1
|
Cota P, Caliskan ÖS, Bastidas-Ponce A, Jing C, Jaki J, Saber L, Czarnecki O, Taskin D, Blöchinger AK, Kurth T, Sterr M, Burtscher I, Krahmer N, Lickert H, Bakhti M. Insulin regulates human pancreatic endocrine cell differentiation in vitro. Mol Metab 2024; 79:101853. [PMID: 38103636 PMCID: PMC10765254 DOI: 10.1016/j.molmet.2023.101853] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/14/2023] [Revised: 11/21/2023] [Accepted: 12/11/2023] [Indexed: 12/19/2023] Open
Abstract
OBJECTIVE The consequences of mutations in genes associated with monogenic forms of diabetes on human pancreas development cannot be studied in a time-resolved fashion in vivo. More specifically, if recessive mutations in the insulin gene influence human pancreatic endocrine lineage formation is still an unresolved question. METHODS To model the extremely reduced insulin levels in patients with recessive insulin gene mutations, we generated a novel knock-in H2B-Cherry reporter human induced pluripotent stem cell (iPSC) line expressing no insulin upon differentiation to stem cell-derived (SC-) β cells in vitro. Differentiation of iPSCs into the pancreatic and endocrine lineage, combined with immunostaining, Western blotting and proteomics analysis phenotypically characterized the insulin gene deficiency in SC-islets. Furthermore, we leveraged FACS analysis and confocal microscopy to explore the impact of insulin shortage on human endocrine cell induction, composition, differentiation and proliferation. RESULTS Interestingly, insulin-deficient SC-islets exhibited low insulin receptor (IR) signaling when stimulated with glucose but displayed increased IR sensitivity upon treatment with exogenous insulin. Furthermore, insulin shortage did not alter neurogenin-3 (NGN3)-mediated endocrine lineage induction. Nevertheless, lack of insulin skewed the SC-islet cell composition with an increased number in SC-β cell formation at the expense of SC-α cells. Finally, insulin deficiency reduced the rate of SC-β cell proliferation but had no impact on the expansion of SC-α cells. CONCLUSIONS Using iPSC disease modelling, we provide first evidence of insulin function in human pancreatic endocrine lineage formation. These findings help to better understand the phenotypic impact of recessive insulin gene mutations during pancreas development and shed light on insulin gene function beside its physiological role in blood glucose regulation.
Collapse
Affiliation(s)
- Perla Cota
- Institute of Diabetes and Regeneration Research, Helmholtz Munich, Neuherberg, Germany; German Center for Diabetes Research (DZD), Neuherberg, Germany; School of Medicine, Technical University of Munich (TUM), Munich, Germany
| | - Özüm Sehnaz Caliskan
- German Center for Diabetes Research (DZD), Neuherberg, Germany; Institute of Diabetes and Obesity, Helmholtz Munich, Neuherberg, Germany
| | - Aimée Bastidas-Ponce
- Institute of Diabetes and Regeneration Research, Helmholtz Munich, Neuherberg, Germany; German Center for Diabetes Research (DZD), Neuherberg, Germany
| | - Changying Jing
- Institute of Diabetes and Regeneration Research, Helmholtz Munich, Neuherberg, Germany; German Center for Diabetes Research (DZD), Neuherberg, Germany; Munich medical research school (MMRS), Ludwig Maximilian University (LMU), Munich, Germany
| | - Jessica Jaki
- Institute of Diabetes and Regeneration Research, Helmholtz Munich, Neuherberg, Germany; German Center for Diabetes Research (DZD), Neuherberg, Germany
| | - Lama Saber
- Institute of Diabetes and Regeneration Research, Helmholtz Munich, Neuherberg, Germany; German Center for Diabetes Research (DZD), Neuherberg, Germany; School of Medicine, Technical University of Munich (TUM), Munich, Germany
| | - Oliver Czarnecki
- Institute of Diabetes and Regeneration Research, Helmholtz Munich, Neuherberg, Germany; German Center for Diabetes Research (DZD), Neuherberg, Germany; School of Medicine, Technical University of Munich (TUM), Munich, Germany
| | - Damla Taskin
- Institute of Diabetes and Regeneration Research, Helmholtz Munich, Neuherberg, Germany
| | - Anna Karolina Blöchinger
- Institute of Diabetes and Regeneration Research, Helmholtz Munich, Neuherberg, Germany; German Center for Diabetes Research (DZD), Neuherberg, Germany
| | - Thomas Kurth
- Center for Molecular and Cellular Bioengineering (CMCB), Technology Platform Core Facility Electron Microscopy and Histology, Technische Universität Dresden, Dresden, Germany
| | - Michael Sterr
- Institute of Diabetes and Regeneration Research, Helmholtz Munich, Neuherberg, Germany; German Center for Diabetes Research (DZD), Neuherberg, Germany
| | - Ingo Burtscher
- Institute of Diabetes and Regeneration Research, Helmholtz Munich, Neuherberg, Germany; German Center for Diabetes Research (DZD), Neuherberg, Germany
| | - Natalie Krahmer
- German Center for Diabetes Research (DZD), Neuherberg, Germany; Institute of Diabetes and Obesity, Helmholtz Munich, Neuherberg, Germany
| | - Heiko Lickert
- Institute of Diabetes and Regeneration Research, Helmholtz Munich, Neuherberg, Germany; German Center for Diabetes Research (DZD), Neuherberg, Germany; School of Medicine, Technical University of Munich (TUM), Munich, Germany.
| | - Mostafa Bakhti
- Institute of Diabetes and Regeneration Research, Helmholtz Munich, Neuherberg, Germany; German Center for Diabetes Research (DZD), Neuherberg, Germany.
| |
Collapse
|
2
|
Morales-Reyes I, Atwater I, Esparza-Aguilar M, Pérez-Armendariz EM. Impact of biotin supplemented diet on mouse pancreatic islet β-cell mass expansion and glucose induced electrical activity. Islets 2022; 14:149-163. [PMID: 35758027 PMCID: PMC9733685 DOI: 10.1080/19382014.2022.2091886] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/17/2022] Open
Abstract
Biotin supplemented diet (BSD) is known to enhance β-cell replication and insulin secretion in mice. Here, we first describe BSD impact on the islet β-cell membrane potential (Vm) and glucose-induced electrical activity. BALB/c female mice (n ≥ 20) were fed for nine weeks after weaning with a control diet (CD) or a BSD (100X). In both groups, islet area was compared in pancreatic sections incubated with anti-insulin and anti-glucagon antibodies; Vm was recorded in micro dissected islet β-cells during perfusion with saline solutions containing 2.8, 5.0, 7.5-, or 11.0 mM glucose. BSD increased the islet and β-cell area compared with CD. In islet β-cells of the BSD group, a larger ΔVm/Δ[glucose] was found at sub-stimulatory glucose concentrations and the threshold glucose concentration for generation of action potentials (APs) was increased by 1.23 mM. Moreover, at 11.0 mM glucose, a significant decrease was found in AP amplitude, frequency, ascending and descending slopes as well as in the calculated net charge influx and efflux of islet β-cells from BSD compared to the CD group, without changes in slow Vm oscillation parameters. A pharmacological dose of biotin in mice increases islet insulin cell mass, shifts islet β-cell intracellular electrical activity dose response curve toward higher glucose concentrations, very likely by increasing KATP conductance, and decreases voltage gated Ca2+ and K+ conductance at stimulatory glucose concentrations.
Collapse
Affiliation(s)
- Israel Morales-Reyes
- Tisular, Facultad de Medicina, Universidad Nacional Autónoma de México, Av. Universidad 3000, Circuito Interior S/N, Universidad Nacional Autónoma de México, C.U., CDMXLaboratorio de sinapsis eléctricas. Departamento de Biología Celular y , México
| | - Illani Atwater
- Human Genetics Program, ICBM, Faculty of Medicine, Universidad de Chile, Santiago, Chile
| | - Marcelino Esparza-Aguilar
- Unidad de Investigación en Epidemiología, Instituto Nacional de Pediatría, México. Ciudad de México, México
| | - E. Martha Pérez-Armendariz
- Tisular, Facultad de Medicina, Universidad Nacional Autónoma de México, Av. Universidad 3000, Circuito Interior S/N, Universidad Nacional Autónoma de México, C.U., CDMXLaboratorio de sinapsis eléctricas. Departamento de Biología Celular y , México
- CONTACT E. Martha Pérez-Armendariz ; Laboratorio de sinapsis eléctricas. Departamento de Biología Celular y Tisular, Facultad de Medicina, Universidad Nacional Autónoma de México, Av. Universidad 3000, Circuito Interior S/N, Universidad Nacional Autónoma de México, C.U., CDMX, C.P. 04510, México
| |
Collapse
|
3
|
Liang Y, Wang J, Li X, Wu S, Jiang C, Wang Y, Li X, Liu ZH, Mu Y. Exploring differentially expressed genes related to metabolism by RNA-Seq in porcine embryonic fibroblast after insulin treatment. J Vet Sci 2022; 23:e90. [PMID: 36448436 PMCID: PMC9715385 DOI: 10.4142/jvs.22088] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2022] [Revised: 08/23/2022] [Accepted: 09/13/2022] [Indexed: 11/06/2022] Open
Abstract
BACKGROUND Insulin regulates glucose homeostasis and has important effects on metabolism, cell growth, and differentiation. Depending on the cell type and physiological context, insulin signal has specific pathways and biological outcomes in different tissues and cells. For studying the signal pathway of insulin on glycolipid metabolism in porcine embryonic fibroblast (PEF), we used high-throughput sequencing to monitor gene expression patterns regulated by insulin. OBJECTIVES The goal of our research was to see how insulin affected glucose and lipid metabolism in PEFs. METHODS We cultured the PEFs with the addition of insulin and sampled them at 0, 48, and 72 h for RNA-Seq analysis in triplicate for each time point. RESULTS At 48 and 72 h, 801 and 1,176 genes were differentially expressed, respectively. Of these, 272 up-regulated genes and 264 down-regulated genes were common to both time points. Gene Ontology analysis was used to annotate the functions of the differentially expressed genes (DEGs), the biological processes related to lipid metabolism and cell cycle were dominant. And the DEGs were significantly enriched in interleukin-17 signaling pathway, phosphatidylinositol-3-kinase-protein kinase B signaling pathway, pyruvate metabolism, and others pathways related to lipid metabolism by Kyoto Encyclopedia of Genes and Genomes enrichment analysis. CONCLUSIONS These results elucidate the transcriptomic response to insulin in PEF. The genes and pathways involved in the transcriptome mechanisms provide useful information for further research into the complicated molecular processes of insulin in PEF.
Collapse
Affiliation(s)
- Yingjuan Liang
- Key Laboratory of Animal Cellular and Genetic Engineering of Heilongjiang Province, College of Life Science, Northeast Agricultural University, Harbin 150000, China
| | - Jinpeng Wang
- Key Laboratory of Animal Cellular and Genetic Engineering of Heilongjiang Province, College of Life Science, Northeast Agricultural University, Harbin 150000, China
| | - Xinyu Li
- Key Laboratory of Animal Cellular and Genetic Engineering of Heilongjiang Province, College of Life Science, Northeast Agricultural University, Harbin 150000, China
| | - Shuang Wu
- Key Laboratory of Animal Cellular and Genetic Engineering of Heilongjiang Province, College of Life Science, Northeast Agricultural University, Harbin 150000, China
| | - Chaoqian Jiang
- Key Laboratory of Animal Cellular and Genetic Engineering of Heilongjiang Province, College of Life Science, Northeast Agricultural University, Harbin 150000, China
| | - Yue Wang
- Key Laboratory of Animal Cellular and Genetic Engineering of Heilongjiang Province, College of Life Science, Northeast Agricultural University, Harbin 150000, China
| | - Xuechun Li
- Key Laboratory of Animal Cellular and Genetic Engineering of Heilongjiang Province, College of Life Science, Northeast Agricultural University, Harbin 150000, China
| | - Zhong-Hua Liu
- Key Laboratory of Animal Cellular and Genetic Engineering of Heilongjiang Province, College of Life Science, Northeast Agricultural University, Harbin 150000, China
| | - Yanshuang Mu
- Key Laboratory of Animal Cellular and Genetic Engineering of Heilongjiang Province, College of Life Science, Northeast Agricultural University, Harbin 150000, China
| |
Collapse
|
4
|
Rachdaoui N. Insulin: The Friend and the Foe in the Development of Type 2 Diabetes Mellitus. Int J Mol Sci 2020; 21:ijms21051770. [PMID: 32150819 PMCID: PMC7084909 DOI: 10.3390/ijms21051770] [Citation(s) in RCA: 89] [Impact Index Per Article: 17.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2020] [Revised: 02/29/2020] [Accepted: 03/02/2020] [Indexed: 12/14/2022] Open
Abstract
Insulin, a hormone produced by pancreatic β-cells, has a primary function of maintaining glucose homeostasis. Deficiencies in β-cell insulin secretion result in the development of type 1 and type 2 diabetes, metabolic disorders characterized by high levels of blood glucose. Type 2 diabetes mellitus (T2DM) is characterized by the presence of peripheral insulin resistance in tissues such as skeletal muscle, adipose tissue and liver and develops when β-cells fail to compensate for the peripheral insulin resistance. Insulin resistance triggers a rise in insulin demand and leads to β-cell compensation by increasing both β-cell mass and insulin secretion and leads to the development of hyperinsulinemia. In a vicious cycle, hyperinsulinemia exacerbates the metabolic dysregulations that lead to β-cell failure and the development of T2DM. Insulin and IGF-1 signaling pathways play critical roles in maintaining the differentiated phenotype of β-cells. The autocrine actions of secreted insulin on β-cells is still controversial; work by us and others has shown positive and negative actions by insulin on β-cells. We discuss findings that support the concept of an autocrine action of secreted insulin on β-cells. The hypothesis of whether, during the development of T2DM, secreted insulin initially acts as a friend and contributes to β-cell compensation and then, at a later stage, becomes a foe and contributes to β-cell decompensation will be discussed.
