1
|
Maleszka R. Reminiscences on the honeybee genome project and the rise of epigenetic concepts in insect science. INSECT MOLECULAR BIOLOGY 2024; 33:444-456. [PMID: 38196200 DOI: 10.1111/imb.12888] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/13/2023] [Accepted: 12/18/2023] [Indexed: 01/11/2024]
Abstract
The sequencing of the honeybee genome in 2006 was an important technological and logistic achievement experience. But what benefits have flown from the honeybee genome project? What does the annotated genomic assembly mean for the study of behavioural complexity and organismal function in honeybees? Here, I discuss several lines of research that have arisen from this project and highlight the rapidly expanding studies on insect epigenomics, emergent properties of royal jelly, the mechanism of nutritional control of development and the contribution of epigenomic regulation to the evolution of sociality. I also argue that the term 'insect epigenetics' needs to be carefully redefined to reflect the diversity of epigenomic toolkits in insects and the impact of lineage-specific innovations on organismal outcomes. The honeybee genome project helped pioneer advances in social insect molecular biology, and fuelled breakthrough research into the role of flexible epigenomic control systems in linking genotype to phenotype.
Collapse
Affiliation(s)
- Ryszard Maleszka
- Research School of Biology, Australian National University, Canberra, ACT, Australia
| |
Collapse
|
2
|
Xiaowen C, Jiahao L, Zhaorun D, Wenfeng L, Richou H, Yanping C, Huichun X, Yi Z. Honeybee symbiont Bombella apis could restore larval-to-pupal transition disrupted by antibiotic treatment. JOURNAL OF INSECT PHYSIOLOGY 2024; 153:104601. [PMID: 38142957 DOI: 10.1016/j.jinsphys.2023.104601] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/24/2023] [Revised: 12/11/2023] [Accepted: 12/19/2023] [Indexed: 12/26/2023]
Abstract
Numerous studies have demonstrated the vital roles of gut microbes in the health, immunity, nutrient metabolism, and behavior of adult worker honeybees. However, a few studies have been conducted on gut microbiota associated with the larval stage of honeybees. In the present study, we explored the role of a gut bacterium in larval development and larval-pupal transition in the Asian honeybee, Apis cerana. First, our examination of gut microbial profiling showed that Bombella apis, a larvae-associated bacterium, was the most dominant bacterium colonized in the fifth instar larvae. Second, we demonstrated that tetracycline, an antibiotic used to treat a honeybee bacterial brood disease, could cause the complete depletion of gut bacteria. This antibiotic-induced gut microbiome depletion in turn, significantly impacted the survivorship, pupation rate and emergence rate of the treated larvae. Furthermore, our analysis of gene expression pattens revealed noteworthy changes in key genes. The expression of genes responsible for encoding storage proteins vitellogenin (vg) and major royal jelly protein 1 (mrjp1) was significantly down-regulated in the tetracycline-treated larvae. Concurrently, the expression of krüppel homolog 1(kr-h1), a pivotal gene in endocrine signaling, increased, whilethe expression of broad-complex (br-c) gene that plays a key role in the ecdysone regulation decreased. These alterations indicated a disruption in the coordination of juvenile hormone and ecdysteroid synthesis. Finally, we cultivated B. apis isolated from the fifth instar worker larval of A. cerana and fed tetracycline-treated larvae with a diet replenished by B. apis. This intervention resulted in a significant improvement in the pupation rate, emergence rate, and overall survival rate of the treated larvae. Our findings demonstrate the positive impact of B. apis on honeybee larvae development, providing new evidence of the functional capacities of gut microbes in honeybee growth and development.
Collapse
Affiliation(s)
- Chen Xiaowen
- Key Laboratory of Tibetan Plateau Medicinal Plant and Animal Resources, Qinghai Normal University, Xi'ning 810008, China; Guangdong Key Laboratory of Animal Conservation and Resource Utilization, Guangdong Public Laboratory of Wild Animal Conservation and Utilization, Institute of Zoology, Guangdong Academy of Sciences, Guangzhou 510260, China
| | - Li Jiahao
- Guangdong Key Laboratory of Animal Conservation and Resource Utilization, Guangdong Public Laboratory of Wild Animal Conservation and Utilization, Institute of Zoology, Guangdong Academy of Sciences, Guangzhou 510260, China
| | - Ding Zhaorun
- Guangdong Key Laboratory of Animal Conservation and Resource Utilization, Guangdong Public Laboratory of Wild Animal Conservation and Utilization, Institute of Zoology, Guangdong Academy of Sciences, Guangzhou 510260, China
| | - Li Wenfeng
- Guangdong Key Laboratory of Animal Conservation and Resource Utilization, Guangdong Public Laboratory of Wild Animal Conservation and Utilization, Institute of Zoology, Guangdong Academy of Sciences, Guangzhou 510260, China
| | - Han Richou
- Guangdong Key Laboratory of Animal Conservation and Resource Utilization, Guangdong Public Laboratory of Wild Animal Conservation and Utilization, Institute of Zoology, Guangdong Academy of Sciences, Guangzhou 510260, China
| | - Chen Yanping
- USDA-ARS Bee Research Laboratory, Beltsville, MD 20705, USA
| | - Xie Huichun
- Key Laboratory of Tibetan Plateau Medicinal Plant and Animal Resources, Qinghai Normal University, Xi'ning 810008, China; Qinghai Ecosystem Observation and Research Station in the Southern Qilian Mountains, Haidong 810500, China.
| | - Zhang Yi
- School of Chinese Medicinal Resource, Guangdong Pharmaceutical University, Yunfu 527527, China.
| |
Collapse
|
3
|
Roggenbuck EC, Hall EA, Hanson IB, Roby AA, Zhang KK, Alkatib KA, Carter JA, Clewner JE, Gelfius AL, Gong S, Gordon FR, Iseler JN, Kotapati S, Li M, Maysun A, McCormick EO, Rastogi G, Sengupta S, Uzoma CU, Wolkov MA, Clowney EJ. Let's talk about sex: Mechanisms of neural sexual differentiation in Bilateria. WIREs Mech Dis 2024; 16:e1636. [PMID: 38185860 DOI: 10.1002/wsbm.1636] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2023] [Revised: 11/20/2023] [Accepted: 11/21/2023] [Indexed: 01/09/2024]
Abstract
In multicellular organisms, sexed gonads have evolved that facilitate release of sperm versus eggs, and bilaterian animals purposefully combine their gametes via mating behaviors. Distinct neural circuits have evolved that control these physically different mating events for animals producing eggs from ovaries versus sperm from testis. In this review, we will describe the developmental mechanisms that sexually differentiate neural circuits across three major clades of bilaterian animals-Ecdysozoa, Deuterosomia, and Lophotrochozoa. While many of the mechanisms inducing somatic and neuronal sex differentiation across these diverse organisms are clade-specific rather than evolutionarily conserved, we develop a common framework for considering the developmental logic of these events and the types of neuronal differences that produce sex-differentiated behaviors. This article is categorized under: Congenital Diseases > Stem Cells and Development Neurological Diseases > Stem Cells and Development.
Collapse
Affiliation(s)
- Emma C Roggenbuck
- MCDB 464 - Cellular Diversity: Sex Differentiation of the Brain, University of Michigan, Ann Arbor, Michigan, USA
| | - Elijah A Hall
- MCDB 464 - Cellular Diversity: Sex Differentiation of the Brain, University of Michigan, Ann Arbor, Michigan, USA
| | - Isabel B Hanson
- MCDB 464 - Cellular Diversity: Sex Differentiation of the Brain, University of Michigan, Ann Arbor, Michigan, USA
| | - Alyssa A Roby
- MCDB 464 - Cellular Diversity: Sex Differentiation of the Brain, University of Michigan, Ann Arbor, Michigan, USA
| | - Katherine K Zhang
- MCDB 464 - Cellular Diversity: Sex Differentiation of the Brain, University of Michigan, Ann Arbor, Michigan, USA
| | - Kyle A Alkatib
- MCDB 464 - Cellular Diversity: Sex Differentiation of the Brain, University of Michigan, Ann Arbor, Michigan, USA
| | - Joseph A Carter
- MCDB 464 - Cellular Diversity: Sex Differentiation of the Brain, University of Michigan, Ann Arbor, Michigan, USA
- Department of Molecular, Cellular, and Developmental Biology, University of Michigan, Ann Arbor, Michigan, USA
| | - Jarred E Clewner
- MCDB 464 - Cellular Diversity: Sex Differentiation of the Brain, University of Michigan, Ann Arbor, Michigan, USA
| | - Anna L Gelfius
- MCDB 464 - Cellular Diversity: Sex Differentiation of the Brain, University of Michigan, Ann Arbor, Michigan, USA
| | - Shiyuan Gong
- MCDB 464 - Cellular Diversity: Sex Differentiation of the Brain, University of Michigan, Ann Arbor, Michigan, USA
| | - Finley R Gordon
- MCDB 464 - Cellular Diversity: Sex Differentiation of the Brain, University of Michigan, Ann Arbor, Michigan, USA
- Department of Molecular, Cellular, and Developmental Biology, University of Michigan, Ann Arbor, Michigan, USA
| | - Jolene N Iseler
- MCDB 464 - Cellular Diversity: Sex Differentiation of the Brain, University of Michigan, Ann Arbor, Michigan, USA
| | - Samhita Kotapati
- MCDB 464 - Cellular Diversity: Sex Differentiation of the Brain, University of Michigan, Ann Arbor, Michigan, USA
| | - Marilyn Li
- MCDB 464 - Cellular Diversity: Sex Differentiation of the Brain, University of Michigan, Ann Arbor, Michigan, USA
| | - Areeba Maysun
- MCDB 464 - Cellular Diversity: Sex Differentiation of the Brain, University of Michigan, Ann Arbor, Michigan, USA
| | - Elise O McCormick
- MCDB 464 - Cellular Diversity: Sex Differentiation of the Brain, University of Michigan, Ann Arbor, Michigan, USA
| | - Geetanjali Rastogi
- MCDB 464 - Cellular Diversity: Sex Differentiation of the Brain, University of Michigan, Ann Arbor, Michigan, USA
| | - Srijani Sengupta
- MCDB 464 - Cellular Diversity: Sex Differentiation of the Brain, University of Michigan, Ann Arbor, Michigan, USA
| | - Chantal U Uzoma
- MCDB 464 - Cellular Diversity: Sex Differentiation of the Brain, University of Michigan, Ann Arbor, Michigan, USA
| | - Madison A Wolkov
- MCDB 464 - Cellular Diversity: Sex Differentiation of the Brain, University of Michigan, Ann Arbor, Michigan, USA
| | - E Josephine Clowney
- Department of Molecular, Cellular, and Developmental Biology, University of Michigan, Ann Arbor, Michigan, USA
- Michigan Neuroscience Institute Affiliate, University of Michigan, Ann Arbor, Michigan, USA
| |
Collapse
|
4
|
Daniels BC, Wang Y, Page RE, Amdam GV. Identifying a developmental transition in honey bees using gene expression data. PLoS Comput Biol 2023; 19:e1010704. [PMID: 37733808 PMCID: PMC10547183 DOI: 10.1371/journal.pcbi.1010704] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2022] [Revised: 10/03/2023] [Accepted: 09/05/2023] [Indexed: 09/23/2023] Open
Abstract
In many organisms, interactions among genes lead to multiple functional states, and changes to interactions can lead to transitions into new states. These transitions can be related to bifurcations (or critical points) in dynamical systems theory. Characterizing these collective transitions is a major challenge for systems biology. Here, we develop a statistical method for identifying bistability near a continuous transition directly from high-dimensional gene expression data. We apply the method to data from honey bees, where a known developmental transition occurs between bees performing tasks in the nest and leaving the nest to forage. Our method, which makes use of the expected shape of the distribution of gene expression levels near a transition, successfully identifies the emergence of bistability and links it to genes that are known to be involved in the behavioral transition. This proof of concept demonstrates that going beyond correlative analysis to infer the shape of gene expression distributions might be used more generally to identify collective transitions from gene expression data.
Collapse
Affiliation(s)
- Bryan C. Daniels
- School of Complex Adaptive Systems, Arizona State University, Tempe, Arizona, United States of America
| | - Ying Wang
- Banner Health Corporation, Phoenix, Arizona, United States of America
| | - Robert E. Page
- School of Life Sciences, Arizona State University, Tempe, Arizona, United States of America
- Department of Entomology and Nematology, University of California Davis, Davis, California, United States of America
| | - Gro V. Amdam
- School of Life Sciences, Arizona State University, Tempe, Arizona, United States of America
- Department of Ecology and Natural Resource Management, Norwegian University of Life Sciences, Aas, Norway
| |
Collapse
|
5
|
Gay DR, Judd TM. Comparison of Protein and Carbohydrate Consumption and Processing in Emerging Workers, Gynes and Males of the Wasp Polistes metricus. INSECTS 2023; 14:617. [PMID: 37504623 PMCID: PMC10380711 DOI: 10.3390/insects14070617] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/27/2023] [Revised: 07/03/2023] [Accepted: 07/06/2023] [Indexed: 07/29/2023]
Abstract
There is growing evidence that paper wasps' (Polistes') fate as workers or reproductive females (gynes) is affected by cues that exist at the larval stage and during eclosion. The nutritional requirements for workers and gynes are different early in their adult lives. Males are short-lived and have different nutritional needs than females. To determine the relative importance of larval and adult cues, we reared Polistes metricus individuals from prepupae to adults isolated from known environmental cues shown to affect caste differentiation. Individuals were given access to two foods with different ratios of protein and carbohydrates. Levels of protein, amino acids, carbohydrates and lipids were measured after the feeding trials. If larval experience drove feeding behavior in adults, we expected to see differences in protein and carbohydrate intake as well as differences in nutrient levels. Females showed no differences in feeding or nutrient levels. Males had lower levels of protein and amino acids than females but had similar feeding results to females.
Collapse
Affiliation(s)
- Daniel R Gay
- Department of Biology, Southeast Missouri State University, Cape Girardeau, MO 63701, USA
| | - Timothy M Judd
- Department of Biology, Southeast Missouri State University, Cape Girardeau, MO 63701, USA
| |
Collapse
|
6
|
Zhang Y, He XJ, Barron AB, Li Z, Jin MJ, Wang ZL, Huang Q, Zhang LZ, Wu XB, Yan WY, Zeng ZJ. The diverging epigenomic landscapes of honeybee queens and workers revealed by multiomic sequencing. INSECT BIOCHEMISTRY AND MOLECULAR BIOLOGY 2023; 155:103929. [PMID: 36906046 DOI: 10.1016/j.ibmb.2023.103929] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/07/2022] [Revised: 02/27/2023] [Accepted: 03/02/2023] [Indexed: 05/10/2023]
Abstract
The role of the epigenome in phenotypic plasticity is unclear presently. Here we used a multiomics approach to explore the nature of the epigenome in developing honey bee (Apis mellifera) workers and queens. Our data clearly showed distinct queen and worker epigenomic landscapes during the developmental process. Differences in gene expression between workers and queens become more extensive and more layered during the process of development. Genes known to be important for caste differentiation were more likely to be regulated by multiple epigenomic systems than other differentially expressed genes. We confirmed the importance of two candidate genes for caste differentiation by using RNAi to manipulate the expression of two genes that differed in expression between workers and queens were regulated by multiple epigenomic systems. For both genes the RNAi manipulation resulted in a decrease in weight and fewer ovarioles of newly emerged queens compared to controls. Our data show that the distinct epigenomic landscapes of worker and queen bees differentiate during the course of larval development.
