1
|
Iizuka R, Ogawa T, Tsukida R, Noguchi K, Hibbett D, Katayama Y, Yoshida M. Characterization of fungal carbonyl sulfide hydrolase belonging to clade D β-carbonic anhydrase. FEBS Lett 2025. [PMID: 39792592 DOI: 10.1002/1873-3468.15098] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2024] [Revised: 11/20/2024] [Accepted: 12/17/2024] [Indexed: 01/12/2025]
Abstract
Carbonyl sulfide hydrolase (COSase) is a unique enzyme that exhibits high activity towards carbonyl sulfide (COS) but low carbonic anhydrase (CA) activity, despite belonging to the CA family. COSase was initially identified in a sulfur-oxidizing bacterium and later discovered in the ascomycete Trichoderma harzianum strain THIF08. The COSase from T. harzianum has been recognized as a key enzyme in the assimilation of gaseous COS, and homologous genes are widely present not only in Ascomycota but also in Basidiomycota. Here, we characterized the COSases from the basidiomycete Gloeophyllum trabeum NBRC 6430 and T. harzianum to obtain detailed characteristics of fungal COSase. This study contributes to a better understanding of COS metabolism in fungi.
Collapse
Affiliation(s)
- Ryuka Iizuka
- Department of Symbiotic Science of Environment and Natural Resources, United Graduate School of Agricultural Science, Tokyo University of Agriculture and Technology, Fuchu, Japan
| | - Takahiro Ogawa
- Graduate School of Engineering, Tokyo University of Agriculture and Technology, Koganei, Japan
| | - Rikako Tsukida
- Graduate School of Agriculture, Tokyo University of Agriculture and Technology, Fuchu, Japan
| | - Keiichi Noguchi
- Instrumentation Analysis Center, Tokyo University of Agriculture and Technology, Koganei, Japan
| | - David Hibbett
- Department of Biology, Clark University, Worcester, MA, USA
| | - Yoko Katayama
- Graduate School of Agriculture, Tokyo University of Agriculture and Technology, Fuchu, Japan
- Independent Administrative Institution, Tokyo National Research Institute for Cultural Properties, Taito-ku, Japan
| | - Makoto Yoshida
- Department of Symbiotic Science of Environment and Natural Resources, United Graduate School of Agricultural Science, Tokyo University of Agriculture and Technology, Fuchu, Japan
- Graduate School of Agriculture, Tokyo University of Agriculture and Technology, Fuchu, Japan
- Institute of Agriculture, Tokyo University of Agriculture and Technology, Fuchu, Japan
| |
Collapse
|
2
|
Sethi SC, Bharati M, Kumar Y, Yadav U, Saini H, Alam P, Komath SS. The ER-Resident Ras Inhibitor 1 (Eri1) of Candida albicans Inhibits Hyphal Morphogenesis via the Ras-Independent cAMP-PKA Pathway. ACS Infect Dis 2024; 10:3528-3543. [PMID: 39119676 DOI: 10.1021/acsinfecdis.4c00175] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/10/2024]
Abstract
Ras signaling and glycosylphosphatidylinositol (GPI) biosynthesis are mutually inhibitory in S. cerevisiae (Sc). The inhibition is mediated via an interaction of yeast Ras2 with the Eri1 subunit of its GPI-N-acetylglucosaminyl transferase (GPI-GnT), the enzyme catalyzing the very first GPI biosynthetic step. In contrast, Ras signaling and GPI biosynthesis in C. albicans (Ca) are mutually activated and together control the virulence traits of the human fungal pathogen. What might be the role of Eri1 in this pathogen? The present manuscript addresses this question while simultaneously characterizing the cellular role of CaEri1. It is either nonessential or required at very low levels for cell viability in C. albicans. Severe depletion of CaEri1 results in reduced GPI biosynthesis and cell wall defects. It also produces hyperfilamentation phenotypes in Spider medium as well as in bicarbonate medium containing 5% CO2, suggesting that both the Ras-dependent and Ras-independent cAMP-PKA pathways for hyphal morphogenesis are activated in these cells. Pull-down and acceptor-photobleaching FRET experiments suggest that CaEri1 does not directly interact with CaRas1 but does so through CaGpi2, another GPI-GnT subunit. We showed previously that CaGpi2 is downstream of CaEri1 in cross talk with CaRas1 and for Ras-dependent hyphal morphogenesis. Here we show that CaEri1 is downstream of all GPI-GnT subunits in inhibiting Ras-independent filamentation. CaERI1 also participates in intersubunit transcriptional cross talk within the GPI-GnT, a feature unique to C. albicans. Virulence studies using G. mellonella larvae show that a heterozygous strain of CaERI1 is better cleared by the host and is attenuated in virulence.
Collapse
Affiliation(s)
| | - Monika Bharati
- School of Life Sciences, Jawaharlal Nehru University, New Delhi 110067, India
| | - Yatin Kumar
- School of Life Sciences, Jawaharlal Nehru University, New Delhi 110067, India
| | - Usha Yadav
- School of Life Sciences, Jawaharlal Nehru University, New Delhi 110067, India
| | - Harshita Saini
- School of Life Sciences, Jawaharlal Nehru University, New Delhi 110067, India
| | - Parvez Alam
- School of Physical Sciences, Jawaharlal Nehru University, New Delhi 110067, India
| | - Sneha Sudha Komath
- School of Life Sciences, Jawaharlal Nehru University, New Delhi 110067, India
| |
Collapse
|
3
|
Vandermeulen MD, Lorenz MC, Cullen PJ. Conserved signaling modules regulate filamentous growth in fungi: a model for eukaryotic cell differentiation. Genetics 2024; 228:iyae122. [PMID: 39239926 PMCID: PMC11457945 DOI: 10.1093/genetics/iyae122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2024] [Accepted: 07/20/2024] [Indexed: 09/07/2024] Open
Abstract
Eukaryotic organisms are composed of different cell types with defined shapes and functions. Specific cell types are produced by the process of cell differentiation, which is regulated by signal transduction pathways. Signaling pathways regulate cell differentiation by sensing cues and controlling the expression of target genes whose products generate cell types with specific attributes. In studying how cells differentiate, fungi have proved valuable models because of their ease of genetic manipulation and striking cell morphologies. Many fungal species undergo filamentous growth-a specialized growth pattern where cells produce elongated tube-like projections. Filamentous growth promotes expansion into new environments, including invasion into plant and animal hosts by fungal pathogens. The same signaling pathways that regulate filamentous growth in fungi also control cell differentiation throughout eukaryotes and include highly conserved mitogen-activated protein kinase (MAPK) pathways, which is the focus of this review. In many fungal species, mucin-type sensors regulate MAPK pathways to control filamentous growth in response to diverse stimuli. Once activated, MAPK pathways reorganize cell polarity, induce changes in cell adhesion, and promote the secretion of degradative enzymes that mediate access to new environments. However, MAPK pathway regulation is complicated because related pathways can share components with each other yet induce unique responses (i.e. signal specificity). In addition, MAPK pathways function in highly integrated networks with other regulatory pathways (i.e. signal integration). Here, we discuss signal specificity and integration in several yeast models (mainly Saccharomyces cerevisiae and Candida albicans) by focusing on the filamentation MAPK pathway. Because of the strong evolutionary ties between species, a deeper understanding of the regulation of filamentous growth in established models and increasingly diverse fungal species can reveal fundamentally new mechanisms underlying eukaryotic cell differentiation.
Collapse
Affiliation(s)
| | - Michael C Lorenz
- Department of Microbiology and Molecular Genetics, University of Texas McGovern Medical School, Houston, TX 77030, USA
| | - Paul J Cullen
- Department of Biological Sciences, University at Buffalo, Buffalo, NY 14260-1300, USA
| |
Collapse
|
4
|
Lash E, Maufrais C, Janbon G, Robbins N, Herzel L, Cowen LE. The spliceosome impacts morphogenesis in the human fungal pathogen Candida albicans. mBio 2024; 15:e0153524. [PMID: 38980041 PMCID: PMC11323467 DOI: 10.1128/mbio.01535-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2024] [Accepted: 05/31/2024] [Indexed: 07/10/2024] Open
Abstract
At human body temperature, the fungal pathogen Candida albicans can transition from yeast to filamentous morphologies in response to host-relevant cues. Additionally, elevated temperatures encountered during febrile episodes can independently induce C. albicans filamentation. However, the underlying genetic pathways governing this developmental transition in response to elevated temperatures remain largely unexplored. Here, we conducted a functional genomic screen to unravel the genetic mechanisms orchestrating C. albicans filamentation specifically in response to elevated temperature, implicating 45% of genes associated with the spliceosome or pre-mRNA splicing in this process. Employing RNA-Seq to elucidate the relationship between mRNA splicing and filamentation, we identified greater levels of intron retention in filaments compared to yeast, which correlated with reduced expression of the affected genes. Intriguingly, homozygous deletion of a gene encoding a spliceosome component important for filamentation (PRP19) caused even greater levels of intron retention compared with wild type and displayed globally dysregulated gene expression. This suggests that intron retention is a mechanism for fine-tuning gene expression during filamentation, with perturbations of the spliceosome exacerbating this process and blocking filamentation. Overall, this study unveils a novel biological process governing C. albicans filamentation, providing new insights into the complex regulation of this key virulence trait.IMPORTANCEFungal pathogens such as Candida albicans can cause serious infections with high mortality rates in immunocompromised individuals. When C. albicans is grown at temperatures encountered during human febrile episodes, yeast cells undergo a transition to filamentous cells, and this process is key to its virulence. Here, we expanded our understanding of how C. albicans undergoes filamentation in response to elevated temperature and identified many genes involved in mRNA splicing that positively regulate filamentation. Through transcriptome analyses, we found that intron retention is a mechanism for fine-tuning gene expression in filaments, and perturbation of the spliceosome exacerbates intron retention and alters gene expression substantially, causing a block in filamentation. This work adds to the growing body of knowledge on the role of introns in fungi and provides new insights into the cellular processes that regulate a key virulence trait in C. albicans.
Collapse
Affiliation(s)
- Emma Lash
- Department of Molecular Genetics, University of Toronto, Toronto, Ontario, Canada
| | - Corinne Maufrais
- Unité Biologie des ARN des Pathogènes Fongiques, Institut Pasteur, Université Paris Cité, Paris, France
- HUB Bioinformatique et Biostatistique, Institut Pasteur, Université Paris Cité, Paris, France
| | - Guilhem Janbon
- Unité Biologie des ARN des Pathogènes Fongiques, Institut Pasteur, Université Paris Cité, Paris, France
| | - Nicole Robbins
- Department of Molecular Genetics, University of Toronto, Toronto, Ontario, Canada
| | - Lydia Herzel
- Institute of Chemistry and Biochemistry, Freie Universität Berlin, Berlin, Germany
| | - Leah E. Cowen
- Department of Molecular Genetics, University of Toronto, Toronto, Ontario, Canada
| |
Collapse
|
5
|
Komath SS. To each its own: Mechanisms of cross-talk between GPI biosynthesis and cAMP-PKA signaling in Candida albicans versus Saccharomyces cerevisiae. J Biol Chem 2024; 300:107444. [PMID: 38838772 PMCID: PMC11294708 DOI: 10.1016/j.jbc.2024.107444] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2024] [Revised: 05/24/2024] [Accepted: 05/29/2024] [Indexed: 06/07/2024] Open
Abstract
Candida albicans is an opportunistic fungal pathogen that can switch between yeast and hyphal morphologies depending on the environmental cues it receives. The switch to hyphal form is crucial for the establishment of invasive infections. The hyphal form is also characterized by the cell surface expression of hyphae-specific proteins, many of which are GPI-anchored and important determinants of its virulence. The coordination between hyphal morphogenesis and the expression of GPI-anchored proteins is made possible by an interesting cross-talk between GPI biosynthesis and the cAMP-PKA signaling cascade in the fungus; a parallel interaction is not found in its human host. On the other hand, in the nonpathogenic yeast, Saccharomyces cerevisiae, GPI biosynthesis is shut down when filamentation is activated and vice versa. This too is achieved by a cross-talk between GPI biosynthesis and cAMP-PKA signaling. How are diametrically opposite effects obtained from the cross-talk between two reasonably well-conserved pathways present ubiquitously across eukarya? This Review attempts to provide a model to explain these differences. In order to do so, it first provides an overview of the two pathways for the interested reader, highlighting the similarities and differences that are observed in C. albicans versus the well-studied S. cerevisiae model, before going on to explain how the different mechanisms of regulation are effected. While commonalities enable the development of generalized theories, it is hoped that a more nuanced approach, that takes into consideration species-specific differences, will enable organism-specific understanding of these processes and contribute to the development of targeted therapies.