Collapse
Affiliation(s)
- Nadia Rachdaoui
- Department of Animal Sciences, Room 108, Foran Hall, Rutgers, the State University of New Jersey, 59 Dudley Rd, New Brunswick, NJ 08901, USA
| |
Collapse
|
5
|
Brial F, Alzaid F, Sonomura K, Kamatani Y, Meneyrol K, Le Lay A, Péan N, Hedjazi L, Sato TA, Venteclef N, Magnan C, Lathrop M, Dumas ME, Matsuda F, Zalloua P, Gauguier D. The Natural Metabolite 4-Cresol Improves Glucose Homeostasis and Enhances β-Cell Function. Cell Rep 2020; 30:2306-2320.e5. [PMID: 32075738 DOI: 10.1016/j.celrep.2020.01.066] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2019] [Revised: 10/26/2019] [Accepted: 01/22/2020] [Indexed: 02/09/2023] Open
Abstract
Exposure to natural metabolites contributes to the risk of cardiometabolic diseases (CMDs). Through metabolome profiling, we identify the inverse correlation between serum concentrations of 4-cresol and type 2 diabetes. The chronic administration of non-toxic doses of 4-cresol in complementary preclinical models of CMD reduces adiposity, glucose intolerance, and liver triglycerides, enhances insulin secretion in vivo, stimulates islet density and size, and pancreatic β-cell proliferation, and increases vascularization, suggesting activated islet enlargement. In vivo insulin sensitivity is not affected by 4-cresol. The incubation of mouse isolated islets with 4-cresol results in enhanced insulin secretion, insulin content, and β-cell proliferation of a magnitude similar to that induced by GLP-1. In both CMD models and isolated islets, 4-cresol is associated with the downregulated expression of the kinase DYRK1A, which may mediate its biological effects. Our findings identify 4-cresol as an effective regulator of β-cell function, which opens up perspectives for therapeutic applications in syndromes of insulin deficiency.
Collapse
Affiliation(s)
- Francois Brial
- Université de Paris, INSERM UMR 1124, 75006 Paris, France
| | - Fawaz Alzaid
- Sorbonne Université, Université Paris Descartes, INSERM UMR_S 1138, Cordeliers Research Centre, 75006 Paris, France
| | - Kazuhiro Sonomura
- Center for Genomic Medicine, Kyoto University Graduate School of Medicine, Kyoto 606-8501, Japan; Life Science Research Center, Technology Research Laboratory, Shimadzu, Kyoto 604-8511, Japan
| | - Yoichiro Kamatani
- Center for Genomic Medicine, Kyoto University Graduate School of Medicine, Kyoto 606-8501, Japan
| | - Kelly Meneyrol
- Université de Paris, Unit of Functional and Adaptive Biology, UMR 8251, CNRS, 4 rue Marie Andrée Lagroua Weill-Halle, 75013 Paris, France
| | - Aurélie Le Lay
- Université de Paris, INSERM UMR 1124, 75006 Paris, France
| | - Noémie Péan
- Université de Paris, INSERM UMR 1124, 75006 Paris, France
| | | | - Taka-Aki Sato
- Life Science Research Center, Technology Research Laboratory, Shimadzu, Kyoto 604-8511, Japan
| | - Nicolas Venteclef
- Sorbonne Université, Université Paris Descartes, INSERM UMR_S 1138, Cordeliers Research Centre, 75006 Paris, France
| | - Christophe Magnan
- Université de Paris, Unit of Functional and Adaptive Biology, UMR 8251, CNRS, 4 rue Marie Andrée Lagroua Weill-Halle, 75013 Paris, France
| | - Mark Lathrop
- McGill University and Genome Quebec Innovation Centre, 740 Doctor Penfield Avenue, Montreal, QC H3A 0G1, Canada
| | - Marc-Emmanuel Dumas
- Imperial College London, Section of Biomolecular Medicine, Division of Computational and Systems Medicine, Department of Surgery and Cancer, Faculty of Medicine, Sir Alexander Fleming Building, London SW7 2AZ, UK
| | - Fumihiko Matsuda
- Center for Genomic Medicine, Kyoto University Graduate School of Medicine, Kyoto 606-8501, Japan
| | - Pierre Zalloua
- Lebanese American University, School of Medicine, Beirut 1102 2801, Lebanon.
| | - Dominique Gauguier
- Université de Paris, INSERM UMR 1124, 75006 Paris, France; Center for Genomic Medicine, Kyoto University Graduate School of Medicine, Kyoto 606-8501, Japan; McGill University and Genome Quebec Innovation Centre, 740 Doctor Penfield Avenue, Montreal, QC H3A 0G1, Canada.
| |
Collapse
|
6
|
Arunagiri A, Haataja L, Pottekat A, Pamenan F, Kim S, Zeltser LM, Paton AW, Paton JC, Tsai B, Itkin-Ansari P, Kaufman RJ, Liu M, Arvan P. Proinsulin misfolding is an early event in the progression to type 2 diabetes. eLife 2019; 8:44532. [PMID: 31184302 PMCID: PMC6559786 DOI: 10.7554/elife.44532] [Citation(s) in RCA: 89] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2018] [Accepted: 04/09/2019] [Indexed: 02/06/2023] Open
Abstract
Biosynthesis of insulin – critical to metabolic homeostasis – begins with folding of the proinsulin precursor, including formation of three evolutionarily conserved intramolecular disulfide bonds. Remarkably, normal pancreatic islets contain a subset of proinsulin molecules bearing at least one free cysteine thiol. In human (or rodent) islets with a perturbed endoplasmic reticulum folding environment, non-native proinsulin enters intermolecular disulfide-linked complexes. In genetically obese mice with otherwise wild-type islets, disulfide-linked complexes of proinsulin are more abundant, and leptin receptor-deficient mice, the further increase of such complexes tracks with the onset of islet insulin deficiency and diabetes. Proinsulin-Cys(B19) and Cys(A20) are necessary and sufficient for the formation of proinsulin disulfide-linked complexes; indeed, proinsulin Cys(B19)-Cys(B19) covalent homodimers resist reductive dissociation, highlighting a structural basis for aberrant proinsulin complex formation. We conclude that increased proinsulin misfolding via disulfide-linked complexes is an early event associated with prediabetes that worsens with ß-cell dysfunction in type two diabetes. Our body fine-tunes the amount of sugar in our blood thanks to specialized ‘beta cells’ in the pancreas, which can release a hormone called insulin. To produce insulin, the beta cells first need to build an early version of the molecule – known as proinsulin – inside a cellular compartment called the endoplasmic reticulum. This process involves the formation of internal staples that keep the molecule of proinsulin folded correctly. Individuals developing type 2 diabetes have spikes of sugar in their blood, and so their bodies often respond by trying to make large amounts of insulin. After a while, the beta cells can fail to keep up, which brings on the full-blown disease. However, scientists have discovered that early in type 2 diabetes, the endoplasmic reticulum of beta cells can already show signs of stress; yet, the exact causes of this early damage are still unknown. To investigate this, Arunagiri et al. looked into whether proinsulin folds correctly during the earliest stages of type 2 diabetes. Biochemical experiments showed that even healthy beta cells contained some misfolded proinsulin molecules, where the molecular staples that should fold proinsulin internally were instead abnormally linking proinsulin molecules together. Further work revealed that the misfolded proinsulin was accumulating inside the endoplasmic reticulum. Finally, obese mice that were in the earliest stages of type 2 diabetes had the highest levels of abnormal proinsulin in their beta cells. Overall, the work by Arunagiri et al. suggests that large amounts of proinsulin molecules stapling themselves to each other in the endoplasmic reticulum of beta cells could be an early hallmark of the disease, and could make it get worse. A separate study by Jang et al. also shows that a protein that limits the misfolding of proinsulin is key to maintain successful insulin production in animals eating a Western-style, high fat diet. Hundreds of millions of people around the world have type 2 diabetes, and this number is rising quickly. Detecting and then fixing early problems associated with the condition may help to stop the disease in its track.
Collapse
Affiliation(s)
- Anoop Arunagiri
- Division of Metabolism, Endocrinology & Diabetes, University of Michigan Medical School, Ann Arbor, United States
| | - Leena Haataja
- Division of Metabolism, Endocrinology & Diabetes, University of Michigan Medical School, Ann Arbor, United States
| | - Anita Pottekat
- Degenerative Diseases Program, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, United States
| | - Fawnnie Pamenan
- Division of Metabolism, Endocrinology & Diabetes, University of Michigan Medical School, Ann Arbor, United States
| | - Soohyun Kim
- Department of Biomedical Science and Technology, Konkuk University, Gwangjin-gu, Republic of Korea
| | - Lori M Zeltser
- Department of Pathology and Cell Biology, Naomi Berrie Diabetes Center, Columbia University, New York, United States
| | - Adrienne W Paton
- Research Centre for Infectious Diseases, Department of Molecular and Biomedical Science, University of Adelaide, Adelaide, Australia
| | - James C Paton
- Research Centre for Infectious Diseases, Department of Molecular and Biomedical Science, University of Adelaide, Adelaide, Australia
| | - Billy Tsai
- Department of Cell and Developmental Biology, University of Michigan, Ann Arbor, United States
| | - Pamela Itkin-Ansari
- Development, Aging and Regeneration Program, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, United States
| | - Randal J Kaufman
- Degenerative Diseases Program, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, United States
| | - Ming Liu
- Division of Metabolism, Endocrinology & Diabetes, University of Michigan Medical School, Ann Arbor, United States.,Department of Endocrinology and Metabolism, Tianjin Medical University, Tianjin, China
| | - Peter Arvan
- Division of Metabolism, Endocrinology & Diabetes, University of Michigan Medical School, Ann Arbor, United States
| |
Collapse
|
7
|
Trinder M, Zhou L, Oakie A, Riopel M, Wang R. β-cell insulin receptor deficiency during in utero development induces an islet compensatory overgrowth response. Oncotarget 2018; 7:44927-44940. [PMID: 27384998 PMCID: PMC5216695 DOI: 10.18632/oncotarget.10342] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2015] [Accepted: 06/12/2016] [Indexed: 12/11/2022] Open
Abstract
The presence of insulin receptor (IR) on β-cells suggests that insulin has an autocrine/paracrine role in the regulation of β-cell function. It has previously been reported that the β-cell specific loss of IR (βIRKO) leads to the development of impaired glycemic regulation and β-cell death in mice. However, temporally controlled βIRKO induced during the distinct transitions of fetal pancreas development has yet to be investigated. We hypothesized that the presence of IR on β-cells during the 2nd transition phase of the fetal murine pancreas is required for maintaining normal islet development.We utilized a mouse insulin 1 promoter driven tamoxifen-inducible Cre-recombinase IR knockout (MIP-βIRKO) mouse model to investigate the loss of β-cell IR during pancreatic development at embryonic day (e) 13, a phase of endocrine proliferation and β-cell fate determination. Fetal pancreata examined at e19-20 showed significantly reduced IR levels in the β-cells of MIP-βIRKO mice. Morphologically, MIP-βIRKO pancreata exhibited significantly enlarged islet size with increased β-cell area and proliferation. MIP-βIRKO pancreata also displayed significantly increased Igf-2 protein level and Akt activity with a reduction in phospho-p53 when compared to control littermates. Islet vascular formation and Vegf-a protein level was significantly increased in MIP-βIRKO pancreata.Our results demonstrate a developmental role for the β-cell IR, whereby its loss leads to an islet compensatory overgrowth, and contributes further information towards elucidating the temporally sensitive signaling during β-cell commitment.
Collapse
Affiliation(s)
- Mark Trinder
- Children's Health Research Institute, London, Ontario, Canada.,Departments of Physiology & Pharmacology, University of Western Ontario, London, Ontario, Canada
| | - Liangyi Zhou
- Children's Health Research Institute, London, Ontario, Canada.,Department of Pathology, University of Western Ontario, London, Ontario, Canada
| | - Amanda Oakie
- Children's Health Research Institute, London, Ontario, Canada.,Department of Pathology, University of Western Ontario, London, Ontario, Canada
| | - Matthew Riopel
- Children's Health Research Institute, London, Ontario, Canada
| | - Rennian Wang
- Children's Health Research Institute, London, Ontario, Canada.,Departments of Physiology & Pharmacology, University of Western Ontario, London, Ontario, Canada.,Department of Medicine, University of Western Ontario, London, Ontario, Canada
| |
Collapse
|
8
|
Ramzy A, Mojibian M, Kieffer TJ. Insulin-Deficient Mouse β-Cells Do Not Fully Mature but Can Be Remedied Through Insulin Replacement by Islet Transplantation. Endocrinology 2018; 159:83-102. [PMID: 29029025 DOI: 10.1210/en.2017-00263] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/17/2017] [Accepted: 09/22/2017] [Indexed: 12/17/2022]
Abstract
Insulin receptor (IR) insufficiency in β-cells leads to impaired insulin secretion and reduced β-cell hyperplasia in response to hyperglycemia. Selective IR deficiency in β-cells in later embryological development may lead to compensatory β-cell hyperplasia. Although these findings suggest insulin signaling on the β-cell is important for β-cell function, they are confounded by loss of signaling by the insulinlike growth factors through the IR. To determine whether insulin itself is necessary for β-cell development and maturation, we performed a characterization of pancreatic islets in mice with deletions of both nonallelic insulin genes (Ins1-/-Ins2-/-). We immunostained neonatal Ins1-/-Ins2-/- and Ins1+/+Ins2+/+ pancreata and performed quantitative polymerase chain reaction on isolated neonatal islets. Insulin-deficient islets had reduced expression of factors normally expressed in maturing β-cells, including muscoloaponeurotic fibrosarcoma oncogene homolog A, homeodomain transcription factor 6.1, and glucose transporter 2. Ins1-/-Ins2-/-β-cells expressed progenitor factors associated with stem cells or dedifferentiated β-cells, including v-myc avian myolocytomatosis viral oncogene lung carcinoma derived and homeobox protein NANOG. We replaced insulin by injection or islet transplantation to keep mice alive into adulthood to determine whether insulin replacement was sufficient for the completed maturation of insulin-deficient β-cells. Short-term insulin glargine (Lantus®) injections partially rescued the β-cell phenotype, whereas long-term replacement of insulin by isogenic islet transplantation supported the formation of more mature β-cells. Our findings suggest that tightly regulated glycemia, insulin species, or other islet factors are necessary for β-cell maturation.
Collapse
Affiliation(s)
- Adam Ramzy
- Laboratory of Molecular and Cellular Medicine, Department of Cellular and Physiological Sciences, Life Sciences Institute, University of British Columbia, Vancouver, British Columbia, Canada
| | - Majid Mojibian
- Laboratory of Molecular and Cellular Medicine, Department of Cellular and Physiological Sciences, Life Sciences Institute, University of British Columbia, Vancouver, British Columbia, Canada
| | - Timothy J Kieffer
- Laboratory of Molecular and Cellular Medicine, Department of Cellular and Physiological Sciences, Life Sciences Institute, University of British Columbia, Vancouver, British Columbia, Canada
- Department of Surgery, University of British Columbia, Vancouver, British Columbia, Canada
| |
Collapse
|
9
|
Graus-Nunes F, Marinho TDS, Barbosa-da-Silva S, Aguila MB, Mandarim-de-Lacerda CA, Souza-Mello V. Differential effects of angiotensin receptor blockers on pancreatic islet remodelling and glucose homeostasis in diet-induced obese mice. Mol Cell Endocrinol 2017; 439:54-64. [PMID: 27780713 DOI: 10.1016/j.mce.2016.10.021] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/11/2016] [Revised: 10/21/2016] [Accepted: 10/21/2016] [Indexed: 02/07/2023]
Abstract
Obesity leads to adverse endocrine pancreas remodelling, reduced islet lifespan and early type 2 diabetes onset. AT1R blockade shows beneficial pleiotropic effects. This study sought to compare the effects of losartan and telmisartan on pancreatic islets remodelling and glucose homeostasis in diet-induced obese mice. High-fat diet yielded overweight, insulin resistance, islet apoptosis and hypertrophy. Suitable insulin levels and preserved endocrine pancreas structure were correlated to adequate AKT-FOXO1 pathway functioning in losartan-treated animals. Conversely, telmisartan yielded enhanced PDX1 and GLP-1 islet expression along with greater GLP-1 levels, with the consequent better islet glucose sensing and uptake. Greater islet vascularisation coupled with reduced apoptosis and macrophage infiltration seems to underlie the beneficial findings in both treatments. In conclusion, these results provide compelling evidence that two antihypertensive drugs (telmisartan and losartan) ameliorate pancreatic islet structure, glucose handling, and vascularisation in obese mice. Although only telmisartan countered overweight, both drugs yielded reduced apoptosis and islet preservation, with translational potential.