Collapse
Affiliation(s)
- Yong Zhang
- Honeybee Research Institute, Jiangxi Agricultural University, Nanchang, Jiangxi, 330045, PR China; Jiangxi Province Honeybee Biology and Beekeeping Nanchang, Jiangxi, 330045, PR China
| | - Xu Jiang He
- Honeybee Research Institute, Jiangxi Agricultural University, Nanchang, Jiangxi, 330045, PR China; Jiangxi Province Honeybee Biology and Beekeeping Nanchang, Jiangxi, 330045, PR China
| | - Andrew B Barron
- Department of Biological Sciences, Macquarie University, North Ryde, NSW, 2109, Australia
| | - Zhen Li
- Honeybee Research Institute, Jiangxi Agricultural University, Nanchang, Jiangxi, 330045, PR China; Jiangxi Province Honeybee Biology and Beekeeping Nanchang, Jiangxi, 330045, PR China
| | - Meng Jie Jin
- Honeybee Research Institute, Jiangxi Agricultural University, Nanchang, Jiangxi, 330045, PR China; Jiangxi Province Honeybee Biology and Beekeeping Nanchang, Jiangxi, 330045, PR China
| | - Zi Long Wang
- Honeybee Research Institute, Jiangxi Agricultural University, Nanchang, Jiangxi, 330045, PR China; Jiangxi Province Honeybee Biology and Beekeeping Nanchang, Jiangxi, 330045, PR China
| | - Qiang Huang
- Honeybee Research Institute, Jiangxi Agricultural University, Nanchang, Jiangxi, 330045, PR China; Jiangxi Province Honeybee Biology and Beekeeping Nanchang, Jiangxi, 330045, PR China
| | - Li Zhen Zhang
- Honeybee Research Institute, Jiangxi Agricultural University, Nanchang, Jiangxi, 330045, PR China; Jiangxi Province Honeybee Biology and Beekeeping Nanchang, Jiangxi, 330045, PR China
| | - Xiao Bo Wu
- Honeybee Research Institute, Jiangxi Agricultural University, Nanchang, Jiangxi, 330045, PR China; Jiangxi Province Honeybee Biology and Beekeeping Nanchang, Jiangxi, 330045, PR China
| | - Wei Yu Yan
- Honeybee Research Institute, Jiangxi Agricultural University, Nanchang, Jiangxi, 330045, PR China; Jiangxi Province Honeybee Biology and Beekeeping Nanchang, Jiangxi, 330045, PR China
| | - Zhi Jiang Zeng
- Honeybee Research Institute, Jiangxi Agricultural University, Nanchang, Jiangxi, 330045, PR China; Jiangxi Province Honeybee Biology and Beekeeping Nanchang, Jiangxi, 330045, PR China.
| |
Collapse
|
7
|
Zhang Y, Li Z, He X, Wang Z, Zeng Z. H3K4me1 Modification Functions in Caste Differentiation in Honey Bees. Int J Mol Sci 2023; 24:ijms24076217. [PMID: 37047189 PMCID: PMC10094490 DOI: 10.3390/ijms24076217] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2023] [Revised: 03/13/2023] [Accepted: 03/22/2023] [Indexed: 03/29/2023] Open
Abstract
Honey bees are important species for the study of epigenetics. Female honey bee larvae with the same genotype can develop into phenotypically distinct organisms (sterile workers and fertile queens) depending on conditions such as diet. Previous studies have shown that DNA methylation and histone modification can establish distinct gene expression patterns, leading to caste differentiation. It is unclear whether the histone methylation modification H3K4me1 can also impact caste differentiation. In this study, we analyzed genome-wide H3K4me1 modifications in both queen and worker larvae and found that H3K4me1 marks are more abundant in worker larvae than in queen larvae at both the second and fourth instars, and many genes associated with caste differentiation are differentially methylated. Notably, caste-specific H3K4me1 in promoter regions can direct worker development. Thus, our results suggest that H3K4me1 modification may act as an important regulatory factor in the establishment and maintenance of caste-specific transcriptional programs in honey bees; however, the potential influence of other epigenetic modifications cannot be excluded.
Collapse
Affiliation(s)
- Yong Zhang
- Honeybee Research Institute, Jiangxi Agricultural University, Nanchang 330045, China; (Y.Z.); (Z.L.); (X.H.); (Z.W.)
- Jiangxi Province Key Laboratory of Honeybee Biology and Beekeeping, Nanchang 330045, China
| | - Zhen Li
- Honeybee Research Institute, Jiangxi Agricultural University, Nanchang 330045, China; (Y.Z.); (Z.L.); (X.H.); (Z.W.)
- Jiangxi Province Key Laboratory of Honeybee Biology and Beekeeping, Nanchang 330045, China
| | - Xujiang He
- Honeybee Research Institute, Jiangxi Agricultural University, Nanchang 330045, China; (Y.Z.); (Z.L.); (X.H.); (Z.W.)
- Jiangxi Province Key Laboratory of Honeybee Biology and Beekeeping, Nanchang 330045, China
| | - Zilong Wang
- Honeybee Research Institute, Jiangxi Agricultural University, Nanchang 330045, China; (Y.Z.); (Z.L.); (X.H.); (Z.W.)
- Jiangxi Province Key Laboratory of Honeybee Biology and Beekeeping, Nanchang 330045, China
| | - Zhijiang Zeng
- Honeybee Research Institute, Jiangxi Agricultural University, Nanchang 330045, China; (Y.Z.); (Z.L.); (X.H.); (Z.W.)
- Jiangxi Province Key Laboratory of Honeybee Biology and Beekeeping, Nanchang 330045, China
- Correspondence:
| |
Collapse
|
8
|
Yuan E, Guo H, Chen W, Du B, Mi Y, Qi Z, Yuan Y, Zhu-Salzman K, Ge F, Sun Y. A novel gene REPTOR2 activates the autophagic degradation of wing disc in pea aphid. eLife 2023; 12:e83023. [PMID: 36943031 PMCID: PMC10030113 DOI: 10.7554/elife.83023] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2022] [Accepted: 03/01/2023] [Indexed: 03/23/2023] Open
Abstract
Wing dimorphism in insects is an evolutionarily adaptive trait to maximize insect fitness under various environments, by which the population could be balanced between dispersing and reproduction. Most studies concern the regulatory mechanisms underlying the stimulation of wing morph in aphids, but relatively little research addresses the molecular basis of wing loss. Here, we found that, while developing normally in winged-destined pea aphids, the wing disc in wingless-destined aphids degenerated 30-hr postbirth and that this degeneration was due to autophagy rather than apoptosis. Activation of autophagy in first instar nymphs reduced the proportion of winged aphids, and suppression of autophagy increased the proportion. REPTOR2, associated with TOR signaling pathway, was identified by RNA-seq as a differentially expressed gene between the two morphs with higher expression in the thorax of wingless-destined aphids. Further genetic analysis indicated that REPTOR2 could be a novel gene derived from a gene duplication event that occurred exclusively in pea aphids on autosome A1 but translocated to the sex chromosome. Knockdown of REPTOR2 reduced autophagy in the wing disc and increased the proportion of winged aphids. In agreement with REPTOR's canonical negative regulatory role of TOR on autophagy, winged-destined aphids had higher TOR expression in the wing disc. Suppression of TOR activated autophagy of the wing disc and decreased the proportion of winged aphids, and vice versa. Co-suppression of TOR and REPTOR2 showed that dsREPTOR2 could mask the positive effect of dsTOR on autophagy, suggesting that REPTOR2 acted as a key regulator downstream of TOR in the signaling pathway. These results revealed that the TOR signaling pathway suppressed autophagic degradation of the wing disc in pea aphids by negatively regulating the expression of REPTOR2.
Collapse
Affiliation(s)
- Erliang Yuan
- State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of SciencesBeijingChina
- CAS Center for Excellence in Biotic Interactions, University of Chinese Academy of ScienceBeijingChina
| | - Huijuan Guo
- State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of SciencesBeijingChina
- CAS Center for Excellence in Biotic Interactions, University of Chinese Academy of ScienceBeijingChina
| | - Weiyao Chen
- State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of SciencesBeijingChina
- CAS Center for Excellence in Biotic Interactions, University of Chinese Academy of ScienceBeijingChina
| | - Bingru Du
- School of Life Science, Hebei UniversityBaodingChina
| | - Yingjie Mi
- State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of SciencesBeijingChina
| | - Zhaorui Qi
- School of Life Science, Hebei UniversityBaodingChina
| | - Yiyang Yuan
- Institute of Plant Protection, Shandong Academy of Agriculture SciencesJinanChina
| | - Keyan Zhu-Salzman
- Department of Entomology, Texas A&M UniversityCollege StationUnited States
| | - Feng Ge
- Institute of Plant Protection, Shandong Academy of Agriculture SciencesJinanChina
| | - Yucheng Sun
- State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of SciencesBeijingChina
- CAS Center for Excellence in Biotic Interactions, University of Chinese Academy of ScienceBeijingChina
| |
Collapse
|
9
|
Zhang Y, Xu H, Wang Z, Jie H, Gao F, Cai M, Wang K, Chen D, Guo R, Lin Z, Niu Q, Ji T. A key gene for the climatic adaptation of Apis cerana populations in China according to selective sweep analysis. BMC Genomics 2023; 24:100. [PMID: 36879226 PMCID: PMC9987060 DOI: 10.1186/s12864-023-09167-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2022] [Accepted: 02/06/2023] [Indexed: 03/08/2023] Open
Abstract
BACKGROUND Apis cerana is widely distributed in China and, prior to the introduction of western honeybees, was the only bee species kept in China. During the long-term natural evolutionary process, many unique phenotypic variations have occurred among A. cerana populations in different geographical regions under varied climates. Understanding the molecular genetic basis and the effects of climate change on the adaptive evolution of A. cerana can promote A. cerana conservation in face of climate change and allow for the effective utilization of its genetic resources. RESULT To investigate the genetic basis of phenotypic variations and the impact of climate change on adaptive evolution, A. cerana workers from 100 colonies located at similar geographical latitudes or longitudes were analyzed. Our results revealed an important relationship between climate types and the genetic variation of A. cerana in China, and a greater influence of latitude compared with longitude was observed. Upon selection and morphometry analyses combination for populations under different climate types, we identified a key gene RAPTOR, which was deeply involved in developmental processes and influenced the body size. CONCLUSION The selection of RAPTOR at the genomic level during adaptive evolution could allow A. cerana to actively regulate its metabolism, thereby fine-tuning body sizes in response to harsh conditions caused by climate change, such as food shortages and extreme temperatures, which may partially elucidate the size differences of A. cerana populations. This study provides crucial support for the molecular genetic basis of the expansion and evolution of naturally distributed honeybee populations.
Collapse
Affiliation(s)
- Yi Zhang
- College of Animal Science and Technology, Yangzhou University, Yangzhou, 225009, China
| | - Hao Xu
- Sericultural Research Institute, Anhui Academy of Agricultural Science, Hefei, 230061, China
| | - Zhi Wang
- Apiculture Science Institute of Jilin Province, Jilin, 132108, China
| | - Haoliang Jie
- Jinzhong Agriculture and Rural Affairs Bureau, Jinzhong, 030601, China
| | - Fuchao Gao
- Mudanjiang Branch of Heilongjiang Academy of Agricultural Sciences, Mudanjiang, 157043, China
| | - Minqi Cai
- College of Animal Science and Technology, Yangzhou University, Yangzhou, 225009, China
| | - Kang Wang
- College of Animal Science and Technology, Yangzhou University, Yangzhou, 225009, China
| | - Dafu Chen
- College of Animal Science (College of Bee Science), Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Rui Guo
- College of Animal Science (College of Bee Science), Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Zheguang Lin
- College of Animal Science and Technology, Yangzhou University, Yangzhou, 225009, China
| | - Qingsheng Niu
- Apiculture Science Institute of Jilin Province, Jilin, 132108, China.
| | - Ting Ji
- College of Animal Science and Technology, Yangzhou University, Yangzhou, 225009, China.
| |
Collapse
|
10
|
Lariviere PJ, Leonard SP, Horak RD, Powell JE, Barrick JE. Honey bee functional genomics using symbiont-mediated RNAi. Nat Protoc 2023; 18:902-928. [PMID: 36460809 DOI: 10.1038/s41596-022-00778-4] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2022] [Accepted: 09/22/2022] [Indexed: 12/03/2022]
Abstract
Honey bees are indispensable pollinators and model organisms for studying social behavior, development and cognition. However, their eusociality makes it difficult to use standard forward genetic approaches to study gene function. Most functional genomics studies in bees currently utilize double-stranded RNA (dsRNA) injection or feeding to induce RNAi-mediated knockdown of a gene of interest. However, dsRNA injection is laborious and harmful, and dsRNA feeding is difficult to scale cheaply. Further, both methods require repeated dsRNA administration to ensure a continued RNAi response. To fill this gap, we engineered the bee gut bacterium Snodgrassella alvi to induce a sustained host RNA interference response that reduces expression of a targeted gene. To employ this functional genomics using engineered symbionts (FUGUES) procedure, a dsRNA expression plasmid is cloned in Escherichia coli using Golden Gate assembly and then transferred to S. alvi. Adult worker bees are then colonized with engineered S. alvi. Finally, gene knockdown is verified through qRT-PCR, and bee phenotypes of interest can be further assessed. Expression of targeted genes is reduced by as much as 50-75% throughout the entire bee body by 5 d after colonization. This protocol can be accomplished in 4 weeks by bee researchers with microbiology and molecular cloning skills. FUGUES currently offers a streamlined and scalable approach for studying the biology of honey bees. Engineering other microbial symbionts to influence their hosts in ways that are similar to those described in this protocol may prove useful for studying additional insect and animal species in the future.
Collapse
Affiliation(s)
- Patrick J Lariviere
- Department of Molecular Biosciences, The University of Texas at Austin, Austin, TX, USA.,Department of Integrative Biology, The University of Texas at Austin, Austin, TX, USA
| | - Sean P Leonard
- Department of Molecular Biosciences, The University of Texas at Austin, Austin, TX, USA.,Department of Integrative Biology, The University of Texas at Austin, Austin, TX, USA
| | - Richard D Horak
- Department of Integrative Biology, The University of Texas at Austin, Austin, TX, USA
| | - J Elijah Powell
- Department of Integrative Biology, The University of Texas at Austin, Austin, TX, USA
| | - Jeffrey E Barrick
- Department of Molecular Biosciences, The University of Texas at Austin, Austin, TX, USA.