Collapse
|
6
|
Chadwick BJ, Lin X. Effects of CO 2 in fungi. Curr Opin Microbiol 2024; 79:102488. [PMID: 38759247 PMCID: PMC11162916 DOI: 10.1016/j.mib.2024.102488] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2024] [Revised: 04/21/2024] [Accepted: 04/25/2024] [Indexed: 05/19/2024]
Abstract
Carbon dioxide supplies carbon for photosynthetic species and is a major product of respiration for all life forms. Inside the human body where CO2 is a by-product of the tricarboxylic acid cycle, its level reaches 5% or higher. In the ambient atmosphere, ∼.04% of the air is CO2. Different organisms can tolerate different CO2 levels to various degrees, and experiencing higher CO2 is toxic and can lead to death. The fungal kingdom shows great variations in response to CO2 that has been documented by different researchers at different time periods. This literature review aims to connect these studies, highlight mechanisms underlying tolerance to high levels of CO2, and emphasize the effects of CO2 on fungal metabolism and morphogenesis.
Collapse
Affiliation(s)
| | - Xiaorong Lin
- Department of Microbiology, University of Georgia, Athens, GA 30602, USA.
| |
Collapse
|
7
|
MacAlpine J, Liu Z, Hossain S, Whitesell L, Robbins N, Cowen LE. DYRK-family kinases regulate Candida albicans morphogenesis and virulence through the Ras1/PKA pathway. mBio 2023; 14:e0218323. [PMID: 38015416 PMCID: PMC10746247 DOI: 10.1128/mbio.02183-23] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2023] [Accepted: 10/12/2023] [Indexed: 11/29/2023] Open
Abstract
IMPORTANCE Candida albicans is an opportunistic human fungal pathogen that frequently causes life-threatening infections in immunocompromised individuals. To cause disease, the fungus employs several virulence traits, including its ability to transition between yeast and filamentous states. Previous work identified a role for the kinase Yak1 in regulating C. albicans filamentation. Here, we demonstrate that Yak1 regulates morphogenesis through the canonical cAMP/PKA pathway and that this regulation is environmentally contingent, as host-relevant concentrations of CO2 bypass the requirement of Yak1 for C. albicans morphogenesis. We show a related kinase, Pom1, is important for filamentation in the absence of Yak1 under these host-relevant conditions, as deletion of both genes blocked filamentous growth under all conditions tested. Finally, we demonstrate that Yak1 is required for filamentation in a mouse model of C. albicans dermatitis using genetic and pharmacological approaches. Overall, our results expand our understanding of how Yak1 regulates an important virulence trait in C. albicans.
Collapse
Affiliation(s)
- Jessie MacAlpine
- Department of Molecular Genetics, University of Toronto, Toronto, Ontario, Canada
| | - Zhongle Liu
- Department of Molecular Genetics, University of Toronto, Toronto, Ontario, Canada
| | - Saif Hossain
- Department of Molecular Genetics, University of Toronto, Toronto, Ontario, Canada
| | - Luke Whitesell
- Department of Molecular Genetics, University of Toronto, Toronto, Ontario, Canada
| | - Nicole Robbins
- Department of Molecular Genetics, University of Toronto, Toronto, Ontario, Canada
| | - Leah E. Cowen
- Department of Molecular Genetics, University of Toronto, Toronto, Ontario, Canada
| |
Collapse
|
8
|
Kulig K, Bednaruk K, Rudolphi-Szydło E, Barbasz A, Wronowska E, Barczyk-Woznicka O, Karnas E, Pyza E, Zuba-Surma E, Rapala-Kozik M, Karkowska-Kuleta J. Stress Conditions Affect the Immunomodulatory Potential of Candida albicans Extracellular Vesicles and Their Impact on Cytokine Release by THP-1 Human Macrophages. Int J Mol Sci 2023; 24:17179. [PMID: 38139005 PMCID: PMC10742962 DOI: 10.3390/ijms242417179] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2023] [Revised: 11/28/2023] [Accepted: 11/30/2023] [Indexed: 12/24/2023] Open
Abstract
Human immune cells possess the ability to react complexly and effectively after contact with microbial virulence factors, including those transported in cell-derived structures of nanometer sizes termed extracellular vesicles (EVs). EVs are produced by organisms of all kingdoms, including fungi pathogenic to humans. In this work, the immunomodulatory properties of EVs produced under oxidative stress conditions or at host concentrations of CO2 by the fungal pathogen Candida albicans were investigated. The interaction of EVs with human pro-monocytes of the U-937 cell line was established, and the most notable effect was attributed to oxidative stress-related EVs. The immunomodulatory potential of tested EVs against human THP-1 macrophages was verified using cytotoxicity assay, ROS-production assay, and the measurement of cytokine production. All fungal EVs tested did not show a significant cytotoxic effect on THP-1 cells, although a slight pro-oxidative impact was indicated for EVs released by C. albicans cells grown under oxidative stress. Furthermore, for all tested types of EVs, the pro-inflammatory properties related to increased IL-8 and TNF-α production and decreased IL-10 secretion were demonstrated, with the most significant effect observed for EVs released under oxidative stress conditions.
Collapse
Affiliation(s)
- Kamila Kulig
- Department of Comparative Biochemistry and Bioanalytics, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Gronostajowa 7, 30-387 Kraków, Poland
| | - Katarzyna Bednaruk
- Department of Comparative Biochemistry and Bioanalytics, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Gronostajowa 7, 30-387 Kraków, Poland
| | - Elzbieta Rudolphi-Szydło
- Department of Biochemistry and Biophysics, Institute of Biology, University of the National Education Commission, Podchorazych 2, 30-084 Kraków, Poland
| | - Anna Barbasz
- Department of Biochemistry and Biophysics, Institute of Biology, University of the National Education Commission, Podchorazych 2, 30-084 Kraków, Poland
| | - Ewelina Wronowska
- Department of Comparative Biochemistry and Bioanalytics, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Gronostajowa 7, 30-387 Kraków, Poland
| | - Olga Barczyk-Woznicka
- Department of Cell Biology and Imaging, Institute of Zoology and Biomedical Research, Jagiellonian University, Gronostajowa 9, 30-387 Kraków, Poland
| | - Elzbieta Karnas
- Department of Cell Biology, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Gronostajowa 7, 30-387 Kraków, Poland
| | - Elzbieta Pyza
- Department of Cell Biology and Imaging, Institute of Zoology and Biomedical Research, Jagiellonian University, Gronostajowa 9, 30-387 Kraków, Poland
| | - Ewa Zuba-Surma
- Department of Cell Biology, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Gronostajowa 7, 30-387 Kraków, Poland
| | - Maria Rapala-Kozik
- Department of Comparative Biochemistry and Bioanalytics, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Gronostajowa 7, 30-387 Kraków, Poland
| | - Justyna Karkowska-Kuleta
- Department of Comparative Biochemistry and Bioanalytics, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Gronostajowa 7, 30-387 Kraków, Poland
| |
Collapse
|
9
|
Yeh CY, Wang YS, Takahashi Y, Kuusk K, Paul K, Arjus T, Yadlos O, Schroeder JI, Ilves I, Garcia-Sosa AT, Kollist H. MPK12 in stomatal CO 2 signaling: function beyond its kinase activity. THE NEW PHYTOLOGIST 2023; 239:146-158. [PMID: 36978283 PMCID: PMC10247450 DOI: 10.1111/nph.18913] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/25/2023] [Accepted: 03/21/2023] [Indexed: 05/24/2023]
Abstract
Protein phosphorylation is a major molecular switch involved in the regulation of stomatal opening and closure. Previous research defined interaction between MAP kinase 12 and Raf-like kinase HT1 as a required step for stomatal movements caused by changes in CO2 concentration. However, whether MPK12 kinase activity is required for regulation of CO2 -induced stomatal responses warrants in-depth investigation. We apply genetic, biochemical, and structural modeling approaches to examining the noncatalytic role of MPK12 in guard cell CO2 signaling that relies on allosteric inhibition of HT1. We show that CO2 /HCO3 - -enhanced MPK12 interaction with HT1 is independent of its kinase activity. By analyzing gas exchange of plant lines expressing various kinase-dead and constitutively active versions of MPK12 in a plant line where MPK12 is deleted, we confirmed that CO2 -dependent stomatal responses rely on MPK12's ability to bind to HT1, but not its kinase activity. We also demonstrate that purified MPK12 and HT1 proteins form a heterodimer in the presence of CO2 /HCO3 - and present structural modeling that explains the MPK12:HT1 interaction interface. These data add to the model that MPK12 kinase-activity-independent interaction with HT1 functions as a molecular switch by which guard cells sense changes in atmospheric CO2 concentration.
Collapse
Affiliation(s)
- Chung-Yueh Yeh
- Institute of Technology, University of Tartu, Nooruse 1, Tartu 50411, Estonia
| | - Yuh-Shuh Wang
- Institute of Technology, University of Tartu, Nooruse 1, Tartu 50411, Estonia
| | - Yohei Takahashi
- Institute of Transformative Bio-Molecules, Nagoya University, Furocho, Chikusa, Nagoya, Aichi 464-8601, Japan
| | - Katarina Kuusk
- Institute of Technology, University of Tartu, Nooruse 1, Tartu 50411, Estonia
| | - Karnelia Paul
- School of Biological Sciences, Cell and Developmental Biology Department, University of California San Diego, La Jolla, CA 92093-0116, USA
| | - Triinu Arjus
- Institute of Technology, University of Tartu, Nooruse 1, Tartu 50411, Estonia
| | - Oleksii Yadlos
- Institute of Technology, University of Tartu, Nooruse 1, Tartu 50411, Estonia
| | - Julian I. Schroeder
- School of Biological Sciences, Cell and Developmental Biology Department, University of California San Diego, La Jolla, CA 92093-0116, USA
| | - Ivar Ilves
- Institute of Technology, University of Tartu, Nooruse 1, Tartu 50411, Estonia
| | | | - Hannes Kollist
- Institute of Technology, University of Tartu, Nooruse 1, Tartu 50411, Estonia
| |
Collapse
|
10
|
Wilson HB, Lorenz MC. Candida albicans Hyphal Morphogenesis within Macrophages Does Not Require Carbon Dioxide or pH-Sensing Pathways. Infect Immun 2023; 91:e0008723. [PMID: 37078861 PMCID: PMC10187119 DOI: 10.1128/iai.00087-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2023] [Accepted: 03/29/2023] [Indexed: 04/21/2023] Open
Abstract
The opportunistic fungal pathogen Candida albicans has evolved a variety of mechanisms for surviving inside and escaping macrophages, including the initiation of filamentous growth. Although several distinct models have been proposed to explain this process at the molecular level, the signals driving hyphal morphogenesis in this context have yet to be clarified. Here, we evaluate the following three molecular signals as potential hyphal inducers within macrophage phagosomes: CO2, intracellular pH, and extracellular pH. Additionally, we revisit previous work suggesting that the intracellular pH of C. albicans fluctuates in tandem with morphological changes in vitro. Using time-lapse microscopy, we observed that C. albicans mutants lacking components of the CO2-sensing pathway were able to undergo hyphal morphogenesis within macrophages. Similarly, a rim101Δ strain was competent in hyphal induction, suggesting that neutral/alkaline pH sensing is not necessary for the initiation of morphogenesis within phagosomes either. Contrary to previous findings, single-cell pH-tracking experiments revealed that the cytosolic pH of C. albicans remains tightly regulated both within macrophage phagosomes and under a variety of in vitro conditions throughout the process of morphogenesis. This finding suggests that intracellular pH is not a signal contributing to morphological changes.
