1
|
Tezze C, Sandri M, Tessari P. Anabolic Resistance in the Pathogenesis of Sarcopenia in the Elderly: Role of Nutrition and Exercise in Young and Old People. Nutrients 2023; 15:4073. [PMID: 37764858 PMCID: PMC10535169 DOI: 10.3390/nu15184073] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2023] [Revised: 09/01/2023] [Accepted: 09/03/2023] [Indexed: 09/29/2023] Open
Abstract
The development of sarcopenia in the elderly is associated with many potential factors and/or processes that impair the renovation and maintenance of skeletal muscle mass and strength as ageing progresses. Among them, a defect by skeletal muscle to respond to anabolic stimuli is to be considered. Common anabolic stimuli/signals in skeletal muscle are hormones (insulin, growth hormones, IGF-1, androgens, and β-agonists such epinephrine), substrates (amino acids such as protein precursors on top, but also glucose and fat, as source of energy), metabolites (such as β-agonists and HMB), various biochemical/intracellular mediators), physical exercise, neurogenic and immune-modulating factors, etc. Each of them may exhibit a reduced effect upon skeletal muscle in ageing. In this article, we overview the role of anabolic signals on muscle metabolism, as well as currently available evidence of resistance, at the skeletal muscle level, to anabolic factors, from both in vitro and in vivo studies. Some indications on how to augment the effects of anabolic signals on skeletal muscle are provided.
Collapse
Affiliation(s)
- Caterina Tezze
- Department of Biomedical Sciences, University of Padova, via Ugo Bassi 58/b, 35121 Padova, Italy;
- Veneto Institute of Molecular Medicine, via Orus 2, 35129 Padova, Italy
| | - Marco Sandri
- Department of Biomedical Sciences, University of Padova, via Ugo Bassi 58/b, 35121 Padova, Italy;
- Veneto Institute of Molecular Medicine, via Orus 2, 35129 Padova, Italy
- Department of Medicine, McGill University, Montreal, QC H4A 3J1, Canada
| | - Paolo Tessari
- Department of Medicine, University of Padova, via Giustiniani 2, 35128 Padova, Italy
| |
Collapse
|
2
|
Lanng SK, Oxfeldt M, Pedersen SS, Johansen FT, Risikesan J, Lejel T, Bertram HC, Hansen M. Influence of protein source (cricket, pea, whey) on amino acid bioavailability and activation of the mTORC1 signaling pathway after resistance exercise in healthy young males. Eur J Nutr 2023; 62:1295-1308. [PMID: 36536114 DOI: 10.1007/s00394-022-03071-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2022] [Accepted: 12/12/2022] [Indexed: 12/23/2022]
Abstract
PURPOSE New dietary proteins are currently introduced to replace traditional animal protein sources. However, not much is known about their bioaccessibility and ability to stimulate muscle protein synthesis compared to the traditional protein sources. We aimed to compare effects of ingesting a protein bolus (0.25 g/kg fat free mass) of either cricket (insect), pea, or whey protein on circulating amino acid levels and activation of the mTORC1 signaling pathway in the skeletal muscle at rest and after exercise. METHODS In a randomized parallel controlled trial, young males (n = 50) performed a one-legged resistance exercise followed by ingestion of one of the three protein sources. Blood samples were collected before and in the following 4 h after exercise. Muscle biopsies were obtained at baseline and after 3 h from the non-exercised and exercised leg. RESULTS Analysis of blood serum showed a significantly higher concentration of amino acids after ingestion of whey protein compared to cricket and pea protein. No difference between protein sources in activation of the mTORC1 signaling pathway was observed either at rest or after exercise. CONCLUSION Amino acid blood concentration after protein ingestion was higher for whey than pea and cricket protein, whereas activation of mTORC1 signaling pathway at rest and after exercise did not differ between protein sources. TRIAL REGISTRATION NUMBER Clinicaltrials.org ID NCT04633694.
Collapse
Affiliation(s)
- Sofie Kaas Lanng
- Department of Food Science, Aarhus University, 8200, Aarhus N, Denmark
- CiFOOD, Centre for Innovative Food Research, Aarhus University, 8200, Aarhus N, Denmark
| | - Mikkel Oxfeldt
- Department of Public Health, Aarhus University, 8000, Aarhus C, Denmark
| | | | | | - Jeyanthini Risikesan
- Department of Clinical Medicine, Diabetes and Hormones Diseases, Aarhus University Hospital, 8200, Aarhus N, Denmark
| | - Trine Lejel
- Department of Clinical Medicine, Regional Hospital Horsens, 8700, Horsens, Denmark
| | - Hanne Christine Bertram
- Department of Food Science, Aarhus University, 8200, Aarhus N, Denmark.
- CiFOOD, Centre for Innovative Food Research, Aarhus University, 8200, Aarhus N, Denmark.
| | - Mette Hansen
- Department of Public Health, Aarhus University, 8000, Aarhus C, Denmark
| |
Collapse
|
3
|
Smith MA, Sexton CL, Smith KA, Osburn SC, Godwin JS, Beausejour JP, Ruple BA, Goodlett MD, Edison JL, Fruge AD, Robinson AT, Gladden LB, Young KC, Roberts MD. Molecular predictors of resistance training outcomes in young untrained female adults. J Appl Physiol (1985) 2023; 134:491-507. [PMID: 36633866 PMCID: PMC10190845 DOI: 10.1152/japplphysiol.00605.2022] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2022] [Revised: 01/10/2023] [Accepted: 01/10/2023] [Indexed: 01/13/2023] Open
Abstract
We sought to determine if the myofibrillar protein synthetic (MyoPS) response to a naïve resistance exercise (RE) bout, or chronic changes in satellite cell number and muscle ribosome content, were associated with hypertrophic outcomes in females or differed in those who classified as higher (HR) or lower (LR) responders to resistance training (RT). Thirty-four untrained college-aged females (23.4 ± 3.4 kg/m2) completed a 10-wk RT protocol (twice weekly). Body composition and leg imaging assessments, a right leg vastus lateralis biopsy, and strength testing occurred before and following the intervention. A composite score, which included changes in whole body lean/soft tissue mass (LSTM), vastus lateralis (VL) muscle cross-sectional area (mCSA), midthigh mCSA, and deadlift strength, was used to delineate upper and lower HR (n = 8) and LR (n = 8) quartiles. In all participants, training significantly (P < 0.05) increased LSTM, VL mCSA, midthigh mCSA, deadlift strength, mean muscle fiber cross-sectional area, satellite cell abundance, and myonuclear number. Increases in LSTM (P < 0.001), VL mCSA (P < 0.001), midthigh mCSA (P < 0.001), and deadlift strength (P = 0.001) were greater in HR vs. LR. The first-bout 24-hour MyoPS response was similar between HR and LR (P = 0.367). While no significant responder × time interaction existed for muscle total RNA concentrations (i.e., ribosome content) (P = 0.888), satellite cell abundance increased in HR (P = 0.026) but not LR (P = 0.628). Pretraining LSTM (P = 0.010), VL mCSA (P = 0.028), and midthigh mCSA (P < 0.001) were also greater in HR vs. LR. Female participants with an enhanced satellite cell response to RT, and more muscle mass before RT, exhibited favorable resistance training adaptations.NEW & NOTEWORTHY This study continues to delineate muscle biology differences between lower and higher responders to resistance training and is unique in that a female population was interrogated. As has been reported in prior studies, increases in satellite cell numbers are related to positive responses to resistance training. Satellite cell responsivity, rather than changes in muscle ribosome content per milligrams of tissue, may be a more important factor in delineating resistance-training responses in women.
Collapse
Affiliation(s)
- Morgan A Smith
- School of Kinesiology, Auburn University, Auburn, Alabama
| | - Casey L Sexton
- School of Kinesiology, Auburn University, Auburn, Alabama
| | - Kristen A Smith
- Department of Nutrition, Dietetics and Hospitality Management, Auburn University, Auburn, Alabama
| | | | | | | | | | - Michael D Goodlett
- Athletics Department, Auburn University, Auburn, Alabama
- Edward Via College of Osteopathic Medicine, Auburn, Alabama
| | - Joseph L Edison
- Athletics Department, Auburn University, Auburn, Alabama
- Edward Via College of Osteopathic Medicine, Auburn, Alabama
| | - Andrew D Fruge
- Department of Nutrition, Dietetics and Hospitality Management, Auburn University, Auburn, Alabama
- College of Nursing, Auburn University, Auburn, Alabama
| | | | | | - Kaelin C Young
- School of Kinesiology, Auburn University, Auburn, Alabama
- Edward Via College of Osteopathic Medicine, Auburn, Alabama
| | - Michael D Roberts
- School of Kinesiology, Auburn University, Auburn, Alabama
- Edward Via College of Osteopathic Medicine, Auburn, Alabama
| |
Collapse
|
4
|
Clegg ME, Methven L, Lanham-New SA, Green MA, Duggal NA, Hetherington MM. The Food4Years Ageing Network: Improving foods and diets as a strategy for supporting quality of life, independence and healthspan in older adults. NUTR BULL 2023; 48:124-133. [PMID: 36718711 PMCID: PMC10946951 DOI: 10.1111/nbu.12599] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2022] [Revised: 11/20/2022] [Accepted: 11/28/2022] [Indexed: 02/01/2023]
Abstract
By 2050, it is predicted that one in four people in the United Kingdom will be aged 65 years and over. Increases in lifespan are not always translated into years spent in good health. Incidence rates for chronic diseases are increasing, with treatments allowing people to live longer with their disease. There is good evidence to support changes to lifestyle to maintain or improve body composition, cognitive health, musculoskeletal health, immune function and vascular health in older adults. Much research has been done in this area, which has produced significant support for foods and nutrients that contribute to improved healthspan. Yet two major barriers remain: firstly, older adult consumers are not meeting current UK recommendations for macro- and micronutrients that could benefit health and quality of life and secondly, the UK-specific recommendations may not be sufficient to support the ageing population, particularly for nutrients with key physiological roles. More work is needed to improve intakes of specific foods, diets and nutrients by older adults, through a variety of mechanisms including (i) development of specific food products; (ii) improved clarity of information and (iii) appropriate marketing, and policy changes to enable incentives. The Food4Years Ageing Network aims to build a wide-reaching and multidisciplinary community that is committed to the development, integration and communication of healthy, affordable foods and specific diets for all older adults across the UK food landscape. The Network will identify evidence-based strategies for improving food intake and nutrition in older adults, paving the way to "living well while living longer."
Collapse
Affiliation(s)
- Miriam E Clegg
- Department of Food and Nutritional Sciences, University of Reading, Reading, UK
| | - Lisa Methven
- Department of Food and Nutritional Sciences, University of Reading, Reading, UK
| | - Susan A Lanham-New
- Nutritional Sciences Department, School of Biosciences and Medicine, Faculty of Health and Medical Sciences, University of Surrey, Surrey, UK
| | - Mark A Green
- Department of Geography and Planning, University of Liverpool, Liverpool, UK
| | - Niharika A Duggal
- MRC-Versus Arthritis Centre for Musculoskeletal Ageing Research, Institute of Inflammation and Ageing, University of Birmingham, Birmingham, UK
| | | |
Collapse
|
5
|
Shekoohi N, Amigo-Benavent M, Wesley Peixoto da Fonseca G, Harnedy-Rothwell PA, FitzGerald RJ, Carson BP. A Cell-Based Assessment of the Muscle Anabolic Potential of Blue Whiting ( Micromesistius poutassou) Protein Hydrolysates. Int J Mol Sci 2023; 24:ijms24032001. [PMID: 36768324 PMCID: PMC9916327 DOI: 10.3390/ijms24032001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2022] [Revised: 01/14/2023] [Accepted: 01/17/2023] [Indexed: 01/21/2023] Open
Abstract
Blue whiting (BW) represents an underutilised fish species containing a high-quality protein and amino acid (AA) profile with numerous potentially bioactive peptide sequences, making BW an economic and sustainable alternative source of protein. This study investigated the impact of three different BW protein hydrolysates (BWPH-X, Y and Z) on growth, proliferation and muscle protein synthesis (MPS) in skeletal muscle (C2C12) myotubes. BWPHs were hydrolysed using different enzymatic and heat exposures and underwent simulated gastrointestinal digestion (SGID), each resulting in a high degree of hydrolysis (33.41-37.29%) and high quantities of low molecular mass peptides (86.17-97.12% <1 kDa). C2C12 myotubes were treated with 1 mg protein equivalent/mL of SGID-BWPHs for 4 h. Muscle growth and myotube thickness were analysed using an xCelligence™ platform. Anabolic signalling (phosphorylation of mTOR, rpS6 and 4E-BP1) and MPS measured by puromycin incorporation were assessed using immunoblotting. BWPH-X significantly increased muscle growth (p < 0.01) and myotube thickness (p < 0.0001) compared to the negative control (amino acid and serum free media). Muscle protein synthesis (MPS), as measured by puromycin incorporation, was significantly higher after incubation with BWPH-X compared with the negative control, but did not significantly change in response to BWPH-Y and Z treatments. Taken together, these preliminary findings demonstrate the anabolic potential of some but not all BWPHs on muscle enhancement, thus providing justification for human dietary intervention studies to confirm and translate the results of such investigations to dietary recommendations and practices.