| |
Collapse
|
11
|
Single-cell transcriptomic analysis of honeybee brains identifies vitellogenin as caste differentiation-related factor. iScience 2022; 25:104643. [PMID: 35800778 PMCID: PMC9254125 DOI: 10.1016/j.isci.2022.104643] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2021] [Revised: 03/31/2022] [Accepted: 06/14/2022] [Indexed: 11/22/2022] Open
Abstract
The honeybee (Apis mellifera) is a well-known eusocial insect. In honeybee colonies, thousands of sterile workers, including nurse and forager bees, perform various tasks within or outside the hive, respectively. The queen is the only fertile female and is responsible for reproduction. The queen and workers share similar genomes but occupy different caste statuses. We established single-cell transcriptomic atlases of brains from queens and worker subcastes and identified five major cell groups: Kenyon, optic lobe, olfactory projection, glial, and hemocyte cells. By dividing Kenyon and glial cells into multiple subtypes based on credible markers, we observed that vitellogenin (vg) was highly expressed in specific glial-cell subtypes in brains of queens. Knockdown of vg at the early larval stage significantly suppressed the development into adult queens. We demonstrate vg expression as a "molecular signature" for the queen caste and suggest involvement of vg in regulating caste differentiation. scRNA-seq revealed distinct gene expression in the brains of queens and workers Vitellogenin (vg) may represent a "molecular signature" of the queen caste Knockdown of vg at early larval stage suppressed development into adult queens Vg may be involved in regulating caste differentiation
Collapse
|
12
|
He XJ, Barron AB, Yang L, Chen H, He YZ, Zhang LZ, Huang Q, Wang ZL, Wu XB, Yan WY, Zeng ZJ. Extent and complexity of RNA processing in honey bee queen and worker caste development. iScience 2022; 25:104301. [PMID: 35573188 PMCID: PMC9097701 DOI: 10.1016/j.isci.2022.104301] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2021] [Revised: 03/12/2022] [Accepted: 04/21/2022] [Indexed: 11/03/2022] Open
Abstract
The distinct honeybee (Apis mellifera) worker and queen castes have become a model for the study of genomic mechanisms of phenotypic plasticity. Here we performed a nanopore-based direct RNA sequencing with exceptionally long reads to compare the mRNA transcripts between queen and workers at three points during their larval development. We found thousands of significantly differentially expressed transcript isoforms (DEIs) between queen and worker larvae. These DEIs were formatted by a flexible splicing system. We showed that poly(A) tails participated in this caste differentiation by negatively regulating the expression of DEIs. Hundreds of isoforms uniquely expressed in either queens or workers during their larval development, and isoforms were expressed at different points in queen and worker larval development demonstrating a dynamic relationship between isoform expression and developmental mechanisms. These findings show the full complexity of RNA processing and transcript expression in honey bee phenotypic plasticity. Honeybee caste differentiation has a complexity of RNA processing Isoforms differentially express between queens and workers during larval development Isoforms are formatted by a flexible alternative splicing system Poly(A) tails are negatively correlated with isoform expression
Collapse
Affiliation(s)
- Xu Jiang He
- Honeybee Research Institute, Jiangxi Agricultural University, Nanchang, Jiangxi 330045, P. R. of China.,Jiangxi Province Honeybee Biology and Beekeeping Nanchang, Jiangxi 330045, P. R. of China
| | - Andrew B Barron
- Department of Biological Sciences, Macquarie University, North Ryde, NSW 2109, Australia
| | - Liu Yang
- Wuhan Benagen Tech Solutions Company Limited, Wuhan, Hubei 430021, P. R. of China
| | - Hu Chen
- Wuhan Benagen Tech Solutions Company Limited, Wuhan, Hubei 430021, P. R. of China
| | - Yu Zhu He
- Honeybee Research Institute, Jiangxi Agricultural University, Nanchang, Jiangxi 330045, P. R. of China
| | - Li Zhen Zhang
- Honeybee Research Institute, Jiangxi Agricultural University, Nanchang, Jiangxi 330045, P. R. of China
| | - Qiang Huang
- Honeybee Research Institute, Jiangxi Agricultural University, Nanchang, Jiangxi 330045, P. R. of China
| | - Zi Long Wang
- Honeybee Research Institute, Jiangxi Agricultural University, Nanchang, Jiangxi 330045, P. R. of China
| | - Xiao Bo Wu
- Honeybee Research Institute, Jiangxi Agricultural University, Nanchang, Jiangxi 330045, P. R. of China
| | - Wei Yu Yan
- Honeybee Research Institute, Jiangxi Agricultural University, Nanchang, Jiangxi 330045, P. R. of China
| | - Zhi Jiang Zeng
- Honeybee Research Institute, Jiangxi Agricultural University, Nanchang, Jiangxi 330045, P. R. of China.,Jiangxi Province Honeybee Biology and Beekeeping Nanchang, Jiangxi 330045, P. R. of China
| |
Collapse
|
13
|
Kim S, Kim JH, Cho S, Lee DE, Clark JM, Lee SH. Chronic exposure to field-realistic doses of imidacloprid resulted in biphasic negative effects on honey bee physiology. INSECT BIOCHEMISTRY AND MOLECULAR BIOLOGY 2022; 144:103759. [PMID: 35341906 DOI: 10.1016/j.ibmb.2022.103759] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/26/2021] [Revised: 03/17/2022] [Accepted: 03/22/2022] [Indexed: 06/14/2023]
Abstract
There have been many investigations on the negative effects of imidacloprid (IMD) on honey bees. IMD is known to disrupt honey bee physiology and colony health at a relatively low concentration compared to other pesticides. In this study, honey bee colonies were chronically exposed to field-realistic concentrations (5, 20, and 100 ppb) of IMD, and the body weight, flight performance, carbohydrate reserve, and lipid contents of forager bees analyzed. Transcriptome analyses followed by quantitative PCR were also conducted for both nurse and forager bees to elucidate any changes in energy metabolism related to phenotypic disorders. The body weights of newly emerged and nurse bees showed decreasing tendencies as the IMD concentration increased. In forager bees, however, IMD induced a biphasic change in body weight: body weight was decreased at the lower concentrations (5 and 20 ppb) but increased at the higher concentration (100 ppb). Nevertheless, the flight capability of forager bees significantly decreased in a concentration-dependent manner. The effects of IMD on target gene transcription in forager bees showed biphasic patterns between low (5 and 20 ppb) and high (100 ppb) concentrations. Nurse bees showed typical features of premature transition to foragers in a concentration-dependent manner. When exposed to low concentrations, forager bees exhibited downregulation of genes involved in carbohydrate and lipid metabolism and in the insulin/insulin-like growth factor signaling pathway, upregulation of transporter activity, and a dose-dependent body weight reduction, which were similar to insulin resistance and diabetic symptoms. However, increased lipid metabolism and decreased energy metabolism with body weight gain were observed at high IMD concentration. Considered together, these results suggest that field-realistic doses of IMD alter honey bee energy metabolism in distinctly different ways at low and high concentrations, both of which negatively affect honey bee colony health.
Collapse
Affiliation(s)
- Sanghyeon Kim
- Research Institute for Agriculture and Life Sciences, Seoul National University, Seoul, South Korea
| | - Ju Hyeon Kim
- Research Institute for Agriculture and Life Sciences, Seoul National University, Seoul, South Korea
| | - Susie Cho
- Department of Agricultural Biotechnology, College of Agriculture and Life Science, Seoul National University, Seoul, South Korea
| | - Do Eun Lee
- Department of Agricultural Biotechnology, College of Agriculture and Life Science, Seoul National University, Seoul, South Korea
| | - John Marshall Clark
- Department of Veterinary and Animal Sciences, University of Massachusetts Amherst, Amherst, United States
| | - Si Hyeock Lee
- Research Institute for Agriculture and Life Sciences, Seoul National University, Seoul, South Korea; Department of Agricultural Biotechnology, College of Agriculture and Life Science, Seoul National University, Seoul, South Korea.
| |
Collapse
|
14
|
Ortiz-Alvarado Y, Giray T. Antibiotics Alter the Expression of Genes Related to Behavioral Development in Honey Bees (Hymenoptera: Apidae). JOURNAL OF INSECT SCIENCE (ONLINE) 2022; 22:10. [PMID: 35389490 PMCID: PMC8988713 DOI: 10.1093/jisesa/ieac017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/23/2021] [Indexed: 06/14/2023]
Abstract
Honey bees, as many species of social insects, display a division of labor among colony members based on behavioral specializations related to age. Adult worker honey bees perform a series of tasks in the hive when they are young (such as brood care or nursing) and at ca. 2-3 wk of age, shift to foraging for nectar and pollen outside the hive. The transition to foraging involves changes in metabolism and neuroendocrine activities. These changes are associated with a suite of developmental genes. It was recently demonstrated that antibiotics influence behavioral development by accelerating or delaying the onset of foraging depending on timing of antibiotic exposure. To understand the mechanisms of these changes, we conducted a study on the effects of antibiotics on expression of candidate genes known to regulate behavioral development. We demonstrate a delay in the typical changes in gene expression over the lifetime of the individuals that were exposed to antibiotics during immature stage and adulthood. Additionally, we show an acceleration in the typical changes in gene expression on individuals that were expose to antibiotics only during immature stage. These results show that timing of antibiotic exposure alter the typical regulation of behavioral development by metabolic and neuroendocrine processes.
Collapse
Affiliation(s)
- Yarira Ortiz-Alvarado
- Department of Biology, University of Puerto Rico, Rio Piedras, SJ 00925, Puerto Rico
| | - Tugrul Giray
- Department of Biology, University of Puerto Rico, Rio Piedras, SJ 00925, Puerto Rico
| |
Collapse
|
15
|
Zhao JH, Guo HS. RNA silencing: From discovery and elucidation to application and perspectives. JOURNAL OF INTEGRATIVE PLANT BIOLOGY 2022; 64:476-498. [PMID: 34964265 DOI: 10.1111/jipb.13213] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/31/2021] [Accepted: 12/26/2021] [Indexed: 06/14/2023]
Abstract
RNA silencing (or RNA interference, RNAi) is a conserved mechanism for regulating gene expression in eukaryotes. The discovery of natural trans-kingdom RNAi indicated that small RNAs act as signaling molecules and enable communication between organisms in different kingdoms. The phenomenon and potential mechanisms of trans-kingdom RNAi are among the most exciting research topics. To better understand trans-kingdom RNAi, we review the history of the discovery and elucidation of RNAi mechanisms. Based on canonical RNAi mechanisms, we summarize the major points of divergence around RNAi pathways in the main eukaryotes' kingdoms, including plants, animals, and fungi. We review the representative incidents associated with the mechanisms and applications of trans-kingdom RNAi in crop protection, and discuss the critical factors that should be considered to develop successful trans-kingdom RNAi-based crop protection strategies.
Collapse
Affiliation(s)
- Jian-Hua Zhao
- State Key Laboratory of Plant Genomics, Institute of Microbiology, the Chinese Academy of Sciences, Beijing, 100101, China
- CAS Center for Excellence in Biotic Interactions, University of the Chinese Academy of Sciences, Beijing, 100049, China
| | - Hui-Shan Guo
- State Key Laboratory of Plant Genomics, Institute of Microbiology, the Chinese Academy of Sciences, Beijing, 100101, China
- CAS Center for Excellence in Biotic Interactions, University of the Chinese Academy of Sciences, Beijing, 100049, China
| |
Collapse
|
16
|
Strachecka A, Olszewski K, Kuszewska K, Paleolog J, Woyciechowski M. Reproductive Potential Accelerates Preimaginal Development of Rebel Workers in Apis mellifera. Animals (Basel) 2021; 11:ani11113245. [PMID: 34827977 PMCID: PMC8614343 DOI: 10.3390/ani11113245] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2021] [Revised: 11/09/2021] [Accepted: 11/10/2021] [Indexed: 11/16/2022] Open
Abstract
Simple Summary All female honeybee larvae may develop into workers or queens, depending on the food they receive. During this period, queen mandibular pheromones (QMP) perform a regulatory function in inhibiting ovarian development in adult workers. These pheromones are transmitted (via trophallaxis) by workers to pass information to larvae on the presence or absence of the queen. Queen-less conditions are conducive to the emergence of rebel workers that are set to reproduce, and do not participate in the rearing of successive bee generations in contrast to the sterile, normal workers. We posited that rebels are not only similar to queens in some anatomical features, but also develop in a shorter time in comparison to normal workers. Therefore, the aim of this study was to compare the duration of preimaginal development in rebel and normal workers. Our results confirmed that the workers who develop in a queen-less colony undergo a shorter preimaginal development than those in a queen-right colony. Abstract Rebel workers develop from eggs laid by the previous queen, before it went swarming and left the colony orphaned, until the emergence of a new queen. In contrast to normal workers developing in the queen’s presence, rebels are set to reproduce and avoid rearing of successive bee generations. They have more ovarioles in their ovaries, as well as more developed mandibular glands and underdeveloped hypopharyngeal glands, just like the queen. We posited that rebels are not only similar to queens in some anatomical features, but also develop in a shorter time in comparison to normal workers. Therefore, the aim of this study was to compare preimaginal development duration in rebel and normal workers. The results show that rebels, i.e., workers with a higher reproductive potential, had a significantly shorter preimaginal development period (mean ± SD, 19.24 ± 0.07 days) than normal workers (22.29 ± 0.32 days). Our result confirmed that workers who develop in a queen-less colony undergo a shorter preimaginal development than those in a queen-right colony.
Collapse
Affiliation(s)
- Aneta Strachecka
- Department of Invertebrate Ecophysiology and Experimental Biology, University of Life Sciences in Lublin, 20-950 Lublin, Poland;
- Correspondence:
| | - Krzysztof Olszewski
- Institute of Biological Basis of Animal Production, Faculty of Animal Sciences and Bioeconomy, University of Life Sciences in Lublin, Akademicka 13, 20-950 Lublin, Poland;
| | - Karolina Kuszewska
- Institute of Environmental Sciences, Jagiellonian University, 30-387 Krakow, Poland; (K.K.); (M.W.)
| | - Jerzy Paleolog
- Department of Invertebrate Ecophysiology and Experimental Biology, University of Life Sciences in Lublin, 20-950 Lublin, Poland;
| | - Michał Woyciechowski
- Institute of Environmental Sciences, Jagiellonian University, 30-387 Krakow, Poland; (K.K.); (M.W.)
| |
Collapse
|
17
|
Female developmental environment delays development of male honeybee (Apis mellifera). BMC Genomics 2021; 22:699. [PMID: 34579651 PMCID: PMC8477528 DOI: 10.1186/s12864-021-08014-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2020] [Accepted: 09/15/2021] [Indexed: 11/10/2022] Open
Abstract
Background Nutrition and cell size play an important role in the determination of caste differentiation in queen and worker of honeybees (Apis mellifera), whereas the haploid genome dominates the differentiation of drones. However, the effects of female developmental environment on the development of males remain unclear. In this study, young drone larvae were transferred into worker cells (WCs) or remained in drone cells (DCs) to rear drones. The drone larvae were also grafted into queen cells (QCs) for 48 h and then transplanted into drone cells until emerging. Morphological indexes and reproductive organs of these three types of newly emerged drones were measured. Newly emerged drones and third instar drone larvae from WCs, DCs and QCs were sequenced by RNA sequencing (RNA-Seq). Results The amount of food remaining in cells of the QC and WC groups was significantly different to that in the DC group at the early larval stage. Morphological results showed that newly emerged DC drones had bigger body sizes and more well-developed reproductive tissues than WC and QC drones, whereas the reproductive tissues of QC drones were larger than those of WC drones. Additionally, whole body gene expression results showed a clear difference among three groups. At larval stage there were 889, 1761 and 1927 significantly differentially expressed genes (DEGs) in WC/DC, QC/DC and WC/QC comparisons, respectively. The number of DEGs decreased in adult drones of these three comparisons [678 (WC/DC), 338 (QC/DC) and 518 (WC/QC)]. A high number of DEGs were involved in sex differentiation, growth, olfaction, vision, mammalian target of rapamycin (mTOR), Wnt signaling pathways, and other processes. Conclusions This study demonstrated that the developmental environment of honeybee females can delay male development, which may serve as a model for understanding the regulation of sex differentiation and male development in social insects by environmental factors. Supplementary Information The online version contains supplementary material available at 10.1186/s12864-021-08014-1.
Collapse
|
18
|
Zhang JJ, Xi GS, Zhao J. Vitellogenin regulates estrogen-related receptor expression by crosstalk with the JH and IIS-TOR signaling pathway in Polyrhachis vicina Roger (Hymenoptera, Formicidae). Gen Comp Endocrinol 2021; 310:113836. [PMID: 34181936 DOI: 10.1016/j.ygcen.2021.113836] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/17/2020] [Revised: 06/09/2021] [Accepted: 06/10/2021] [Indexed: 11/19/2022]
Abstract
The Estrogen-related receptor (ERR) can regulate the growth and development, metabolism, reproduction, and other physiological activities of insects, but its specific mechanism of action is still unclear. The aim of this study was to explore the relationship between expression of ERR and Vitellogenins (Vg) and the juvenile hormone (JH) and insulin/insulin-like growth factor/target of rapamycin (IIS/TOR) signaling pathways in Polyrhachis vicina Roger. P. vicina was used as the experimental model to clone the PvVg gene, perform double-stranded RNA synthesis and delivery and observe the effects of pharmacological treatments. The full-length PvVg cDNA product is 5586 bp. Higher PvVg mRNA expression was seen in the pupa and adults, and varying levels were seen in the different body parts of three different castes. RNA interference of PvVg expression led to disturbed development, an abnormal phenotype, and high mortality. PvVg RNAi also led to a reduction in mRNA levels of PvERR, ultraspiracle (PvUSP), forkhead box protein O (PvFOXO) and PvTOR genes in fourth instar larval, but a significant increase was seen in pupa and females. No significant change was seen in workers and males. After PvVg knockdown, application of exogenous JHIII reduced the expression of these genes in pupa and females, increased expression in workers, and decreased PvUSP mRNA expression in males. Both protein and mRNA expression levels of PvFOXO were affected by PvVg RNAi. PvERR RNAi increased PvVg expression in pupa and females and Kruppel-homolog 1 (PvKr-h1) and PvFOXO expression in males. The results of this study suggest that there is an interaction between PvERR and PvVg, and that crosstalk with the JH and IIS/TOR signaling pathways can affect development and reproduction. This effect is caste and developmental stage specific. We also speculate that the FOXO/USP complex participates in JH regulation of PvVg in P. vicina.