Collapse
Affiliation(s)
- Hannah B. Wilson
- Graduate School for Biomedical Sciences, University of Texas Science Center at Houston, Houston, Texas, USA
- Department of Microbiology and Molecular Genetics, University of Texas McGovern Medical School, University of Texas Health Science Center at Houston, Houston, Texas, USA
| | - Michael C. Lorenz
- Department of Microbiology and Molecular Genetics, University of Texas McGovern Medical School, University of Texas Health Science Center at Houston, Houston, Texas, USA
| |
Collapse
|
11
|
Lin R, Zhang L, Yang X, Li Q, Zhang C, Guo L, Yu H, Yu H. Responses of the Mushroom Pleurotus ostreatus under Different CO 2 Concentration by Comparative Proteomic Analyses. J Fungi (Basel) 2022; 8:652. [PMID: 35887408 PMCID: PMC9321156 DOI: 10.3390/jof8070652] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2022] [Revised: 06/08/2022] [Accepted: 06/14/2022] [Indexed: 12/04/2022] Open
Abstract
BACKGROUND Pleurotus ostreatus is a popular edible mushroom in East Asian markets. Research on the responses of P. ostreatus under different carbon dioxide concentrations is limited. METHODS Label-free LC-MS/MS quantitative proteomics analysis technique was adopted to obtain the protein expression profiles of P. ostreatus fruiting body pileus collected under different carbon dioxide concentrations. The Pearson correlation coefficient analysis and principal component analysis were performed to reveal the correlation among samples. The differentially expressed proteins (DEPs) were organized. Gene ontology analysis was performed to divide the DEPs into different metabolic processes and pathways. RESULTS The expansion of stipes was inhibited in the high CO2 group compared with that in the low CO2 group. There were 415 DEPs (131 up- and 284 down-regulated) in P. ostreatus PH11 treated with 1% CO2 concentration compared with P. ostreatus under atmospheric conditions. Proteins related to hydrolase activity, including several amidohydrolases and cell wall synthesis proteins, were highly expressed under high CO2 concentration. Most of the kinases and elongation factors were significantly down-regulated under high CO2 concentration. The results suggest that the metabolic regulation and development processes were inhibited under high CO2 concentrations. In addition, the sexual differentiation process protein Isp4 was inhibited under high CO2 concentrations, indicating that the sexual reproductive process was also inhibited under high CO2 concentrations, which is inconsistent with the small fruiting body pileus under high CO2 concentrations. CONCLUSIONS This research reports the proteome analysis of commercially relevant edible fungi P. ostreatus under different carbon dioxide concentrations. This study deepens our understanding of the mechanism for CO2-induced morphological change in the P. ostreatus fruiting body, which will facilitate the artificial cultivation of edible mushrooms.
Collapse
Affiliation(s)
- Rongmei Lin
- National Engineering Research Center of Edible Fungi, Institute of Edible Fungi, Shanghai Academy of Agricultural Sciences, Shanghai 201403, China; (R.L.); (L.Z.); (Q.L.); (C.Z.)
- Shandong Provincial Key Laboratory of Applied Mycology, School of Life Sciences, Qingdao Agricultural University, 700 Changcheng Road, Chengyang District, Qingdao 266109, China; (X.Y.); (L.G.)
- Hubei Insect Resources Utilization and Sustainable Pest Management Key Laboratory, College of Plant Science and Technology, Huazhong Agricultural University, Shizishan Street, Wuhan 430070, China
- CAS Key Laboratory of Insect Developmental and Evolutionary Biology, CAS Center for Excellence in Molecular Plant Sciences, Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai 200031, China
| | - Lujun Zhang
- National Engineering Research Center of Edible Fungi, Institute of Edible Fungi, Shanghai Academy of Agricultural Sciences, Shanghai 201403, China; (R.L.); (L.Z.); (Q.L.); (C.Z.)
| | - Xiuqing Yang
- Shandong Provincial Key Laboratory of Applied Mycology, School of Life Sciences, Qingdao Agricultural University, 700 Changcheng Road, Chengyang District, Qingdao 266109, China; (X.Y.); (L.G.)
| | - Qiaozhen Li
- National Engineering Research Center of Edible Fungi, Institute of Edible Fungi, Shanghai Academy of Agricultural Sciences, Shanghai 201403, China; (R.L.); (L.Z.); (Q.L.); (C.Z.)
| | - Chenxiao Zhang
- National Engineering Research Center of Edible Fungi, Institute of Edible Fungi, Shanghai Academy of Agricultural Sciences, Shanghai 201403, China; (R.L.); (L.Z.); (Q.L.); (C.Z.)
| | - Lizhong Guo
- Shandong Provincial Key Laboratory of Applied Mycology, School of Life Sciences, Qingdao Agricultural University, 700 Changcheng Road, Chengyang District, Qingdao 266109, China; (X.Y.); (L.G.)
| | - Hao Yu
- Shandong Provincial Key Laboratory of Applied Mycology, School of Life Sciences, Qingdao Agricultural University, 700 Changcheng Road, Chengyang District, Qingdao 266109, China; (X.Y.); (L.G.)
| | - Hailong Yu
- National Engineering Research Center of Edible Fungi, Institute of Edible Fungi, Shanghai Academy of Agricultural Sciences, Shanghai 201403, China; (R.L.); (L.Z.); (Q.L.); (C.Z.)
| |
Collapse
|
12
|
Tan LR, Liu JJ, Deewan A, Lee JW, Xia PF, Rao CV, Jin YS, Wang SG. Genome-wide transcriptional regulation in Saccharomyces cerevisiae in response to carbon dioxide. FEMS Yeast Res 2022; 22:6595876. [PMID: 35640892 DOI: 10.1093/femsyr/foac032] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2021] [Revised: 04/30/2022] [Accepted: 05/26/2022] [Indexed: 11/12/2022] Open
Abstract
Sugar metabolism by Saccharomyces cerevisiae produces ample amounts of CO2 under both aerobic and anaerobic conditions. High solubility of CO2 in fermentation media, contributing to enjoyable sensory properties of sparkling wine and beers by S. cerevisiae, might affect yeast metabolism. To elucidate the overlooked effects of CO2 on yeast metabolism, we examined glucose fermentation by S. cerevisiae under CO2 as compared to N2 and O2 limited conditions. While both CO2 and N2 conditions are considered anaerobic, less glycerol and acetate but more ethanol were produced under CO2 condition. Transcriptomic analysis revealed that significantly decreased mRNA levels of GPP1 coding for glycerol-3-phosphate phosphatase in glycerol synthesis explained the reduced glycerol production under CO2 condition. Besides, transcriptional regulations in signal transduction, carbohydrate synthesis, heme synthesis, membrane and cell wall metabolism, and respiration were detected in response to CO2. Interestingly, signal transduction was uniquely regulated under CO2 condition, where up-regulated genes (STE3, MSB2, WSC3, STE12 and TEC1) in the signal sensors and transcriptional factors suggested that MAPK signaling pathway plays a critical role in CO2 sensing and CO2-induced metabolisms in yeast. Our study identifies CO2 as an external stimulus for modulating metabolic activities in yeast and a transcriptional effector for diverse applications.
Collapse
Affiliation(s)
- Lin-Rui Tan
- School of Environmental Science and Engineering, Shandong University, Qingdao 266237, P. R. China.,Carl R. Woese Institute for Genomic Biology, University of Illinois at Urbana-Champaign, Urbana, IL 61801, United States
| | - Jing-Jing Liu
- Carl R. Woese Institute for Genomic Biology, University of Illinois at Urbana-Champaign, Urbana, IL 61801, United States
| | - Anshu Deewan
- Carl R. Woese Institute for Genomic Biology, University of Illinois at Urbana-Champaign, Urbana, IL 61801, United States.,Department of Chemical and Biomolecular Engineering, University of Illinois at Urbana-Champaign, Urbana, IL 61801, United States
| | - Jae Won Lee
- Carl R. Woese Institute for Genomic Biology, University of Illinois at Urbana-Champaign, Urbana, IL 61801, United States
| | - Peng-Fei Xia
- School of Environmental Science and Engineering, Shandong University, Qingdao 266237, P. R. China
| | - Christopher V Rao
- Carl R. Woese Institute for Genomic Biology, University of Illinois at Urbana-Champaign, Urbana, IL 61801, United States.,Department of Chemical and Biomolecular Engineering, University of Illinois at Urbana-Champaign, Urbana, IL 61801, United States
| | - Yong-Su Jin
- Carl R. Woese Institute for Genomic Biology, University of Illinois at Urbana-Champaign, Urbana, IL 61801, United States.,Department of Food Science and Human Nutrition, University of Illinois at Urbana-Champaign, Urbana, IL 61801, United States
| | - Shu-Guang Wang
- School of Environmental Science and Engineering, Shandong University, Qingdao 266237, P. R. China.,Sino-French Research Institute for Ecology and Environment, Shandong University, Qingdao 266237, P. R. China
| |
Collapse
|
13
|
Kumwenda P, Cottier F, Hendry AC, Kneafsey D, Keevan B, Gallagher H, Tsai HJ, Hall RA. Estrogen promotes innate immune evasion of Candida albicans through inactivation of the alternative complement system. Cell Rep 2022; 38:110183. [PMID: 34986357 PMCID: PMC8755443 DOI: 10.1016/j.celrep.2021.110183] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2020] [Revised: 10/01/2021] [Accepted: 12/07/2021] [Indexed: 12/18/2022] Open
Abstract
Candida albicans is a commensal of the urogenital tract and the predominant cause of vulvovaginal candidiasis (VVC). Factors that increase circulatory estrogen levels such as pregnancy, the use of oral contraceptives, and hormone replacement therapy predispose women to VVC, but the reasons for this are largely unknown. Here, we investigate how adaptation of C. albicans to estrogen impacts the fungal host-pathogen interaction. Estrogen promotes fungal virulence by enabling C. albicans to avoid the actions of the innate immune system. Estrogen-induced innate immune evasion is mediated via inhibition of opsonophagocytosis through enhanced acquisition of the human complement regulatory protein, Factor H, on the fungal cell surface. Estrogen-induced accumulation of Factor H is dependent on the fungal cell surface protein Gpd2. The discovery of this hormone-sensing pathway might pave the way in explaining gender biases associated with fungal infections and may provide an alternative approach to improving women's health.
Collapse
Affiliation(s)
- Pizga Kumwenda
- Institute of Microbiology and Infection, School of Biosciences, University of Birmingham, Birmingham B15 2TT, UK
| | - Fabien Cottier
- Institute of Microbiology and Infection, School of Biosciences, University of Birmingham, Birmingham B15 2TT, UK
| | - Alexandra C Hendry
- Kent Fungal Group, Division of Natural Sciences, School of Biosciences, University of Kent, Canterbury CT2 7NJ, UK
| | - Davey Kneafsey
- Kent Fungal Group, Division of Natural Sciences, School of Biosciences, University of Kent, Canterbury CT2 7NJ, UK
| | - Ben Keevan
- Institute of Microbiology and Infection, School of Biosciences, University of Birmingham, Birmingham B15 2TT, UK
| | - Hannah Gallagher
- Institute of Microbiology and Infection, School of Biosciences, University of Birmingham, Birmingham B15 2TT, UK
| | - Hung-Ji Tsai
- Institute of Microbiology and Infection, School of Biosciences, University of Birmingham, Birmingham B15 2TT, UK
| | - Rebecca A Hall
- Institute of Microbiology and Infection, School of Biosciences, University of Birmingham, Birmingham B15 2TT, UK; Kent Fungal Group, Division of Natural Sciences, School of Biosciences, University of Kent, Canterbury CT2 7NJ, UK.
| |
Collapse
|
14
|
Mou F, Xie Q, Liu J, Che S, Bahmane L, You M, Guan J. ZnO-based micromotors fueled by CO 2: the first example of self-reorientation-induced biomimetic chemotaxis. Natl Sci Rev 2021; 8:nwab066. [PMID: 34876993 PMCID: PMC8645024 DOI: 10.1093/nsr/nwab066] [Citation(s) in RCA: 44] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2020] [Revised: 03/08/2021] [Accepted: 04/11/2021] [Indexed: 12/18/2022] Open
Abstract
Synthetic chemotactic micro/nanomotors are envisioned to actively ‘seek out’ targets by following specific chemicals, but they are mainly powered by bioincompatible fuels and only show pseudochemotaxis (or advanced chemokinesis) due to their weak self-reorientation capabilities. Here we demonstrate that synthetic ZnO-based Janus micromotors can be powered by the alternative biocompatible fuel of CO2, and further provide the first example of self-reorientation-induced biomimetic chemotaxis using them. The ZnO-based micromotors are highly sensitive to dissolved CO2 in water, which enables the corrosion of ZnO to continuously occur by providing H+ through hydration. Thus, they can autonomously move even in water exposed to air based on self-diffusiophoresis. Furthermore, they can sense the local CO2 gradient and perform positive chemotaxis by self-reorientations under the phoretic torque. Our discovery opens a gate to developing intelligent micro/nanomotors powered by, and sensitive to, biocompatible atmospheric or endogenous gaseous chemicals for biomedical and environmental applications.
