1
|
Scarano L, Peruzy MF, Fallico V, Blaiotta G, Aponte M, Anastasio A, Murru N. Provolone del Monaco PDO cheese: Lactic microflora, biogenic amines and volatilome characterization. Food Res Int 2024; 197:115257. [PMID: 39593339 DOI: 10.1016/j.foodres.2024.115257] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2024] [Revised: 09/26/2024] [Accepted: 10/19/2024] [Indexed: 11/28/2024]
Abstract
One commercial production run of Provolone del Monaco - a long-ripened pasta filata cheese - was followed up to the end of ripening for a total of 20 samples. 371 LAB isolates were subject to genetic characterization followed by 16S rRNA gene sequencing. The dominant species were Lacticaseibacillus casei/paracasei (19.4 %), Streptococcus macedonicus (19.1 %) and Enterococcus faecalis (13.2 %). Strains were screened for features of technological interest or safety relevance. Tyramine-producing cultures were quite common, above all within enterococci. By MALDI TOF Mass Spectrometry, one Lactococcus lactis and one Enterococcus faecium strain proved to be bacteriocin producers. Four further cheese wheels from the same production run at 623 days of ripening were evaluated for volatile organic compounds, biogenic amines, and bacterial community by metagenomic sequencing. Three individual wheel samples shared a rather similar microbiome with Lactobacillus delbrueckii and Streptococcus thermophilus as the most represented species, while the fourth wheel appeared wholly different being dominated by Lentilactobacillus buchneri and St. infantarius. Additionally, this sample had the greatest content of biogenic amines and a different VOCs composition. Given the variance seen among cheese wheels processed and ripened under the same conditions, the search for adjunct cultures in the production of this cheese seems to be of utmost importance.
Collapse
Affiliation(s)
- Luigi Scarano
- Department of Veterinary Medicine and Animal Production, University of Naples "Federico II", Via Delpino 1, 80137 Napoli, Italy
| | - Maria Francesca Peruzy
- Department of Veterinary Medicine and Animal Production, University of Naples "Federico II", Via Delpino 1, 80137 Napoli, Italy
| | - Vincenzo Fallico
- Teagasc Food Research Centre, Moorepark, Fermoy, P61C996 Co. Cork, Ireland
| | - Giuseppe Blaiotta
- Department of Agricultural Sciences, University of Naples "Federico II", Via Università 100, 80055 Portici (Na), Italy
| | - Maria Aponte
- Department of Agricultural Sciences, University of Naples "Federico II", Via Università 100, 80055 Portici (Na), Italy.
| | - Aniello Anastasio
- Department of Veterinary Medicine and Animal Production, University of Naples "Federico II", Via Delpino 1, 80137 Napoli, Italy
| | - Nicoletta Murru
- Department of Veterinary Medicine and Animal Production, University of Naples "Federico II", Via Delpino 1, 80137 Napoli, Italy; Task Force on Microbiome Studies, University of Naples Federico II, Naples, Italy
| |
Collapse
|
2
|
Halawa M, Newman PM, Aderibigbe T, Carabetta VJ. Conjugated therapeutic proteins as a treatment for bacteria which trigger cancer development. iScience 2024; 27:111029. [PMID: 39635133 PMCID: PMC11615139 DOI: 10.1016/j.isci.2024.111029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/07/2024] Open
Abstract
In recent years, an increasing amount of research has focused on the intricate and complex correlation between bacterial infections and the development of cancer. Some studies even identified specific bacterial species as potential culprits in the initiation of carcinogenesis, which generated a great deal of interest in the creation of innovative therapeutic strategies aimed at addressing both the infection and the subsequent risk of cancer. Among these strategies, there has been a recent emergence of the use of conjugated therapeutic proteins, which represent a highly promising avenue in the field of cancer therapeutics. These proteins offer a dual-targeting approach that seeks to effectively combat both the bacterial infection and the resulting malignancies that may arise because of such infections. This review delves into the landscape of conjugated therapeutic proteins that have been intricately designed with the purpose of specifically targeting bacteria that have been implicated in the induction of cancer.
Collapse
Affiliation(s)
- Mohamed Halawa
- Department of Biomedical Sciences, Cooper Medical School of Rowan University, Camden, NJ 08103, USA
| | - Precious M. Newman
- Department of Biomedical Sciences, Cooper Medical School of Rowan University, Camden, NJ 08103, USA
| | - Tope Aderibigbe
- Department of Biomedical Sciences, Cooper Medical School of Rowan University, Camden, NJ 08103, USA
| | - Valerie J. Carabetta
- Department of Biomedical Sciences, Cooper Medical School of Rowan University, Camden, NJ 08103, USA
| |
Collapse
|
3
|
Flory M, Bravo P, Alam A. Impact of gut microbiota and its metabolites on immunometabolism in colorectal cancer. IMMUNOMETABOLISM (COBHAM, SURREY) 2024; 6:e00050. [PMID: 39624362 PMCID: PMC11608621 DOI: 10.1097/in9.0000000000000050] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/04/2024] [Accepted: 10/17/2024] [Indexed: 01/25/2025]
Abstract
Colorectal cancer (CRC) is highly prevalent, accounting for approximately one-tenth of cancer cases and deaths globally. It stands as the second most deadly and third most common cancer type. Although the gut microbiota has been implicated in CRC carcinogenesis for the last several decades, it remains one of the least understood risk factors for CRC development, as the gut microbiota is highly diverse and variable. Many studies have uncovered unique microbial signatures in CRC patients compared with healthy matched controls, with variations dependent on patient age, disease stage, and location. In addition, mechanistic studies revealed that tumor-associated bacteria produce diverse metabolites, proteins, and macromolecules during tumor development and progression in the colon, which impact both cancer cells and immune cells. Here, we summarize microbiota's role in tumor development and progression, then we discuss how the metabolic alterations in CRC tumor cells, immune cells, and the tumor microenvironment result in the reprogramming of activation, differentiation, functions, and phenotypes of immune cells within the tumor. Tumor-associated microbiota also undergoes metabolic adaptation to survive within the tumor environment, leading to immune evasion, accumulation of mutations, and impairment of immune cells. Finally, we conclude with a discussion on the interplay between gut microbiota, immunometabolism, and CRC, highlighting a complex interaction that influences cancer development, progression, and cancer therapy efficacy.
Collapse
Affiliation(s)
- Madison Flory
- Department of Microbiology, Immunology and Molecular Genetics, University of Kentucky, Lexington, KY, USA
| | - Paloma Bravo
- Department of Biology, Carleton College, Northfield, MN, USA
| | - Ashfaqul Alam
- Department of Microbiology, Immunology and Molecular Genetics, University of Kentucky, Lexington, KY, USA
- Markey Cancer Center, University of Kentucky, Lexington, KY, USA
| |
Collapse
|
4
|
Hirth LN, Holman A, Levine J, Tobin K. Usefulness of newer testing modalities for the accurate diagnosis of culture-negative endocarditis. BMJ Case Rep 2024; 17:e260163. [PMID: 39242131 DOI: 10.1136/bcr-2024-260163] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/09/2024] Open
Abstract
A woman in her 80s with a history of congestive heart failure, atrial arrhythmia treated with atrioventricular nodal ablation and permanent pacemaker (PPM) placement, mitral valve disease status post-repair and colon cancer status post-treatment was admitted for further evaluation of severe dyspnea on exertion. Imaging revealed vegetation on both the prosthetic mitral valve and the PPM lead. Blood cultures were collected without growth, so a cell-free DNA Karius test was performed, which can detect over 1000 pathogens and has a sensitivity between 87% and 93%. Testing returned positive results for Streptococcus bovis subspecies pasteurianus Given its association with colorectal cancer, abdominal imaging and an endoscopic biopsy were performed, showing recurrent colonic malignancy. The patient underwent a right colon resection prior to cardiac intervention. This report describes the clinical application of the novel cell-free DNA Karius test, which led to the diagnosis of recurrent colon cancer associated with S. pasteurianus endocarditis.
Collapse
Affiliation(s)
- Lauren N Hirth
- Medical School, University of Michigan Medical School, Ann Arbor, Michigan, USA
| | - Alexis Holman
- Internal Medicine, Michigan Medicine, Ann Arbor, Michigan, USA
| | - Jake Levine
- Internal Medicine, Michigan Medicine, Ann Arbor, Michigan, USA
| | - Kenneth Tobin
- Cardiovascular Disease, Internal Medicine, University of Michigan Michigan Medicine, Ann Arbor, Michigan, USA
| |
Collapse
|
5
|
Lutsiv T, Hussan H, Thompson HJ. Ecosystemic Approach to Understanding Gut Microbiome-Mediated Prevention of Colorectal Cancer. Cancer J 2024; 30:329-344. [PMID: 39312453 DOI: 10.1097/ppo.0000000000000743] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/25/2024]
Abstract
Humans and their associated microorganisms coexist in complex symbiotic relationships. Continuously advancing research is demonstrating the crucial role of host-associated microbiota in the pathophysiology and etiology of disease and in mediating the prevention thereof. As an exemplar, the gut microbiota, especially colonic bacteria, have been extensively studied in colorectal cancer (CRC), and the growing body of evidence establishes new oncomicrobes and their oncometabolites associated with the initiation and promotion of carcinogenesis. Herein, we discuss the importance of approaching the gut microbiome as an ecosystem rather than an assortment of individual factors, especially in the context of cancer prevention. Furthermore, we argue that a dietary pattern effectively drives multiple nodes of the gut microbial ecosystem toward disease- or health-promoting qualities. In the modern circumstances of excessive consumption of ultraprocessed and animal-based foods and concomitant escalation of chronic disease burden worldwide, we focus on whole food-derived dietary fiber as a key to establishing a health-promoting eubiosis in the gut.
Collapse
|
6
|
Yin LL, Qi PQ, Hu YF, Fu XJ, He RS, Wang MM, Deng YJ, Xiong SY, Yu QW, Hu JP, Zhou L, Zhou ZB, Xiong Y, Deng H. Dysbiosis promotes recurrence of adenomatous polyps in the distal colorectum. World J Gastrointest Oncol 2024; 16:3600-3623. [PMID: 39171160 PMCID: PMC11334022 DOI: 10.4251/wjgo.v16.i8.3600] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/14/2024] [Revised: 05/19/2024] [Accepted: 06/14/2024] [Indexed: 08/07/2024] Open
Abstract
BACKGROUND Colorectal polyps, which are characterized by a high recurrence rate, represent preneoplastic conditions of the intestine. Due to unclear mechanisms of pathogenesis, first-line therapies for non-hereditary recurrent colorectal polyps are limited to endoscopic resection. Although recent studies suggest a mechanistic link between intestinal dysbiosis and polyps, the exact compositions and roles of bacteria in the mucosa around the lesions, rather than feces, remain unsettled. AIM To clarify the composition and diversity of bacteria in the mucosa surrounding or 10 cm distal to recurrent intestinal polyps. METHODS Mucosal samples were collected from four patients consistently with adenomatous polyps (Ade), seven consistently with non-Ade (Pol), ten with current Pol but previous Ade, and six healthy individuals, and bacterial patterns were evaluated by 16S rDNA sequencing. Linear discriminant analysis and Student's t-tests were used to identify the genus-level bacteria differences between groups with different colorectal polyp phenotypes. Pearson's correlation coefficients were used to evaluate the correlation between intestinal bacteria at the genus level and clinical indicators. RESULTS The results confirmed a decreased level of probiotics and an enrichment of pathogenic bacteria in patients with all types of polyps compared to healthy individuals. These changes were not restricted to the mucosa within 0.5 cm adjacent to the polyps, but also existed in histologically normal tissue 10 cm distal from the lesions. Significant differences in bacterial diversity were observed in the mucosa from individuals with normal conditions, Pol, and Ade. Increased abundance of Gram-negative bacteria, including Klebsiella, Plesiomonas, and Cronobacter, was observed in Pol group and Ade group, suggesting that resistance to antibiotics may be one risk factor for bacterium-related harmful environment. Meanwhile, age and gender were linked to bacteria changes, indicating the potential involvement of sex hormones. CONCLUSION These preliminary results support intestinal dysbiosis as an important risk factor for recurrent polyps, especially adenoma. Targeting specific pathogenic bacteria may attenuate the recurrence of polyps.
Collapse
Affiliation(s)
- Li-Li Yin
- The Affiliated Rehabilitation Hospital, Jiangxi Medical College, Nanchang University, Nanchang 330006, Jiangxi Province, China
- The Fourth Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang 330006, Jiangxi Province, China
| | - Ping-Qian Qi
- The Affiliated Rehabilitation Hospital, Jiangxi Medical College, Nanchang University, Nanchang 330006, Jiangxi Province, China
- The Fourth Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang 330006, Jiangxi Province, China
| | - Yun-Fei Hu
- The Affiliated Rehabilitation Hospital, Jiangxi Medical College, Nanchang University, Nanchang 330006, Jiangxi Province, China
- The Fourth Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang 330006, Jiangxi Province, China
| | - Xiao-Jun Fu
- The Affiliated Rehabilitation Hospital, Jiangxi Medical College, Nanchang University, Nanchang 330006, Jiangxi Province, China
- The Fourth Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang 330006, Jiangxi Province, China
| | - Rui-Shan He
- The Second College of Clinical Medicine, Jiangxi Medical College, Nanchang University, Nanchang 330006, Jiangxi Province, China
| | - Meng-Meng Wang
- The Affiliated Rehabilitation Hospital, Jiangxi Medical College, Nanchang University, Nanchang 330006, Jiangxi Province, China
- The Fourth Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang 330006, Jiangxi Province, China
- Tumor Immunology Institute, Nanchang University, Nanchang 330006, Jiangxi Province, China
| | - Yan-Juan Deng
- The Affiliated Rehabilitation Hospital, Jiangxi Medical College, Nanchang University, Nanchang 330006, Jiangxi Province, China
- The Fourth Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang 330006, Jiangxi Province, China
- Tumor Immunology Institute, Nanchang University, Nanchang 330006, Jiangxi Province, China
| | - Su-Yi Xiong
- The Affiliated Rehabilitation Hospital, Jiangxi Medical College, Nanchang University, Nanchang 330006, Jiangxi Province, China
- The Fourth Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang 330006, Jiangxi Province, China
- Tumor Immunology Institute, Nanchang University, Nanchang 330006, Jiangxi Province, China
| | - Qi-Wen Yu
- The Affiliated Rehabilitation Hospital, Jiangxi Medical College, Nanchang University, Nanchang 330006, Jiangxi Province, China
- The Fourth Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang 330006, Jiangxi Province, China
- Tumor Immunology Institute, Nanchang University, Nanchang 330006, Jiangxi Province, China
| | - Jin-Ping Hu
- The Affiliated Rehabilitation Hospital, Jiangxi Medical College, Nanchang University, Nanchang 330006, Jiangxi Province, China
- The Fourth Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang 330006, Jiangxi Province, China
- Tumor Immunology Institute, Nanchang University, Nanchang 330006, Jiangxi Province, China
| | - Lv Zhou
- The Affiliated Rehabilitation Hospital, Jiangxi Medical College, Nanchang University, Nanchang 330006, Jiangxi Province, China
- The Fourth Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang 330006, Jiangxi Province, China
- Tumor Immunology Institute, Nanchang University, Nanchang 330006, Jiangxi Province, China
| | - Zhi-Bin Zhou
- The Affiliated Rehabilitation Hospital, Jiangxi Medical College, Nanchang University, Nanchang 330006, Jiangxi Province, China
- The Fourth Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang 330006, Jiangxi Province, China
- Tumor Immunology Institute, Nanchang University, Nanchang 330006, Jiangxi Province, China
| | - Ying Xiong
- Department of General Medicine, The Second College of Clinical Medicine, Jiangxi Medical College, Nanchang University, Nanchang 330031, Jiangxi Province, China
| | - Huan Deng
- The Affiliated Rehabilitation Hospital, Jiangxi Medical College, Nanchang University, Nanchang 330006, Jiangxi Province, China
- The Fourth Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang 330006, Jiangxi Province, China
- Tumor Immunology Institute, Nanchang University, Nanchang 330006, Jiangxi Province, China
- The Ministry of Education Basic Research and Innovation Center for the Targeted Therapeutics of Solid Tumors, Jiangxi Medical College, Nanchang University, Nanchang 330031, Jiangxi Province, China
| |
Collapse
|
7
|
Alzahabi M, Haddad J, Bishai SK. Streptococcus lutetiensis prosthetic shoulder infection assisting in the diagnosis of invasive adenocarcinoma of the colon. JSES REVIEWS, REPORTS, AND TECHNIQUES 2024; 4:559-562. [PMID: 39157225 PMCID: PMC11329031 DOI: 10.1016/j.xrrt.2024.05.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 08/20/2024]
Affiliation(s)
- Majed Alzahabi
- Department of Orthopedic Surgery, Mclaren Macomb, Mount Clemens, MI, USA
| | - Jamil Haddad
- Department of Orthopedic Surgery, Mclaren Macomb, Mount Clemens, MI, USA
| | - Shariff K. Bishai
- Department of Orthopedic Surgery, Henry Ford Macomb, Shelby Township, MI, USA
- Detroit Orthopaedic Institute, Troy, MI, USA
| |
Collapse
|
8
|
Intarajak T, Udomchaiprasertkul W, Khoiri AN, Sutheeworapong S, Kusonmano K, Kittichotirat W, Thammarongtham C, Cheevadhanarak S. Distinct gut microbiomes in Thai patients with colorectal polyps. World J Gastroenterol 2024; 30:3336-3355. [PMID: 39086748 PMCID: PMC11287419 DOI: 10.3748/wjg.v30.i27.3336] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/21/2024] [Revised: 04/30/2024] [Accepted: 05/31/2024] [Indexed: 07/11/2024] Open
Abstract
BACKGROUND Colorectal polyps that develop via the conventional adenoma-carcinoma sequence [e.g., tubular adenoma (TA)] often progress to malignancy and are closely associated with changes in the composition of the gut microbiome. There is limited research concerning the microbial functions and gut microbiomes associated with colorectal polyps that arise through the serrated polyp pathway, such as hyperplastic polyps (HP). Exploration of microbiome alterations associated with HP and TA would improve the understanding of mechanisms by which specific microbes and their metabolic pathways contribute to colorectal carcinogenesis. AIM To investigate gut microbiome signatures, microbial associations, and microbial functions in HP and TA patients. METHODS Full-length 16S rRNA sequencing was used to characterize the gut microbiome in stool samples from control participants without polyps [control group (CT), n = 40], patients with HP (n = 52), and patients with TA (n = 60). Significant differences in gut microbiome composition and functional mechanisms were identified between the CT group and patients with HP or TA. Analytical techniques in this study included differential abundance analysis, co-occurrence network analysis, and differential pathway analysis. RESULTS Colorectal cancer (CRC)-associated bacteria, including Streptococcus gallolyticus (S. gallolyticus), Bacteroides fragilis, and Clostridium symbiosum, were identified as characteristic microbial species in TA patients. Mediterraneibacter gnavus, associated with dysbiosis and gastrointestinal diseases, was significantly differentially abundant in the HP and TA groups. Functional pathway analysis revealed that HP patients exhibited enrichment in the sulfur oxidation pathway exclusively, whereas TA patients showed dominance in pathways related to secondary metabolite biosynthesis (e.g., mevalonate); S. gallolyticus was a major contributor. Co-occurrence network and dynamic network analyses revealed co-occurrence of dysbiosis-associated bacteria in HP patients, whereas TA patients exhibited co-occurrence of CRC-associated bacteria. Furthermore, the co-occurrence of SCFA-producing bacteria was lower in TA patients than HP patients. CONCLUSION This study revealed distinct gut microbiome signatures associated with pathways of colorectal polyp development, providing insights concerning the roles of microbial species, functional pathways, and microbial interactions in colorectal carcinogenesis.