Collapse
Affiliation(s)
- Niloofar Shekoohi
- Department of Biological Sciences, University of Limerick, V94 T9PX Limerick, Ireland
| | - Miryam Amigo-Benavent
- Department of Biological Sciences, University of Limerick, V94 T9PX Limerick, Ireland
- Health Research Institute, University of Limerick, V94 T9PX Limerick, Ireland
| | - Guilherme Wesley Peixoto da Fonseca
- Heart Institute (InCor), University of São Paulo Medical School, São Paulo 01246-903, Brazil
- Department of Physical Education and Sport Sciences, Faculty of Education and Health Sciences, University of Limerick, V94 T9PX Limerick, Ireland
| | - Pádraigín A. Harnedy-Rothwell
- Department of Biological Sciences, University of Limerick, V94 T9PX Limerick, Ireland
- Health Research Institute, University of Limerick, V94 T9PX Limerick, Ireland
| | - Richard J. FitzGerald
- Department of Biological Sciences, University of Limerick, V94 T9PX Limerick, Ireland
- Health Research Institute, University of Limerick, V94 T9PX Limerick, Ireland
| | - Brian P. Carson
- Health Research Institute, University of Limerick, V94 T9PX Limerick, Ireland
- Department of Physical Education and Sport Sciences, Faculty of Education and Health Sciences, University of Limerick, V94 T9PX Limerick, Ireland
- Correspondence:
| |
Collapse
|
6
|
Cai L, Shi L, Peng Z, Sun Y, Chen J. Ageing of skeletal muscle extracellular matrix and mitochondria: finding a potential link. Ann Med 2023; 55:2240707. [PMID: 37643318 PMCID: PMC10732198 DOI: 10.1080/07853890.2023.2240707] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/13/2023] [Revised: 06/13/2023] [Accepted: 07/21/2023] [Indexed: 08/31/2023] Open
Abstract
Aim: To discuss the progress of extracellular matrix (ECM) characteristics, mitochondrial homeostasis, and their potential crosstalk in the pathogenesis of sarcopenia, a geriatric syndrome characterized by a generalized and progressive reduction in muscle mass, strength, and physical performance.Methods: This review focuses on the anatomy and physiology of skeletal muscle, alterations of ECM and mitochondria during ageing, and the role of the interplay between ECM and mitochondria in the pathogenesis of sarcopenia.Results: Emerging evidence points to a clear interplay between mitochondria and ECM in various tissues and organs. Under the ageing process, the ECM undergoes changes in composition and physical properties that may mediate mitochondrial changes via the systematic metabolism, ROS, SPARC pathway, and AMPK/PGC-1α signalling, which in turn exacerbate muscle degeneration. However, the precise effects of such crosstalk on the pathobiology of ageing, particularly in skeletal muscle, have not yet been fully understood.Conclusion: The changes in skeletal muscle ECM and mitochondria are partially responsible for the worsened muscle function during the ageing process. A deeper understanding of their alterations and interactions in sarcopenic patients can help prevent sarcopenia and improve its prognoses.
Collapse
Affiliation(s)
- Lubing Cai
- Department of Sports Medicine, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Luze Shi
- Department of Sports Medicine, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Zhen Peng
- Department of Sports Medicine, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yaying Sun
- Department of Sports Medicine, Huashan Hospital, Fudan University, Shanghai, China
| | - Jiwu Chen
- Department of Sports Medicine, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| |
Collapse
|
7
|
Jeon BH. Effects of Low Intensity Blood Flow Restriction Training on Muscle Volume, Strength and Power in Healthy Middle-Aged Females. THE ASIAN JOURNAL OF KINESIOLOGY 2022. [DOI: 10.15758/ajk.2022.24.4.34] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Abstract
OBJECTIVES The purpose of this study is to investigate the efficacy of weight training with controlled blood flow occlusion compared to conventional resistance training, in the ageing population.METHODS Twenty-three healthy female subjects (aged 40-55) were randomly assigned to one of three groups; low intensity blood flow restriction training (LI-BFRT) (n = 9), conventional resistance training (RT) (n = 7) and control (CON) (n = 7). The RT group trained between 65-70% one repetition maximum (1RM) and the LI-BFRT group trained at 30% 1RM while wearing pressure cuffs inflated to 100-120% of brachial systolic blood pressure (bSBP). Relative appendicular skeletal muscle mass (ASM/weight), isokinetic strength and power were tested pre and post 8 weeks of training.RESULTS Upper limb ASM/weight increased significantly in the LI-BFRT and RT groups (both p < 0.001). Only LI-BFRT showed significant difference compared with the CON group (p < 0.01). Lower limb ASM/weight improved in both the LI-BFRT (p < 0.01) and CON (p < 0.01) groups without group differences. Lower limb flexion strength increased in the LI-BFRT and RT groups (both p < 0.01), with differences between groups (p < 0.01, LI-BFRT > RT > CON). Only RT increased extension muscle strength (p < 0.05). Lower limb flexion and extension power improved following LI-BFRT (p < 0.05 and p < 0.01, respectively), significantly greater than RT in both flexion (p < 0.001) and extension (p < 0.01).CONCLUSIONS LI-BFRT may be as, if not more effective than RT for increasing muscle volume, strength and power in middle-aged women.
Collapse
|
8
|
Essential Amino Acids-Rich Diet Decreased Adipose Tissue Storage in Adult Mice: A Preliminary Histopathological Study. Nutrients 2022; 14:nu14142915. [PMID: 35889872 PMCID: PMC9316883 DOI: 10.3390/nu14142915] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2022] [Revised: 07/11/2022] [Accepted: 07/13/2022] [Indexed: 11/16/2022] Open
Abstract
Background: Excess body adipose tissue accumulation is a common and growing health problem caused by an unbalanced diet and/or junk food. Although the effects of dietary fat and glucose on lipid metabolism regulation are well known, those of essential amino acids (EAAs) have been poorly investigated. Our aim was to study the influence of a special diet containing all EAAs on retroperitoneal white adipose tissue (rpWAT) and interscapular brown adipose tissue (BAT) of mice. Methods: Two groups of male Balb/C mice were used. The first was fed with a standard diet. The second was fed with an EAAs-rich diet (EAARD). After 3 weeks, rpWAT and BAT were removed and prepared for subsequent immunohistochemical analysis. Results: EAARD, although consumed significantly less, moderately reduced body weight and BAT, but caused a massive reduction in rpWAT. Conversely, the triceps muscle increased in mass. In rpWAT, the size of adipocytes was very small, with increases in leptin, adiponectin and IL-6 immunostaining. In BAT, there was a reduction in lipid droplet size and a simultaneous increase in UCP-1 and SIRT-3. Conclusions: A diet containing a balanced mixture of free EAA may modulate body adiposity in mice, promoting increased thermogenesis.
Collapse
|
9
|
Jia S, Wu Q, Wang S, Kan J, Zhang Z, Zhang X, Zhang X, Li J, Xu W, Du J, Wei W. Pea Peptide Supplementation in Conjunction With Resistance Exercise Promotes Gains in Muscle Mass and Strength. Front Nutr 2022; 9:878229. [PMID: 35873424 PMCID: PMC9302772 DOI: 10.3389/fnut.2022.878229] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2022] [Accepted: 03/21/2022] [Indexed: 11/13/2022] Open
Abstract
It is generally considered that protein supplementation and resistance exercise significantly increase muscle mass and muscle growth. As the hydrolysis products of proteins, peptides may play the crucial role on muscle growth. In this study, male rats were orally administrated 0.4 g/kg body weight of pea peptide combined with 8 weeks of moderate intensity resistance exercise training. After treatment, the body gains, upper limb grip, muscle thickness, and wet weight of biceps brachii were tested, and the cross-sectional area of biceps brachii muscle fiber and the types of muscle fibers were determined by HE staining, immunofluorescence staining, and lactate dehydrogenase activity, respectively. Western blot analysis was used to investigate the level of growth-signaling pathway-related proteins. The results showed that pea peptide supplementation combined with resistance exercise training significantly increased body weight, upper limb grip, muscle thickness, wet weight of biceps brachii, and cross-sectional area of muscle fiber. Meanwhile, pea peptide supplementation obviously elevated the ratio of fast-twitch fiber (type II) and the expression of muscle growth-signaling pathway-related proteins. In addition, the PP2 oligopeptide in pea peptide with the amino acid sequence of LDLPVL induced a more significant promotion on C2C12 cell growth than other oligopeptides.
Collapse
Affiliation(s)
- Shaohui Jia
- Hubei Collaborative Innovation Center for Sports Intervention and Health Promotion, Wuhan Sports University, Wuhan, China
| | - Qiming Wu
- Amway (Shanghai) Innovation & Science Co., Ltd., Shanghai, China
| | - Shue Wang
- School of Public Health, Shandong University, Jinan, China
| | - Juntao Kan
- Amway (Shanghai) Innovation & Science Co., Ltd., Shanghai, China
| | - Zhao Zhang
- Zhong Shi Du Qing (Shandong) Biotechnology Company, Heze, China
| | - Xiping Zhang
- Zhong Shi Du Qing (Shandong) Biotechnology Company, Heze, China
| | - Xuejun Zhang
- Zhong Shi Du Qing (Shandong) Biotechnology Company, Heze, China
| | - Jie Li
- Zhong Shi Du Qing (Shandong) Biotechnology Company, Heze, China
| | - Wenhan Xu
- College of Food Science and Engineering, Northwest A&F University, Yangling, China
| | - Jun Du
- Amway (Shanghai) Innovation & Science Co., Ltd., Shanghai, China
| | - Wei Wei
- Zhong Shi Du Qing (Shandong) Biotechnology Company, Heze, China
| |
Collapse
|
10
|
Zhang XZ, Xie WQ, Chen L, Xu GD, Wu L, Li YS, Wu YX. Blood Flow Restriction Training for the Intervention of Sarcopenia: Current Stage and Future Perspective. Front Med (Lausanne) 2022; 9:894996. [PMID: 35770017 PMCID: PMC9234289 DOI: 10.3389/fmed.2022.894996] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2022] [Accepted: 05/20/2022] [Indexed: 11/23/2022] Open
Abstract
Sarcopenia is a geriatric syndrome that is characterized by a progressive and generalized skeletal muscle disorder and can be associated with many comorbidities, including obesity, diabetes, and fracture. Its definitions, given by the AWGS and EWGSOP, are widely used. Sarcopenia is measured by muscle strength, muscle quantity or mass and physical performance. Currently, the importance and urgency of sarcopenia have grown. The application of blood flow restriction (BFR) training has received increased attention in managing sarcopenia. BFR is accomplished using a pneumatic cuff on the proximal aspect of the exercising limb. Two main methods of exercise, aerobic exercise and resistance exercise, have been applied with BFR in treating sarcopenia. Both methods can increase muscle mass and muscle strength to a certain extent. Intricate mechanisms are involved during BFRT. Currently, the presented mechanisms mainly include responses in the blood vessels and related hormones, such as growth factors, tissue hypoxia-related factors and recruitment of muscle fiber as well as muscle satellite cells. These mechanisms contribute to the positive balance of skeletal muscle synthesis, which in turn mitigates sarcopenia. As a more suited and more effective way of treating sarcopenia and its comorbidities, BFRT can serve as an alternative to traditional exercise for people who have marked physical limitations or even show superior outcomes under low loads. However, the possibility of causing stress or muscle damage must be considered. Cuff size, pressure, training load and other variables can affect the outcome of sarcopenia, which must also be considered. Thoroughly studying these factors can help to better determine an ideal BFRT scheme and better manage sarcopenia and its associated comorbidities. As a well-tolerated and novel form of exercise, BFRT offers more potential in treating sarcopenia and involves deeper insights into the function and regulation of skeletal muscle.
Collapse
Affiliation(s)
- Xu-zhi Zhang
- Department of Orthopedics, Xiangya Hospital, Central South University, Changsha, China
- Xiangya School of Medicine, Central South University, Changsha, China
| | - Wen-qing Xie
- Department of Orthopedics, Xiangya Hospital, Central South University, Changsha, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China
| | - Lin Chen
- Department of Health and Kinesiology, School of Physical Education, Jianghan University, Wuhan, China
| | - Guo-dong Xu
- Department of Health and Kinesiology, School of Physical Education, Jianghan University, Wuhan, China
| | - Li Wu
- Department of Health and Kinesiology, School of Physical Education, Jianghan University, Wuhan, China
| | - Yu-sheng Li
- Department of Orthopedics, Xiangya Hospital, Central South University, Changsha, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China
- *Correspondence: Yu-sheng Li
| | - Yu-xiang Wu
- Department of Health and Kinesiology, School of Physical Education, Jianghan University, Wuhan, China
- Yu-xiang Wu
| |
Collapse
|
11
|
Decapeptide from Potato Hydrolysate Induces Myogenic Differentiation and Ameliorates High Glucose-Associated Modulations in Protein Synthesis and Mitochondrial Biogenesis in C2C12 Cells. Biomolecules 2022; 12:biom12040565. [PMID: 35454154 PMCID: PMC9032802 DOI: 10.3390/biom12040565] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2022] [Revised: 04/06/2022] [Accepted: 04/08/2022] [Indexed: 01/01/2023] Open
Abstract
Sarcopenia is characterized as an age-related loss of muscle mass that results in negative health consequences such as decreased strength, insulin resistance, slowed metabolism, increased body fat mass, and a substantially diminished quality of life. Additionally, conditions such as high blood sugar are known to further exacerbate muscle degeneration. Skeletal muscle development and regeneration following injury or disease are based on myoblast differentiation. Bioactive peptides are biologically active peptides found in foods that could have pharmacological functions. The aim of this paper was to investigate the effect of decapeptide DI-10 from the potato alcalase hydrolysate on myoblast differentiation, muscle protein synthesis, and mitochondrial biogenesis in vitro. The treatment of C2C12 myoblasts with DI-10 (10 µg/mL) did not induce cell death. DI-10 treatment in C2C12 myoblast cells accelerates the phosphorylation of promyogenic kinases such as ERK, Akt and mTOR proteins in a dose-dependent manner. DI-10 improves myotubes differentiation and upregulates the expression of myosin heavy chain (MyHC) protein in myoblast cells under differentiation medium with high glucose. DI-10 effectively increased the phosphorylation of promyogenic kinases Akt, mTOR, and mitochondrial-related transcription factors AMPK and PGC1α expression under hyperglycemic conditions. Further, decapeptide DI-10 decreased the expression of Murf1 and MAFbx proteins, which are involved in protein degradation and muscle atrophy. Our reports support that decapeptide DI-10 could be potentially used as a therapeutic candidate for preventing muscle degeneration in sarcopenia.
Collapse
|
12
|
Cardiovascular protection associated with cilostazol, colchicine and target of rapamycin inhibitors. J Cardiovasc Pharmacol 2022; 80:31-43. [PMID: 35384911 DOI: 10.1097/fjc.0000000000001276] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Accepted: 03/06/2022] [Indexed: 11/26/2022]
Abstract
ABSTRACT An alteration in extracellular matrix production by vascular smooth muscle cells is a crucial event in the pathogenesis of vascular diseases such as aging-related, atherosclerosis and allograft vasculopathy. The human target of rapamycin (TOR) is involved in the synthesis of extracellular matrix by vascular smooth muscle cells. TOR inhibitors reduce arterial stiffness, blood pressure, and left ventricle hypertrophy and decrease cardiovascular risk in kidney graft recipients and patients with coronary artery disease and heart allograft vasculopathy. Other drugs that modulate extracellular matrix production such as cilostazol and colchicine have also demonstrated a beneficial cardiovascular effect. Clinical studies have consistently shown that cilostazol confers cardiovascular protection in peripheral vascular disease, coronary artery disease, and cerebrovascular disease. In patients with type 2 diabetes, cilostazol prevents the progression of subclinical coronary atherosclerosis. Colchicine reduces arterial stiffness in patients with Familial Mediterranean Fever and patients with coronary artery disease. Pathophysiological mechanisms underlying the cardioprotective effect of these drugs may be related to interactions between the cytoskeleton, TOR signaling and cyclic AMP synthesis that remain to be fully elucidated. Adult vascular smooth muscle cells exhibit a contractile phenotype and produce little extracellular matrix. Conditions that upregulate extracellular matrix synthesis induce a phenotypic switch toward a synthetic phenotype. TOR inhibition with rapamycin reduces extracellular matrix production by promoting the change to the contractile phenotype. Cilostazol increases the cytosolic level of cyclic AMP, which in turn leads to a reduction in extracellular matrix synthesis. Colchicine is a microtubule-destabilizing agent that may enhance the synthesis of cyclic AMP.