Collapse
Affiliation(s)
- Fangzhi Mou
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, International of Materials Science and Engineering, Wuhan University of Technology, Wuhan 430070, China
| | - Qi Xie
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, International of Materials Science and Engineering, Wuhan University of Technology, Wuhan 430070, China
| | - Jianfeng Liu
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, International of Materials Science and Engineering, Wuhan University of Technology, Wuhan 430070, China
| | - Shengping Che
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, International of Materials Science and Engineering, Wuhan University of Technology, Wuhan 430070, China
| | - Lamya Bahmane
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, International of Materials Science and Engineering, Wuhan University of Technology, Wuhan 430070, China
| | - Ming You
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, International of Materials Science and Engineering, Wuhan University of Technology, Wuhan 430070, China
| | - Jianguo Guan
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, International of Materials Science and Engineering, Wuhan University of Technology, Wuhan 430070, China
| |
Collapse
|
15
|
Development of Carbazole Derivatives Compounds against Candida albicans: Candidates to Prevent Hyphal Formation via the Ras1-MAPK Pathway. J Fungi (Basel) 2021; 7:jof7090688. [PMID: 34575726 PMCID: PMC8466151 DOI: 10.3390/jof7090688] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2021] [Revised: 08/20/2021] [Accepted: 08/24/2021] [Indexed: 12/03/2022] Open
Abstract
Morphogenesis contributes to the virulence of the opportunistic human fungal pathogen Candida albicans. Ras1-MAPK pathways play a critical role in the virulence of C. albicans by regulating cell growth, morphogenesis, and biofilm formation. Ume6 acts as a transcription factor, and Nrg1 is a transcriptional repressor for the expression of hyphal-specific genes in morphogenesis. Azoles or echinocandin drugs have been extensively prescribed for C. albicans infections, which has led to the development of drug-resistant strains. Therefore, it is necessary to develop new molecules to effectively treat fungal infections. Here, we showed that Molecule B and Molecule C, which contained a carbazole structure, attenuated the pathogenicity of C. albicans through inhibition of the Ras1/MAPK pathway. We found that Molecule B and Molecule C inhibit morphogenesis through repressing protein and RNA levels of Ras/MAPK-related genes, including UME6 and NRG1. Furthermore, we determined the antifungal effects of Molecule B and Molecule C in vivo using a candidiasis murine model. We anticipate our findings are that Molecule B and Molecule C, which inhibits the Ras1/MAPK pathway, are promising compounds for the development of new antifungal agents for the treatment of systemic candidiasis and possibly for other fungal diseases.
Collapse
|
16
|
Chow EWL, Pang LM, Wang Y. From Jekyll to Hyde: The Yeast-Hyphal Transition of Candida albicans. Pathogens 2021; 10:pathogens10070859. [PMID: 34358008 PMCID: PMC8308684 DOI: 10.3390/pathogens10070859] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2021] [Revised: 06/30/2021] [Accepted: 07/05/2021] [Indexed: 12/22/2022] Open
Abstract
Candida albicans is a major fungal pathogen of humans, accounting for 15% of nosocomial infections with an estimated attributable mortality of 47%. C. albicans is usually a benign member of the human microbiome in healthy people. Under constant exposure to highly dynamic environmental cues in diverse host niches, C. albicans has successfully evolved to adapt to both commensal and pathogenic lifestyles. The ability of C. albicans to undergo a reversible morphological transition from yeast to filamentous forms is a well-established virulent trait. Over the past few decades, a significant amount of research has been carried out to understand the underlying regulatory mechanisms, signaling pathways, and transcription factors that govern the C. albicans yeast-to-hyphal transition. This review will summarize our current understanding of well-elucidated signal transduction pathways that activate C. albicans hyphal morphogenesis in response to various environmental cues and the cell cycle machinery involved in the subsequent regulation and maintenance of hyphal morphogenesis.
Collapse
Affiliation(s)
- Eve Wai Ling Chow
- Institute of Molecular and Cell Biology (IMCB), Agency for Science, Technology and Research (A*STAR), 61 Biopolis Drive, Proteos, Singapore 138673, Singapore;
| | - Li Mei Pang
- National Dental Centre Singapore, National Dental Research Institute Singapore (NDRIS), 5 Second Hospital Ave, Singapore 168938, Singapore;
| | - Yue Wang
- Institute of Molecular and Cell Biology (IMCB), Agency for Science, Technology and Research (A*STAR), 61 Biopolis Drive, Proteos, Singapore 138673, Singapore;
- Department of Biochemistry, Yong Loo Lin School of Medicine, National University of Singapore, 10 Medical Drive, Singapore 117597, Singapore
- Correspondence:
| |
Collapse
|
17
|
Padder SA, Ramzan A, Tahir I, Rehman RU, Shah AH. Metabolic flexibility and extensive adaptability governing multiple drug resistance and enhanced virulence in Candida albicans. Crit Rev Microbiol 2021; 48:1-20. [PMID: 34213983 DOI: 10.1080/1040841x.2021.1935447] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Commensal fungus-Candida albicans turn pathogenic during the compromised immunity of the host, causing infections ranging from superficial mucosal to dreadful systemic ones. C. albicans has evolved various adaptive measures which collectively contribute towards its enhanced virulence. Among fitness attributes, metabolic flexibility and vigorous stress response are essential for its pathogenicity and virulence. Metabolic flexibility provides a means for nutrient assimilation and growth in diverse host microenvironments and reduces the vulnerability of the pathogen to various antifungals besides evading host immune response(s). Inside the host micro-environments, C. albicans efficiently utilizes the multiple fermentable and non-fermentable carbon sources to sustain and proliferate in glucose deficit conditions. The utilization of alternative carbon sources further highlights the importance of understanding these pathways as the attractive and potential therapeutic target. A thorough understanding of metabolic flexibility and adaptation to environmental stresses is warranted to decipher in-depth insights into virulence and molecular mechanisms of fungal pathogenicity. In this review, we have attempted to provide a detailed and recent understanding of some key aspects of fungal biology. Particular focus will be placed on processes like nutrient assimilation and utilization, metabolic adaptability, virulence factors, and host immune response in C. albicans leading to its enhanced pathogenicity.
Collapse
Affiliation(s)
- Sajad Ahmad Padder
- Department of Bioresources, School of Biological Sciences, University of Kashmir, Srinagar, India
| | - Asiya Ramzan
- Department of Bioresources, School of Biological Sciences, University of Kashmir, Srinagar, India
| | - Inayatullah Tahir
- Departments of Botany, School of Biological Sciences, University of Kashmir, Srinagar, India
| | - Reiaz Ul Rehman
- Department of Bioresources, School of Biological Sciences, University of Kashmir, Srinagar, India
| | - Abdul Haseeb Shah
- Department of Bioresources, School of Biological Sciences, University of Kashmir, Srinagar, India
| |
Collapse
|
18
|
Masetti P, Sanitá PV, Jorge JH. Dynamics and metabolic profile of oral keratinocytes (NOK-si) and Candida albicans after interaction in co-culture. BIOFOULING 2021; 37:572-589. [PMID: 34210229 DOI: 10.1080/08927014.2021.1941908] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/26/2021] [Revised: 05/28/2021] [Accepted: 06/07/2021] [Indexed: 06/13/2023]
Abstract
Understanding the interaction between oral keratinocytes (NOK-si) and Candida albicans is fundamental for the development of prevention strategies and new therapies for oral candidiasis. This study evaluated the dynamics and metabolic profile of these cells growing in co-culture by means of cell metabolism, number of CFU ml-1, and production of enzymes, cytokines, and metabolites. The data were analyzed by ANOVAs and post hoc tests (α = 0.05). In co-cultures, there were significant decreases in the cell metabolism of NOK-si and C. albicans and increases in the CFU ml-1 values of C. albicans biofilm. There were also significant increases in the production of cytokines by NOK-si and proteinase by C. albicans biofilm after their interaction. The metabolic balance of the main metabolites, amino acids, and extracellular and intracellular metabolites was shifted in favor of the co-cultures, while aromatic alcohols were secreted in higher amounts by the biofilm of C. albicans. It was concluded that the interaction of cells in co-culture influenced their dynamics over time.
Collapse
Affiliation(s)
- Paula Masetti
- Department of Dental Materials and Prosthodontics, São Paulo State University (Unesp), School of Dentistry, Araraquara, São Paulo, Brazil
| | - Paula Volpato Sanitá
- Department of Dental Materials and Prosthodontics, São Paulo State University (Unesp), School of Dentistry, Araraquara, São Paulo, Brazil
| | - Janaina Habib Jorge
- Department of Dental Materials and Prosthodontics, São Paulo State University (Unesp), School of Dentistry, Araraquara, São Paulo, Brazil
| |
Collapse
|
19
|
Growth and Antifungal Resistance of the Pathogenic Yeast, Candida Albicans, in the Microgravity Environment of the International Space Station: An Aggregate of Multiple Flight Experiences. Life (Basel) 2021; 11:life11040283. [PMID: 33801697 PMCID: PMC8067245 DOI: 10.3390/life11040283] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2021] [Revised: 03/25/2021] [Accepted: 03/25/2021] [Indexed: 12/13/2022] Open
Abstract
This report was designed to compare spaceflight-induced cellular and physiological adaptations of Candida albicans cultured in microgravity on the International Space Station across several payloads. C. albicans is a common opportunistic fungal pathogen responsible for a variety of superficial infections as well as systemic and more severe infections in humans. Cumulatively, the propensity of this organism to be widespread through the population, the ability to produce disease in immunocompromised individuals, and the tendency to respond to environmental stress with characteristics associated with increased virulence, require a better understanding of the yeast response to microgravity for spaceflight crew safety. As such, the responses of this yeast cultivated during several missions using two in-flight culture bioreactors were analyzed and compared herein. In general, C. albicans had a slightly shorter generation time and higher growth propensity in microgravity as compared to terrestrial controls. Rates of cell filamentation differed between bioreactors, but were low and not significantly different between flight and terrestrial controls. Viable cells were retrieved and cultured, resulting in a colony morphology that was similar between cells cultivated in flight and in terrestrial control conditions, and in contrast to that previously observed in a ground-based microgravity analog system. Of importance, yeast demonstrated an increased resistance when challenged during spaceflight with the antifungal agent, amphotericin B. Similar levels of resistance were not observed when challenged with the functionally disparate antifungal drug caspofungin. In aggregate, yeast cells cultivated in microgravity demonstrated a subset of characteristics associated with virulence. In addition, and beyond the value of the specific responses of C. albicans to microgravity, this report includes an analysis of biological reproducibility across flight opportunities, compares two spaceflight hardware systems, and includes a summary of general flight and payload timelines.
