1
|
Wang Y, Peng Y, Guo H. To curve for survival: Apical hook development. JOURNAL OF INTEGRATIVE PLANT BIOLOGY 2023; 65:324-342. [PMID: 36562414 DOI: 10.1111/jipb.13441] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/14/2022] [Accepted: 12/13/2022] [Indexed: 06/17/2023]
Abstract
Apical hook is a simple curved structure formed at the upper part of hypocotyls when dicot seeds germinate in darkness. The hook structure is transient but essential for seedlings' survival during soil emergence due to its efficient protection of the delicate shoot apex from mechanical injury. As a superb model system for studying plant differential growth, apical hook has fascinated botanists as early as the Darwin age, and significant advances have been achieved at both the morphological and molecular levels to understand how apical hook development is regulated. Here, we will mainly summarize the research progress at these two levels. We will also briefly compare the growth dynamics between apical hook and hypocotyl gravitropic bending at early seed germination phase, with the aim to deduce a certain consensus on their connections. Finally, we will outline the remaining questions and future research perspectives for apical hook development.
Collapse
Affiliation(s)
- Yichuan Wang
- Department of Biology, School of Life Sciences, Key Laboratory of Molecular Design for Plant Cell Factory of Guangdong Higher Education Institutes, Institute of Plant and Food Science, Southern University of Science and Technology (SUSTech), Shenzhen, 518055, China
| | - Yang Peng
- Department of Biology, School of Life Sciences, Key Laboratory of Molecular Design for Plant Cell Factory of Guangdong Higher Education Institutes, Institute of Plant and Food Science, Southern University of Science and Technology (SUSTech), Shenzhen, 518055, China
| | - Hongwei Guo
- Department of Biology, School of Life Sciences, Key Laboratory of Molecular Design for Plant Cell Factory of Guangdong Higher Education Institutes, Institute of Plant and Food Science, Southern University of Science and Technology (SUSTech), Shenzhen, 518055, China
| |
Collapse
|
2
|
Glanc M. Plant cell division from the perspective of polarity. JOURNAL OF EXPERIMENTAL BOTANY 2022; 73:5361-5371. [PMID: 35604840 DOI: 10.1093/jxb/erac227] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/17/2021] [Accepted: 05/19/2022] [Indexed: 06/15/2023]
Abstract
The orientation of cell division is a major determinant of plant morphogenesis. In spite of considerable efforts over the past decades, the precise mechanism of division plane selection remains elusive. The majority of studies on the topic have addressed division orientation from either a predominantly developmental or a cell biological perspective. Thus, mechanistic insights into the links between developmental and cellular factors affecting division orientation are particularly lacking. Here, I review recent progress in the understanding of cell division orientation in the embryo and primary root meristem of Arabidopsis from both developmental and cell biological standpoints. I offer a view of multilevel polarity as a central aspect of cell division: on the one hand, the division plane is a readout of tissue- and organism-wide polarities; on the other hand, the cortical division zone can be seen as a transient polar subcellular plasma membrane domain. Finally, I argue that a polarity-focused conceptual framework and the integration of developmental and cell biological approaches hold great promise to unravel the mechanistic basis of plant cell division orientation in the near future.
Collapse
Affiliation(s)
- Matouš Glanc
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Ghent, Belgium
- VIB Center for Plant Systems Biology, Ghent, Belgium
| |
Collapse
|
3
|
Vega-Lugo J, da Rocha-Azevedo B, Dasgupta A, Jaqaman K. Analysis of conditional colocalization relationships and hierarchies in three-color microscopy images. J Cell Biol 2022; 221:e202106129. [PMID: 35552363 PMCID: PMC9111757 DOI: 10.1083/jcb.202106129] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2021] [Revised: 03/15/2022] [Accepted: 04/25/2022] [Indexed: 01/07/2023] Open
Abstract
Colocalization analysis of multicolor microscopy images is a cornerstone approach in cell biology. It provides information on the localization of molecules within subcellular compartments and allows the interrogation of known molecular interactions in their cellular context. However, almost all colocalization analyses are designed for two-color images, limiting the type of information that they reveal. Here, we describe an approach, termed "conditional colocalization analysis," for analyzing the colocalization relationships between three molecular entities in three-color microscopy images. Going beyond the question of whether colocalization is present or not, it addresses the question of whether the colocalization between two entities is influenced, positively or negatively, by their colocalization with a third entity. We benchmark the approach and showcase its application to investigate receptor-downstream adaptor colocalization relationships in the context of functionally relevant plasma membrane locations. The software for conditional colocalization analysis is available at https://github.com/kjaqaman/conditionalColoc.
Collapse
Affiliation(s)
- Jesus Vega-Lugo
- Department of Biophysics, UT Southwestern Medical Center, Dallas, TX
| | | | | | - Khuloud Jaqaman
- Department of Biophysics, UT Southwestern Medical Center, Dallas, TX
- Lyda Hill Department of Bioinformatics, UT Southwestern Medical Center, Dallas, TX
| |
Collapse
|
4
|
Abstract
Auxin has always been at the forefront of research in plant physiology and development. Since the earliest contemplations by Julius von Sachs and Charles Darwin, more than a century-long struggle has been waged to understand its function. This largely reflects the failures, successes, and inevitable progress in the entire field of plant signaling and development. Here I present 14 stations on our long and sometimes mystical journey to understand auxin. These highlights were selected to give a flavor of the field and to show the scope and limits of our current knowledge. A special focus is put on features that make auxin unique among phytohormones, such as its dynamic, directional transport network, which integrates external and internal signals, including self-organizing feedback. Accented are persistent mysteries and controversies. The unexpected discoveries related to rapid auxin responses and growth regulation recently disturbed our contentment regarding understanding of the auxin signaling mechanism. These new revelations, along with advances in technology, usher us into a new, exciting era in auxin research.
Collapse
Affiliation(s)
- Jiří Friml
- Institute of Science and Technology Austria, 3400 Klosterneuburg, Austria
| |
Collapse
|
5
|
Kashkan I, Hrtyan M, Retzer K, Humpolíčková J, Jayasree A, Filepová R, Vondráková Z, Simon S, Rombaut D, Jacobs TB, Frilander MJ, Hejátko J, Friml J, Petrášek J, Růžička K. Mutually opposing activity of PIN7 splicing isoforms is required for auxin-mediated tropic responses in Arabidopsis thaliana. THE NEW PHYTOLOGIST 2022; 233:329-343. [PMID: 34637542 DOI: 10.1111/nph.17792] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/27/2021] [Accepted: 10/03/2021] [Indexed: 06/13/2023]
Abstract
Advanced transcriptome sequencing has revealed that the majority of eukaryotic genes undergo alternative splicing (AS). Nonetheless, little effort has been dedicated to investigating the functional relevance of particular splicing events, even those in the key developmental and hormonal regulators. Combining approaches of genetics, biochemistry and advanced confocal microscopy, we describe the impact of alternative splicing on the PIN7 gene in the model plant Arabidopsis thaliana. PIN7 encodes a polarly localized transporter for the phytohormone auxin and produces two evolutionarily conserved transcripts, PIN7a and PIN7b. PIN7a and PIN7b, differing in a four amino acid stretch, exhibit almost identical expression patterns and subcellular localization. We reveal that they are closely associated and mutually influence each other's mobility within the plasma membrane. Phenotypic complementation tests indicate that the functional contribution of PIN7b per se is minor, but it markedly reduces the prominent PIN7a activity, which is required for correct seedling apical hook formation and auxin-mediated tropic responses. Our results establish alternative splicing of the PIN family as a conserved, functionally relevant mechanism, revealing an additional regulatory level of auxin-mediated plant development.
Collapse
Affiliation(s)
- Ivan Kashkan
- Laboratory of Hormonal Regulations in Plants, Institute of Experimental Botany, Czech Academy of Sciences, Prague, 16502, Czech Republic
- Functional Genomics and Proteomics of Plants, Central European Institute of Technology and National Centre for Biomolecular Research, Masaryk University, Brno, 62500, Czech Republic
| | - Mónika Hrtyan
- Functional Genomics and Proteomics of Plants, Central European Institute of Technology and National Centre for Biomolecular Research, Masaryk University, Brno, 62500, Czech Republic
| | - Katarzyna Retzer
- Laboratory of Hormonal Regulations in Plants, Institute of Experimental Botany, Czech Academy of Sciences, Prague, 16502, Czech Republic
| | - Jana Humpolíčková
- Institute of Organic Chemistry and Biochemistry, Czech Academy of Sciences, Prague 6, 166 10, Czech Republic
| | - Aswathy Jayasree
- Functional Genomics and Proteomics of Plants, Central European Institute of Technology and National Centre for Biomolecular Research, Masaryk University, Brno, 62500, Czech Republic
| | - Roberta Filepová
- Laboratory of Hormonal Regulations in Plants, Institute of Experimental Botany, Czech Academy of Sciences, Prague, 16502, Czech Republic
| | - Zuzana Vondráková
- Laboratory of Hormonal Regulations in Plants, Institute of Experimental Botany, Czech Academy of Sciences, Prague, 16502, Czech Republic
| | - Sibu Simon
- Laboratory of Hormonal Regulations in Plants, Institute of Experimental Botany, Czech Academy of Sciences, Prague, 16502, Czech Republic
| | - Debbie Rombaut
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Ghent, 9052, Belgium
- VIB Center for Plant Systems Biology, Ghent, 9052, Belgium
| | - Thomas B Jacobs
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Ghent, 9052, Belgium
- VIB Center for Plant Systems Biology, Ghent, 9052, Belgium
| | - Mikko J Frilander
- Institute of Biotechnology, University of Helsinki, Helsinki, 00014, Finland
| | - Jan Hejátko
- Functional Genomics and Proteomics of Plants, Central European Institute of Technology and National Centre for Biomolecular Research, Masaryk University, Brno, 62500, Czech Republic
| | - Jiří Friml
- Institute of Science and Technology (IST Austria), Klosterneuburg, 3400, Austria
| | - Jan Petrášek
- Laboratory of Hormonal Regulations in Plants, Institute of Experimental Botany, Czech Academy of Sciences, Prague, 16502, Czech Republic
| | - Kamil Růžička
- Laboratory of Hormonal Regulations in Plants, Institute of Experimental Botany, Czech Academy of Sciences, Prague, 16502, Czech Republic
- Functional Genomics and Proteomics of Plants, Central European Institute of Technology and National Centre for Biomolecular Research, Masaryk University, Brno, 62500, Czech Republic
| |
Collapse
|
6
|
Chan J, Mansfield C, Clouet F, Dorussen D, Coen E. Intrinsic Cell Polarity Coupled to Growth Axis Formation in Tobacco BY-2 Cells. Curr Biol 2020; 30:4999-5006.e3. [PMID: 33035485 PMCID: PMC7758729 DOI: 10.1016/j.cub.2020.09.036] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2020] [Revised: 08/07/2020] [Accepted: 09/11/2020] [Indexed: 11/18/2022]
Abstract
Several plant proteins are preferentially localized to one end of a cell, allowing a polarity to be assigned to the cell. These cell polarity proteins often exhibit coordinated patterns between neighboring cells, termed tissue cell polarity. Tissue cell polarity is widespread in plants and can influence how cells grow, divide, and differentiate [1-5]. However, it is unclear whether cell polarity is established through cell-intrinsic or -extrinsic mechanisms and how polarity is coupled to growth. To address these issues, we analyzed the behavior of a tissue cell polarity protein BASL (BREAKING OF ASYMMETRY IN THE STOMATAL LINEAGE) in the simplifying context of cultured cell filaments and in protoplasts before and during regeneration. We show that BASL is polarly localized when ectopically expressed in tobacco BY-2 cell cultures. Ectopic BASL is found preferentially at the developing tips of cell filaments, likely marking a polarized molecular address. Polarity can shift during the cell cycle and is resistant to treatment with microtubule, actin or auxin transport inhibitors. BASL also exhibits polar localization in spherical protoplasts, in contrast to other polarity proteins so far tested. BASL polarity within protoplasts is dynamic and resistant to auxin transport inhibitors. As protoplasts regenerate, polarity remains dynamic in isotropically growing cells but becomes fixed in anisotropic cells and aligns with the axis of cell growth. Our findings suggest that plant cells have an intrinsic ability to polarize and that environmental or developmental cues may act by biasing the direction of this polarity and thus the orientation of anisotropic growth.