Collapse
Affiliation(s)
- Juan-Juan Zhang
- Department of Physical Education, Xi'an International Studies University, Shaanxi Province, Xi'an 710119, China.
| | - Geng-Si Xi
- College of Life Science, Shaanxi Normal University, Shaanxi Province, Xi'an 710119, China
| | - Jing Zhao
- Department of Physical Education, Xi'an International Studies University, Shaanxi Province, Xi'an 710119, China
| |
Collapse
|
19
|
|
20
|
Quigley TP, Amdam GV. Social modulation of ageing: mechanisms, ecology, evolution. Philos Trans R Soc Lond B Biol Sci 2021; 376:20190738. [PMID: 33678020 PMCID: PMC7938163 DOI: 10.1098/rstb.2019.0738] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/22/2020] [Indexed: 12/11/2022] Open
Abstract
Human life expectancy increases, but the disease-free part of lifespan (healthspan) and the quality of life in old people may not show the same development. The situation poses considerable challenges to healthcare systems and economies, and calls for new strategies to increase healthspan and for sustainable future approaches to elder care. This call has motivated innovative research on the role of social relationships during ageing. Correlative data from clinical surveys indicate that social contact promotes healthy ageing, and it is time to reveal the causal mechanisms through experimental research. The fruit fly Drosophila melanogaster is a prolific model animal, but insects with more developed social behaviour can be equally instrumental for this research. Here, we discuss the role of social contact in ageing, and identify lines of study where diverse insect models can help uncover the mechanisms that are involved. This article is part of the theme issue 'Ageing and sociality: why, when and how does sociality change ageing patterns?'
Collapse
Affiliation(s)
- Tyler P. Quigley
- School of Life Sciences, Arizona State University, PO Box 874501, Tempe, AZ 85287, USA
| | - Gro V. Amdam
- School of Life Sciences, Arizona State University, PO Box 874501, Tempe, AZ 85287, USA
- Department of Chemistry, Biotechnology and Food Science, Norwegian University of Life Sciences, PO Box 5002, N-1432 Aas, Norway
| |
Collapse
|
21
|
Santos D, Remans S, Van den Brande S, Vanden Broeck J. RNAs on the Go: Extracellular Transfer in Insects with Promising Prospects for Pest Management. PLANTS (BASEL, SWITZERLAND) 2021; 10:484. [PMID: 33806650 PMCID: PMC8001424 DOI: 10.3390/plants10030484] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/31/2021] [Revised: 02/28/2021] [Accepted: 03/01/2021] [Indexed: 01/16/2023]
Abstract
RNA-mediated pathways form an important regulatory layer of myriad biological processes. In the last decade, the potential of RNA molecules to contribute to the control of agricultural pests has not been disregarded, specifically via the RNA interference (RNAi) mechanism. In fact, several proofs-of-concept have been made in this scope. Furthermore, a novel research field regarding extracellular RNAs and RNA-based intercellular/interorganismal communication is booming. In this article, we review key discoveries concerning extracellular RNAs in insects, insect RNA-based cell-to-cell communication, and plant-insect transfer of RNA. In addition, we overview the molecular mechanisms implicated in this form of communication and discuss future biotechnological prospects, namely from the insect pest-control perspective.
Collapse
Affiliation(s)
- Dulce Santos
- Research Group of Molecular Developmental Physiology and Signal Transduction, Division of Animal Physiology and Neurobiology, Department of Biology, KU Leuven, Naamsestraat 59, 3000 Leuven, Belgium; (S.R.); (S.V.d.B.); (J.V.B.)
| | | | | | | |
Collapse
|
22
|
de Paula Junior DE, de Oliveira MT, Bruscadin JJ, Pinheiro DG, Bomtorin AD, Coelho Júnior VG, Moda LMR, Simões ZLP, Barchuk AR. Caste-specific gene expression underlying the differential adult brain development in the honeybee Apis mellifera. INSECT MOLECULAR BIOLOGY 2021; 30:42-56. [PMID: 33044766 DOI: 10.1111/imb.12671] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/14/2020] [Revised: 09/08/2020] [Accepted: 10/07/2020] [Indexed: 06/11/2023]
Abstract
Apis mellifera adult workers feature more developed key brain regions than queens, which allows them to cope with the broad range of duties they need to perform in a colony. However, at the end of larval development, the brain of queens is largely more developed than that of workers. Major morphogenetic changes take place after metamorphosis that shift caste-specific brain development. Here, we tested the hypothesis that this phenomenon is hormonally governed and involves differential gene expression. Our molecular screening approach revealed a set of differentially expressed genes in Pp (first pharate-adult phase) brains between castes mainly coding for tissue remodelling and energy-converting proteins (e.g. hex 70a and ATPsynβ). An in-depth qPCR analysis of the transcriptional behaviour during pupal and pharate-adult developmental stage in both castes and in response to artificially augmented hormone titres of 18 genes/variants revealed that: i. subtle differences in hormone titres between castes might be responsible for the differential expression of the EcR and insulin/insulin-like signalling (IIS) pathway genes; ii. the morphogenetic activity of the IIS in brain development must be mediated by ILP-2, iii. which together with the tum, mnb and caspase system, can constitute the molecular effectors of the caste-specific opposing brain developmental trajectories.
Collapse
Affiliation(s)
- D E de Paula Junior
- Departamento de Biologia Celular e do Desenvolvimento, Instituto de Ciências Biomédicas, Universidade Federal de Alfenas, UNIFAL-MG, Alfenas, Brazil
| | - M T de Oliveira
- Departamento de Biologia Celular e do Desenvolvimento, Instituto de Ciências Biomédicas, Universidade Federal de Alfenas, UNIFAL-MG, Alfenas, Brazil
| | - J J Bruscadin
- Departamento de Biologia Celular e do Desenvolvimento, Instituto de Ciências Biomédicas, Universidade Federal de Alfenas, UNIFAL-MG, Alfenas, Brazil
| | - D G Pinheiro
- Faculdade de Ciências Agrárias e Veterinárias, UNESP - Universidade Estadual Paulista, São Paulo, Brazil
| | - A D Bomtorin
- Departamento de Genética, Faculdade de Medicina de Ribeirão Preto, Universidade de São Paulo, São Paulo, Brazil
| | - V G Coelho Júnior
- Departamento de Biologia Celular e do Desenvolvimento, Instituto de Ciências Biomédicas, Universidade Federal de Alfenas, UNIFAL-MG, Alfenas, Brazil
| | - L M R Moda
- Departamento de Biologia Celular e do Desenvolvimento, Instituto de Ciências Biomédicas, Universidade Federal de Alfenas, UNIFAL-MG, Alfenas, Brazil
| | - Z L P Simões
- Departamento de Biologia, Faculdade de Filosofia, Ciências e Letras de Ribeirão Preto, Universidade de São Paulo, São Paulo, Brazil
| | - A R Barchuk
- Departamento de Biologia Celular e do Desenvolvimento, Instituto de Ciências Biomédicas, Universidade Federal de Alfenas, UNIFAL-MG, Alfenas, Brazil
| |
Collapse
|
23
|
Hanna L, Abouheif E. The origin of wing polyphenism in ants: An eco-evo-devo perspective. Curr Top Dev Biol 2021; 141:279-336. [PMID: 33602491 DOI: 10.1016/bs.ctdb.2020.12.004] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
The evolution of eusociality, where solitary individuals integrate into a single colony, is a major transition in individuality. In ants, the origin of eusociality coincided with the origin of a wing polyphenism approximately 160 million years ago, giving rise to colonies with winged queens and wingless workers. As a consequence, both eusociality and wing polyphenism are nearly universal features of all ants. Here, we synthesize fossil, ecological, developmental, and evolutionary data in an attempt to understand the factors that contributed to the origin of wing polyphenism in ants. We propose multiple models and hypotheses to explain how wing polyphenism is orchestrated at multiple levels, from environmental cues to gene networks. Furthermore, we argue that the origin of wing polyphenism enabled the subsequent evolution of morphological diversity across the ants. We finally conclude by outlining several outstanding questions for future work.
Collapse
Affiliation(s)
- Lisa Hanna
- Department of Biology, McGill University, Montreal, QC, Canada
| | - Ehab Abouheif
- Department of Biology, McGill University, Montreal, QC, Canada.
| |
Collapse
|
24
|
Ahmad S, Khan SA, Khan KA, Li J. Novel Insight Into the Development and Function of Hypopharyngeal Glands in Honey Bees. Front Physiol 2021; 11:615830. [PMID: 33551843 PMCID: PMC7862731 DOI: 10.3389/fphys.2020.615830] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2020] [Accepted: 12/24/2020] [Indexed: 01/09/2023] Open
Abstract
Hypopharyngeal glands (HGs) are the most important organ of hymenopterans which play critical roles for the insect physiology. In honey bees, HGs are paired structures located bilaterally in the head, in front of the brain between compound eyes. Each gland is composed of thousands of secretory units connecting to secretory duct in worker bees. To better understand the recent progress made in understanding the structure and function of these glands, we here review the ontogeny of HGs, and the factors affecting the morphology, physiology, and molecular basis of the functionality of the glands. We also review the morphogenesis of HGs in the pupal and adult stages, and the secretory role of the glands across the ages for the first time. Furthermore, recent transcriptome, proteome, and phosphoproteome analyses have elucidated the potential mechanisms driving the HGs development and functionality. This adds a comprehensive novel knowledge of the development and physiology of HGs in honey bees over time, which may be helpful for future research investigations.
Collapse
Affiliation(s)
- Saboor Ahmad
- Key Laboratory of Pollinating Insect Biology, Institute of Apicultural Research, Ministry of Agriculture, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Shahmshad Ahmed Khan
- Laboratory of Apiculture, Department of Entomology, Pir Mehr Ali Shah (PMAS)- Arid Agriculture University, Rawalpindi, Pakistan
| | - Khalid Ali Khan
- Research Center for Advanced Materials Science (RCAMS), King Khalid University, Abha, Saudi Arabia.,Unit of Bee Research and Honey Production, Biology Department, Faculty of Science, King Khalid University, Abha, Saudi Arabia
| | - Jianke Li
- Key Laboratory of Pollinating Insect Biology, Institute of Apicultural Research, Ministry of Agriculture, Chinese Academy of Agricultural Sciences, Beijing, China
| |
Collapse
|
25
|
Wang M, Xiao Y, Li Y, Wang X, Qi S, Wang Y, Zhao L, Wang K, Peng W, Luo GZ, Xue X, Jia G, Wu L. RNA m 6A Modification Functions in Larval Development and Caste Differentiation in Honeybee (Apis mellifera). Cell Rep 2021; 34:108580. [PMID: 33406439 DOI: 10.1016/j.celrep.2020.108580] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2019] [Revised: 08/08/2020] [Accepted: 12/09/2020] [Indexed: 01/24/2023] Open
Abstract
Genetically identical female honeybee larvae with different diets develop into sterile workers or fertile queens. It remains unknown whether the reversible RNA N6-methyladenosine (m6A) mark functionally impact this "caste differentiation." Here, we profile the transcriptome-wide m6A methylome of honeybee queen and worker larvae at three instar stages and discover that m6A methylation dynamics are altered by differential feeding. Multiple methylome comparisons show an obvious increase in m6A marks during larval development and reveal a negative correlation between gene expression and m6A methylation. Notably, we find that worker larvae contain more hypermethylated m6A peaks than do queen larvae, and many caste-differentiation-related transcripts are differentially methylated. Chemical suppression of m6A methylation in worker larvae by 3-deazaadenosine (DAA) reduces overall m6A methylation levels and triggers worker larvae to develop queen caste features. Thus, our study demonstrates that m6A functionally impacts caste differentiation and larval development, yet it does not exclude potential contributions from other factors.
Collapse
Affiliation(s)
- Miao Wang
- Institute of Apicultural Research, Chinese Academy of Agricultural Sciences, 100093 Beijing, China
| | - Yu Xiao
- Synthetic and Functional Biomolecules Center, Beijing National Laboratory for Molecular Sciences, Key Laboratory of Bioorganic Chemistry and Molecular Engineering of Ministry of Education, College of Chemistry and Molecular Engineering, Peking University, 100871 Beijing, China
| | - Yan Li
- MOE Key Laboratory of Gene Function and Regulation, State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, 510275 Guangzhou, China
| | - Xiaoying Wang
- Institute of Apicultural Research, Chinese Academy of Agricultural Sciences, 100093 Beijing, China
| | - Suzhen Qi
- Institute of Apicultural Research, Chinese Academy of Agricultural Sciences, 100093 Beijing, China
| | - Ye Wang
- Synthetic and Functional Biomolecules Center, Beijing National Laboratory for Molecular Sciences, Key Laboratory of Bioorganic Chemistry and Molecular Engineering of Ministry of Education, College of Chemistry and Molecular Engineering, Peking University, 100871 Beijing, China
| | - Liuwei Zhao
- Institute of Apicultural Research, Chinese Academy of Agricultural Sciences, 100093 Beijing, China
| | - Kai Wang
- Institute of Apicultural Research, Chinese Academy of Agricultural Sciences, 100093 Beijing, China
| | - Wenjun Peng
- Institute of Apicultural Research, Chinese Academy of Agricultural Sciences, 100093 Beijing, China
| | - Guan-Zheng Luo
- MOE Key Laboratory of Gene Function and Regulation, State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, 510275 Guangzhou, China.
| | - Xiaofeng Xue
- Institute of Apicultural Research, Chinese Academy of Agricultural Sciences, 100093 Beijing, China.
| | - Guifang Jia
- Synthetic and Functional Biomolecules Center, Beijing National Laboratory for Molecular Sciences, Key Laboratory of Bioorganic Chemistry and Molecular Engineering of Ministry of Education, College of Chemistry and Molecular Engineering, Peking University, 100871 Beijing, China.
| | - Liming Wu
- Institute of Apicultural Research, Chinese Academy of Agricultural Sciences, 100093 Beijing, China.
| |
Collapse
|
26
|
Sasaki K, Harada M. Dopamine production in the brain is associated with caste-specific morphology and behavior in an artificial intermediate honey bee caste. PLoS One 2020; 15:e0244140. [PMID: 33332426 PMCID: PMC7746283 DOI: 10.1371/journal.pone.0244140] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2020] [Accepted: 12/03/2020] [Indexed: 11/24/2022] Open
Abstract
Caste polymorphism in eusocial insects is based on morphological plasticity and linked to physiological and behavioral characteristics. To test the possibility that dopamine production in the brain is associated with the caste-specific morphology and behavior in female honey bees, an intermediate caste was produced via artificial rearing using different amounts of diet, before quantifying the dopamine levels and conducting behavioral tests. In field colonies, individual traits such as mandibular shape, number of ovarioles, diameter of spermatheca, and dopamine levels in the brain differed significantly between workers and queens. Females given 1.5 times the amount of artificial diet that control worker receives during the larval stage in the laboratory had characteristics intermediate between castes. The dopamine levels in the brain were positively correlated with the mandibular shape indexes, number of ovarioles, and spermatheca diameter among artificially reared females. The dopamine levels were significantly higher in females with mandibular notches than those without. In fighting experiments with the intermediate caste females, the winners had significantly higher dopamine levels in the brain than the losers. Brain levels of tyrosine were positively correlated with those of catecholamines but not phenolamines, thereby suggesting a strong metabolic relationship between tyrosine and dopamine. Thus, the caste-specific characteristics of the honey bee are potentially continuous in the same manner as those in primitively eusocial species. Dopamine production in the brain is associated with the continuous caste-specific morphology, as well as being linked to the amount of tyrosine taken from food, and it supports the aggressive behavior of queen-type females.