Collapse
|
20
|
Geddes-McAlister J, Sukumaran A, Patchett A, Hager HA, Dale JCM, Roloson JL, Prudhomme N, Bolton K, Muselius B, Powers J, Newman JA. Examining the Impacts of CO 2 Concentration and Genetic Compatibility on Perennial Ryegrass- Epichloë festucae var lolii Interactions. J Fungi (Basel) 2020; 6:jof6040360. [PMID: 33322591 PMCID: PMC7770580 DOI: 10.3390/jof6040360] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2020] [Revised: 11/23/2020] [Accepted: 12/07/2020] [Indexed: 12/12/2022] Open
Abstract
Perennial ryegrass (Lolium perenne) is the most cultivated cool-season grass worldwide with crucial roles in carbon fixation, turfgrass applications, and fodder for livestock. Lolium perenne forms a mutualism with the strictly vertically transmitted fungal endophyte, Epichloë festucae var lolii. The fungus produces alkaloids that protect the grass from herbivory, as well as conferring protection from drought and nutrient stress. The rising concentration of atmospheric CO2, a proximate cause of climatic change, is known to have many direct and indirect effects on plant growth. There is keen interest in how the nature of this plant-fungal interaction will change with climate change. Lolium perenne is an obligately outcrossing species, meaning that the genetic profile of the host is constantly being reshuffled. Meanwhile, the fungus is asexual implying both a relatively constant genetic profile and the potential for incompatible grass-fungus pairings. In this study, we used a single cultivar, "Alto", of L. perenne. Each plant was infected with one of four strains of the endophyte: AR1, AR37, NEA2, and Lp19 (the "common strain"). We outcrossed the Alto mothers with pollen from a number of individuals from different ryegrass cultivars to create more genetic diversity in the hosts. We collected seed such that we had replicate maternal half-sib families. Seed from each family was randomly allocated into the two levels of the CO2 treatment, 400 and 800 ppm. Elevated CO2 resulted in an c. 18% increase in plant biomass. AR37 produced higher fungal concentrations than other strains; NEA2 produced the lowest fungal concentrations. We did not find evidence of genetic incompatibility between the host plants and the fungal strains. We conducted untargeted metabolomics and quantitative proteomics to investigate the grass-fungus interactions between and within family and treatment groups. We identified a number of changes in both the proteome and metabalome. Taken together, our data set provides new understanding into the intricacy of the interaction between endophyte and host from multiple molecular levels and suggests opportunity to promote plant robustness and survivability in rising CO2 environmental conditions through application of bioprotective epichloid strains.
Collapse
Affiliation(s)
- Jennifer Geddes-McAlister
- Department of Molecular and Cellular Biology, University of Guelph, Guelph, ON N1G 2W1, Canada; (A.S.); (N.P.); (B.M.)
- Mass Spectrometry Facility—Advanced Analysis Centre, University of Guelph, Guelph, ON N1G 2W1, Canada
- Correspondence: (J.G.-M.); (J.A.N.)
| | - Arjun Sukumaran
- Department of Molecular and Cellular Biology, University of Guelph, Guelph, ON N1G 2W1, Canada; (A.S.); (N.P.); (B.M.)
| | - Aurora Patchett
- Department of Integrative Biology, University of Guelph, Guelph, ON N1G 2W1, Canada; (A.P.); (H.A.H.); (J.C.M.D.); (J.L.R.); (K.B.); (J.P.)
| | - Heather A. Hager
- Department of Integrative Biology, University of Guelph, Guelph, ON N1G 2W1, Canada; (A.P.); (H.A.H.); (J.C.M.D.); (J.L.R.); (K.B.); (J.P.)
| | - Jenna C. M. Dale
- Department of Integrative Biology, University of Guelph, Guelph, ON N1G 2W1, Canada; (A.P.); (H.A.H.); (J.C.M.D.); (J.L.R.); (K.B.); (J.P.)
| | - Jennifer L. Roloson
- Department of Integrative Biology, University of Guelph, Guelph, ON N1G 2W1, Canada; (A.P.); (H.A.H.); (J.C.M.D.); (J.L.R.); (K.B.); (J.P.)
| | - Nicholas Prudhomme
- Department of Molecular and Cellular Biology, University of Guelph, Guelph, ON N1G 2W1, Canada; (A.S.); (N.P.); (B.M.)
| | - Kim Bolton
- Department of Integrative Biology, University of Guelph, Guelph, ON N1G 2W1, Canada; (A.P.); (H.A.H.); (J.C.M.D.); (J.L.R.); (K.B.); (J.P.)
| | - Benjamin Muselius
- Department of Molecular and Cellular Biology, University of Guelph, Guelph, ON N1G 2W1, Canada; (A.S.); (N.P.); (B.M.)
| | - Jacqueline Powers
- Department of Integrative Biology, University of Guelph, Guelph, ON N1G 2W1, Canada; (A.P.); (H.A.H.); (J.C.M.D.); (J.L.R.); (K.B.); (J.P.)
| | - Jonathan A. Newman
- Department of Integrative Biology, University of Guelph, Guelph, ON N1G 2W1, Canada; (A.P.); (H.A.H.); (J.C.M.D.); (J.L.R.); (K.B.); (J.P.)
- Correspondence: (J.G.-M.); (J.A.N.)
| |
Collapse
|
21
|
Crump GM, Zhou J, Mashayekh S, Grimes CL. Revisiting peptidoglycan sensing: interactions with host immunity and beyond. Chem Commun (Camb) 2020; 56:13313-13322. [PMID: 33057506 PMCID: PMC7642115 DOI: 10.1039/d0cc02605k] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
The interaction between host immunity and bacterial cells plays a pivotal role in a variety of human diseases. The bacterial cell wall component peptidoglycan (PG) is known to stimulate an immune response, which makes PG a distinctive recognition element for unveiling these complicated molecular interactions. Pattern recognition receptor (PRR) proteins are among the critical components of this system that initially recognize molecular patterns associated with microorganisms such as bacteria and fungi. These molecular patterns are mostly embedded in the bacterial or fungal cell wall structure and can be released and presented to the immune system in various situations. Nonetheless, detailed knowledge of this recognition is limited due to the diversity among the PG polymer and its fragments; the subsequent responses by multiple hosts add more complexity. Here, we discuss how our understanding of the role and molecular mechanisms of the well-studied PRR, the NOD-like receptors (NLRs), in the human immune system has evolved in recent years. We highlight the instances of other classes of proteins with similar behavior in the recognition of PG that have been identified in other microorganisms such as yeasts. These proteins are particularly interesting because a network of cellular interactions exists between human host cells, bacteria and yeast as a part of the normal human flora. To support our understanding of these interactions, we provide insight into the chemist's toolbox of peptidoglycan probes that aid in the investigations of the behaviors of these proteins and other biological contexts relevant to the sensing and recognition of peptidoglycan. The importance of these interactions in human health for the development of biomarkers and biotherapy is highlighted.
Collapse
Affiliation(s)
- Geneva Maddison Crump
- Department of Chemistry and Biochemistry, University of Delaware, Newark, DE 19716, USA.
| | | | | | | |
Collapse
|
22
|
Antifungal Activity of Magnesium Oxide Nanoparticles: Effect on the Growth and Key Virulence Factors of Candida albicans. Mycopathologia 2020; 185:485-494. [PMID: 32328890 DOI: 10.1007/s11046-020-00446-9] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2019] [Accepted: 04/08/2020] [Indexed: 12/19/2022]
Abstract
The aim of this research was to study the effects of different concentrations of magnesium oxide nanoparticles (MgO NPs) on the growth and key virulence factors of Candida albicans (C. albicans). The minimum inhibitory concentration (MIC) of MgO NPs against C. albicans was determined by the micro-broth dilution method. A time-kill curve of MgO NPs and C. albicans was established to investigate the ageing effect of MgO NPs on C. albicans. Crystal violet staining, the MTT assay, and inverted fluorescence microscopy were employed to determine the effects of MgO NPs on C. albicans adhesion, two-phase morphological transformation, biofilm biomass, and metabolic activity. The time-kill curve showed that MgO NPs had fungicidal and antifungal activity against C. albicans in a time- and concentration-dependent manner. Semi-quantitative crystal violet staining and MTT assays showed that MgO NPs significantly inhibited C. albicans biofilm formation and metabolic activity, and the difference was statistically significant (p < 0.001). Inverted fluorescence microscopy showed that MgO NPs could inhibit the formation of C. albicans biofilm hyphae. Adhesion experiments showed that MgO NPs significantly inhibited the initial adhesion of C. albicans (p < 0.001). This study demonstrates that MgO NPs can effectively inhibit the growth, initial adhesion, two-phase morphological transformation, and biofilm formation of C. albicans and is an antifungal candidate.
Collapse
|
23
|
Del Rio M, de la Canal L, Regente M. Plant Antifungal Lectins: Mechanism of Action and Targets on Human Pathogenic Fungi. Curr Protein Pept Sci 2020; 21:284-294. [DOI: 10.2174/1389203720666190906164448] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2019] [Revised: 06/25/2019] [Accepted: 08/06/2019] [Indexed: 12/13/2022]
Abstract
Lectins are proteins characterized by their ability to specifically bind different carbohydrate motifs. This feature is associated with their endogenous biological function as well as with multiple applications. Plants are important natural sources of these proteins; however, only a reduced group was shown to display antifungal activity. Although it is hypothesized that the target of lectins is the fungal cell wall, the mechanism through which they exert the antifungal action is poorly understood. This topic is relevant to improve treatment against pathogens of importance for human health. In this context, mechanisms pointing to essential attributes for virulence instead of the viability of the pathogen emerge as a promising approach. This review provides the current knowledge on the action mechanism of plant antifungal lectins and their putative use for the development of novel active principles against fungal infections.
Collapse
Affiliation(s)
- Marianela Del Rio
- Instituto de Investigaciones Biológicas, Universidad Nacional de Mar del Plata - CONICET, Funes 3250, 7600 Mar del Plata, Argentina
| | - Laura de la Canal
- Instituto de Investigaciones Biológicas, Universidad Nacional de Mar del Plata - CONICET, Funes 3250, 7600 Mar del Plata, Argentina
| | - Mariana Regente
- Instituto de Investigaciones Biológicas, Universidad Nacional de Mar del Plata - CONICET, Funes 3250, 7600 Mar del Plata, Argentina
| |
Collapse
|
24
|
Yan JJ, Tong ZJ, Liu YY, Li YN, Zhao C, Mukhtar I, Tao YX, Chen BZ, Deng YJ, Xie BG. Comparative Transcriptomics of Flammulina filiformis Suggests a High CO 2 Concentration Inhibits Early Pileus Expansion by Decreasing Cell Division Control Pathways. Int J Mol Sci 2019; 20:ijms20235923. [PMID: 31775357 PMCID: PMC6929049 DOI: 10.3390/ijms20235923] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2019] [Revised: 11/21/2019] [Accepted: 11/21/2019] [Indexed: 01/05/2023] Open
Abstract
Carbon dioxide is commonly used as one of the significant environmental factors to control pileus expansion during mushroom cultivation. However, the pileus expansion mechanism related to CO2 is still unknown. In this study, the young fruiting bodies of a popular commercial mushroom Flammulina filiformis were cultivated under different CO2 concentrations. In comparison to the low CO2 concentration (0.05%), the pileus expansion rates were significantly lower under a high CO2 concentration (5%). Transcriptome data showed that the up-regulated genes enriched in high CO2 concentration treatments mainly associated with metabolism processes indicated that the cell metabolism processes were active under high CO2 conditions. However, the gene ontology (GO) categories and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathways associated with cell division processes contained down-regulated genes at both 12 h and 36 h under a high concentration of CO2. Transcriptome and qRT-PCR analyses demonstrated that a high CO2 concentration had an adverse effect on gene expression of the ubiquitin–proteasome system and cell cycle–yeast pathway, which may decrease the cell division ability and exhibit an inhibitory effect on early pileus expansion. Our research reveals the molecular mechanism of inhibition effects on early pileus expansion by elevated CO2, which could provide a theoretical basis for a CO2 management strategy in mushroom cultivation.