Collapse
Affiliation(s)
- Francielle Graus-Nunes
- Laboratory of Morphometry, Metabolism and Cardiovascular Disease, Biomedical Centre, Institute of Biology, State University of Rio de Janeiro, Brazil
| | - Thatiany de Souza Marinho
- Laboratory of Morphometry, Metabolism and Cardiovascular Disease, Biomedical Centre, Institute of Biology, State University of Rio de Janeiro, Brazil
| | - Sandra Barbosa-da-Silva
- Laboratory of Morphometry, Metabolism and Cardiovascular Disease, Biomedical Centre, Institute of Biology, State University of Rio de Janeiro, Brazil
| | - Marcia Barbosa Aguila
- Laboratory of Morphometry, Metabolism and Cardiovascular Disease, Biomedical Centre, Institute of Biology, State University of Rio de Janeiro, Brazil
| | - Carlos Alberto Mandarim-de-Lacerda
- Laboratory of Morphometry, Metabolism and Cardiovascular Disease, Biomedical Centre, Institute of Biology, State University of Rio de Janeiro, Brazil
| | - Vanessa Souza-Mello
- Laboratory of Morphometry, Metabolism and Cardiovascular Disease, Biomedical Centre, Institute of Biology, State University of Rio de Janeiro, Brazil.
| |
Collapse
|
10
|
Askenasy N. Mechanisms of diabetic autoimmunity: I--the inductive interface between islets and the immune system at onset of inflammation. Immunol Res 2016; 64:360-8. [PMID: 26639356 DOI: 10.1007/s12026-015-8753-y] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
The mechanisms of autoimmune reactivity onset in type 1 diabetes (T1D) remain elusive despite extensive experimentation and discussion. We reconsider several key aspects of the early stages of autoimmunity at four levels: islets, pancreatic lymph nodes, thymic function and peripheral immune homeostasis. Antigen presentation is the islets and has the capacity to provoke immune sensitization, either in the process of physiological neonatal β cell apoptosis or as a consequence of cytolytic activity of self-reactive thymocytes that escaped negative regulation. Diabetogenic effectors are efficiently expanded in both the islets and the lymph nodes under conditions of empty lymphoid niches during a period of time coinciding with a synchronized wave of β cell apoptosis surrounding weaning. A major drive of effector cell activation and expansion is inherent peripheral lymphopenia characteristic of neonates, though it remains unclear when is autoimmunity triggered in subjects displaying hyperglycemia in late adolescence. Our analysis suggests that T1D evolves through coordinated activity of multiple physiological mechanisms of stimulation within specific characteristics of the neonate immune system.
Collapse
Affiliation(s)
- Nadir Askenasy
- The Leah and Edward M. Frankel Laboratory of Experimental Bone Marrow Transplantation, 14 Kaplan Street, 49202, Petach Tikva, Israel.
| |
Collapse
|
11
|
Rozance PJ, Hay WW. Pancreatic islet hepatocyte growth factor and vascular endothelial growth factor A signaling in growth restricted fetuses. Mol Cell Endocrinol 2016; 435:78-84. [PMID: 26820125 PMCID: PMC4959995 DOI: 10.1016/j.mce.2016.01.025] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/17/2015] [Revised: 01/16/2016] [Accepted: 01/22/2016] [Indexed: 12/31/2022]
Abstract
Placental insufficiency leads to intrauterine growth restriction (IUGR) and a lifelong risk of developing type 2 diabetes. Impaired islet development in the growth restricted fetus, including decreased β-cell replication, mass, and insulin secretion, is strongly implicated in the pathogenesis of later life type 2 diabetes. Currently, standard medical management of a woman with a pregnancy complicated by placental insufficiency and fetal IUGR is increased fetal surveillance and indicated preterm delivery. This leads to the dual complications of IUGR and preterm birth - both of which may increase the lifelong risk for type 2 diabetes. In order to develop therapeutic interventions in IUGR pregnancies complicated by placental insufficiency and decrease the risk of later development of type 2 diabetes in the offspring, the mechanisms responsible for impaired islet development in these cases must be determined. This review focuses on current investigations testing the hypothesis that decreased nutrient supply to the IUGR fetus inhibits an intra-islet hepatocyte growth factor - vascular endothelial growth factor A (HGF - VEGFA) feed forward signaling pathway and that this is responsible for developmental islet defects.
Collapse
Affiliation(s)
- Paul J Rozance
- Perinatal Research Center, University of Colorado Denver School of Medicine, Department of Pediatrics, USA.
| | - William W Hay
- Perinatal Research Center, University of Colorado Denver School of Medicine, Department of Pediatrics, USA
| |
Collapse
|
12
|
Johnson JD. The quest to make fully functional human pancreatic beta cells from embryonic stem cells: climbing a mountain in the clouds. Diabetologia 2016; 59:2047-57. [PMID: 27473069 DOI: 10.1007/s00125-016-4059-4] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/18/2016] [Accepted: 06/23/2016] [Indexed: 01/10/2023]
Abstract
The production of fully functional insulin-secreting cells to treat diabetes is a major goal of regenerative medicine. In this article, I review progress towards this goal over the last 15 years from the perspective of a beta cell biologist. I describe the current state-of-the-art, and speculate on the general approaches that will be required to identify and achieve our ultimate goal of producing functional beta cells. The need for deeper phenotyping of heterogeneous cultures of stem cell derived islet-like cells in parallel with a better understanding of the heterogeneity of the target cell type(s) is emphasised. This deep phenotyping should include high-throughput single-cell analysis, as well as comprehensive 'omics technologies to provide unbiased characterisation of cell products and human beta cells. There are justified calls for more detailed and well-powered studies of primary human pancreatic beta cell physiology, and I propose online databases of standardised human beta cell responses to physiological stimuli, including both functional and metabolomic/proteomic/transcriptomic profiles. With a concerted, community-wide effort, including both basic and applied scientists, beta cell replacement will become a clinical reality for patients with diabetes.
Collapse
Affiliation(s)
- James D Johnson
- Diabetes Research Group, Life Sciences Institute, Department of Cellular and Physiological Sciences, University of British Columbia, 5358-2350 Health Sciences Mall, Vancouver, BC, Canada, V6T 1Z3.
| |
Collapse
|
13
|
Henley KD, Stanescu DE, Kropp PA, Wright CVE, Won KJ, Stoffers DA, Gannon M. Threshold-Dependent Cooperativity of Pdx1 and Oc1 in Pancreatic Progenitors Establishes Competency for Endocrine Differentiation and β-Cell Function. Cell Rep 2016; 15:2637-2650. [PMID: 27292642 DOI: 10.1016/j.celrep.2016.05.040] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2015] [Revised: 02/26/2016] [Accepted: 05/09/2016] [Indexed: 02/06/2023] Open
Abstract
Pdx1 and Oc1 are co-expressed in multipotent pancreatic progenitors and regulate the pro-endocrine gene Neurog3. Their expression diverges in later organogenesis, with Oc1 absent from hormone+ cells and Pdx1 maintained in mature β cells. In a classical genetic test for cooperative functional interactions, we derived mice with combined Pdx1 and Oc1 heterozygosity. Endocrine development in double-heterozygous pancreata was normal at embryonic day (E)13.5, but defects in specification and differentiation were apparent at E15.5, the height of the second wave of differentiation. Pancreata from double heterozygotes showed alterations in the expression of genes crucial for β-cell development and function, decreased numbers and altered allocation of Neurog3-expressing endocrine progenitors, and defective endocrine differentiation. Defects in islet gene expression and β-cell function persisted in double heterozygous neonates. These results suggest that Oc1 and Pdx1 cooperate prior to their divergence, in pancreatic progenitors, to allow for proper differentiation and functional maturation of β cells.
Collapse
Affiliation(s)
- Kathryn D Henley
- Department of Cell and Developmental Biology, Vanderbilt University, Nashville, TN 37232.,Program in Developmental Biology, Vanderbilt University, Nashville, TN 37232
| | - Diana E Stanescu
- Institute for Diabetes, Obesity and Metabolism and the Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104.,Division of Endocrinology and Diabetes, The Children's Hospital of Philadelphia, Philadelphia PA 19104
| | - Peter A Kropp
- Program in Developmental Biology, Vanderbilt University, Nashville, TN 37232.,Department of Molecular Physiology and Biophysics, Vanderbilt University, Nashville, TN 37232
| | - Christopher V E Wright
- Department of Cell and Developmental Biology, Vanderbilt University, Nashville, TN 37232.,Program in Developmental Biology, Vanderbilt University, Nashville, TN 37232
| | - Kyoung-Jae Won
- Institute for Diabetes, Obesity and Metabolism and the Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104
| | - Doris A Stoffers
- Institute for Diabetes, Obesity and Metabolism and the Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104
| | - Maureen Gannon
- Department of Cell and Developmental Biology, Vanderbilt University, Nashville, TN 37232.,Program in Developmental Biology, Vanderbilt University, Nashville, TN 37232.,Department of Molecular Physiology and Biophysics, Vanderbilt University, Nashville, TN 37232.,Department of Medicine, Vanderbilt University, Nashville, TN 37232.,Department of Veterans Affairs, Tennessee Valley Health Authority, Vanderbilt University, Nashville, TN 37212
| |
Collapse
|
14
|
Reduced insulin secretion function is associated with pancreatic islet redistribution of cell adhesion molecules (CAMS) in diabetic mice after prolonged high-fat diet. Histochem Cell Biol 2016; 146:13-31. [PMID: 27020567 DOI: 10.1007/s00418-016-1428-5] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/15/2016] [Indexed: 01/09/2023]
Abstract
Intercellular junctions play a role in regulating islet cytoarchitecture, insulin biosynthesis and secretion. In this study, we investigated the animal metabolic state as well as islet histology and cellular distribution/expression of CAMs and F-actin in the endocrine pancreas of C57BL/6/JUnib mice fed a high-fat diet (HFd) for a prolonged time period (8 months). Mice fed a HFd became obese and type 2 diabetic, displaying significant peripheral insulin resistance, hyperglycemia and moderate hyperinsulinemia. Isolated islets of HFd-fed mice displayed a significant impairment of glucose-induced insulin secretion associated with a diminished frequency of intracellular calcium oscillations compared with control islets. No marked change in islet morphology and cytoarchitecture was observed; however, HFd-fed mice showed higher beta cell relative area in comparison with controls. As shown by immunohistochemistry, ZO-1, E-, N-cadherins, α- and β-catenins were expressed at the intercellular contact site of endocrine cells, while VE-cadherin, as well as ZO-1, was found at islet vascular compartment. Redistribution of N-, E-cadherins and α-catenin (from the contact region to the cytoplasm in endocrine cells) associated with increased submembranous F-actin cell level as well as increased VE-cadherin islet immunolabeling was observed in diabetic mice. Increased gene expression of VE-cadherin and ZO-1, but no change for the other proteins, was observed in islets of diabetic mice. Only in the case of VE-cadherin, a significant increase in islet content of this CAM was detected by immunoblotting in diabetic mice. In conclusion, CAMs are expressed by endocrine and endothelial cells of pancreatic islets. The distribution/expression of N-, E- and VE-cadherins as well as α-catenin and F-actin is significantly altered in islet cells of obese and diabetic mice.
Collapse
|
15
|
Abstract
While insulin has mitogenic effects in many cell types, its effects on β cells remain elusive. In this issue of Cell Metabolism, Szabat et al. (2015) genetically block insulin production in adult β cells and show that this leads to a relief of ER stress, AKT activation, and increased β cell proliferation.
Collapse
Affiliation(s)
- Matias De Vas
- Section of Epigenomics and Disease, Department of Medicine, Imperial College London, London W12 0NN, United Kingdom
| | - Jorge Ferrer
- Section of Epigenomics and Disease, Department of Medicine, Imperial College London, London W12 0NN, United Kingdom; Biomedical Research Centre in Diabetes and Associated Metabolic Disorders (CIBERDEM), Institut d'Investigacions Biomediques August Pi I Sunyer (IDIBAPS), Barcelona, Spain.
| |
Collapse
|
16
|
Szabat M, Page MM, Panzhinskiy E, Skovsø S, Mojibian M, Fernandez-Tajes J, Bruin JE, Bround MJ, Lee JTC, Xu EE, Taghizadeh F, O'Dwyer S, van de Bunt M, Moon KM, Sinha S, Han J, Fan Y, Lynn FC, Trucco M, Borchers CH, Foster LJ, Nislow C, Kieffer TJ, Johnson JD. Reduced Insulin Production Relieves Endoplasmic Reticulum Stress and Induces β Cell Proliferation. Cell Metab 2016; 23:179-93. [PMID: 26626461 DOI: 10.1016/j.cmet.2015.10.016] [Citation(s) in RCA: 136] [Impact Index Per Article: 15.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/15/2015] [Revised: 09/13/2015] [Accepted: 10/25/2015] [Indexed: 11/25/2022]
Abstract
Pancreatic β cells are mostly post-mitotic, but it is unclear what locks them in this state. Perturbations including uncontrolled hyperglycemia can drive β cells into more pliable states with reduced cellular insulin levels, increased β cell proliferation, and hormone mis-expression, but it is unknown whether reduced insulin production itself plays a role. Here, we define the effects of ∼50% reduced insulin production in Ins1(-/-):Ins2(f/f):Pdx1Cre(ERT):mTmG mice prior to robust hyperglycemia. Transcriptome, proteome, and network analysis revealed alleviation of chronic endoplasmic reticulum (ER) stress, indicated by reduced Ddit3, Trib3, and Atf4 expression; reduced Xbp1 splicing; and reduced phospho-eIF2α. This state was associated with hyper-phosphorylation of Akt, which is negatively regulated by Trib3, and with cyclinD1 upregulation. Remarkably, β cell proliferation was increased 2-fold after reduced insulin production independently of hyperglycemia. Eventually, recombined cells mis-expressed glucagon in the hyperglycemic state. We conclude that the normally high rate of insulin production suppresses β cell proliferation in a cell-autonomous manner.