Collapse
Affiliation(s)
- Ken Sasaki
- Department of Bioresource Science, Tamagawa University, Machida, Tokyo, Japan
- Honeybee Science Research Center, Tamagawa University, Machida, Tokyo, Japan
- * E-mail:
| | - Mariko Harada
- Department of Bioresource Science, Tamagawa University, Machida, Tokyo, Japan
| |
Collapse
|
27
|
Santos DE, Souza ADO, Tibério GJ, Alberici LC, Hartfelder K. Differential expression of antioxidant system genes in honey bee (Apis mellifera L.) caste development mitigates ROS-mediated oxidative damage in queen larvae. Genet Mol Biol 2020; 43:e20200173. [PMID: 33306776 PMCID: PMC7783730 DOI: 10.1590/1678-4685-gmb-2020-0173] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2020] [Accepted: 09/03/2020] [Indexed: 02/06/2023] Open
Abstract
The expression of morphological differences between the castes of social bees is
triggered by dietary regimes that differentially activate nutrient-sensing
pathways and the endocrine system, resulting in differential gene expression
during larval development. In the honey bee, Apis mellifera,
mitochondrial activity in the larval fat body has been postulated as a link that
integrates nutrient-sensing via hypoxia signaling. To understand regulatory
mechanisms in this link, we measured reactive oxygen species (ROS) levels,
oxidative damage to proteins, the cellular redox environment, and the expression
of genes encoding antioxidant factors in the fat body of queen and worker
larvae. Despite higher mean H2O2 levels in queens, there
were no differences in ROS-mediated protein carboxylation levels between the two
castes. This can be explained by their higher expression of antioxidant genes
(MnSOD, CuZnSOD, catalase, and
Gst1) and the lower ratio between reduced and oxidized
glutathione (GSH/GSSG). In worker larvae, the GSG/GSSH ratio is elevated and
antioxidant gene expression is delayed. Hence, the higher ROS production
resulting from the higher respiratory metabolism in queen larvae is effectively
counterbalanced by the up-regulation of antioxidant genes, avoiding oxidative
damage. In contrast, the delay in antioxidant gene expression in worker larvae
may explain their endogenous hypoxia response.
Collapse
Affiliation(s)
- Douglas Elias Santos
- Universidade de São Paulo, Faculdade de Medicina de Ribeirão Preto, Departamento de Biologia Celular e Molecular e Bioagentes Patogênicos, Ribeirão Preto, SP, Brazil
| | - Anderson de Oliveira Souza
- Universidade de São Paulo, Faculdade de Ciências Farmacêuticas de Ribeirão Preto, Departamento de Ciências BioMoleculares, Ribeirão Preto, SP, Brazil
| | - Gustavo Jacomini Tibério
- Universidade de São Paulo, Faculdade de Medicina de Ribeirão Preto, Departamento de Biologia Celular e Molecular e Bioagentes Patogênicos, Ribeirão Preto, SP, Brazil
| | - Luciane Carla Alberici
- Universidade de São Paulo, Faculdade de Ciências Farmacêuticas de Ribeirão Preto, Departamento de Ciências BioMoleculares, Ribeirão Preto, SP, Brazil
| | - Klaus Hartfelder
- Universidade de São Paulo, Faculdade de Medicina de Ribeirão Preto, Departamento de Biologia Celular e Molecular e Bioagentes Patogênicos, Ribeirão Preto, SP, Brazil
| |
Collapse
|
28
|
Shih SR, Huntsman EM, Flores ME, Snow JW. Reproductive potential does not cause loss of heat shock response performance in honey bees. Sci Rep 2020; 10:19610. [PMID: 33184302 PMCID: PMC7661715 DOI: 10.1038/s41598-020-74456-4] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2020] [Accepted: 09/28/2020] [Indexed: 12/21/2022] Open
Abstract
In other species characterized to date, aging, as a function of reproductive potential, results in the breakdown of proteaostasis and a decreased capacity to mount responses by the heat shock response (HSR) and other proteostatic network pathways. Our understanding of the maintenance of stress pathways, such as the HSR, in honey bees, and in the reproductive queen in particular, is incomplete. Based on the findings in other species showing an inverse relationship between reproductive potential and HSR function, one might predict that that HSR function would be lost in the reproductive queens. However, as queens possess an atypical uncoupling of the reproduction-maintenance trade-off typically found in solitary organisms, HSR maintenance might also be expected. Here we demonstrate that reproductive potential does not cause loss of HSR performance in honey bees as queens induce target gene expression to levels comparable to those induced in attendant worker bees. Maintenance of HSR function with advent of reproductive potential is unique among invertebrates studied to date and provides a potential model for examining the molecular mechanisms regulating the uncoupling of the reproduction-maintenance trade-off in queen bees, with important consequences for understanding how stresses impact different types of individuals in honey bee colonies.
Collapse
Affiliation(s)
- S R Shih
- Biology Department, Barnard College, New York, NY, 10027, USA
| | - E M Huntsman
- Biology Department, Barnard College, New York, NY, 10027, USA
| | - M E Flores
- Biology Department, Barnard College, New York, NY, 10027, USA
| | - J W Snow
- Biology Department, Barnard College, New York, NY, 10027, USA.
| |
Collapse
|
29
|
Cheng Y, Cai J, Fu Y, Feng C, Hao Y, Wei Y. Royal jelly attenuates metabolic defects in a Drosophila mutant with elevated TORC1 activity. Biol Open 2020; 9:bio054999. [PMID: 33037015 PMCID: PMC7657477 DOI: 10.1242/bio.054999] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2020] [Accepted: 09/29/2020] [Indexed: 11/20/2022] Open
Abstract
Target of rapamycin complex 1 (TORC1) is a master regulator of cell metabolism, and its dysregulation has been linked to an array of pathologies, including cancer and age-related diseases. Nprl3, a component of GTPase-activating protein towards Rags complex 1 (GATOR1), inhibits TORC1 activity under nutrient scarcity status. The nprl3 mutant exhibits some metabolic defects due to hyper TORC1 activity in Drosophila Royal jelly (RJ) is a honeybee-secreted product and plays an essential role in caste differentiation that requires TORC1 activity. RJ is also used as a health-benefit food for its potential roles on antioxidant and anti-aging. In this study, nprl3-mutant flies were used to measure the effect of RJ on metabolic modulation. Interestingly, RJ feeding significantly increased survival and decreased TORC1 activity in the nprl3 mutant. RJ feeding also ameliorated the abnormal reactive oxygen species (ROS) levels and energy status in the nprl3 mutant. The proteins in RJ were characterized to be the essential components in increasing nprl3 mutant viability. These findings suggest that RJ modulates some metabolic defects associated with elevated TORC1 activity and that the nprl3-mutant fly might be a useful tool for investigating the bioactive components of RJ in vivo.
Collapse
Affiliation(s)
- Yang Cheng
- College of Bioscience and Biotechnology, Yangzhou University, Yangzhou 225009, China
- Joint International Research Laboratory of Agriculture and Agri-Product Safety, the Ministry of Education of China, Yangzhou University, Yangzhou 225009, China
- Institute of Metabolism and Reproduction, Yangzhou University, Yangzhou 225009, China
| | - Jiadong Cai
- College of Bioscience and Biotechnology, Yangzhou University, Yangzhou 225009, China
| | - Yuanyuan Fu
- Joint International Research Laboratory of Agriculture and Agri-Product Safety, the Ministry of Education of China, Yangzhou University, Yangzhou 225009, China
| | - Congjing Feng
- College of Horticulture and Plant Protection, Yangzhou University, Yangzhou 225009, China
| | - Yue Hao
- Key Laboratory of Pollinating Insect Biology, Ministry of Agriculture, Beijing 100093, China
| | - Youheng Wei
- College of Bioscience and Biotechnology, Yangzhou University, Yangzhou 225009, China
- Joint International Research Laboratory of Agriculture and Agri-Product Safety, the Ministry of Education of China, Yangzhou University, Yangzhou 225009, China
- Institute of Metabolism and Reproduction, Yangzhou University, Yangzhou 225009, China
| |
Collapse
|
30
|
Wang Y, Amdam GV, Daniels BC, Page RE. Tyramine and its receptor TYR1 linked behavior QTL to reproductive physiology in honey bee workers (Apis mellifera). JOURNAL OF INSECT PHYSIOLOGY 2020; 126:104093. [PMID: 32763247 DOI: 10.1016/j.jinsphys.2020.104093] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/26/2020] [Revised: 06/23/2020] [Accepted: 08/02/2020] [Indexed: 06/11/2023]
Abstract
Honey bees (Apis mellifera) provide an excellent model for studying how complex social behavior evolves and is regulated. Social behavioral traits such as the division of labor have been mapped to specific genomic regions in quantitative trait locus (QTL) studies. However, relating genomic mapping to gene function and regulatory mechanism remains a big challenge for geneticists. In honey bee workers, division of labor is known to be regulated by reproductive physiology, but the genetic basis of this regulation remains unknown. In this case, QTL studies have identified tyramine receptor 1 (TYR1) as a candidate gene in region pln2, which is associated with multiple worker social traits and reproductive anatomy. Tyramine (TA), a neurotransmitter, regulates physiology and behavior in diverse insect species including honey bees. Here, we examine directly the effects of TYR1 and TA on worker reproductive physiology, including ovariole number, ovary function and the production of vitellogenin (VG, an egg yolk precursor). First, we used a pharmacology approach to demonstrate that TA affects ovariole number during worker larval development and increases ovary maturation during the adult stage. Second, we used a gene knockdown approach to show that TYR1 regulates vg transcription in adult workers. Finally, we estimated correlations in gene expression and propose that TYR1 may regulate vg transcription by coordinating hormonal and nutritional signals. Taken together, our results suggest TYR1 and TA play important roles in regulating worker reproductive physiology, which in turn regulates social behavior. Our study exemplifies a successful forward-genetic strategy going from QTL mapping to gene function.
Collapse
Affiliation(s)
- Ying Wang
- Banner Health Corporation, PO Box 16423, Phoenix, AZ 85012, USA
| | - Gro V Amdam
- School of Life Sciences, Arizona State University, PO Box 874501, Tempe, AZ 85287, USA; Department of Ecology and Natural Resource Management, Norwegian University of Life Sciences, 1430 Aas, Norway
| | - Bryan C Daniels
- ASU-SFI Center for Biosocial Complex Systems, Arizona State University, PO Box 872701, Tempe, AZ 85287, USA
| | - Robert E Page
- School of Life Sciences, Arizona State University, PO Box 874501, Tempe, AZ 85287, USA; Department of Entomology and Nematology, University of California Davis, One Shields Avenue, Davis, CA 95616, USA
| |
Collapse
|
31
|
Slater GP, Yocum GD, Bowsher JH. Diet quantity influences caste determination in honeybees ( Apis mellifera). Proc Biol Sci 2020; 287:20200614. [PMID: 32453984 PMCID: PMC7287363 DOI: 10.1098/rspb.2020.0614] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2020] [Accepted: 04/27/2020] [Indexed: 11/28/2022] Open
Abstract
In species that care for their young, provisioning has profound effects on offspring fitness. Provisioning is important in honeybees because nutritional cues determine whether a female becomes a reproductive queen or sterile worker. A qualitative difference between the larval diets of queens and workers is thought to drive this divergence; however, no single compound seems to be responsible. Diet quantity may have a role during honeybee caste determination yet has never been formally studied. Our goal was to determine the relative contributions of diet quantity and quality to queen development. Larvae were reared in vitro on nine diets varying in the amount of royal jelly and sugars, which were fed to larvae in eight different quantities. For the middle diet, an ad libitum quantity treatment was included. Once adults eclosed, the queenliness was determined using principal component analysis on seven morphological measurements. We found that larvae fed an ad libitum quantity of diet were indistinguishable from commercially reared queens, and that queenliness was independent of the proportion of protein and carbohydrate in the diet. Neither protein nor carbohydrate content had a significant influence on the first principle component 1 (PC1), which explained 64.4% of the difference between queens and workers. Instead, the total quantity of diet explained a significant amount of the variation in PC1. Large amounts of diet in the final instar were capable of inducing queen traits, contrary to the received wisdom that queen determination can only occur in the third instar. These results indicate that total diet quantity fed to larvae may regulate the difference between queen and worker castes in honeybees.
Collapse
Affiliation(s)
- Garett P. Slater
- Department of Biological Sciences, North Dakota State University, PO Box 6050, Fargo, ND 58108, USA
| | - George D. Yocum
- Biosciences Research Laboratory, USDA-ARS Edward T. Schafer Agricultural Research Center, 1605 Albrecht Boulevard, Fargo, ND 58102-2765, USA
| | - Julia H. Bowsher
- Department of Biological Sciences, North Dakota State University, PO Box 6050, Fargo, ND 58108, USA
| |
Collapse
|
32
|
Lee YH, Jeong CB, Wang M, Hagiwara A, Lee JS. Transgenerational acclimation to changes in ocean acidification in marine invertebrates. MARINE POLLUTION BULLETIN 2020; 153:111006. [PMID: 32275552 DOI: 10.1016/j.marpolbul.2020.111006] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/30/2019] [Revised: 02/18/2020] [Accepted: 02/19/2020] [Indexed: 06/11/2023]
Abstract
The rapid pace of increasing oceanic acidity poses a major threat to the fitness of the marine ecosystem, as well as the buffering capacity of the oceans. Disruption in chemical equilibrium in the ocean leads to decreased carbonate ion precipitation, resulting in calcium carbonate saturation. If these trends continue, calcifying invertebrates will experience difficultly maintaining their calcium carbonate exoskeleton and shells. Because malfunction of exoskeleton formation by calcifiers in response to ocean acidification (OA) will have non-canonical biological cascading results in the marine ecosystem, many studies have investigated the direct and indirect consequences of OA on ecosystem- and physiology-related traits of marine invertebrates. Considering that evolutionary adaptation to OA depends on the duration of OA effects, long-term exposure to OA stress over multi-generations may result in adaptive mechanisms that increase the potential fitness of marine invertebrates in response to OA. Transgenerational studies have the potential to elucidate the roles of acclimation, carryover effects, and evolutionary adaptation within and over generations in response to OA. In particular, understanding mechanisms of transgenerational responses (e.g., antioxidant responses, metabolic changes, epigenetic reprogramming) to changes in OA will enhance our understanding of marine invertebrate in response to rapid climate change.
Collapse
Affiliation(s)
- Young Hwan Lee
- Department of Biological Science, College of Science, Sungkyunkwan University, Suwon 16419, South Korea
| | - Chang-Bum Jeong
- Department of Biological Science, College of Science, Sungkyunkwan University, Suwon 16419, South Korea; Department of Marine Science, College of Nature Science, Incheon National University, Incheon 22012, South Korea
| | - Minghua Wang
- State Key Laboratory of Marine Environmental Science/College of the Environment & Ecology, Xiamen University, Xiamen 36110, China; Fujian Provincial Key Laboratory for Coastal Ecology and Environmental Studies, Xiamen University, Xiamen 361102, China
| | - Atsushi Hagiwara
- Institute of Integrated Science and Technology, Nagasaki University, Nagasaki 852-8521, Japan; Organization for Marine Science and Technology, Nagasaki University, Nagasaki 852-8521, Japan
| | - Jae-Seong Lee
- Department of Biological Science, College of Science, Sungkyunkwan University, Suwon 16419, South Korea.
| |
Collapse
|
33
|
Araki M, Miyakawa MO, Suzuki T, Miyakawa H. Two insulin‐like peptides may regulate egg production in opposite directions via juvenile hormone signaling in the queenless antPristomyrmex punctatus. JOURNAL OF EXPERIMENTAL ZOOLOGY PART B-MOLECULAR AND DEVELOPMENTAL EVOLUTION 2020; 334:225-234. [DOI: 10.1002/jez.b.22935] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/25/2019] [Revised: 01/29/2020] [Accepted: 01/30/2020] [Indexed: 12/11/2022]
Affiliation(s)
- Marina Araki
- Center for Bioscience Research and EducationUtsunomiya UniversityUtsunomiya Tochigi Japan
| | - Misato O. Miyakawa
- Center for Bioscience Research and EducationUtsunomiya UniversityUtsunomiya Tochigi Japan
| | - Tomohiro Suzuki
- Center for Bioscience Research and EducationUtsunomiya UniversityUtsunomiya Tochigi Japan
| | - Hitoshi Miyakawa
- Center for Bioscience Research and EducationUtsunomiya UniversityUtsunomiya Tochigi Japan
| |
Collapse
|
34
|
Glastad KM, Graham RJ, Ju L, Roessler J, Brady CM, Berger SL. Epigenetic Regulator CoREST Controls Social Behavior in Ants. Mol Cell 2019; 77:338-351.e6. [PMID: 31732456 DOI: 10.1016/j.molcel.2019.10.012] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2019] [Revised: 09/13/2019] [Accepted: 10/11/2019] [Indexed: 11/25/2022]
Abstract
Ants acquire distinct morphological and behavioral phenotypes arising from a common genome, underscoring the importance of epigenetic regulation. In Camponotus floridanus, "Major" workers defend the colony, but can be epigenetically reprogrammed to forage for food analogously to "Minor" workers. Here, we utilize reprogramming to investigate natural behavioral specification. Reprogramming of Majors upregulates Minor-biased genes and downregulates Major-biased genes, engaging molecular pathways fundamental to foraging behavior. We discover the neuronal corepressor for element-1-silencing transcription factor (CoREST) is upregulated upon reprogramming and required for the epigenetic switch to foraging. Genome-wide profiling during reprogramming reveals CoREST represses expression of enzymes that degrade juvenile hormone (JH), a hormone elevated upon reprogramming. High CoREST, low JH-degrader expression, and high JH levels are mirrored in natural Minors, revealing parallel mechanisms of natural and reprogrammed foraging. These results unveil chromatin regulation via CoREST as central to programming of ant social behavior, with potential far-reaching implications for behavioral epigenetics.