Collapse
|
13
|
Association between dietary intake of branched-chain amino acids and sarcopenia and its components: a cross-sectional study. Sci Rep 2022; 12:5666. [PMID: 35383191 PMCID: PMC8983668 DOI: 10.1038/s41598-022-07605-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2021] [Accepted: 02/10/2022] [Indexed: 01/06/2023] Open
Abstract
There is no previous study that investigated the association between dietary intake of total and individual branched-chain amino acids (BCAAs) and odds of sarcopenia. The present study aimed to examine the association between dietary intake of BCAAs and sarcopenia and its components among Iranian adults. The data for this cross-sectional study was collected in 2011 among 300 older people (150 men and 150 female) with aged ≥ 55 years. We used a Block-format 117-item food frequency questionnaire (FFQ) to evaluate usual dietary intakes. BCAAs intake was calculated by summing up the amount of valine, leucine and isoleucine intake from all food items in the FFQ. The European Sarcopenia Working Group (EWGSOP) definition was used to determine sarcopenia and its components. Mean age of study participants was 66.8 years and 51% were female. Average intake of BCAAs was 12.8 ± 5.1 g/day. Prevalence of sarcopenia and its components was not significantly different across tertile categories of total and individual BCAAs intake. We found no significant association between total BCAAs intake and odds of sarcopenia (OR for comparison of extreme tertiles 0.48, 95% CI 0.19–1.19, P-trend = 0.10) and its components (For muscle mass 0.83, 95% CI 0.39–1.77, P-trend = 0.63; for hand grip strength 0.81, 95% CI 0.37–1.75, P-trend: 0.59; for gait speed 1.22, 95% CI 0.58–2.57, P-trend = 0.56). After adjusting for potential confounders, this non-significant relationship did not alter. In addition, we did not find any significant association between individual BCAAs intake and odds of sarcopenia or its components. We found no significant association between dietary intakes of BCAAs and sarcopenia in crude model (OR 0.60; 95% CI 0.29–1.26). After controlling for several potential confounders, the result remained insignificant (OR 0.48; 95% CI 0.19–1.19). In this cross-sectional study, no significant association was observed between dietary intakes of total and individual BCAAs and odds of sarcopenia and its components.
Collapse
|
14
|
Effects of alpha-linolenic acid and essential amino acids on the proliferation and differentiation of C2C12 myoblasts. JOURNAL OF ANIMAL REPRODUCTION AND BIOTECHNOLOGY 2022. [DOI: 10.12750/jarb.37.1.17] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022] Open
|
15
|
Alizadeh Pahlavani H. Exercise Therapy for People With Sarcopenic Obesity: Myokines and Adipokines as Effective Actors. Front Endocrinol (Lausanne) 2022; 13:811751. [PMID: 35250869 PMCID: PMC8892203 DOI: 10.3389/fendo.2022.811751] [Citation(s) in RCA: 51] [Impact Index Per Article: 25.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/09/2021] [Accepted: 01/24/2022] [Indexed: 12/15/2022] Open
Abstract
Sarcopenic obesity is defined as a multifactorial disease in aging with decreased body muscle, decreased muscle strength, decreased independence, increased fat mass, due to decreased physical activity, changes in adipokines and myokines, and decreased satellite cells. People with sarcopenic obesity cause harmful changes in myokines and adipokines. These changes are due to a decrease interleukin-10 (IL-10), interleukin-15 (IL-15), insulin-like growth factor hormone (IGF-1), irisin, leukemia inhibitory factor (LIF), fibroblast growth factor-21 (FGF-21), adiponectin, and apelin. While factors such as myostatin, leptin, interleukin-6 (IL-6), interleukin-8 (IL-8), and resistin increase. The consequences of these changes are an increase in inflammatory factors, increased degradation of muscle proteins, increased fat mass, and decreased muscle tissue, which exacerbates sarcopenia obesity. In contrast, exercise, especially strength training, reverses this process, which includes increasing muscle protein synthesis, increasing myogenesis, increasing mitochondrial biogenesis, increasing brown fat, reducing white fat, reducing inflammatory factors, and reducing muscle atrophy. Since some people with chronic diseases are not able to do high-intensity strength training, exercises with blood flow restriction (BFR) are newly recommended. Numerous studies have shown that low-intensity BFR training produces the same increase in hypertrophy and muscle strength such as high-intensity strength training. Therefore, it seems that exercise interventions with BFR can be an effective way to prevent the exacerbation of sarcopenia obesity. However, due to limited studies on adipokines and exercises with BFR in people with sarcopenic obesity, more research is needed.
Collapse
|
16
|
Banks NF, Rogers EM, Church DD, Ferrando AA, Jenkins NDM. The contributory role of vascular health in age-related anabolic resistance. J Cachexia Sarcopenia Muscle 2022; 13:114-127. [PMID: 34951146 PMCID: PMC8818606 DOI: 10.1002/jcsm.12898] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/29/2021] [Revised: 10/18/2021] [Accepted: 11/22/2021] [Indexed: 12/25/2022] Open
Abstract
Sarcopenia, or the age-related loss of skeletal muscle mass and function, is an increasingly prevalent condition that contributes to reduced quality of life, morbidity, and mortality in older adults. Older adults display blunted anabolic responses to otherwise anabolic stimuli-a phenomenon that has been termed anabolic resistance (AR)-which is likely a casual factor in sarcopenia development. AR is multifaceted, but historically much of the mechanistic focus has been on signalling impairments, and less focus has been placed on the role of the vasculature in postprandial protein kinetics. The vascular endothelium plays an indispensable role in regulating vascular tone and blood flow, and age-related impairments in vascular health may impede nutrient-stimulated vasodilation and subsequently the ability to deliver nutrients (e.g. amino acids) to skeletal muscle. Although the majority of data has been obtained studying younger adults, the relatively limited data on the effect of blood flow on protein kinetics in older adults suggest that vasodilatory function, especially of the microvasculature, strongly influences the muscle protein synthetic response to amino acid feedings. In this narrative review, we examine evidence of AR in older adults following amino acid and mixed meal consumption, examine the evidence linking vascular dysfunction and insulin resistance to age-related AR, review the influence of nitric oxide and endothelin-1 on age-related vascular dysfunction as it relates to AR, briefly review the potential causal role of arterial stiffness in promoting skeletal muscle microvascular dysfunction and AR, and provide a brief overview and future considerations for research examining age-related AR.
Collapse
Affiliation(s)
- Nile F Banks
- Integrative Laboratory of Applied Physiology and Lifestyle Medicine, University of Iowa, Iowa City, IA, USA
| | - Emily M Rogers
- Integrative Laboratory of Applied Physiology and Lifestyle Medicine, University of Iowa, Iowa City, IA, USA
| | - David D Church
- Center for Translational Research in Aging and Longevity, College of Medicine, University of Arkansas for Medical Sciences, Little Rock, AR, USA
| | - Arny A Ferrando
- Center for Translational Research in Aging and Longevity, College of Medicine, University of Arkansas for Medical Sciences, Little Rock, AR, USA
| | - Nathaniel D M Jenkins
- Integrative Laboratory of Applied Physiology and Lifestyle Medicine, University of Iowa, Iowa City, IA, USA.,Abboud Cardiovascular Research Center, University of Iowa, Iowa City, IA, USA
| |
Collapse
|
17
|
Ismaiel A, Bucsa C, Farcas A, Leucuta DC, Popa SL, Dumitrascu DL. Effects of Branched-Chain Amino Acids on Parameters Evaluating Sarcopenia in Liver Cirrhosis: Systematic Review and Meta-Analysis. Front Nutr 2022; 9:749969. [PMID: 35155535 PMCID: PMC8828569 DOI: 10.3389/fnut.2022.749969] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2021] [Accepted: 01/03/2022] [Indexed: 12/19/2022] Open
Abstract
INTRODUCTION Sarcopenia is a major element of malnutrition in liver cirrhosis (LC) and is present in 30-70% of this population, being associated with a poor overall prognosis due to related complications such as hepatic encephalopathy, ascites, and portal hypertension. This systematic review and meta-analysis aimed to evaluate the effects of branched-chain amino acids (BCAA) supplementation on several parameters used to assess sarcopenia in LC. MATERIALS AND METHODS A comprehensive systematic electronic search was performed in PubMed, EMBASE, Scopus, Cochrane Library, and ClinicalTrials.gov databases using predefined keywords. We included full articles that satisfied the inclusion and exclusion criteria. Quality assessment of included studies was conducted using Cochrane Collaboration's tool and NHLBI quality assessment tools for interventional and observational studies, respectively. The principal summary outcome was the mean difference (MD) in the evaluated parameters. We performed a pre- and post-intervention analysis and comparison between two intervention groups (BCAA vs. controls) of the evaluated parameters when applicable. RESULTS A total of 12 studies involving 1,225 subjects were included in our qualitative synthesis and five in our quantitative synthesis. At baseline vs. post-intervention assessment, subjects receiving BCAA supplementation were found to have a significant improvement in skeletal muscle index (SMI) (-0.347 [95% CI -0.628-0.067; p-value 0.015]) and mid-arm muscle circumference (MAMC) (-1.273 [95% CI (-2.251-0.294; p-value 0.011]). However, no improvements were reported in handgrip (-0.616 [95% CI -2.818-1.586; p-value 0.584]) and triceps subcutaneous fat (1.10 [95% CI -0.814-3.014; p-value 0.263]). CONCLUSION Following BCAA supplementation, several parameters used to evaluate sarcopenia in LC patients were found to be improved, including SMI and MAMC. Nevertheless, no improvements were seen in handgrip and triceps subcutaneous fat. Results should be interpreted with caution due to the limited methodological quality of the included studies.
Collapse
Affiliation(s)
- Abdulrahman Ismaiel
- 2nd Department of Internal Medicine, “Iuliu Hatieganu” University of Medicine and Pharmacy, Cluj-Napoca, Romania
| | - Camelia Bucsa
- Drug Information Research Center, “Iuliu Hatieganu” University of Medicine and Pharmacy, Cluj-Napoca, Romania
| | - Andreea Farcas
- Drug Information Research Center, “Iuliu Hatieganu” University of Medicine and Pharmacy, Cluj-Napoca, Romania
| | - Daniel-Corneliu Leucuta
- Department of Medical Informatics and Biostatistics, “Iuliu Hatieganu” University of Medicine and Pharmacy, Cluj-Napoca, Romania
| | - Stefan-Lucian Popa
- 2nd Department of Internal Medicine, “Iuliu Hatieganu” University of Medicine and Pharmacy, Cluj-Napoca, Romania
| | - Dan L. Dumitrascu
- 2nd Department of Internal Medicine, “Iuliu Hatieganu” University of Medicine and Pharmacy, Cluj-Napoca, Romania
| |
Collapse
|
18
|
The effects of glucagon and the target of rapamycin (TOR) on skeletal muscle protein synthesis and age-dependent sarcopenia in humans. Clin Nutr ESPEN 2021; 44:15-25. [PMID: 34330459 DOI: 10.1016/j.clnesp.2021.06.025] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2021] [Accepted: 06/21/2021] [Indexed: 01/07/2023]
Abstract
BACKGROUND AND AIMS Human target of rapamycin (TOR) is a kinase that stimulates protein synthesis in the skeletal muscle in response to amino acids and physical activity. METHODS A comprehensive literature search was conducted on the PubMed database from its inception up to May 2021 to retrieve information on the effects of TOR and glucagon on muscle function. Articles written in English regarding human subjects were included. RESULTS l-leucine activates TOR to initiate protein synthesis in the skeletal muscle. Glucagon has a crucial role suppressing skeletal muscle protein synthesis by increasing l-leucine oxidation and the irreversible loss of this amino acid. Glucagon-induced l-leucine oxidation suppresses TOR and attenuates the ability of skeletal muscle to synthesize proteins. Conditions associated with increased glucagon secretion typically feature reduced ability to synthesize proteins in the skeletal muscle that may evolve into sarcopenia. Animal protein ingestion, unlike vegetable protein, stimulates glucagon secretion. High intake of animal protein increases l-leucine oxidation and promotes the use of amino acids as fuel. Sarcopenia and arterial stiffness characteristically occur together in conditions featuring insulin resistance, such as aging. Insulin resistance mediates the relationship between aging and sarcopenia and arterial stiffness. The loss of skeletal muscle fibers that characterizes sarcopenia is followed by collagen and lipid accumulation. Likewise, insulin resistance is associated with arterial stiffness and intima-media thickening due to adaptive accretion of collagen and lipids in the arterial wall. CONCLUSIONS Human TOR participates in the pathogenesis of sarcopenia and arterial stiffness, although its effects remain to be fully elucidated.
Collapse
|
19
|
de Meeûs d’Argenteuil C, Boshuizen B, Oosterlinck M, van de Winkel D, De Spiegelaere W, de Bruijn CM, Goethals K, Vanderperren K, Delesalle CJG. Flexibility of equine bioenergetics and muscle plasticity in response to different types of training: An integrative approach, questioning existing paradigms. PLoS One 2021; 16:e0249922. [PMID: 33848308 PMCID: PMC8043414 DOI: 10.1371/journal.pone.0249922] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2020] [Accepted: 03/26/2021] [Indexed: 12/16/2022] Open
Abstract
Equine bioenergetics have predominantly been studied focusing on glycogen and fatty acids. Combining omics with conventional techniques allows for an integrative approach to broadly explore and identify important biomolecules. Friesian horses were aquatrained (n = 5) or dry treadmill trained (n = 7) (8 weeks) and monitored for: evolution of muscle diameter in response to aquatraining and dry treadmill training, fiber type composition and fiber cross-sectional area of the M. pectoralis, M. vastus lateralis and M. semitendinosus and untargeted metabolomics of the M. pectoralis and M. vastus lateralis in response to dry treadmill training. Aquatraining was superior to dry treadmill training to increase muscle diameter in the hindquarters, with maximum effect after 4 weeks. After dry treadmill training, the M. pectoralis showed increased muscle diameter, more type I fibers, decreased fiber mean cross sectional area, and an upregulated oxidative metabolic profile: increased β-oxidation (key metabolites: decreased long chain fatty acids and increased long chain acylcarnitines), TCA activity (intermediates including succinyl-carnitine and 2-methylcitrate), amino acid metabolism (glutamine, aromatic amino acids, serine, urea cycle metabolites such as proline, arginine and ornithine) and xenobiotic metabolism (especially p-cresol glucuronide). The M. vastus lateralis expanded its fast twitch profile, with decreased muscle diameter, type I fibers and an upregulation of glycolytic and pentose phosphate pathway activity, and increased branched-chain and aromatic amino acid metabolism (cis-urocanate, carnosine, homocarnosine, tyrosine, tryptophan, p-cresol-glucuronide, serine, methionine, cysteine, proline and ornithine). Trained Friesians showed increased collagen and elastin turn-over. Results show that branched-chain amino acids, aromatic amino acids and microbiome-derived xenobiotics need further study in horses. They feed the TCA cycle at steps further downstream from acetyl CoA and most likely, they are oxidized in type IIA fibers, the predominant fiber type of the horse. These study results underline the importance of reviewing existing paradigms on equine bioenergetics.