Collapse
Affiliation(s)
- Thoranin Intarajak
- Bioinformatics Unit, Chulabhorn Royal Academy, Lak Si 10210, Bangkok, Thailand
- Bioinformatics and Systems Biology Program, School of Bioresources and Technology, and School of Information Technology, King Mongkut’s University of Technology Thonburi, Bang Khun Thian 10150, Bangkok, Thailand
- Systems Biology and Bioinformatics Unit, Pilot Plant Development and Training Institute, King Mongkut’s University of Technology Thonburi, Bang Khun Thian 10150, Bangkok, Thailand
| | | | - Ahmad Nuruddin Khoiri
- Bioinformatics and Systems Biology Program, School of Bioresources and Technology, and School of Information Technology, King Mongkut’s University of Technology Thonburi, Bang Khun Thian 10150, Bangkok, Thailand
| | - Sawannee Sutheeworapong
- Systems Biology and Bioinformatics Unit, Pilot Plant Development and Training Institute, King Mongkut’s University of Technology Thonburi, Bang Khun Thian 10150, Bangkok, Thailand
| | - Kanthida Kusonmano
- Bioinformatics and Systems Biology Program, School of Bioresources and Technology, and School of Information Technology, King Mongkut’s University of Technology Thonburi, Bang Khun Thian 10150, Bangkok, Thailand
- Systems Biology and Bioinformatics Unit, Pilot Plant Development and Training Institute, King Mongkut’s University of Technology Thonburi, Bang Khun Thian 10150, Bangkok, Thailand
| | - Weerayuth Kittichotirat
- Bioinformatics and Systems Biology Program, School of Bioresources and Technology, and School of Information Technology, King Mongkut’s University of Technology Thonburi, Bang Khun Thian 10150, Bangkok, Thailand
- Systems Biology and Bioinformatics Unit, Pilot Plant Development and Training Institute, King Mongkut’s University of Technology Thonburi, Bang Khun Thian 10150, Bangkok, Thailand
| | - Chinae Thammarongtham
- National Center for Genetic Engineering and Biotechnology, King Mongkut's University of Technology Thonburi, Bang Khun Thian 10150, Bangkok, Thailand
| | - Supapon Cheevadhanarak
- Systems Biology and Bioinformatics Unit, Pilot Plant Development and Training Institute, King Mongkut’s University of Technology Thonburi, Bang Khun Thian 10150, Bangkok, Thailand
- School of Bioresources and Technology, King Mongkut’s University of Technology Thonburi, Bank Khun Thian 10150, Bangkok, Thailand
- Fungal Biotechnology Unit, Pilot Plant Development and Training Institute, King Mongkut’s University of Technology Thonburi, Bang Khun Thian 10150, Bangkok, Thailand
| |
Collapse
|
9
|
Oliero M, Alaoui AA, McCartney C, Santos MM. Colorectal cancer and inulin supplementation: the good, the bad, and the unhelpful. Gastroenterol Rep (Oxf) 2024; 12:goae058. [PMID: 38984069 PMCID: PMC11231048 DOI: 10.1093/gastro/goae058] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/02/2024] [Revised: 03/15/2024] [Accepted: 05/20/2024] [Indexed: 07/11/2024] Open
Abstract
The prebiotic inulin has been vaunted for its potential to reduce the risk of colorectal cancer. Inulin fermentation resulting in the production of short-chain fatty acids, primarily butyrate, has been reported to be associated with properties that are beneficial for gut health and has led to an increased consumption of inulin in the Western population through processed food and over-the-counter dietary supplements. However, in clinical trials, there is limited evidence of the efficacy of inulin in preventing colorectal cancer. Moreover, recent data suggest that improper inulin consumption may even be harmful for gastro-intestinal health under certain circumstances. The main objective of this review is to provide insight into the beneficial and potentially detrimental effects of inulin supplementation in the context of colorectal cancer prevention and enhancement of treatment efficacy.
Collapse
Affiliation(s)
- Manon Oliero
- Nutrition and Microbiome Laboratory, Institut du cancer de Montréal, Centre de Recherche du Centre Hospitalier de l'Université de Montréal (CRCHUM), Montréal, QC, Canada
| | - Ahmed Amine Alaoui
- Nutrition and Microbiome Laboratory, Institut du cancer de Montréal, Centre de Recherche du Centre Hospitalier de l'Université de Montréal (CRCHUM), Montréal, QC, Canada
- Department of Medicine, Faculty of Medicine, Université de Montréal, Montréal, QC, Canada
| | - Claire McCartney
- Nutrition and Microbiome Laboratory, Institut du cancer de Montréal, Centre de Recherche du Centre Hospitalier de l'Université de Montréal (CRCHUM), Montréal, QC, Canada
| | - Manuela M Santos
- Nutrition and Microbiome Laboratory, Institut du cancer de Montréal, Centre de Recherche du Centre Hospitalier de l'Université de Montréal (CRCHUM), Montréal, QC, Canada
- Department of Medicine, Faculty of Medicine, Université de Montréal, Montréal, QC, Canada
| |
Collapse
|
10
|
Saha B, A T R, Adhikary S, Banerjee A, Radhakrishnan AK, Duttaroy AK, Pathak S. Exploring the Relationship Between Diet, Lifestyle and Gut Microbiome in Colorectal Cancer Development: A Recent Update. Nutr Cancer 2024; 76:789-814. [PMID: 39207359 DOI: 10.1080/01635581.2024.2367266] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2023] [Revised: 05/18/2024] [Accepted: 06/05/2024] [Indexed: 09/04/2024]
Abstract
Colorectal cancer (CRC) is one of the major causes of cancer-related mortality worldwide. Despite advances in treatment modalities, its prevalence continues to rise, notably among younger populations. Unhealthy dietary habits, sedentary routines, and obesity have been identified as one of the key contributors to the development of colorectal cancer, apart from genetic and epigenetic modifications. Recognizing the profound impact of diet and lifestyle on the intricate gut microbiota ecosystem offers a promising avenue for understanding CRC development and its treatment. Gut dysbiosis, characterized by imbalances favoring harmful microbes over beneficial ones, has emerged as a defining feature of CRC. Changes in diet and lifestyle can profoundly alter the composition of gut microbes and the metabolites they produce, potentially contributing to CRC onset. Focusing on recent evidence, this review discussed various dietary factors, such as high consumption of red and processed meats and low fiber intake, and lifestyle factors, including obesity, lack of physical activity, smoking, and excessive alcohol consumption, that influence the gut microbiome composition and elevate CRC risk.
Collapse
Affiliation(s)
- Biki Saha
- Medical Biotechnology, Faculty of Allied Health Sciences, Chettinad Academy of Research and Education (CARE), Chettinad Hospital and Research Institute (CHRI), Chennai, India
| | - Rithi A T
- Department of Pharmacology, Chettinad Hospital and Research Institute (CHRI), Chettinad Academy of Research and Education (CARE), Chennai, India
| | - Subhamay Adhikary
- Medical Biotechnology, Faculty of Allied Health Sciences, Chettinad Academy of Research and Education (CARE), Chettinad Hospital and Research Institute (CHRI), Chennai, India
| | - Antara Banerjee
- Medical Biotechnology, Faculty of Allied Health Sciences, Chettinad Academy of Research and Education (CARE), Chettinad Hospital and Research Institute (CHRI), Chennai, India
| | - Arun Kumar Radhakrishnan
- Department of Pharmacology, Chettinad Hospital and Research Institute (CHRI), Chettinad Academy of Research and Education (CARE), Chennai, India
| | - Asim K Duttaroy
- Department of Nutrition, Institute of Medical Sciences, Faculty of Medicine, University of Oslo, Oslo, Norway
| | - Surajit Pathak
- Medical Biotechnology, Faculty of Allied Health Sciences, Chettinad Academy of Research and Education (CARE), Chettinad Hospital and Research Institute (CHRI), Chennai, India
| |
Collapse
|
11
|
Ionescu VA, Gheorghe G, Georgescu TF, Buica V, Catanescu MS, Cercel IA, Budeanu B, Budan M, Bacalbasa N, Diaconu C. Exploring the Role of the Gut Microbiota in Colorectal Cancer Development. GASTROINTESTINAL DISORDERS 2024; 6:526-537. [DOI: 10.3390/gidisord6020036] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/30/2024] Open
Abstract
Colorectal cancer is currently a public health concern due to its high incidence, morbidity, and mortality rates. Researchers have identified the intestinal microbiome as a crucial factor in the development of this disease. Currently, specialized literature data support the role of the microbiota in both the development of colorectal cancer and resistance to oncological therapies. Therefore, studying the composition of the gut microbiome can aid in creating risk assessment tools to identify specific populations that would benefit from tailored screening approaches. Also, manipulation of the intestinal microbiome can be useful in improving the response to chemotherapy or immunotherapy. Identifying the pathogenic mechanisms responsible for this causal link can aid in the discovery of novel treatment targets. This article will provide the latest information regarding the influence of the intestinal microbiota on the development and progression of colorectal cancer.
Collapse
Affiliation(s)
- Vlad Alexandru Ionescu
- Faculty of Medicine, University of Medicine and Pharmacy Carol Davila Bucharest, 050474 Bucharest, Romania
- Internal Medicine Department, Clinical Emergency Hospital of Bucharest, 105402 Bucharest, Romania
| | - Gina Gheorghe
- Faculty of Medicine, University of Medicine and Pharmacy Carol Davila Bucharest, 050474 Bucharest, Romania
- Internal Medicine Department, Clinical Emergency Hospital of Bucharest, 105402 Bucharest, Romania
| | - Teodor Florin Georgescu
- Faculty of Medicine, University of Medicine and Pharmacy Carol Davila Bucharest, 050474 Bucharest, Romania
- General Surgery Department, Clinical Emergency Hospital of Bucharest, 105402 Bucharest, Romania
| | - Vlad Buica
- Faculty of Medicine, University of Medicine and Pharmacy Carol Davila Bucharest, 050474 Bucharest, Romania
| | - Mihai-Stefan Catanescu
- Faculty of Medicine, University of Medicine and Pharmacy Carol Davila Bucharest, 050474 Bucharest, Romania
| | - Iris-Andreea Cercel
- Faculty of Medicine, University of Medicine and Pharmacy Carol Davila Bucharest, 050474 Bucharest, Romania
| | - Beatrice Budeanu
- Faculty of Medicine, University of Medicine and Pharmacy Carol Davila Bucharest, 050474 Bucharest, Romania
| | - Mihail Budan
- Faculty of Medicine, University of Medicine and Pharmacy Carol Davila Bucharest, 050474 Bucharest, Romania
| | - Nicolae Bacalbasa
- Department of Surgery, University of Medicine and Pharmacy Carol Davila Bucharest, 050474 Bucharest, Romania
- Department of Visceral Surgery, Center of Excellence in Translational Medicine, Fundeni Clinical Institute, 022328 Bucharest, Romania
| | - Camelia Diaconu
- Faculty of Medicine, University of Medicine and Pharmacy Carol Davila Bucharest, 050474 Bucharest, Romania
- Internal Medicine Department, Clinical Emergency Hospital of Bucharest, 105402 Bucharest, Romania
- Medical Sciences Section, Academy of Romanian Scientists, 050085 Bucharest, Romania
| |
Collapse
|
12
|
Yalamarty R, Magesh S, John D, Chakladar J, Li WT, Brumund KT, Wang-Rodriguez J, Ongkeko WM. The intratumor microbiome varies by geographical location and anatomical site in head and neck squamous cell carcinoma. Curr Probl Cancer 2024; 50:101100. [PMID: 38820649 DOI: 10.1016/j.currproblcancer.2024.101100] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2023] [Revised: 03/29/2024] [Accepted: 04/25/2024] [Indexed: 06/02/2024]
Abstract
Head and Neck Squamous Cell Carcinoma (HNSCC) is a highly heterogeneous cancer that is characterized by distinct phenotypes based on anatomical site and etiological agents. Recently, the intratumor microbiome has been implicated in cancer pathogenesis and progression. Although it is well established that the gut microbiome varies with geographical location and is highly influenced by factors such as diet, environment, and genetics, the intratumor microbiome is not very well characterized. In this review, we aim to characterize the HNSCC intratumor microbiome by geographical location and anatomical site. We conducted a review of primary literature from PubMed and assessed studies based on relevancy and recency. To the best of our knowledge, we are the first to comprehensively examine the tumor microenvironment of HNSCC with respect to these two primary factors on a large scale. Our results suggest that there are unique bacterial and fungal biomarkers for HNSCC for each of the following geographical locations: North America, Asia, Europe, Australia, and Africa. We also identified a panel of microbial biomarkers that are unique to two primary HNSCC anatomic sites, as well as microbial biomarkers associated with various etiological agents of HNSCC. Future study of these microbes may improve HNSCC diagnostic and therapeutic modalities by accounting for differences based on geographic regions and anatomical sites.
Collapse
Affiliation(s)
- Rishabh Yalamarty
- Department of Surgery, Division of Otolaryngology-Head and Neck Surgery, University of California, San Diego, CA 92093, USA; Research Service, VA San Diego Healthcare System, San Diego, CA 92161, USA
| | - Shruti Magesh
- Department of Surgery, Division of Otolaryngology-Head and Neck Surgery, University of California, San Diego, CA 92093, USA; Research Service, VA San Diego Healthcare System, San Diego, CA 92161, USA
| | - Daniel John
- Department of Surgery, Division of Otolaryngology-Head and Neck Surgery, University of California, San Diego, CA 92093, USA; Research Service, VA San Diego Healthcare System, San Diego, CA 92161, USA
| | - Jaideep Chakladar
- Department of Surgery, Division of Otolaryngology-Head and Neck Surgery, University of California, San Diego, CA 92093, USA; Research Service, VA San Diego Healthcare System, San Diego, CA 92161, USA
| | - Wei Tse Li
- Department of Surgery, Division of Otolaryngology-Head and Neck Surgery, University of California, San Diego, CA 92093, USA; Research Service, VA San Diego Healthcare System, San Diego, CA 92161, USA; University of California San Francisco School of Medicine, San Francisco, CA 94143, USA
| | - Kevin T Brumund
- Department of Surgery, Division of Otolaryngology-Head and Neck Surgery, University of California, San Diego, CA 92093, USA; Division of Head and Neck Surgery, Department of Surgery, VA San Diego Healthcare System, San Diego, CA 92161, USA
| | - Jessica Wang-Rodriguez
- Pathology Service, VA San Diego Healthcare System, San Diego, CA 92161, USA; Department of Pathology, UC San Diego School of Medicine, San Diego, CA 92093, USA
| | - Weg M Ongkeko
- Department of Surgery, Division of Otolaryngology-Head and Neck Surgery, University of California, San Diego, CA 92093, USA; Research Service, VA San Diego Healthcare System, San Diego, CA 92161, USA.
| |
Collapse
|
13
|
Li L, He S, Liao B, Wang M, Lin H, Hu B, Lan X, Shu Z, Zhang C, Yu M, Zou Z. Orally Administrated Hydrogel Harnessing Intratumoral Microbiome and Microbiota-Related Immune Responses for Potentiated Colorectal Cancer Treatment. RESEARCH (WASHINGTON, D.C.) 2024; 7:0364. [PMID: 38721274 PMCID: PMC11077293 DOI: 10.34133/research.0364] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/08/2024] [Accepted: 04/02/2024] [Indexed: 10/08/2024]
Abstract
The intestinal and intratumoral microbiota are closely associated with tumor progression and response to antitumor treatments. The antibacterial or tumor microenvironment (TME)-modulating approaches have been shown to markedly improve antitumor efficacy, strategies focused on normalizing the microbial environment are rarely reported. Here, we reported the development of an orally administered inulin-based hydrogel with colon-targeting and retention effects, containing hollow MnO2 nanocarrier loaded with the chemotherapeutic drug Oxa (Oxa@HMI). On the one hand, beneficial bacteria in the colon specifically metabolized Oxa@HMI, resulting in the degradation of inulin and the generation of short-chain fatty acids (SCFAs). These SCFAs play a crucial role in modulating microbiota and stimulating immune responses. On the other hand, the hydrogel matrix underwent colon microbiota-specific degradation, enabling the targeted release of Oxa and production of reactive oxygen species in the acidic TME. In this study, we have established, for the first time, a microbiota-targeted drug delivery system Oxa@HMI that exhibited high efficiency in colorectal cancer targeting and colon retention. Oxa@HMI promoted chemotherapy efficiency and activated antitumor immune responses by intervening in the microbial environment within the tumor tissue, providing a crucial clinical approach for the treatment of colorectal cancer that susceptible to microbial invasion.