Collapse
Affiliation(s)
- Karl M Glastad
- Epigenetics Institute, Department of Cell and Developmental Biology, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Riley J Graham
- Epigenetics Institute, Department of Cell and Developmental Biology, University of Pennsylvania, Philadelphia, PA 19104, USA; Department of Biology, School of Arts and Sciences, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Linyang Ju
- Epigenetics Institute, Department of Cell and Developmental Biology, University of Pennsylvania, Philadelphia, PA 19104, USA; Department of Biology, School of Arts and Sciences, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Julian Roessler
- Epigenetics Institute, Department of Cell and Developmental Biology, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Cristina M Brady
- Epigenetics Institute, Department of Cell and Developmental Biology, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Shelley L Berger
- Epigenetics Institute, Department of Cell and Developmental Biology, University of Pennsylvania, Philadelphia, PA 19104, USA; Department of Genetics, University of Pennsylvania, Philadelphia, PA 19104, USA; Department of Biology, School of Arts and Sciences, University of Pennsylvania, Philadelphia, PA 19104, USA.
| |
Collapse
|
35
|
Genetics in the Honey Bee: Achievements and Prospects toward the Functional Analysis of Molecular and Neural Mechanisms Underlying Social Behaviors. INSECTS 2019; 10:insects10100348. [PMID: 31623209 PMCID: PMC6835989 DOI: 10.3390/insects10100348] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/06/2019] [Revised: 10/13/2019] [Accepted: 10/14/2019] [Indexed: 12/31/2022]
Abstract
The European honey bee is a model organism for studying social behaviors. Comprehensive analyses focusing on the differential expression profiles of genes between the brains of nurse bees and foragers, or in the mushroom bodies—the brain structure related to learning and memory, and multimodal sensory integration—has identified candidate genes related to honey bee behaviors. Despite accumulating knowledge on the expression profiles of genes related to honey bee behaviors, it remains unclear whether these genes actually regulate social behaviors in the honey bee, in part because of the scarcity of genetic manipulation methods available for application to the honey bee. In this review, we describe the genetic methods applied to studies of the honey bee, ranging from classical forward genetics to recently developed gene modification methods using transposon and CRISPR/Cas9. We then discuss future functional analyses using these genetic methods targeting genes identified by the preceding research. Because no particular genes or neurons unique to social insects have been found yet, further exploration of candidate genes/neurons correlated with sociality through comprehensive analyses of mushroom bodies in the aculeate species can provide intriguing targets for functional analyses, as well as insight into the molecular and neural bases underlying social behaviors.
Collapse
|
36
|
De Souza DA, Hartfelder KH, Tarpy DR. Effects of larval Age at Grafting and Juvenile Hormone on Morphometry and Reproductive Quality Parameters of in Vitro Reared Honey Bees (Hymenoptera: Apidae). JOURNAL OF ECONOMIC ENTOMOLOGY 2019; 112:2030-2039. [PMID: 31145456 DOI: 10.1093/jee/toz148] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/04/2019] [Indexed: 06/09/2023]
Abstract
The honey bee queen plays a central role in the Apis mellifera L. (Hymenoptera: Apidae) colony, and her high reproductive capacity is fundamental for building up the workforce of a colony. Caste development in honey bee females involves elaborate physiological pathways unleashed at the beginning of the first larval instars, with juvenile hormone (JH) playing a crucial role. Here we took advantage of established in vitro rearing techniques to conduct a 2 × 2 experimental design and test initial rearing age (young vs old) and JH treatment (JH III vs solvent control) to enlighten the role of nutrient quality and JH in shaping honey bee female fertility, morphological features related to queenliness, and key physiological parameters (hemolymph vitellogenin/Vg, sugar levels, and Vg transcript levels). Our results show that while the age at initial larval rearing had major impacts on external morphology development, where younger larvae exhibited a higher probability to develop into queen-like adults morphotypes, the JH application during the larval stage improved physiological pathways related to ovary development and metabolism during the ontogenic development. We detected that the supplementation of queen larvae with JH promoted important benefits regarding queen fertility as the increase of ovariole number and vg levels at hemolymph, both crucial factors at eggs production. The data presented here provide guidance in efforts to improve honey bee queen quality, especially in light of frequent episodes of queen failures in the beekeeping industry.
Collapse
Affiliation(s)
- Daiana A De Souza
- Departamento de Biologia Celular e Molecular e Bioagentes Patogênicos, Faculdade de Medicina de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, SP
- Department of Entomology & Plant Pathology, North Carolina State University, Campus, Raleigh, NC
| | - Klaus H Hartfelder
- Departamento de Biologia Celular e Molecular e Bioagentes Patogênicos, Faculdade de Medicina de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, SP
| | - David R Tarpy
- Department of Entomology & Plant Pathology, North Carolina State University, Campus, Raleigh, NC
- W. M. Keck Center for Behavioral Biology, North Carolina State University, Raleigh, NC
| |
Collapse
|
37
|
Dittmann M, Buczkowski G, Scharf M, Bennett G. Gene expression changes in response to field-to-lab transition in the Argentine ant, Linepithema humile. JOURNAL OF INSECT PHYSIOLOGY 2019; 117:103901. [PMID: 31207215 DOI: 10.1016/j.jinsphys.2019.103901] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/14/2019] [Revised: 06/12/2019] [Accepted: 06/13/2019] [Indexed: 06/09/2023]
Abstract
Gene expression research is a valuable tool for investigating how gene regulation and expression control the underlying behaviors that structure a eusocial insect colony. However, labs that focus on ant research frequently keep ant colonies in the lab for ease of sampling. It is typically impractical to accurately emulate the field conditions where ants are collected from, so laboratory colonies can be exposed to drastically different environmental conditions and food sources than they are naturally exposed to in the wild. These shifts in diet and environment can cause changes in the gene expression of the ants, affecting downstream behavioral and physiological systems. To examine the nature of these changes, colonies of the Argentine ant, Linepithema humile (Mayr, 1868), were excavated from North Carolina and transferred to the lab, where they were sampled monthly. Illumina and qPCR analyses were conducted on forager samples to detect any changes in gene expression. Approximately six percent of the Argentine ant genome, which represents 765 genes, showed changes in gene regulation after six months in the laboratory environment. The subset of these genes examined via qPCR show that the expression of many genes are correlated with each other, indicating that these genes might be a part of a regulatory network. These findings showed that ant colonies kept in the lab experience changes in gene expression, resulting in downstream effects. Therefore, lab ant colonies are not necessarily representative of wild colonies when conducting experiments on the gene expression, behavior, and physiology of these colonies.
Collapse
Affiliation(s)
- Mathew Dittmann
- Department of Entomology, Purdue University, West Lafayette, IN 47907, USA.
| | | | - Michael Scharf
- Department of Entomology, Purdue University, West Lafayette, IN 47907, USA
| | - Gary Bennett
- Department of Entomology, Purdue University, West Lafayette, IN 47907, USA
| |
Collapse
|
38
|
Quque M, Benhaim-Delarbre M, Deneubourg JL, Sueur C, Criscuolo F, Bertile F. Division of labour in the black garden ant (Lasius niger) leads to three distinct proteomes. JOURNAL OF INSECT PHYSIOLOGY 2019; 117:103907. [PMID: 31255645 DOI: 10.1016/j.jinsphys.2019.103907] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/03/2019] [Revised: 06/26/2019] [Accepted: 06/26/2019] [Indexed: 06/09/2023]
Abstract
Task specialization in social insects leads to striking intra-specific differences in behaviour, morphology, physiology and longevity, but the underlying mechanisms remain not yet fully understood. Adult colonies of black garden ants (Lasius niger) have a single queen fertilized by one or a small number of males. The inter-individual genetic variability is thus relatively low, making it easier to focus on the individual molecular differences linked to the division of labour. Mass spectrometry-based proteomics enabled us to highlight which biological functions create the difference between queens, foragers and nest-workers. The proteome of each caste reflected nicely their social role: e.g., reproduction for queens, pesticide resistance for foragers - that are the most exposed to environmental risk factors - and, interestingly, digestion for nest-workers, thus highlighting proteomic profiles differences even among workers. Furthermore, our exploratory approach suggests energy trade-off mechanisms - in connection with the theory of social immunity - that might explain the difference in longevity between queens and workers. This study brings evidence that proteomics is able to highlight the subtle mechanisms of molecular regulation induced by social organization.
Collapse
Affiliation(s)
- Martin Quque
- Université de Strasbourg, CNRS, IPHC UMR 7178, F-67000 Strasbourg, France.
| | | | - Jean-Louis Deneubourg
- Université Libre de Bruxelles, CPBT, CP231, Av. F. Roosevelt 50, 1050 Bruxelles, Belgium
| | - Cédric Sueur
- Université de Strasbourg, CNRS, IPHC UMR 7178, F-67000 Strasbourg, France
| | - François Criscuolo
- Université de Strasbourg, CNRS, IPHC UMR 7178, F-67000 Strasbourg, France
| | - Fabrice Bertile
- Université de Strasbourg, CNRS, IPHC UMR 7178, F-67000 Strasbourg, France
| |
Collapse
|
39
|
Lin X, De Schutter K, Chafino S, Franch-Marro X, Martín D, Smagghe G. Target of rapamycin (TOR) determines appendage size during pupa formation of the red flour beetle Tribolium castaneum. JOURNAL OF INSECT PHYSIOLOGY 2019; 117:103902. [PMID: 31233769 DOI: 10.1016/j.jinsphys.2019.103902] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/31/2019] [Revised: 06/19/2019] [Accepted: 06/20/2019] [Indexed: 06/09/2023]
Abstract
The adult body size is species-specific and controlled by complex interactions between hormones and the IIS/TOR pathway. To analyze the role of target of rapamycin (TOR) in the growth and development of the insect, expression levels of TOR were silenced in the model and pest insect red flour beetle, Tribolium castaneum. Injection of dsRNA into the last larval instar decreased pupal mass and size, while the amount of food intake by the larvae was not affected. These results place TcTOR downstream of nutrition as a transducer for nutritional signals to increase larval growth. In addition, TcTOR-silencing notably decreased the size of the adult appendages. Analysis of the wings and elytra revealed a decrease in cell size and number of these appendages in the TcTOR-silenced insects. This reduction in size was correlated with a decrease of transcriptional levels of marker genes controlling the cell cycle. Altogether, these results suggest a pivotal role for TcTOR in integrating nutritional signals and regulation of body and appendages growth.
Collapse
Affiliation(s)
- Xianyu Lin
- Department of Plants and Crops, Ghent University, 9000 Ghent, Belgium
| | | | - Silvia Chafino
- Institute of Evolutionary Biology (IBE), CSIC- Pompeu Fabra University, E-08003 Barcelona, Spain
| | - Xavier Franch-Marro
- Institute of Evolutionary Biology (IBE), CSIC- Pompeu Fabra University, E-08003 Barcelona, Spain
| | - David Martín
- Institute of Evolutionary Biology (IBE), CSIC- Pompeu Fabra University, E-08003 Barcelona, Spain
| | - Guy Smagghe
- Department of Plants and Crops, Ghent University, 9000 Ghent, Belgium.
| |
Collapse
|
40
|
Corby-Harris V, Snyder L, Meador C. Fat body lipolysis connects poor nutrition to hypopharyngeal gland degradation in Apis mellifera. JOURNAL OF INSECT PHYSIOLOGY 2019; 116:1-9. [PMID: 30953617 DOI: 10.1016/j.jinsphys.2019.04.001] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/26/2018] [Revised: 03/18/2019] [Accepted: 04/02/2019] [Indexed: 06/09/2023]
Abstract
The hypopharyngeal glands (HGs) of honey bee nurse workers secrete the major protein fraction of jelly, a protein and lipid rich substance fed to developing larvae, other worker bees, and queens. A hallmark of poorly nourished nurses is their small HGs, which actively degrade due to hormone-induced autophagy. To better connect nutritional stress with HG degradation, we looked to honey bees and other insect systems, where nutrient stress is often accompanied by fat body degradation. The fat body contains stored lipids that are likely a substrate for ecdysteroid synthesis, so we tested whether starvation caused increased fat body lipolysis. Ecdysteroid signaling and response pathways and IIS/TOR are tied to nutrient-dependent autophagy in honey bees and other insects, and so we also tested whether and where genes in these pathways were differentially regulated in the head and fat body. Last, we injected nurse-aged bees with the honey bee ecdysteroid makisterone A to determine whether this hormone influenced HG size and autophagy. We find that starved nurse aged bees exhibited increased fat body lipolysis and increased expression of ecdysteroid production and response genes in the head. Genes in the IIS/TOR pathway were not impacted by starvation in either the head or fat body. Additionally, bees injected with makisterone A had smaller HGs and increased expression of autophagy genes. These data support the hypothesis that nutritional stress induces fat body lipolysis, which may liberate the sterols important for ecdysteroid production, and that increased ecdysteroid levels induce autophagic HG degradation.
Collapse
Affiliation(s)
| | - Lucy Snyder
- Carl Hayden Bee Research Center, USDA-ARS, Tucson, AZ 85718, USA
| | - Charlotte Meador
- Carl Hayden Bee Research Center, USDA-ARS, Tucson, AZ 85718, USA
| |
Collapse
|
41
|
He XJ, Jiang WJ, Zhou M, Barron AB, Zeng ZJ. A comparison of honeybee (Apis mellifera) queen, worker and drone larvae by RNA-Seq. INSECT SCIENCE 2019; 26:499-509. [PMID: 29110379 DOI: 10.1111/1744-7917.12557] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/12/2017] [Revised: 09/08/2017] [Accepted: 09/28/2017] [Indexed: 06/07/2023]
Abstract
Honeybees (Apis mellifera) have haplodiploid sex determination: males develop from unfertilized eggs and females develop from fertilized ones. The differences in larval food also determine the development of females. Here we compared the total somatic gene expression profiles of 2-day and 4-day-old drone, queen and worker larvae by RNA-Seq. The results from a co-expression network analysis on all expressed genes showed that 2-day-old drone and worker larvae were closer in gene expression profiles than 2-day-old queen larvae. This indicated that for young larvae (2-day-old) environmental factors such as larval diet have a greater effect on gene expression profiles than ploidy or sex determination. Drones had the most distinct gene expression profiles at the 4-day larval stage, suggesting that haploidy, or sex dramatically affects the gene expression of honeybee larvae. Drone larvae showed fewer differences in gene expression profiles at the 2-day and 4-day time points than the worker and queen larval comparisons (598 against 1190 and 1181), suggesting a different pattern of gene expression regulation during the larval development of haploid males compared to diploid females. This study indicates that early in development the queen caste has the most distinct gene expression profile, perhaps reflecting the very rapid growth and morphological specialization of this caste compared to workers and drones. Later in development the haploid male drones have the most distinct gene expression profile, perhaps reflecting the influence of ploidy or sex determination on gene expression.