Collapse
Affiliation(s)
- Constance de Meeûs d’Argenteuil
- Department of Virology, Parasitology and Immunology, Research Group of Comparative Physiology, Faculty of Veterinary Medicine, Ghent University, Merelbeke, Belgium
| | - Berit Boshuizen
- Department of Virology, Parasitology and Immunology, Research Group of Comparative Physiology, Faculty of Veterinary Medicine, Ghent University, Merelbeke, Belgium
- Wolvega Equine Hospital, Oldeholtpade, The Netherlands
| | - Maarten Oosterlinck
- Department of Surgery and Anaesthesiology of Domestic Animals, Faculty of Veterinary Medicine, Ghent University, Merelbeke, Belgium
| | | | - Ward De Spiegelaere
- Department of Morphology, Faculty of Veterinary Medicine, Ghent University, Merelbeke, Belgium
| | | | - Klara Goethals
- Department of Nutrition, Genetics and Ethology, Research Group Biometrics, Faculty of Veterinary Medicine, Ghent University, Merelbeke, Belgium
| | - Katrien Vanderperren
- Department of Veterinary Medical Imaging and Small Animal Orthopaedics, Faculty of Veterinary Medicine, Ghent University, Merelbeke, Belgium
| | - Cathérine John Ghislaine Delesalle
- Department of Virology, Parasitology and Immunology, Research Group of Comparative Physiology, Faculty of Veterinary Medicine, Ghent University, Merelbeke, Belgium
| |
Collapse
|
20
|
Lees MJ, Nolan D, Amigo-Benavent M, Raleigh CJ, Khatib N, Harnedy-Rothwell P, FitzGerald RJ, Egan B, Carson BP. A Fish-Derived Protein Hydrolysate Induces Postprandial Aminoacidaemia and Skeletal Muscle Anabolism in an In Vitro Cell Model Using Ex Vivo Human Serum. Nutrients 2021; 13:nu13020647. [PMID: 33671235 PMCID: PMC7922518 DOI: 10.3390/nu13020647] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2021] [Revised: 02/09/2021] [Accepted: 02/12/2021] [Indexed: 12/19/2022] Open
Abstract
Fish-derived proteins, particularly fish protein hydrolysates (FPH), offer potential as high-quality sources of dietary protein, whilst enhancing economic and environmental sustainability. This study investigated the impact of a blue whiting-derived protein hydrolysate (BWPH) on aminoacidaemia in vivo and skeletal muscle anabolism in vitro compared with whey protein isolate (WPI) and an isonitrogenous, non-essential amino acid (NEAA) control (0.33 g·kg−1·body mass−1) in an ex vivo, in vitro experimental design. Blood was obtained from seven healthy older adults (two males, five females; age: 72 ± 5 years, body mass index: 24.9 ± 1.6 kg·m2) in three separate trials in a randomised, counterbalanced, double-blind design. C2C12 myotubes were treated with ex vivo human serum-conditioned media (20%) for 4 h. Anabolic signalling (phosphorylation of mTOR, p70S6K, and 4E-BP1) and puromycin incorporation were determined by immunoblotting. Although BWPH and WPI both induced postprandial essential aminoacidaemia in older adults above the NEAA control, peak and area under the curve (AUC) leucine and essential amino acids were more pronounced following WPI ingestion. Insulin was elevated above baseline in WPI and BWPH only, a finding reinforced by higher peak and AUC values compared with NEAA. Muscle protein synthesis, as measured by puromycin incorporation, was greater after incubation with WPI-fed serum compared with fasted serum (P = 0.042), and delta change was greater in WPI (P = 0.028) and BWPH (P = 0.030) compared with NEAA. Myotube hypertrophy was greater in WPI and BWPH compared with NEAA (both P = 0.045), but was similar between bioactive conditions (P = 0.853). Taken together, these preliminary findings demonstrate the anabolic potential of BWPH in vivo and ex vivo, thus providing justification for larger studies in older adults using gold-standard measures of acute and chronic MPS in vivo.
Collapse
Affiliation(s)
- Matthew J. Lees
- Department of Physical Education and Sport Sciences, Faculty of Education and Health Sciences, University of Limerick, V94 T9PX Limerick, Ireland; (M.J.L.); (C.J.R.)
| | - David Nolan
- School of Health and Human Performance, Dublin City University, D09 V209 Dublin, Ireland; (D.N.); (B.E.)
| | - Miryam Amigo-Benavent
- Health Research Institute, University of Limerick, V94 T9PX Limerick, Ireland;
- Department of Biological Sciences, University of Limerick, V94 T9PX Limerick, Ireland; (N.K.); (P.H.-R.); (R.J.F.)
| | - Conor J. Raleigh
- Department of Physical Education and Sport Sciences, Faculty of Education and Health Sciences, University of Limerick, V94 T9PX Limerick, Ireland; (M.J.L.); (C.J.R.)
| | - Neda Khatib
- Department of Biological Sciences, University of Limerick, V94 T9PX Limerick, Ireland; (N.K.); (P.H.-R.); (R.J.F.)
| | - Pádraigín Harnedy-Rothwell
- Department of Biological Sciences, University of Limerick, V94 T9PX Limerick, Ireland; (N.K.); (P.H.-R.); (R.J.F.)
| | - Richard J. FitzGerald
- Department of Biological Sciences, University of Limerick, V94 T9PX Limerick, Ireland; (N.K.); (P.H.-R.); (R.J.F.)
| | - Brendan Egan
- School of Health and Human Performance, Dublin City University, D09 V209 Dublin, Ireland; (D.N.); (B.E.)
| | - Brian P. Carson
- Department of Physical Education and Sport Sciences, Faculty of Education and Health Sciences, University of Limerick, V94 T9PX Limerick, Ireland; (M.J.L.); (C.J.R.)
- Health Research Institute, University of Limerick, V94 T9PX Limerick, Ireland;
- Correspondence:
| |
Collapse
|
21
|
Jegatheesan P, Vicente C, Marquet de Rouge P, Neveux N, Ramassamy R, Magassa S, Aussel C, Raynaud-Simon A, Cynober L, De Bandt JP. Combined effect of citrulline and lactoserum on amino acid availability in aged rats. Nutrition 2021; 87-88:111196. [PMID: 33744643 DOI: 10.1016/j.nut.2021.111196] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2020] [Revised: 01/28/2021] [Accepted: 01/30/2021] [Indexed: 11/30/2022]
Abstract
OBJECTIVE Age-associated sarcopenia is due to anabolic resistance to feeding. Muscle protein synthesis is improved by fast proteins (e.g., lactoserum), which increase peripheral amino acid (AA) bioavailability more rapidly than slow proteins (e.g., casein), and by citrulline. Citrulline, which limits splanchnic sequestration of AA, may more effectively increase peripheral AA bioavailability when combined with lactoserum than with casein when administered as an oral nutritional protein supplement. METHODS In this study, 25 fasted aged rats received a single gavage administration of lactoserum or casein 0.4 g/kg, alone or with citrulline 0.4 g/kg, and AA pharmacokinetics, glucose, insulin, triglycerides, and insulin-like growth factor 1 (IGF1) were monitored for 4 h. At 4 h, muscle protein and AA contents and protein synthesis activation were measured. RESULTS While lactoserum was associated with higher AA availability, citrulline exerts only limited effects on the plasma profile of AAs from the two proteins. Maximum plasma citrulline was reached earlier with casein (T90 min) than with lactoserum (T120 min). A protein x citrulline interaction was observed for some plasma and muscle AA levels with a significant activation of mechanistic target of rapamycin complex 1 (mTORC1) signaling suggesting higher anabolism with the combination of citrulline and lactoserum. Lower plasma and muscle AA levels with citrulline and lactoserum compared to lactoserum alone suggest a greater AA utilization in a context of muscle anabolic signaling activation. CONCLUSION Provision of a citrulline-lactoserum combination as a nutritional supplement could therefore be beneficial in terms of muscle protein balance and prevention of sarcopenia. Further studies are warranted to evaluate the efficacy of this combination.
Collapse
Affiliation(s)
| | | | | | - Nathalie Neveux
- Faculty of Pharmacy, Paris University, Paris, France; Clinical Chemistry Department, Hôpital Cochin, Asssistance Publique - Hôpitaux de Paris, Paris, France
| | | | | | | | - Agathe Raynaud-Simon
- Faculty of Pharmacy, Paris University, Paris, France; Gerontology Department, Hôpital Bichat, Asssistance Publique - Hôpitaux de Paris, HU Paris-Nord-Val-de-Seine, Paris, France
| | - Luc Cynober
- Faculty of Pharmacy, Paris University, Paris, France; Clinical Chemistry Department, Hôpital Cochin, Asssistance Publique - Hôpitaux de Paris, Paris, France
| | - Jean-Pascal De Bandt
- Faculty of Pharmacy, Paris University, Paris, France; Clinical Chemistry Department, Hôpital Cochin, Asssistance Publique - Hôpitaux de Paris, Paris, France.
| |
Collapse
|
22
|
Badawy MM, Allam NM. Impact of Adding Protein Supplementation to Exercise Training on Lean Body Mass and Muscle Strength in Burn Patients. J Burn Care Res 2021; 42:968-974. [PMID: 33484254 DOI: 10.1093/jbcr/irab007] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022]
Abstract
Protein catabolism is a common complication after burn injury leading to loss of muscle mass and a decrease in muscle strength. The present study aims to evaluate the efficacy of combining exercise training with protein supplementation on lean body mass and muscle strength in patients with severe burn. Sixty participants with severe burn > 30% of total body surface area were randomly distributed into 4 equal groups of 15 participants per group. Group A (Exercise & Protein) received oral protein supplementation (Inkospor X-TREME; 1.5-2.0 g/kg/day), exercise program and traditional burn care, group B (Protein) received oral protein supplementation and traditional burn care, group C (Exercise) received exercise program and traditional burn care, group D (Control) received traditional burn care. Lean body mass was measured using Dual-energy x-ray absorptiometry whereas muscle strength was measured using Biodex 3 Dynamometer System before treatment and 12 weeks after treatment. A significant increase in lean body mass was found in group A compared with that of group B, group C and group D post-treatment (p < 0.001). Also, a significant increase was recorded in peak torque of group A compared with that of group B, group C and group D post-treatment (p < 0.001). Exercise training can significantly increase lean body mass and peak torque. Protein supplementation can significantly increase lean body mass but cannot significantly increase muscle strength whereas, protein +exercise group has a great impact on lean body mass and muscle power than exercise group and protein group in burn patients.
Collapse
Affiliation(s)
- Manar M Badawy
- Department of Physical Therapy for Cardiovascular, Pulmonary Disorders and Geriatrics. Faculty of Physical Therapy, Misr University for Science and Technology, Egypt
| | - Nesma M Allam
- Department of Physical Therapy for Surgery, Faculty of Physical Therapy, Cairo University, Egypt
| |
Collapse
|
23
|
The efficacy of essential amino acid supplementation for augmenting dietary protein intake in older adults: implications for skeletal muscle mass, strength and function. Proc Nutr Soc 2020; 80:230-242. [PMID: 33315000 DOI: 10.1017/s0029665120008010] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
The primary aim of this review is to evaluate the efficacy of essential amino acid (EAA) supplementation as a strategy to increase dietary protein intake and improve muscle mass, strength and function in older adults. A sufficient daily protein intake is widely recognised to be fundamental for the successful management of sarcopenia in older undernourished adults. In practice, optimising protein intakes in older adults is complex, requiring consideration of the dose and amino acid composition (i.e. a complete EAA profile and abundant leucine content) of ingested protein on a per meal basis, alongside the age-related decline in appetite and the satiating properties of protein. Recent studies in older adults demonstrate that EAA-based supplements are non-satiating and can be administered alongside food to enhance the anabolic properties of a meal containing a suboptimal dose of protein; an effect magnified when combined with resistance exercise training. These findings support the notion that EAA supplementation could serve as an effective strategy to improve musculoskeletal health in older adults suffering from non-communicable diseases such as sarcopenia. Compliance is critical for the long-term success of complex interventions. Hence, aspects of palatability and desire to eat are important considerations regarding EAA supplementation. In conclusion, EAA-based supplements enriched with l-leucine offer an alternative strategy to whole protein sources to assist older adults in meeting protein recommendations. In practice, EAA supplements could be administered alongside meals of suboptimal protein content, or alternatively between meals on occasions when older adults achieve their per meal protein intake recommendations.
Collapse
|
24
|
Nutrition and microRNAs: Novel Insights to Fight Sarcopenia. Antioxidants (Basel) 2020; 9:antiox9100951. [PMID: 33023202 PMCID: PMC7601022 DOI: 10.3390/antiox9100951] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2020] [Revised: 09/28/2020] [Accepted: 09/29/2020] [Indexed: 12/18/2022] Open
Abstract
Sarcopenia is a progressive age-related loss of skeletal muscle mass and strength, which may result in increased physical frailty and a higher risk of adverse events. Low-grade systemic inflammation, loss of muscle protein homeostasis, mitochondrial dysfunction, and reduced number and function of satellite cells seem to be the key points for the induction of muscle wasting, contributing to the pathophysiological mechanisms of sarcopenia. While a range of genetic, hormonal, and environmental factors has been reported to contribute to the onset of sarcopenia, dietary interventions targeting protein or antioxidant intake may have a positive effect in increasing muscle mass and strength, regulating protein homeostasis, oxidative reaction, and cell autophagy, thus providing a cellular lifespan extension. MicroRNAs (miRNAs) are endogenous small non-coding RNAs, which control gene expression in different tissues. In skeletal muscle, a range of miRNAs, named myomiRNAs, are involved in many physiological processes, such as growth, development, and maintenance of muscle mass and function. This review aims to present and to discuss some of the most relevant molecular mechanisms related to the pathophysiological effect of sarcopenia. Besides, we explored the role of nutrition as a possible way to counteract the loss of muscle mass and function associated with ageing, with special attention paid to nutrient-dependent miRNAs regulation. This review will provide important information to better understand sarcopenia and, thus, to facilitate research and therapeutic strategies to counteract the pathophysiological effect of ageing.