Collapse
Affiliation(s)
- Lei Li
- Department of General Surgery, Zhujiang Hospital,
Southern Medical University, Guangzhou 510282, China
| | - Shouhua He
- Department of General Surgery, Zhujiang Hospital,
Southern Medical University, Guangzhou 510282, China
| | - Boyi Liao
- Department of General Surgery, Zhujiang Hospital,
Southern Medical University, Guangzhou 510282, China
| | - Manchun Wang
- NMPA Key Laboratory for Research and Evaluation of Drug Metabolism and Guangdong Provincial Key Laboratory of New Drug Screening and Guangdong-Hongkong-Macao Joint Laboratory for New Drug Screening, School of Pharmaceutical Sciences,
Southern Medical University, Guangzhou 510515, China
| | - Huimin Lin
- NMPA Key Laboratory for Research and Evaluation of Drug Metabolism and Guangdong Provincial Key Laboratory of New Drug Screening and Guangdong-Hongkong-Macao Joint Laboratory for New Drug Screening, School of Pharmaceutical Sciences,
Southern Medical University, Guangzhou 510515, China
| | - Ben Hu
- NMPA Key Laboratory for Research and Evaluation of Drug Metabolism and Guangdong Provincial Key Laboratory of New Drug Screening and Guangdong-Hongkong-Macao Joint Laboratory for New Drug Screening, School of Pharmaceutical Sciences,
Southern Medical University, Guangzhou 510515, China
| | - Xinyue Lan
- NMPA Key Laboratory for Research and Evaluation of Drug Metabolism and Guangdong Provincial Key Laboratory of New Drug Screening and Guangdong-Hongkong-Macao Joint Laboratory for New Drug Screening, School of Pharmaceutical Sciences,
Southern Medical University, Guangzhou 510515, China
| | - Zhilin Shu
- Department of General Surgery, Zhujiang Hospital,
Southern Medical University, Guangzhou 510282, China
| | - Chao Zhang
- Department of General Surgery, Zhujiang Hospital,
Southern Medical University, Guangzhou 510282, China
| | - Meng Yu
- Department of General Surgery, Zhujiang Hospital,
Southern Medical University, Guangzhou 510282, China
- NMPA Key Laboratory for Research and Evaluation of Drug Metabolism and Guangdong Provincial Key Laboratory of New Drug Screening and Guangdong-Hongkong-Macao Joint Laboratory for New Drug Screening, School of Pharmaceutical Sciences,
Southern Medical University, Guangzhou 510515, China
| | - Zhaowei Zou
- Department of General Surgery, Zhujiang Hospital,
Southern Medical University, Guangzhou 510282, China
| |
Collapse
|
14
|
Masheghati F, Asgharzadeh MR, Jafari A, Masoudi N, Maleki-Kakelar H. The role of gut microbiota and probiotics in preventing, treating, and boosting the immune system in colorectal cancer. Life Sci 2024; 344:122529. [PMID: 38490297 DOI: 10.1016/j.lfs.2024.122529] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2023] [Revised: 12/03/2023] [Accepted: 02/21/2024] [Indexed: 03/17/2024]
Abstract
The gut microbiome plays a significant role in developing colorectal cancer (CRC). The gut microbiome usually acts as a protective barrier against harmful pathogens and infections in the intestine, while also regulating inflammation by affecting the human immune system. The gut microbiota and probiotics play a role not only in intestinal inflammation associated with tumor formation but also in regulating anti-cancer immune response. As a result, they associated with tumor progression and the effectiveness of anti-cancer therapies. Research indicates that gut microbiota and probiotics can be used as biomarkers to predict the impact of immunotherapy and enhance its efficacy in treating CRC by regulating it. This review examines the importance of gut microbiota and probiotics in the development and progression of CRC, as well as their synergistic impact on anti-cancer treatments.
Collapse
Affiliation(s)
- Forough Masheghati
- Solid Tumor Research Center, Cellular and Molecular Medicine Research Institute, Urmia University of Medical Sciences, Urmia, Iran
| | | | - Abbas Jafari
- Cellular and Molecular Research Center, Cellular and Molecular Medicine Research Institute, Urmia University of Medical Sciences, Urmia, Iran
| | - Naser Masoudi
- Solid Tumor Research Center, Cellular and Molecular Medicine Research Institute, Urmia University of Medical Sciences, Urmia, Iran; Department of General Surgery, School of Medicine, Urmia University of Medical Sciences, Urmia, Iran
| | - Hadi Maleki-Kakelar
- Solid Tumor Research Center, Cellular and Molecular Medicine Research Institute, Urmia University of Medical Sciences, Urmia, Iran.
| |
Collapse
|
15
|
Rosty C, Brosens LAA. Pathology of Gastrointestinal Polyposis Disorders. Gastroenterol Clin North Am 2024; 53:179-200. [PMID: 38280747 DOI: 10.1016/j.gtc.2023.09.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2024]
Abstract
Gastrointestinal polyposis disorders are a group of syndromes defined by clinicopathologic features that include the predominant histologic type of colorectal polyp and specific inherited gene mutations. Adenomatous polyposis syndromes comprise the prototypical familial adenomatous polyposis syndrome and other recently identified genetic conditions inherited in a dominant or recessive manner. Serrated polyposis syndrome is defined by arbitrary clinical criteria. The diagnosis of hamartomatous polyposis syndromes can be suggested from the histologic characteristics of colorectal polyps and the association with various extraintestinal manifestations. Proper identification of affected individuals is important due to an increased risk of gastrointestinal and extragastrointestinal cancers.
Collapse
Affiliation(s)
- Christophe Rosty
- Envoi Specialist Pathologists, Brisbane, Queensland 4059, Australia; University of Queensland, Brisbane, Queensland 4072, Australia; Department of Clinical Pathology, Colorectal Oncogenomics Group, Victorian Comprehensive Cancer Centre, The University of Melbourne, Victoria 3051, Australia.
| | - Lodewijk A A Brosens
- Department of Pathology University Medical Center Utrecht, Utrecht University, Postbus 85500, 3508, Utrecht, Galgenwaad, The Netherlands
| |
Collapse
|
16
|
Yadav D, Sainatham C, Filippov E, Kanagala SG, Ishaq SM, Jayakrishnan T. Gut Microbiome-Colorectal Cancer Relationship. Microorganisms 2024; 12:484. [PMID: 38543535 PMCID: PMC10974515 DOI: 10.3390/microorganisms12030484] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2024] [Revised: 02/10/2024] [Accepted: 02/13/2024] [Indexed: 11/12/2024] Open
Abstract
Traditionally, the role of gut dysbiosis was thought to be limited to pathologies like Clostridioides difficile infection, but studies have shown its role in other intestinal and extraintestinal pathologies. Similarly, recent studies have surfaced showing the strong potential role of the gut microbiome in colorectal cancer, which was traditionally attributed mainly to sporadic or germline mutations. Given that it is the third most common cancer and the second most common cause of cancer-related mortality, 78 grants totaling more than USD 28 million have been granted to improve colon cancer management since 2019. Concerted efforts by several of these studies have identified specific bacterial consortia inducing a proinflammatory environment and promoting genotoxin production, causing the induction or progression of colorectal cancer. In addition, changes in the gut microbiome have also been shown to alter the response to cancer chemotherapy and immunotherapy, thus changing cancer prognosis. Certain bacteria have been identified as biomarkers to predict the efficacy of antineoplastic medications. Given these discoveries, efforts have been made to alter the gut microbiome to promote a favorable diversity to improve cancer progression and the response to therapy. In this review, we expand on the gut microbiome, its association with colorectal cancer, and antineoplastic medications. We also discuss the evolving paradigm of fecal microbiota transplantation in the context of colorectal cancer management.
Collapse
Affiliation(s)
- Devvrat Yadav
- Department of Internal Medicine, Sinai Hospital of Baltimore, 2401 W Belvedere Ave, Baltimore, MD 21215, USA (E.F.); (S.M.I.)
| | - Chiranjeevi Sainatham
- Department of Internal Medicine, Sinai Hospital of Baltimore, 2401 W Belvedere Ave, Baltimore, MD 21215, USA (E.F.); (S.M.I.)
| | - Evgenii Filippov
- Department of Internal Medicine, Sinai Hospital of Baltimore, 2401 W Belvedere Ave, Baltimore, MD 21215, USA (E.F.); (S.M.I.)
| | - Sai Gautham Kanagala
- Department of Internal Medicine, NYC Health + Hospital/Metropolitan, New York, NY 10029, USA
| | - Syed Murtaza Ishaq
- Department of Internal Medicine, Sinai Hospital of Baltimore, 2401 W Belvedere Ave, Baltimore, MD 21215, USA (E.F.); (S.M.I.)
| | - Thejus Jayakrishnan
- Division of Hematology and Oncology, Cleveland Clinic, Cleveland, OH 44195, USA
| |
Collapse
|
17
|
Leker K, Patel A, Zahid A. Papillary Muscle Rupture in the Setting of Streptococcus lutetiensis Endocarditis. J Investig Med High Impact Case Rep 2024; 12:23247096241300912. [PMID: 39568311 PMCID: PMC11580061 DOI: 10.1177/23247096241300912] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2024] [Revised: 10/28/2024] [Accepted: 11/01/2024] [Indexed: 11/22/2024] Open
Abstract
Papillary muscle rupture is commonly linked to ischemic events, occurring typically postmyocardial infarction. However, iatrogenic and nonischemic etiologies can play a role in papillary muscle rupture, including infective endocarditis. The case presented herein is an 85-year-old female with a history of heart failure with preserved ejection fraction (HFpEF), who presented with progressive dyspnea despite furosemide therapy, and was discovered to have a flail posterior mitral valve leaflet secondary to papillary muscle rupture associated with Streptococcus lutetiensis endocarditis. Transthoracic echocardiography revealed flail posterior mitral valve leaflet with newly appreciated severe wide-open mitral regurgitation. Emergent mitral valve repair was performed with a successful MitraClip placement. Patient had an atypical presentation without ischemic symptomology or electrocardiogram (EKG) changes indicative of ischemia. Despite transesophageal echocardiography, not revealing vegetations, infective endocarditis was presumed due to presence of Streptococcus lutetiensis bacteremia, osteomyelitis, elevated inflammatory markers, and clinical presentation. Papillary muscle rupture results in severe mitral regurgitation that is a medical emergency that requires prompt diagnosis and management from a multidisciplinary team. Therefore, it is imperative to ensure clinical insight into the multiple etiologies of papillary muscle rupture to provide timely treatment.
Collapse
Affiliation(s)
| | - Arti Patel
- Eisenhower Health, Rancho Mirage, CA, USA
| | | |
Collapse
|
18
|
Stewart JA, Culverhouse E, Harrell M. Preterm infant with necrotizing enterocolitis and arteritis secondary to streptococcus gallolyticus subspecies pasteurianus. J Neonatal Perinatal Med 2024; 17:265-268. [PMID: 38669486 DOI: 10.3233/npm-230089] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/28/2024]
Abstract
Streptococcus gallolyticus subspecies pasteurianus is a subtype of Streptococcus bovis (S. bovis) that has become increasingly recognized as a sepsis-causing pathogen in neonates. It is well documented that S. bovis species have a predilection to both cardiac and gastrointestinal tissue, and in adult populations, isolating these organisms in the bloodstream often triggers further evaluation for co-morbid complications such as colon cancer or endocarditis. However, no such guidance currently exists in neonatal literature. We present a case of a preterm infant with S. gallolyticus subsp. pasteurianus bacteremia presenting as necrotizing enterocolitis (NEC) not previously described in the literature. Furthermore, through a complete diagnostic evaluation, including an echocardiogram, our patient was found to have the rare complication of endocarditis.
Collapse
Affiliation(s)
- J A Stewart
- Department of Pediatrics, Tripler Army Medical Center, Honolulu, HI, USA
| | - E Culverhouse
- Department of Pediatrics, Tripler Army Medical Center, Honolulu, HI, USA
| | - Mathew Harrell
- Department of Neonatology, Tripler Army Medical Center, Honolulu, HI, USA
| |
Collapse
|
19
|
Meng R, Zeng M, Ji Y, Huang X, Xu M. The potential role of gut microbiota outer membrane vesicles in colorectal cancer. Front Microbiol 2023; 14:1270158. [PMID: 38029123 PMCID: PMC10661380 DOI: 10.3389/fmicb.2023.1270158] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Accepted: 10/02/2023] [Indexed: 12/01/2023] Open
Abstract
Colorectal cancer (CRC) is a common malignant digestive tract tumor in colorectal regions. Considerable evidence now shows that the gut microbiota have essential roles in CRC occurrence and development. Most Gram-negative bacteria release outer membrane vesicles (OMVs) via outer membrane blistering, which contain specific cargoes which interact with host cells via intercellular communications, host immune regulation, and gut microbiota homeostasis. Studies have also shown that OMVs selectively cluster near tumor cells, thus cancer treatment strategies based on OMVs have attracted considerable research attention. However, little is known about the possible impact of gut microbiota OMVs in CRC pathophysiology. Therefore, in this review, we summarize the research progress on molecular composition and function of OMV, and review the microbial dysbiosis in CRC. We then focus on the potential role of gut microbiota OMVs in CRC. Finally, we examine the clinical potential of OMVs in CRC treatment, and their main advantages and challenges in tumor therapy.
Collapse
Affiliation(s)
- Ran Meng
- Department of Gastroenterology, Affiliated Hospital of Jiangsu University, Zhenjiang, Jiangsu, China
- Department of Biochemistry and Molecular Biology, School of Medicine, Jiangsu University, Zhenjiang, Jiangsu, China
| | - Minmin Zeng
- Department of Biochemistry and Molecular Biology, School of Medicine, Jiangsu University, Zhenjiang, Jiangsu, China
| | - Ying Ji
- Department of Biochemistry and Molecular Biology, School of Medicine, Jiangsu University, Zhenjiang, Jiangsu, China
| | - Xinxiang Huang
- Department of Biochemistry and Molecular Biology, School of Medicine, Jiangsu University, Zhenjiang, Jiangsu, China
| | - Min Xu
- Department of Gastroenterology, Affiliated Hospital of Jiangsu University, Zhenjiang, Jiangsu, China
- Institute of Digestive Diseases, Jiangsu University, Zhenjiang, Jiangsu, China
| |
Collapse
|
20
|
Ouranos K, Gardikioti A, Bakaloudi DR, Mylona EK, Shehadeh F, Mylonakis E. Association of the Streptococcus bovis/Streptococcus equinus Complex With Colorectal Neoplasia: A Systematic Review and Meta-analysis. Open Forum Infect Dis 2023; 10:ofad547. [PMID: 38023558 PMCID: PMC10655943 DOI: 10.1093/ofid/ofad547] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2023] [Accepted: 10/30/2023] [Indexed: 12/01/2023] Open
Abstract
Background Invasive infection with Streptococcus bovis/Streptococcus equinus complex (SBSEC) bacteria is associated with underlying colorectal neoplasia. However, the link between intestinal or fecal colonization with SBSEC isolates or antibody responses to SBSEC members and colorectal cancer is not thoroughly investigated in the literature. Methods We searched the PubMed, EMBASE, and Web of Science databases for case-control studies as well as retrospective or prospective cohort studies reporting an association between SBSEC bacteria and colorectal neoplasia. Results We identified 22 studies (15 case-control and 7 cohort) that met our inclusion criteria. Among the cohort studies, patients with SBSEC bacteremia were 3.73 times more likely to have underlying colorectal cancer compared with individuals with no bacteremia (relative risk [RR], 3.73; 95% CI, 2.79-5.01), whereas the risk of underlying colorectal adenoma in patients with SBSEC bacteremia was not significantly increased (RR, 5.00; 95% CI, 0.83-30.03). In case-control studies, patients with colorectal cancer were 2.27 times more likely to have evidence of intestinal or fecal colonization with SBSEC isolates (odds ratio [OR], 2.27; 95% CI, 1.11-4.62) and immunoglobulin G (IgG) antibody responses to SBSEC antigens (OR, 2.27; 95% CI, 1.06-4.86) compared with controls. Patients with colorectal adenoma were not more likely to be colonized with SBSEC isolates compared with controls (OR, 1.12; 95% CI, 0.55-2.25). Conclusions Apart from the well-established association of SBSEC bacteremia and underlying colorectal cancer, intestinal or fecal colonization with SBSEC isolates and IgG antibody responses to SBSEC antigens were higher in patients with colorectal cancer compared with controls. Neither bacteremia from SBSEC isolates nor colonization with SBSEC bacteria was associated with underlying colorectal adenoma.
Collapse
Affiliation(s)
- Konstantinos Ouranos
- Department of Medicine, Houston Methodist Research Institute, Houston, Texas, USA
| | - Angeliki Gardikioti
- Herbert Irving Comprehensive Cancer Center, Columbia University Irving Medical Center, New York, New York, USA
| | | | - Evangelia K Mylona
- Department of Medicine, Houston Methodist Research Institute, Houston, Texas, USA
| | - Fadi Shehadeh
- Department of Medicine, Houston Methodist Research Institute, Houston, Texas, USA
- School of Electrical and Computer Engineering, National Technical University of Athens, Athens, Greece
| | - Eleftherios Mylonakis
- Department of Medicine, Houston Methodist Research Institute, Houston, Texas, USA
- Weill Cornell Medicine, New York, New York, USA
| |
Collapse
|
21
|
Pfau M, Degregori S, Johnson G, Tennenbaum SR, Barber PH, Philson CS, Blumstein DT. The social microbiome: gut microbiome diversity and abundance are negatively associated with sociality in a wild mammal. ROYAL SOCIETY OPEN SCIENCE 2023; 10:231305. [PMID: 37830026 PMCID: PMC10565414 DOI: 10.1098/rsos.231305] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/22/2023] [Accepted: 09/18/2023] [Indexed: 10/14/2023]
Abstract
The gut microbiome has a well-documented relationship with host fitness. Greater microbial diversity and abundance of specific microbes have been associated with improved fitness outcomes. Intestinal microbes also may be associated with patterns of social behaviour. However, these associations have been largely studied in captive animal models; we know less about microbiome composition as a potential driver of individual social behaviour and position in the wild. We used linear mixed models to quantify the relationship between fecal microbial composition, diversity and social network traits in a wild population of yellow-bellied marmots (Marmota flaviventer). We focused our analyses on microbes previously linked to sociability and neurobehavioural alterations in captive rodents, primates and humans. Using 5 years of data, we found microbial diversity (Shannon-Wiener and Faith's phylogenetic diversity) has a modest yet statistically significant negative relationship with the number of social interactions an individual engaged in. We also found a negative relationship between Streptococcus spp. relative abundance and two social network measures (clustering coefficient and embeddedness) that quantify an individual's position relative to others in their social group. These findings highlight a potentially consequential relationship between microbial composition and social behaviour in a wild social mammal.