Collapse
Affiliation(s)
- Marta Szabat
- Department of Cellular and Physiological Sciences, Diabetes Research Group, Life Sciences Institute, University of British Columbia, BC V6T1Z3, Canada
| | - Melissa M Page
- Department of Cellular and Physiological Sciences, Diabetes Research Group, Life Sciences Institute, University of British Columbia, BC V6T1Z3, Canada
| | - Evgeniy Panzhinskiy
- Department of Cellular and Physiological Sciences, Diabetes Research Group, Life Sciences Institute, University of British Columbia, BC V6T1Z3, Canada
| | - Søs Skovsø
- Department of Cellular and Physiological Sciences, Diabetes Research Group, Life Sciences Institute, University of British Columbia, BC V6T1Z3, Canada
| | - Majid Mojibian
- Department of Cellular and Physiological Sciences, Diabetes Research Group, Life Sciences Institute, University of British Columbia, BC V6T1Z3, Canada
| | - Juan Fernandez-Tajes
- Wellcome Trust Centre for Human Genetics, University of Oxford, Oxford OX3 7BN, UK
| | - Jennifer E Bruin
- Department of Cellular and Physiological Sciences, Diabetes Research Group, Life Sciences Institute, University of British Columbia, BC V6T1Z3, Canada
| | - Michael J Bround
- Department of Cellular and Physiological Sciences, Diabetes Research Group, Life Sciences Institute, University of British Columbia, BC V6T1Z3, Canada
| | - Jason T C Lee
- Department of Cellular and Physiological Sciences, Diabetes Research Group, Life Sciences Institute, University of British Columbia, BC V6T1Z3, Canada
| | - Eric E Xu
- Child and Family Research Institute, University of British Columbia, BC V5Z 4H4, Canada
| | - Farnaz Taghizadeh
- Department of Cellular and Physiological Sciences, Diabetes Research Group, Life Sciences Institute, University of British Columbia, BC V6T1Z3, Canada
| | - Shannon O'Dwyer
- Department of Cellular and Physiological Sciences, Diabetes Research Group, Life Sciences Institute, University of British Columbia, BC V6T1Z3, Canada
| | - Martijn van de Bunt
- Wellcome Trust Centre for Human Genetics, University of Oxford, Oxford OX3 7BN, UK
| | - Kyung-Mee Moon
- Centre for High-Throughput Biology, University of British Columbia, BC V6T 1Z3, Canada
| | - Sunita Sinha
- Faculty of Pharmaceutical Sciences, University of British Columbia, BC V6T 1Z3, Canada
| | - Jun Han
- UVic-Genome BC Proteomics Centre, University of Victoria, BC V8Z 7X8, Canada
| | - Yong Fan
- Institute of Cellular Therapeutics, Allegheny Health Network, Pittsburgh, PA 15212-4772, USA
| | - Francis C Lynn
- Child and Family Research Institute, University of British Columbia, BC V5Z 4H4, Canada
| | - Massimo Trucco
- Institute of Cellular Therapeutics, Allegheny Health Network, Pittsburgh, PA 15212-4772, USA
| | | | - Leonard J Foster
- Centre for High-Throughput Biology, University of British Columbia, BC V6T 1Z3, Canada
| | - Corey Nislow
- Faculty of Pharmaceutical Sciences, University of British Columbia, BC V6T 1Z3, Canada
| | - Timothy J Kieffer
- Department of Cellular and Physiological Sciences, Diabetes Research Group, Life Sciences Institute, University of British Columbia, BC V6T1Z3, Canada
| | - James D Johnson
- Department of Cellular and Physiological Sciences, Diabetes Research Group, Life Sciences Institute, University of British Columbia, BC V6T1Z3, Canada.
| |
Collapse
|
17
|
Rozance PJ, Anderson M, Martinez M, Fahy A, Macko AR, Kailey J, Seedorf GJ, Abman SH, Hay WW, Limesand SW. Placental insufficiency decreases pancreatic vascularity and disrupts hepatocyte growth factor signaling in the pancreatic islet endothelial cell in fetal sheep. Diabetes 2015; 64:555-64. [PMID: 25249573 PMCID: PMC4303968 DOI: 10.2337/db14-0462] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Hepatocyte growth factor (HGF) and vascular endothelial growth factor A (VEGFA) are paracrine hormones that mediate communication between pancreatic islet endothelial cells (ECs) and β-cells. Our objective was to determine the impact of intrauterine growth restriction (IUGR) on pancreatic vascularity and paracrine signaling between the EC and β-cell. Vessel density was less in IUGR pancreata than in controls. HGF concentrations were also lower in islet EC-conditioned media (ECCM) from IUGR, and islets incubated with control islet ECCM responded by increasing insulin content, which was absent with IUGR ECCM. The effect of ECCM on islet insulin content was blocked with an inhibitory anti-HGF antibody. The HGF receptor was not different between control and IUGR islets, but VEGFA was lower and the high-affinity VEGF receptor was higher in IUGR islets and ECs, respectively. These findings show that paracrine actions from ECs increase islet insulin content, and in IUGR ECs, secretion of HGF was diminished. Given the potential feed-forward regulation of β-cell VEGFA and islet EC HGF, these two growth factors are highly integrated in normal pancreatic islet development, and this regulation is decreased in IUGR fetuses, resulting in lower pancreatic islet insulin concentrations and insulin secretion.
Collapse
Affiliation(s)
- Paul J Rozance
- Department of Pediatrics, University of Colorado School of Medicine, Aurora, CO Perinatal Research Center, University of Colorado School of Medicine, Aurora, CO
| | - Miranda Anderson
- School of Animal and Comparative Biomedical Sciences, University of Arizona, Tucson, AZ
| | - Marina Martinez
- School of Animal and Comparative Biomedical Sciences, University of Arizona, Tucson, AZ
| | - Anna Fahy
- School of Animal and Comparative Biomedical Sciences, University of Arizona, Tucson, AZ
| | - Antoni R Macko
- School of Animal and Comparative Biomedical Sciences, University of Arizona, Tucson, AZ
| | - Jenai Kailey
- Department of Pediatrics, University of Colorado School of Medicine, Aurora, CO Perinatal Research Center, University of Colorado School of Medicine, Aurora, CO
| | - Gregory J Seedorf
- Department of Pediatrics, University of Colorado School of Medicine, Aurora, CO Pediatric Heart Lung Center, University of Colorado School of Medicine, Aurora, CO
| | - Steven H Abman
- Department of Pediatrics, University of Colorado School of Medicine, Aurora, CO Pediatric Heart Lung Center, University of Colorado School of Medicine, Aurora, CO
| | - William W Hay
- Department of Pediatrics, University of Colorado School of Medicine, Aurora, CO Pediatric Heart Lung Center, University of Colorado School of Medicine, Aurora, CO
| | - Sean W Limesand
- School of Animal and Comparative Biomedical Sciences, University of Arizona, Tucson, AZ
| |
Collapse
|
18
|
The angiotensin-converting enzyme 2/angiotensin (1-7)/Mas axis protects the function of pancreatic β cells by improving the function of islet microvascular endothelial cells. Int J Mol Med 2014; 34:1293-300. [PMID: 25175177 DOI: 10.3892/ijmm.2014.1917] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2014] [Accepted: 07/09/2014] [Indexed: 11/05/2022] Open
Abstract
In the diabetic state, the local rennin-angiotensin system (RAS) is activated in the pancreas, and is strongly associated with islet dysfunction. The angiotensin-converting enzyme 2 (ACE2)/angiotensin (1-7) [Ang(1-7)]/Mas axis is a protective, negative regulator of the classical renin-angiotensin system. In this study, we assessed the role of the ACE2/Ang(1‑7)/Mas axis in pancreatic β cell survival and function. ACE2 knockout and wild-type mice were fed a high-fat diet for 16 weeks. We then performed terminal deoxynucleotidyl transferase-mediated dUTP nick end-labeling (TUNEL) assays, and determined the expression levels of interleukin-1β (IL-1β) and inducible nitric oxide synthase (iNOS) in the pancreatic islets. The effects of Ang(1-7) or Mas receptor silencing on endothelial function were assessed in MS-1 cells. MIN6 cells were then co-cultured with the MS-1 cells to evaluate the effects of ACE2 on insulin secretion. The ACE2 knockout mice were more susceptible than the wild-type mice to high-fat diet-induced β cell dysfunction. The TUNEL-positive area of the pancreatic islets and the expression levels of IL-1β and iNOS were markedly increased in the ACE2 knockout mice compared with their wild-type littermates. The Mas-silenced MS-1 cells were more sensitive to palmitate-induced dysfunction and apoptosis in vitro. Ang(1-7) increased the activity of the Akt/endothelial NOS/nitric oxide (NO) pathway in the MS-1 cells, protected MIN6 cells against palmitate-induced apoptosis, and improved MIN6 insulin secretory function in the co-culture system. In conclusion, this study demonstrates that the ACE2/Ang(1-7)/Mas axis is a potential target for protecting the funcion of β cells by improving the function of islet microvascular endothelial cells.
Collapse
|
19
|
Chen ZY, Liu SN, Li CN, Sun SJ, Liu Q, Lei L, Gao LH, Shen ZF. Atorvastatin helps preserve pancreatic β cell function in obese C57BL/6 J mice and the effect is related to increased pancreas proliferation and amelioration of endoplasmic-reticulum stress. Lipids Health Dis 2014; 13:98. [PMID: 24950764 PMCID: PMC4078942 DOI: 10.1186/1476-511x-13-98] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2014] [Accepted: 06/17/2014] [Indexed: 12/16/2022] Open
Abstract
BACKGROUND 3-Hydroxy-3-methyl-glutaryl CoA (HMG-CoA) reductase inhibitors or statins are competitive inhibitors of the rate-limiting enzyme in cholesterol biosynthesis. Currently, statins are used as first-line therapy in the treatment of diabetic dyslipidemia. However, effects of statins on β cell function remains unclear. This study aims to examine effects of atorvastatin treatment on pancreatic β cell function in obese C57BL/6 J mice and the possible mechanisms. METHODS Diet-induced obesity (DIO) C57BL/6 J mice were treated with atorvastatin (30 mg/kg/day) for 58 days. β cell function was assessed by hyperglycemic clamp and the area of insulin-positive β cells was examined by immunofluorescence. Gene expression was assessed by RT-PCR, and endoplasmic reticulum (ER) stress related proteins were examined by Western blot. Additionally, cell viability and apoptosis of the cholesterol-loaded NIT-1 cells were investigated after atorvastatin treatment. RESULTS Hyperglycemic clamp study revealed that glucose infusion rate (GIR) and insulin stimulation ratio in atorvastatin-treated DIO mice were markedly higher than control mice (P < 0.05, P < 0.01 vs. con), indicating preserved β-cell sensitivity to glucose. Lipid profiles of plasma triglyceride (TG), pancreas TG and plasma cholesterol (CHO) were improved. Pancreas weight and weight index were improved significantly after atorvastatin treatment (P < 0.05 vs. con). Immunofluorescence results showed that atorvastatin-treated mice had significantly larger insulin-positive β cell area (P < 0.05 vs. con). Furthermore, RT-PCR and western blot showed that the mRNA and protein expression of pancreatic and duodenal homeobox 1 (Pdx1) in the pancreas were upregulated (P < 0.001, P < 0.01 vs. con). Moreover, the expression level of ER stress markers of activating transcription factor 4 (ATF4), CCAAT-enhancer-binding protein homologous protein (CHOP) and phosphorylated eukaryotic initiation factor 2α (eIF2α) were downregulated in the pancreas of atorvastatin-treated mice (P < 0.001, P < 0.01, P < 0.01 vs. con). Besides, atorvastatin protected the pancreatic β cell line of NIT-1 from cholesterol-induced apoptosis. Western blot showed increased expression of anti-apoptotic protein of B-cell lymphoma 2 (Bcl-2). CONCLUSION Pancreatic β cell function of obese C57BL/6 J mice was preserved after atorvastatin treatment, and this improvement may be attributed to enhanced pancreas proliferation and amelioration of pancreatic ER stress.
Collapse
Affiliation(s)
- Zhi-yu Chen
- Department of pharmacology, State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, No.1 Xiannongtan Street, 100050 Beijing, P. R. China
| | - Shuai-nan Liu
- Department of pharmacology, State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, No.1 Xiannongtan Street, 100050 Beijing, P. R. China
| | - Cai-na Li
- Department of pharmacology, State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, No.1 Xiannongtan Street, 100050 Beijing, P. R. China
| | - Su-juan Sun
- Department of pharmacology, State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, No.1 Xiannongtan Street, 100050 Beijing, P. R. China
| | - Quan Liu
- Department of pharmacology, State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, No.1 Xiannongtan Street, 100050 Beijing, P. R. China
| | - Lei Lei
- Department of pharmacology, State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, No.1 Xiannongtan Street, 100050 Beijing, P. R. China
| | - Li-hui Gao
- Department of pharmacology, State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, No.1 Xiannongtan Street, 100050 Beijing, P. R. China
| | - Zhu-fang Shen
- Department of pharmacology, State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, No.1 Xiannongtan Street, 100050 Beijing, P. R. China
| |
Collapse
|
20
|
Mega C, Vala H, Rodrigues-Santos P, Oliveira J, Teixeira F, Fernandes R, Reis F, de Lemos ET. Sitagliptin prevents aggravation of endocrine and exocrine pancreatic damage in the Zucker Diabetic Fatty rat - focus on amelioration of metabolic profile and tissue cytoprotective properties. Diabetol Metab Syndr 2014; 6:42. [PMID: 24650557 PMCID: PMC3998187 DOI: 10.1186/1758-5996-6-42] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/30/2014] [Accepted: 03/05/2014] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND The purpose of this study was to investigate some of the possible mechanisms underlying the protective effects of a dipeptidyl peptidase IV (DPP-IV) inhibitor, sitagliptin, on pancreatic tissue in an animal model of type 2 diabetes mellitus (T2DM), the Zucker Diabetic Fatty (ZDF) rat, focusing on glycaemic, insulinic and lipidic profiles, as well as, on apoptosis, inflammation, angiogenesis and proliferation mediators. METHODS Male obese diabetic ZDF (fa/fa) rats, aged 20 weeks, were treated with sitagliptin (10 mg/kg bw/day) during 6 weeks and compared to untreated diabetic and lean control littermates. Metabolic data was evaluated at the beginning and at the end of the treatment, including glycaemia, HbA1c, insulinaemia, HOMA-beta and TGs. Endocrine and exocrine pancreas lesions were assessed semiquantitatively by histopathological methods. Pancreas gene (mRNA) and protein expression of mediators of apoptotic machinery, inflammation and angiogenesis/proliferation (Bax, Bcl2, IL-1β, VEGF, PCNA and TRIB3) were analyzed by RT-qPCR and/or by immunohistochemistry. RESULTS Sitagliptin treatment for 6 weeks (between 20 and 26 week-old) was able to significantly (p < 0.001) ameliorate all the metabolic parameters, by preventing the increase in blood glucose and in serum TGs contents (16.54% and 37.63%, respectively, vs untreated), as well as, by preventing the decrease in serum insulin levels and in the functional beta cells capacity accessed via HOMA-beta index (156.28% and 191.74%, respectively, vs untreated). Sitagliptin-treated diabetic rats presented a reduced pancreas Bax/Bcl2 ratio, suggestive of an antiapoptotic effect; in addition, sitagliptin was able to completely reduce (p < 0.001) the pancreas overexpression of IL-1β and TRIB3 found in the untreated diabetic animals; and promoted a significant (p < 0.001) overexpression of VEGF and PCNA. CONCLUSION In this animal model of obese T2DM (the ZDF rat), sitagliptin prevented β-cell dysfunction and evolution of pancreatic damage. The protective effects afforded by this DPP-IV inhibitor may derive from improvement of the metabolic profile (viewed by the amelioration of glucose and TGs levels and of insulin resistance) and from cytoprotective properties, such as antiapoptotic, anti-inflammatory, pro-angiogenic and pro-proliferative.