Collapse
Affiliation(s)
- Jordi Chan
- John Innes Centre, Colney Lane, Norwich NR4 7UH, UK.
| | | | | | | | - Enrico Coen
- John Innes Centre, Colney Lane, Norwich NR4 7UH, UK.
| |
Collapse
|
7
|
Conklin PA, Johnston R, Conlon BR, Shimizu R, Scanlon MJ. Plant homeodomain proteins provide a mechanism for how leaves grow wide. Development 2020; 147:dev.193623. [PMID: 32994171 PMCID: PMC7595687 DOI: 10.1242/dev.193623] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2020] [Accepted: 09/13/2020] [Indexed: 01/24/2023]
Abstract
The mechanisms whereby leaf anlagen undergo proliferative growth and expansion to form wide, flat leaves are unclear. The maize gene NARROWSHEATH1 (NS1) is a WUSCHEL-related homeobox3 (WOX3) homolog expressed at the margins of leaf primordia, and is required for mediolateral outgrowth. To investigate the mechanisms of NS1 function, we used chromatin immunoprecipitation and laser-microdissection RNA-seq of leaf primordial margins to identify gene targets bound and modulated by NS1. Microscopic analyses of cell division and gene expression in expanding leaves, and reverse genetic analyses of homologous NS1 target genes in Arabidopsis, reveal that NS1 controls mediolateral outgrowth by repression of a growth inhibitor and promotion of cell division at primordial leaf margins. Intriguingly, homologous WOX gene products are expressed in stem cell-organizing centers and traffic to adjoining cells to activate stem-cell identity non-autonomously. In contrast, WOX3/NS1 does not traffic, and stimulates cell divisions in the same cells in which it is transcribed. Highlighted Article: The NS1 homeodomain transcription factor regulates lateral organ outgrowth from shoot meristems and leaf primordial margins by repressing the expression of negative growth regulators.
Collapse
Affiliation(s)
- Phillip A Conklin
- Plant Biology Section, School of Integrative Plant Science, Cornell University, Ithaca, NY 14853, USA
| | - Robyn Johnston
- Plant Biology Section, School of Integrative Plant Science, Cornell University, Ithaca, NY 14853, USA.,The Elshire Group Limited, Palmerston North 4472, New Zealand
| | - Brianne R Conlon
- Plant Biology Section, School of Integrative Plant Science, Cornell University, Ithaca, NY 14853, USA
| | - Rena Shimizu
- Plant Biology Section, School of Integrative Plant Science, Cornell University, Ithaca, NY 14853, USA
| | - Michael J Scanlon
- Plant Biology Section, School of Integrative Plant Science, Cornell University, Ithaca, NY 14853, USA
| |
Collapse
|
8
|
FRUITFULL Is a Repressor of Apical Hook Opening in Arabidopsis thaliana. Int J Mol Sci 2020; 21:ijms21176438. [PMID: 32899394 PMCID: PMC7504503 DOI: 10.3390/ijms21176438] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2020] [Revised: 08/24/2020] [Accepted: 08/31/2020] [Indexed: 12/04/2022] Open
Abstract
Plants adjust their architecture to a constantly changing environment, requiring adaptation of differential growth. Despite their importance, molecular switches, which define growth transitions, are largely unknown. Apical hook development in dark grown Arabidopsis thaliana (A. thaliana) seedlings serves as a suitable model for differential growth transition in plants. Here, we show that the phytohormone auxin counteracts the light-induced growth transition during apical hook opening. We, subsequently, identified genes which are inversely regulated by light and auxin. We used in silico analysis of the regulatory elements in this set of genes and subsequently used natural variation in gene expression to uncover correlations between underlying transcription factors and the in silico predicted target genes. This approach uncovered that MADS box transcription factor AGAMOUS-LIKE 8 (AGL8)/FRUITFULL (FUL) modulates apical hook opening. Our data shows that transient FUL expression represses the expression of growth stimulating genes during early phases of apical hook development and therewith guards the transition to growth promotion for apical hook opening. Here, we propose a role for FUL in setting tissue identity, thereby regulating differential growth during apical hook development.
Collapse
|
9
|
Abstract
Cell polarity in plants operates across a broad range of spatial and temporal scales to control processes from acute cell growth to systemic hormone distribution. Similar to other eukaryotes, plants generate polarity at both the subcellular and tissue levels, often through polarization of membrane-associated protein complexes. However, likely due to the constraints imposed by the cell wall and their extremely plastic development, plants possess novel polarity molecules and mechanisms highly tuned to environmental inputs. Considerable progress has been made in identifying key plant polarity regulators, but detailed molecular understanding of polarity mechanisms remains incomplete in plants. Here, we emphasize the striking similarities in the conceptual frameworks that generate polarity in both animals and plants. To this end, we highlight how novel, plant-specific proteins engage in common themes of positive feedback, dynamic intracellular trafficking, and posttranslational regulation to establish polarity axes in development. We end with a discussion of how environmental signals control intrinsic polarity to impact postembryonic organogenesis and growth.
Collapse
Affiliation(s)
- Andrew Muroyama
- Howard Hughes Medical Institute, Stanford University, Stanford, California 94305-5020, USA; .,Department of Biology, Stanford University, Stanford, California 94305-5020, USA
| | - Dominique Bergmann
- Howard Hughes Medical Institute, Stanford University, Stanford, California 94305-5020, USA; .,Department of Biology, Stanford University, Stanford, California 94305-5020, USA
| |
Collapse
|
10
|
Winnicki K. The Winner Takes It All: Auxin-The Main Player during Plant Embryogenesis. Cells 2020; 9:E606. [PMID: 32138372 PMCID: PMC7140527 DOI: 10.3390/cells9030606] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2020] [Revised: 02/21/2020] [Accepted: 02/27/2020] [Indexed: 12/11/2022] Open
Abstract
In plants, the first asymmetrical division of a zygote leads to the formation of two cells with different developmental fates. The establishment of various patterns relies on spatial and temporal gene expression, however the precise mechanism responsible for embryonic patterning still needs elucidation. Auxin seems to be the main player which regulates embryo development and controls expression of various genes in a dose-dependent manner. Thus, local auxin maxima and minima which are provided by polar auxin transport underlie cell fate specification. Diverse auxin concentrations in various regions of an embryo would easily explain distinct cell identities, however the question about the mechanism of cellular patterning in cells exposed to similar auxin concentrations still remains open. Thus, specification of cell fate might result not only from the cell position within an embryo but also from events occurring before and during mitosis. This review presents the impact of auxin on the orientation of the cell division plane and discusses the mechanism of auxin-dependent cytoskeleton alignment. Furthermore, close attention is paid to auxin-induced calcium fluxes, which regulate the activity of MAPKs during postembryonic development and which possibly might also underlie cellular patterning during embryogenesis.
Collapse
Affiliation(s)
- Konrad Winnicki
- Department of Cytophysiology, Faculty of Biology and Environmental Protection, University of Lodz, 90-236 Lódź, Poland
| |
Collapse
|
11
|
Huang JB, Zou Y, Zhang X, Wang M, Dong Q, Tao LZ. RIBOSE PHOSPHATE ISOMERSASE 1 Influences Root Development by Acting on Cell Wall Biosynthesis, Actin Organization, and Auxin Transport in Arabidopsis. FRONTIERS IN PLANT SCIENCE 2020; 10:1641. [PMID: 31969892 PMCID: PMC6960261 DOI: 10.3389/fpls.2019.01641] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/05/2019] [Accepted: 11/21/2019] [Indexed: 05/29/2023]
Abstract
Cell wall biosynthesis plays essential roles in cell division and expansion and thus is fundamental to plant growth and development. In this work, we show that an Arabidopsis mutant dpr3, isolated by a forward genetic screen, displays embryo defects and short, swelling primary root with the failure of maintenance of root apical meristem reminiscent to several cell wall-deficient mutants. Map-based cloning identified dpr3 is a mutant allele of RIBOSE PHOSPHATE ISOMERSASE 1 (RPI1), an enzyme involved in cellulose synthesis. Cellulose content in the mutant was dramatically decreased. Moreover, dpr3 (rpi1 from hereon) caused aberrant auxin distribution, as well as defective accumulation of root master regulators PLETHORA (PLT1 and PLT2) and misexpression of auxin response factor 5 (MONOPTEROS, MP). The abnormal auxin distribution is likely due to the reduced accumulation of auxin efflux transporters PIN-FORMED (PIN1 and PIN3). Surprisingly, we found that the orientation of actin microfilaments was severely altered in rpi1 root cells, whereas the cortical microtubules stay normal. Our study provides evidence that the defects in cellulose synthesis in rpi1 affect polar auxin transport possibly connected with altered F-actin organization, which is critically important for vesicle trafficking, thus exerting effects on auxin distribution, signaling, and auxin-mediated plant development.
Collapse
Affiliation(s)
- Jia-Bao Huang
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, South China Agricultural University, Guangzhou, China
- Guangdong Provincial Key Laboratory of Protein Function and Regulation in Agricultural Organisms, College of Life Sciences, South China Agricultural University, Guangzhou, China
- State Key Laboratory of Crop Biology, Shandong Agricultural University, Taian, China
| | - Yi Zou
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, South China Agricultural University, Guangzhou, China
- Guangdong Provincial Key Laboratory of Protein Function and Regulation in Agricultural Organisms, College of Life Sciences, South China Agricultural University, Guangzhou, China
| | - Xiaojing Zhang
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, South China Agricultural University, Guangzhou, China
- Guangdong Provincial Key Laboratory of Protein Function and Regulation in Agricultural Organisms, College of Life Sciences, South China Agricultural University, Guangzhou, China
| | - Mingyan Wang
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, South China Agricultural University, Guangzhou, China
- Guangdong Provincial Key Laboratory of Protein Function and Regulation in Agricultural Organisms, College of Life Sciences, South China Agricultural University, Guangzhou, China
| | - Qingkun Dong
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, South China Agricultural University, Guangzhou, China
- Guangdong Provincial Key Laboratory of Protein Function and Regulation in Agricultural Organisms, College of Life Sciences, South China Agricultural University, Guangzhou, China
| | - Li-Zhen Tao
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, South China Agricultural University, Guangzhou, China
- Guangdong Provincial Key Laboratory of Protein Function and Regulation in Agricultural Organisms, College of Life Sciences, South China Agricultural University, Guangzhou, China
| |
Collapse
|
12
|
Glanc M, Fendrych M, Friml J. PIN2 Polarity Establishment in Arabidopsis in the Absence of an Intact Cytoskeleton. Biomolecules 2019; 9:biom9060222. [PMID: 31181636 PMCID: PMC6628292 DOI: 10.3390/biom9060222] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2019] [Revised: 06/05/2019] [Accepted: 06/05/2019] [Indexed: 12/31/2022] Open
Abstract
Cell polarity is crucial for the coordinated development of all multicellular organisms. In plants, this is exemplified by the PIN-FORMED (PIN) efflux carriers of the phytohormone auxin: The polar subcellular localization of the PINs is instructive to the directional intercellular auxin transport, and thus to a plethora of auxin-regulated growth and developmental processes. Despite its importance, the regulation of PIN polar subcellular localization remains poorly understood. Here, we have employed advanced live-cell imaging techniques to study the roles of microtubules and actin microfilaments in the establishment of apical polar localization of PIN2 in the epidermis of the Arabidopsis root meristem. We report that apical PIN2 polarity requires neither intact actin microfilaments nor microtubules, suggesting that the primary spatial cue for polar PIN distribution is likely independent of cytoskeleton-guided endomembrane trafficking.
Collapse
Affiliation(s)
- Matouš Glanc
- Institute of Science and Technology Austria (IST Austria), 3400 Klosterneuburg, Austria.
- Department of Experimental Plant Biology, Faculty of Science, Charles University, 12844 Prague, Czech Republic.
| | - Matyáš Fendrych
- Institute of Science and Technology Austria (IST Austria), 3400 Klosterneuburg, Austria.
- Department of Experimental Plant Biology, Faculty of Science, Charles University, 12844 Prague, Czech Republic.
| | - Jiří Friml
- Institute of Science and Technology Austria (IST Austria), 3400 Klosterneuburg, Austria.
| |
Collapse
|
13
|
Rakusová H, Han H, Valošek P, Friml J. Genetic screen for factors mediating PIN polarization in gravistimulated Arabidopsis thaliana hypocotyls. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2019; 98:1048-1059. [PMID: 30821050 PMCID: PMC6618169 DOI: 10.1111/tpj.14301] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/27/2018] [Revised: 02/13/2019] [Accepted: 02/14/2019] [Indexed: 05/24/2023]
Abstract
Gravitropism is an adaptive response that orients plant growth parallel to the gravity vector. Asymmetric distribution of the phytohormone auxin is a necessary prerequisite to the tropic bending both in roots and shoots. During hypocotyl gravitropic response, the PIN3 auxin transporter polarizes within gravity-sensing cells to redirect intercellular auxin fluxes. First gravity-induced PIN3 polarization to the bottom cell membranes leads to the auxin accumulation at the lower side of the organ, initiating bending and, later, auxin feedback-mediated repolarization restores symmetric auxin distribution to terminate bending. Here, we performed a forward genetic screen to identify regulators of both PIN3 polarization events during gravitropic response. We searched for mutants with defective PIN3 polarizations based on easy-to-score morphological outputs of decreased or increased gravity-induced hypocotyl bending. We identified the number of hypocotyl reduced bending (hrb) and hypocotyl hyperbending (hhb) mutants, revealing that reduced bending correlated typically with defective gravity-induced PIN3 relocation whereas all analyzed hhb mutants showed defects in the second, auxin-mediated PIN3 relocation. Next-generation sequencing-aided mutation mapping identified several candidate genes, including SCARECROW and ACTIN2, revealing roles of endodermis specification and actin cytoskeleton in the respective gravity- and auxin-induced PIN polarization events. The hypocotyl gravitropism screen thus promises to provide novel insights into mechanisms underlying cell polarity and plant adaptive development.