Collapse
Affiliation(s)
- Madison Pfau
- Department of Ecology and Evolutionary Biology, University of California, 621 Young Drive South, Los Angeles, CA 90095-1606, USA
| | - Sam Degregori
- Department of Ecology and Evolutionary Biology, University of California, 621 Young Drive South, Los Angeles, CA 90095-1606, USA
| | - Gina Johnson
- Department of Ecology and Evolutionary Biology, University of California, 621 Young Drive South, Los Angeles, CA 90095-1606, USA
| | - Stavi R. Tennenbaum
- Rocky Mountain Biological Laboratory, PO Box 519, Crested Butte, CO 81224, USA
- Department of Ecology and Evolutionary Biology, Princeton University, Princeton, NJ 08544, USA
| | - Paul H. Barber
- Department of Ecology and Evolutionary Biology, University of California, 621 Young Drive South, Los Angeles, CA 90095-1606, USA
| | - Conner S. Philson
- Department of Ecology and Evolutionary Biology, University of California, 621 Young Drive South, Los Angeles, CA 90095-1606, USA
- Rocky Mountain Biological Laboratory, PO Box 519, Crested Butte, CO 81224, USA
| | - Daniel T. Blumstein
- Department of Ecology and Evolutionary Biology, University of California, 621 Young Drive South, Los Angeles, CA 90095-1606, USA
- Rocky Mountain Biological Laboratory, PO Box 519, Crested Butte, CO 81224, USA
| |
Collapse
|
22
|
Kumar A, Chinnathambi S, Kumar M, Pandian GN. Food Intake and Colorectal Cancer. Nutr Cancer 2023; 75:1710-1742. [PMID: 37572059 DOI: 10.1080/01635581.2023.2242103] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2023] [Revised: 07/21/2023] [Accepted: 07/21/2023] [Indexed: 08/14/2023]
Abstract
Colorectal cancer (CRC) accounts for considerable mortalities worldwide. Several modifiable risk factors, including a high intake of certain foods and beverages can cause CRC. This review summarized the latest findings on the intake of various foods, nutrients, ingredients, and beverages on CRC development, with the objective of classifying them as a risk or protective factor. High-risk food items include red meat, processed meat, eggs, high alcohol consumption, sugar-sweetened beverages, and chocolate candy. Food items that are protective include milk, cheese and other dairy products, fruits, vegetables (particularly cruciferous), whole grains, legumes (particularly soy beans), fish, tea (particularly green tea), coffee (particularly among Asians), chocolate, and moderate alcohol consumption (particularly wine). High-risk nutrients/ingredients include dietary fat from animal sources and industrial trans-fatty acids (semisolid/solid hydrogenated oils), synthetic food coloring, monosodium glutamate, titanium dioxide, and high-fructose corn sirup. Nutrients/ingredients that are protective include dietary fiber (particularly from cereals), fatty acids (medium-chain and odd-chain saturated fatty acids and highly unsaturated fatty acids, including omega-3 polyunsaturated fatty acids), calcium, polyphenols, curcumin, selenium, zinc, magnesium, and vitamins A, C, D, E, and B (particularly B6, B9, and B2). A combination of micronutrients and multi-vitamins also appears to be beneficial in reducing recurrent adenoma incidence.
Collapse
Affiliation(s)
- Akshaya Kumar
- Institute for Integrated Cell-Material Sciences (WPI-ICeMS), Institute for Advanced Study, Kyoto University, Kyoto, Japan
| | - Shanmugavel Chinnathambi
- Institute for Integrated Cell-Material Sciences (WPI-ICeMS), Institute for Advanced Study, Kyoto University, Kyoto, Japan
| | | | - Ganesh N Pandian
- Institute for Integrated Cell-Material Sciences (WPI-ICeMS), Institute for Advanced Study, Kyoto University, Kyoto, Japan
| |
Collapse
|
23
|
Thoda C, Touraki M. Probiotic-Derived Bioactive Compounds in Colorectal Cancer Treatment. Microorganisms 2023; 11:1898. [PMID: 37630458 PMCID: PMC10456921 DOI: 10.3390/microorganisms11081898] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Revised: 07/14/2023] [Accepted: 07/24/2023] [Indexed: 08/27/2023] Open
Abstract
Colorectal cancer (CRC) is a multifactorial disease with increased morbidity and mortality rates globally. Despite advanced chemotherapeutic approaches for the treatment of CRC, low survival rates due to the regular occurrence of drug resistance and deleterious side effects render the need for alternative anticancer agents imperative. Accumulating evidence supports that gut microbiota imbalance precedes the establishment of carcinogenesis, subsequently contributing to cancer progression and response to anticancer therapy. Manipulation of the gut microbiota composition via the administration of probiotic-derived bioactive compounds has gradually attained the interest of scientific communities as a novel therapeutic strategy for CRC. These compounds encompass miscellaneous metabolic secreted products of probiotics, including bacteriocins, short-chain fatty acids (SCFAs), lactate, exopolysaccharides (EPSs), biosurfactants, and bacterial peptides, with profound anti-inflammatory and antiproliferative properties. This review provides a classification of postbiotic types and a comprehensive summary of the current state of research on their biological role against CRC. It also describes how their intricate interaction with the gut microbiota regulates the proper function of the intestinal barrier, thus eliminating gut dysbiosis and CRC development. Finally, it discusses the future perspectives in precision-medicine approaches as well as the challenges of their synthesis and optimization of administration in clinical studies.
Collapse
Affiliation(s)
| | - Maria Touraki
- Laboratory of General Biology, Department of Genetics, Development and Molecular Biology, School of Biology, Faculty of Sciences, Aristotle University of Thessaloniki, 54 124 Thessaloniki, Greece;
| |
Collapse
|
24
|
Pös O, Styk J, Buglyó G, Zeman M, Lukyova L, Bernatova K, Hrckova Turnova E, Rendek T, Csók Á, Repiska V, Nagy B, Szemes T. Cross-Kingdom Interaction of miRNAs and Gut Microbiota with Non-Invasive Diagnostic and Therapeutic Implications in Colorectal Cancer. Int J Mol Sci 2023; 24:10520. [PMID: 37445698 DOI: 10.3390/ijms241310520] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2023] [Revised: 06/15/2023] [Accepted: 06/20/2023] [Indexed: 07/15/2023] Open
Abstract
Colorectal cancer (CRC) has one of the highest incidences among all types of malignant diseases, affecting millions of people worldwide. It shows slow progression, making it preventable. However, this is not the case due to shortcomings in its diagnostic and management procedure and a lack of effective non-invasive biomarkers for screening. Here, we discuss CRC-associated microRNAs (miRNAs) and gut microbial species with potential as CRC diagnostic and therapy biomarkers. We provide rich evidence of cross-kingdom miRNA-mediated interactions between the host and gut microbiome. miRNAs have emerged with the ability to shape the composition and dynamics of gut microbiota. Intestinal microbes can uptake miRNAs, which in turn influence microbial growth and provide the ability to regulate the abundance of various microbial species. In the context of CRC, targeting miRNAs could aid in manipulating the balance of the microbiota. Our findings suggest the need for correlation analysis between the composition of the gut microbiome and the miRNA expression profile.
Collapse
Affiliation(s)
- Ondrej Pös
- Comenius University Science Park, 841 04 Bratislava, Slovakia
- Geneton Ltd., 841 04 Bratislava, Slovakia
| | - Jakub Styk
- Comenius University Science Park, 841 04 Bratislava, Slovakia
- Geneton Ltd., 841 04 Bratislava, Slovakia
- Institute of Medical Biology, Genetics and Clinical Genetics, Faculty of Medicine, Comenius University, 811 08 Bratislava, Slovakia
| | - Gergely Buglyó
- Department of Human Genetics, Faculty of Medicine, University of Debrecen, 4032 Debrecen, Hungary
| | - Michal Zeman
- Comenius University Science Park, 841 04 Bratislava, Slovakia
| | - Lydia Lukyova
- Department of Molecular Biology, Faculty of Natural Sciences, Comenius University, 842 05 Bratislava, Slovakia
| | - Kamila Bernatova
- Department of Molecular Biology, Faculty of Natural Sciences, Comenius University, 842 05 Bratislava, Slovakia
| | - Evelina Hrckova Turnova
- Comenius University Science Park, 841 04 Bratislava, Slovakia
- Slovgen Ltd., 841 04 Bratislava, Slovakia
| | - Tomas Rendek
- Institute of Medical Biology, Genetics and Clinical Genetics, Faculty of Medicine, Comenius University, 811 08 Bratislava, Slovakia
| | - Ádám Csók
- Department of Human Genetics, Faculty of Medicine, University of Debrecen, 4032 Debrecen, Hungary
| | - Vanda Repiska
- Institute of Medical Biology, Genetics and Clinical Genetics, Faculty of Medicine, Comenius University, 811 08 Bratislava, Slovakia
- Medirex Group Academy, n.p.o., 949 05 Nitra, Slovakia
| | - Bálint Nagy
- Comenius University Science Park, 841 04 Bratislava, Slovakia
- Department of Human Genetics, Faculty of Medicine, University of Debrecen, 4032 Debrecen, Hungary
| | - Tomas Szemes
- Comenius University Science Park, 841 04 Bratislava, Slovakia
- Geneton Ltd., 841 04 Bratislava, Slovakia
- Department of Molecular Biology, Faculty of Natural Sciences, Comenius University, 842 05 Bratislava, Slovakia
| |
Collapse
|
25
|
Li Y, Liu G, Gong R, Xi Y. Gut Microbiome Dysbiosis in Patients with Endometrial Cancer vs. Healthy Controls Based on 16S rRNA Gene Sequencing. Curr Microbiol 2023; 80:239. [PMID: 37294364 DOI: 10.1007/s00284-023-03361-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2022] [Accepted: 06/02/2023] [Indexed: 06/10/2023]
Abstract
Metabolic diseases like obesity, diabetes, and hypertension are considered major risk factors associated with endometrial cancer. Considering that an imbalance in the gut microbiome may lead to metabolic alterations, we hypothesized that alteration in the gut microbioma might be an indirect factor in the development of endometrial cancer. Our aim was to profile the gut microbiota of patients with endometrial cancer compared with healthy controls in this study. Thus, we used 16S rRNA high-throughput gene sequencing on the Illumina NovaSeq platform to profile microbial communities. Fecal samples were collected from 33 endometrial cancer patients (EC group) and 32 healthy controls (N group) between February 2021 and July 2021. The total numbers of operational taxonomic units (OTUs) in the N and EC groups were 28,537 and 18,465, respectively, while the number of OTUs shared by the two groups was 4771. This study was the first to report that the alpha diversity of the gut microbiota was significantly reduced in endometrial cancer patients vs. healthy controls. Also, there was a significant difference in the distribution of microbiome between the two groups: the abundance of Firmicutes, Clostridia, Clostridiales, Ruminococcaceae, Faecalibacterium, and Gemmiger_formicis decreased, while that of Proteobacteria, Gammaproteobacteria, Enterobacteriales, Enterobacteriaceae and Shigella increased significantly in the EC group vs. healthy controls (all p < 0.05). The predominant intestinal microbiota of the endometrial cancer patients was Proteobacteria, Gammaproteobacteria, Enterobacteriales, Enterobacteriaceae, and Shigella. These results imply that adjusting the composition of the gut microbiota and maintaining microbiota homeostasis may be an effective strategy for preventing and treating endometrial cancer.
Collapse
Affiliation(s)
- Yue Li
- Department of Obstetrics and Gynecology, Dalian Municipal Women and Children's Medical Center (Group), No.1, Dunhuang Road, Shahekou District, Dalian, Liaoning, 116033, P.R. China
| | - Geng Liu
- Department of Obstetrics and Gynecology, Dalian Municipal Women and Children's Medical Center (Group), No.1, Dunhuang Road, Shahekou District, Dalian, Liaoning, 116033, P.R. China
| | - Runqi Gong
- Department of Obstetrics and Gynecology, Liaoning Provincial Hospital for women and children, Shenyang, Liaoning, 110004, P.R. China
| | - Yong Xi
- Department of Obstetrics and Gynecology, Dalian Municipal Women and Children's Medical Center (Group), No.1, Dunhuang Road, Shahekou District, Dalian, Liaoning, 116033, P.R. China.
| |
Collapse
|
26
|
Park SY, Kwon H, Kim SG, Park SC, Kim JH, Seo S. Characterization of two lytic bacteriophages, infecting Streptococcus bovis/equinus complex (SBSEC) from Korean ruminant. Sci Rep 2023; 13:9110. [PMID: 37277552 DOI: 10.1038/s41598-023-36306-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2023] [Accepted: 05/31/2023] [Indexed: 06/07/2023] Open
Abstract
Streptococcus bovis/equinus complex (SBSEC) is one of the most important lactic acid-producing rumen bacteria causing subacute ruminal acidosis. Despite the significance of the ruminal bacteria, lytic bacteriophages (phages) capable of infecting SBSEC in the rumen have been rarely characterized. Hence, we describe the biological and genomic characteristics of two lytic phages (designated as vB_SbRt-pBovineB21 and vB_SbRt-pBovineS21) infecting various SBSEC species, including the newly reported S. ruminicola. The isolated SBSEC phages were morphologically similar to Podoviridae and could infect other genera of lactic acid-producing bacteria, including Lactococcus and Lactobacillus. Additionally, they showed high thermal- and pH-stability, and those characteristics induce strong adaptation to the ruminal environment, such as the low pH found in subacute ruminal acidosis. Genome-based phylogeny revealed that both phages were related to Streptococcus phage C1 in the Fischettivirus. However, they had a lower nucleotide similarity and distinct genomic arrangements than phage C1. The phage bacteriolytic activity was evaluated using S. ruminicola, and the phages efficiently inhibited planktonic bacterial growth. Moreover, both phages could prevent bacterial biofilms of various SBSEC strains and other lactic acid-producing bacteria in vitro. Thus, the newly isolated two SBSEC phages were classified as new Fischettivirus members and could be considered as potential biocontrol agents against ruminal SBSEC bacteria and their biofilms.
Collapse
Affiliation(s)
- Seon Young Park
- Division of Animal and Dairy Sciences, College of Agriculture and Life Science, Chungnam National University, Daejeon, 34134, South Korea
| | - Hyemin Kwon
- Department of Microbiology and Molecular Biology, College of Bioscience and Biotechnology, Chungnam National University, Daejeon, 34134, South Korea
| | - Sang Guen Kim
- Laboratory of Aquatic Biomedicine, College of Veterinary Medicine and Research Institute for Veterinary Science, Seoul National University, Seoul, 08826, South Korea
| | - Se Chang Park
- Laboratory of Aquatic Biomedicine, College of Veterinary Medicine and Research Institute for Veterinary Science, Seoul National University, Seoul, 08826, South Korea
| | - Ji Hyung Kim
- Department of Food Science and Biotechnology, College of Bionano Technology, Gachon University, Seongnam, 13120, South Korea.
| | - Seongwon Seo
- Division of Animal and Dairy Sciences, College of Agriculture and Life Science, Chungnam National University, Daejeon, 34134, South Korea.
| |
Collapse
|
27
|
Kannampuzha S, Gopalakrishnan AV, Padinharayil H, Alappat RR, Anilkumar KV, George A, Dey A, Vellingiri B, Madhyastha H, Ganesan R, Ramesh T, Jayaraj R, Prabakaran DS. Onco-Pathogen Mediated Cancer Progression and Associated Signaling Pathways in Cancer Development. Pathogens 2023; 12:770. [PMID: 37375460 DOI: 10.3390/pathogens12060770] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2023] [Revised: 05/20/2023] [Accepted: 05/23/2023] [Indexed: 06/29/2023] Open
Abstract
Infection with viruses, bacteria, and parasites are thought to be the underlying cause of about 8-17% of the world's cancer burden, i.e., approximately one in every five malignancies globally is caused by an infectious pathogen. Oncogenesis is thought to be aided by eleven major pathogens. It is crucial to identify microorganisms that potentially act as human carcinogens and to understand how exposure to such pathogens occur as well as the following carcinogenic pathways they induce. Gaining knowledge in this field will give important suggestions for effective pathogen-driven cancer care, control, and, ultimately, prevention. This review will mainly focus on the major onco-pathogens and the types of cancer caused by them. It will also discuss the major pathways which, when altered, lead to the progression of these cancers.