Collapse
Affiliation(s)
- Cristina Mega
- Laboratory of Pharmacology & Experimental Therapeutics, IBILI, Faculty of Medicine, Sub-Unit 1 (Polo III), University of Coimbra, 3000-548 Coimbra, Portugal
- ESAV, Polytechnic Institute of Viseu, Viseu, Portugal
| | - Helena Vala
- ESAV, Polytechnic Institute of Viseu, Viseu, Portugal
- Center for Studies in Education, Technologies and Health (CI&DETS), Polytechnic Institute of Viseu, Viseu, Portugal
| | - Paulo Rodrigues-Santos
- Institute of Immunology, Faculty of Medicine, University of Coimbra, Coimbra, Portugal
- Immunology and Oncology Laboratory, Center for Neurosciences and Cell Biology, Coimbra, Portugal
| | - Jorge Oliveira
- ESAV, Polytechnic Institute of Viseu, Viseu, Portugal
- Center for Studies in Education, Technologies and Health (CI&DETS), Polytechnic Institute of Viseu, Viseu, Portugal
| | - Frederico Teixeira
- Laboratory of Pharmacology & Experimental Therapeutics, IBILI, Faculty of Medicine, Sub-Unit 1 (Polo III), University of Coimbra, 3000-548 Coimbra, Portugal
| | - Rosa Fernandes
- Laboratory of Pharmacology & Experimental Therapeutics, IBILI, Faculty of Medicine, Sub-Unit 1 (Polo III), University of Coimbra, 3000-548 Coimbra, Portugal
| | - Flávio Reis
- Laboratory of Pharmacology & Experimental Therapeutics, IBILI, Faculty of Medicine, Sub-Unit 1 (Polo III), University of Coimbra, 3000-548 Coimbra, Portugal
| | - Edite Teixeira de Lemos
- Laboratory of Pharmacology & Experimental Therapeutics, IBILI, Faculty of Medicine, Sub-Unit 1 (Polo III), University of Coimbra, 3000-548 Coimbra, Portugal
- ESAV, Polytechnic Institute of Viseu, Viseu, Portugal
| |
Collapse
|
21
|
Clarkin CE, King AJ, Dhadda P, Chagastelles P, Nardi N, Wheeler-Jones CP, Jones PM. Activin receptor-like kinase 5 inhibition reverses impairment of endothelial cell viability by endogenous islet mesenchymal stromal cells. Stem Cells 2013; 31:547-59. [PMID: 23255220 DOI: 10.1002/stem.1305] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2012] [Revised: 11/06/2012] [Accepted: 11/21/2012] [Indexed: 01/08/2023]
Abstract
Following islet transplantation, islet graft revascularization is compromised due to loss of endothelial cells (ECs) during islet culture. TGF-β signaling pathways are essential for vascular homeostasis but their importance for islet EC function is unclear. We have identified a population of multipotent mesenchymal stromal cells (MSCs) within islets and investigated how modulation of TGF-β signaling by these cells influences islet EC viability. Cultured islets exhibited reduced expression of EC markers (VEGFR2, VE-cadherin and CD31), which was associated with diminished but sustained expression of endoglin a marker of both ECs and MSCs. Double fluorescent labeling of islets in situ with the EC marker CD31 disclosed a population of CD31-negative cells which were positive for endoglin. In vitro coculture of microvascular ECs with endoglin-positive, CD31-negative islet MSCs reduced VEGFR2 protein expression, disrupted EC angiogenic behavior, and increased EC detachment. Medium conditioned by islet MSCs significantly decreased EC viability and increased EC caspase 3/7 activity. EC:MSC cocultures showed enhanced Smad2 phosphorylation consistent with altered ALK5 signaling. Pharmacological inhibition of ALK5 activity with SB431542 (SB) improved EC survival upon contact with MSCs, and SB-treated cultured islets retained EC marker expression and sensitivity to exogenous VEGF164 . Thus, endoglin-expressing islet MSCs influence EC ALK5 signaling in vitro, which decreases EC viability, and changes in ALK5 activity in whole cultured islets contribute to islet EC loss. Modifying TGF-β signaling may enable maintenance of islet ECs during islet isolation and thus improve islet graft revascularization post-transplantation.
Collapse
Affiliation(s)
- Claire E Clarkin
- Diabetes Research Group, Division of Diabetes and Nutritional Sciences, School of Medicine, Kings College London, London, UK.
| | | | | | | | | | | | | |
Collapse
|
22
|
Decreased expression of insulin and increased expression of pancreatic transcription factor PDX-1 in islets in patients with liver cirrhosis: a comparative investigation using human autopsy specimens. J Gastroenterol 2013; 48:277-85. [PMID: 22790351 DOI: 10.1007/s00535-012-0633-9] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/02/2011] [Accepted: 06/13/2012] [Indexed: 02/04/2023]
Abstract
BACKGROUND Glucose intolerance in patients with liver cirrhosis (LC), known as hepatogenous diabetes, is thought to be distinct from type 2 diabetes (T2DM) in some aspects. Hyperinsulinemia and/or insulin resistance in liver disease is associated with hepatocarcinogenesis, growth of hepatocellular carcinoma, and poor prognosis. However, the pathophysiological processes in islets that are responsible for hyperinsulinemia in LC are still not precisely known. Therefore, we investigated the histopathological differences in islets of Langerhans cells between LC and T2DM. METHODS A total of 35 human autopsy pancreatic tissue samples were used in this study (control, n = 18; T2DM, n = 6; LC, n = 11). The expression of insulin, glucagon, somatostatin, pancreatic duodenal homeobox-1 (PDX-1), proliferating cell nuclear antigen (PCNA), and Ki-67 was examined using immunohistochemistry and quantitated by image analysis. RESULTS Islet hypertrophy and a significant increase in PCNA-positive cells in islets were observed in the tissues from LC cases. The insulin-positive areas in islets were significantly decreased in LC cases compared with control and T2DM cases (P = 0.001, P = 0.035, respectively), whereas the PDX-1-positive area was significantly increased in LC cases (P = 0.001) compared with the control. Furthermore, disorganization of pancreatic endocrine cells and nucleocytoplasmic translocation of PDX-1 were both seen in the LC subjects. CONCLUSIONS In LC, islets undergo hypertrophy and exhibit paradoxical expression of insulin and PDX-1. In the subjects autopsied, insulin expression was decreased, whereas expression of the pancreatic transcription factor PDX-1 was increased in LC. These results point to important distinctions between LC and T2DM.
Collapse
|
23
|
Calderari S, Chougnet C, Clemessy M, Kempf H, Corvol P, Larger E. Angiopoietin 2 alters pancreatic vascularization in diabetic conditions. PLoS One 2012; 7:e29438. [PMID: 22272235 PMCID: PMC3260141 DOI: 10.1371/journal.pone.0029438] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2011] [Accepted: 11/28/2011] [Indexed: 01/25/2023] Open
Abstract
Aims/hypothesis Islet vascularization, by controlling beta-cell mass expansion in response to increased insulin demand, is implicated in the progression to glucose intolerance and type 2 diabetes. We investigated how hyperglycaemia impairs expansion and differentiation of the growing pancreas. We have grafted xenogenic (avian) embryonic pancreas in severe combined immuno-deficient (SCID) mouse and analyzed endocrine and endothelial development in hyperglycaemic compared to normoglycaemic conditions. Methods 14 dpi chicken pancreases were grafted under the kidney capsule of normoglycaemic or hyperglycaemic, streptozotocin-induced, SCID mice and analyzed two weeks later. Vascularization was analyzed both quantitatively and qualitatively using either in situ hybridization with both mouse- and chick-specific RNA probes for VEGFR2 or immunohistochemistry with an antibody to nestin, a marker of endothelial cells that is specific for murine cells. To inhibit angiopoietin 2 (Ang2), SCID mice were treated with 4 mg/kg IP L1–10 twice/week. Results In normoglycaemic condition, chicken-derived endocrine and exocrine cells developed well and intragraft vessels were lined with mouse endothelial cells. When pancreases were grafted in hyperglycaemic mice, growth and differentiation of the graft were altered and we observed endothelial discontinuities, large blood-filled spaces. Vessel density was decreased. These major vascular anomalies were associated with strong over-expression of chick-Ang2. To explore the possibility that Ang2 over-expression could be a key step in vascular disorganization induced by hyperglycaemia, we treated mice with L1–10, an Ang-2 specific inhibitor. Inhibition of Ang2 improved vascularization and beta-cell density. Conclusions This work highlighted an important role of Ang2 in pancreatic vascular defects induced by hyperglycaemia.
Collapse
|
24
|
Tarabra E, Pelengaris S, Khan M. A simple matter of life and death-the trials of postnatal Beta-cell mass regulation. Int J Endocrinol 2012; 2012:516718. [PMID: 22577380 PMCID: PMC3346985 DOI: 10.1155/2012/516718] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/15/2011] [Accepted: 12/31/2011] [Indexed: 12/17/2022] Open
Abstract
Pancreatic beta-cells, which secrete the hormone insulin, are the key arbiters of glucose homeostasis. Defective beta-cell numbers and/or function underlie essentially all major forms of diabetes and must be restored if diabetes is to be cured. Thus, the identification of the molecular regulators of beta-cell mass and a better understanding of the processes of beta-cell differentiation and proliferation may provide further insight for the development of new therapeutic targets for diabetes. This review will focus on the principal hormones and nutrients, as well as downstream signalling pathways regulating beta-cell mass in the adult. Furthermore, we will also address more recently appreciated regulators of beta-cell mass, such as microRNAs.
Collapse
Affiliation(s)
- Elena Tarabra
- School of Life Sciences, Warwick University, Gibbet Hill Road, Coventry CV4 7AL, UK
- *Elena Tarabra:
| | - Stella Pelengaris
- School of Life Sciences, Warwick University, Gibbet Hill Road, Coventry CV4 7AL, UK
| | - Michael Khan
- School of Life Sciences, Warwick University, Gibbet Hill Road, Coventry CV4 7AL, UK
| |
Collapse
|
25
|
Mastracci TL, Sussel L. The endocrine pancreas: insights into development, differentiation, and diabetes. WILEY INTERDISCIPLINARY REVIEWS. DEVELOPMENTAL BIOLOGY 2012; 1:609-28. [PMID: 23799564 PMCID: PMC3420142 DOI: 10.1002/wdev.44] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
In the developing embryo, appropriate patterning of the endoderm fated to become pancreas requires the spatial and temporal coordination of soluble factors secreted by the surrounding tissues. Once pancreatic progenitor cells are specified in the developing gut tube epithelium, epithelial-mesenchymal interactions, as well as a cascade of transcription factors, subsequently delineate three distinct lineages, including endocrine, exocrine, and ductal cells. Simultaneous morphological changes, including branching, vascularization, and proximal organ development, also influence the process of specification and differentiation. Decades of research using mouse genetics have uncovered many of the key factors involved in pancreatic cell fate decisions. When pancreas development or islet cell functions go awry, due to mutations in genes important for proper organogenesis and development, the result can lead to a common pancreatic affliction, diabetes mellitus. Current treatments for diabetes are adequate but not curative. Therefore, researchers are utilizing the current understanding of normal embryonic pancreas development in vivo, to direct embryonic stem cells toward a pancreatic fate with the goal of transplanting these in vitro generated 'islets' into patients. Mimicking development in vitro has proven difficult; however, significant progress has been made and the current differentiation protocols are becoming more efficient. The continued partnership between developmental biologists and stem cell researchers will guarantee that the in vitro generation of insulin-producing β cells is a possible therapeutic option for the treatment of diabetes.
Collapse
Affiliation(s)
| | - Lori Sussel
- Department of Genetics and Development, Columbia University
| |
Collapse
|
26
|
Liu M, Hodish I, Haataja L, Lara-Lemus R, Rajpal G, Wright J, Arvan P. Proinsulin misfolding and diabetes: mutant INS gene-induced diabetes of youth. Trends Endocrinol Metab 2010; 21:652-9. [PMID: 20724178 PMCID: PMC2967602 DOI: 10.1016/j.tem.2010.07.001] [Citation(s) in RCA: 129] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/18/2010] [Revised: 07/07/2010] [Accepted: 07/08/2010] [Indexed: 12/23/2022]
Abstract
Type 1B diabetes (typically with early onset and without islet autoantibodies) has been described in patients bearing small coding sequence mutations in the INS gene. Not all mutations in the INS gene cause the autosomal dominant Mutant INS-gene Induced Diabetes of Youth (MIDY) syndrome, but most missense mutations affecting proinsulin folding produce MIDY. MIDY patients are heterozygotes, with the expressed mutant proinsulins exerting dominant-negative (toxic gain of function) behavior in pancreatic beta cells. Here we focus primarily on proinsulin folding in the endoplasmic reticulum, providing insight into perturbations of this folding pathway in MIDY. Accumulated evidence indicates that, in the molecular pathogenesis of the disease, misfolded proinsulin exerts dominant effects that initially inhibit insulin production, progressing to beta cell demise with diabetes.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Peter Arvan
- To whom correspondence may be addressed: Division of Metabolism, Endocrinology & Diabetes University of Michigan, 5560 MSRB2 1150 W. Medical Center Drive Ann Arbor, MI 48109-0678 Telephone: 734-936-5006 FAX: 734-936-6684
| |
Collapse
|
27
|
Liu M, Haataja L, Wright J, Wickramasinghe NP, Hua QX, Phillips NF, Barbetti F, Weiss MA, Arvan P. Mutant INS-gene induced diabetes of youth: proinsulin cysteine residues impose dominant-negative inhibition on wild-type proinsulin transport. PLoS One 2010; 5:e13333. [PMID: 20948967 PMCID: PMC2952628 DOI: 10.1371/journal.pone.0013333] [Citation(s) in RCA: 91] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2010] [Accepted: 09/13/2010] [Indexed: 02/06/2023] Open
Abstract
Recently, a syndrome of Mutant INS-gene-induced Diabetes of Youth (MIDY, derived from one of 26 distinct mutations) has been identified as a cause of insulin-deficient diabetes, resulting from expression of a misfolded mutant proinsulin protein in the endoplasmic reticulum (ER) of insulin-producing pancreatic beta cells. Genetic deletion of one, two, or even three alleles encoding insulin in mice does not necessarily lead to diabetes. Yet MIDY patients are INS-gene heterozygotes; inheritance of even one MIDY allele, causes diabetes. Although a favored explanation for the onset of diabetes is that insurmountable ER stress and ER stress response from the mutant proinsulin causes a net loss of beta cells, in this report we present three surprising and interlinked discoveries. First, in the presence of MIDY mutants, an increased fraction of wild-type proinsulin becomes recruited into nonnative disulfide-linked protein complexes. Second, regardless of whether MIDY mutations result in the loss, or creation, of an extra unpaired cysteine within proinsulin, Cys residues in the mutant protein are nevertheless essential in causing intracellular entrapment of co-expressed wild-type proinsulin, blocking insulin production. Third, while each of the MIDY mutants induces ER stress and ER stress response; ER stress and ER stress response alone appear insufficient to account for blockade of wild-type proinsulin. While there is general agreement that ultimately, as diabetes progresses, a significant loss of beta cell mass occurs, the early events described herein precede cell death and loss of beta cell mass. We conclude that the molecular pathogenesis of MIDY is initiated by perturbation of the disulfide-coupled folding pathway of wild-type proinsulin.
