts increased dramatically from 12 to 32 dpi in both cultivars, but in contrast, in T200 the levels did not change significantly at 67 dpi, while in TME3 they declined. GOslim functional groups illustrated that differentially expressed genes in T200 and TME3 were overrepresented in the cellular component category for stress-related genes, plasma membrane and nucleus. Alterations in the expression of other interesting genes such as transcription factors, resistance (R) genes, and histone/DNA methylation-associated genes, were observed. KEGG pathway analysis uncovered important altered metabolic pathways, including phenylpropanoid biosynthesis, sucrose and starch metabolism, and plant hormone signalling. CONCLUSIONS Molecular mechanisms for TME3 tolerance are proposed, and differences in patterns and levels of transcriptome profiling between T200 and TME3 with susceptible and tolerant phenotypes, respectively, support the hypothesis that viruses rearrange their molecular interactions in adapting to hosts with different genetic backgrounds.
Collapse
Affiliation(s)
- Farhahna Allie
- />School of Molecular and Cell Biology, University of the Witwatersrand, 1 Jan Smuts Ave, Braamfontein, Johannesburg, 2000 South Africa
| | - Erica J Pierce
- />School of Molecular and Cell Biology, University of the Witwatersrand, 1 Jan Smuts Ave, Braamfontein, Johannesburg, 2000 South Africa
| | - Michal J Okoniewski
- />Functional Genomics Center, Zurich, UNI ETH Zurich, Winterthurerstrasse 190, CH-8057 Zurich, Switzerland
| | - Chrissie Rey
- />School of Molecular and Cell Biology, University of the Witwatersrand, 1 Jan Smuts Ave, Braamfontein, Johannesburg, 2000 South Africa
| |
Collapse
|
49
|
Balasubramaniam M, Kim BS, Hutchens-Williams HM, Loesch-Fries LS. The photosystem II oxygen-evolving complex protein PsbP interacts with the coat protein of Alfalfa mosaic virus and inhibits virus replication. MOLECULAR PLANT-MICROBE INTERACTIONS : MPMI 2014; 27:1107-18. [PMID: 24940990 DOI: 10.1094/mpmi-02-14-0035-r] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
Alfalfa mosaic virus (AMV) coat protein (CP) is essential for many steps in virus replication from early infection to encapsidation. However, the identity and functional relevance of cellular factors that interact with CP remain unknown. In an unbiased yeast two-hybrid screen for CP-interacting Arabidopsis proteins, we identified several novel protein interactions that could potentially modulate AMV replication. In this report, we focus on one of the novel CP-binding partners, the Arabidopsis PsbP protein, which is a nuclear-encoded component of the oxygen-evolving complex of photosystem II. We validated the protein interaction in vitro with pull-down assays, in planta with bimolecular fluorescence complementation assays, and during virus infection by co-immunoprecipitations. CP interacted with the chloroplast-targeted PsbP in the cytosol and mutations that prevented the dimerization of CP abolished this interaction. Importantly, PsbP overexpression markedly reduced virus accumulation in infected leaves. Taken together, our findings demonstrate that AMV CP dimers interact with the chloroplast protein PsbP, suggesting a potential sequestration strategy that may preempt the generation of any PsbP-mediated antiviral state.
Collapse
|
50
|
Miozzi L, Napoli C, Sardo L, Accotto GP. Transcriptomics of the interaction between the monopartite phloem-limited geminivirus tomato yellow leaf curl Sardinia virus and Solanum lycopersicum highlights a role for plant hormones, autophagy and plant immune system fine tuning during infection. PLoS One 2014; 9:e89951. [PMID: 24587146 PMCID: PMC3938563 DOI: 10.1371/journal.pone.0089951] [Citation(s) in RCA: 55] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2013] [Accepted: 01/25/2014] [Indexed: 12/13/2022] Open
Abstract
Tomato yellow leaf curl Sardinia virus (TYLCSV), a DNA virus belonging to the genus Begomovirus, causes severe losses in tomato crops. It infects only a limited number of cells in the vascular tissues, making difficult to detect changes in host gene expression linked to its presence. Here we present the first microarray study of transcriptional changes induced by the phloem-limited geminivirus TYLCSV infecting tomato, its natural host. The analysis was performed on the midrib of mature leaves, a material naturally enriched in vascular tissues. A total of 2206 genes were up-regulated and 1398 were down-regulated in infected plants, with an overrepresentation of genes involved in hormone metabolism and responses, nucleic acid metabolism, regulation of transcription, ubiquitin-proteasome pathway and autophagy among those up-regulated, and in primary and secondary metabolism, phosphorylation, transcription and methylation-dependent chromatin silencing among those down-regulated. Our analysis showed a series of responses, such as the induction of GA- and ABA-responsive genes, the activation of the autophagic process and the fine tuning of the plant immune system, observed only in TYLCSV-tomato compatible interaction so far. On the other hand, comparisons with transcriptional changes observed in other geminivirus-plant interactions highlighted common host responses consisting in the deregulation of biotic stress responsive genes, key enzymes in the ethylene biosynthesis and methylation cycle, components of the ubiquitin proteasome system and DNA polymerases II. The involvement of conserved miRNAs and of solanaceous- and tomato-specific miRNAs in geminivirus infection, investigated by integrating differential gene expression data with miRNA targeting data, is discussed.
Collapse
Affiliation(s)
- Laura Miozzi
- Istituto di Virologia Vegetale, (National Research Council) CNR, Torino, Italy
| | - Chiara Napoli
- Istituto di Virologia Vegetale, (National Research Council) CNR, Torino, Italy
| | - Luca Sardo
- Istituto di Virologia Vegetale, (National Research Council) CNR, Torino, Italy
- Viral Recombination Section, HIV Drug Resistance Program, Center for Cancer Research, National Cancer Institute, Frederick, Maryland, United States of America
| | - Gian Paolo Accotto
- Istituto di Virologia Vegetale, (National Research Council) CNR, Torino, Italy
- * E-mail:
| |
Collapse
|