Collapse
Affiliation(s)
- Hana Rakusová
- Institute of Science and Technology (IST) Austria3400KlosterneuburgAustria
| | - Huibin Han
- Institute of Science and Technology (IST) Austria3400KlosterneuburgAustria
| | - Petr Valošek
- Institute of Science and Technology (IST) Austria3400KlosterneuburgAustria
| | - Jiří Friml
- Institute of Science and Technology (IST) Austria3400KlosterneuburgAustria
| |
Collapse
|
14
|
Strain- or Stress-Sensing in Mechanochemical Patterning by the Phytohormone Auxin. Bull Math Biol 2019; 81:3342-3361. [DOI: 10.1007/s11538-019-00600-5] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2017] [Accepted: 03/12/2019] [Indexed: 01/22/2023]
|
15
|
Renna L, Stefano G, Slabaugh E, Wormsbaecher C, Sulpizio A, Zienkiewicz K, Brandizzi F. TGNap1 is required for microtubule-dependent homeostasis of a subpopulation of the plant trans-Golgi network. Nat Commun 2018. [PMID: 30552321 DOI: 10.1038/s41467-018-07662-7664] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/21/2023] Open
Abstract
Defining convergent and divergent mechanisms underlying the biogenesis and function of endomembrane organelles is fundamentally important in cell biology. In all eukaryotes, the Trans-Golgi Network (TGN) is the hub where the exocytic and endocytic pathways converge. To gain knowledge in the mechanisms underlying TGN biogenesis and function, we characterized TGNap1, a protein encoded by a plant gene of unknown function conserved with metazoans. We demonstrate that TGNap1 is a TGN protein required for the homeostasis of biosynthetic and endocytic traffic pathways. We also show that TGNap1 binds Rab6, YIP4 and microtubules. Finally, we establish that TGNap1 contributes to microtubule-dependent biogenesis, tracking and function of a TGN subset, likely through interaction with Rab6 and YIP4. Our results identify an important trafficking determinant at the plant TGN and reveal an unexpected reliance of post-Golgi traffic homeostasis and organelle biogenesis on microtubules in plants.
Collapse
Affiliation(s)
- Luciana Renna
- MSU-DOE Plant Research Lab, Michigan State University, East Lansing, MI, 48824, USA
| | - Giovanni Stefano
- MSU-DOE Plant Research Lab, Michigan State University, East Lansing, MI, 48824, USA
- Department of Plant Biology, Michigan State University, East Lansing, MI, 48824, USA
| | - Erin Slabaugh
- MSU-DOE Plant Research Lab, Michigan State University, East Lansing, MI, 48824, USA
- Department of Molecular and Structural Biochemistry, North Carolina State University, Raleigh, NC, 27695, USA
| | - Clarissa Wormsbaecher
- MSU-DOE Plant Research Lab, Michigan State University, East Lansing, MI, 48824, USA
- Department of Molecular Genetics, The Ohio State University, Columbus, OH, 43210, USA
| | - Alan Sulpizio
- MSU-DOE Plant Research Lab, Michigan State University, East Lansing, MI, 48824, USA
- Department of Molecular Biology and Genetics, Cornell University, Ithaca, NY, 14850, USA
| | - Krzysztof Zienkiewicz
- MSU-DOE Plant Research Lab, Michigan State University, East Lansing, MI, 48824, USA
- Department of Plant Biochemistry, Georg-August-University, Albrecht-von-Haller-Institute for Plant Sciences, 37073, Göttingen, Germany
| | - Federica Brandizzi
- MSU-DOE Plant Research Lab, Michigan State University, East Lansing, MI, 48824, USA.
- Department of Plant Biology, Michigan State University, East Lansing, MI, 48824, USA.
| |
Collapse
|
16
|
Renna L, Stefano G, Slabaugh E, Wormsbaecher C, Sulpizio A, Zienkiewicz K, Brandizzi F. TGNap1 is required for microtubule-dependent homeostasis of a subpopulation of the plant trans-Golgi network. Nat Commun 2018; 9:5313. [PMID: 30552321 PMCID: PMC6294250 DOI: 10.1038/s41467-018-07662-4] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2018] [Accepted: 11/08/2018] [Indexed: 11/09/2022] Open
Abstract
Defining convergent and divergent mechanisms underlying the biogenesis and function of endomembrane organelles is fundamentally important in cell biology. In all eukaryotes, the Trans-Golgi Network (TGN) is the hub where the exocytic and endocytic pathways converge. To gain knowledge in the mechanisms underlying TGN biogenesis and function, we characterized TGNap1, a protein encoded by a plant gene of unknown function conserved with metazoans. We demonstrate that TGNap1 is a TGN protein required for the homeostasis of biosynthetic and endocytic traffic pathways. We also show that TGNap1 binds Rab6, YIP4 and microtubules. Finally, we establish that TGNap1 contributes to microtubule-dependent biogenesis, tracking and function of a TGN subset, likely through interaction with Rab6 and YIP4. Our results identify an important trafficking determinant at the plant TGN and reveal an unexpected reliance of post-Golgi traffic homeostasis and organelle biogenesis on microtubules in plants.
Collapse
Affiliation(s)
- Luciana Renna
- MSU-DOE Plant Research Lab, Michigan State University, East Lansing, MI, 48824, USA
| | - Giovanni Stefano
- MSU-DOE Plant Research Lab, Michigan State University, East Lansing, MI, 48824, USA
- Department of Plant Biology, Michigan State University, East Lansing, MI, 48824, USA
| | - Erin Slabaugh
- MSU-DOE Plant Research Lab, Michigan State University, East Lansing, MI, 48824, USA
- Department of Molecular and Structural Biochemistry, North Carolina State University, Raleigh, NC, 27695, USA
| | - Clarissa Wormsbaecher
- MSU-DOE Plant Research Lab, Michigan State University, East Lansing, MI, 48824, USA
- Department of Molecular Genetics, The Ohio State University, Columbus, OH, 43210, USA
| | - Alan Sulpizio
- MSU-DOE Plant Research Lab, Michigan State University, East Lansing, MI, 48824, USA
- Department of Molecular Biology and Genetics, Cornell University, Ithaca, NY, 14850, USA
| | - Krzysztof Zienkiewicz
- MSU-DOE Plant Research Lab, Michigan State University, East Lansing, MI, 48824, USA
- Department of Plant Biochemistry, Georg-August-University, Albrecht-von-Haller-Institute for Plant Sciences, 37073, Göttingen, Germany
| | - Federica Brandizzi
- MSU-DOE Plant Research Lab, Michigan State University, East Lansing, MI, 48824, USA.
- Department of Plant Biology, Michigan State University, East Lansing, MI, 48824, USA.
| |
Collapse
|
17
|
Kamada M, Miyamoto K, Oka M, Uheda E, Ueda J, Higashibata A. Procedures for chemical fixation in immunohistochemical analyses of PIN proteins regulating polar auxin transport: Relevance to spaceflight experiments. LIFE SCIENCES IN SPACE RESEARCH 2018; 18:42-51. [PMID: 30100147 DOI: 10.1016/j.lssr.2018.05.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/08/2018] [Revised: 05/11/2018] [Accepted: 05/13/2018] [Indexed: 06/08/2023]
Abstract
The mechanism by which gravity controls the polar transport of auxin, a plant hormone regulating multiple physiological processes in higher plants, remains unclear, although an important role of PIN proteins as efflux carriers/facilitators in polar auxin transport is suggested. We are going to study the effect of microgravity on the polar transport of auxin, focusing on the cellular localization of its efflux carrier, PsPIN1 in etiolated pea seedlings and ZmPIN1a in etiolated maize seedlings grown under microgravity conditions on the International Space Station (ISS) using immunohistochemical analyses according to space experimental plans (Ueda, 2016). To obtain adequate results regarding the cellular localization of functional proteins, prolonged chemical fixation processes as well as chemical fixatives should be well-matched to the properties of functional proteins as antigens since experimental analyses will be performed on the ground after keeping samples for a long duration on the ISS. As a result of ground verification, clear detection of the cellular localization of PsPIN1 and ZmPIN1a immunohistochemically was successful based on the results of several kinds of chemical fixation tested, even when etiolated pea and maize seedlings were fixed by immersion in chemical fixative for a long duration. The addition of 0.1% (w/v) Nonidet P-40 to chemical fixative composed of 50% (v/v) ethanol and 5% (v/v) acetic acid or that of 50% (v/v) methanol and 5% (v/v) acetic acid has led to a significant improvement in the immunohistochemical detection of PsPIN1 or ZmPIN1a. These chemical fixatives were also shown to be storage-stable for a long time before use. In this study, adequate chemical fixatives and fixation protocols were developed, which can be used to detect localization of PsPIN1 and ZmPIN1a proteins in young etiolated pea and maize seedlings, respectively, using anti PsPIN1 and ZmPIN1a antibodies. These protocols can be used in spaceflight experiments to investigate the effects of the microgravity environment on the ISS on PIN protein localization in pea and maize seedlings.
Collapse
Affiliation(s)
- Motoshi Kamada
- Future Development Division, Advanced Engineering Services Co., Ltd., 1-6-1 Takezono, Tsukuba, Ibaraki 305-0032, Japan.
| | - Kensuke Miyamoto
- Faculty of Liberal Arts and Sciences, Osaka Prefecture University, 1-1 Gakuen-cho, Naka-ku, Sakai, Osaka 599-8531, Japan
| | - Mariko Oka
- Faculty of Agriculture, Tottori University, 4-101 Koyamacho-minami, Tottori 680-8553, Japan
| | - Eiji Uheda
- Graduate School of Science, Osaka Prefecture University, 1-1 Gakuen-cho, Naka-ku, Sakai, Osaka 599-8531, Japan
| | - Junichi Ueda
- Graduate School of Science, Osaka Prefecture University, 1-1 Gakuen-cho, Naka-ku, Sakai, Osaka 599-8531, Japan
| | - Akira Higashibata
- Kibo Utilization Center, Human Spaceflight Technology Directorate, Japan Aerospace Exploration Agency, 2-1-1 Sengen, Tsukuba, Ibaraki 305-8505, Japan.
| |
Collapse
|
18
|
Kamada M, Miyamoto K, Oka M, Ueda J, Higashibata A. Regulation of asymmetric polar auxin transport by PsPIN1 in endodermal tissues of etiolated Pisum sativum epicotyls: focus on immunohistochemical analyses. JOURNAL OF PLANT RESEARCH 2018; 131:681-692. [PMID: 29589195 DOI: 10.1007/s10265-018-1031-z] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/14/2017] [Accepted: 02/27/2018] [Indexed: 05/18/2023]
Abstract
This manuscript reports the production of specific polyclonal antibodies for PsPIN1, a putative auxin efflux carrier in Alaska pea (Pisum sativum L.) plants, and the cellular immunolocalization of PsPIN1. When pea seeds were set with the seed axis horizontal to the upper surface of a rockwool block, and allowed to germinate and grow for 3 days in the dark, the epicotyl grew upward. On the other hand, the application of 2,3,5-triiodobenzoic acid (TIBA) inhibited graviresponse. In the subapical epicotyl regions, PsPIN1 has been found to localize in the basal side of the plasma membrane of cells in endodermal tissues. Asymmetric PsPIN1 localization between the proximal and distal sides of the epicotyl was observed, the total amounts of PsPIN1 being more abundant in the proximal side. The asymmetric PsPIN1 distribution between the proximal and distal sides of the epicotyl was well correlated with unequal polar auxin transport as well as asymmetric accumulation of mRNA of PsPIN1 (Ueda et al. in Biol Sci Space 26:32-41, 2012; Ueda et al. in Plant Biol 16(suppl 1):43-49, 2014). In the proximal side of an apical hook, PsPIN1 localized in the basal side of the plasma membrane of cells in endodermal tissues, whereas in the distal side, the abundant distribution of PsPIN1 localized in the basal-lower (endodermal) side of the basal plasma membrane, suggesting possible lateral auxin movement from the distal side to the proximal side in this region. The application of TIBA significantly reduced the amount of PsPIN1 in the proximal side of epicotyls, but little in the distal side. These results suggest that unequal auxin transport in epicotyls during the early growth stage of etiolated pea seedlings is derived from asymmetric PsPIN1 localization in the apical hook and subapical region of epicotyls, and that asymmetric transport between the proximal and distal sides of epicotyls is required for the graviresponse of epicotyls.