Collapse
Affiliation(s)
- Ming Liu
- Division of Metabolism, Endocrinology and Diabetes, University of Michigan Medical Center, Ann Arbor, Michigan, United States of America
| | - Leena Haataja
- Division of Metabolism, Endocrinology and Diabetes, University of Michigan Medical Center, Ann Arbor, Michigan, United States of America
| | - Jordan Wright
- Division of Metabolism, Endocrinology and Diabetes, University of Michigan Medical Center, Ann Arbor, Michigan, United States of America
| | - Nalinda P. Wickramasinghe
- Department of Biochemistry, Case Western Reserve University, Cleveland, Ohio, United States of America
| | - Qing-Xin Hua
- Department of Biochemistry, Case Western Reserve University, Cleveland, Ohio, United States of America
| | - Nelson F. Phillips
- Department of Biochemistry, Case Western Reserve University, Cleveland, Ohio, United States of America
| | - Fabrizio Barbetti
- Laboratory of Molecular Endocrinology and Metabolism, Bambino Gesù Children's Hospital, Scientific Institute (IRCCS), Rome, Italy
- Department of Internal Medicine, University of Tor Vergata, Rome, Italy
| | - Michael A. Weiss
- Department of Biochemistry, Case Western Reserve University, Cleveland, Ohio, United States of America
- * E-mail: (PA); (MAW)
| | - Peter Arvan
- Division of Metabolism, Endocrinology and Diabetes, University of Michigan Medical Center, Ann Arbor, Michigan, United States of America
- * E-mail: (PA); (MAW)
| |
Collapse
|
28
|
Altirriba J, Gasa R, Casas S, Ramírez-Bajo MJ, Ros S, Gutierrez-Dalmau A, Ruiz de Villa MC, Barbera A, Gomis R. The role of transmembrane protein 27 (TMEM27) in islet physiology and its potential use as a beta cell mass biomarker. Diabetologia 2010; 53:1406-14. [PMID: 20386877 PMCID: PMC7096040 DOI: 10.1007/s00125-010-1728-6] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/06/2010] [Accepted: 01/28/2010] [Indexed: 12/19/2022]
Abstract
AIMS/HYPOTHESIS Transmembrane protein 27 (TMEM27) is a membrane protein cleaved and shed by pancreatic beta cells that has been proposed as a beta cell mass biomarker. Despite reports of its possible role in insulin exocytosis and cell proliferation, its function in beta cells remains controversial. We aimed to characterise the function of TMEM27 in islets and its potential use as a beta cell mass biomarker. METHODS To determine TMEM27 function, we studied TMEM27 gene expression and localisation in human healthy and diabetic islets, the correlation of its expression with cell cycle and insulin secretion genes in human islets, its expression in tungstate-treated rats, and the effects of its overproduction on insulin secretion and proliferation in a beta cell line and islets. To elucidate its utility as a beta cell mass biomarker, we studied TMEM27 cleavage in a beta cell line, islets and primary proximal tubular cells. RESULTS TMEM27 mRNA levels in islets are lower in diabetic donors than in controls. Its gene expression correlates with that of insulin and SNAPIN in human islets. TMEM27 expression is downregulated in islets of tungstate-treated rats, which exhibit decreased insulin secretion and increased proliferation. TMEM27 overproduction in a beta cell line and islets significantly enhanced glucose-induced insulin secretion, with modest or no effects on proliferation. Finally, TMEM27 is cleaved and shed by renal proximal tubular cells and pancreatic islets. CONCLUSIONS/INTERPRETATION Our data support a role for TMEM27 in glucose-induced insulin secretion but not in cell proliferation. The finding that its cleavage is not specific to beta cells challenges the current support for its use as a potential beta cell mass biomarker.
Collapse
Affiliation(s)
- J. Altirriba
- grid.5841.80000000419370247Laboratory of Diabetes and Obesity, Endocrinology and Nutrition Unit, Institut d’Investigacions Biomèdiques August Pi i Sunyer, Hospital Clinic de Barcelona, Villarroel 170, 08036 Barcelona, Spain
- grid.430579.cCentro de Investigación Biomédica en Red de Diabetes y Enfermedades Metabólicas Asociadas, Spain,
| | - R. Gasa
- grid.5841.80000000419370247Laboratory of Diabetes and Obesity, Endocrinology and Nutrition Unit, Institut d’Investigacions Biomèdiques August Pi i Sunyer, Hospital Clinic de Barcelona, Villarroel 170, 08036 Barcelona, Spain
- grid.430579.cCentro de Investigación Biomédica en Red de Diabetes y Enfermedades Metabólicas Asociadas, Spain,
| | - S. Casas
- grid.5841.80000000419370247Laboratory of Diabetes and Obesity, Endocrinology and Nutrition Unit, Institut d’Investigacions Biomèdiques August Pi i Sunyer, Hospital Clinic de Barcelona, Villarroel 170, 08036 Barcelona, Spain
- grid.430579.cCentro de Investigación Biomédica en Red de Diabetes y Enfermedades Metabólicas Asociadas, Spain,
| | - M. J. Ramírez-Bajo
- grid.410458.c0000000096359413Department of Nephrology and Renal Transplantation, Laboratori Experimental de Nefrologia i Trasplantament, Hospital Clínic i Provincial de Barcelona, Barcelona, Spain
| | - S. Ros
- grid.7722.00000000118116966Institute for Research in Biomedicine, Scientific Park, Barcelona, Spain
| | - A. Gutierrez-Dalmau
- grid.410458.c0000000096359413Department of Nephrology and Renal Transplantation, Laboratori Experimental de Nefrologia i Trasplantament, Hospital Clínic i Provincial de Barcelona, Barcelona, Spain
- grid.411106.30000000098542756Department of Nephrology, Hospital Universitario Miguel Servet, Zaragoza, Spain
| | - M. C. Ruiz de Villa
- grid.5841.80000000419370247Department of Statistics, University of Barcelona, Barcelona, Spain
| | - A. Barbera
- grid.5841.80000000419370247Laboratory of Diabetes and Obesity, Endocrinology and Nutrition Unit, Institut d’Investigacions Biomèdiques August Pi i Sunyer, Hospital Clinic de Barcelona, Villarroel 170, 08036 Barcelona, Spain
| | - R. Gomis
- grid.5841.80000000419370247Laboratory of Diabetes and Obesity, Endocrinology and Nutrition Unit, Institut d’Investigacions Biomèdiques August Pi i Sunyer, Hospital Clinic de Barcelona, Villarroel 170, 08036 Barcelona, Spain
- grid.430579.cCentro de Investigación Biomédica en Red de Diabetes y Enfermedades Metabólicas Asociadas, Spain,
- grid.5841.80000000419370247Department of Medicine, University of Barcelona, Barcelona, Spain
| |
Collapse
|
29
|
Richards OC, Raines SM, Attie AD. The role of blood vessels, endothelial cells, and vascular pericytes in insulin secretion and peripheral insulin action. Endocr Rev 2010; 31:343-63. [PMID: 20164242 PMCID: PMC3365844 DOI: 10.1210/er.2009-0035] [Citation(s) in RCA: 109] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/01/2009] [Accepted: 12/17/2009] [Indexed: 02/08/2023]
Abstract
The pathogenesis of type 2 diabetes is intimately intertwined with the vasculature. Insulin must efficiently enter the bloodstream from pancreatic beta-cells, circulate throughout the body, and efficiently exit the bloodstream to reach target tissues and mediate its effects. Defects in the vasculature of pancreatic islets can lead to diabetic phenotypes. Similarly, insulin resistance is accompanied by defects in the vasculature of skeletal muscle, which ultimately reduce the ability of insulin and nutrients to reach myocytes. An underappreciated participant in these processes is the vascular pericyte. Pericytes, the smooth muscle-like cells lining the outsides of blood vessels throughout the body, have not been directly implicated in insulin secretion or peripheral insulin delivery. Here, we review the role of the vasculature in insulin secretion, islet function, and peripheral insulin delivery, and highlight a potential role for the vascular pericyte in these processes.
Collapse
Affiliation(s)
- Oliver C Richards
- Department of Biochemistry, University of Wisconsin-Madison, Madison, Wisconsin 53706, USA
| | | | | |
Collapse
|
30
|
Golson M, Misfeldt AA, Kopsombut U, Petersen C, Gannon M. High Fat Diet Regulation of β-Cell Proliferation and β-Cell Mass. THE OPEN ENDOCRINOLOGY JOURNAL 2010; 4:10.2174/1874216501004010066. [PMID: 24339840 PMCID: PMC3856766 DOI: 10.2174/1874216501004010066] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Type 2 Diabetes (T2D) is characterized by relative insulin insufficiency, caused when peripheral tissues such as liver, muscle, and adipocytes have a decreased response to insulin. One factor that elevates the risk for insulin resistance and T2D is obesity. In obese patients without T2D and initially in people who develop T2D, pancreatic β-cells are able to compensate for insulin resistance by increasing β-cell mass, effected by increased proliferation and hypertrophy, as well as increased insulin secretion per β-cell. In patients that go on to develop T2D, however, this initial period of compensation is followed by β-cell failure due to decreased proliferation and increased apoptosis. The forkhead box transcription factor FoxM1 is required for β-cell replication in mice after four weeks of age, during pregnancy, and after partial pancreatectomy. We investigated whether it is also required for β-cell proliferation due to diet-induced obesity.
Collapse
Affiliation(s)
- M.L. Golson
- Department of Medicine, Division of Diabetes, Endocrinology, and Metabolism, Vanderbilt University Medical Center, Nashville, Tennessee, USA
| | - A. Ackermann Misfeldt
- Department of Molecular Physiology and Biophysics, Vanderbilt University Medical Center, Nashville, Tennessee, USA
| | - U.G. Kopsombut
- Department of Medicine, Division of Diabetes, Endocrinology, and Metabolism, Vanderbilt University Medical Center, Nashville, Tennessee, USA
| | - C.P. Petersen
- Department of Medicine, Division of Diabetes, Endocrinology, and Metabolism, Vanderbilt University Medical Center, Nashville, Tennessee, USA
| | - M. Gannon
- Department of Medicine, Division of Diabetes, Endocrinology, and Metabolism, Vanderbilt University Medical Center, Nashville, Tennessee, USA
- Department of Molecular Physiology and Biophysics, Vanderbilt University Medical Center, Nashville, Tennessee, USA
- Department of Cell and Developmental Biology, Vanderbilt University Medical Center, Nashville, Tennessee, USA
| |
Collapse
|
31
|
Abstract
Pancreatic islets are highly vascularized micro-organs. Approximately 10% of an islet consists of blood vessels. The induction and maintenance of the islet vascular system depend on VEGF secreted from β-cells. VEGF is also critical for the phenotype of the islet vasculature by induction of a vast number of fenestrae. The islet vasculature serves the role of supplying the endocrine cells with oxygen and nutrients, but may also be important for proper glucose sensing of the cells, for paracrine support of endocrine function and growth, and for drainage of metabolites and secreted islet hormones into the systemic circulation. Emerging evidence suggests an important role of islet endothelial cells to maintain β-cell function and growth by secretion of molecules such as hepatocyte growth factor, thrombospondin-1 and laminins, thereby forming a vascular niche for the endocrine cells.
Collapse
Affiliation(s)
- Johan Olerud
- a Department of Medical Cell Biology, Uppsala University, Uppsala, Sweden
| | - Åsa Johansson
- a Department of Medical Cell Biology, Uppsala University, Uppsala, Sweden
| | - Per-Ola Carlsson
- b Department of Medical Sciences, Section for Endocrinology and Diabetology, Uppsala University Hospital, Uppsala, Sweden and Department of Medical Cell Biology, Husargatan 3, Box 571, SE-75123, Uppsala, Sweden.
| |
Collapse
|
32
|
Ham JN, Crutchlow MF, Desai BM, Simmons RA, Stoffers DA. Exendin-4 normalizes islet vascularity in intrauterine growth restricted rats: potential role of VEGF. Pediatr Res 2009; 66:42-6. [PMID: 19287346 PMCID: PMC2735861 DOI: 10.1203/pdr.0b013e3181a282a5] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Intrauterine growth restriction (IUGR) induced by uterine artery ligation in pregnant rats leads to low birth weight and early insulin secretory defects followed by the development of insulin resistance, decline in beta-cell mass, and diabetes in adulthood. Neonatal administration of Exendin-4 (Ex-4) prevents the deterioration of beta-cell mass and the onset of adult-onset diabetes. Our aim was to determine whether this effect occurs through preservation of islet vascularization. In 2 wk-old IUGR rats, endothelial-specific lectin staining revealed a 40% reduction in islet vascular density (p = 0.027), which was normalized by neonatal Ex-4. VEGF-A protein expression was reduced in IUGR islets compared with controls at postnatal d 1 (P). Neonatal Ex-4 normalized islet VEGF protein expression at P7. Neither IUGR nor Ex-4 administration to IUGR rats affected relative VEGF splice isoform RNA levels. Together, the reduced vascularity in IUGR islets before the deterioration of beta-cell mass, and the enhancement of VEGF expression and normalization of islet vascularity by neonatal Ex-4, suggest islet vascularity as an early determinant of beta-cell mass and as a potential therapeutic target for diabetes prevention.