Collapse
Affiliation(s)
- Jun-Jie Yan
- Mycological Research Center, College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou, Fujian 350002, China; (J.-J.Y.); (Z.-J.T.); (Y.-Y.L.); (Y.-N.L.); (C.Z.); (I.M.); (Y.-X.T.); (B.-Z.C.)
| | - Zong-Jun Tong
- Mycological Research Center, College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou, Fujian 350002, China; (J.-J.Y.); (Z.-J.T.); (Y.-Y.L.); (Y.-N.L.); (C.Z.); (I.M.); (Y.-X.T.); (B.-Z.C.)
- Institute of Edible Fungi, Shanghai Academy of Agricultural Sciences, Shanghai 201403, China
| | - Yuan-Yuan Liu
- Mycological Research Center, College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou, Fujian 350002, China; (J.-J.Y.); (Z.-J.T.); (Y.-Y.L.); (Y.-N.L.); (C.Z.); (I.M.); (Y.-X.T.); (B.-Z.C.)
| | - Yi-Ning Li
- Mycological Research Center, College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou, Fujian 350002, China; (J.-J.Y.); (Z.-J.T.); (Y.-Y.L.); (Y.-N.L.); (C.Z.); (I.M.); (Y.-X.T.); (B.-Z.C.)
| | - Chen Zhao
- Mycological Research Center, College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou, Fujian 350002, China; (J.-J.Y.); (Z.-J.T.); (Y.-Y.L.); (Y.-N.L.); (C.Z.); (I.M.); (Y.-X.T.); (B.-Z.C.)
| | - Irum Mukhtar
- Mycological Research Center, College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou, Fujian 350002, China; (J.-J.Y.); (Z.-J.T.); (Y.-Y.L.); (Y.-N.L.); (C.Z.); (I.M.); (Y.-X.T.); (B.-Z.C.)
- Institute of Oceanography, Minjiang University, Fuzhou, Fujian 350108, China
| | - Yong-Xin Tao
- Mycological Research Center, College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou, Fujian 350002, China; (J.-J.Y.); (Z.-J.T.); (Y.-Y.L.); (Y.-N.L.); (C.Z.); (I.M.); (Y.-X.T.); (B.-Z.C.)
- College of Horticulture, Fujian Agriculture and Forestry University, Fuzhou, Fujian 350002, China
| | - Bing-Zhi Chen
- Mycological Research Center, College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou, Fujian 350002, China; (J.-J.Y.); (Z.-J.T.); (Y.-Y.L.); (Y.-N.L.); (C.Z.); (I.M.); (Y.-X.T.); (B.-Z.C.)
- College of Food Science, Fujian Agriculture and Forestry University, Fuzhou, Fujian 350002, China
| | - You-Jin Deng
- Mycological Research Center, College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou, Fujian 350002, China; (J.-J.Y.); (Z.-J.T.); (Y.-Y.L.); (Y.-N.L.); (C.Z.); (I.M.); (Y.-X.T.); (B.-Z.C.)
- Correspondence: (Y.-J.D.); (B.-G.X.); Tel.: +86-591-8378-9277 (B.-G.X.)
| | - Bao-Gui Xie
- Mycological Research Center, College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou, Fujian 350002, China; (J.-J.Y.); (Z.-J.T.); (Y.-Y.L.); (Y.-N.L.); (C.Z.); (I.M.); (Y.-X.T.); (B.-Z.C.)
- Correspondence: (Y.-J.D.); (B.-G.X.); Tel.: +86-591-8378-9277 (B.-G.X.)
| |
Collapse
|
25
|
Rojas-Flores C, Ventura-Aguilar RI, Bautista-Baños S, Revah S, Saucedo-Lucero JO. Estimating CO2 and VOCs production of Colletotrichum fragariae and Rhizopus stolonifer grown in cold stored strawberry fruit. Microbiol Res 2019; 228:126327. [DOI: 10.1016/j.micres.2019.126327] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2019] [Revised: 08/12/2019] [Accepted: 08/30/2019] [Indexed: 10/26/2022]
|
26
|
|
27
|
Zhou S, Iannuzzi D. A fiber-tip photoacoustic sensor for in situ trace gas detection. THE REVIEW OF SCIENTIFIC INSTRUMENTS 2019; 90:023102. [PMID: 30831736 DOI: 10.1063/1.5082955] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/26/2018] [Accepted: 01/14/2019] [Indexed: 06/09/2023]
Abstract
Most trace gas detection methods developed so far largely rely on active sampling procedures, which are known to introduce different kinds of artifacts. Here, we demonstrate sampling-free in situ trace gas detection in millimeter scale volumes with fiber coupled cantilever enhanced photoacoustic spectroscopy. Our 2.4 mm diameter fiber-tip sensor is free from the wavelength modulation induced background signal (a phenomenon that is often overlooked in photoacoustic spectroscopy) and reaches a normalized noise equivalent absorption coefficient of 1.3 × 10-9 W cm-1 Hz-1/2 for acetylene detection. To validate its in situ gas detection capability, we inserted the sensor into a mini fermenter for headspace monitoring of CO2 production during yeast fermentation. Our results show that the sensor can easily follow the different stages of the CO2 production of the fermentation process in great detail.
Collapse
Affiliation(s)
- Sheng Zhou
- Department of Physics and Astronomy, VU University Amsterdam, Amsterdam, The Netherlands
| | - Davide Iannuzzi
- Department of Physics and Astronomy, VU University Amsterdam, Amsterdam, The Netherlands
| |
Collapse
|
28
|
Schumacher DI, Lütkenhaus R, Altegoer F, Teichert I, Kück U, Nowrousian M. The transcription factor PRO44 and the histone chaperone ASF1 regulate distinct aspects of multicellular development in the filamentous fungus Sordaria macrospora. BMC Genet 2018; 19:112. [PMID: 30545291 PMCID: PMC6293562 DOI: 10.1186/s12863-018-0702-z] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2018] [Accepted: 11/28/2018] [Indexed: 02/07/2023] Open
Abstract
Background Fungal fruiting bodies are complex three-dimensional structures that are formed to protect and disperse the sexual spores. Their morphogenesis requires the concerted action of numerous genes; however, at the molecular level, the spatio-temporal sequence of events leading to the mature fruiting body is largely unknown. In previous studies, the transcription factor gene pro44 and the histone chaperone gene asf1 were shown to be essential for fruiting body formation in the ascomycete Sordaria macrospora. Both PRO44 and ASF1 are predicted to act on the regulation of gene expression in the nucleus, and mutants in both genes are blocked at the same stage of development. Thus, we hypothesized that PRO44 and ASF1 might be involved in similar aspects of transcriptional regulation. In this study, we characterized their roles in fruiting body development in more detail. Results The PRO44 protein forms homodimers, localizes to the nucleus, and is strongly expressed in the outer layers of the developing young fruiting body. Analysis of single and double mutants of asf1 and three other chromatin modifier genes, cac2, crc1, and rtt106, showed that only asf1 is essential for fruiting body formation whereas cac2 and rtt106 might have redundant functions in this process. RNA-seq analysis revealed distinct roles for asf1 and pro44 in sexual development, with asf1 acting as a suppressor of weakly expressed genes during morphogenesis. This is most likely not due to global mislocalization of nucleosomes as micrococcal nuclease-sequencing did not reveal differences in nucleosome spacing and positioning around transcriptional start sites between Δasf1 and the wild type. However, bisulfite sequencing revealed a decrease in DNA methylation in Δasf1, which might be a reason for the observed changes in gene expression. Transcriptome analysis of gene expression in young fruiting bodies showed that pro44 is required for correct expression of genes involved in extracellular metabolism. Deletion of the putative transcription factor gene asm2, which is downregulated in young fruiting bodies of Δpro44, results in defects during ascospore maturation. Conclusions In summary, the results indicate distinct roles for the transcription factor PRO44 and the histone chaperone ASF1 in the regulation of sexual development in fungi. Electronic supplementary material The online version of this article (10.1186/s12863-018-0702-z) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
| | - Ramona Lütkenhaus
- Lehrstuhl für Allgemeine und Molekulare Botanik, Ruhr-Universität Bochum, 44780, Bochum, Germany
| | - Florian Altegoer
- Lehrstuhl für Allgemeine und Molekulare Botanik, Ruhr-Universität Bochum, 44780, Bochum, Germany.,LOEWE-Zentrum für Synthetische Mikrobiologie & Department of Chemistry, Philipps University of Marburg, Marburg, Germany
| | - Ines Teichert
- Lehrstuhl für Allgemeine und Molekulare Botanik, Ruhr-Universität Bochum, 44780, Bochum, Germany
| | - Ulrich Kück
- Lehrstuhl für Allgemeine und Molekulare Botanik, Ruhr-Universität Bochum, 44780, Bochum, Germany
| | - Minou Nowrousian
- Lehrstuhl für Allgemeine und Molekulare Botanik, Ruhr-Universität Bochum, 44780, Bochum, Germany.
| |
Collapse
|
29
|
Vullo D, Lehneck R, Pöggeler S, Supuran CT. Sulfonamide inhibition studies of two β-carbonic anhydrases from the ascomycete fungus Sordaria macrospora, CAS1 and CAS2. J Enzyme Inhib Med Chem 2018; 33:390-396. [PMID: 29363370 PMCID: PMC6010127 DOI: 10.1080/14756366.2018.1425687] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2017] [Revised: 01/05/2018] [Accepted: 01/05/2018] [Indexed: 11/08/2022] Open
Abstract
The two β-carbonic anhydrases (CAs, EC 4.2.1.1) recently cloned and purified from the ascomycete fungus Sordaria macrospora, CAS1 and CAS2, were investigated for their inhibition with a panel of 39 aromatic, heterocyclic, and aliphatic sulfonamides and one sulfamate, many of which are clinically used agents. CAS1 was efficiently inhibited by tosylamide, 3-fluorosulfanilamide, and 3-chlorosulfanilamide (KIs in the range of 43.2-79.6 nM), whereas acetazolamide, methazolamide, topiramate, ethoxzolamide, dorzolamide, and brinzolamide were medium potency inhibitors (KIs in the range of 360-445 nM). CAS2 was less sensitive to sulfonamide inhibitors. The best CAS2 inhibitors were 5-amino-1,3,4-thiadiazole-2-sulfonamide (the deacetylated acetazolamide precursor) and 4-hydroxymethyl-benzenesulfonamide, with KIs in the range of 48.1-92.5 nM. Acetazolamide, dorzolamide, ethoxzolamide, topiramate, sulpiride, indisulam, celecoxib, and sulthiame were medium potency CAS2 inhibitors (KIs of 143-857 nM). Many other sulfonamides showed affinities in the high micromolar range or were ineffective as CAS1/2 inhibitors. Small changes in the structure of the inhibitor led to important differences of the activity. As these enzymes may show applications for the removal of anthropically generated polluting gases, finding modulators of their activity may be crucial for designing environmental-friendly CO2 capture processes.
Collapse
Affiliation(s)
- Daniela Vullo
- Polo Scientifico, Laboratorio di Chimica Bioinorganica, Università degli Studi di Firenze, Sesto Fiorentino, Florence, Italy
| | - Ronny Lehneck
- Institute of Microbiology and Genetics, Department of Genetics of Eukaryotic Microorganisms, Georg-August-University Göttingen, Göttingen, Germany
| | - Stefanie Pöggeler
- Institute of Microbiology and Genetics, Department of Genetics of Eukaryotic Microorganisms, Georg-August-University Göttingen, Göttingen, Germany
| | - Claudiu T. Supuran
- Neurfarba Department, Sezione di Scienze Farmaceutiche e Nutraceutiche, Università degli Studi di Firenze, Sesto Fiorentino, Florence, Italy
| |
Collapse
|
30
|
Huang G, Huang Q, Wei Y, Wang Y, Du H. Multiple roles and diverse regulation of the Ras/cAMP/protein kinase A pathway in Candida albicans. Mol Microbiol 2018; 111:6-16. [PMID: 30299574 DOI: 10.1111/mmi.14148] [Citation(s) in RCA: 44] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/01/2018] [Indexed: 01/15/2023]
Abstract
Candida albicans is a major fungal pathogen of humans, causing both superficial and life-threatening systemic infections in immunocompromised people. The conserved Ras/cAMP/PKA pathway plays a key role in regulating multiple traits important for the virulence of C. albicans such as cell growth, yeast-hyphal transition, white-opaque switching, sexual reproduction and biofilm development. Diverse external signals influence cell physiology by activating this signaling pathway. The key components of the Ras/cAMP/PKA pathway include two Ras GTPases (Ras1 and Ras2), an adenylyl cyclase (Cyr1, also known as Cdc35), two cyclic nucleotide phosphodiesterases (Pde1 and Pde2) and the catalytic (Tpk1 and Tpk2) and regulatory (Bcy1) subunits of PKA kinase. Activation of this pathway dramatically alters the gene expression profile via several transcription factors, leading to the activation of specific biological processes. Here, we review the progress made in the past two decades to elucidate the molecular mechanisms by which the Ras/cAMP/PKA pathway senses diverse environmental cues and controls specific cellular responses and its connection with other signaling pathways in C. albicans.