Collapse
Affiliation(s)
- Sandra Kannampuzha
- Department of Biomedical Sciences, School of Biosciences and Technology, Vellore Institute of Technology (VIT), Vellore 632014, India
| | - Abilash Valsala Gopalakrishnan
- Department of Biomedical Sciences, School of Biosciences and Technology, Vellore Institute of Technology (VIT), Vellore 632014, India
| | - Hafiza Padinharayil
- Jubilee Centre for Medical Research, Jubilee Mission Medical College and Research Institute, Thrissur 680596, India
| | - Reema Rose Alappat
- Jubilee Centre for Medical Research, Jubilee Mission Medical College and Research Institute, Thrissur 680596, India
- Post Graduate and Research Department of Zoology, Maharajas College, Ernakulam 682011, India
| | - Kavya V Anilkumar
- Jubilee Centre for Medical Research, Jubilee Mission Medical College and Research Institute, Thrissur 680596, India
- Post Graduate and Research Department of Zoology, Maharajas College, Ernakulam 682011, India
| | - Alex George
- Jubilee Centre for Medical Research, Jubilee Mission Medical College and Research Institute, Thrissur 680596, India
| | - Abhijit Dey
- Department of Life Sciences, Presidency University, Kolkata 700073, India
| | - Balachandar Vellingiri
- Stem Cell and Regenerative Medicine/Translational Research, Department of Zoology, School of Basic Sciences, Central University of Punjab (CUPB), Bathinda 151401, India
| | - Harishkumar Madhyastha
- Department of Cardiovascular Physiology, Faculty of Medicine, University of Miyazaki, Miyazaki 889-1692, Japan
| | - Raja Ganesan
- Institute for Liver and Digestive Diseases, College of Medicine, Hallym University, Chuncheon 24252, Republic of Korea
| | - Thiyagarajan Ramesh
- Department of Basic Medical Sciences, College of Medicine, Prince Sattam bin Abdulaziz University, P.O. Box 173, Al-Kharj 11942, Saudi Arabia
| | - Rama Jayaraj
- Jindal Institute of Behavioral Sciences (JIBS), Jindal Global Institution of Eminence Deemed to Be University, Sonipat 131001, India
- Director of Clinical Sciences, Northern Territory Institute of Research and Training, Darwin, NT 0909, Australia
| | - D S Prabakaran
- Department of Radiation Oncology, College of Medicine, Chungbuk National University, Chungdae-ro 1, Seowon-gu, Cheongju 28644, Republic of Korea
- Department of Biotechnology, Ayya Nadar Janaki Ammal College, Srivilliputhur Main Road, Sivakasi 626124, India
| |
Collapse
|
28
|
Nouri Z, Choi SW, Choi IJ, Ryu KW, Woo SM, Park SJ, Lee WJ, Choi W, Jung YS, Myung SK, Lee JH, Park JY, Praveen Z, Woo YJ, Park JH, Kim MK. Exploring Connections between Oral Microbiota, Short-Chain Fatty Acids, and Specific Cancer Types: A Study of Oral Cancer, Head and Neck Cancer, Pancreatic Cancer, and Gastric Cancer. Cancers (Basel) 2023; 15:cancers15112898. [PMID: 37296861 DOI: 10.3390/cancers15112898] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2023] [Revised: 04/25/2023] [Accepted: 05/22/2023] [Indexed: 06/12/2023] Open
Abstract
The association between oral microbiota and cancer development has been a topic of intense research in recent years, with compelling evidence suggesting that the oral microbiome may play a significant role in cancer initiation and progression. However, the causal connections between the two remain a subject of debate, and the underlying mechanisms are not fully understood. In this case-control study, we aimed to identify common oral microbiota associated with several cancer types and investigate the potential mechanisms that may trigger immune responses and initiate cancer upon cytokine secretion. Saliva and blood samples were collected from 309 adult cancer patients and 745 healthy controls to analyze the oral microbiome and the mechanisms involved in cancer initiation. Machine learning techniques revealed that six bacterial genera were associated with cancer. The abundance of Leuconostoc, Streptococcus, Abiotrophia, and Prevotella was reduced in the cancer group, while abundance of Haemophilus and Neisseria enhanced. G protein-coupled receptor kinase, H+-transporting ATPase, and futalosine hydrolase were found significantly enriched in the cancer group. Total short-chain fatty acid (SCFAs) concentrations and free fatty acid receptor 2 (FFAR2) expression levels were greater in the control group when compared with the cancer group, while serum tumor necrosis factor alpha induced protein 8 (TNFAIP8), interleukin-6 (IL6), and signal transducer and activator of transcription 3 (STAT3) levels were higher in the cancer group when compared with the control group. These results suggested that the alterations in the composition of oral microbiota can contribute to a reduction in SCFAs and FFAR2 expression that may initiate an inflammatory response through the upregulation of TNFAIP8 and the IL-6/STAT3 pathway, which could ultimately increase the risk of cancer onset.
Collapse
Affiliation(s)
- Zahra Nouri
- Cancer Epidemiology Branch, Division of Cancer Epidemiology and Prevention, National Cancer Center, 323 Ilsandong-gu, Goyang-si 10408, Gyeonggi-do, Republic of Korea
| | - Sung Weon Choi
- Oral Oncology Clinic, Research Institute and Hospital, National Cancer Center, 323 Ilsandong-gu, Goyang-si 10408, Gyeonggi-do, Republic of Korea
| | - Il Ju Choi
- Center for Gastric Cancer, National Cancer Center, 323 Ilsandong-gu, Goyang-si 10408, Gyeonggi-do, Republic of Korea
| | - Keun Won Ryu
- Center for Gastric Cancer, National Cancer Center, 323 Ilsandong-gu, Goyang-si 10408, Gyeonggi-do, Republic of Korea
| | - Sang Myung Woo
- Center for Liver and Pancreatobiliary Cancer, National Cancer Center, 323 Ilsandong-gu, Goyang-si 10408, Gyeonggi-do, Republic of Korea
| | - Sang-Jae Park
- Center for Liver and Pancreatobiliary Cancer, National Cancer Center, 323 Ilsandong-gu, Goyang-si 10408, Gyeonggi-do, Republic of Korea
| | - Woo Jin Lee
- Center for Liver and Pancreatobiliary Cancer, National Cancer Center, 323 Ilsandong-gu, Goyang-si 10408, Gyeonggi-do, Republic of Korea
| | - Wonyoung Choi
- Center for Rare Cancers, National Cancer Center, 323 Ilsandong-gu, Goyang-si 10408, Gyeonggi-do, Republic of Korea
| | - Yuh-Seog Jung
- Department of Otorhinolaryngology, National Cancer Center, 323 Ilsandong-gu, Goyang-si 10408, Gyeonggi-do, Republic of Korea
| | - Seung-Kwon Myung
- Department of Cancer AI & Digital Health, National Cancer Center Graduate School of Cancer Science and Policy, 323 Ilsandong-gu, Goyang-si 10408, Gyeonggi-do, Republic of Korea
| | - Jong-Ho Lee
- Oral Oncology Clinic, Research Institute and Hospital, National Cancer Center, 323 Ilsandong-gu, Goyang-si 10408, Gyeonggi-do, Republic of Korea
| | - Joo-Yong Park
- Oral Oncology Clinic, Research Institute and Hospital, National Cancer Center, 323 Ilsandong-gu, Goyang-si 10408, Gyeonggi-do, Republic of Korea
| | - Zeba Praveen
- Cancer Epidemiology Branch, Division of Cancer Epidemiology and Prevention, National Cancer Center, 323 Ilsandong-gu, Goyang-si 10408, Gyeonggi-do, Republic of Korea
| | - Yun Jung Woo
- Cancer Epidemiology Branch, Division of Cancer Epidemiology and Prevention, National Cancer Center, 323 Ilsandong-gu, Goyang-si 10408, Gyeonggi-do, Republic of Korea
| | - Jin Hee Park
- Cancer Epidemiology Branch, Division of Cancer Epidemiology and Prevention, National Cancer Center, 323 Ilsandong-gu, Goyang-si 10408, Gyeonggi-do, Republic of Korea
| | - Mi Kyung Kim
- Cancer Epidemiology Branch, Division of Cancer Epidemiology and Prevention, National Cancer Center, 323 Ilsandong-gu, Goyang-si 10408, Gyeonggi-do, Republic of Korea
| |
Collapse
|
29
|
Narayanan A, Söder B, Meurman J, Lundmark A, Hu YOO, Neogi U, Yucel-Lindberg T. Composition of subgingival microbiota associated with periodontitis and diagnosis of malignancy-a cross-sectional study. Front Microbiol 2023; 14:1172340. [PMID: 37426027 PMCID: PMC10325785 DOI: 10.3389/fmicb.2023.1172340] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2023] [Accepted: 05/02/2023] [Indexed: 07/11/2023] Open
Abstract
Periodontitis is one of the world's most prevalent infectious conditions, affecting between 25 and 40% of the adult population. It is a consequence of the complex interactions between periodontal pathogens and their products, which trigger the host inflammatory response, chronic inflammation, and tissue destruction. Chronic systemic low-grade inflammation is involved in numerous diseases, and it is also known that long-lasting inflammation and chronic infections predispose one to cancer. Here, we characterized and compared the subgingival microbiota associated with periodontitis and diagnosis of malignancy in a longitudinal 10-year follow-up study. The study was conducted on 50 patients with periodontitis and 40 periodontally healthy individuals. The recorded clinical oral health parameters were periodontal attachment loss (AL), bleeding on probing (BOP), gingival index (GI), probing depth (PD), and plaque index (PI). Subgingival plaque was collected from each participant, from which DNA was extracted, and 16S rRNA gene amplicon sequencing performed. Cancer diagnoses data were collected between the years 2008-2018 from the Swedish Cancer Registry. The participants were categorized based on having cancer at the time of sample collection (CSC), having developed cancer later (DCL), and controls without any cancer. The most abundant phyla across all 90 samples were Actinobacteria, Proteobacteria, Firmicutes, Bacteroidetes, and Fusobacteria. At the genus level, Treponema, Fretibacterium, and Prevotella were significantly more abundant in samples of periodontitis patients compared to non-periodontitis individuals. With regard to samples of cancer patients, Corynebacterium and Streptococcus were more abundant in the CSC group; Prevotella were more abundant in the DCL group; and Rothia, Neisseria, and Capnocytophaga were more abundant in the control group. In the CSC group, we also found that the presence of periodontal inflammation, in terms of BOP, GI, and PLI, significantly correlated with species belonging to the genera Prevotella, Treponema, and Mycoplasma. Our results revealed that several subgingival genera were differentially enriched among the studied groups. These findings underscore the need for further research to fully understand the role that oral pathogens may play in the development of cancer.
Collapse
Affiliation(s)
- Aswathy Narayanan
- Division of Clinical Microbiology, Department of Laboratory Medicine, ANA Futura, Karolinska Institutet, Stockholm, Sweden
- Division of Infectious Diseases, Department of Medicine Huddinge, Karolinska Institutet, Stockholm, Sweden
| | - Birgitta Söder
- Division of Periodontology, Department of Dental Medicine, Karolinska Institutet, Huddinge, Sweden
| | - Jukka Meurman
- Department of Oral and Maxillofacial Diseases, University of Helsinki and Helsinki University Hospital, Helsinki, Finland
| | - Anna Lundmark
- Division of Pediatric Dentistry, Department of Dental Medicine, Karolinska Institutet, Huddinge, Sweden
| | - Yue O. O. Hu
- Department of Microbiology, Tumor and Cell Biology, Centre for Translational Microbiome Research, Karolinska Institutet, Stockholm, Sweden
- School of Environmental Science and Engineering, Hubei Polytechnic University, Huangshi, China
| | - Ujjwal Neogi
- The Systems Virology Lab, Division of Clinical Microbiology, Department of Laboratory Medicine, ANA Futura, Karolinska Institutet, Stockholm, Sweden
| | - Tülay Yucel-Lindberg
- Division of Pediatric Dentistry, Department of Dental Medicine, Karolinska Institutet, Huddinge, Sweden
| |
Collapse
|
30
|
Taylor JC, Kumar R, Xu J, Xu Y. A pathogenicity locus of Streptococcus gallolyticus subspecies gallolyticus. Sci Rep 2023; 13:6291. [PMID: 37072463 PMCID: PMC10113328 DOI: 10.1038/s41598-023-33178-z] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2022] [Accepted: 04/08/2023] [Indexed: 05/03/2023] Open
Abstract
Streptococcus gallolyticus subspecies gallolyticus (Sgg) is known to be strongly associated with colorectal cancer (CRC). Recent functional studies further demonstrated that Sgg actively stimulates CRC cell proliferation and promotes the development of colon tumors. However, the Sgg factors important for the pro-proliferative and pro-tumor activities of Sgg remain unclear. Here, we identified a chromosomal locus in Sgg strain TX20005. Deletion of this locus significantly reduced Sgg adherence to CRC cells and abrogated the ability of Sgg to stimulate CRC cell proliferation. Thus, we designate this locus as the Sgg pathogenicity-associated region (SPAR). More importantly, we found that SPAR is important for Sgg pathogenicity in vivo. In a gut colonization model, mice exposed to the SPAR deletion mutant showed significantly reduced Sgg load in the colonic tissues and fecal materials, suggesting that SPAR contributes to the colonization capacity of Sgg. In a mouse model of CRC, deletion of SPAR abolished the ability of Sgg to promote the development of colon tumors growth. Taken together, these results highlight SPAR as a critical pathogenicity determinant of Sgg.
Collapse
Affiliation(s)
- John Culver Taylor
- Center for Infectious and Inflammatory Diseases, Texas A&M Health Science Center Institute of Biosciences of Technology, Houston, TX, USA
| | - Ritesh Kumar
- Center for Infectious and Inflammatory Diseases, Texas A&M Health Science Center Institute of Biosciences of Technology, Houston, TX, USA
- IFF Health and Biosciences, Madison, USA
| | - Juan Xu
- Center for Infectious and Inflammatory Diseases, Texas A&M Health Science Center Institute of Biosciences of Technology, Houston, TX, USA
| | - Yi Xu
- Center for Infectious and Inflammatory Diseases, Texas A&M Health Science Center Institute of Biosciences of Technology, Houston, TX, USA.
- Department of Microbiology and Molecular Genetics, McGovern Medical School, UT Health, Houston, TX, USA.
- Department of Microbial Pathogenesis and Immunology, College of Medicine, Texas A&M Health Science Center, Texas, USA.
| |
Collapse
|
31
|
Alharfi S, Furey N, Al-Shakhshir H, Ghannoum M, Cooper GS. Fecal Microbiome Associated with Both Colon Adenomas and Lifetime Colorectal Cancer Risk. Dig Dis Sci 2023; 68:1492-1499. [PMID: 35986796 DOI: 10.1007/s10620-022-07673-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/17/2022] [Accepted: 08/12/2022] [Indexed: 12/09/2022]
Abstract
BACKGROUND Increasing data indicates the gut flora including bacteria and fungi combined with environmental factors are important in the pathogenesis of colorectal cancer (CRC). Understanding differences in the microbiome in patients with colon neoplasia will foster the development of biomarkers for early detection. AIMS Determine the association of microbiome with presence of adenomas and predicted CRC risk. METHODS In subjects referred for colonoscopy, the NCI CRC risk assessment tool was completed and stool for microbiome analysis as well as fecal immunochemical test (FIT) were collected. We calculated the microbiome alpha diversity using the Shannon index as well as individual bacterial and fungal species. RESULTS Among 34 patients, we identified 10 with one or more adenomas. Only 2 patients were FIT positive. The median predicted lifetime CRC risk was 2.75% and the prevalence of adenoma was higher in the fourth quartile (P < 0.001). The measured alpha diversity was somewhat higher in patients with adenomas (P = 0.07). We identified 4 bacterial species with an increased relative abundance among patients with adenomas [P < 0.5]. Lifetime CRC risk was associated with 2 specific bacterial species, P. distasonis & E. hermannii [P = 0.05 & 0.09, respectively]. No associations were seen with fungal species and adenoma prevalence or lifetime CRC risk. CONCLUSIONS In addition to a strong correlation of predicted CRC risk and adenoma prevalence, we also found important differences in specific bacterial species and both adenoma prevalence and CRC risk. Larger trials are needed to potentially implement further data in the clinical setting.
Collapse
Affiliation(s)
- Sarah Alharfi
- Department of Medicine, Case Western Reserve University School of Medicine, Cleveland, OH, USA
| | - Nancy Furey
- Department of Medicine, Case Western Reserve University School of Medicine, Cleveland, OH, USA
- Division of Gastroenterology, University Hospitals Cleveland Medical Center, Cleveland, OH, 44106-5066, USA
| | - Hilmi Al-Shakhshir
- Department of Dermatology, University Hospitals Cleveland Medical Center, Cleveland, OH, USA
| | - Mahmoud Ghannoum
- Department of Dermatology, University Hospitals Cleveland Medical Center, Cleveland, OH, USA
- The Case Comprehensive Cancer Center, Case Western Reserve University School of Medicine, Cleveland, OH, USA
| | - Gregory S Cooper
- Department of Medicine, Case Western Reserve University School of Medicine, Cleveland, OH, USA.
- The Case Comprehensive Cancer Center, Case Western Reserve University School of Medicine, Cleveland, OH, USA.
- Division of Gastroenterology, University Hospitals Cleveland Medical Center, Cleveland, OH, 44106-5066, USA.
| |
Collapse
|
32
|
Ma J, Wang G, Ding X, Wang F, Zhu C, Rong Y. Carbon-Based Nanomaterials as Drug Delivery Agents for Colorectal Cancer: Clinical Preface to Colorectal Cancer Citing Their Markers and Existing Theranostic Approaches. ACS OMEGA 2023; 8:10656-10668. [PMID: 37008124 PMCID: PMC10061522 DOI: 10.1021/acsomega.2c06242] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/27/2022] [Accepted: 02/23/2023] [Indexed: 06/19/2023]
Abstract
Colorectal cancer (CRC) is one of the universally established cancers with a higher incidence rate. Novel progression toward cancer prevention and cancer care among countries in transition should be considered seriously for controlling CRC. Hence, several cutting edge technologies are ongoing for high performance cancer therapeutics over the past few decades. Several drug-delivery systems of the nanoregime are relatively new in this arena compared to the previous treatment modes such as chemo- or radiotherapy to mitigate cancer. Based on this background, the epidemiology, pathophysiology, clinical presentation, treatment possibilities, and theragnostic markers for CRC were revealed. Since the use of carbon nanotubes (CNTs) for the management of CRC has been less studied, the present review analyzes the preclinical studies on the application of carbon nanotubes for drug delivery and CRC therapy owing to their inherent properties. It also investigates the toxicity of CNTs on normal cells for safety testing and the clinical use of carbon nanoparticles (CNPs) for tumor localization. To conclude, this review recommends the clinical application of carbon-based nanomaterials further for the management of CRC in diagnosis and as carriers or therapeutic adjuvants.