Collapse
Affiliation(s)
- Xu-Jiang He
- Honeybee Research Institute, Jiangxi Agricultural University, Nanchang, China
| | - Wu-Jun Jiang
- Honeybee Research Institute, Jiangxi Agricultural University, Nanchang, China
| | - Mi Zhou
- Biomarker Technologies Co., Ltd., Beijing, China
| | - Andrew B Barron
- Department of Biological Sciences, Macquarie University, North Ryde, NSW, Australia
| | - Zhi-Jiang Zeng
- Honeybee Research Institute, Jiangxi Agricultural University, Nanchang, China
| |
Collapse
|
42
|
Shilovsky GA, Putyatina TS, Ashapkin VV, Rozina AA, Lyubetsky VA, Minina EP, Bychkovskaia IB, Markov AV, Skulachev VP. Ants as Object of Gerontological Research. BIOCHEMISTRY (MOSCOW) 2019; 83:1489-1503. [PMID: 30878024 DOI: 10.1134/s0006297918120076] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
Social insects with identical genotype that form castes with radically different lifespans are a promising model system for studying the mechanisms underlying longevity. The main direction of progressive evolution of social insects, in particular, ants, is the development of the social way of life inextricably linked with the increase in the colony size. Only in a large colony, it is possible to have a developed polyethism, create large food reserves, and actively regulate the nest microclimate. The lifespan of ants hugely varies among genetically similar queens, workers (unproductive females), and males. The main advantage of studies on insects is the determinism of ontogenetic processes, with a single genome leading to completely different lifespans in different castes. This high degree of determinacy is precisely the reason why some researchers (incorrectly) call a colony of ants the "superorganism", emphasizing the fact that during the development, depending on the community needs, ants can switch their ontogenetic programs, which influences their social roles, ability to learn (i.e., the brain [mushroom-like body] plasticity), and, respectively, the spectrum of tasks performed by a given individual. It has been shown that in many types of food behavior, older ants surpass young ones in both performing the tasks and transferring the experience. The balance between the need to reduce the "cost" of non-breeding individuals (short lifespan and small size of workers) and the benefit from experienced long-lived workers possessing useful skills (large size and "non-aging") apparently determines the differences in the lifespan and aging rate of workers in different species of ants. A large spectrum of rigidly determined ontogenetic trajectories in different castes with identical genomes and the possibility of comparison between "evolutionarily advanced" and "primitive" subfamilies (e.g., Formicinae and Ponerinae) make ants an attractive object in the studies of both normal aging and effects of anti-aging drugs.
Collapse
Affiliation(s)
- G A Shilovsky
- Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Moscow, 119991, Russia. .,Lomonosov Moscow State University, Faculty of Biology, Moscow, 119234, Russia.,Institute for Information Transmission Problems, Russian Academy of Sciences, Moscow, 127051, Russia
| | - T S Putyatina
- Lomonosov Moscow State University, Faculty of Biology, Moscow, 119234, Russia
| | - V V Ashapkin
- Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Moscow, 119991, Russia
| | - A A Rozina
- Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Moscow, 119991, Russia
| | - V A Lyubetsky
- Institute for Information Transmission Problems, Russian Academy of Sciences, Moscow, 127051, Russia
| | - E P Minina
- Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Moscow, 119991, Russia
| | - I B Bychkovskaia
- Nikiforov Center of Emergency and Radiation Medicine of the Russian Ministry of Emergency Control, St. Petersburg, 194044, Russia
| | - A V Markov
- Lomonosov Moscow State University, Faculty of Biology, Moscow, 119234, Russia
| | - V P Skulachev
- Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Moscow, 119991, Russia
| |
Collapse
|
43
|
Roth A, Vleurinck C, Netschitailo O, Bauer V, Otte M, Kaftanoglu O, Page RE, Beye M. A genetic switch for worker nutrition-mediated traits in honeybees. PLoS Biol 2019; 17:e3000171. [PMID: 30897091 PMCID: PMC6428258 DOI: 10.1371/journal.pbio.3000171] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2018] [Accepted: 02/13/2019] [Indexed: 12/14/2022] Open
Abstract
Highly social insects are characterized by caste dimorphism, with distinct size differences of reproductive organs between fertile queens and the more or less sterile workers. An abundance of nutrition or instruction via diet-specific compounds has been proposed as explanations for the nutrition-driven queen and worker polyphenism. Here, we further explored these models in the honeybee (Apis mellifera) using worker nutrition rearing and a novel mutational screening approach using the clustered regularly interspaced short palindromic repeats/CRISPR-associated protein 9 (CRISPR/Cas9) method. The worker nutrition-driven size reduction of reproductive organs was restricted to the female sex, suggesting input from the sex determination pathway. Genetic screens on the sex determination genes in genetic females for size polyphenism revealed that doublesex (dsx) mutants display size-reduced reproductive organs irrespective of the sexual morphology of the organ tissue. In contrast, feminizer (fem) mutants lost the response to worker nutrition-driven size control. The first morphological worker mutants in honeybees demonstrate that the response to nutrition relies on a genetic program that is switched “ON” by the fem gene. Thus, the genetic instruction provided by the fem gene provides an entry point to genetically dissect the underlying processes that implement the size polyphenism. In honeybees, nutrition drives dimorphic size development of reproductive organs in fertile queens and sterile workers. A study using the first induced morphological mutants in honeybees demonstrates that this developmental plasticity requires a genetic program that is switched on by the “feminizer” gene. In honeybees, nutrition drives dimorphic size development of reproductive organs in fertile queens and sterile workers. The first induced morphological mutants in honeybees demonstrate that this developmental plasticity requires a genetic program that is switched “ON” by the feminizer (fem) gene.
Collapse
Affiliation(s)
- Annika Roth
- Institute of Evolutionary Genetics, Heinrich-Heine University Dusseldorf, Düsseldorf, Germany
| | - Christina Vleurinck
- Institute of Evolutionary Genetics, Heinrich-Heine University Dusseldorf, Düsseldorf, Germany
| | - Oksana Netschitailo
- Institute of Evolutionary Genetics, Heinrich-Heine University Dusseldorf, Düsseldorf, Germany
| | - Vivien Bauer
- Institute of Evolutionary Genetics, Heinrich-Heine University Dusseldorf, Düsseldorf, Germany
| | - Marianne Otte
- Institute of Evolutionary Genetics, Heinrich-Heine University Dusseldorf, Düsseldorf, Germany
| | - Osman Kaftanoglu
- School of Life Sciences, Arizona State University, Phoenix, Arizona, United States of America
| | - Robert E. Page
- School of Life Sciences, Arizona State University, Phoenix, Arizona, United States of America
- Department of Entomology and Nematology, University of California Davis, Davis, California, United States of America
| | - Martin Beye
- Institute of Evolutionary Genetics, Heinrich-Heine University Dusseldorf, Düsseldorf, Germany
- * E-mail:
| |
Collapse
|
44
|
Luna-Lucena D, Rabico F, Simoes ZL. Reproductive capacity and castes in eusocial stingless bees (Hymenoptera: Apidae). CURRENT OPINION IN INSECT SCIENCE 2019; 31:20-28. [PMID: 31109669 DOI: 10.1016/j.cois.2018.06.006] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/07/2018] [Accepted: 06/25/2018] [Indexed: 06/09/2023]
Abstract
Eusocial lifestyle is one of the most important transitions in the evolutionary history of some groups of organisms. In bees, there are only two eusocial groups: the honey bees (Apini) and the stingless bees (Meliponini). Despite similarities on the eusocial lifestyles of these taxa, they present profound differences related to caste determination, development, behavior, and reproductive capacity of their members. In most of them the queen has a monopoly on reproduction. However, even though workers are tipically sterile, they can contribute to producing haploid eggs that generate males, or trophic eggs, used as an additional nutrition by the queen.
Collapse
Affiliation(s)
- Danielle Luna-Lucena
- Departamento de Genética, Faculdade de Medicina de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, Brazil.
| | - Franciene Rabico
- Departamento de Genética, Faculdade de Medicina de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, Brazil
| | - Zilá Lp Simoes
- Departamento de Genética, Faculdade de Medicina de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, Brazil; Departamento de Biologia, Faculdade de Filosofia, Ciências e Letras de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, Brazil.
| |
Collapse
|
45
|
Li J, Heerman MC, Evans JD, Rose R, Li W, Rodríguez-García C, DeGrandi-Hoffman G, Zhao Y, Huang S, Li Z, Hamilton M, Chen Y. Pollen reverses decreased lifespan, altered nutritional metabolism, and suppressed immunity in honey bees (Apis mellifera) treated with antibiotics. J Exp Biol 2019; 222:jeb.202077. [DOI: 10.1242/jeb.202077] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2018] [Accepted: 02/25/2019] [Indexed: 12/20/2022]
Abstract
Nutrition is involved in regulating multiple aspects of honeybee biology such as caste, immunity, lifespan, growth and behavioral development. Deformed wing virus (DWV) is a major pathogenic factor which threatens honeybee populations, and its replication is regulated by nutrition status and immune responses of honeybees. The alimentary canal of the honeybee is home to a diverse microbial community that provides essential nutrients and serves to bolster immune responses. However, to what extent gut bacteria affect honeybee nutrition metabolism and immunity with respect to DWV has not been investigated fully. In this study, newly emerged worker bees were subjected to four diets that contained 1) pollen, 2) pollen and antibiotics, 3) neither pollen nor antibiotics, 4) antibiotics alone. The expression level of two nutrition genes target of rapamycin (tor) and insulin like peptide (ilp1), one nutritional marker gene vitellogenin (vg), five major royal jelly proteins genes (mrjp1-5), one antimicrobial peptide regulating gene relish (rel), and DWV virus titer and its replication intermediate, negative RNA strand, were determined by qRT-PCR from the honeybees after 7 days post antibiotic treatment. Additionally, honeybee head weight and survival rate were measured. We observed that antibiotics decreased the expression of tor and rel, increased DWV titer and its replication activity. Expression of ilp1, five mrjps, vg, and honeybee head weight were also reduced compared to bees on a pollen diet. Antibiotics also caused a significant drop in survivorship, which could be rescued by addition of pollen to diets. Of importance, pollen could partially rescue the loss of vg and mrjp2 while also increasing head weight of antibiotic-treated bees. Our results illuminate the roles of bacteria in honeybee nutrition, metabolism, and immunity; which confer the capability of inhibiting virus replication, extending honeybee lifespan, and improving overall health.
Collapse
Affiliation(s)
- Jianghong Li
- USDA-ARS Bee Research Laboratory, Bldg. 306, BARC-East, Beltsville, MD 20705, USA
- College of Bee Science, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Matthew C. Heerman
- USDA-ARS Bee Research Laboratory, Bldg. 306, BARC-East, Beltsville, MD 20705, USA
| | - Jay D. Evans
- USDA-ARS Bee Research Laboratory, Bldg. 306, BARC-East, Beltsville, MD 20705, USA
| | - Robyn Rose
- USDA APHIS, Plant Protection and Quarantine, 4700 River Rd, Riverdale, MD 20737, USA
| | - Wenfeng Li
- USDA-ARS Bee Research Laboratory, Bldg. 306, BARC-East, Beltsville, MD 20705, USA
| | | | | | - Yazhou Zhao
- USDA-ARS Bee Research Laboratory, Bldg. 306, BARC-East, Beltsville, MD 20705, USA
- Institute of Apicultural Research, Chinese Academy of Agriculture Sciences, Beijing, 100081, China
| | - Shaokang Huang
- College of Bee Science, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Zhiguo Li
- College of Bee Science, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Michele Hamilton
- USDA-ARS Bee Research Laboratory, Bldg. 306, BARC-East, Beltsville, MD 20705, USA
| | - Yanping Chen
- USDA-ARS Bee Research Laboratory, Bldg. 306, BARC-East, Beltsville, MD 20705, USA
| |
Collapse
|
46
|
De Souza DA, Kaftanoglu O, De Jong D, Page RE, Amdam GV, Wang Y. Differences in the morphology, physiology and gene expression of honey bee queens and workers reared in vitro versus in situ. Biol Open 2018; 7:bio036616. [PMID: 30341101 PMCID: PMC6262861 DOI: 10.1242/bio.036616] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2018] [Accepted: 09/26/2018] [Indexed: 11/26/2022] Open
Abstract
The effect of larval nutrition on female fertility in honey bees is a focus for both scientific studies and for practical applications in beekeeping. In general, morphological traits are standards for classifying queens and workers and for evaluating their quality. In recent years, in vitro rearing techniques have been improved and used in many studies; they can produce queen-like and worker-like bees. Here, we questioned whether queens and workers reared in vitro are the same as queens and workers reared in a natural hive environment. We reared workers and queens both in vitro and naturally in beehives to test how these different environments affect metabolic physiology and candidate genes in newly emerged queens and workers. We found that sugar (glucose and trehalose) levels differed between queens and workers in both in vitro and in-hive-reared bees. The in vitro-reared bees had significantly higher levels of lipids in the abdomen. Moreover, hive reared queens had almost 20 times higher levels of vitellogenin than in vitro-reared queens, despite similar morphologies. In addition, hive-reared bees had significantly higher levels of expression of mrjp1 In conclusion, in vitro rearing produces queens and workers that differ from those reared in the hive environment at physiological and gene expression levels.This article has an associated First Person interview with the first author of the paper.
Collapse
Affiliation(s)
- Daiana A De Souza
- Faculdade de Medicina de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, São Paulo 14049-900, Brazil
- Department of Entomology and Plant Pathology, North Carolina State University, Raleigh, NC 27695-7613, USA
| | - Osman Kaftanoglu
- School of Life Sciences, Arizona State University, Tempe, AZ 85287-4501, USA
| | - David De Jong
- Faculdade de Medicina de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, São Paulo 14049-900, Brazil
| | - Robert E Page
- School of Life Sciences, Arizona State University, Tempe, AZ 85287-4501, USA
- Department of Entomology and Nematology, University of California Davis, Davis, CA 95616, USA
| | - Gro V Amdam
- School of Life Sciences, Arizona State University, Tempe, AZ 85287-4501, USA
- Faculty of Environmental Sciences and Natural Resource Management, Norwegian University of Life Sciences, Aas 1432 Ås, Norway
| | - Ying Wang
- School of Life Sciences, Arizona State University, Tempe, AZ 85287-4501, USA
| |
Collapse
|
47
|
|
48
|
Armisén D, Rajakumar R, Friedrich M, Benoit JB, Robertson HM, Panfilio KA, Ahn SJ, Poelchau MF, Chao H, Dinh H, Doddapaneni HV, Dugan S, Gibbs RA, Hughes DST, Han Y, Lee SL, Murali SC, Muzny DM, Qu J, Worley KC, Munoz-Torres M, Abouheif E, Bonneton F, Chen T, Chiang LM, Childers CP, Cridge AG, Crumière AJJ, Decaras A, Didion EM, Duncan EJ, Elpidina EN, Favé MJ, Finet C, Jacobs CGC, Cheatle Jarvela AM, Jennings EC, Jones JW, Lesoway MP, Lovegrove MR, Martynov A, Oppert B, Lillico-Ouachour A, Rajakumar A, Refki PN, Rosendale AJ, Santos ME, Toubiana W, van der Zee M, Vargas Jentzsch IM, Lowman AV, Viala S, Richards S, Khila A. The genome of the water strider Gerris buenoi reveals expansions of gene repertoires associated with adaptations to life on the water. BMC Genomics 2018; 19:832. [PMID: 30463532 PMCID: PMC6249893 DOI: 10.1186/s12864-018-5163-2] [Citation(s) in RCA: 39] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2018] [Accepted: 10/14/2018] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Having conquered water surfaces worldwide, the semi-aquatic bugs occupy ponds, streams, lakes, mangroves, and even open oceans. The diversity of this group has inspired a range of scientific studies from ecology and evolution to developmental genetics and hydrodynamics of fluid locomotion. However, the lack of a representative water strider genome hinders our ability to more thoroughly investigate the molecular mechanisms underlying the processes of adaptation and diversification within this group. RESULTS Here we report the sequencing and manual annotation of the Gerris buenoi (G. buenoi) genome; the first water strider genome to be sequenced thus far. The size of the G. buenoi genome is approximately 1,000 Mb, and this sequencing effort has recovered 20,949 predicted protein-coding genes. Manual annotation uncovered a number of local (tandem and proximal) gene duplications and expansions of gene families known for their importance in a variety of processes associated with morphological and physiological adaptations to a water surface lifestyle. These expansions may affect key processes associated with growth, vision, desiccation resistance, detoxification, olfaction and epigenetic regulation. Strikingly, the G. buenoi genome contains three insulin receptors, suggesting key changes in the rewiring and function of the insulin pathway. Other genomic changes affecting with opsin genes may be associated with wavelength sensitivity shifts in opsins, which is likely to be key in facilitating specific adaptations in vision for diverse water habitats. CONCLUSIONS Our findings suggest that local gene duplications might have played an important role during the evolution of water striders. Along with these findings, the sequencing of the G. buenoi genome now provides us the opportunity to pursue exciting research opportunities to further understand the genomic underpinnings of traits associated with the extreme body plan and life history of water striders.