Collapse
Affiliation(s)
- J Nina Ham
- Department of Medicine and the Institute for Diabetes, Obesity, and Metabolism, University of Pennsylvania School of Medicine, 415 Curie Boulevard, Philadelphia, PA 19104, USA
| | | | | | | | | |
Collapse
|
33
|
Sachdeva MM, Stoffers DA. Minireview: Meeting the demand for insulin: molecular mechanisms of adaptive postnatal beta-cell mass expansion. Mol Endocrinol 2009; 23:747-58. [PMID: 19196831 DOI: 10.1210/me.2008-0400] [Citation(s) in RCA: 121] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Type 2 diabetes results from pancreatic ss-cell failure in the setting of insulin resistance. This model of disease progression has received recent support from the results of genome-wide association studies that identify genes potentially regulating ss-cell growth and function as type 2 diabetes susceptibility loci. Normal ss-cell compensation for an increased insulin demand includes both enhanced insulin-secretory capacity and an expansion of morphological ss-cell mass, due largely to changes in the balance between ss-cell proliferation and apoptosis. Recent years have brought significant progress in the understanding of both extrinsic signals stimulating ss-cell growth as well as mediators intrinsic to the ss-cell that regulate the compensatory response. Here, we review the current knowledge of mechanisms underlying adaptive expansion of ss-cell mass, focusing on lessons learned from experimental models of physiologically occurring insulin-resistant states including diet-induced obesity and pregnancy, and highlighting the potential importance of interorgan cross talk. The identification of critical mediators of islet compensation may direct the development of future therapeutic strategies to enhance the response of ss-cells to insulin resistance.
Collapse
Affiliation(s)
- Mira M Sachdeva
- Department of Medicine, Institute for Diabetes, Obesity, and Metabolism, University of Pennsylvania School of Medicine, Philadelphia, 19104, USA
| | | |
Collapse
|
34
|
Abstract
Type 1 and type 2 diabetes mellitus together are predicted to affect over 300 million people worldwide by the year 2020. A relative or absolute paucity of functional β-cells is a central feature of both types of disease, and identifying the pathways that mediate the embryonic origin of new β-cells and mechanisms that underlie the proliferation of existing β-cells are major efforts in the fields of developmental and islet biology. A poor secretory response of existing β-cells to nutrients and hormones and the defects in hormone processing also contribute to the hyperglycemia observed in type 2 diabetes and has prompted studies aimed at enhancing β-cell function. The factors that contribute to a greater susceptibility in aging individuals to develop diabetes is currently unclear and may be linked to a poor turnover of β-cells and/or enhanced susceptibility of β-cells to apoptosis. This review is an update on the recent work in the areas of islet/β-cell regeneration and hormone processing that are relevant to the pathophysiology of the endocrine pancreas in type 1, type 2 and obesity-associated diabetes.
Collapse
Affiliation(s)
- Anke Assmann
- Research Division, Joslin Diabetes Center and Department of Medicine, Harvard Medical School, Boston, MA 02215, USA
| | | | | |
Collapse
|
35
|
Savinov AY, Strongin AY. Matrix metalloproteinases, T cell homing and beta-cell mass in type 1 diabetes. VITAMINS AND HORMONES 2009; 80:541-62. [PMID: 19251049 DOI: 10.1016/s0083-6729(08)00618-3] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
The pathogenesis of type 1 diabetes begins with the activation of autoimmune T killer cells and is followed by their homing into the pancreatic islets. After penetrating the pancreatic islets, T cells directly contact and destroy insulin-producing beta cells. This review provides an overview of the dynamic interactions which link T cell membrane type-1 matrix metalloproteinase (MT1-MMP) and the signaling adhesion CD44 receptor with T cell transendothelial migration and the subsequent homing of the transmigrated cells to the pancreatic islets. MT1-MMP regulates the functionality of CD44 in diabetogenic T cells. By regulating the functionality of T cell CD44, MT1-MMP mediates the transition of T cell adhesion to endothelial cells to the transendothelial migration of T cells, thus, controlling the rate at which T cells home into the pancreatic islets. As a result, the T cell MT1-MMP-CD44 axis controls the severity of the disease. Inhibition of MT1-MMP proteolysis of CD44 using highly specific and potent synthetic inhibitors, which have been clinically tested in cancer patients, reduces the rate of transendothelial migration and the homing of T cells. Result is a decrease in the net diabetogenic efficiency of T cells and a restoration of beta cell mass and insulin production in NOD mice. The latter is a reliable and widely used model of type I diabetes in humans. Overall, existing experimental evidence suggests that there is a sound mechanistic rationale for clinical trials of the inhibitors of T cell MT1-MMP in human type 1 diabetes patients.
Collapse
|
36
|
Gittes GK. Developmental biology of the pancreas: a comprehensive review. Dev Biol 2008; 326:4-35. [PMID: 19013144 DOI: 10.1016/j.ydbio.2008.10.024] [Citation(s) in RCA: 300] [Impact Index Per Article: 17.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2008] [Revised: 10/09/2008] [Accepted: 10/13/2008] [Indexed: 02/06/2023]
Abstract
Pancreatic development represents a fascinating process in which two morphologically distinct tissue types must derive from one simple epithelium. These two tissue types, exocrine (including acinar cells, centro-acinar cells, and ducts) and endocrine cells serve disparate functions, and have entirely different morphology. In addition, the endocrine tissue must become disconnected from the epithelial lining during its development. The pancreatic development field has exploded in recent years, and numerous published reviews have dealt specifically with only recent findings, or specifically with certain aspects of pancreatic development. Here I wish to present a more comprehensive review of all aspects of pancreatic development, though still there is not a room for discussion of stem cell differentiation to pancreas, nor for discussion of post-natal regeneration phenomena, two important fields closely related to pancreatic development.
Collapse
Affiliation(s)
- George K Gittes
- Children's Hospital of Pittsburgh and the University of Pittsburgh School of Medicine, Department of Pediatric Surgery, 3705 Fifth Avenue, Pittsburgh, PA 15213, USA
| |
Collapse
|
37
|
Chakravarthy MV, Zhu Y, Wice MB, Coleman T, Pappan KL, Marshall CA, McDaniel ML, Semenkovich CF. Decreased fetal size is associated with beta-cell hyperfunction in early life and failure with age. Diabetes 2008; 57:2698-707. [PMID: 18591393 PMCID: PMC2551680 DOI: 10.2337/db08-0404] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
OBJECTIVE Low birth weight is associated with diabetes in adult life. Accelerated or "catch-up" postnatal growth in response to small birth size is thought to presage disease years later. Whether adult disease is caused by intrauterine beta-cell-specific programming or by altered metabolism associated with catch-up growth is unknown. RESEARCH DESIGN AND METHODS We generated a new model of intrauterine growth restriction due to fatty acid synthase (FAS) haploinsufficiency (FAS deletion [FASDEL]). Developmental programming of diabetes in these mice was assessed from in utero to 1 year of age. RESULTS FASDEL mice did not manifest catch-up growth or insulin resistance. beta-Cell mass and insulin secretion were strikingly increased in young FASDEL mice, but beta-cell failure and diabetes occurred with age. FASDEL beta-cells had altered proliferative and apoptotic responses to the common stress of a high-fat diet. This sequence appeared to be developmentally entrained because beta-cell mass was increased in utero in FASDEL mice and in another model of intrauterine growth restriction caused by ectopic expression of uncoupling protein-1. Increasing intrauterine growth in FASDEL mice by supplementing caloric intake of pregnant dams normalized beta-cell mass in utero. CONCLUSIONS Decreased intrauterine body size, independent of postnatal growth and insulin resistance, appears to regulate beta-cell mass, suggesting that developing body size might represent a physiological signal that is integrated through the pancreatic beta-cell to establish a template for hyperfunction in early life and beta-cell failure with age.
Collapse
Affiliation(s)
- Manu V Chakravarthy
- Department of Medicine, Division of Endocrinology, Metabolism and Lipid Research, Washington University, St. Louis, Missouri, USA
| | | | | | | | | | | | | | | |
Collapse
|
38
|
Kim SW, Hwang HJ, Baek YM, Lee SH, Hwang HS, Yun JW. Proteomic and transcriptomic analysis for streptozotocin-induced diabetic rat pancreas in response to fungal polysaccharide treatments. Proteomics 2008; 8:2344-61. [DOI: 10.1002/pmic.200700779] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
39
|
Beith JL, Alejandro EU, Johnson JD. Insulin stimulates primary beta-cell proliferation via Raf-1 kinase. Endocrinology 2008; 149:2251-60. [PMID: 18202127 PMCID: PMC2329266 DOI: 10.1210/en.2007-1557] [Citation(s) in RCA: 76] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/12/2007] [Accepted: 01/07/2008] [Indexed: 01/03/2023]
Abstract
A relative decrease in beta-cell mass is key in the pathogenesis of type 1 diabetes, type 2 diabetes, and in the failure of transplanted islet grafts. It is now clear that beta-cell duplication plays a dominant role in the regulation of adult beta-cell mass. Therefore, knowledge of the endogenous regulators of beta-cell replication is critical for understanding the physiological control of beta-cell mass and for harnessing this process therapeutically. We have shown that concentrations of insulin known to exist in vivo act directly on beta-cells to promote survival. Whether insulin stimulates adult beta-cell proliferation remains unclear. We tested this hypothesis using dispersed primary mouse islet cells double labeled with 5-bromo-2-deoxyuridine and insulin antisera. Treating cells with 200-pm insulin significantly increased proliferation from a baseline rate of 0.15% per day. Elevating glucose from 5-15 mm did not significantly increase beta-cell replication. beta-Cell proliferation was inhibited by somatostatin as well as inhibitors of insulin signaling. Interestingly, inhibiting Raf-1 kinase blocked proliferation stimulated by low, but not high (superphysiological), insulin doses. Insulin-stimulated mouse insulinoma cell proliferation was dependent on both phosphatidylinositol 3-kinase/Akt and Raf-1/MAPK kinase pathways. Overexpression of Raf-1 was sufficient to increase proliferation in the absence of insulin, whereas a dominant-negative Raf-1 reduced proliferation in the presence of 200-pm insulin. Together, these results demonstrate for the first time that insulin, at levels that have been measured in vivo, can directly stimulate beta-cell proliferation and that Raf-1 kinase is involved in this process. These findings have significant implications for the understanding of the regulation of beta-cell mass in both the hyperinsulinemic and insulin-deficient states that occur in the various forms of diabetes.
Collapse
Affiliation(s)
- Jennifer L Beith
- Laboratory of Molecular Signalling in Diabetes, Diabetes Research Group, Department of Cellular and Physiological Sciences, University of British Columbia, Vancouver, British Columbia, Canada V6T 1Z3
| | | | | |
Collapse
|
40
|
Liu JL. Does IGF-I stimulate pancreatic islet cell growth? Cell Biochem Biophys 2007; 48:115-25. [PMID: 17709881 DOI: 10.1007/s12013-007-0016-7] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/1999] [Revised: 11/30/1999] [Accepted: 11/30/1999] [Indexed: 12/22/2022]
Abstract
Both IGF-I and its receptor (IGF-IR) are specifically expressed in various cell types of the endocrine pancreas. IGF-I has long been considered a growth factor for islet cells as it induces DNA synthesis in a glucose-dependent manner, prevents Fas-mediated autoimmune beta-cell destruction and delays onset of diabetes in non-obese diabetic (NOD) mice. Islet-specific IGF-I overexpression promotes islet cell regeneration in diabetic mice. However, in the last few years, results from most gene-targeted mice have challenged this view. For instance, combined inactivation of insulin receptor and IGF-IR or IGF-I and IGF-II genes in early embryos results in no defect on islet cell development; islet beta-cell-specific inactivation of IGF-IR gene causes no change in beta-cell mass; liver- and pancreatic-specific IGF-I gene deficiency (LID and PID mice) suggests that IGF-I exerts an inhibitory effect on islet cell growth albeit indirectly through controlling growth hormone release or expression of Reg family genes. These results need to be evaluated with potential gene redundancy, model limitations, indirect effects and ligand-receptor cross-activations within the insulin/IGF family. Although IGF-I causes islet beta-cell proliferation and neogenesis directly, what occur in normal physiology, pathophysiology or during development of an organism might be different. Locally produced and systemic IGF-I does not seem to play a positive role in islet cell growth. Rather, it is probably a negative regulator through controlling growth hormone and insulin release, hyperglycemia, or Reg gene expression. These results complicate the perspective of an IGF-I therapy for beta-cell loss.
Collapse
Affiliation(s)
- Jun-Li Liu
- Department of Medicine, McGill University Health Centre, Montreal, QC, Canada.
| |
Collapse
|
41
|
Gannon M, Ables ET, Crawford L, Lowe D, Offield MF, Magnuson MA, Wright CVE. pdx-1 function is specifically required in embryonic beta cells to generate appropriate numbers of endocrine cell types and maintain glucose homeostasis. Dev Biol 2007; 314:406-17. [PMID: 18155690 DOI: 10.1016/j.ydbio.2007.10.038] [Citation(s) in RCA: 143] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2007] [Accepted: 10/16/2007] [Indexed: 10/22/2022]
Abstract
The pdx1 gene is essential for pancreatic organogenesis in humans and mice; pdx1 mutations have been identified in human diabetic patients. Specific inactivation of pdx1 in adult beta cells revealed that this gene is required for maintenance of mature beta cell function. In the following study, a Cre-lox strategy was used to remove pdx1 function specifically from embryonic beta cells beginning at late-gestation, prior to islet formation. Animals in which pdx1 is lost in insulin-producing cells during embryogenesis had elevated blood glucose levels at birth and were overtly diabetic by weaning. Neonatal and adult mutant islets showed a dramatic reduction in the number of insulin(+) cells and an increase in both glucagon(+) and somatostatin(+) cells. Lineage tracing revealed that excess glucagon(+) and somatostatin(+) cells did not arise by interconversion of endocrine cell types. Examination of mutant islets revealed a decrease in proliferation of insulin-producing cells just before birth and a concomitant increase in proliferation of glucagon-producing cells. We propose that pdx1 is required for proliferation and function of the beta cells generated at late gestation, and that one function of normal beta cells is to inhibit the proliferation of other islet cell types, resulting in the appropriate numbers of the different endocrine cell types.