Collapse
Affiliation(s)
- Jiheng Ma
- Department
of Oncology, Danyang Hospital of Traditional
Chinese Medicine, Zhenjiang 212300, Jiangsu Province, China
| | - Guofang Wang
- Department
of Oncology, Danyang Hospital of Traditional
Chinese Medicine, Zhenjiang 212300, Jiangsu Province, China
| | - Xiaoyu Ding
- Department
of Oncology, Danyang Hospital of Traditional
Chinese Medicine, Zhenjiang 212300, Jiangsu Province, China
| | - Fulin Wang
- Department
of Oncology, Danyang Hospital of Traditional
Chinese Medicine, Zhenjiang 212300, Jiangsu Province, China
| | - Chunning Zhu
- Department
of Oncology, Danyang Hospital of Traditional
Chinese Medicine, Zhenjiang 212300, Jiangsu Province, China
| | - Yunxia Rong
- Department
of Oncology, Danyang Hospital of Traditional
Chinese Medicine, Zhenjiang 212300, Jiangsu Province, China
| |
Collapse
|
33
|
Peng X, Yao S, Huang J, Zhao Y, Chen H, Chen L, Yu Z. Alterations in bacterial community dynamics from noncancerous to Gastric cancer. Front Microbiol 2023; 14:1138928. [PMID: 36970687 PMCID: PMC10034189 DOI: 10.3389/fmicb.2023.1138928] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2023] [Accepted: 02/20/2023] [Indexed: 03/12/2023] Open
Abstract
Gastric microbiome has been shown to contribute to gastric carcinogenesis, understanding how alterations in gastric microbiome is helpful to the prevention and treatment of gastric cancer (GC). However, few studies have focused on the change of microbiome during the gastric carcinogenesis. In this study, the microbiome of gastric juice samples from healthy control (HC), gastric precancerous lesions (GPL) and gastric cancer (GC) was investigated by 16S rRNA gene sequencing. Our results showed that the alpha diversity of patients with GC was significantly lower than other groups. Compared to other groups, some genera in GC group were shown to be up-regulated (e.g., Lautropia and Lactobacillus) and down-regulated (e.g., Peptostreptococcus and Parvimonas). More importantly, the emergence of Lactobacillus was closely related to the occurrence and development of GC. Moreover, the microbial interactions and networks in GPL exhibited higher connectivity, complexity and lower clustering property, while GC showed the opposite trend. Taken together, we suggest that changes in the gastric microbiome are associated with GC and perform a key function in maintaining the tumor microenvironment. Therefore, our findings will provide new ideas and references for the treatment of GC.
Collapse
Affiliation(s)
- Xuan Peng
- Department of Microbiology, School of Basic Medical Science, Central South University, Changsha, China
| | - Siqi Yao
- Department of Microbiology, School of Basic Medical Science, Central South University, Changsha, China
| | - Jing Huang
- Department of Medical Parasitology, School of Basic Medical Science, Central South University, Changsha, China
| | - Yiming Zhao
- Department of Microbiology, School of Basic Medical Science, Central South University, Changsha, China
| | - Hao Chen
- Department of Medical Parasitology, School of Basic Medical Science, Central South University, Changsha, China
| | - Liyu Chen
- Department of Microbiology, School of Basic Medical Science, Central South University, Changsha, China
- Liyu Chen,
| | - Zheng Yu
- Department of Microbiology, School of Basic Medical Science, Central South University, Changsha, China
- *Correspondence: Zheng Yu,
| |
Collapse
|
34
|
Yin L, Li H, Shi L, Chen K, Pan H, Han W. Research advances in nanomedicine applied to the systemic treatment of colorectal cancer. Int J Cancer 2023; 152:807-821. [PMID: 35984398 DOI: 10.1002/ijc.34256] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2021] [Revised: 08/08/2022] [Accepted: 08/09/2022] [Indexed: 01/06/2023]
Abstract
The systematic treatment of colorectal cancer (CRC) still has room for improvement. The efficacy of chemotherapy, that of anti-vascular therapy, and that of immunotherapy have been unsatisfactory. In recent years, nanomaterials have been used as carriers to improve the bioavailability of anticancer drugs. For the treatment of colorectal cancer, nanodrugs increase the possibility of more precise targeted delivery. However, the actual benefits may cover more aspects. Nanocarriers can produce synergistic effects with anticancer drugs, including the scavenging of reactive oxygen species and co-delivery of a variety of drugs. Currently, immunotherapy has very limited clinical applications in CRC. Modified nanocarriers can activate the immune microenvironment, which can be used for staging antigen recognition or the immune response. Cancer vaccines based on nanomaterials and modified immune checkpoint inhibitors have shown therapeutic potential in animal models. Considering the direct or indirect relationship between the intestinal microflora and CRC, a variety of nanodrugs that regulate microbial function have been explored as an anticancer strategy, and the special structure of microorganisms can also be used as a basis for improving the delivery of traditional nanoparticles (NPs). This review summarizes recent research performed on nanocarriers in in vivo and in vitro models and the synergistic anticancer effects of nanocarriers, focusing on the interaction between NPs and the body, resulting in enhanced efficacy and immune activation. Furthermore, this review describes the current trend of NPs used in the treatment of CRC.
Collapse
Affiliation(s)
- Luxi Yin
- Department of Medical Oncology, Sir Run Run Shaw Hospital, College of Medicine, Zhejiang University, Hangzhou, Zhejiang, China
| | - Haozhe Li
- Department of Medical Oncology, Sir Run Run Shaw Hospital, College of Medicine, Zhejiang University, Hangzhou, Zhejiang, China
| | - Linlin Shi
- Department of Medical Oncology, Sir Run Run Shaw Hospital, College of Medicine, Zhejiang University, Hangzhou, Zhejiang, China
| | - Keda Chen
- Shulan International Medical College, Zhejiang Shuren University, Hangzhou, Zhejiang, China
| | - Hongming Pan
- Department of Medical Oncology, Sir Run Run Shaw Hospital, College of Medicine, Zhejiang University, Hangzhou, Zhejiang, China
| | - Weidong Han
- Department of Medical Oncology, Sir Run Run Shaw Hospital, College of Medicine, Zhejiang University, Hangzhou, Zhejiang, China
| |
Collapse
|
35
|
Zhang Z, Bahaji Azami NL, Liu N, Sun M. Research Progress of Intestinal Microecology in the Pathogenesis of Colorectal Adenoma and Carcinogenesis. Technol Cancer Res Treat 2023; 22:15330338221135938. [PMID: 36740990 PMCID: PMC9903042 DOI: 10.1177/15330338221135938] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Colorectal adenoma is a precancerous lesion that may progress to colorectal cancer. Patients with colorectal adenoma had a 4-fold higher risk of developing colorectal malignancy than the rest of the population, with approximately 80% of colorectal cancer originating from colorectal adenoma. Therefore, preventing the occurrence and progression of colorectal adenoma is crucial in reducing the risk for colorectal cancer. The human intestinal microecology is a complex system consisting of numerous microbial communities with a sophisticated structure. Interactions among intestinal microorganisms play crucial roles in maintaining normal intestinal structure, digestion, absorption, metabolism, and other functions. The colorectal system is the largest microbial bank or fermentation system in the human body. Studies suggest that intestinal microecological imbalance, one of the most important environmental factors, may play an essential role in the occurrence and development of colorectal adenoma and colorectal cancer. Based on the complexity of studying the gut microbiota ecosystem, its specific role in the occurrence and development of colorectal adenoma is yet to be elucidated. In addition, further studies are expected to provide new insights regarding the prevention and treatment of colorectal adenoma. This article reviews the relationship and mechanism of the diversity of the gut microbiota, the relevant inflammatory response, immune regulation, and metabolic changes in the presence of colorectal adenomas.
Collapse
Affiliation(s)
- Zhipeng Zhang
- Key Laboratory of Liver and Kidney Diseases (Ministry of Education), Institute of Liver Diseases, Shuguang Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
- Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Nisma Lena Bahaji Azami
- Key Laboratory of Liver and Kidney Diseases (Ministry of Education), Institute of Liver Diseases, Shuguang Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
- Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Ningning Liu
- Shanghai University of Traditional Chinese Medicine, Shanghai, China
- Department of Medical Oncology and Cancer Institute, Shuguang Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
- Ningning Liu, Shanghai University of Traditional Chinese Medicine, Shanghai, China.
Mingyu Sun, Shanghai University of Traditional Chinese Medicine, Shanghai, China.
| | - Mingyu Sun
- Key Laboratory of Liver and Kidney Diseases (Ministry of Education), Institute of Liver Diseases, Shuguang Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
- Shanghai University of Traditional Chinese Medicine, Shanghai, China
| |
Collapse
|
36
|
Cassotta M, Cianciosi D, De Giuseppe R, Navarro-Hortal MD, Armas Diaz Y, Forbes-Hernández TY, Pifarre KT, Pascual Barrera AE, Grosso G, Xiao J, Battino M, Giampieri F. Possible role of nutrition in the prevention of inflammatory bowel disease-related colorectal cancer: A focus on human studies. Nutrition 2023; 110:111980. [PMID: 36965240 DOI: 10.1016/j.nut.2023.111980] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2022] [Revised: 01/10/2023] [Accepted: 01/22/2023] [Indexed: 02/05/2023]
Abstract
Patients with inflammatory bowel disease (IBD) are at substantially high risk for colorectal cancer (CRC). IBD-associated CRC accounts for roughly 10% to 15% of the annual mortality in patients with IBD. IBD-related CRC also affects younger patients compared with sporadic CRC, with a 5-y survival rate of 50%. Regardless of medical therapies, the persistent inflammatory state characterizing IBD raises the risk for precancerous changes and CRC, with additional input from several elements, including genetic and environmental risk factors, IBD-associated comorbidities, intestinal barrier dysfunction, and gut microbiota modifications. It is well known that nutritional habits and dietary bioactive compounds can influence IBD-associated inflammation, microbiome abundance and composition, oxidative stress balance, and gut permeability. Additionally, in recent years, results from broad epidemiologic and experimental studies have associated certain foods or nutritional patterns with the risk for colorectal neoplasia. The present study aimed to review the possible role of nutrition in preventing IBD-related CRC, focusing specifically on human studies. It emerges that nutritional interventions based on healthy, nutrient-dense dietary patterns characterized by a high intake of fiber, vegetables, fruit, ω-3 polyunsaturated fatty acids, and a low amount of animal proteins, processed foods, and alcohol, combined with probiotic supplementation have the potential of reducing IBD-activity and preventing the risk of IBD-related CRC through different mechanisms, suggesting that targeted nutritional interventions may represent a novel promising approach for the prevention and management of IBD-associated CRC.
Collapse
Affiliation(s)
- Manuela Cassotta
- Research Group on Food, Nutritional Biochemistry and Health, Universidad Europea del Atlántico, Santander, Spain
| | - Danila Cianciosi
- Department of Clinical Sciences, Faculty of Medicine, Polytechnic University of Marche, Ancona, Italy
| | - Rachele De Giuseppe
- Laboratory of Dietetics and Clinical Nutrition, Department of Public Health, Experimental and Forensic Medicine, University of Pavia, Pavia, Italy; NBFC, National Biodiversity Future Center, Palermo 90133, Italy
| | - Maria Dolores Navarro-Hortal
- Biomedical Research Centre, Institute of Nutrition and Food Technology "José Mataix Verdú," Department of Physiology, Faculty of Pharmacy, University of Granada, Armilla, Granada, Spain
| | - Yasmany Armas Diaz
- Department of Clinical Sciences, Faculty of Medicine, Polytechnic University of Marche, Ancona, Italy
| | - Tamara Yuliett Forbes-Hernández
- Biomedical Research Centre, Institute of Nutrition and Food Technology "José Mataix Verdú," Department of Physiology, Faculty of Pharmacy, University of Granada, Armilla, Granada, Spain
| | - Kilian Tutusaus Pifarre
- Research Group on Food, Nutritional Biochemistry and Health, Universidad Europea del Atlántico, Santander, Spain; Project Department, Universidade Internacional do Cuanza, Cuito, Bié, Angola
| | - Alina Eugenia Pascual Barrera
- Research Group on Food, Nutritional Biochemistry and Health, Universidad Europea del Atlántico, Santander, Spain; Department of Project Management, Universidad Internacional Iberoamericana, Campeche, Mexico
| | - Giuseppe Grosso
- Department of Biomedical and Biotechnological Sciences, University of Catania, Catania, Italy
| | - Jianbo Xiao
- Nutrition and Bromatology Group, Department of Analytical Chemistry and Food Science, Faculty of Food Science and Technology, Universidade de Vigo - Ourense Campus, Ourense, Spain
| | - Maurizio Battino
- Research Group on Food, Nutritional Biochemistry and Health, Universidad Europea del Atlántico, Santander, Spain; Department of Clinical Sciences, Faculty of Medicine, Polytechnic University of Marche, Ancona, Italy; International Joint Research Laboratory of Intelligent Agriculture and Agri-products Processing, Jiangsu University, Zhenjiang, China
| | - Francesca Giampieri
- Research Group on Food, Nutritional Biochemistry and Health, Universidad Europea del Atlántico, Santander, Spain.
| |
Collapse
|
37
|
Pandey H, Tang DWT, Wong SH, Lal D. Gut Microbiota in Colorectal Cancer: Biological Role and Therapeutic Opportunities. Cancers (Basel) 2023; 15:cancers15030866. [PMID: 36765824 PMCID: PMC9913759 DOI: 10.3390/cancers15030866] [Citation(s) in RCA: 40] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2022] [Revised: 01/23/2023] [Accepted: 01/24/2023] [Indexed: 02/03/2023] Open
Abstract
Colorectal cancer (CRC) is the second-leading cause of cancer-related deaths worldwide. While CRC is thought to be an interplay between genetic and environmental factors, several lines of evidence suggest the involvement of gut microbiota in promoting inflammation and tumor progression. Gut microbiota refer to the ~40 trillion microorganisms that inhabit the human gut. Advances in next-generation sequencing technologies and metagenomics have provided new insights into the gut microbial ecology and have helped in linking gut microbiota to CRC. Many studies carried out in humans and animal models have emphasized the role of certain gut bacteria, such as Fusobacterium nucleatum, enterotoxigenic Bacteroides fragilis, and colibactin-producing Escherichia coli, in the onset and progression of CRC. Metagenomic studies have opened up new avenues for the application of gut microbiota in the diagnosis, prevention, and treatment of CRC. This review article summarizes the role of gut microbiota in CRC development and its use as a biomarker to predict the disease and its potential therapeutic applications.
Collapse
Affiliation(s)
- Himani Pandey
- Redcliffe Labs, Electronic City, Noida 201301, India
| | - Daryl W. T. Tang
- School of Biological Sciences, Nanyang Technological University, Singapore 308232, Singapore
| | - Sunny H. Wong
- Centre for Microbiome Medicine, Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore 308232, Singapore
- Correspondence: (S.H.W.); (D.L.)
| | - Devi Lal
- Department of Zoology, Ramjas College, University of Delhi, Delhi 110007, India
- Correspondence: (S.H.W.); (D.L.)
| |
Collapse
|
38
|
Xu S, Lv Q, Zou N, Zhang Y, Zhang J, Tang Q, Chou SH, Lu L, He J. Influence of neo-adjuvant radiotherapy on the intestinal microbiota of rectal cancer patients. J Cancer Res Clin Oncol 2023:10.1007/s00432-022-04553-6. [PMID: 36656381 DOI: 10.1007/s00432-022-04553-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2022] [Accepted: 12/21/2022] [Indexed: 01/20/2023]
Abstract
PURPOSE Neo-adjuvant radiotherapy (NART) is a widely used pre-surgery radiotherapy for rectal cancer patients. Although NART is effective in reducing tumor burden before surgery, it may cause dysbiosis of intestinal microbiota. The intestinal microbiota shapes tumor inflammatory environment and influences cancer progression. However, how NART remodels the microbiota and how the microbiota affects therapeutic efficacy has been largely elusive. This study aimed to reveal the details of how NART affects the intestinal microbiota in patients with rectal cancer. METHODS Rectal cancer patients who received NART were recruited into the study, and their healthy family members on the same diet served as controls. Stool samples from five rectal cancer patients (28 in total) and five healthy individuals (16 in total) were collected for intestinal microbiota analysis by 16S rRNA gene amplicon sequencing. Samples from patients were divided into earlier- and later-NART according to the number of NART. RESULTS NART did not significantly affect the α diversity of intestinal microbiota. However, the abundance of bacterial genera associated with cancer progression tended to decrease in later-NART patients. More importantly, a variety of oral pathogenic bacteria were enriched in the intestine of later-NART patients. NART also affected functional pathways associated with the microbiota in DNA repair, metabolism, and bacterial infection. CONCLUSION NART significantly altered the microbiota composition and function in rectal cancer patients, and some oral pathogens were found to translocate to the intestine. This is the first report to study the effect of NART on intestinal microbiota in patients with rectal cancer, exploring the importance of intestinal microbiota during the process of NART.
Collapse
Affiliation(s)
- Siyang Xu
- State Key Laboratory of Agricultural Microbiology & Hubei Hongshan Laboratory, College of Life Science and Technology, Huazhong Agricultural University, Wuhan, 430070, China
| | - Qimei Lv
- State Key Laboratory of Agricultural Microbiology & Hubei Hongshan Laboratory, College of Life Science and Technology, Huazhong Agricultural University, Wuhan, 430070, China
| | - Ning Zou
- Department of Radiation Oncology, Hubei Cancer Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430071, People's Republic of China
| | - Yuling Zhang
- State Key Laboratory of Agricultural Microbiology & Hubei Hongshan Laboratory, College of Life Science and Technology, Huazhong Agricultural University, Wuhan, 430070, China
| | - Jiucheng Zhang
- Department of Radiation Oncology, Hubei Cancer Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430071, People's Republic of China
| | - Qing Tang
- State Key Laboratory of Agricultural Microbiology & Hubei Hongshan Laboratory, College of Life Science and Technology, Huazhong Agricultural University, Wuhan, 430070, China
| | - Shan-Ho Chou
- State Key Laboratory of Agricultural Microbiology & Hubei Hongshan Laboratory, College of Life Science and Technology, Huazhong Agricultural University, Wuhan, 430070, China
| | - Li Lu
- Department of Gastrointestinal Surgery, Hubei Cancer Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430071, People's Republic of China.
| | - Jin He
- State Key Laboratory of Agricultural Microbiology & Hubei Hongshan Laboratory, College of Life Science and Technology, Huazhong Agricultural University, Wuhan, 430070, China.
| |
Collapse
|
39
|
Amini M, Rezasoltani S, Pourhoseingholi MA, Asadzadeh Aghdaei H, Zali MR. Evaluating the predictive performance of gut microbiota for the early-stage colorectal cancer. BMC Gastroenterol 2022; 22:514. [PMID: 36510191 PMCID: PMC9743636 DOI: 10.1186/s12876-022-02599-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/24/2022] [Accepted: 11/30/2022] [Indexed: 12/14/2022] Open
Abstract
BACKGROUND Colorectal cancer (CRC) has been regarded as one of the most frequently diagnosed malignancies among the leading causes of cancer-related morbidity and mortality globally. Diagnosis of CRC at the early-stages of tumour might improve the survival rate of patients. The current study sought to determine the performance of fecal Fusobacterium nucleatum (F. nucleatum) and Streptococcus bovis (S. bovis) for timely predicting CRC. METHODS Through a case-control study, the fecal sample information of 83 individuals (38 females, 45 males) referring to a hospital in Tehran, Iran was used. All patients underwent a complete colonoscopy, regarded as a gold standard test. Bacterial species including S. bovis and F. nucleatum were measured by absolute quantitative real-time PCR. The Bayesian univariate and bivariate latent class models (LCMs) were applied to estimate the ability of the candidate bacterial markers in order to early detection of patients with CRC. RESULTS Bayesian univariate LCMs demonstrated that the sensitivities of S. bovis and F. nucleatum were estimated to be 86% [95% credible interval (CrI) 0.82-0.91] and 82% (95% CrI 0.75-0.88); while specificities were 84% (95% CrI 0.78-0.89) and 80% (95% CrI 0.73-0.87), respectively. Moreover, the area under the receiver operating characteristic curves (AUCs) were 0.88 (95% CrI 0.83-0.94) and 0.80 (95% CrI 0.73-0.85) respectively for S. bovis and F. nucleatum. Based on the Bayesian bivariate LCMs, the sensitivities of S. bovis and F. nucleatum were calculated as 93% (95% CrI 0.84-0.98) and 90% (95% CrI 0.85-0.97), the specificities were 88% (95% CrI 0.78-0.93) and 87% (95% CrI 0.79-0.94); and the AUCs were 0.91 (95% CrI 0.83-0.99) and 0.88(95% CrI 0.81-0.96), respectively. CONCLUSIONS Our data has identified that according to the Bayesian bivariate LCM, S. bovis and F. nucleatum had a more significant predictive accuracy compared with the univariate model. In summary, these intestinal bacteria have been highlighted as novel tools for early-stage CRC diagnosis.