Collapse
Affiliation(s)
- David Armisén
- Institut de Génomique Fonctionnelle de Lyon, Université de Lyon, Université Claude Bernard Lyon 1, CNRS UMR 5242, Ecole Normale Supérieure de Lyon 46, allée d’Italie, 69364 Lyon Cedex 07, France
| | - Rajendhran Rajakumar
- Department of Molecular Genetics & Microbiology and UF Genetics Institute, University of Florida, 2033 Mowry Road, Gainesville, FL 32610-3610 USA
| | - Markus Friedrich
- Department of Biological Sciences, Wayne State University, Detroit, MI 48202 USA
| | - Joshua B. Benoit
- Department of Biological Sciences, McMicken College of Arts and Sciences, University of Cincinnati, 318 College Drive, Cincinnati, OH 45221-0006 USA
| | - Hugh M. Robertson
- Department of Entomology, University of Illinois at Urbana-Champaign, Urbana, IL 61801 USA
| | - Kristen A. Panfilio
- Institute for Zoology: Developmental Biology, University of Cologne, Zülpicher Str. 47b, 50674 Cologne, Germany
- School of Life Sciences, University of Warwick, Gibbet Hill Campus, Coventry, CV4 7AL UK
| | - Seung-Joon Ahn
- USDA-ARS Horticultural Crops Research Unit, 3420 NW Orchard Avenue, Corvallis, OR 97330 USA
- Department of Crop and Soil Science, Oregon State University, 3050 SW Campus Way, Corvallis, OR 97331 USA
| | - Monica F. Poelchau
- USDA Agricultural Research Service, National Agricultural Library, Beltsville, MD 20705 USA
| | - Hsu Chao
- Human Genome Sequencing Center, Department of Human and Molecular Genetics, Baylor College of Medicine, One Baylor Plaza, Houston, TX 77030 USA
| | - Huyen Dinh
- Human Genome Sequencing Center, Department of Human and Molecular Genetics, Baylor College of Medicine, One Baylor Plaza, Houston, TX 77030 USA
| | - Harsha Vardhan Doddapaneni
- Human Genome Sequencing Center, Department of Human and Molecular Genetics, Baylor College of Medicine, One Baylor Plaza, Houston, TX 77030 USA
| | - Shannon Dugan
- Human Genome Sequencing Center, Department of Human and Molecular Genetics, Baylor College of Medicine, One Baylor Plaza, Houston, TX 77030 USA
| | - Richard A. Gibbs
- Human Genome Sequencing Center, Department of Human and Molecular Genetics, Baylor College of Medicine, One Baylor Plaza, Houston, TX 77030 USA
| | - Daniel S. T. Hughes
- Human Genome Sequencing Center, Department of Human and Molecular Genetics, Baylor College of Medicine, One Baylor Plaza, Houston, TX 77030 USA
| | - Yi Han
- Human Genome Sequencing Center, Department of Human and Molecular Genetics, Baylor College of Medicine, One Baylor Plaza, Houston, TX 77030 USA
| | - Sandra L. Lee
- Human Genome Sequencing Center, Department of Human and Molecular Genetics, Baylor College of Medicine, One Baylor Plaza, Houston, TX 77030 USA
| | - Shwetha C. Murali
- Howard Hughes Medical Institute, University of Washington, Seattle, WA 98195 USA
| | - Donna M. Muzny
- Human Genome Sequencing Center, Department of Human and Molecular Genetics, Baylor College of Medicine, One Baylor Plaza, Houston, TX 77030 USA
| | - Jiaxin Qu
- Human Genome Sequencing Center, Department of Human and Molecular Genetics, Baylor College of Medicine, One Baylor Plaza, Houston, TX 77030 USA
| | - Kim C. Worley
- Human Genome Sequencing Center, Department of Human and Molecular Genetics, Baylor College of Medicine, One Baylor Plaza, Houston, TX 77030 USA
| | | | - Ehab Abouheif
- Department of Biology, McGill University, 1205 Avenue Docteur Penfield Avenue, Montréal, Québec H3A 1B1 Canada
| | - François Bonneton
- Institut de Génomique Fonctionnelle de Lyon, Université de Lyon, Université Claude Bernard Lyon 1, CNRS UMR 5242, Ecole Normale Supérieure de Lyon 46, allée d’Italie, 69364 Lyon Cedex 07, France
| | - Travis Chen
- Department of Biology, McGill University, 1205 Avenue Docteur Penfield Avenue, Montréal, Québec H3A 1B1 Canada
| | - Li-Mei Chiang
- USDA Agricultural Research Service, National Agricultural Library, Beltsville, MD 20705 USA
| | | | - Andrew G. Cridge
- Laboratory for Evolution and Development, Department of Biochemistry, University of Otago, P.O. Box 56, Dunedin, New Zealand
| | - Antonin J. J. Crumière
- Institut de Génomique Fonctionnelle de Lyon, Université de Lyon, Université Claude Bernard Lyon 1, CNRS UMR 5242, Ecole Normale Supérieure de Lyon 46, allée d’Italie, 69364 Lyon Cedex 07, France
| | - Amelie Decaras
- Institut de Génomique Fonctionnelle de Lyon, Université de Lyon, Université Claude Bernard Lyon 1, CNRS UMR 5242, Ecole Normale Supérieure de Lyon 46, allée d’Italie, 69364 Lyon Cedex 07, France
| | - Elise M. Didion
- Department of Biological Sciences, McMicken College of Arts and Sciences, University of Cincinnati, 318 College Drive, Cincinnati, OH 45221-0006 USA
| | - Elizabeth J. Duncan
- Laboratory for Evolution and Development, Department of Biochemistry, University of Otago, P.O. Box 56, Dunedin, New Zealand
- School of Biology, Faculty of Biological Sciences, University of Leeds, Leeds, LS2 9JT UK
| | - Elena N. Elpidina
- A.N. Belozersky Institute of Physico-Chemical Biology, Moscow State University, Moscow, 119991 Russia
| | - Marie-Julie Favé
- Department of Biology, McGill University, 1205 Avenue Docteur Penfield Avenue, Montréal, Québec H3A 1B1 Canada
| | - Cédric Finet
- Institut de Génomique Fonctionnelle de Lyon, Université de Lyon, Université Claude Bernard Lyon 1, CNRS UMR 5242, Ecole Normale Supérieure de Lyon 46, allée d’Italie, 69364 Lyon Cedex 07, France
| | - Chris G. C. Jacobs
- Institute of Biology, Leiden University, Sylviusweg 72, 2333 BE Leiden, Netherlands
- Max Planck Institute for Chemical Ecology, Hans-Knöll Strasse 8, 07745 Jena, Germany
| | | | - Emily C. Jennings
- Department of Biological Sciences, McMicken College of Arts and Sciences, University of Cincinnati, 318 College Drive, Cincinnati, OH 45221-0006 USA
| | - Jeffery W. Jones
- Department of Biological Sciences, Wayne State University, Detroit, MI 48202 USA
| | - Maryna P. Lesoway
- Department of Biology, McGill University, 1205 Avenue Docteur Penfield Avenue, Montréal, Québec H3A 1B1 Canada
- Smithsonian Tropical Research Institute, Apartado Postal 0843-03092, Balboa Ancon, Panama City, Panama
- Center of Life Sciences, Skolkovo Institute of Science and Technology, Skolkovo, 143025 Russia
| | - Mackenzie R. Lovegrove
- Laboratory for Evolution and Development, Department of Biochemistry, University of Otago, P.O. Box 56, Dunedin, New Zealand
| | - Alexander Martynov
- Center of Life Sciences, Skolkovo Institute of Science and Technology, Skolkovo, 143025 Russia
| | - Brenda Oppert
- USDA ARS Center for Grain and Animal Health Research, 1515 College Ave., Manhattan, KS-66502 USA
| | - Angelica Lillico-Ouachour
- Department of Biology, McGill University, 1205 Avenue Docteur Penfield Avenue, Montréal, Québec H3A 1B1 Canada
| | - Arjuna Rajakumar
- Department of Biology, McGill University, 1205 Avenue Docteur Penfield Avenue, Montréal, Québec H3A 1B1 Canada
| | - Peter Nagui Refki
- Institut de Génomique Fonctionnelle de Lyon, Université de Lyon, Université Claude Bernard Lyon 1, CNRS UMR 5242, Ecole Normale Supérieure de Lyon 46, allée d’Italie, 69364 Lyon Cedex 07, France
- Department of Evolutionary Genetics, Max-Planck-Institut für Evolutionsbiologie, August-Thienemann-Straße 2, 24306 Plön, Germany
| | - Andrew J. Rosendale
- Department of Biological Sciences, McMicken College of Arts and Sciences, University of Cincinnati, 318 College Drive, Cincinnati, OH 45221-0006 USA
| | - Maria Emilia Santos
- Institut de Génomique Fonctionnelle de Lyon, Université de Lyon, Université Claude Bernard Lyon 1, CNRS UMR 5242, Ecole Normale Supérieure de Lyon 46, allée d’Italie, 69364 Lyon Cedex 07, France
| | - William Toubiana
- Institut de Génomique Fonctionnelle de Lyon, Université de Lyon, Université Claude Bernard Lyon 1, CNRS UMR 5242, Ecole Normale Supérieure de Lyon 46, allée d’Italie, 69364 Lyon Cedex 07, France
| | - Maurijn van der Zee
- Institute of Biology, Leiden University, Sylviusweg 72, 2333 BE Leiden, Netherlands
| | - Iris M. Vargas Jentzsch
- Institute for Zoology: Developmental Biology, University of Cologne, Zülpicher Str. 47b, 50674 Cologne, Germany
| | - Aidamalia Vargas Lowman
- Institut de Génomique Fonctionnelle de Lyon, Université de Lyon, Université Claude Bernard Lyon 1, CNRS UMR 5242, Ecole Normale Supérieure de Lyon 46, allée d’Italie, 69364 Lyon Cedex 07, France
| | - Severine Viala
- Institut de Génomique Fonctionnelle de Lyon, Université de Lyon, Université Claude Bernard Lyon 1, CNRS UMR 5242, Ecole Normale Supérieure de Lyon 46, allée d’Italie, 69364 Lyon Cedex 07, France
| | - Stephen Richards
- Human Genome Sequencing Center, Department of Human and Molecular Genetics, Baylor College of Medicine, One Baylor Plaza, Houston, TX 77030 USA
| | - Abderrahman Khila
- Institut de Génomique Fonctionnelle de Lyon, Université de Lyon, Université Claude Bernard Lyon 1, CNRS UMR 5242, Ecole Normale Supérieure de Lyon 46, allée d’Italie, 69364 Lyon Cedex 07, France
| |
Collapse
|
49
|
Yin L, Wang K, Niu L, Zhang H, Chen Y, Ji T, Chen G. Uncovering the Changing Gene Expression Profile of Honeybee ( Apis mellifera) Worker Larvae Transplanted to Queen Cells. Front Genet 2018; 9:416. [PMID: 30405683 PMCID: PMC6207841 DOI: 10.3389/fgene.2018.00416] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2018] [Accepted: 09/06/2018] [Indexed: 11/26/2022] Open
Abstract
The reproductive division of labor, based on caste differentiation in social insects, is of great significance in evolution. Generally, a healthy bee colony consists of a queen and numerous workers and drones. Despite being genetically identical, the queen and workers exhibit striking differences in morphology, behavior, and lifespan. The fertilized eggs and larvae selectively develop into queen and worker bees depending on the local nutrition and environment. Bee worker larvae that are transplanted within 3 days of age to queen cells of a bee colony can develop into queens with mature ovaries. This phenomenon is important to understand the regulatory mechanisms of caste differentiation. In this study, we transplanted worker larvae (Apis mellifera) at the age of 1 (L1), 2 (L2), and 3 days (L3) into queen cells until the age of 4 days. Subsequently, genetic changes in these larvae were evaluated. The results revealed that the number of differentially expressed genes (DEGs) in L1 vs. L3 was more than that in L1 vs. L2. Furthermore, many of the genes that were downregulated are mostly involved in metabolism, body development, reproductive ability, and longevity, indicating that these functions decreased with the age of transplantation of the larvae. Moreover, these functions may be critical for worker larvae to undergo the developmental path to become queens. We also found that the DEGs of L1 vs. L2 and L1 vs. L3 were enriched in the MAPK, FoxO, mTOR, Wnt, TGF-beta Hedgehog Toll and Imd, and Hippo signaling pathways. Gene ontology analysis indicated that some genes are simultaneously involved in different biological pathways; through these genes, the pathways formed a mutual regulatory network. Casein kinase 1 (CK 1) was predicted to participate in the FoxO, Wnt, Hedgehog, and Hippo signaling pathways. The results suggest that these pathways cross talked through the network to modify the development of larvae and that CK 1 is an important liaison. The results provide valuable information regarding the regulatory mechanism of environmental factors affecting queen development, thus, amplifying the understanding of caste differentiation in bees.
Collapse
Affiliation(s)
- Ling Yin
- Jiangsu Agri-animal Husbandry Vocational College, Taizhou, China
| | - Kang Wang
- College of Animal Science and Technology, Yangzhou University, Yangzhou, China
| | - Lin Niu
- Jiangsu Agri-animal Husbandry Vocational College, Taizhou, China
| | - Huanxin Zhang
- Jiangsu Agri-animal Husbandry Vocational College, Taizhou, China
| | - Yuyong Chen
- Jiangsu Agri-animal Husbandry Vocational College, Taizhou, China
| | - Ting Ji
- College of Animal Science and Technology, Yangzhou University, Yangzhou, China
| | - Guohong Chen
- College of Animal Science and Technology, Yangzhou University, Yangzhou, China
| |
Collapse
|
50
|
Abstract
Between the 1930s and 50s, evolutionary biologists developed a successful theory of why organisms age, firmly rooted in population genetic principles. By the 1980s the evolution of aging had a secure experimental basis. Since the force of selection declines with age, aging evolves due to mutation accumulation or a benefit to fitness early in life. Here we review major insights and challenges that have emerged over the last 35 years: selection does not always necessarily decline with age; higher extrinsic (i.e., environmentally caused) mortality does not always accelerate aging; conserved pathways control aging rate; senescence patterns are more diverse than previously thought; aging is not universal; trade-offs involving lifespan can be 'broken'; aging might be 'druggable'; and human life expectancy continues to rise but compressing late-life morbidity remains a pressing challenge.
Collapse
Affiliation(s)
- Thomas Flatt
- Department of Biology, University of Fribourg, Chemin du Musée 10, CH-1700, Fribourg, Switzerland
| | - Linda Partridge
- Max Planck Institute for Biology of Aging, Joseph-Stelzmann-Strasse 9b, D-50931, Cologne, Germany.
- Institute for Healthy Aging and GEE, University College London, Darwin Building, Gower Street, London, WC1E6BT, UK.
| |
Collapse
|