Collapse
Affiliation(s)
- Maureen Gannon
- Department of Medicine, Vanderbilt University Medical Center, Nashville, TN 37232, USA.
| | | | | | | | | | | | | |
Collapse
|
42
|
Ballian N, Hu M, Liu SH, Brunicardi FC. Proliferation, hyperplasia, neogenesis, and neoplasia in the islets of Langerhans. Pancreas 2007; 35:199-206. [PMID: 17895838 DOI: 10.1097/mpa.0b013e318074c6ed] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Pancreatic disease is responsible for significant morbidity and mortality as a result of pancreatic carcinoma and diabetes mellitus. Regulation of endocrine cell mass is thought to have a central role in the pathogenesis of both these diseases. Islet cell proliferation, hypertrophy, neogenesis, and apoptosis are the main determinants of endocrine cell mass in the pancreas, and their understanding has been improved by new clues of their genetic and molecular basis. Beta cells have attracted most research interest because of potential implications in the treatment of diabetes mellitus and hypoglycemic disorders. The processes that operate during pancreatic adaptation to a changing hormonal milieu are important in pancreatic carcinogenesis. There is evidence that somatostatin and its receptors are fundamental regulators of endocrine cell mass and are involved in islet tumorigenesis.
Collapse
Affiliation(s)
- Nikiforos Ballian
- Department of Surgery, The Johns Hopkins Hospital, Baltimore, MD, USA
| | | | | | | |
Collapse
|
43
|
Okada T, Liew CW, Hu J, Hinault C, Michael MD, Kr̈tzfeldt J, Yin C, Holzenberger M, Stoffel M, Kulkarni RN. Insulin receptors in beta-cells are critical for islet compensatory growth response to insulin resistance. Proc Natl Acad Sci U S A 2007; 104:8977-82. [PMID: 17416680 PMCID: PMC1885613 DOI: 10.1073/pnas.0608703104] [Citation(s) in RCA: 228] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2006] [Indexed: 12/31/2022] Open
Abstract
Insulin and insulin-like growth factor 1 (IGF1) are ubiquitous growth factors that regulate proliferation in most mammalian tissues including pancreatic islets. To explore the specificity of insulin receptors in compensatory beta-cell growth, we examined two models of insulin resistance. In the first model, we used liver-specific insulin receptor knockout (LIRKO) mice, which exhibit hyperinsulinemia without developing diabetes due to a compensatory increase in beta-cell mass. LIRKO mice, also lacking functional insulin receptors in beta-cells (beta IRKO/LIRKO), exhibited severe glucose intolerance but failed to develop compensatory islet hyperplasia, together leading to early death. In the second model, we examined the relative significance of insulin versus IGF1 receptors in islet growth by feeding high-fat diets to beta IRKO and beta-cell-specific IGF1 receptor knockout (beta IGFRKO) mice. Although both groups on the high-fat diet developed insulin resistance, beta IRKO, but not beta IGFRKO, mice exhibited poor islet growth consistent with insulin-stimulated phosphorylation, nuclear exclusion of FoxO1, and reduced expression of Pdx-1. Together these data provide direct genetic evidence that insulin/FoxO1/Pdx-1 signaling is one pathway that is crucial for islet compensatory growth response to insulin resistance.
Collapse
Affiliation(s)
- Terumasa Okada
- *Research Division, Joslin Diabetes Center and Department of Medicine, Harvard Medical School, Boston, MA 02215
| | - Chong Wee Liew
- *Research Division, Joslin Diabetes Center and Department of Medicine, Harvard Medical School, Boston, MA 02215
| | - Jiang Hu
- *Research Division, Joslin Diabetes Center and Department of Medicine, Harvard Medical School, Boston, MA 02215
| | - Charlotte Hinault
- *Research Division, Joslin Diabetes Center and Department of Medicine, Harvard Medical School, Boston, MA 02215
| | - M. Dodson Michael
- *Research Division, Joslin Diabetes Center and Department of Medicine, Harvard Medical School, Boston, MA 02215
| | - Jan Kr̈tzfeldt
- Laboratory of Metabolic Diseases, Rockefeller University, New York, NY 10021; and
| | - Catherine Yin
- *Research Division, Joslin Diabetes Center and Department of Medicine, Harvard Medical School, Boston, MA 02215
| | | | - Markus Stoffel
- Laboratory of Metabolic Diseases, Rockefeller University, New York, NY 10021; and
| | - Rohit N. Kulkarni
- *Research Division, Joslin Diabetes Center and Department of Medicine, Harvard Medical School, Boston, MA 02215
| |
Collapse
|
44
|
Jiang J, Au M, Lu K, Eshpeter A, Korbutt G, Fisk G, Majumdar AS. Generation of insulin-producing islet-like clusters from human embryonic stem cells. Stem Cells 2007; 25:1940-53. [PMID: 17510217 DOI: 10.1634/stemcells.2006-0761] [Citation(s) in RCA: 353] [Impact Index Per Article: 19.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Recent success in pancreatic islet transplantation has energized the field to discover an alternative source of stem cells with differentiation potential to beta cells. Generation of glucose-responsive, insulin-producing beta cells from self-renewing, pluripotent human ESCs (hESCs) has immense potential for diabetes treatment. We report here the development of a novel serum-free protocol to generate insulin-producing islet-like clusters (ILCs) from hESCs grown under feeder-free conditions. In this 36-day protocol, hESCs were treated with sodium butyrate and activin A to generate definitive endoderm coexpressing CXCR4 and Sox17, and CXCR4 and Foxa2. The endoderm population was then converted into cellular aggregates and further differentiated to Pdx1-expressing pancreatic endoderm in the presence of epidermal growth factor, basic fibroblast growth factor, and noggin. Soon thereafter, expression of Ptf1a and Ngn3 was detected, indicative of further pancreatic differentiation. The aggregates were finally matured in the presence of insulin-like growth factor II and nicotinamide. The temporal pattern of pancreas-specific gene expression in the hESC-derived ILCs showed considerable similarity to in vivo pancreas development, and the final population contained representatives of the ductal, exocrine, and endocrine pancreas. The hESC-derived ILCs contained 2%-8% human C-peptide-positive cells, as well as glucagon- and somatostatin-positive cells. Insulin content as high as 70 ng of insulin/mug of DNA was measured in the ILCs, representing levels higher than that of human fetal islets. In addition, the hESC-derived ILCs contained numerous secretory granules, as determined by electron microscopy, and secreted human C-peptide in a glucose-dependent manner. Disclosure of potential conflicts of interest is found at the end of this article.
Collapse
Affiliation(s)
- Jianjie Jiang
- Cell Therapy Research, Geron Corporation, Menlo Park, CA 94025, USA
| | | | | | | | | | | | | |
Collapse
|
45
|
Gleason CE, Gross DN, Birnbaum MJ. When the usual insulin is just not enough. Proc Natl Acad Sci U S A 2007; 104:8681-2. [PMID: 17517662 PMCID: PMC1885561 DOI: 10.1073/pnas.0702844104] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Affiliation(s)
- Catherine E. Gleason
- Institute for Diabetes, Obesity, and Metabolism and Howard Hughes Medical Institute, University of Pennsylvania School of Medicine, Philadelphia, PA 19104
| | - Danielle N. Gross
- Institute for Diabetes, Obesity, and Metabolism and Howard Hughes Medical Institute, University of Pennsylvania School of Medicine, Philadelphia, PA 19104
| | - Morris J. Birnbaum
- Institute for Diabetes, Obesity, and Metabolism and Howard Hughes Medical Institute, University of Pennsylvania School of Medicine, Philadelphia, PA 19104
- *To whom correspondence should be addressed. E-mail:
| |
Collapse
|
46
|
Herbach N, Rathkolb B, Kemter E, Pichl L, Klaften M, de Angelis MH, Halban PA, Wolf E, Aigner B, Wanke R. Dominant-negative effects of a novel mutated Ins2 allele causes early-onset diabetes and severe beta-cell loss in Munich Ins2C95S mutant mice. Diabetes 2007; 56:1268-76. [PMID: 17303807 DOI: 10.2337/db06-0658] [Citation(s) in RCA: 119] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
The novel diabetic mouse model Munich Ins2(C95S) was discovered within the Munich N-ethyl-N-nitrosourea mouse mutagenesis screen. These mice exhibit a T-->A transversion in the insulin 2 (Ins2) gene at nucleotide position 1903 in exon 3, which leads to the amino acid exchange C95S and loss of the A6-A11 intrachain disulfide bond. From 1 month of age onwards, blood glucose levels of heterozygous Munich Ins2(C95S) mutant mice were significantly increased compared with controls. The fasted and postprandial serum insulin levels of the heterozygous mutants were indistinguishable from those of wild-type littermates. However, serum insulin levels after glucose challenge, pancreatic insulin content, and homeostasis model assessment (HOMA) beta-cell indices of heterozygous mutants were significantly lower than those of wild-type littermates. The initial blood glucose decrease during an insulin tolerance test was lower and HOMA insulin resistance indices were significantly higher in mutant mice, indicating the development of insulin resistance in mutant mice. The total islet volume, the volume density of beta-cells in the islets, and the total beta-cell volume of heterozygous male mutants was significantly reduced compared with wild-type mice. Electron microscopy of the beta-cells of male mutants showed virtually no secretory insulin granules, the endoplasmic reticulum was severely enlarged, and mitochondria appeared swollen. Thus, Munich Ins2(C95S) mutant mice are considered a valuable model to study the mechanisms of beta-cell dysfunction and death during the development of diabetes.
Collapse
Affiliation(s)
- Nadja Herbach
- Institute of Veterinary Pathology, University of Munich, Munich, Germany.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
47
|
Abstract
The islets of Langerhans consist of endocrine cells embedded in a network of specialized capillaries that regulate islet blood flow. Despite evidence for a critical role of islet perfusion in endocrine pancreas function, there is information to support no fewer than three models of endocrine cell perfusion, emphasizing the lack of a universally accepted physiological theory. Islet blood flow is regulated by signals, such as hormones and nutrients that reach the islet vasculature from distant tissues via the bloodstream. In addition, islet perfusion determines communication between endocrine and exocrine cells and between different types of endocrine cells within islets. Interest in islet microcirculation has increased after improvements in islet transplantation, a therapy for diabetes mellitus that requires revascularization of grafted islets in a new host organ. Abnormal revascularization is thought to be partly responsible for differences in graft and native islet function. Similarly, angiogenesis has been shown to be a critical step in the transformation of islet hyperplasia to neoplasia.
Collapse
Affiliation(s)
- Nikiforos Ballian
- The Michael E. DeBakey Department of Surgery, Baylor College of Medicine, 1709 Dryden, Suite 1500, Houston, Texas 77030, USA
| | | |
Collapse
|
48
|
Symonds ME, Stephenson T, Gardner DS, Budge H. Long-term effects of nutritional programming of the embryo and fetus: mechanisms and critical windows. Reprod Fertil Dev 2007; 19:53-63. [PMID: 17389135 DOI: 10.1071/rd06130] [Citation(s) in RCA: 134] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
The maternal nutritional and metabolic environment is critical in determining not only reproduction, but also long-term health and viability. In the present review, the effects of maternal nutritional manipulation at defined stages of gestation coinciding with embryogenesis, maximal placental or fetal growth will be discussed. Long-term outcomes from these three developmental windows appear to be very different, with brain and cardiovascular function being most sensitive to influences in the embryonic period, the kidney during placental development and adipose tissue in the fetal phase. In view of the similarities in fetal development, number and maturity at birth, there are close similarities in these outcomes between findings from epidemiological studies in historical human cohorts and nutritional manipulation of large animals, such as sheep. One key nutrient that may modulate the long-term metabolic effects is the supply of glucose from the mother to the fetus, because this is sensitive to both global changes in food intake, maternal glucocorticoid status and an increase in the carbohydrate content of the diet. The extent to which these dietary-induced changes may reflect epigenetic changes remains to be established, especially when considering the very artificial diets used to induce these types of effects. In summary, the maintenance of a balanced and appropriate supply of glucose from the mother to the fetus may be pivotal in ensuring optimal embryonic, placental and fetal growth. Increased or decreased maternal plasma glucose alone, or in conjunction with other macro- or micronutrients, may result in offspring at increased risk of adult diseases.
Collapse
Affiliation(s)
- Michael E Symonds
- Centre for Reproduction and Early Life, Institute of Clinical Research, University Hospital, Nottingham, NG7 2UH, UK.
| | | | | | | |
Collapse
|
49
|
Vuguin PM, Kedees MH, Cui L, Guz Y, Gelling RW, Nejathaim M, Charron MJ, Teitelman G. Ablation of the glucagon receptor gene increases fetal lethality and produces alterations in islet development and maturation. Endocrinology 2006; 147:3995-4006. [PMID: 16627579 PMCID: PMC4287247 DOI: 10.1210/en.2005-1410] [Citation(s) in RCA: 92] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
Although glucagon (GLU) plays a pivotal role in glucose homeostasis, its role in the regulation of fetal growth and maturation is poorly understood. These issues were examined in a line of mice with a global deletion of the GLU receptor (Gcgr-/-), which are characterized by lower blood glucose levels and by alpha- and delta-cell hyperplasia in adults. Ablation of Gcgr was deleterious to fetal survival; it delayed beta-cell differentiation and perturbed the proportion of beta- to alpha-cells in embryonic islets. In adults, the mutation inhibited the progression of alpha-cells to maturity, affected the expression of several beta-cell-specific genes, and resulted in an augmentation of the alpha-, beta-, and delta-cell mass. This increase was due to an augmentation in both islet number and in the rate of proliferation of cells expressing GLU or insulin. These findings suggest that GLU participates in a feedback loop that regulates the proportion of the different endocrine cell types in islets, the number of islets per pancreas, and development of the mature alpha-cell phenotype.
Collapse
Affiliation(s)
- Patricia M Vuguin
- Division of Pediatric Endocrinology, Children's Hospital at Montefiore Medical Center, 111 East 210th Street, Bronx, New York 10476, USA.
| | | | | | | | | | | | | | | |
Collapse
|
50
|
Johansson M, Andersson A, Carlsson PO, Jansson L. Perinatal development of the pancreatic islet microvasculature in rats. J Anat 2006; 208:191-6. [PMID: 16441563 PMCID: PMC2100194 DOI: 10.1111/j.1469-7580.2006.00520.x] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
The aim of the present study was to investigate possible changes in the islet microvasculature during the period of pronounced beta-cell growth seen perinatally in rats. We studied islet endothelial and beta-cell proliferation, as well as islet vascular density, in rats during this period. There was a progressive increase in islet vascular density from day -1 to day 7 postpartum, with values similar to those in adult rats seen at the latter time point. (3)H-thymidine-labelled islet endothelial cells were extremely rare in adult rats, whereas such cells were much more frequent perinatally. The beta-cell labelling index was higher in all perinatal animals than in adult rats, with peak values seen on day 2. The proliferating endocrine cells were located very close to blood vessels at day 2 after birth. In conclusion, the pronounced growth of islet endocrine cells seen during the first week after birth coincides and co-localizes with an even more pronounced increase in islet endothelial cell proliferation, which results in a marked increase in intra-islet vascular density. This perinatal increase in islet blood vessel density may facilitate glucose sensing and islet hormonal delivery to the systemic circulation.
Collapse
Affiliation(s)
- Magnus Johansson
- Department of Medical Cell Biology, Uppsala University, Uppsala, Sweden.
| | | | | | | |
Collapse
|