Collapse
Affiliation(s)
- Guanghua Huang
- State Key Laboratory of Genetic Engineering, School of Life Sciences, Fudan University, Shanghai, 200438, China.,State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, 100101, China.,University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Qian Huang
- Department of Dermatology, Affiliated Hospital of Guizhou Medical University, Guiyang, 550025, China
| | - Yujia Wei
- Department of Dermatology, Affiliated Hospital of Guizhou Medical University, Guiyang, 550025, China
| | - Yue Wang
- Institute of Molecular and Cell Biology, 61 Biopolis Drive, Proteos, Singapore, 138673, Singapore.,Department of Biochemistry, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, 119228, Singapore
| | - Han Du
- State Key Laboratory of Genetic Engineering, School of Life Sciences, Fudan University, Shanghai, 200438, China.,Institutes of Biomedical Sciences, Fudan University, Shanghai, 200032, China
| |
Collapse
|
31
|
Cissé OH, Hauser PM. Genomics and evolution of Pneumocystis species. INFECTION GENETICS AND EVOLUTION 2018; 65:308-320. [PMID: 30138710 DOI: 10.1016/j.meegid.2018.08.015] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/30/2018] [Revised: 08/15/2018] [Accepted: 08/17/2018] [Indexed: 01/20/2023]
Abstract
The genus Pneumocystis comprises highly diversified fungal species that cause severe pneumonia in individuals with a deficient immune system. These fungi infect exclusively mammals and present a strict host species specificity. These species have co-diverged with their hosts for long periods of time (> 100 MYA). Details of their biology and evolution are fragmentary mainly because of a lack of an established long-term culture system. Recent genomic advances have unlocked new areas of research and allow new hypotheses to be tested. We review here new findings of the genomic studies in relation with the evolutionary trajectory of these fungi and discuss the impact of genomic data analysis in the context of the population genetics. The combination of slow genome decay and limited expansion of specific gene families and introns reflect intimate interactions of these species with their hosts. The evolutionary adaptation of these organisms is profoundly influenced by their population structure, which in turn is determined by intrinsic features such as their self-fertilizing mating system, high host specificity, long generation times, and transmission mode. Essential key questions concerning their adaptation and speciation remain to be answered. The next cornerstone will consist in the establishment of a long-term culture system and genetic manipulation that should allow unravelling the driving forces of Pneumocystis species evolution.
Collapse
Affiliation(s)
- Ousmane H Cissé
- Critical Care Medicine Department, NIH Clinical Center, National Institutes of Health, Bethesda, MD 20892, USA.
| | - Philippe M Hauser
- Institute of Microbiology, Lausanne University Hospital, Lausanne, Switzerland.
| |
Collapse
|
32
|
Wiggins SV, Steegborn C, Levin LR, Buck J. Pharmacological modulation of the CO 2/HCO 3-/pH-, calcium-, and ATP-sensing soluble adenylyl cyclase. Pharmacol Ther 2018; 190:173-186. [PMID: 29807057 DOI: 10.1016/j.pharmthera.2018.05.008] [Citation(s) in RCA: 44] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Cyclic AMP (cAMP), the prototypical second messenger, has been implicated in a wide variety of (often opposing) physiological processes. It simultaneously mediates multiple, diverse processes, often within a single cell, by acting locally within independently-regulated and spatially-restricted microdomains. Within each microdomain, the level of cAMP will be dependent upon the balance between its synthesis by adenylyl cyclases and its degradation by phosphodiesterases (PDEs). In mammalian cells, there are many PDE isoforms and two types of adenylyl cyclases; the G protein regulated transmembrane adenylyl cyclases (tmACs) and the CO2/HCO3-/pH-, calcium-, and ATP-sensing soluble adenylyl cyclase (sAC). Discriminating the roles of individual cyclic nucleotide microdomains requires pharmacological modulators selective for the various PDEs and/or adenylyl cyclases. Such tools present an opportunity to develop therapeutics specifically targeted to individual cAMP dependent pathways. The pharmacological modulators of tmACs have recently been reviewed, and in this review, we describe the current status of pharmacological tools available for studying sAC.
Collapse
Affiliation(s)
- Shakarr V Wiggins
- Graduate Program in Neuroscience, Weill Cornell Medicine, New York, NY 10065, United States
| | - Clemens Steegborn
- Department of Biochemistry, University of Bayreuth, 95440 Bayreuth, Germany
| | - Lonny R Levin
- Department of Pharmacology, Weill Cornell Medicine, New York, NY 10065, United States.
| | - Jochen Buck
- Department of Pharmacology, Weill Cornell Medicine, New York, NY 10065, United States
| |
Collapse
|
33
|
Padder SA, Prasad R, Shah AH. Quorum sensing: A less known mode of communication among fungi. Microbiol Res 2018; 210:51-58. [PMID: 29625658 DOI: 10.1016/j.micres.2018.03.007] [Citation(s) in RCA: 120] [Impact Index Per Article: 17.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2018] [Revised: 02/21/2018] [Accepted: 03/17/2018] [Indexed: 02/08/2023]
Abstract
Quorum sensing (QS), a density-dependent signaling mechanism of microbial cells, involves an exchange and sense of low molecular weight signaling compounds called autoinducers. With the increase in population density, the autoinducers accumulate in the extracellular environment and once their concentration reaches a threshold, many genes are either expressed or repressed. This cell density-dependent signaling mechanism enables single cells to behave as multicellular organisms and regulates different microbial behaviors like morphogenesis, pathogenesis, competence, biofilm formation, bioluminescence, etc guided by environmental cues. Initially, QS was regarded to be a specialized system of certain bacteria. The discovery of filamentation control in pathogenic polymorphic fungus Candida albicans by farnesol revealed the phenomenon of QS in fungi as well. Pathogenic microorganisms primarily regulate the expression of virulence genes using QS systems. The indirect role of QS in the emergence of multiple drug resistance (MDR) in microbial pathogens necessitates the finding of alternative antimicrobial therapies that target QS and inhibit the same. A related phenomenon of quorum sensing inhibition (QSI) performed by small inhibitor molecules called quorum sensing inhibitors (QSIs) has an ability for efficient reduction of gene expression regulated by quorum sensing. In the present review, recent advancements in the study of different fungal quorum sensing molecules (QSMs) and quorum sensing inhibitors (QSIs) of fungal origin along with their mechanism of action and/or role/s are discussed.
Collapse
Affiliation(s)
- Sajad Ahmad Padder
- Department of Bioresources, University of Kashmir, Hazratbal, Srinagar 190006, J&K, India
| | - Rajendra Prasad
- Amity Institute of Integrative Sciences and Health and Amity Institute of Biotechnology, Amity University Haryana, Amity Education Valley, Gurgaon 122413, HR, India
| | - Abdul Haseeb Shah
- Department of Bioresources, University of Kashmir, Hazratbal, Srinagar 190006, J&K, India.
| |
Collapse
|
34
|
Candida albicans Hyphae: From Growth Initiation to Invasion. J Fungi (Basel) 2018; 4:jof4010010. [PMID: 29371503 PMCID: PMC5872313 DOI: 10.3390/jof4010010] [Citation(s) in RCA: 64] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2017] [Revised: 12/28/2017] [Accepted: 01/10/2018] [Indexed: 12/31/2022] Open
Abstract
Candida albicans is a commensal resident of the human gastrointestinal and genital tracts. Under conditions such as dysbiosis, host immune perturbances, or the presence of catheters/implanted medical devices, the fungus may cause debilitating mucosal or fatal systemic infections. The ability of C. albicans to grow as long filamentous hyphae is critical for its pathogenic potential as it allows the fungus to invade the underlying substratum. In this brief review, I will outline the current understanding regarding the mechanistic regulation of hyphal growth and invasion in C. albicans.
Collapse
|
35
|
Gilbert MK, Medina A, Mack BM, Lebar MD, Rodríguez A, Bhatnagar D, Magan N, Obrian G, Payne G. Carbon Dioxide Mediates the Response to Temperature and Water Activity Levels in Aspergillus flavus during Infection of Maize Kernels. Toxins (Basel) 2017; 10:E5. [PMID: 29271897 PMCID: PMC5793092 DOI: 10.3390/toxins10010005] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2017] [Revised: 11/17/2017] [Accepted: 12/14/2017] [Indexed: 12/20/2022] Open
Abstract
Aspergillus flavus is a saprophytic fungus that may colonize several important crops, including cotton, maize, peanuts and tree nuts. Concomitant with A. flavus colonization is its potential to secrete mycotoxins, of which the most prominent is aflatoxin. Temperature, water activity (aw) and carbon dioxide (CO₂) are three environmental factors shown to influence the fungus-plant interaction, which are predicted to undergo significant changes in the next century. In this study, we used RNA sequencing to better understand the transcriptomic response of the fungus to aw, temperature, and elevated CO₂ levels. We demonstrate that aflatoxin (AFB₁) production on maize grain was altered by water availability, temperature and CO₂. RNA-Sequencing data indicated that several genes, and in particular those involved in the biosynthesis of secondary metabolites, exhibit different responses to water availability or temperature stress depending on the atmospheric CO₂ content. Other gene categories affected by CO₂ levels alone (350 ppm vs. 1000 ppm at 30 °C/0.99 aw), included amino acid metabolism and folate biosynthesis. Finally, we identified two gene networks significantly influenced by changes in CO₂ levels that contain several genes related to cellular replication and transcription. These results demonstrate that changes in atmospheric CO₂ under climate change scenarios greatly influences the response of A. flavus to water and temperature when colonizing maize grain.
Collapse
Affiliation(s)
- Matthew K Gilbert
- USDA/Agricultural Research Service, 1100 Robert E Lee Blvd., New Orleans, LA 70124, USA.
| | - Angel Medina
- Applied Mycology Group, Biotechnology Centre, Cranfield University, Silsoe, Bedford MK45 4DT, UK.
| | - Brian M Mack
- USDA/Agricultural Research Service, 1100 Robert E Lee Blvd., New Orleans, LA 70124, USA.
| | - Matthew D Lebar
- USDA/Agricultural Research Service, 1100 Robert E Lee Blvd., New Orleans, LA 70124, USA.
| | - Alicia Rodríguez
- Food Hygiene and Safety, Meat and Meat products Research Institute, University of Extremadura, 10003 Caceres, Spain.
| | - Deepak Bhatnagar
- USDA/Agricultural Research Service, 1100 Robert E Lee Blvd., New Orleans, LA 70124, USA.
| | - Naresh Magan
- Applied Mycology Group, Biotechnology Centre, Cranfield University, Silsoe, Bedford MK45 4DT, UK.
| | - Gregory Obrian
- Department of Entomology and Plant Pathology, 223 Partners III, P.O. Box 7567, North Carolina State University, Raleigh, NC 27695, USA.
| | - Gary Payne
- Department of Entomology and Plant Pathology, 223 Partners III, P.O. Box 7567, North Carolina State University, Raleigh, NC 27695, USA.
| |
Collapse
|
36
|
Pentland DR, Piper-Brown E, Mühlschlegel FA, Gourlay CW. Ras signalling in pathogenic yeasts. MICROBIAL CELL 2017; 5:63-73. [PMID: 29417055 PMCID: PMC5798406 DOI: 10.15698/mic2018.02.612] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
The small GTPase Ras acts as a master regulator of growth, stress response and cell death in eukaryotic cells. The control of Ras activity is fundamental, as highlighted by the oncogenic properties of constitutive forms of Ras proteins. Ras also plays a crucial role in the pathogenicity of fungal pathogens where it has been found to regulate a number of adaptions required for virulence. The importance of Ras in fungal disease raises the possibility that it may provide a useful target for the development of new treatments at a time when resistance to available antifungals is increasing. New findings suggest that important regulatory sequences found within fungal Ras proteins that are not conserved may prove useful in the development of new antifungals. Here we review the roles of Ras protein function and signalling in the major human yeast pathogens Candida albicans and Cryptococcus neoformans and discuss the potential for targeting Ras as a novel approach to anti-fungal therapy.