Collapse
|
25
|
Docosahexaenoic Acid, a Potential Treatment for Sarcopenia, Modulates the Ubiquitin-Proteasome and the Autophagy-Lysosome Systems. Nutrients 2020; 12:nu12092597. [PMID: 32859116 PMCID: PMC7551806 DOI: 10.3390/nu12092597] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2020] [Revised: 08/22/2020] [Accepted: 08/24/2020] [Indexed: 12/14/2022] Open
Abstract
One of the characteristic features of aging is the progressive loss of muscle mass, a nosological syndrome called sarcopenia. It is also a pathologic risk factor for many clinically adverse outcomes in older adults. Therefore, delaying the loss of muscle mass, through either boosting muscle protein synthesis or slowing down muscle protein degradation using nutritional supplements could be a compelling strategy to address the needs of the world’s aging population. Here, we review the recently identified properties of docosahexaenoic acid (DHA). It was shown to delay muscle wasting by stimulating intermediate oxidative stress and inhibiting proteasomal degradation of muscle proteins. Both the ubiquitin–proteasome and the autophagy–lysosome systems are modulated by DHA. Collectively, growing evidence indicates that DHA is a potent pharmacological agent that could improve muscle homeostasis. Better understanding of cellular proteolytic systems associated with sarcopenia will allow us to identify novel therapeutic interventions, such as omega-3 polyunsaturated fatty acids, to treat this disease.
Collapse
|
26
|
The Potential Role of Fish-Derived Protein Hydrolysates on Metabolic Health, Skeletal Muscle Mass and Function in Ageing. Nutrients 2020; 12:nu12082434. [PMID: 32823615 PMCID: PMC7468851 DOI: 10.3390/nu12082434] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2020] [Revised: 08/11/2020] [Accepted: 08/11/2020] [Indexed: 02/07/2023] Open
Abstract
Fish protein represents one of the most widely consumed dietary protein sources by humans. The processing of material from the fishing industry generates substantial unexploited waste products, many of which possess high biological value. Protein hydrolysates, such as fish protein hydrolysates (FPH), containing predominantly di- and tripeptides, are more readily absorbed than free amino acids and intact protein. Furthermore, in animal models, FPH have been shown to possess numerous beneficial properties for cardiovascular, neurological, intestinal, renal, and immune health. Ageing is associated with the loss of skeletal muscle mass and function, as well as increased oxidative stress, compromised vascularisation, neurological derangements, and immunosenescence. Thus, there appears to be a potential application for FPH in older persons as a high-quality protein source that may also confer additional health benefits. Despite this, there remains a dearth of information concerning the impact of FPH on health outcomes in humans. The limited evidence from human interventional trials suggests that FPH may hold promise for supporting optimal body composition and maintaining gut integrity. FPH also provide a high-quality source of dietary protein without negatively impacting on subjective appetite perceptions or regulatory hormones. Further studies are needed to assess the impact and utility of FPH on skeletal muscle health in older persons, ideally comparing FPH to ‘established’ protein sources or a non-bioactive, nitrogen-matched control. In particular, the effects of acute and chronic FPH consumption on post-exercise aminoacidaemia, skeletal muscle protein synthesis, and intramyocellular anabolic signalling in older adults are worthy of investigation. FPH may represent beneficial and sustainable alternative sources of high-quality protein to support skeletal muscle health and anabolism in ageing, without compromising appetite and subsequent energy intake.
Collapse
|
27
|
Monteyne AJ, Coelho MOC, Porter C, Abdelrahman DR, Jameson TSO, Jackman SR, Blackwell JR, Finnigan TJA, Stephens FB, Dirks ML, Wall BT. Mycoprotein ingestion stimulates protein synthesis rates to a greater extent than milk protein in rested and exercised skeletal muscle of healthy young men: a randomized controlled trial. Am J Clin Nutr 2020; 112:318-333. [PMID: 32438401 DOI: 10.1093/ajcn/nqaa092] [Citation(s) in RCA: 49] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2019] [Accepted: 04/09/2020] [Indexed: 12/18/2022] Open
Abstract
BACKGROUND Mycoprotein is a fungal-derived sustainable protein-rich food source, and its ingestion results in systemic amino acid and leucine concentrations similar to that following milk protein ingestion. OBJECTIVE We assessed the mixed skeletal muscle protein synthetic response to the ingestion of a single bolus of mycoprotein compared with a leucine-matched bolus of milk protein, in rested and exercised muscle of resistance-trained young men. METHODS Twenty resistance-trained healthy young males (age: 22 ± 1 y, body mass: 82 ± 2 kg, BMI: 25 ± 1 kg·m-2) took part in a randomized, double-blind, parallel-group study. Participants received primed, continuous infusions of L-[ring-2H5]phenylalanine and ingested either 31 g (26.2 g protein: 2.5 g leucine) milk protein (MILK) or 70 g (31.5 g protein: 2.5 g leucine) mycoprotein (MYCO) following a bout of unilateral resistance-type exercise (contralateral leg acting as resting control). Blood and m. vastus lateralis muscle samples were collected before exercise and protein ingestion, and following a 4-h postprandial period to assess mixed muscle fractional protein synthetic rates (FSRs) and myocellular signaling in response to the protein beverages in resting and exercised muscle. RESULTS Mixed muscle FSRs increased following MILK ingestion (from 0.036 ± 0.008 to 0.052 ± 0.006%·h-1 in rested, and 0.035 ± 0.008 to 0.056 ± 0.005%·h-1 in exercised muscle; P <0.01) but to a greater extent following MYCO ingestion (from 0.025 ± 0.006 to 0.057 ± 0.004%·h-1 in rested, and 0.024 ± 0.007 to 0.072 ± 0.005%·h-1 in exercised muscle; P <0.0001) (treatment × time interaction effect; P <0.05). Postprandial FSRs trended to be greater in MYCO compared with MILK (0.065 ± 0.004 compared with 0.054 ± 0.004%·h-1, respectively; P = 0.093) and the postprandial rise in FSRs was greater in MYCO compared with MILK (Delta 0.040 ± 0.006 compared with Delta 0.018 ± 0.005%·h-1, respectively; P <0.01). CONCLUSIONS The ingestion of a single bolus of mycoprotein stimulates resting and postexercise muscle protein synthesis rates, and to a greater extent than a leucine-matched bolus of milk protein, in resistance-trained young men. This trial was registered at clinicaltrials.gov as 660065600.
Collapse
Affiliation(s)
- Alistair J Monteyne
- Department of Sport and Health Sciences, College of Life and Environmental Sciences, Heavitree Road, University of Exeter, Exeter, UK
| | - Mariana O C Coelho
- Department of Sport and Health Sciences, College of Life and Environmental Sciences, Heavitree Road, University of Exeter, Exeter, UK
| | - Craig Porter
- Department of Surgery, University of Texas Medical Branch & Shriners Hospital for Children, Galveston, TX, USA
| | - Doaa R Abdelrahman
- Department of Surgery, University of Texas Medical Branch & Shriners Hospital for Children, Galveston, TX, USA
| | - Thomas S O Jameson
- Department of Sport and Health Sciences, College of Life and Environmental Sciences, Heavitree Road, University of Exeter, Exeter, UK
| | - Sarah R Jackman
- Department of Sport and Health Sciences, College of Life and Environmental Sciences, Heavitree Road, University of Exeter, Exeter, UK
| | - Jamie R Blackwell
- Department of Sport and Health Sciences, College of Life and Environmental Sciences, Heavitree Road, University of Exeter, Exeter, UK
| | | | - Francis B Stephens
- Department of Sport and Health Sciences, College of Life and Environmental Sciences, Heavitree Road, University of Exeter, Exeter, UK
| | - Marlou L Dirks
- Department of Sport and Health Sciences, College of Life and Environmental Sciences, Heavitree Road, University of Exeter, Exeter, UK
| | - Benjamin T Wall
- Department of Sport and Health Sciences, College of Life and Environmental Sciences, Heavitree Road, University of Exeter, Exeter, UK
| |
Collapse
|
28
|
Effects of enriched branched-chain amino acid supplementation on sarcopenia. Aging (Albany NY) 2020; 12:15091-15103. [PMID: 32712600 PMCID: PMC7425429 DOI: 10.18632/aging.103576] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2020] [Accepted: 06/09/2020] [Indexed: 12/28/2022]
Abstract
To evaluate the effects of short-term administration of enriched branched-chain amino acids (BCAAs) on subjects with pre-sarcopenia or sarcopenia, our quasi-experimental study enrolled 33 subjects (12 pre-sarcopenia/21 sarcopenia; 6 men/27 women; mean age 66.6 ± 10.3 years) to take one sachet (3.6 g) of enriched BCAA powder twice a day for five weeks followed by a discontinuation period of 12 weeks. We evaluated sarcopenic parameters, including grip strength, 6-meter gait speed, and bioelectrical-impedance-analysis-derived skeletal mass index (SMI), at baseline, 5 weeks, and 17 weeks. We found that both pre-sarcopenic and sarcopenic subjects showed improved SMI, gait speed, and grip strength at 5 weeks. However, all three parameters progressively declined at 17 weeks, especially SMI and grip strength in subjects aged < 65 years and gait speed and grip strength in subjects aged ≥ 65 years. It thus appears that supplementation with enriched BCAAs for 5 weeks correlates with short-term positive effects on sarcopenic parameters but attenuation of those effects following discontinuation for 12 weeks.
Collapse
|
29
|
Lamberti N, Straudi S, Donadi M, Tanaka H, Basaglia N, Manfredini F. Effectiveness of blood flow‐restricted slow walking on mobility in severe multiple sclerosis: A pilot randomized trial. Scand J Med Sci Sports 2020; 30:1999-2009. [DOI: 10.1111/sms.13764] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2020] [Revised: 06/08/2020] [Accepted: 07/02/2020] [Indexed: 12/15/2022]
Affiliation(s)
- Nicola Lamberti
- Department of Biomedical and Surgical Specialties Sciences Section of Sport Sciences University of Ferrara Ferrara Italy
| | - Sofia Straudi
- Neuroscience and Rehabilitation Department Ferrara University Hospital Ferrara Italy
| | - Maria Donadi
- Neuroscience and Rehabilitation Department Ferrara University Hospital Ferrara Italy
| | - Hirofumi Tanaka
- Cardiovascular Aging Research Laboratory Department of Kinesiology and Health Education The University of Texas at Austin Austin TX USA
| | - Nino Basaglia
- Neuroscience and Rehabilitation Department Ferrara University Hospital Ferrara Italy
| | - Fabio Manfredini
- Department of Biomedical and Surgical Specialties Sciences Section of Sport Sciences University of Ferrara Ferrara Italy
- Neuroscience and Rehabilitation Department Ferrara University Hospital Ferrara Italy
| |
Collapse
|
30
|
Roberts MD, Haun CT, Vann CG, Osburn SC, Young KC. Sarcoplasmic Hypertrophy in Skeletal Muscle: A Scientific "Unicorn" or Resistance Training Adaptation? Front Physiol 2020; 11:816. [PMID: 32760293 PMCID: PMC7372125 DOI: 10.3389/fphys.2020.00816] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2020] [Accepted: 06/18/2020] [Indexed: 12/19/2022] Open
Abstract
Skeletal muscle fibers are multinucleated cells that contain mostly myofibrils suspended in an aqueous media termed the sarcoplasm. Select evidence suggests sarcoplasmic hypertrophy, or a disproportionate expansion of the sarcoplasm relative to myofibril protein accretion, coincides with muscle fiber or tissue growth during resistance training. There is also evidence to support other modes of hypertrophy occur during periods of resistance training including a proportional accretion of myofibril protein with fiber or tissue growth (i.e., conventional hypertrophy), or myofibril protein accretion preceding fiber or tissue growth (i.e., myofibril packing). In this review, we discuss methods that have been used to investigate these modes of hypertrophy. Particular attention is given to sarcoplasmic hypertrophy throughout. Thus, descriptions depicting this process as well as the broader implications of this phenomenon will be posited. Finally, we propose future human and rodent research that can further our understanding in this area of muscle physiology.
Collapse
Affiliation(s)
- Michael D Roberts
- School of Kinesiology, Auburn, AL, United States.,Department of Cell Biology and Physiology, Edward Via College of Osteopathic Medicine - Auburn Campus, Auburn, AL, United States
| | - Cody T Haun
- Fitomics, LLC, Birmingham, AL, United States
| | | | | | - Kaelin C Young
- School of Kinesiology, Auburn, AL, United States.,Department of Cell Biology and Physiology, Edward Via College of Osteopathic Medicine - Auburn Campus, Auburn, AL, United States
| |
Collapse
|
31
|
Silva FCD, Iop RDR, Andrade A, Costa VP, Gutierres Filho PJB, Silva RD. Effects of Physical Exercise on the Expression of MicroRNAs: A Systematic Review. J Strength Cond Res 2020; 34:270-280. [PMID: 31877120 DOI: 10.1519/jsc.0000000000003103] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Silva, FCd, Iop, RdR, Andrade, A, Costa, VP, Gutierres Filho, PJB, and Silva, Rd. Effects of physical exercise on the expression of microRNAs: A systematic review 34(1): 270-280, 2020-Studies have detected changes in the expression of miRNAs after physical exercise, which brings new insight into the molecular control of adaptation to exercise. Therefore, the objective of the current systematic review of experimental and quasiexperimental studies published in the past 10 years was to assess evidence related to acute effects, chronic effects, and both acute and chronic effects of physical exercise on miRNA expression in humans, as well as its functions, evaluated in serum, plasma, whole blood, saliva, or muscle biopsy. For this purpose, the following electronic databases were selected: MEDLINE by Pubmed, SCOPUS, Web of Science, and also a manual search in references of the selected articles to April 2017. Experimental and quasiexperimental studies were included. Results indicate that, of the 345 studies retrieved, 40 studies met the inclusion criteria and two articles were included as a result of the manual search. The 42 studies were analyzed, and it can be observed acute and chronic effects of physical exercises (aerobic and resistance) on the expression of several miRNAs in healthy subjects, athletes, young, elderly and in patients with congestive heart failure, chronic kidney disease, diabetes mellitus type 2 associated with morbid obesity, prediabetic, and patients with intermittent claudication. It is safe to assume that miRNA changes, both in muscle tissues and bodily fluids, are presumably associated with the benefits induced by acute and chronic physical exercise. Thus, a better understanding of changes in miRNAs as a response to physical exercise might contribute to the development of miRNAs as therapeutic targets for the improvement of exercise capacity in individuals with any given disease. However, additional studies are necessary to draw accurate conclusions.