Collapse
Affiliation(s)
- Motoshi Kamada
- Future Development Division, Advanced Engineering Services Co., Ltd., 1-6-1 Takezono, Tsukuba, Ibaraki, 305-0032, Japan.
| | - Kensuke Miyamoto
- Faculty of Liberal Arts and Sciences, Osaka Prefecture University, 1-1 Gakuen-cho, Naka-ku, Sakai, Osaka, 599-8531, Japan
| | - Mariko Oka
- Faculty of Agriculture, Tottori University, 4-101 Koyamacho-minami, Tottori, 680-8553, Japan
| | - Junichi Ueda
- Graduate School of Science, Osaka Prefecture University, 1-1 Gakuen-cho, Naka-ku, Sakai, Osaka, 599-8531, Japan
| | - Akira Higashibata
- Kibo Utilization Center, Human Spaceflight Technology Directorate, Japan Aerospace Exploration Agency, 2-1-1 Sengen, Tsukuba, Ibaraki, 305-8505, Japan.
| |
Collapse
|
19
|
Abu-Abied M, Belausov E, Hagay S, Peremyslov V, Dolja V, Sadot E. Myosin XI-K is involved in root organogenesis, polar auxin transport, and cell division. JOURNAL OF EXPERIMENTAL BOTANY 2018; 69:2869-2881. [PMID: 29579267 PMCID: PMC5972647 DOI: 10.1093/jxb/ery112] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/19/2017] [Accepted: 03/20/2018] [Indexed: 05/11/2023]
Abstract
The interplay between myosin- and auxin-mediated processes was investigated by following root development in the triple myosin knockout mutant xi-k xi-1 xi-2 (3KO). It was found that the 3KO plants generated significantly more lateral and adventitious roots than the wild-type plants or the rescued plant line expressing functional myosin XI-K:yellow fluorescent protein (YFP; 3KOR). Using the auxin-dependent reporter DR5:venus, a significant change in the auxin gradient toward the root tip was found in 3KO plants, which correlated with the loss of polar localization of the auxin transporter PIN1 in the stele and with the increased number of stele cells with oblique cell walls. Interestingly, myosin XI-K:YFP was localized to the cell division apparatus in the root and shoot meristems. In anaphase and early telophase, XI-K:YFP was concentrated in the midzone and the forming cell plate. In late telophase, XI-K:YFP formed a ring that overlapped with the growing phragmoplast. Myosin receptors MyoB1 and MyoB2 that are highly expressed throughout the plant were undetectable in dividing cells, suggesting that the myosin function in cell division relies on distinct adaptor proteins. These results suggest that myosin XIs are involved in orchestrating root organogenesis via effects on polar distribution of auxin responses and on cell division.
Collapse
Affiliation(s)
- Mohamad Abu-Abied
- The Institute of Plant Sciences, The Volcani Center, ARO, HaMaccabim Road, Rishon LeZion, Israel
| | - Eduard Belausov
- The Institute of Plant Sciences, The Volcani Center, ARO, HaMaccabim Road, Rishon LeZion, Israel
| | - Sapir Hagay
- The Institute of Plant Sciences, The Volcani Center, ARO, HaMaccabim Road, Rishon LeZion, Israel
| | - Valera Peremyslov
- Department of Botany and Plant Pathology, Oregon State University, Corvallis, OR, USA
| | - Valerian Dolja
- Department of Botany and Plant Pathology, Oregon State University, Corvallis, OR, USA
| | - Einat Sadot
- The Institute of Plant Sciences, The Volcani Center, ARO, HaMaccabim Road, Rishon LeZion, Israel
- Correspondence:
| |
Collapse
|
20
|
Moschou PN, Gutierrez-Beltran E, Bozhkov PV, Smertenko A. Separase Promotes Microtubule Polymerization by Activating CENP-E-Related Kinesin Kin7. Dev Cell 2017; 37:350-361. [PMID: 27219063 DOI: 10.1016/j.devcel.2016.04.015] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2016] [Revised: 04/03/2016] [Accepted: 04/20/2016] [Indexed: 11/30/2022]
Abstract
Microtubules play an essential role in breaking cellular symmetry. We have previously shown that separase associates with microtubules and regulates microtubule-dependent establishment of cell polarity in Arabidopsis. However, separase lacks microtubule-binding activity, raising questions about mechanisms underlying this phenomenon. Here we report that the N-terminal non-catalytic domain of separase binds to the C-terminal tail domain of three homologs of the centromeric protein CENP-E Kinesin 7 (Kin7). Conformational changes of Kin7 induced upon binding to separase facilitate recruitment of Kin7/separase complex (KISC) onto microtubules. KISC operates independently of proteolytic activity of separase in promoting microtubule rescue and pauses, as well as in suppressing catastrophes. Genetic complementation experiments in conditional separase mutant rsw4 background demonstrate the importance of KISC for the establishment of cell polarity and for plant development. Our study establishes a mechanism governing microtubule dynamics via the separase-dependent activation of CENP-E-related kinesins.
Collapse
Affiliation(s)
- Panagiotis N Moschou
- Department of Plant Biology, Uppsala BioCenter, Swedish University of Agricultural Sciences and Linnean Center for Plant Biology, PO Box 7080, 75007 Uppsala, Sweden.
| | - Emilio Gutierrez-Beltran
- Department of Plant Biology, Uppsala BioCenter, Swedish University of Agricultural Sciences and Linnean Center for Plant Biology, PO Box 7080, 75007 Uppsala, Sweden; Department of Chemistry and Biotechnology, Uppsala BioCenter, Swedish University of Agricultural Sciences and Linnean Center for Plant Biology, PO Box 7015, 75007 Uppsala, Sweden
| | - Peter V Bozhkov
- Department of Plant Biology, Uppsala BioCenter, Swedish University of Agricultural Sciences and Linnean Center for Plant Biology, PO Box 7080, 75007 Uppsala, Sweden; Department of Chemistry and Biotechnology, Uppsala BioCenter, Swedish University of Agricultural Sciences and Linnean Center for Plant Biology, PO Box 7015, 75007 Uppsala, Sweden
| | - Andrei Smertenko
- Institute of Biological Chemistry, Washington State University, Pullman, WA 99164, USA; Institute for Global Food Security, Queen's University Belfast, 18-30 Malone Road, Belfast BT9 5BN, UK.
| |
Collapse
|
21
|
Enrichment of hydroxylated C24- and C26-acyl-chain sphingolipids mediates PIN2 apical sorting at trans-Golgi network subdomains. Nat Commun 2016; 7:12788. [PMID: 27681606 PMCID: PMC5056404 DOI: 10.1038/ncomms12788] [Citation(s) in RCA: 54] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2015] [Accepted: 07/29/2016] [Indexed: 01/01/2023] Open
Abstract
The post-Golgi compartment trans-Golgi Network (TGN) is a central hub divided into multiple subdomains hosting distinct trafficking pathways, including polar delivery to apical membrane. Lipids such as sphingolipids and sterols have been implicated in polar trafficking from the TGN but the underlying mechanisms linking lipid composition to functional polar sorting at TGN subdomains remain unknown. Here we demonstrate that sphingolipids with α-hydroxylated acyl-chains of at least 24 carbon atoms are enriched in secretory vesicle subdomains of the TGN and are critical for de novo polar secretory sorting of the auxin carrier PIN2 to apical membrane of Arabidopsis root epithelial cells. We show that sphingolipid acyl-chain length influences the morphology and interconnections of TGN-associated secretory vesicles. Our results uncover that the sphingolipids acyl-chain length links lipid composition of TGN subdomains with polar secretory trafficking of PIN2 to apical membrane of polarized epithelial cells. Sphingolipids in the trans-Golgi network have been implicated in polar trafficking. Here Wattelet-Boyer et al. show that hydroxylated C24- and C26-acyl-chain sphingolipids are enriched in trans-Golgi network subdomains that are critical for polar sorting of the PIN2 auxin carrier in plant cells.
Collapse
|
22
|
Welsch RE, Matsudaira PT. A method to quantify co-localization in biological images. ANNUAL INTERNATIONAL CONFERENCE OF THE IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY. IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY. ANNUAL INTERNATIONAL CONFERENCE 2016; 2016:3887-3890. [PMID: 28269135 DOI: 10.1109/embc.2016.7591577] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
Quantitative co-localization analysis with fluorescent microscopy is a common approach to assess the spatial co-ordination of molecules and thus to understand their functions in biological processes. However, the co-localization analysis results might not be consistent due to various imaging conditions and different quantification methods used. We propose a novel method to separate a co-localization event into two aspects: co-occurrence and intensity correlation, which are usually combined as one parameter in other quantitative co-localization analyses. By examining co-localization through both co-occurrence and intensity correlation, the co-localization analysis provides accurate and interpretable results. Furthermore, the co-occurrence pixels can be visualized in an additional image channel to provide an intuitive impression of the quantity and locations of the co-localization events occurring.
Collapse
|
23
|
Ito E, Uemura T, Ueda T, Nakano A. Distribution of RAB5-positive multivesicular endosomes and the trans-Golgi network in root meristematic cells of Arabidopsis thaliana. PLANT BIOTECHNOLOGY (TOKYO, JAPAN) 2016; 33:281-286. [PMID: 31367184 PMCID: PMC6637257 DOI: 10.5511/plantbiotechnology.16.0218a] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/08/2016] [Accepted: 02/18/2016] [Indexed: 05/23/2023]
Abstract
In plant cells, the trans-Golgi network (TGN) is known to act as the early endocytic compartment, whereas RAB5-localizing multivesicular endosomes (MVEs) act as the later compartment. Land plants and certain green algal species possess plant-unique RAB5 homologs (ARA6/RABF1 in Arabidopsis thaliana) in addition to the orthologs of animal RAB5 (RHA1/RABF2a and ARA7/RABF2b in A. thaliana), and these two RAB5 members reside in substantially overlapping but different subpopulations of MVEs. Several studies indicate that the TGN and MVEs are closely related; however, the distribution of the two RAB5 groups in relation to the TGN remains elusive. Here, we quantitatively showed that ARA6 and ARA7 are closely associated with the TGN, and the subpopulation of ARA6 and ARA7 overlaps with the TGN in the root epidermal cells of A. thaliana.
Collapse
Affiliation(s)
- Emi Ito
- Department of Biological Sciences, Graduate School of Science, The University of Tokyo, Bunkyo-ku, Tokyo 113-0033, Japan
- Department of Life Science, International Christian University, Mitaka, Tokyo 181-8585, Japan
| | - Tomohiro Uemura
- Department of Biological Sciences, Graduate School of Science, The University of Tokyo, Bunkyo-ku, Tokyo 113-0033, Japan
| | - Takashi Ueda
- Department of Biological Sciences, Graduate School of Science, The University of Tokyo, Bunkyo-ku, Tokyo 113-0033, Japan
- Japan Science and Technology Agency (JST), PRESTO, Kawaguchi, Saitama 332-0012, Japan
| | - Akihiko Nakano
- Department of Biological Sciences, Graduate School of Science, The University of Tokyo, Bunkyo-ku, Tokyo 113-0033, Japan
- Live Cell Super-resolution Imaging Research Team, RIKEN Center for Advanced Photonics, Wako, Saitama 351-0198, Japan
| |
Collapse
|
24
|
Laňková M, Humpolíčková J, Vosolsobě S, Cit Z, Lacek J, Čovan M, Čovanová M, Hof M, Petrášek J. Determination of Dynamics of Plant Plasma Membrane Proteins with Fluorescence Recovery and Raster Image Correlation Spectroscopy. MICROSCOPY AND MICROANALYSIS : THE OFFICIAL JOURNAL OF MICROSCOPY SOCIETY OF AMERICA, MICROBEAM ANALYSIS SOCIETY, MICROSCOPICAL SOCIETY OF CANADA 2016; 22:290-9. [PMID: 27041337 DOI: 10.1017/s1431927616000568] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
A number of fluorescence microscopy techniques are described to study dynamics of fluorescently labeled proteins, lipids, nucleic acids, and whole organelles. However, for studies of plant plasma membrane (PM) proteins, the number of these techniques is still limited because of the high complexity of processes that determine the dynamics of PM proteins and the existence of cell wall. Here, we report on the usage of raster image correlation spectroscopy (RICS) for studies of integral PM proteins in suspension-cultured tobacco cells and show its potential in comparison with the more widely used fluorescence recovery after photobleaching method. For RICS, a set of microscopy images is obtained by single-photon confocal laser scanning microscopy (CLSM). Fluorescence fluctuations are subsequently correlated between individual pixels and the information on protein mobility are extracted using a model that considers processes generating the fluctuations such as diffusion and chemical binding reactions. As we show here using an example of two integral PM transporters of the plant hormone auxin, RICS uncovered their distinct short-distance lateral mobility within the PM that is dependent on cytoskeleton and sterol composition of the PM. RICS, which is routinely accessible on modern CLSM instruments, thus represents a valuable approach for studies of dynamics of PM proteins in plants.