Collapse
Affiliation(s)
- Maedeh Amini
- grid.411600.2Basic and Molecular Epidemiology of Gastrointestinal Disorders Research Center, Research Institute for Gastroenterology and Liver Diseases, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Sama Rezasoltani
- grid.13648.380000 0001 2180 3484Section Mass Spectrometry and Proteomics, Institute of Clinical Chemistry and Laboratory Medicine, University Medical Center Hamburg-Eppendorf (UKE), Hamburg, Germany
| | - Mohamad Amin Pourhoseingholi
- grid.411600.2Gastroenterology and Liver Diseases Research Center, Research Institute for Gastroenterology and Liver Diseases, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Hamid Asadzadeh Aghdaei
- grid.411600.2Basic and Molecular Epidemiology of Gastrointestinal Disorders Research Center, Research Institute for Gastroenterology and Liver Diseases, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Mohammad Reza Zali
- grid.411600.2Gastroenterology and Liver Diseases Research Center, Research Institute for Gastroenterology and Liver Diseases, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| |
Collapse
|
40
|
Yu L, Zhang MM, Hou JG. Molecular and cellular pathways in colorectal cancer: apoptosis, autophagy and inflammation as key players. Scand J Gastroenterol 2022; 57:1279-1290. [PMID: 35732586 DOI: 10.1080/00365521.2022.2088247] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
BACKGROUND Colorectal carcinogenesis (CRC) is one of the most aggressive forms of cancer, particularly in developing countries. It accounts for the second and third-highest reason for cancer-induced lethality in women and men respectively. CRC involves genetic and epigenetic modifications in colonic epithelium, leading to colon adenocarcinoma. The current review highlights the pathogenic mechanisms and multifactorial etiology of CRC, influenced by apoptosis, inflammation, and autophagy pathways. METHODS We have carried out a selective literature review on mechanisms contributing to the pathogenesis of CRC. RESULTS Resistance to senescence and apoptosis of the mesenchymal cells, which play a key role in intestinal organogenesis, morphogenesis and homeostasis, appears important for sporadic CRC. Additionally, inflammation-associated tumorigenesis is a key incident in CRC, supported by immune disruptors, adaptive and innate immune traits, environmental factors, etc. involving oxidative stress, DNA damage and epigenetic modulations. The self-digesting mechanism, autophagy, also plays a twin role in CRC through the participation of LC3/LC3-II, Beclin-1, ATG5, other autophagy proteins, and Inflammatory Bowel Disease (IBD) susceptibility genes. It facilitates the promotion of effective surveillance pathways and stimulates the generation of malignant tumor cells. The autophagy and apoptotic pathways undergo synergistic or antagonistic interactions in CRC and bear a critical association with IBD that results from the pro-neoplastic effects of persistent intestinal inflammation. Conversely, pro-inflammatory factors stimulate tumor growth and angiogenesis and inhibit apoptosis, suppressing anti-tumor activities. CONCLUSION Hence, research attempts for the development of potential therapies for CRC are in progress, primarily based on combinatorial approaches targeting apoptosis, inflammation, and autophagy.
Collapse
Affiliation(s)
- Lei Yu
- Department of Radiotherapy, The Second Hospital of Jilin University, Changchun, China
| | - Miao-Miao Zhang
- Department of Radiotherapy, The Second Hospital of Jilin University, Changchun, China
| | - Ji-Guang Hou
- Department of Radiotherapy, The Second Hospital of Jilin University, Changchun, China
| |
Collapse
|
41
|
Zi M, Zhang Y, Hu C, Zhang S, Chen J, Yuan L, Cheng X. A literature review on the potential clinical implications of streptococci in gastric cancer. Front Microbiol 2022; 13:1010465. [PMID: 36386672 PMCID: PMC9643750 DOI: 10.3389/fmicb.2022.1010465] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2022] [Accepted: 10/03/2022] [Indexed: 10/29/2023] Open
Abstract
Streptococcus is widely found in nature and the human body, and most species are not pathogenic. In recent years, studies have found that Streptococcus is associated with gastric cancer. Streptococcus was found to be enriched in the oral cavity, stomach and intestine of gastric cancer patients and found to be increased in gastric cancer tissues, suggesting that Streptococcus may be the pathogenic bacteria underlying gastric cancer. This review discusses the discovery of Streptococcus, the relationship between Streptococcus and gastric cancer, and the possible carcinogenic mechanism of Streptococcus and summarizes the progress of the research on the role of Streptococcus in gastric cancer to provide new ideas for the early detection, diagnosis and treatment of gastric cancer.
Collapse
Affiliation(s)
- Mengli Zi
- Department of Gastric surgery, The Cancer Hospital of the University of Chinese Academy of Sciences (Zhejiang Cancer Hospital), Institutes of Basic Medicine and Cancer (IBMC), Chinese Academy of Sciences, Hangzhou, China
| | - Yanqiang Zhang
- Department of Gastric surgery, The Cancer Hospital of the University of Chinese Academy of Sciences (Zhejiang Cancer Hospital), Institutes of Basic Medicine and Cancer (IBMC), Chinese Academy of Sciences, Hangzhou, China
- Zhejiang Provincial Research Center for Upper Gastrointestinal Tract Cancer, Zhejiang Cancer Hospital, Hangzhou, China
- Zhejiang Key Lab of Prevention, Diagnosis and Therapy of Upper Gastrointestinal Cancer, Zhejiang Cancer Hospital, Hangzhou, China
| | - Can Hu
- Department of Gastric surgery, The Cancer Hospital of the University of Chinese Academy of Sciences (Zhejiang Cancer Hospital), Institutes of Basic Medicine and Cancer (IBMC), Chinese Academy of Sciences, Hangzhou, China
- Zhejiang Provincial Research Center for Upper Gastrointestinal Tract Cancer, Zhejiang Cancer Hospital, Hangzhou, China
- Zhejiang Key Lab of Prevention, Diagnosis and Therapy of Upper Gastrointestinal Cancer, Zhejiang Cancer Hospital, Hangzhou, China
| | - Shengjie Zhang
- Department of Gastric surgery, The Cancer Hospital of the University of Chinese Academy of Sciences (Zhejiang Cancer Hospital), Institutes of Basic Medicine and Cancer (IBMC), Chinese Academy of Sciences, Hangzhou, China
- Zhejiang Provincial Research Center for Upper Gastrointestinal Tract Cancer, Zhejiang Cancer Hospital, Hangzhou, China
- Zhejiang Key Lab of Prevention, Diagnosis and Therapy of Upper Gastrointestinal Cancer, Zhejiang Cancer Hospital, Hangzhou, China
| | - Jinxia Chen
- Department of Gastric surgery, The Cancer Hospital of the University of Chinese Academy of Sciences (Zhejiang Cancer Hospital), Institutes of Basic Medicine and Cancer (IBMC), Chinese Academy of Sciences, Hangzhou, China
- Zhejiang Provincial Research Center for Upper Gastrointestinal Tract Cancer, Zhejiang Cancer Hospital, Hangzhou, China
- Zhejiang Key Lab of Prevention, Diagnosis and Therapy of Upper Gastrointestinal Cancer, Zhejiang Cancer Hospital, Hangzhou, China
| | - Li Yuan
- Department of Gastric surgery, The Cancer Hospital of the University of Chinese Academy of Sciences (Zhejiang Cancer Hospital), Institutes of Basic Medicine and Cancer (IBMC), Chinese Academy of Sciences, Hangzhou, China
- Zhejiang Provincial Research Center for Upper Gastrointestinal Tract Cancer, Zhejiang Cancer Hospital, Hangzhou, China
- Zhejiang Key Lab of Prevention, Diagnosis and Therapy of Upper Gastrointestinal Cancer, Zhejiang Cancer Hospital, Hangzhou, China
| | - Xiangdong Cheng
- Department of Gastric surgery, The Cancer Hospital of the University of Chinese Academy of Sciences (Zhejiang Cancer Hospital), Institutes of Basic Medicine and Cancer (IBMC), Chinese Academy of Sciences, Hangzhou, China
- Zhejiang Provincial Research Center for Upper Gastrointestinal Tract Cancer, Zhejiang Cancer Hospital, Hangzhou, China
- Zhejiang Key Lab of Prevention, Diagnosis and Therapy of Upper Gastrointestinal Cancer, Zhejiang Cancer Hospital, Hangzhou, China
| |
Collapse
|
42
|
Volovat SR, Augustin I, Zob D, Boboc D, Amurariti F, Volovat C, Stefanescu C, Stolniceanu CR, Ciocoiu M, Dumitras EA, Danciu M, Apostol DGC, Drug V, Shurbaji SA, Coca LG, Leon F, Iftene A, Herghelegiu PC. Use of Personalized Biomarkers in Metastatic Colorectal Cancer and the Impact of AI. Cancers (Basel) 2022; 14:4834. [PMID: 36230757 PMCID: PMC9562853 DOI: 10.3390/cancers14194834] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2022] [Revised: 09/18/2022] [Accepted: 09/29/2022] [Indexed: 12/09/2022] Open
Abstract
Colorectal cancer is a major cause of cancer-related death worldwide and is correlated with genetic and epigenetic alterations in the colonic epithelium. Genetic changes play a major role in the pathophysiology of colorectal cancer through the development of gene mutations, but recent research has shown an important role for epigenetic alterations. In this review, we try to describe the current knowledge about epigenetic alterations, including DNA methylation and histone modifications, as well as the role of non-coding RNAs as epigenetic regulators and the prognostic and predictive biomarkers in metastatic colorectal disease that can allow increases in the effectiveness of treatments. Additionally, the intestinal microbiota's composition can be an important biomarker for the response to strategies based on the immunotherapy of CRC. The identification of biomarkers in mCRC can be enhanced by developing artificial intelligence programs. We present the actual models that implement AI technology as a bridge connecting ncRNAs with tumors and conducted some experiments to improve the quality of the model used as well as the speed of the model that provides answers to users. In order to carry out this task, we implemented six algorithms: the naive Bayes classifier, the random forest classifier, the decision tree classifier, gradient boosted trees, logistic regression and SVM.
Collapse
Affiliation(s)
- Simona-Ruxandra Volovat
- Department of Medical Oncology-Radiotherapy, “Grigore T. Popa” University of Medicine and Pharmacy, 16 University Str., 700115 Iasi, Romania
| | - Iolanda Augustin
- Department of Medical Oncology, AI.Trestioreanu Institute of Oncology, 022328 Bucharest, Romania
| | - Daniela Zob
- Department of Medical Oncology, AI.Trestioreanu Institute of Oncology, 022328 Bucharest, Romania
| | - Diana Boboc
- Department of Medical Oncology-Radiotherapy, “Grigore T. Popa” University of Medicine and Pharmacy, 16 University Str., 700115 Iasi, Romania
| | - Florin Amurariti
- Department of Medical Oncology-Radiotherapy, “Grigore T. Popa” University of Medicine and Pharmacy, 16 University Str., 700115 Iasi, Romania
| | - Constantin Volovat
- Department of Medical Oncology, “Euroclinic” Center of Oncology, 2 Vasile Conta Str., 700106 Iasi, Romania
| | - Cipriana Stefanescu
- Department of Biophysics and Medical Physics-Nuclear Medicine, “Grigore T. Popa” University of Medicine and Pharmacy, 16 University Str., 700115 Iasi, Romania
| | - Cati Raluca Stolniceanu
- Department of Biophysics and Medical Physics-Nuclear Medicine, “Grigore T. Popa” University of Medicine and Pharmacy, 16 University Str., 700115 Iasi, Romania
| | - Manuela Ciocoiu
- Department of Pathophysiology, “Grigore T. Popa” University of Medicine and Pharmacy, 700115 Iasi, Romania
| | - Eduard Alexandru Dumitras
- Department of Pathophysiology, “Grigore T. Popa” University of Medicine and Pharmacy, 700115 Iasi, Romania
- Department of Anesthesiology and Intensive Care, Regional Institute of Oncology, 700115 Iasi, Romania
| | - Mihai Danciu
- Pathology Department, “Grigore T. Popa” University of Medicine and Pharmacy, 700115 Iasi, Romania
| | | | - Vasile Drug
- Department of Gastroenterology, “Grigore T. Popa” University of Medicine and Pharmacy, 16 University Str., 700115 Iasi, Romania
- Gastroenterology Clinic, Institute of Gastroenterology and Hepatology, ‘St. Spiridon’ Clinical Hospital, 700115 Iasi, Romania
| | - Sinziana Al Shurbaji
- Gastroenterology Clinic, Institute of Gastroenterology and Hepatology, ‘St. Spiridon’ Clinical Hospital, 700115 Iasi, Romania
| | - Lucia-Georgiana Coca
- Faculty of Computer Science, Alexandru Ioan Cuza University, 700115 Iasi, Romania
| | - Florin Leon
- Faculty of Automatic Control and Computer Engineering, Gheorghe Asachi Technical University, 700115 Iasi, Romania
| | - Adrian Iftene
- Faculty of Computer Science, Alexandru Ioan Cuza University, 700115 Iasi, Romania
| | - Paul-Corneliu Herghelegiu
- Faculty of Automatic Control and Computer Engineering, Gheorghe Asachi Technical University, 700115 Iasi, Romania
| |
Collapse
|
43
|
Kumar R, Taylor JC, Jain A, Jung SY, Garza V, Xu Y. Modulation of the extracellular matrix by Streptococcus gallolyticus subsp. gallolyticus and importance in cell proliferation. PLoS Pathog 2022; 18:e1010894. [PMID: 36191045 PMCID: PMC9560553 DOI: 10.1371/journal.ppat.1010894] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2022] [Revised: 10/13/2022] [Accepted: 09/22/2022] [Indexed: 11/15/2022] Open
Abstract
Streptococcus gallolyticus subspecies gallolyticus (Sgg) has a strong clinical association with colorectal cancer (CRC) and actively promotes the development of colon tumors. Previous work showed that this organism stimulates CRC cells proliferation and tumor growth. However, the molecular mechanisms underlying these activities are not well understood. Here, we found that Sgg upregulates the expression of several type of collagens in HT29 and HCT116 cells, with type VI collagen (ColVI) being the highest upregulated type. Knockdown of ColVI abolished the ability of Sgg to induce cell proliferation and reduced the adherence of Sgg to CRC cells. The extracellular matrix (ECM) is an important regulator of cell proliferation. Therefore, we further examined the role of decellularized matrix (dc-matrix), which is free of live bacteria or cells, in Sgg-induced cell proliferation. Dc-matrix prepared from Sgg-treated cells showed a significantly higher pro-proliferative activity than that from untreated cells or cells treated with control bacteria. On the other hand, dc-matrix from Sgg-treated ColVI knockdown cells showed no difference in the capacity to support cell proliferation compared to that from untreated ColVI knockdown cells, suggesting that the ECM by itself is a mediator of Sgg-induced cell proliferation. Furthermore, Sgg treatment of CRC cells but not ColVI knockdown CRC cells resulted in significantly larger tumors in vivo, suggesting that ColVI is important for Sgg to promote tumor growth in vivo. These results highlight a dynamic bidirectional interplay between Sgg and the ECM, where Sgg upregulates collagen expression. The Sgg-modified ECM in turn affects the ability of Sgg to adhere to host cells and more importantly, acts as a mediator for Sgg-induced CRC cell proliferation. Taken together, our results reveal a novel mechanism in which Sgg stimulates CRC proliferation through modulation of the ECM.