Collapse
Affiliation(s)
- Franciele Cascaes da Silva
- Adapted Physical Activity Laboratory, Center for Health Sciences and Sports, University of State of Santa Catarina, Florianopolis, Brazil
| | - Rodrigo da Rosa Iop
- Adapted Physical Activity Laboratory, Center for Health Sciences and Sports, University of State of Santa Catarina, Florianopolis, Brazil
| | - Alexandro Andrade
- Laboratory of Psychology of Sport and Exercise, Center for Health Sciences and Sports, University of State of Santa Catarina, Florianopolis, Brazil
| | - Vitor Pereira Costa
- Exercise Physiology Laboratory, Center for Health Sciences and Sports, University of State of Santa Catarina, Florianopolis, Brazil; and
| | | | - Rudney da Silva
- Adapted Physical Activity Laboratory, Center for Health Sciences and Sports, University of State of Santa Catarina, Florianopolis, Brazil
| |
Collapse
|
32
|
Abiri B, Vafa M. The Role of Nutrition in Attenuating Age-Related Skeletal Muscle Atrophy. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2020; 1260:297-318. [PMID: 32304039 DOI: 10.1007/978-3-030-42667-5_12] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
The elderly population is increasing rapidly worldwide, and we are faced with the significant challenge for maintaining or improving physical activity, independence, and quality of life. Sarcopenia, the age-related decline of skeletal muscle mass, is characterized by loss of muscle quantity and quality resulting to a gradual slowing of movement, a decrease in strength and power, elevated risk of fall-related injury, and often frailty. Supplemental, hormonal, and pharmacological approaches have been attempted to attenuate sarcopenia but these have not achieved outstanding results. In this review, we summarize the current knowledge of nutrition-based therapies for counteracting sarcopenia.
Collapse
Affiliation(s)
- Behnaz Abiri
- Department of Nutrition, Faculty of Paramedicine, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Mohammadreza Vafa
- Department of Nutrition, School of Public Health, Iran University of Medical Sciences, Tehran, Iran. .,Pediatric Growth and Development Research Center, Institute of Endocrinology and Metabolism, Iran University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
33
|
Moro T, Brightwell CR, Velarde B, Fry CS, Nakayama K, Sanbongi C, Volpi E, Rasmussen BB. Whey Protein Hydrolysate Increases Amino Acid Uptake, mTORC1 Signaling, and Protein Synthesis in Skeletal Muscle of Healthy Young Men in a Randomized Crossover Trial. J Nutr 2019; 149:1149-1158. [PMID: 31095313 PMCID: PMC7443767 DOI: 10.1093/jn/nxz053] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2018] [Revised: 11/12/2018] [Accepted: 03/04/2019] [Indexed: 11/14/2022] Open
Abstract
BACKGROUND Muscle protein synthesis (MPS) can be stimulated by ingestion of protein sources, such as whey, casein, or soy. Protein supplementation can enhance muscle protein synthesis after exercise and may preserve skeletal muscle mass and function in aging adults. Therefore, identifying protein sources with higher anabolic potency is of high significance. OBJECTIVE The aim of this study was to determine the anabolic potency and efficacy of a novel whey protein hydrolysate mixture (WPH) on mechanistic target of rapamycin complex 1 (mTORC1) signaling and skeletal MPS in healthy young subjects. METHODS Ten young men (aged 28.7 ± 3.6 y, 25.2 ± 2.9 kg/m2 body mass index [BMI]) were recruited into a double-blind two-way crossover trial. Subjects were randomized to receive either 0.08 g/kg of body weight (BW) of WPH or an intact whey protein (WHEY) mixture during stable isotope infusion experiments. Fractional synthetic rate, leucine and phenylalanine kinetics, and markers of amino acid sensing were assessed as primary outcomes before and 1-3 h after protein ingestion using a repeated measures mixed model. RESULTS Blood leucine concentration, delivery of leucine to muscle, transport of leucine from blood into muscle and intracellular muscle leucine concentration significantly increased to a similar extent 1 h after ingestion of both mixtures (P < 0.05). Phosphorylation of S6K1 (i.e. a marker of mTORC1 activation) increased equally by ∼20% 1-h postingestion (P < 0.05). Ingestion of WPH and WHEY increased mixed MPS similarly in both groups by ∼43% (P < 0.05); however, phenylalanine utilization for synthesis increased in both treatments 1-h postingestion but remained elevated 3-h postingestion only in the WPH group (P < 0.05). CONCLUSIONS We conclude that a small dose of WPH effectively increases leucine transport into muscle, activating mTORC1 and stimulating MPS in young men. WPH anabolic potency and efficacy for promoting overall muscle protein anabolism is similar to WHEY, an intact protein source. This trial was registered at clinicaltrials.gov as NCT03313830.
Collapse
Affiliation(s)
- Tatiana Moro
- Department of Nutrition & Metabolism,Sealy Center on Aging, University of Texas Medical Branch, Galveston, TX
| | | | | | - Christopher S Fry
- Department of Nutrition & Metabolism,Sealy Center on Aging, University of Texas Medical Branch, Galveston, TX
| | - Kyosuke Nakayama
- Food Science & Technology Research Laboratories, R&D Division, Meiji Co., Ltd., Tokyo, Japan
| | - Chiaki Sanbongi
- Food Science & Technology Research Laboratories, R&D Division, Meiji Co., Ltd., Tokyo, Japan
| | - Elena Volpi
- Department of Internal Medicine/Geriatrics,Sealy Center on Aging, University of Texas Medical Branch, Galveston, TX
| | - Blake B Rasmussen
- Department of Nutrition & Metabolism,Sealy Center on Aging, University of Texas Medical Branch, Galveston, TX,Address correspondence to BBR (e-mail: )
| |
Collapse
|
34
|
Rivas DA, Rice NP, Ezzyat Y, McDonald DJ, Cooper BE, Fielding RA. Sphingosine-1-phosphate analog FTY720 reverses obesity but not age-induced anabolic resistance to muscle contraction. Am J Physiol Cell Physiol 2019; 317:C502-C512. [PMID: 31241988 DOI: 10.1152/ajpcell.00455.2018] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Sarcopenia, the age-associated loss of skeletal muscle mass and function, is coupled with declines in physical functioning leading to subsequent higher rates of disability, frailty, morbidity, and mortality. Aging and obesity independently contribute to muscle atrophy that is assumed to be a result of the activation of mutual physiological pathways. Understanding mechanisms contributing to the induction of skeletal muscle atrophy with aging and obesity is important for determining targets that may have pivotal roles in muscle loss in these conditions. We find that aging and obesity equally induce an anabolic resistance to acute skeletal muscle contraction as observed with decreases in anabolic signaling activation after contraction. Furthermore, treatment with the sphingosine-1-phosphate analog FTY720 for 4 wk increased lean mass and strength, and the anabolic signaling response to contraction was improved in obese but not older animals. To determine the role of chronic inflammation and different fatty acids on anabolic resistance in skeletal muscle cells, we overexpressed IKKβ with and without exposure to saturated fatty acid (SFA; palmitic acid), polyunsaturated fatty acid (eicosapentaenoic acid), and monounsaturated fatty acid (oleic acid). We found that IKKβ overexpression increased inflammation markers in muscle cells, and this chronic inflammation exacerbated anabolic resistance in response to SFA. Pretreatment with FTY720 reversed the inflammatory effects of palmitic acid in the muscle cells. Taken together, these data demonstrate chronic inflammation can induce anabolic resistance, SFA aggravates these effects, and FTY720 can reverse this by decreasing ceramide accumulation in skeletal muscle.
Collapse
Affiliation(s)
- Donato A Rivas
- Nutrition, Exercise Physiology and Sarcopenia Laboratory, Jean Mayer U.S. Department of Agriculture Human Nutrition Research Center on Aging at Tufts University, Boston, Massachusetts
| | - Nicholas P Rice
- Nutrition, Exercise Physiology and Sarcopenia Laboratory, Jean Mayer U.S. Department of Agriculture Human Nutrition Research Center on Aging at Tufts University, Boston, Massachusetts
| | - Yassine Ezzyat
- Nutrition, Exercise Physiology and Sarcopenia Laboratory, Jean Mayer U.S. Department of Agriculture Human Nutrition Research Center on Aging at Tufts University, Boston, Massachusetts
| | - Devin J McDonald
- Nutrition, Exercise Physiology and Sarcopenia Laboratory, Jean Mayer U.S. Department of Agriculture Human Nutrition Research Center on Aging at Tufts University, Boston, Massachusetts
| | - Brittany E Cooper
- Nutrition, Exercise Physiology and Sarcopenia Laboratory, Jean Mayer U.S. Department of Agriculture Human Nutrition Research Center on Aging at Tufts University, Boston, Massachusetts
| | - Roger A Fielding
- Nutrition, Exercise Physiology and Sarcopenia Laboratory, Jean Mayer U.S. Department of Agriculture Human Nutrition Research Center on Aging at Tufts University, Boston, Massachusetts
| |
Collapse
|
35
|
Scicchitano BM, Sica G. The Beneficial Effects of Taurine to Counteract Sarcopenia. Curr Protein Pept Sci 2019; 19:673-680. [PMID: 27875962 PMCID: PMC6040170 DOI: 10.2174/1389203718666161122113609] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2016] [Revised: 10/25/2016] [Accepted: 10/26/2016] [Indexed: 12/19/2022]
Abstract
Aging is a multifactorial process characterized by several features including low-grade inflammation, increased oxidative stress and reduced regenerative capacity, which ultimately lead to alteration in morpho-functional properties of skeletal muscle, thus promoting sarcopenia. This condition is characterized by a gradual loss of muscle mass due to an unbalance between protein synthesis and degradation, finally conveying in functional decline and disability. The development of specific therapeutic approaches able to block or reverse this condition may represent an invaluable tool for the promotion of a healthy aging among elderly people. It is well established that changes in the quantity and the quality of dietary proteins, as well as the intake of specific amino acids, are able to counteract some of the physiopathological processes related to the progression of the loss of muscle mass and may have beneficial effects in improving the anabolic response of muscle in the elderly. Taurine is a non-essential amino acid expressed in high concentration in several mammalian tissues and particularly in skeletal muscle where it is involved in the modulation of intracellular calcium concentration and ion channel regulation and where it also acts as an antioxidant and anti-inflammatory factor. The aim of this review is to summarize the pleiotropic effects of taurine on specific muscle targets and to discuss its role in regulating signaling pathways involved in the maintenance of muscle homeostasis. We also highlight the potential use of taurine as a therapeutic molecule for the amelioration of skeletal muscle function and performance severely compromised during aging.
Collapse
Affiliation(s)
- Bianca Maria Scicchitano
- Istituto di Istologia ed Embriologia, Università Cattolica del Sacro Cuore, Fondazione Policlinico Universitario Agostino Gemelli, Largo Francesco Vito 1-00168, Roma, Italy
| | - Gigliola Sica
- Istituto di Istologia ed Embriologia, Università Cattolica del Sacro Cuore, Fondazione Policlinico Universitario Agostino Gemelli, Largo Francesco Vito 1-00168, Roma, Italy
| |
Collapse
|
36
|
Li M, Liu F. Effect of whey protein supplementation during resistance training sessions on body mass and muscular strength: a meta-analysis. Food Funct 2019; 10:2766-2773. [DOI: 10.1039/c9fo00182d] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
This study evaluates the effect of whey protein (WP) supplementation with resistance training (RT) on body mass and muscular strength through randomized controlled trials (RCTs).
Collapse
Affiliation(s)
- Meng Li
- The Speed Skating Department
- The Winter Sports Management Center
- The General Administration of Sport of China
- Beijing 100044
- China
| | - Feng Liu
- Scientific Research Department
- Beijing Fresta Medical Research Center
- Beijing 100031
- China
| |
Collapse
|
37
|
Paillard T. Muscle plasticity of aged subjects in response to electrical stimulation training and inversion and/or limitation of the sarcopenic process. Ageing Res Rev 2018; 46:1-13. [PMID: 29742451 DOI: 10.1016/j.arr.2018.05.002] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2018] [Revised: 04/26/2018] [Accepted: 05/03/2018] [Indexed: 12/30/2022]
Abstract
This review addresses the possible structural and functional adaptations of the muscle function to neuromuscular electrical stimulation (NMES) training in frail and/or aged (without advanced chronic disease) subjects. Evidence suggests that the sarcopenic process and its structural and functional effects would be limited and/or reversed through NMES training using excito-motor currents (or direct currents). From a structural viewpoint, NMES helps reduce muscle atrophy. From a functional viewpoint, NMES enables the improvement of motor output (i.e., muscle strength), gait, balance and activities of daily living which enhances the quality of life of aged subjects. Muscle plasticity of aged subjects in response to NMES training turns out to be undeniable, although many mechanisms are not yet explained and deserve to be explore further. Mechanistic explanations as well as conceptual models are proposed to explain how muscle plasticity operates in aged subjects through NMES training. NMES could be seen as a clinically applicable training technique, safe and efficient among aged subjects and could be used more often as part of prevention of sarcopenia. Therapists and physical conditioners/trainers could exploit this new knowledge in their professional practice to improve life conditions (including the risk of fall) of frail and/or aged subjects.