Collapse
Affiliation(s)
- Martina Laňková
- 1Institute of Experimental Botany,Academy of Sciences of the Czech Republic,Rozvojová 263,165 02 Prague 6,Czech Republic
| | - Jana Humpolíčková
- 2J. Heyrovský Institute of Physical Chemistry,Academy of Sciences of the Czech Republic,Dolejškova 2155/3,182 23 Prague 8,Czech Republic
| | - Stanislav Vosolsobě
- 3Department of Experimental Plant Biology, Faculty of Science,Charles University,Viničná 5,128 44 Prague 2,Czech Republic
| | - Zdeněk Cit
- 1Institute of Experimental Botany,Academy of Sciences of the Czech Republic,Rozvojová 263,165 02 Prague 6,Czech Republic
| | - Jozef Lacek
- 1Institute of Experimental Botany,Academy of Sciences of the Czech Republic,Rozvojová 263,165 02 Prague 6,Czech Republic
| | - Martin Čovan
- 1Institute of Experimental Botany,Academy of Sciences of the Czech Republic,Rozvojová 263,165 02 Prague 6,Czech Republic
| | - Milada Čovanová
- 1Institute of Experimental Botany,Academy of Sciences of the Czech Republic,Rozvojová 263,165 02 Prague 6,Czech Republic
| | - Martin Hof
- 2J. Heyrovský Institute of Physical Chemistry,Academy of Sciences of the Czech Republic,Dolejškova 2155/3,182 23 Prague 8,Czech Republic
| | - Jan Petrášek
- 1Institute of Experimental Botany,Academy of Sciences of the Czech Republic,Rozvojová 263,165 02 Prague 6,Czech Republic
| |
Collapse
|
25
|
Zhang Q, Zhang W. Regulation of developmental and environmental signaling by interaction between microtubules and membranes in plant cells. Protein Cell 2016; 7:81-8. [PMID: 26687389 PMCID: PMC4742386 DOI: 10.1007/s13238-015-0233-6] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2015] [Accepted: 10/31/2015] [Indexed: 12/16/2022] Open
Abstract
Cell division and expansion require the ordered arrangement of microtubules, which are subject to spatial and temporal modifications by developmental and environmental factors. Understanding how signals translate to changes in cortical microtubule organization is of fundamental importance. A defining feature of the cortical microtubule array is its association with the plasma membrane; modules of the plasma membrane are thought to play important roles in the mediation of microtubule organization. In this review, we highlight advances in research on the regulation of cortical microtubule organization by membrane-associated and membrane-tethered proteins and lipids in response to phytohormones and stress. The transmembrane kinase receptor Rho-like guanosine triphosphatase, phospholipase D, phosphatidic acid, and phosphoinositides are discussed with a focus on their roles in microtubule organization.
Collapse
Affiliation(s)
- Qun Zhang
- College of Life Sciences, State Key Laboratory of Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, Nanjing, 210095, China.
| | - Wenhua Zhang
- College of Life Sciences, State Key Laboratory of Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, Nanjing, 210095, China.
| |
Collapse
|
26
|
Sassi M, Traas J. When biochemistry meets mechanics: a systems view of growth control in plants. CURRENT OPINION IN PLANT BIOLOGY 2015; 28:137-43. [PMID: 26583832 DOI: 10.1016/j.pbi.2015.10.005] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/17/2015] [Revised: 10/08/2015] [Accepted: 10/12/2015] [Indexed: 05/11/2023]
Abstract
The emergence of complex shapes during the development of plants is under the control of genetically determined molecular networks. Such regulatory networks, comprising hormones and transcription factors, regulate the collective behavior of cell growth within a tissue. Because all the cells within a tissue are linked together by the cell wall, their collective growth generates a good amount of mechanical stress. In the last few years a compelling amount of evidence has shown that growth-generated mechanical stress can feed back on plant developmental programs by modifying cell growth. This involves primarily responses from the microtubules and interaction with auxin transport and signaling. Here we discuss the most recent advances in the understanding of mechanical feedbacks in plant development.
Collapse
Affiliation(s)
- Massimiliano Sassi
- Laboratoire de Reproduction et Développement des Plantes, INRA, CNRS, ENS, UCBL, 46 Allée d'Italie, 69364 Lyon Cedex 07, France.
| | - Jan Traas
- Laboratoire de Reproduction et Développement des Plantes, INRA, CNRS, ENS, UCBL, 46 Allée d'Italie, 69364 Lyon Cedex 07, France.
| |
Collapse
|
27
|
Jelínková A, Müller K, Fílová-Pařezová M, Petrášek J. NtGNL1a ARF-GEF acts in endocytosis in tobacco cells. BMC PLANT BIOLOGY 2015; 15:272. [PMID: 26541824 PMCID: PMC4635988 DOI: 10.1186/s12870-015-0621-3] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/11/2015] [Accepted: 09/18/2015] [Indexed: 05/08/2023]
Abstract
BACKGROUND Processes of anterograde and retrograde membrane trafficking play an important role in cellular homeostasis and dynamic rearrangements of the plasma membrane (PM) in all eukaryotes. These processes depend on the activity of adenosine ribosylation factors (ARFs), a family of GTP-binding proteins and their guanine exchange factors (GEFs). However, knowledge on the function and specificity of individual ARF-GEFs for individual steps of membrane trafficking pathways is still limited in plants. RESULTS In this work, treatments with various trafficking inhibitors showed that the endocytosis of FM 4-64 is largely dynamin-dependent and relies on proteins containing endocytic tyrosine-based internalization motif and intact cytoskeleton. Interestingly, brefeldin A (BFA), reported previously as an inhibitor of anterograde membrane trafficking in plants, appeared to be the most potent inhibitor of endocytosis in tobacco. In concert with this finding, we demonstrate that the point mutation in the Sec7 domain of the GNOM-LIKE protein1a (NtGNL1a) confers intracellular trafficking pathway-specific BFA resistance. The internalization of FM 4-64 and trafficking of PIN-FORMED1 (PIN1) auxin efflux carrier in BY-2 tobacco cells were studied to reveal the function of the ARF-GEF NtGNL1a in these. CONCLUSIONS Altogether, our observations uncovered the role of NtGNL1a in endocytosis, including endocytosis of PM proteins (as PIN1 auxin efflux carrier). Moreover these data emphasize the need of careful evaluation of mode of action of non-native inhibitors in various species. In addition, they demonstrate the potential of tobacco BY-2 cells for selective mapping of ARF-GEF-regulated endomembrane trafficking pathways.
Collapse
Affiliation(s)
- Adriana Jelínková
- Institute of Experimental Botany, Academy of Sciences of the Czech Republic, Rozvojová 263, 165 02, Prague 6, Czech Republic.
| | - Karel Müller
- Institute of Experimental Botany, Academy of Sciences of the Czech Republic, Rozvojová 263, 165 02, Prague 6, Czech Republic.
| | - Markéta Fílová-Pařezová
- Institute of Experimental Botany, Academy of Sciences of the Czech Republic, Rozvojová 263, 165 02, Prague 6, Czech Republic.
| | - Jan Petrášek
- Institute of Experimental Botany, Academy of Sciences of the Czech Republic, Rozvojová 263, 165 02, Prague 6, Czech Republic.
- Department of Experimental Plant Biology, Faculty of Science, Charles University in Prague, Viničná 5, 128 44, Prague 2, Czech Republic.
| |
Collapse
|
28
|
Zhu J, Geisler M. Keeping it all together: auxin-actin crosstalk in plant development. JOURNAL OF EXPERIMENTAL BOTANY 2015; 66:4983-98. [PMID: 26085676 DOI: 10.1093/jxb/erv308] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/27/2023]
Abstract
Polar auxin transport and the action of the actin cytoskeleton are tightly interconnected, which is documented by the finding that auxin transporters reach their final destination by active movement of secretory vesicles along F-actin tracks. Moreover, auxin transporter polarity and flexibility is thought to depend on transporter cycling that requires endocytosis and exocytosis of vesicles. In this context, we have reviewed the current literature on an involvement of the actin cytoskeleton in polar auxin transport and identify known similarities and differences in its structure, function and dynamics in comparison to non-plant organisms. By describing how auxin modulates actin expression and actin organization and how actin and its stability affects auxin-transporter endocytosis and recycling, we discuss the current knowledge on regulatory auxin-actin feedback loops. We focus on known effects of auxin and of auxin transport inhibitors on the stability and organization of actin and examine the functionality of auxin and/or auxin transport inhibitor-binding proteins with respect to their suitability to integrate auxin/auxin transport inhibitor action. Finally, we indicate current difficulties in the interpretation of organ, time and concentration-dependent auxin/auxin transport inhibitor treatments and formulate simple future experimental guidelines.
Collapse
Affiliation(s)
- Jinsheng Zhu
- University of Fribourg, Department of Biology-Plant Biology, CH-1700 Fribourg, Switzerland
| | - Markus Geisler
- University of Fribourg, Department of Biology-Plant Biology, CH-1700 Fribourg, Switzerland
| |
Collapse
|
29
|
Doyle SM, Vain T, Robert S. Small molecules unravel complex interplay between auxin biology and endomembrane trafficking. JOURNAL OF EXPERIMENTAL BOTANY 2015; 66:4971-82. [PMID: 25911743 DOI: 10.1093/jxb/erv179] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Abstract
The establishment and maintenance of controlled auxin gradients within plant tissues are essential for a multitude of developmental processes. Auxin gradient formation is co-ordinated via local biosynthesis and transport. Cell to cell auxin transport is facilitated and precisely regulated by complex endomembrane trafficking mechanisms that target auxin carrier proteins to their final destinations. In turn, auxin and cross-talk with other phytohormones regulate the endomembrane trafficking of auxin carriers. Dissecting such rapid and complicated processes is challenging for classical genetic experiments due to trafficking pathway diversity, gene functional redundancy, and lethality in loss-of-function mutants. Many of these difficulties can be bypassed via the use of small molecules to modify or disrupt the function or localization of proteins. Here, we will review examples of the knowledge acquired by the use of such chemical tools in this field, outlining the advantages afforded by chemical biology approaches.
Collapse
Affiliation(s)
- Siamsa M Doyle
- Umeå Plant Science Centre, Department of Forest Genetics and Plant Physiology, Swedish University of Agricultural Sciences, 90183 Umeå, Sweden
| | - Thomas Vain
- Umeå Plant Science Centre, Department of Forest Genetics and Plant Physiology, Swedish University of Agricultural Sciences, 90183 Umeå, Sweden
| | - Stéphanie Robert
- Umeå Plant Science Centre, Department of Forest Genetics and Plant Physiology, Swedish University of Agricultural Sciences, 90183 Umeå, Sweden
| |
Collapse
|
30
|
Abu-Abied M, Rogovoy Stelmakh O, Mordehaev I, Grumberg M, Elbaum R, Wasteneys GO, Sadot E. Dissecting the contribution of microtubule behaviour in adventitious root induction. JOURNAL OF EXPERIMENTAL BOTANY 2015; 66:2813-24. [PMID: 25788735 PMCID: PMC4986881 DOI: 10.1093/jxb/erv097] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/18/2023]
Abstract
Induction of adventitious roots (ARs) in recalcitrant plants often culminates in cell division and callus formation rather than root differentiation. Evidence is provided here to suggest that microtubules (MTs) play a role in the shift from cell division to cell differentiation during AR induction. First, it was found that fewer ARs form in the temperature-sensitive mutant mor1-1, in which the MT-associated protein MOR1 is mutated, and in bot1-1, in which the MT-severing protein katanin is mutated. In the two latter mutants, MT dynamics and form are perturbed. By contrast, the number of ARs increased in RIC1-OX3 plants, in which MT bundling is enhanced and katanin is activated. In addition, any1 plants in which cell walls are perturbed made more ARs than wild-type plants. MT perturbations during AR induction in mor1-1 or in wild-type hypocotyls treated with oryzalin led to the formation of amorphous clusters of cells reminiscent of callus. In these cells a specific pattern of polarized light retardation by the cell walls was lost. PIN1 polarization and auxin maxima were hampered and differentiation of the epidermis was inhibited. It is concluded that a fine-tuned crosstalk between MTs, cell walls, and auxin transport is required for proper AR induction.
Collapse
Affiliation(s)
- Mohamad Abu-Abied
- The Institute of Plant Sciences, The Volcani Center, ARO, PO Box 6, Bet-Dagan 50250, Israel
| | | | - Inna Mordehaev
- The Institute of Plant Sciences, The Volcani Center, ARO, PO Box 6, Bet-Dagan 50250, Israel
| | - Marina Grumberg
- The Institute of Plant Sciences, The Volcani Center, ARO, PO Box 6, Bet-Dagan 50250, Israel
| | - Rivka Elbaum
- The Smith Institute of Plant Sciences and Genetics in Agriculture, The Hebrew University of Jerusalem, Rehovot 76100, Israel
| | - Geoffrey O Wasteneys
- Department of Botany, The University of British Columbia, 6270 University Boulevard, Vancouver, British Columbia V6T 1Z4, Canada
| | - Einat Sadot
- The Institute of Plant Sciences, The Volcani Center, ARO, PO Box 6, Bet-Dagan 50250, Israel
| |
Collapse
|
31
|
Gendre D, Jonsson K, Boutté Y, Bhalerao RP. Journey to the cell surface--the central role of the trans-Golgi network in plants. PROTOPLASMA 2015; 252:385-98. [PMID: 25187082 DOI: 10.1007/s00709-014-0693-1] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/04/2014] [Accepted: 08/21/2014] [Indexed: 05/11/2023]
Abstract
The secretion of proteins, lipids, and carbohydrates to the cell surface is essential for plant development and adaptation. Secreted substances synthesized at the endoplasmic reticulum pass through the Golgi apparatus and trans-Golgi network (TGN) en route to the plasma membrane via the conventional secretion pathway. The TGN is morphologically and functionally distinct from the Golgi apparatus. The TGN is located at the crossroads of many trafficking pathways and regulates a range of crucial processes including secretion to the cell surface, transport to the vacuole, and the reception of endocytic cargo. This review outlines the TGN's central role in cargo secretion, showing that its behavior is more complex and controlled than the bulk-flow hypothesis suggests. Its formation, structure, and maintenance are discussed along with the formation and release of secretory vesicles.