Collapse
Affiliation(s)
- Ritesh Kumar
- Center for Infectious and Inflammatory Diseases, Institute of Biosciences and Technology, Texas A&M Health Science Center, Houston, Texas, United States of America
| | - John Culver Taylor
- Center for Infectious and Inflammatory Diseases, Institute of Biosciences and Technology, Texas A&M Health Science Center, Houston, Texas, United States of America
| | - Antrix Jain
- MS Proteomics Core, Baylor College of Medicine, Houston, Texas, United States of America
| | - Sung Yun Jung
- Department of Biochemistry and Molecular Biology, Baylor College of Medicine, Houston, Texas, United States of America
| | - Victor Garza
- Center for Infectious and Inflammatory Diseases, Institute of Biosciences and Technology, Texas A&M Health Science Center, Houston, Texas, United States of America
| | - Yi Xu
- Center for Infectious and Inflammatory Diseases, Institute of Biosciences and Technology, Texas A&M Health Science Center, Houston, Texas, United States of America
- Department of Microbial Pathogenesis and Immunology, College of Medicine, Texas A&M Health Science Center, College Station, Texas, United States of America
- Department of Microbiology and Molecular Genetics, McGovern Medical School, UT Health, Houston, Texas, United States of America
| |
Collapse
|
44
|
Bacteraemia and Associated Complications on Imaging as a Clue to Colorectal Malignancy. J Belg Soc Radiol 2022; 106:76. [PMID: 36187192 PMCID: PMC9479747 DOI: 10.5334/jbsr.2855] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2022] [Accepted: 08/17/2022] [Indexed: 11/20/2022] Open
Abstract
Streptococcus gallolyticus (SG) – among other bacterial infections – is associated with colorectal malignancy and adenoma. It is reported that patients with SG bacteraemia have a concomitant colorectal tumour in 25–80% of cases. We present a case of a patient with complications of this septicaemia associated with a rectal adenocarcinoma, as an example of this important radiological and clinical correlation. Teaching Point: Always screen for primary colorectal malignancy in a patient with malignancy-associated bacterial infection.
Collapse
|
45
|
Mahgoub E, Taneera J, Sulaiman N, Saber-Ayad M. The role of autophagy in colorectal cancer: Impact on pathogenesis and implications in therapy. Front Med (Lausanne) 2022; 9:959348. [PMID: 36160153 PMCID: PMC9490268 DOI: 10.3389/fmed.2022.959348] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2022] [Accepted: 08/11/2022] [Indexed: 12/24/2022] Open
Abstract
Colorectal cancer (CRC) is considered as a global major cause of cancer death. Surgical resection is the main line of treatment; however, chemo-, radiotherapy and other adjuvant agents are crucial to achieve good outcomes. The tumor microenvironment (TME) is a well-recognized key player in CRC progression, yet the processes linking the cancer cells to its TME are not fully delineated. Autophagy is one of such processes, with a controversial role in the pathogenesis of CRC, with its intricate links to many pathological factors and processes. Autophagy may apparently play conflicting roles in carcinogenesis, but the precise mechanisms determining the overall direction of the process seem to depend on the context. Additionally, it has been established that autophagy has a remarkable effect on the endothelial cells in the TME, the key substrate for angiogenesis that supports tumor metastasis. Favorable response to immunotherapy occurs only in a specific subpopulation of CRC patients, namely the microsatellite instability-high (MSI-H). In view of such limitations of immunotherapy in CRC, modulation of autophagy represents a potential adjuvant strategy to enhance the effect of those relatively safe agents on wider CRC molecular subtypes. In this review, we discussed the molecular control of autophagy in CRC and how autophagy affects different processes and mechanisms that shape the TME. We explored how autophagy contributes to CRC initiation and progression, and how it interacts with tumor immunity, hypoxia, and oxidative stress. The crosstalk between autophagy and the TME in CRC was extensively dissected. Finally, we reported the clinical efforts and challenges in combining autophagy modulators with various cancer-targeted agents to improve CRC patients’ survival and restrain cancer growth.
Collapse
Affiliation(s)
- Eglal Mahgoub
- College of Medicine, University of Sharjah, Sharjah, United Arab Emirates
- Sharjah Institute for Medical Research, University of Sharjah, Sharjah, United Arab Emirates
| | - Jalal Taneera
- College of Medicine, University of Sharjah, Sharjah, United Arab Emirates
- Sharjah Institute for Medical Research, University of Sharjah, Sharjah, United Arab Emirates
| | - Nabil Sulaiman
- College of Medicine, University of Sharjah, Sharjah, United Arab Emirates
- Sharjah Institute for Medical Research, University of Sharjah, Sharjah, United Arab Emirates
- Baker Heart and Diabetes Institute, Melbourne, VIC, Australia
| | - Maha Saber-Ayad
- College of Medicine, University of Sharjah, Sharjah, United Arab Emirates
- Sharjah Institute for Medical Research, University of Sharjah, Sharjah, United Arab Emirates
- Faculty of Medicine, Cairo University, Giza, Egypt
- *Correspondence: Maha Saber-Ayad,
| |
Collapse
|
46
|
Kumari S, Sharma S, Advani D, Khosla A, Kumar P, Ambasta RK. Unboxing the molecular modalities of mutagens in cancer. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2022; 29:62111-62159. [PMID: 34611806 PMCID: PMC8492102 DOI: 10.1007/s11356-021-16726-w] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/24/2021] [Accepted: 09/22/2021] [Indexed: 04/16/2023]
Abstract
The etiology of the majority of human cancers is associated with a myriad of environmental causes, including physical, chemical, and biological factors. DNA damage induced by such mutagens is the initial step in the process of carcinogenesis resulting in the accumulation of mutations. Mutational events are considered the major triggers for introducing genetic and epigenetic insults such as DNA crosslinks, single- and double-strand DNA breaks, formation of DNA adducts, mismatched bases, modification in histones, DNA methylation, and microRNA alterations. However, DNA repair mechanisms are devoted to protect the DNA to ensure genetic stability, any aberrations in these calibrated mechanisms provoke cancer occurrence. Comprehensive knowledge of the type of mutagens and carcinogens and the influence of these agents in DNA damage and cancer induction is crucial to develop rational anticancer strategies. This review delineated the molecular mechanism of DNA damage and the repair pathways to provide a deep understanding of the molecular basis of mutagenicity and carcinogenicity. A relationship between DNA adduct formation and cancer incidence has also been summarized. The mechanistic basis of inflammatory response and oxidative damage triggered by mutagens in tumorigenesis has also been highlighted. We elucidated the interesting interplay between DNA damage response and immune system mechanisms. We addressed the current understanding of DNA repair targeted therapies and DNA damaging chemotherapeutic agents for cancer treatment and discussed how antiviral agents, anti-inflammatory drugs, and immunotherapeutic agents combined with traditional approaches lay the foundations for future cancer therapies.
Collapse
Affiliation(s)
- Smita Kumari
- Molecular Neuroscience and Functional Genomics Laboratory, Department of Biotechnology, Delhi Technological University, Shahbad Daulatpur, Bawana Road, Delhi, 110042, India
| | - Sudhanshu Sharma
- Molecular Neuroscience and Functional Genomics Laboratory, Department of Biotechnology, Delhi Technological University, Shahbad Daulatpur, Bawana Road, Delhi, 110042, India
| | - Dia Advani
- Molecular Neuroscience and Functional Genomics Laboratory, Department of Biotechnology, Delhi Technological University, Shahbad Daulatpur, Bawana Road, Delhi, 110042, India
| | - Akanksha Khosla
- Molecular Neuroscience and Functional Genomics Laboratory, Department of Biotechnology, Delhi Technological University, Shahbad Daulatpur, Bawana Road, Delhi, 110042, India
| | - Pravir Kumar
- Molecular Neuroscience and Functional Genomics Laboratory, Department of Biotechnology, Delhi Technological University, Shahbad Daulatpur, Bawana Road, Delhi, 110042, India
| | - Rashmi K Ambasta
- Molecular Neuroscience and Functional Genomics Laboratory, Department of Biotechnology, Delhi Technological University, Shahbad Daulatpur, Bawana Road, Delhi, 110042, India.
| |
Collapse
|
47
|
Yinhang W, Wei W, Jing Z, Qing Z, Yani Z, Yangyanqiu W, Shuwen H. Biological roles of toll-like receptors and gut microbiota in colorectal cancer. Future Microbiol 2022; 17:1071-1089. [PMID: 35916158 DOI: 10.2217/fmb-2021-0072] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Colorectal cancer (CRC) is one of the most considerably common malignancies of the alimentary system, with high mortality and incidence rates. The present study suggested that the occurrence of CRC is closely related to bacteria, as the large intestine is a gathering place for human micro-organisms. However, the nosogenesis of bacteria leading to tumorigenesis is still obscure. Recently, many studies have reported that toll-like receptors and their related molecular pathways are involved in the process of gut micro-organisms generating CRC. Gut micro-organisms can promote or inhibit the development of CRC via binding to special toll-like receptors. In this paper, the authors review the relationship among toll-like receptors, gut micro-organisms and CRC in order to provide a reference for future tumor immunotherapy and targeted therapy.
Collapse
Affiliation(s)
- Wu Yinhang
- Huzhou Central Hospital, Affiliated Central Hospital, Huzhou University, 1558 Sanhuan North Road, Wuxing District, Huzhou, Zhejiang Province, 313000, China.,The Second School of Clinical Medicine, Zhejiang Chinese Medical University, 548 Binwen Road, Binjiang District, Hangzhou, Zhejiang Province, 310053, China.,Key Laboratory of Multiomics Research & Clinical Transformation of Digestive Cancer of Huzhou,1558 Sanhuan North Road, Wuxing District, Huzhou, Zhejiang Province, 313000, China
| | - Wu Wei
- Huzhou Central Hospital, Affiliated Central Hospital, Huzhou University, 1558 Sanhuan North Road, Wuxing District, Huzhou, Zhejiang Province, 313000, China.,Key Laboratory of Multiomics Research & Clinical Transformation of Digestive Cancer of Huzhou,1558 Sanhuan North Road, Wuxing District, Huzhou, Zhejiang Province, 313000, China
| | - Zhuang Jing
- Huzhou Central Hospital, Affiliated Central Hospital, Huzhou University, 1558 Sanhuan North Road, Wuxing District, Huzhou, Zhejiang Province, 313000, China.,Key Laboratory of Multiomics Research & Clinical Transformation of Digestive Cancer of Huzhou,1558 Sanhuan North Road, Wuxing District, Huzhou, Zhejiang Province, 313000, China
| | - Zhou Qing
- Huzhou Central Hospital, Affiliated Central Hospital, Huzhou University, 1558 Sanhuan North Road, Wuxing District, Huzhou, Zhejiang Province, 313000, China.,Key Laboratory of Multiomics Research & Clinical Transformation of Digestive Cancer of Huzhou,1558 Sanhuan North Road, Wuxing District, Huzhou, Zhejiang Province, 313000, China
| | - Zhou Yani
- Huzhou Central Hospital, Affiliated Central Hospital, Huzhou University, 1558 Sanhuan North Road, Wuxing District, Huzhou, Zhejiang Province, 313000, China.,Graduate School of Medicine Faculty, Zhejiang University, 866 Yuhangtang Road, Xihu District, Hangzhou, Zhejiang Province, 310058, China
| | - Wang Yangyanqiu
- Huzhou Central Hospital, Affiliated Central Hospital, Huzhou University, 1558 Sanhuan North Road, Wuxing District, Huzhou, Zhejiang Province, 313000, China.,Graduate School of Medicine Faculty, Zhejiang University, 866 Yuhangtang Road, Xihu District, Hangzhou, Zhejiang Province, 310058, China
| | - Han Shuwen
- Huzhou Central Hospital, Affiliated Central Hospital, Huzhou University, 1558 Sanhuan North Road, Wuxing District, Huzhou, Zhejiang Province, 313000, China.,Key Laboratory of Multiomics Research & Clinical Transformation of Digestive Cancer of Huzhou,1558 Sanhuan North Road, Wuxing District, Huzhou, Zhejiang Province, 313000, China
| |
Collapse
|
48
|
The crosstalk of the human microbiome in breast and colon cancer: A metabolomics analysis. Crit Rev Oncol Hematol 2022; 176:103757. [PMID: 35809795 DOI: 10.1016/j.critrevonc.2022.103757] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2022] [Revised: 06/28/2022] [Accepted: 07/04/2022] [Indexed: 11/20/2022] Open
Abstract
The human microbiome's role in colon and breast cancer is described in this review. Understanding how the human microbiome and metabolomics interact with breast and colon cancer is the chief area of this study. First, the role of the gut and distal microbiome in breast and colon cancer is investigated, and the direct relationship between microbial dysbiosis and breast and colon cancer is highlighted. This work also focuses on the many metabolomic techniques used to locate prospective biomarkers, make an accurate diagnosis, and research new therapeutic targets for cancer treatment. This review clarifies the influence of anti-tumor medications on the microbiota and the proactive measures that can be taken to treat cancer using a variety of therapies, including radiotherapy, chemotherapy, next-generation biotherapeutics, gene-based therapy, integrated omics technology, and machine learning.
Collapse
|
49
|
Wang S, Huang G, Wang JX, Tian L, Zuo XL, Li YQ, Yu YB. Altered Gut Microbiota in Patients With Peutz–Jeghers Syndrome. Front Microbiol 2022; 13:881508. [PMID: 35910641 PMCID: PMC9326469 DOI: 10.3389/fmicb.2022.881508] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2022] [Accepted: 06/06/2022] [Indexed: 11/14/2022] Open
Abstract
Background Peutz–Jeghers syndrome (PJS) is a rare genetic disorder characterized by the development of pigmented spots and gastrointestinal polyps and increased susceptibility to cancers. It remains unknown whether gut microbiota dysbiosis is linked to PJS. Aim This study aimed to assess the structure and composition of the gut microbiota, including both bacteria and fungi, in patients with PJS and investigate the relationship between gut microbiota dysbiosis and PJS pathogenesis. Methods The bacterial and fungal composition of the fecal microbiota was analyzed in 23 patients with PJS (cases), 17 first-degree asymptomatic relatives (ARs), and 24 healthy controls (HCs) using 16S (MiSeq) and ITS2 (pyrosequencing) sequencing for bacteria and fungi, respectively. Differential analyses of the intestinal flora were performed from the phylum to species level. Results Alpha-diversity distributions of bacteria and fungi indicated that the abundance of both taxa differed between PJS cases and controls. However, while the diversity and composition of fecal bacteria in PJS cases were significantly different from those in ARs and HCs, fungal flora was more stable. High-throughput sequencing confirmed the special characteristics and biodiversity of the fecal bacterial and fungal microflora in patients with PJS. They had lower bacterial biodiversity than controls, with a higher frequency of the Proteobacteria phylum, Enterobacteriaceae family, and Escherichia-Shigella genus, and a lower frequency of the Firmicutes phylum and the Lachnospiraceae and Ruminococcaceae families. Of fungi, Candida was significantly higher in PJS cases than in controls. Conclusion The findings reported here confirm gut microbiota dysbiosis in patients with PJS. This is the first report on the bacterial and fungal microbiota profile of subjects with PJS, which may be meaningful to provide a structural basis for further research on intestinal microecology in PJS.
Collapse
Affiliation(s)
- Sui Wang
- Department of Gastroenterology, Qilu Hospital of Shandong University, Jinan, China
- Laboratory of Translational Gastroenterology, Qilu Hospital of Shandong University, Jinan, China
| | - Gang Huang
- Department of Gastroenterology, Qilu Hospital of Shandong University, Jinan, China
- Laboratory of Translational Gastroenterology, Qilu Hospital of Shandong University, Jinan, China
| | - Jue-Xin Wang
- Department of Gastroenterology, Qilu Hospital of Shandong University, Jinan, China
- Laboratory of Translational Gastroenterology, Qilu Hospital of Shandong University, Jinan, China
| | - Lin Tian
- Department of Gastroenterology, Qilu Hospital of Shandong University, Jinan, China
- Laboratory of Translational Gastroenterology, Qilu Hospital of Shandong University, Jinan, China
| | - Xiu-Li Zuo
- Department of Gastroenterology, Qilu Hospital of Shandong University, Jinan, China
- Laboratory of Translational Gastroenterology, Qilu Hospital of Shandong University, Jinan, China
| | - Yan-Qing Li
- Department of Gastroenterology, Qilu Hospital of Shandong University, Jinan, China
- Laboratory of Translational Gastroenterology, Qilu Hospital of Shandong University, Jinan, China
| | - Yan-Bo Yu
- Department of Gastroenterology, Qilu Hospital of Shandong University, Jinan, China
- Laboratory of Translational Gastroenterology, Qilu Hospital of Shandong University, Jinan, China
- *Correspondence: Yan-Bo Yu
| |
Collapse
|
50
|
The Tissue-Associated Microbiota in Colorectal Cancer: A Systematic Review. Cancers (Basel) 2022; 14:cancers14143385. [PMID: 35884445 PMCID: PMC9317273 DOI: 10.3390/cancers14143385] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2022] [Revised: 07/05/2022] [Accepted: 07/08/2022] [Indexed: 11/28/2022] Open
Abstract
Simple Summary Growing evidence shows a close relationship between the microbiome and colorectal cancer, but most studies analyze fecal samples. However, solid information on the microbial community that is present locally in the intestinal tumor tissues is lacking. Therefore, the aim of this systematic review was to compile evidence on the relationship between tissue-associated microbiota and colorectal cancer. Among 5080 screened publications, 39 were eligible and included in the analysis. Despite the heterogeneity in methodologies and reporting between studies, 12 groups of bacteria with strong positive and 18 groups of bacteria with strong negative associations with colorectal cancer were identified. Such knowledge may ultimately be used in novel strategies that aim to prevent, detect, and treat colorectal cancer in the upcoming years. Abstract The intestinal microbiome is associated with colorectal cancer. Although the mucosal microbiota better represents an individual’s local microbiome, studies on the colorectal cancer microbiota mainly reflect knowledge obtained from fecal samples. This systematic review aimed to summarize the current evidence on the relationship between the mucosal-associated bacterial microbiota and colorectal cancer. Searches were conducted in PubMed and Web of Science databases for publications comparing the mucosal microbiome of colorectal cancer patients with that of healthy controls, or with that of non-cancerous mucosal tissues. The primary outcomes were differences in microbial diversity and taxonomy. The Newcastle-Ottawa Scale was used to assess the quality of the included studies. Of the 5080 studies identified, 39 were eligible and included in the systematic review. No consistent results were identified for the α- and β-diversity, due to high heterogeneity in reporting and to differences in metrics and statistical approaches, limiting study comparability. Qualitative synthesis of microbial taxonomy identified 12 taxa with strong positive and 18 taxa with strong negative associations with colorectal cancer. Fusobacterium, Campylobacter, Parvimonas, Peptostreptococcus, Streptococcus, and Granulicatella were defined as enriched in colorectal cancer. Despite the methodological limitations of the studies, consistent evidence on bacterial taxa associated with colorectal cancer was identified. Prospective studies in large and well-characterized patient populations will be crucial to validate these findings.
Collapse
|