Collapse
|
38
|
van Vliet S, Smith GI, Porter L, Ramaswamy R, Reeds DN, Okunade AL, Yoshino J, Klein S, Mittendorfer B. The muscle anabolic effect of protein ingestion during a hyperinsulinaemic euglycaemic clamp in middle-aged women is not caused by leucine alone. J Physiol 2018; 596:4681-4692. [PMID: 30054913 DOI: 10.1113/jp276504] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2018] [Accepted: 07/26/2018] [Indexed: 12/30/2022] Open
Abstract
KEY POINTS It has been suggested that leucine is primarily responsible for the increase in muscle protein synthesis after protein ingestion because leucine uniquely activates the mTOR-p70S6K signalling cascade. We compared the effects of ingesting protein or an amount of leucine equal to that in the protein during a hyperinsulinaemic-euglycaemic clamp (to eliminate potential confounding as a result of differences in the insulinogenic effect of protein and leucine ingestion) on muscle anabolic signalling and protein turnover in 28 women. We found that protein, but not leucine, ingestion increased muscle p-mTORSer2448 and p-p70S6KThr389 , although only protein, and not leucine, ingestion decreased muscle p-eIF2αSer51 and increased muscle protein synthesis. ABSTRACT It has been suggested that leucine is primarily responsible for the increase in muscle protein synthesis (MPS) after protein ingestion because leucine uniquely activates the mTOR-p70S6K signalling cascade. We tested this hypothesis by measuring muscle p-mTORSer2448 , p-p70S6KThr389 and p-eIF2αSer51 , as well as protein turnover (by stable isotope labelled amino acid tracer infusion in conjunction with leg arteriovenous blood and muscle tissue sampling), in 28 women who consumed either 0.45 g protein kg-1 fat-free mass (containing 0.0513 g leucine kg-1 fat-free mass) or a control drink (n = 14) or 0.0513 g leucine kg-1 fat-free mass or a control drink (n = 14) during a hyperinsulinaemic-euglycaemic clamp procedure (HECP). Compared to basal conditions, the HECP alone (without protein or leucine ingestion) suppressed muscle protein breakdown by ∼20% and increased p-mTORSer2448 and p-p70S6KThr389 by >50% (all P < 0.05) but had no effect on p-eIF2αSer51 and MPS. Both protein and leucine ingestion further increased p-mTORSer2448 and p-p70S6KThr389 , although only protein, and not leucine, ingestion decreased (by ∼35%) p-eIF2αSer51 and increased (by ∼100%) MPS (all P < 0.05). Accordingly, leg net protein balance changed from negative (loss) during basal conditions to equilibrium during the HECP alone and the HECP with concomitant leucine ingestion and to positive (gain) during the HECP with concomitant protein ingestion. These results provide new insights into the regulation of MPS by demonstrating that leucine and mTOR signalling alone are not responsible for the muscle anabolic effect of protein ingestion during physiological hyperinsulinaemia, most probably because they fail to signal to eIF2α to initiate translation and/or additional amino acids are needed to sustain translation.
Collapse
Affiliation(s)
| | | | | | - Raja Ramaswamy
- Department of Radiology, Washington University School of Medicine, St Louis, MO, USA
| | | | | | | | | | | |
Collapse
|
39
|
Blood Flow Restriction Therapy for Stimulating Skeletal Muscle Growth: Practical Considerations for Maximizing Recovery in Clinical Rehabilitation Settings. Tech Orthop 2018. [DOI: 10.1097/bto.0000000000000275] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
|
40
|
Madani A, Alack K, Richter MJ, Krüger K. Immune-regulating effects of exercise on cigarette smoke-induced inflammation. J Inflamm Res 2018; 11:155-167. [PMID: 29731655 PMCID: PMC5923223 DOI: 10.2147/jir.s141149] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Long-term cigarette smoking (LTCS) represents an important risk factor for cardiac infarction and stroke and the central risk factor for the development of a bronchial carcinoma, smoking-associated interstitial lung fibrosis, and chronic obstructive pulmonary disease. The pathophysiologic development of these diseases is suggested to be promoted by chronic and progressive inflammation. Cigarette smoking induces repetitive inflammatory insults followed by a chronic and progressive activation of the immune system. In the pulmonary system of cigarette smokers, oxidative stress, cellular damage, and a chronic activation of pattern recognition receptors are described which are followed by the translocation of the NF-kB, the release of pro-inflammatory cytokines, chemokines, matrix metalloproteases, and damage-associated molecular patterns. In parallel, smoke pollutants cross directly through the alveolus-capillary interface and spread through the systemic bloodstream targeting different organs. Consequently, LTCS induces a systemic low-grade inflammation and increased oxidative stress in the vascular system. In blood, these processes promote an increased coagulation and endothelial dysfunction. In muscle tissue, inflammatory processes activate catabolic signaling pathways followed by muscle wasting and sarcopenia. In brain, several characteristics of neuroinflammation were described. Regular exercise training has been shown to be an effective nonpharmacological treatment strategy in smoke-induced pulmonary diseases. It is well established that exercise training exerts immune-regulating effects by activating anti-inflammatory signaling pathways. In this regard, the release of myokines from contracting skeletal muscle, the elevations of cortisol and adrenalin, the reduced expression of Toll-like receptors, and the increased mobilization of immune-regulating leukocyte subtypes might be of vital importance. Exercise training also increases the local and systemic antioxidative capacity and several compensatory mechanisms in tissues such as an increased anabolic signaling in muscle or an increased compliance of the vascular system. Accordingly, regular exercise training seems to protect long-term smokers against some important negative local and systemic consequences of smoking. Data suggest that it seems to be important to start exercise training as early as possible.
Collapse
Affiliation(s)
- Ashkan Madani
- Department of Exercise and Health, Institute of Sports Science, Leibniz University Hannover, Germany
| | - Katharina Alack
- Department of Sports Medicine, University of Giessen, Germany
| | - Manuel Jonas Richter
- Department of Internal Medicine, Justus Liebig University Giessen, Universities of Giessen and Marburg Lung Center (UGMLC), Germany
- German Center for Lung Research (DZL), Giessen, Germany
| | - Karsten Krüger
- Department of Exercise and Health, Institute of Sports Science, Leibniz University Hannover, Germany
| |
Collapse
|
41
|
D’Lugos AC, Patel SH, Ormsby JC, Curtis DP, Fry CS, Carroll CC, Dickinson JM. Prior acetaminophen consumption impacts the early adaptive cellular response of human skeletal muscle to resistance exercise. J Appl Physiol (1985) 2018; 124:1012-1024. [DOI: 10.1152/japplphysiol.00922.2017] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Abstract
Resistance exercise (RE) is a powerful stimulus for skeletal muscle adaptation. Previous data demonstrate that cyclooxygenase (COX)-inhibiting drugs alter the cellular mechanisms regulating the adaptive response of skeletal muscle. The purpose of this study was to determine whether prior consumption of the COX inhibitor acetaminophen (APAP) alters the immediate adaptive cellular response in human skeletal muscle after RE. In a double-blinded, randomized, crossover design, healthy young men ( n = 8, 25 ± 1 yr) performed two trials of unilateral knee extension RE (8 sets, 10 reps, 65% max strength). Subjects ingested either APAP (1,000 mg/6 h) or placebo (PLA) for 24 h before RE (final dose consumed immediately after RE). Muscle biopsies (vastus lateralis) were collected at rest and 1 h and 3 h after exercise. Mammalian target of rapamycin (mTOR) complex 1 signaling was assessed through immunoblot and immunohistochemistry, and mRNA expression of myogenic genes was examined via RT-qPCR. At 1 h p-rpS6Ser240/244 was increased in both groups but to a greater extent in PLA. At 3 h p-S6K1Thr389 was elevated only in PLA. Furthermore, localization of mTOR to the lysosome (LAMP2) in myosin heavy chain (MHC) II fibers increased 3 h after exercise only in PLA. mTOR-LAMP2 colocalization in MHC I fibers was greater in PLA vs. APAP 1 h after exercise. Myostatin mRNA expression was reduced 1 h after exercise only in PLA. MYF6 mRNA expression was increased 1 h and 3 h after exercise only in APAP. APAP consumption appears to alter the early adaptive cellular response of skeletal muscle to RE. These findings further highlight the mechanisms through which COX-inhibiting drugs impact the adaptive response of skeletal muscle to exercise. NEW & NOTEWORTHY The extent to which the cellular reaction to acetaminophen impacts the mechanisms regulating the adaptive response of human skeletal muscle to resistance exercise is not well understood. Consumption of acetaminophen before resistance exercise appears to suppress the early response of mTORC1 activity to acute resistance exercise. These data also demonstrate, for the first time, that resistance exercise elicits fiber type-specific changes in the intracellular colocalization of mTOR with the lysosome in human skeletal muscle.
Collapse
Affiliation(s)
- Andrew C. D’Lugos
- Healthy Lifestyles Research Center, Exercise Science and Health Promotion, School of Nutrition and Health Promotion, Arizona State University, Phoenix, Arizona
| | - Shivam H. Patel
- Department of Health and Kinesiology, Purdue University, West Lafayette, Indiana
- Midwestern University, Glendale, Arizona
| | - Jordan C. Ormsby
- Healthy Lifestyles Research Center, Exercise Science and Health Promotion, School of Nutrition and Health Promotion, Arizona State University, Phoenix, Arizona
| | | | - Christopher S. Fry
- Department of Nutrition and Metabolism, University of Texas Medical Branch, Galveston, Texas
| | - Chad C. Carroll
- Department of Health and Kinesiology, Purdue University, West Lafayette, Indiana
- Midwestern University, Glendale, Arizona
| | - Jared M. Dickinson
- Healthy Lifestyles Research Center, Exercise Science and Health Promotion, School of Nutrition and Health Promotion, Arizona State University, Phoenix, Arizona
| |
Collapse
|
42
|
Ramos GV, Cruz A, Silva WJ, Rozanski A, Baptista IL, Silvestre JG, Moriscot AS. Thyroid hormone upregulates MDM2 in rat type I fibre: Implications for skeletal muscle mass regulation. Acta Physiol (Oxf) 2018; 222:e13003. [PMID: 29178319 DOI: 10.1111/apha.13003] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2017] [Revised: 10/24/2017] [Accepted: 11/22/2017] [Indexed: 01/17/2023]
Abstract
AIM Based upon a microarray assay, we have identified that triiodothyronine (T3) upregulates MDM2 gene expression in the rat skeletal muscle. As MDM2 protein is an E3 ligase, we hypothesized that this enzyme could play a role in T3 effects on skeletal muscle mass control. METHODS To test our hypothesis, male rats (2 months old) were randomly assigned into the following groups: intact controls, treated with 20 physiological doses of T3 for 0.5, 1 and 7 days, or with 5, 20 and 50 physiological doses of T3 for 7 days. For in vitro experiments, myotubes and C2C12 cells were treated with T3 for 3 days. RESULTS After validation of the microarray finding throughout RT-PCR and confirmation that T3 induces increases in MDM2 protein expression in a dose-dependent manner, we observed that MDM2 was upregulated by T3 exclusively in fibre type I. Moreover, detailed histological evaluation showed that MDM2 overexpression distributes punctiformily along the cross section of the fibre and also inside nuclei. MDM2 colocalizes with PAX7 in control muscle and T3 downregulates this myogenic factor. Pharmacological inhibition of MDM2 in cultured myotubes caused a severe decrease in their diameter (~35%, P < .001 vs Control), enhancing the effect of T3 (from ~12% to ~35%, P < .001) alone upon myotube diameter and mRNA levels of atrogenes. Finally, we observed that FOXO3 (MDM2 target) is kept outside the nucleus under T3 stimulation. CONCLUSION Our results indicate that MDM2 might be involved in the pro-trophic effects of T3 in skeletal muscle.
Collapse
Affiliation(s)
- G. V. Ramos
- Department of Anatomy; Institute of Biomedical Sciences; University of Sao Paulo; Sao Paulo Brazil
| | - A. Cruz
- Department of Anatomy; Institute of Biomedical Sciences; University of Sao Paulo; Sao Paulo Brazil
| | - W. J. Silva
- Department of Anatomy; Institute of Biomedical Sciences; University of Sao Paulo; Sao Paulo Brazil
| | - A. Rozanski
- Department of Anatomy; Institute of Biomedical Sciences; University of Sao Paulo; Sao Paulo Brazil
| | - I. L. Baptista
- Department of Anatomy; Institute of Biomedical Sciences; University of Sao Paulo; Sao Paulo Brazil
| | - J. G. Silvestre
- Department of Anatomy; Institute of Biomedical Sciences; University of Sao Paulo; Sao Paulo Brazil
| | - A. S. Moriscot
- Department of Anatomy; Institute of Biomedical Sciences; University of Sao Paulo; Sao Paulo Brazil
| |
Collapse
|
43
|
Reidy PT, Fry CS, Dickinson JM, Drummond MJ, Rasmussen BB. Postexercise essential amino acid supplementation amplifies skeletal muscle satellite cell proliferation in older men 24 hours postexercise. Physiol Rep 2018; 5:5/11/e13269. [PMID: 28596299 PMCID: PMC5471431 DOI: 10.14814/phy2.13269] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2017] [Revised: 03/31/2017] [Accepted: 04/06/2017] [Indexed: 12/29/2022] Open
Abstract
Aged skeletal muscle has an attenuated and delayed ability to proliferate satellite cells in response to resistance exercise. The mechanistic target of rapamycin complex 1 (mTORC1) signaling pathway is a focal point for cell growth, however, the effect of postexercise mTORC1 activation on human skeletal muscle satellite cell (SC) proliferation is unknown. To test the proliferative capacity of skeletal muscle SC in aging muscle to a potent mTORC1 activator (i.e., EAA; essential amino acids) we recruited older (~72y) men to conduct leg resistance exercise (8setsx10reps) without (−EAA; n = 8) and with (+EAA: n = 11) ingestion of 10 g of EAA 1 h postexercise. Muscle biopsies were taken before exercise (Pre) and 24 h postexercise (Post) for assessment of expression and fiber type‐specific Pax7+SC, Ki67+Pax7+SC and MyoD+SC. −EAA did not show an increase in Pax7+ satellite cells at Post(P > 0.82). Although statistical significance for an increase in Pax7 + SC at 24 h post‐RE was not observed in +EAA versus −EAA, we observed trends for a treatment difference (P < 0.1). When examining the change from Pre to Post trends were demonstrated (#/myofiber: P = 0.076; and %/myonuclei: P = 0.065) for a greater increase in +EAA versus −EAA. Notably, we found an increase SC proliferation in +EAA, but not −EAA with increase in Ki67+SC and MyoD+ cells (P < 0.05). Ki67+SC also exhibited a significant group difference Post (P < 0.010). Pax7+SC in fast twitch myofibers did not change and were not different between groups (P > 0.10). CDK2, MEF2C, RB1 mRNA only increased in +EAA (P < 0.05). Acute muscle satellite cell proliferative capacity may be partially rescued with postexercise EAA ingestion in older men.