Collapse
Affiliation(s)
- Delphine Gendre
- Umeå Plant Science Centre, Department of Forest Genetics and Plant Physiology, Swedish University of Agricultural Sciences, SE-901 83, Umeå, Sweden,
| | | | | | | |
Collapse
|
32
|
Żabka A, Trzaskoma P, Winnicki K, Polit JT, Chmielnicka A, Maszewski J. The biphasic interphase-mitotic polarity of cell nuclei induced under DNA replication stress seems to be correlated with Pin2 localization in root meristems of Allium cepa. JOURNAL OF PLANT PHYSIOLOGY 2015; 174:62-70. [PMID: 25462968 DOI: 10.1016/j.jplph.2014.09.013] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/19/2014] [Revised: 09/26/2014] [Accepted: 09/28/2014] [Indexed: 06/04/2023]
Abstract
Long-term treatment of Allium cepa seedlings with low concentration of hydroxyurea (HU) results in a disruption of cell cycle checkpoints, leading root apex meristem (RAM) cells to an abnormal organization of nuclear structures forming interphase (I) and mitotic (M) domains of chromatin at opposite poles of the nucleus. Thus far, both critical cell length and an uneven distribution of cyclin B-like proteins along the nuclear axis have been recognized as essential factors needed to facilitate the formation of biphasic interphase-mitotic (IM) cells. Two new aspects with respect to their emergence are investigated in this study. The first concerns a relationship between the polarity of increasing chromatin condensation (IM orientation) and the acropetal (base→apex) alignment of RAM cell files. The second problem involves the effects of auxin (IAA), on the frequency of IM cells. We provide evidence that there is an association between the advanced M-poles of the IM cell nuclei and the polarized accumulation sites of auxin efflux carriers (PIN2 proteins) and IAA. Furthermore, our observations reveal exclusion regions for PIN2 proteins in the microtubule-rich structures, such as preprophase bands (PPBs) and phragmoplast. The current and previous studies have prompted us to formulate a hypothetical mechanism linking PIN2-mediated unilateral localization of IAA and the induction of bipolar IM cells in HU-treated RAMs of A. cepa.
Collapse
Affiliation(s)
- Aneta Żabka
- Department of Cytophysiology, Faculty of Biology and Environmental Protection, University of Łódź, Pomorska 141/143, 90-236 Łódź, Poland.
| | - Paweł Trzaskoma
- Laboratory of Molecular and Systemic Neuromorphology, Nencki Institute of Experimental Biology, Polish Academy of Sciences, Pasteura 3, 02-093 Warsaw, Poland.
| | - Konrad Winnicki
- Department of Cytophysiology, Faculty of Biology and Environmental Protection, University of Łódź, Pomorska 141/143, 90-236 Łódź, Poland.
| | - Justyna Teresa Polit
- Department of Cytophysiology, Faculty of Biology and Environmental Protection, University of Łódź, Pomorska 141/143, 90-236 Łódź, Poland.
| | - Agnieszka Chmielnicka
- Department of Cytophysiology, Faculty of Biology and Environmental Protection, University of Łódź, Pomorska 141/143, 90-236 Łódź, Poland.
| | - Janusz Maszewski
- Department of Cytophysiology, Faculty of Biology and Environmental Protection, University of Łódź, Pomorska 141/143, 90-236 Łódź, Poland.
| |
Collapse
|
33
|
Johnston R, Leiboff S, Scanlon MJ. Ontogeny of the sheathing leaf base in maize (Zea mays). THE NEW PHYTOLOGIST 2015; 205:306-15. [PMID: 25195692 DOI: 10.1111/nph.13010] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/10/2014] [Accepted: 07/23/2014] [Indexed: 05/12/2023]
Abstract
Leaves develop from the shoot apical meristem (SAM) via recruitment of leaf founder cells. Unlike eudicots, most monocot leaves display parallel venation and sheathing bases wherein the margins overlap the stem. Here we utilized computed tomography (CT) imaging, localization of PIN-FORMED1 (PIN1) auxin transport proteins, and in situ hybridization of leaf developmental transcripts to analyze the ontogeny of monocot leaf morphology in maize (Zea mays). CT imaging of whole-mounted shoot apices illustrates the plastochron-specific stages during initiation of the basal sheath margins from the tubular disc of insertion (DOI). PIN1 localizations identify basipetal auxin transport in the SAM L1 layer at the site of leaf initiation, a process that continues reiteratively during later recruitment of lateral leaf domains. Refinement of these auxin transport domains results in multiple, parallel provascular strands within the initiating primordium. By contrast, auxin is transported from the L2 toward the L1 at the developing margins of the leaf sheath. Transcripts involved in organ boundary formation and dorsiventral patterning accumulate within the DOI, preceding the outgrowth of the overlapping margins of the sheathing leaf base. We suggest a model wherein sheathing bases and parallel veins are both patterned via the extended recruitment of lateral maize leaf domains from the SAM.
Collapse
Affiliation(s)
- Robyn Johnston
- Department of Plant Biology, Cornell University, Ithaca, NY, 14853, USA
| | | | | |
Collapse
|
34
|
Sassi M, Traas J. New insights in shoot apical meristem morphogenesis: Isotropy comes into play. PLANT SIGNALING & BEHAVIOR 2015; 10:e1000150. [PMID: 26337646 PMCID: PMC4883928 DOI: 10.1080/15592324.2014.1000150] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/08/2014] [Accepted: 12/14/2014] [Indexed: 06/05/2023]
Abstract
The great complexity and plasticity of aerial plant shapes largely results from the activity of the shoot apical meristem (SAM), a group of undifferentiated cells which produces all the aboveground organs of the plant. Organogenesis at the SAM is regulated by the hormone auxin, which, through an integration of active transport, signalling and transcriptional regulation, determines the positional and temporal information dictating where, when, and how a new organ will be formed. At the cellular level, the information stemming from the regulatory molecular networks influences the growth of the cells within the tissue to give rise to the final organ shape. The growth of plant cells is mainly controlled by the cell wall, a rigid structure mainly made of polysaccharides, which surrounds the cells and links them together in an organismal continuum. Over the years, several lines of evidence have pointed at a role for the regulation of the elasticity of the cell wall, downstream of auxin action, in the formation of organs at the SAM. We have recently shown that auxin also induces a shift toward isotropic growth by modulating the organization of cortical microtubules in peripheral SAM cells, which promotes organ formation. Here, we discuss our results and identify new hypotheses to drive future research.
Collapse
Affiliation(s)
- Massimiliano Sassi
- Laboratoire de Reproduction et Développement des Plantes; INRA; CNRS; ENS; UCBL; Lyon, France
| | - Jan Traas
- Laboratoire de Reproduction et Développement des Plantes; INRA; CNRS; ENS; UCBL; Lyon, France
| |
Collapse
|
35
|
Ruan Y, Wasteneys GO. CLASP: a microtubule-based integrator of the hormone-mediated transitions from cell division to elongation. CURRENT OPINION IN PLANT BIOLOGY 2014; 22:149-158. [PMID: 25460080 DOI: 10.1016/j.pbi.2014.11.003] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/10/2014] [Revised: 10/18/2014] [Accepted: 11/01/2014] [Indexed: 05/17/2023]
Abstract
Plants use robust mechanisms to optimize organ size to prevailing conditions. Modulating the transition from cell division to elongation dramatically affects morphology and size. Although it is well established that auxin, cytokinin and brassinosteroid mediate these transitions, recent works show that the cytoskeleton, which is normally thought to act downstream of these hormones, plays a key role in this regulatory process. In particular, the microtubule-associated protein CLASP has a dual role in meristem maintenance. CLASP modulates levels of the auxin efflux carrier PIN2 by tethering SNX1 endosomes to cortical microtubules, which in turn fine tunes auxin maxima in the root apical meristem. CLASP is also required for transfacial microtubule bundle formation at the sharp cell edges, a feature strongly associated with maintaining the capacity for further cell division.
Collapse
Affiliation(s)
- Yuan Ruan
- The University of British Columbia, Department of Botany, 6270 University Blvd, Vancouver, BC V6T 1Z4, Canada
| | - Geoffrey O Wasteneys
- The University of British Columbia, Department of Botany, 6270 University Blvd, Vancouver, BC V6T 1Z4, Canada.
| |
Collapse
|
36
|
Rutschow HL, Baskin TI, Kramer EM. The carrier AUXIN RESISTANT (AUX1) dominates auxin flux into Arabidopsis protoplasts. THE NEW PHYTOLOGIST 2014; 204:536-544. [PMID: 25039492 DOI: 10.1111/nph.12933] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/18/2014] [Accepted: 06/15/2014] [Indexed: 05/22/2023]
Abstract
The ability of the plant hormone auxin to enter a cell is critical to auxin transport and signaling. Auxin can cross the cell membrane by diffusion or via auxin-specific influx carriers. There is little knowledge of the magnitudes of these fluxes in plants. Radiolabeled auxin uptake was measured in protoplasts isolated from roots of Arabidopsis thaliana. This was done for the wild-type, under treatments with additional unlabeled auxin to saturate the influx carriers, and for the influx carrier mutant auxin resistant 1 (aux1). We also used flow cytometry to quantify the relative abundance of cells expressing AUX1-YFP in the assayed population. At pH 5.7, the majority of auxin influx into protoplasts - 75% - was mediated by the influx carrier AUX1. An additional 20% was mediated by other saturable carriers. The diffusive influx of auxin was essentially negligible at pH 5.7. The influx of auxin mediated by AUX1, expressed as a membrane permeability, was 1.5 ± 0.3 μm s(-1) . This value is comparable in magnitude to estimates of efflux permeability. Thus, auxin-transporting tissues can sustain relatively high auxin efflux and yet not become depleted of auxin.
Collapse
Affiliation(s)
- Heidi L Rutschow
- Biology Department, University of Massachusetts, Amherst, MA, 01003, USA
- Physics Department, Bard College at Simons Rock, Great Barrington, MA, 01230, USA
| | - Tobias I Baskin
- Biology Department, University of Massachusetts, Amherst, MA, 01003, USA
| | - Eric M Kramer
- Physics Department, Bard College at Simons Rock, Great Barrington, MA, 01230, USA
| |
Collapse
|
37
|
Abstract
Plants are permanently situated in a fixed location and thus are well adapted to sense and respond to environmental stimuli and developmental cues. At the cellular level, several of these responses require delicate adjustments that affect the activity and steady-state levels of plasma membrane proteins. These adjustments involve both vesicular transport to the plasma membrane and protein internalization via endocytic sorting. A substantial part of our current knowledge of plant plasma membrane protein sorting is based on studies of PIN-FORMED (PIN) auxin transport proteins, which are found at distinct plasma membrane domains and have been implicated in directional efflux of the plant hormone auxin. Here, we discuss the mechanisms involved in establishing such polar protein distributions, focusing on PINs and other key plant plasma membrane proteins, and we highlight the pathways that allow for dynamic adjustments in protein distribution and turnover, which together constitute a versatile framework that underlies the remarkable capabilities of plants to adjust growth and development in their ever-changing environment.
Collapse
Affiliation(s)
- Christian Luschnig
- Department of Applied Genetics and Cell Biology, University of Natural Resources and Life Sciences, Vienna (BOKU), Muthgasse 18, Vienna 1190, Austria
| | - Grégory Vert
- Institut des Sciences du Végétal, CNRS UPR 2355, 1 Avenue de la Terrasse, Bâtiment 23A, Gif-sur-Yvette 91190, France
| |
Collapse
|
38
|
Rice actin-binding protein RMD is a key link in the auxin-actin regulatory loop that controls cell growth. Proc Natl Acad Sci U S A 2014; 111:10377-82. [PMID: 24982173 DOI: 10.1073/pnas.1401680111] [Citation(s) in RCA: 70] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
The plant hormone auxin plays a central role in plant growth and development. Auxin transport and signaling depend on actin organization. Despite its functional importance, the mechanistic link between actin filaments (F-actin) and auxin intracellular signaling remains unclear. Here, we report that the actin-organizing protein Rice Morphology Determinant (RMD), a type II formin from rice (Oryza sativa), provides a key link. Mutants lacking RMD display abnormal cell growth and altered configuration of F-actin array direction. The rmd mutants also exhibit an inhibition of auxin-mediated cell elongation, decreased polar auxin transport, altered auxin distribution gradients in root tips, and suppression of plasma membrane localization of auxin transporters O. sativa PIN-FORMED 1b (OsPIN1b) and OsPIN2 in root cells. We demonstrate that RMD is required for endocytosis, exocytosis, and auxin-mediated OsPIN2 recycling to the plasma membrane. Moreover, RMD expression is directly regulated by heterodimerized O. sativa auxin response factor 23 (OsARF23) and OsARF24, providing evidence that auxin modulates the orientation of F-actin arrays through RMD. In support of this regulatory loop, osarf23 and lines with reduced expression of both OsARF23 and OsARF24 display reduced RMD expression, disrupted F-actin organization and cell growth, less sensitivity to auxin response, and altered auxin distribution and OsPIN localization. Our findings establish RMD as a crucial component of the auxin-actin self-organizing regulatory loop from the nucleus to cytoplasm that controls rice cell growth and morphogenesis.
Collapse
|
39
|
Sasidharan R, Keuskamp DH, Kooke R, Voesenek LACJ, Pierik R. Interactions between auxin, microtubules and XTHs mediate green shade- induced petiole elongation in arabidopsis. PLoS One 2014; 9:e90587. [PMID: 24594664 PMCID: PMC3942468 DOI: 10.1371/journal.pone.0090587] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2013] [Accepted: 02/03/2014] [Indexed: 01/06/2023] Open
Abstract
Plants are highly attuned to translating environmental changes to appropriate modifications in growth. Such phenotypic plasticity is observed in dense vegetations, where shading by neighboring plants, triggers rapid unidirectional shoot growth (shade avoidance), such as petiole elongation, which is partly under the control of auxin. This growth is fuelled by cellular expansion requiring cell-wall modification by proteins such as xyloglucan endotransglucosylase/hydrolases (XTHs). Cortical microtubules (cMTs) are highly dynamic cytoskeletal structures that are also implicated in growth regulation. The objective of this study was to investigate the tripartite interaction between auxin, cMTs and XTHs in shade avoidance. Our results indicate a role for cMTs to control rapid petiole elongation in Arabidopsis during shade avoidance. Genetic and pharmacological perturbation of cMTs obliterated shade-induced growth and led to a reduction in XTH activity as well. Furthermore, the cMT disruption repressed the shade-induced expression of a specific set of XTHs. These XTHs were also regulated by the hormone auxin, an important regulator of plant developmental plasticity and also of several shade avoidance responses. Accordingly, the effect of cMT disruption on the shade enhanced XTH expression could be rescued by auxin application. Based on the results we hypothesize that cMTs can mediate petiole elongation during shade avoidance by regulating the expression of cell wall modifying proteins via control of auxin distribution.
Collapse
Affiliation(s)
- Rashmi Sasidharan
- Plant Ecophysiology, Institute of Environmental Biology, Utrecht University, Utrecht, The Netherlands
| | - Diederik H Keuskamp
- Plant Ecophysiology, Institute of Environmental Biology, Utrecht University, Utrecht, The Netherlands; Environmental Sciences, Wageningen University, Wageningen, The Netherlands
| | - Rik Kooke
- Plant Ecophysiology, Institute of Environmental Biology, Utrecht University, Utrecht, The Netherlands; Laboratory of Plant Physiology, Wageningen University, Wageningen, The Netherlands
| | - Laurentius A C J Voesenek
- Plant Ecophysiology, Institute of Environmental Biology, Utrecht University, Utrecht, The Netherlands
| | - Ronald Pierik
- Plant Ecophysiology, Institute of Environmental Biology, Utrecht University, Utrecht, The Netherlands
| |
Collapse
|
40
|
Boutté Y, Grebe M. Immunocytochemical fluorescent in situ visualization of proteins in Arabidopsis. Methods Mol Biol 2014; 1062:453-72. [PMID: 24057381 DOI: 10.1007/978-1-62703-580-4_24] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
The understanding of cellular and subcellular functions often relies on the ability to visualize proteins as close as possible to their endogenous locations. A number of immunocytochemical techniques have been developed to detect proteins in situ using specific antibodies raised against proteins of interest. Here, we describe in detail two protocols commonly, successfully employed in Arabidopsis research. The first allows for immunolocalization of proteins in whole-mount Arabidopsis roots without the need for physical sectioning. The second allows for immunolocalization of proteins on semi-thin microtome sections of wax-embedded swamples. This approach is particularly useful when sectioning of Arabidopsis roots or other thicker plant organs is required for immunolocalization. We provide step-by-step protocols with extensive troubleshooting for both the whole-mount and sectioning protocols. Furthermore, critical steps, advantages, and limitations of the two protocols described here are discussed.
Collapse
Affiliation(s)
- Yohann Boutté
- Department of Forest Genetics and Plant Physiology, UPSC, Swedish University of Agricultural Sciences, Umeå, Sweden
| | | |
Collapse
|
41
|
Boutté Y, Moreau P. Plasma membrane partitioning: from macro-domains to new views on plasmodesmata. FRONTIERS IN PLANT SCIENCE 2014; 5:128. [PMID: 24772114 PMCID: PMC3982076 DOI: 10.3389/fpls.2014.00128] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/09/2014] [Accepted: 03/18/2014] [Indexed: 05/08/2023]
Abstract
Compartmentalization of cellular functions relies on partitioning of domains of diverse sizes within the plasma membrane (PM). Macro-domains measure several micrometers and contain specific proteins concentrated to specific sides (apical, basal, and lateral) of the PM conferring a polarity to the cell. Cell polarity is one of the driving forces in tissue and growth patterning. To maintain macro-domains within the PM, eukaryotic cells exert diverse mechanisms to counteract the free lateral diffusion of proteins. Protein activation/inactivation, endocytosis, PM recycling of transmembrane proteins and the role of diffusion barriers in macro-domains partitioning at PM will be discussed. Moreover, as plasmodesmata (PDs) are domains inserted within the PM which also mediate tissue and growth patterning, it is essential to understand how segregation of specific set of proteins is maintained at PDs while PDs domains are smaller in size compared to macro-domains. Here, we will present mechanisms allowing restriction of proteins at PM macro-domains, but for which molecular components have been found in PDs proteome. We will explore the hypothesis that partitioning of macro-domains and PDs may be ruled by similar mechanisms.
Collapse
Affiliation(s)
- Yohann Boutté
- *Correspondence: Yohann Boutté, CNRS, Laboratoire de Biogenèse Membranaire, UMR 5200, Université Bordeaux Segalen, INRA Bordeaux Aquitaine, Bâtiment A3, 71 Avenue Edouard Bourlaux, CS 20032, 33140 Villenave d’Ornon, France e-mail:
| | | |
Collapse
|
42
|
Ischebeck T, Werner S, Krishnamoorthy P, Lerche J, Meijón M, Stenzel I, Löfke C, Wiessner T, Im YJ, Perera IY, Iven T, Feussner I, Busch W, Boss WF, Teichmann T, Hause B, Persson S, Heilmann I. Phosphatidylinositol 4,5-bisphosphate influences PIN polarization by controlling clathrin-mediated membrane trafficking in Arabidopsis. THE PLANT CELL 2013; 25:4894-911. [PMID: 24326589 PMCID: PMC3903994 DOI: 10.1105/tpc.113.116582] [Citation(s) in RCA: 79] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/24/2013] [Revised: 09/22/2013] [Accepted: 10/15/2013] [Indexed: 05/19/2023]
Abstract
The functions of the minor phospholipid phosphatidylinositol-4,5-bisphosphate [PtdIns(4,5)P2] during vegetative plant growth remain obscure. Here, we targeted two related phosphatidylinositol 4-phosphate 5-kinases (PI4P 5-kinases) PIP5K1 and PIP5K2, which are expressed ubiquitously in Arabidopsis thaliana. A pip5k1 pip5k2 double mutant with reduced PtdIns(4,5)P2 levels showed dwarf stature and phenotypes suggesting defects in auxin distribution. The roots of the pip5k1 pip5k2 double mutant had normal auxin levels but reduced auxin transport and altered distribution. Fluorescence-tagged auxin efflux carriers PIN-FORMED (PIN1)-green fluorescent protein (GFP) and PIN2-GFP displayed abnormal, partially apolar distribution. Furthermore, fewer brefeldin A-induced endosomal bodies decorated by PIN1-GFP or PIN2-GFP formed in pip5k1 pip5k2 mutants. Inducible overexpressor lines for PIP5K1 or PIP5K2 also exhibited phenotypes indicating misregulation of auxin-dependent processes, and immunolocalization showed reduced membrane association of PIN1 and PIN2. PIN cycling and polarization require clathrin-mediated endocytosis and labeled clathrin light chain also displayed altered localization patterns in the pip5k1 pip5k2 double mutant, consistent with a role for PtdIns(4,5)P2 in the regulation of clathrin-mediated endocytosis. Further biochemical tests on subcellular fractions enriched for clathrin-coated vesicles (CCVs) indicated that pip5k1 and pip5k2 mutants have reduced CCV-associated PI4P 5-kinase activity. Together, the data indicate an important role for PtdIns(4,5)P2 in the control of clathrin dynamics and in auxin distribution in Arabidopsis.
Collapse
Affiliation(s)
- Till Ischebeck
- Department of Plant Biochemistry, Albrecht-von-Haller-Institute for Plant Sciences, Georg-August-University Göttingen, 37077 Goettingen, Germany
| | - Stephanie Werner
- Department of Plant Biochemistry, Albrecht-von-Haller-Institute for Plant Sciences, Georg-August-University Göttingen, 37077 Goettingen, Germany
- Department of Cellular Biochemistry, Institute for Biochemistry, Martin-Luther-University Halle-Wittenberg, 06120 Halle (Saale), Germany
| | | | - Jennifer Lerche
- Department of Plant Biochemistry, Albrecht-von-Haller-Institute for Plant Sciences, Georg-August-University Göttingen, 37077 Goettingen, Germany
- Department of Cellular Biochemistry, Institute for Biochemistry, Martin-Luther-University Halle-Wittenberg, 06120 Halle (Saale), Germany
| | - Mónica Meijón
- Gregor-Mendel-Institute for Molecular Plant Biology, 1030 Vienna, Austria
| | - Irene Stenzel
- Department of Plant Biochemistry, Albrecht-von-Haller-Institute for Plant Sciences, Georg-August-University Göttingen, 37077 Goettingen, Germany
- Department of Cellular Biochemistry, Institute for Biochemistry, Martin-Luther-University Halle-Wittenberg, 06120 Halle (Saale), Germany
| | - Christian Löfke
- Department of Plant Cell Biology, Albrecht-von-Haller-Institute for Plant Sciences, Schwann-Schleiden Centre, Georg-August-University Göttingen, 37077 Goettingen, Germany
| | - Theresa Wiessner
- Department of Cell and Metabolic Biology, Leibniz Institute of Plant Biochemistry, 06120 Halle (Saale), Germany
| | - Yang Ju Im
- Department of Plant Biology, North Carolina State University, Raleigh, North Carolina 27695
| | - Imara Y. Perera
- Department of Plant Biology, North Carolina State University, Raleigh, North Carolina 27695
| | - Tim Iven
- Department of Plant Biochemistry, Albrecht-von-Haller-Institute for Plant Sciences, Georg-August-University Göttingen, 37077 Goettingen, Germany
| | - Ivo Feussner
- Department of Plant Biochemistry, Albrecht-von-Haller-Institute for Plant Sciences, Georg-August-University Göttingen, 37077 Goettingen, Germany
| | - Wolfgang Busch
- Gregor-Mendel-Institute for Molecular Plant Biology, 1030 Vienna, Austria
| | - Wendy F. Boss
- Department of Plant Biology, North Carolina State University, Raleigh, North Carolina 27695
| | - Thomas Teichmann
- Department of Plant Cell Biology, Albrecht-von-Haller-Institute for Plant Sciences, Schwann-Schleiden Centre, Georg-August-University Göttingen, 37077 Goettingen, Germany
| | - Bettina Hause
- Department of Cell and Metabolic Biology, Leibniz Institute of Plant Biochemistry, 06120 Halle (Saale), Germany
| | - Staffan Persson
- Max-Planck-Institute for Molecular Plant Physiology, D-14476 Potsdam-Golm, Germany
| | - Ingo Heilmann
- Department of Plant Biochemistry, Albrecht-von-Haller-Institute for Plant Sciences, Georg-August-University Göttingen, 37077 Goettingen, Germany
- Department of Cellular Biochemistry, Institute for Biochemistry, Martin-Luther-University Halle-Wittenberg, 06120 Halle (Saale), Germany
- Address correspondence to
| |
Collapse
|
43
|
Quattrocchio FM, Spelt C, Koes R. Transgenes and protein localization: myths and legends. TRENDS IN PLANT SCIENCE 2013; 18:473-6. [PMID: 23932488 DOI: 10.1016/j.tplants.2013.07.003] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/25/2013] [Revised: 07/02/2013] [Accepted: 07/10/2013] [Indexed: 05/08/2023]
Abstract
Fluorescent protein (FP) fusions are frequently used to localize and follow the movement of proteins in living cells. However, a consensus is missing about the experimental design and controls that guarantee the reliability of the results. Here, we discuss possible artifacts and try to navigate through the many methods, preferences, and assumptions that surround protein localization in plants that make it difficult to design a universal approach to achieve reliable results.