Collapse
Affiliation(s)
- Paul T Reidy
- Center for Recovery, Physical Activity and Nutrition, University of Texas Medical Branch, Galveston, Texas.,Department of Nutrition and Metabolism, University of Texas Medical Branch, Galveston, Texas
| | - Christopher S Fry
- Department of Nutrition and Metabolism, University of Texas Medical Branch, Galveston, Texas
| | - Jared M Dickinson
- Center for Recovery, Physical Activity and Nutrition, University of Texas Medical Branch, Galveston, Texas.,Department of Nutrition and Metabolism, University of Texas Medical Branch, Galveston, Texas
| | - Micah J Drummond
- Department of Nutrition and Metabolism, University of Texas Medical Branch, Galveston, Texas
| | - Blake B Rasmussen
- Center for Recovery, Physical Activity and Nutrition, University of Texas Medical Branch, Galveston, Texas .,Department of Nutrition and Metabolism, University of Texas Medical Branch, Galveston, Texas
| |
Collapse
|
44
|
Dickinson JM, D'Lugos AC, Mahmood TN, Ormsby JC, Salvo L, Dedmon WL, Patel SH, Katsma MS, Mookadam F, Gonzales RJ, Hale TM, Carroll CC, Angadi SS. Exercise Protects Skeletal Muscle during Chronic Doxorubicin Administration. Med Sci Sports Exerc 2018; 49:2394-2403. [PMID: 28767526 DOI: 10.1249/mss.0000000000001395] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
PURPOSE This study aimed to assess the ability for exercise training performed before and during biweekly doxorubicin (DOX) administration to attenuate adverse effects of DOX on skeletal muscle. We hypothesized that DOX treatment would increase REDD1, impair mammalian target of rapamycin (mTOR) signaling, and reduce muscle fiber size, and that exercise training would attenuate these responses. METHODS Eight-week-old ovariectomized female Sprague-Dawley rats were randomized to one of four treatments: exercise + DOX (Ex-Dox), Ex + vehicle (Ex-Veh), sedentary + DOX (Sed-Dox), and Sed + Veh (Sed-Veh). DOX (4 mg·kg) or vehicle (saline) intraperitoneal injections were performed biweekly for a total of three injections (cumulative dose, 12 mg·kg). Ex animals performed interval exercise (4 × 4 min, 85%-90% V˙O2peak) 5 d·wk starting 1 wk before the first injection and continued throughout study duration. Animals were euthanized ~5 d after the last injection, during which the soleus muscle was dissected and prepared for immunoblot and immunohistochemical analyses. RESULTS REDD1 mRNA and protein were increased only in Sed-Dox (P < 0.05). The phosphorylation of mTOR and 4E-BP1 and MHC I and MHC IIa fiber size were lower in Sed-Dox versus Sed-Veh (P < 0.05). By contrast, REDD1 mRNA and protein, mTOR, 4E-BP1, and MHC I fiber size were not different between Ex-Dox and Ex-Veh (P > 0.05). LC3BI was higher, and the LC3BII/I ratio was lower in Sed-Dox versus Sed-Veh (P < 0.05) but not between Ex-Dox and Ex-Veh (P > 0.05). CONCLUSION These data suggest that DOX may inhibit mTORC1 activity and reduce MHCI and MHCIIa fiber size, potentially through elevated REDD1, and that exercise may provide a therapeutic strategy to preserve skeletal muscle size during chronic DOX treatment.
Collapse
Affiliation(s)
- Jared M Dickinson
- 1School of Nutrition and Health Promotion, Healthy Lifestyles Research Center, Exercise Science and Health Promotion, Arizona State University, Phoenix, AZ; 2Department of Physiology, Arizona College of Osteopathic Medicine, Midwestern University, Glendale, AZ; 3Division of Cardiovascular Diseases, Mayo Clinic Hospital, Phoenix, AZ; 4Department of Basic Medical Sciences, College of Medicine-Phoenix, University of Arizona, Phoenix, AZ; and 5Department of Health and Kinesiology, Purdue University, West Lafayette, IN
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
45
|
Untargeted Metabolomics Profiling of an 80.5 km Simulated Treadmill Ultramarathon. Metabolites 2018; 8:metabo8010014. [PMID: 29438325 PMCID: PMC5876003 DOI: 10.3390/metabo8010014] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2018] [Revised: 02/08/2018] [Accepted: 02/08/2018] [Indexed: 01/23/2023] Open
Abstract
Metabolomic profiling of nine trained ultramarathon runners completing an 80.5 km self-paced treadmill-based time trial was carried out. Plasma samples were obtained from venous whole blood, collected at rest and on completion of the distance (post-80.5 km). The samples were analyzed by using high-resolution mass spectrometry in combination with both hydrophilic interaction (HILIC) and reversed phase (RP) chromatography. The extracted putatively identified features were modeled using Simca P 14.1 software (Umetrics, Umea, Sweden). A large number of amino acids decreased post-80.5 km and fatty acid metabolism was affected with an increase in the formation of medium-chain unsaturated and partially oxidized fatty acids and conjugates of fatty acids with carnitines. A possible explanation for the complex pattern of medium-chain and oxidized fatty acids formed is that the prolonged exercise provoked the proliferation of peroxisomes. The peroxisomes may provide a readily utilizable form of energy through formation of acetyl carnitine and other acyl carnitines for export to mitochondria in the muscles; and secondly may serve to regulate the levels of oxidized metabolites of long-chain fatty acids. This is the first study to provide evidence of the metabolic profile in response to prolonged ultramarathon running using an untargeted approach. The findings provide an insight to the effects of ultramarathon running on the metabolic specificities and alterations that may demonstrate cardio-protective effects.
Collapse
|
46
|
Abstract
Whole body protein utilization (WBPU), which includes flux (Q), protein synthesis (PS), protein breakdown (PB), and whole body protein balance (WBPB), provides insight regarding muscle mass, a criterion for sarcopenia. To characterize yoga's impact on WBPU, body composition and functional measures in healthy (50-65 years) women. WBPU and functional measures were compared between women who routinely practiced yoga (YOGA; n = 7) and nonactive counterparts (CON; n = 8). Q (0.61 ± 0.06 vs. 0.78 ± 0.07, p = .04), PS (3.07 ± 0.37 vs. 4.17 ± 0.40, p = .03), PB (2.59 ± 0.48 vs. 3.80 ± 0.48, p = .05) were lower, and lean body mass higher (64 ± 1 vs. 58 ± 2%, p ≤ .01) for YOGA vs. CON, respectively. WBPB and functional measures were similar. Routine yoga practice influenced WBPU in healthy older women. Study findings are novel and provide a basis for future investigations evaluating long-term benefits of yoga as an alternative mode of exercise for maintaining muscle mass in support of active aging.
Collapse
|
47
|
Mettler JA, Bennett SM, Doucet BM, Magee DM. Neuromuscular Electrical Stimulation and Anabolic Signaling in Patients with Stroke. J Stroke Cerebrovasc Dis 2017; 26:2954-2963. [DOI: 10.1016/j.jstrokecerebrovasdis.2017.07.019] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2017] [Revised: 06/17/2017] [Accepted: 07/21/2017] [Indexed: 01/09/2023] Open
|
48
|
Sakuma K, Yamaguchi A. Recent advances in pharmacological, hormonal, and nutritional intervention for sarcopenia. Pflugers Arch 2017; 470:449-460. [DOI: 10.1007/s00424-017-2077-9] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2017] [Revised: 10/03/2017] [Accepted: 10/03/2017] [Indexed: 12/25/2022]
|
49
|
Marzuca-Nassr GN, Murata GM, Martins AR, Vitzel KF, Crisma AR, Torres RP, Mancini-Filho J, Kang JX, Curi R. Balanced Diet-Fed Fat-1 Transgenic Mice Exhibit Lower Hindlimb Suspension-Induced Soleus Muscle Atrophy. Nutrients 2017; 9:nu9101100. [PMID: 28984836 PMCID: PMC5691716 DOI: 10.3390/nu9101100] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2017] [Revised: 09/16/2017] [Accepted: 09/22/2017] [Indexed: 12/17/2022] Open
Abstract
The consequences of two-week hindlimb suspension (HS) on skeletal muscle atrophy were investigated in balanced diet-fed Fat-1 transgenic and C57BL/6 wild-type mice. Body composition and gastrocnemius fatty acid composition were measured. Skeletal muscle force, cross-sectional area (CSA), and signaling pathways associated with protein synthesis (protein kinase B, Akt; ribosomal protein S6, S6, eukaryotic translation initiation factor 4E-binding protein 1, 4EBP1; glycogen synthase kinase3-beta, GSK3-beta; and extracellular-signal-regulated kinases 1/2, ERK 1/2) and protein degradation (atrophy gene-1/muscle atrophy F-box, atrogin-1/MAFbx and muscle RING finger 1, MuRF1) were evaluated in the soleus muscle. HS decreased soleus muscle wet and dry weights (by 43% and 26%, respectively), muscle isotonic and tetanic force (by 29% and 18%, respectively), CSA of the soleus muscle (by 36%), and soleus muscle fibers (by 45%). Fat-1 transgenic mice had a decrease in the ω-6/ω-3 polyunsaturated fatty acids (PUFAs) ratio as compared with C57BL/6 wild-type mice (56%, p < 0.001). Fat-1 mice had lower soleus muscle dry mass loss (by 10%) and preserved absolute isotonic force (by 17%) and CSA of the soleus muscle (by 28%) after HS as compared with C57BL/6 wild-type mice. p-GSK3B/GSK3B ratio was increased (by 70%) and MuRF-1 content decreased (by 50%) in the soleus muscle of Fat-1 mice after HS. Balanced diet-fed Fat-1 mice are able to preserve in part the soleus muscle mass, absolute isotonic force and CSA of the soleus muscle in a disuse condition.
Collapse
Affiliation(s)
- Gabriel Nasri Marzuca-Nassr
- Department of Internal Medicine, Faculty of Medicine, Universidad de La Frontera, Temuco 4780000, Chile.
- Department of Physiology and Biophysics, Institute of Biomedical Sciences, University of São Paulo, São Paulo, Brazil.
| | - Gilson Masahiro Murata
- Department of Physiology and Biophysics, Institute of Biomedical Sciences, University of São Paulo, São Paulo, Brazil.
| | - Amanda Roque Martins
- Department of Physiology and Biophysics, Institute of Biomedical Sciences, University of São Paulo, São Paulo, Brazil.
| | - Kaio Fernando Vitzel
- Department of Physiology and Biophysics, Institute of Biomedical Sciences, University of São Paulo, São Paulo, Brazil.
- School of Health Sciences, College of Health, Massey University, Auckland 0632, New Zealand.
| | - Amanda Rabello Crisma
- Department of Physiology and Biophysics, Institute of Biomedical Sciences, University of São Paulo, São Paulo, Brazil.
| | - Rosângela Pavan Torres
- Laboratory of Lipids, Department of Food Science and Nutrition, Faculty of Pharmaceutical Sciences, University of São Paulo, São Paulo, Brazil.
| | - Jorge Mancini-Filho
- Laboratory of Lipids, Department of Food Science and Nutrition, Faculty of Pharmaceutical Sciences, University of São Paulo, São Paulo, Brazil.
| | - Jing Xuan Kang
- Laboratory for Lipid Medicine and Technology, Massachusetts General Hospital and Harvard Medical School, Boston, MA 02114, USA.
| | - Rui Curi
- Department of Physiology and Biophysics, Institute of Biomedical Sciences, University of São Paulo, São Paulo, Brazil.
- Interdisciplinary Post-Graduate Program in Health Sciences, Cruzeiro do Sul University, São Paulo, Brazil.
| |
Collapse
|
50
|
Gmiat A, Mieszkowski J, Prusik K, Prusik K, Kortas J, Kochanowicz A, Radulska A, Lipiński M, Tomczyk M, Jaworska J, Antosiewicz J, Ziemann E. Changes in pro-inflammatory markers and leucine concentrations in response to Nordic Walking training combined with vitamin D supplementation in elderly women. Biogerontology 2017; 18:535-548. [PMID: 28316011 PMCID: PMC5514208 DOI: 10.1007/s10522-017-9694-8] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2017] [Accepted: 03/14/2017] [Indexed: 12/25/2022]
Abstract
Mechanisms underpinning age-related decreases in muscle strength and muscle mass relate to chronic inflammation. Physical activity induces an anti-inflammatory effect, but it is modulated by additional factors. We hypothesized that vitamin D, which has also anti-inflammatory activity will modify adaptation to exercise and reduce inflammation in elderly women. Twenty-seven women aged 67 ± 8 years were included and divided into groups with baseline vitamin D concentration more than 20 ng mL−1 (MVD) and less than 20 ng mL−1 (LVD). Both groups performed 1 h Nordic Walking (NW) training combined with vitamin D supplementation for 12 weeks. Serum concentrations of inflammation markers, branched amino acids, vitamin D, muscle strength and balance were assessed at the baseline and three days after intervention. The training caused the significant decrease in concentration of pro-inflammatory proteins HMGB1 (30 ± 156%; 90% CI) and IL-6 (−10 ± 66%; 90% CI) in MVD group. This effects in group MVD were moderate, indicating vitamin D as one of the modifiers of these exercise-induced changes. Rise of myokine irisin induced by exercise correlated inversely with HMGB1 and the correlation was more pronounced at the baseline as well as after training among MVD participants. Although the intervention caused the leucine level to rise, a comparison of the recorded response between groups and the adjusted effect indicated that the effect was 20% lower in the LVD group. Overall the applied training program was effective in reducing HMGB1 concentration. This drop was accompanied by the rise of myokine irisin and better uptake of leucine among women with higher baseline vitamin D.
Collapse
Affiliation(s)
- A Gmiat
- Department of Physiology and Pharmacology, Gdansk University of Physical Education and Sport, Kazimierza Górskiego 1, 80-336, Gdańsk, Poland
| | - J Mieszkowski
- Department of Anatomy and Biomechanics, Institute of Physical Education, Kazimierz Wielki University, Bydgoszcz, Poland
| | - K Prusik
- Department of Recreation and Qualify Tourism, Gdansk University of Physical Education and Sport, Gdańsk, Poland
| | - K Prusik
- Department of Recreation and Qualify Tourism, Gdansk University of Physical Education and Sport, Gdańsk, Poland
| | - J Kortas
- Department of Recreation and Qualify Tourism, Gdansk University of Physical Education and Sport, Gdańsk, Poland
| | - A Kochanowicz
- Department of Gymnastics and Dance, Gdansk University of Physical Education and Sport, Gdańsk, Poland
| | - A Radulska
- Department of Biochemistry, Medical University of Gdańsk, Gdańsk, Poland
| | - M Lipiński
- Department of Pharmaceutical Biochemistry, Medical University of Gdańsk, Gdańsk, Poland
| | - M Tomczyk
- Department of Biochemistry, Gdansk University of Physical Education and Sport, Gdańsk, Poland
| | - J Jaworska
- Department of Physiology and Pharmacology, Gdansk University of Physical Education and Sport, Kazimierza Górskiego 1, 80-336, Gdańsk, Poland
| | - J Antosiewicz
- Department of Bioenergetics and Physiology of Exercise, Medical University, Gdańsk, Poland
| | - E Ziemann
- Department of Physiology and Pharmacology, Gdansk University of Physical Education and Sport, Kazimierza Górskiego 1, 80-336, Gdańsk, Poland.
| |
Collapse
|