Collapse
Affiliation(s)
- Francesca M Quattrocchio
- Department of Molecular Cell Biology, Graduate School of Experimental Plant Sciences, VU-University, Amsterdam, The Netherlands.
| | | | | |
Collapse
|
44
|
Luichtl M, Fiesselmann BS, Matthes M, Yang X, Peis O, Brunner A, Torres-Ruiz RA. Mutations in the Arabidopsis RPK1 gene uncouple cotyledon anlagen and primordia by modulating epidermal cell shape and polarity. Biol Open 2013; 2:1093-102. [PMID: 24244845 PMCID: PMC3828755 DOI: 10.1242/bio.20135991] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2013] [Accepted: 07/23/2013] [Indexed: 11/29/2022] Open
Abstract
Plant seedlings have either one or two cotyledons. The mechanisms that regulate this organ number are poorly understood. Mutations in the RECEPTOR-LIKE PROTEIN KINASE1 (RPK1) gene of the dicot Arabidopsis have only one cotyledon, with low penetrance due to complex genetic redundancy. An analysis of patterning genes required for cotyledon initiation showed that these have normal expression patterns, defining the cotyledon anlagen, in rpk1. This was also true for key genes, which organize the shoot apical meristem (SAM). By contrast, epidermal cell shape and polarity were compromised in rpk1 embryos, as evidenced by disturbed polarity of the auxin efflux carrier PIN1. PIN1 is required for the establishment of auxin maxima, which induce and maintain organ primordia. The effects in rpk1 mutants manifest in a spatially and timely stochastic fashion probably due to redundancy of RPK1-like functions. Consistently, auxin maxima showed a stochastic distribution in rpk1 embryos, being at times entirely absent and at other times supernumerary. This variability may explain how monocotyledonous seedlings and cotyledon shape variants can developmentally arise in Arabidopsis and possibly in other plants.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Ramon A. Torres-Ruiz
- Lehrstuhl für Genetik, Technische Universität München, Wissenschaftszentrum Weihenstephan, Emil-Ramann-Strasse 8, D-85354 Freising, Germany
| |
Collapse
|
45
|
Gendre D, McFarlane HE, Johnson E, Mouille G, Sjödin A, Oh J, Levesque-Tremblay G, Watanabe Y, Samuels L, Bhalerao RP. Trans-Golgi network localized ECHIDNA/Ypt interacting protein complex is required for the secretion of cell wall polysaccharides in Arabidopsis. THE PLANT CELL 2013; 25:2633-46. [PMID: 23832588 PMCID: PMC3753388 DOI: 10.1105/tpc.113.112482] [Citation(s) in RCA: 102] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
The secretion of cell wall polysaccharides through the trans-Golgi network (TGN) is required for plant cell elongation. However, the components mediating the post-Golgi secretion of pectin and hemicellulose, the two major cell wall polysaccharides, are largely unknown. We identified evolutionarily conserved YPT/RAB GTPase Interacting Protein 4a (YIP4a) and YIP4b (formerly YIP2), which form a TGN-localized complex with ECHIDNA (ECH) in Arabidopsis thaliana. The localization of YIP4 and ECH proteins at the TGN is interdependent and influences the localization of VHA-a1 and SYP61, which are key components of the TGN. YIP4a and YIP4b act redundantly, and the yip4a yip4b double mutants have a cell elongation defect. Genetic, biochemical, and cell biological analyses demonstrate that the ECH/YIP4 complex plays a key role in TGN-mediated secretion of pectin and hemicellulose to the cell wall in dark-grown hypocotyls and in secretory cells of the seed coat. In keeping with these observations, Fourier transform infrared microspectroscopy analysis revealed that the ech and yip4a yip4b mutants exhibit changes in their cell wall composition. Overall, our results reveal a TGN subdomain defined by ECH/YIP4 that is required for the secretion of pectin and hemicellulose and distinguishes the role of the TGN in secretion from its roles in endocytic and vacuolar trafficking.
Collapse
Affiliation(s)
- Delphine Gendre
- Umeå Plant Science Centre, Department of Forest Genetics and Plant Physiology, Swedish University of Agricultural Sciences, S-901 83 Umea, Sweden
| | - Heather E. McFarlane
- Department of Botany, University of British Columbia, Vancouver, British Columbia V6T 1Z4, Canada
| | - Errin Johnson
- Umeå Plant Science Centre, Department of Forest Genetics and Plant Physiology, Swedish University of Agricultural Sciences, S-901 83 Umea, Sweden
| | - Gregory Mouille
- Institut Jean-Pierre Bourgin, Unité Mixte de Recherche 1318, Institut National de la Recherche Agronomique–AgroParisTech, Institut National de la Recherche Agronomique Centre de Versailles-Grignon, 78026 Versailles cedex, France
| | - Andreas Sjödin
- Umeå Plant Science Centre, Department of Forest Genetics and Plant Physiology, Swedish University of Agricultural Sciences, S-901 83 Umea, Sweden
| | - Jaesung Oh
- Umeå Plant Science Centre, Department of Forest Genetics and Plant Physiology, Swedish University of Agricultural Sciences, S-901 83 Umea, Sweden
| | | | - Yoichiro Watanabe
- Department of Botany, University of British Columbia, Vancouver, British Columbia V6T 1Z4, Canada
| | - Lacey Samuels
- Department of Botany, University of British Columbia, Vancouver, British Columbia V6T 1Z4, Canada
| | - Rishikesh P. Bhalerao
- Umeå Plant Science Centre, Department of Forest Genetics and Plant Physiology, Swedish University of Agricultural Sciences, S-901 83 Umea, Sweden
- Address correspondence to
| |
Collapse
|
46
|
Abley K, De Reuille PB, Strutt D, Bangham A, Prusinkiewicz P, Marée AFM, Grieneisen VA, Coen E. An intracellular partitioning-based framework for tissue cell polarity in plants and animals. Development 2013; 140:2061-74. [PMID: 23633507 DOI: 10.1242/dev.062984] [Citation(s) in RCA: 90] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Tissue cell polarity plays a major role in plant and animal development. We propose that a fundamental building block for tissue cell polarity is the process of intracellular partitioning, which can establish individual cell polarity in the absence of asymmetric cues. Coordination of polarities may then arise through cell-cell coupling, which can operate directly, through membrane-spanning complexes, or indirectly, through diffusible molecules. Polarity is anchored to tissues through organisers located at boundaries. We show how this intracellular partitioning-based framework can be applied to both plant and animal systems, allowing different processes to be placed in a common evolutionary and mechanistic context.
Collapse
Affiliation(s)
- Katie Abley
- John Innes Centre, Norwich Research Park, Norwich NR4 7UH, UK
| | | | | | | | | | | | | | | |
Collapse
|
47
|
Sampathkumar A, Gutierrez R, McFarlane HE, Bringmann M, Lindeboom J, Emons AM, Samuels L, Ketelaar T, Ehrhardt DW, Persson S. Patterning and lifetime of plasma membrane-localized cellulose synthase is dependent on actin organization in Arabidopsis interphase cells. PLANT PHYSIOLOGY 2013; 162:675-88. [PMID: 23606596 PMCID: PMC3668062 DOI: 10.1104/pp.113.215277] [Citation(s) in RCA: 139] [Impact Index Per Article: 12.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/26/2013] [Accepted: 04/18/2013] [Indexed: 05/17/2023]
Abstract
The actin and microtubule cytoskeletons regulate cell shape across phyla, from bacteria to metazoans. In organisms with cell walls, the wall acts as a primary constraint of shape, and generation of specific cell shape depends on cytoskeletal organization for wall deposition and/or cell expansion. In higher plants, cortical microtubules help to organize cell wall construction by positioning the delivery of cellulose synthase (CesA) complexes and guiding their trajectories to orient newly synthesized cellulose microfibrils. The actin cytoskeleton is required for normal distribution of CesAs to the plasma membrane, but more specific roles for actin in cell wall assembly and organization remain largely elusive. We show that the actin cytoskeleton functions to regulate the CesA delivery rate to, and lifetime of CesAs at, the plasma membrane, which affects cellulose production. Furthermore, quantitative image analyses revealed that actin organization affects CesA tracking behavior at the plasma membrane and that small CesA compartments were associated with the actin cytoskeleton. By contrast, localized insertion of CesAs adjacent to cortical microtubules was not affected by the actin organization. Hence, both actin and microtubule cytoskeletons play important roles in regulating CesA trafficking, cellulose deposition, and organization of cell wall biogenesis.
Collapse
|
48
|
Ambrose C, Ruan Y, Gardiner J, Tamblyn LM, Catching A, Kirik V, Marc J, Overall R, Wasteneys GO. CLASP interacts with sorting nexin 1 to link microtubules and auxin transport via PIN2 recycling in Arabidopsis thaliana. Dev Cell 2013; 24:649-59. [PMID: 23477787 DOI: 10.1016/j.devcel.2013.02.007] [Citation(s) in RCA: 112] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2012] [Revised: 10/23/2012] [Accepted: 02/06/2013] [Indexed: 11/29/2022]
Abstract
Polarized movement of auxin generates concentration gradients within plant tissues to control cell division patterns and growth direction by modulating microtubule organization. In this study, we identify a reverse mechanism, wherein microtubules influence polar auxin transport. We show that the microtubule-associated protein CLASP interacts with the retromer component sorting nexin 1 (SNX1) to mediate an association between endosomes and microtubules. clasp-1 null mutants display aberrant SNX1 endosomes, as do wild-type plants treated with microtubule-depolymerizing drugs. Consistent with SNX1's role in trafficking of the auxin efflux carrier PIN-FORMED2 (PIN2), clasp-1 mutant plants have enhanced PIN2 degradation, and PIN2 movement to lytic vacuoles is rapidly induced by depolymerization of microtubules. clasp-1 mutants display aberrant auxin distribution and exhibit numerous auxin-related phenotypes. In addition to mechanistically linking auxin transport and microtubules, our data identify a ubiquitous endosome-microtubule association in plants.
Collapse
Affiliation(s)
- Chris Ambrose
- Department of Botany, The University of British Columbia, Vancouver, British Columbia V6T 1Z4, Canada
| | | | | | | | | | | | | | | | | |
Collapse
|
49
|
Poraty-Gavra L, Zimmermann P, Haigis S, Bednarek P, Hazak O, Stelmakh OR, Sadot E, Schulze-Lefert P, Gruissem W, Yalovsky S. The Arabidopsis Rho of plants GTPase AtROP6 functions in developmental and pathogen response pathways. PLANT PHYSIOLOGY 2013; 161:1172-88. [PMID: 23319551 PMCID: PMC3585588 DOI: 10.1104/pp.112.213165] [Citation(s) in RCA: 58] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/20/2012] [Accepted: 01/08/2013] [Indexed: 05/18/2023]
Abstract
How plants coordinate developmental processes and environmental stress responses is a pressing question. Here, we show that Arabidopsis (Arabidopsis thaliana) Rho of Plants6 (AtROP6) integrates developmental and pathogen response signaling. AtROP6 expression is induced by auxin and detected in the root meristem, lateral root initials, and leaf hydathodes. Plants expressing a dominant negative AtROP6 (rop6(DN)) under the regulation of its endogenous promoter are small and have multiple inflorescence stems, twisted leaves, deformed leaf epidermis pavement cells, and differentially organized cytoskeleton. Microarray analyses of rop6(DN) plants revealed that major changes in gene expression are associated with constitutive salicylic acid (SA)-mediated defense responses. In agreement, their free and total SA levels resembled those of wild-type plants inoculated with a virulent powdery mildew pathogen. The constitutive SA-associated response in rop6(DN) was suppressed in mutant backgrounds defective in SA signaling (nonexpresser of PR genes1 [npr1]) or biosynthesis (salicylic acid induction deficient2 [sid2]). However, the rop6(DN) npr1 and rop6(DN) sid2 double mutants retained the aberrant developmental phenotypes, indicating that the constitutive SA response can be uncoupled from ROP function(s) in development. rop6(DN) plants exhibited enhanced preinvasive defense responses to a host-adapted virulent powdery mildew fungus but were impaired in preinvasive defenses upon inoculation with a nonadapted powdery mildew. The host-adapted powdery mildew had a reduced reproductive fitness on rop6(DN) plants, which was retained in mutant backgrounds defective in SA biosynthesis or signaling. Our findings indicate that both the morphological aberrations and altered sensitivity to powdery mildews of rop6(DN) plants result from perturbations that are independent from the SA-associated response. These perturbations uncouple SA-dependent defense signaling from disease resistance execution.
Collapse
|
50
|
Chia PZC, Gleeson PA. Imaging and Quantitation Techniques for Tracking Cargo along Endosome-to-Golgi Transport Pathways. Cells 2013; 2:105-23. [PMID: 24709647 PMCID: PMC3972656 DOI: 10.3390/cells2010105] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2012] [Revised: 02/05/2013] [Accepted: 02/07/2013] [Indexed: 11/20/2022] Open
Abstract
Recent improvements in the resolution of light microscopy, coupled with the development of a range of fluorescent-based probes, have provided new approaches to dissecting membrane domains and the regulation of membrane trafficking. Here, we review these advances, as well as highlight developments in quantitative image analysis and novel unbiased analytical approaches to quantitate protein localization. The application of these approaches to endosomal sorting and endosome-to-Golgi transport is discussed.
Collapse
Affiliation(s)
- Pei Zhi Cheryl Chia
- The Department of Biochemistry and Molecular Biology and Bio21 Molecular Science and Biotechnology Institute, The University of Melbourne, Victoria 3010, Australia.
| | - Paul A Gleeson
- The Department of Biochemistry and Molecular Biology and Bio21 Molecular Science and Biotechnology Institute, The University of Melbourne, Victoria 3010, Australia.
| |
Collapse
|