Collapse
Affiliation(s)
- Daniel R Pentland
- Kent Fungal Group, School of Biosciences, University of Kent, Canterbury, Kent, United Kingdom, CT2 7NJ
| | - Elliot Piper-Brown
- Kent Fungal Group, School of Biosciences, University of Kent, Canterbury, Kent, United Kingdom, CT2 7NJ
| | - Fritz A Mühlschlegel
- Kent Fungal Group, School of Biosciences, University of Kent, Canterbury, Kent, United Kingdom, CT2 7NJ.,Laboratoire national de santé, 1, Rue Louis Rech, L-3555 Dudelange, Luxembourg
| | - Campbell W Gourlay
- Kent Fungal Group, School of Biosciences, University of Kent, Canterbury, Kent, United Kingdom, CT2 7NJ
| |
Collapse
|
37
|
The role of nitrogen uptake on the competition ability of three vineyard Saccharomyces cerevisiae strains. Int J Food Microbiol 2017; 258:1-11. [DOI: 10.1016/j.ijfoodmicro.2017.07.006] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2016] [Revised: 06/16/2017] [Accepted: 07/12/2017] [Indexed: 11/16/2022]
|
38
|
Tao L, Zhang Y, Fan S, Nobile CJ, Guan G, Huang G. Integration of the tricarboxylic acid (TCA) cycle with cAMP signaling and Sfl2 pathways in the regulation of CO2 sensing and hyphal development in Candida albicans. PLoS Genet 2017; 13:e1006949. [PMID: 28787458 PMCID: PMC5567665 DOI: 10.1371/journal.pgen.1006949] [Citation(s) in RCA: 51] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2017] [Revised: 08/22/2017] [Accepted: 07/28/2017] [Indexed: 11/23/2022] Open
Abstract
Morphological transitions and metabolic regulation are critical for the human fungal pathogen Candida albicans to adapt to the changing host environment. In this study, we generated a library of central metabolic pathway mutants in the tricarboxylic acid (TCA) cycle, and investigated the functional consequences of these gene deletions on C. albicans biology. Inactivation of the TCA cycle impairs the ability of C. albicans to utilize non-fermentable carbon sources and dramatically attenuates cell growth rates under several culture conditions. By integrating the Ras1-cAMP signaling pathway and the heat shock factor-type transcription regulator Sfl2, we found that the TCA cycle plays fundamental roles in the regulation of CO2 sensing and hyphal development. The TCA cycle and cAMP signaling pathways coordinately regulate hyphal growth through the molecular linkers ATP and CO2. Inactivation of the TCA cycle leads to lowered intracellular ATP and cAMP levels and thus affects the activation of the Ras1-regulated cAMP signaling pathway. In turn, the Ras1-cAMP signaling pathway controls the TCA cycle through both Efg1- and Sfl2-mediated transcriptional regulation in response to elevated CO2 levels. The protein kinase A (PKA) catalytic subunit Tpk1, but not Tpk2, may play a major role in this regulation. Sfl2 specifically binds to several TCA cycle and hypha-associated genes under high CO2 conditions. Global transcriptional profiling experiments indicate that Sfl2 is indeed required for the gene expression changes occurring in response to these elevated CO2 levels. Our study reveals the regulatory role of the TCA cycle in CO2 sensing and hyphal development and establishes a novel link between the TCA cycle and Ras1-cAMP signaling pathways. Energy metabolism through the TCA cycle and mitochondrial electron transport are critical for the human fungal pathogen Candida albicans to survive and propagate in the host. This is, in part, due to the fact that C. albicans is a Crabtree-negative species, and thus exclusively uses respiration when oxygen is available. Here, we investigate the roles of the TCA cycle in hyphal development and CO2 sensing in C. albicans. Through the use of ATP and the cellular signaling molecule CO2, the TCA cycle integrates with the Ras1-cAMP signaling pathway, which is a central regulator of hyphal growth, to govern basic cellular biological processes. Together with Efg1, a downstream transcription factor of the cAMP signaling pathway, the heat shock factor-type transcription regulator Sfl2 controls CO2-induced hyphal growth in C. albicans. Deletion of SFL2 results in the loss of global transcriptional responses under elevated CO2 levels. Our study indicates that the TCA cycle not only occupies the central position of cellular metabolism but also regulates other biological processes such as CO2 sensing and hyphal development through integration with the Ras1-cAMP signaling pathway in C. albicans.
Collapse
Affiliation(s)
- Li Tao
- State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China
| | - Yulong Zhang
- State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Shuru Fan
- State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Clarissa J. Nobile
- Department of Molecular and Cell Biology, University of California, Merced, California, United States of America
| | - Guobo Guan
- State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China
| | - Guanghua Huang
- State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
- * E-mail:
| |
Collapse
|
39
|
Dzialo MC, Park R, Steensels J, Lievens B, Verstrepen KJ. Physiology, ecology and industrial applications of aroma formation in yeast. FEMS Microbiol Rev 2017; 41:S95-S128. [PMID: 28830094 PMCID: PMC5916228 DOI: 10.1093/femsre/fux031] [Citation(s) in RCA: 206] [Impact Index Per Article: 25.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2017] [Accepted: 06/06/2017] [Indexed: 01/05/2023] Open
Abstract
Yeast cells are often employed in industrial fermentation processes for their ability to efficiently convert relatively high concentrations of sugars into ethanol and carbon dioxide. Additionally, fermenting yeast cells produce a wide range of other compounds, including various higher alcohols, carbonyl compounds, phenolic compounds, fatty acid derivatives and sulfur compounds. Interestingly, many of these secondary metabolites are volatile and have pungent aromas that are often vital for product quality. In this review, we summarize the different biochemical pathways underlying aroma production in yeast as well as the relevance of these compounds for industrial applications and the factors that influence their production during fermentation. Additionally, we discuss the different physiological and ecological roles of aroma-active metabolites, including recent findings that point at their role as signaling molecules and attractants for insect vectors.
Collapse
Affiliation(s)
- Maria C Dzialo
- Laboratory for Genetics and Genomics, Centre of Microbial and Plant Genetics (CMPG), KU Leuven, Gaston Geenslaan 1, B-3001 Leuven, Belgium
- Laboratory for Systems Biology, VIB Center for Microbiology, Bio-Incubator, Gaston Geenslaan 1, 3001 Leuven, Belgium
| | - Rahel Park
- Laboratory for Genetics and Genomics, Centre of Microbial and Plant Genetics (CMPG), KU Leuven, Gaston Geenslaan 1, B-3001 Leuven, Belgium
- Laboratory for Systems Biology, VIB Center for Microbiology, Bio-Incubator, Gaston Geenslaan 1, 3001 Leuven, Belgium
| | - Jan Steensels
- Laboratory for Genetics and Genomics, Centre of Microbial and Plant Genetics (CMPG), KU Leuven, Gaston Geenslaan 1, B-3001 Leuven, Belgium
- Laboratory for Systems Biology, VIB Center for Microbiology, Bio-Incubator, Gaston Geenslaan 1, 3001 Leuven, Belgium
| | - Bart Lievens
- Laboratory for Process Microbial Ecology and Bioinspirational Management (PME&BIM), Department of Microbial and Molecular Systems, KU Leuven, Campus De Nayer, Fortsesteenweg 30A B-2860 Sint-Katelijne Waver, Belgium
| | - Kevin J Verstrepen
- Laboratory for Genetics and Genomics, Centre of Microbial and Plant Genetics (CMPG), KU Leuven, Gaston Geenslaan 1, B-3001 Leuven, Belgium
- Laboratory for Systems Biology, VIB Center for Microbiology, Bio-Incubator, Gaston Geenslaan 1, 3001 Leuven, Belgium
| |
Collapse
|
40
|
CO 2 sensing in fungi: at the heart of metabolic signaling. Curr Genet 2017; 63:965-972. [PMID: 28493119 DOI: 10.1007/s00294-017-0700-0] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2017] [Revised: 04/28/2017] [Accepted: 05/02/2017] [Indexed: 02/06/2023]
Abstract
Adaptation to the changing environmental CO2 levels is essential for all living cells. In particular, microorganisms colonizing and infecting the human body are exposed to highly variable concentrations, ranging from atmospheric 0.04 to 5% and more in blood and specific host niches. Carbonic anhydrases are highly conserved metalloenzymes that enable fixation of CO2 by its conversion into bicarbonate. This process is not only crucial to ensure the supply of adequate carbon amounts for cellular metabolism, but also contributes to several signaling processes in fungi, including morphology and communication. The fungal specific carbonic anhydrase gene NCE103 is transcribed in response to CO2 availability. As recently shown, this regulation relies on the ATF/CREB transcription factor Cst6 and the AGC family protein kinase Sch9. Here, we review the regulatory mechanisms which control NCE103 expression in the model organism Saccharomyces cerevisiae and the pathogenic yeasts Candida albicans and Candida glabrata and discuss which additional factors might contribute in this novel CO2 sensing cascade.
Collapse
|
41
|
|
42
|
Parrino SM, Si H, Naseem S, Groudan K, Gardin J, Konopka JB. cAMP-independent signal pathways stimulate hyphal morphogenesis in Candida albicans. Mol Microbiol 2016; 103:764-779. [PMID: 27888610 DOI: 10.1111/mmi.13588] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/22/2016] [Indexed: 11/29/2022]
Abstract
The fungal pathogen Candida albicans can transition from budding to hyphal growth, which promotes biofilm formation and invasive growth into tissues. Stimulation of adenylyl cyclase to form cAMP induces hyphal morphogenesis. The failure of cells lacking adenylyl cyclase (cyr1Δ) to form hyphae has suggested that cAMP signaling is essential for hyphal growth. However, cyr1Δ mutants also grow slowly and have defects in morphogenesis, making it unclear whether hyphal inducers must stimulate cAMP, or if normal basal levels of cAMP are required to maintain cellular health needed for hyphal growth. Interestingly, supplementation of cyr1Δ cells with low levels of cAMP enabled them to form hyphae in response to the inducer N-acetylglucosamine (GlcNAc), suggesting that a basal level of cAMP is sufficient for stimulation. Furthermore, we isolated faster-growing cyr1Δ pseudorevertant strains that can be induced to form hyphae even though they lack cAMP. The pseudorevertant strains were not induced by CO2 , consistent with reports that CO2 directly stimulates adenylyl cyclase. Mutational analysis showed that induction of hyphae in a pseudorevertant strain was independent of RAS1, but was dependent on the EFG1 transcription factor that acts downstream of protein kinase A. Thus, cAMP-independent signals contribute to the induction of hyphal responses.
Collapse
Affiliation(s)
- Salvatore M Parrino
- Department of Molecular Genetics and Microbiology, Stony Brook University, Stony Brook, NY, USA.,Graduate Program in Molecular and Cellular Biology, Stony Brook University, Stony Brook, NY, USA
| | - Haoyu Si
- Department of Molecular Genetics and Microbiology, Stony Brook University, Stony Brook, NY, USA
| | - Shamoon Naseem
- Department of Molecular Genetics and Microbiology, Stony Brook University, Stony Brook, NY, USA
| | - Kevin Groudan
- Department of Molecular Genetics and Microbiology, Stony Brook University, Stony Brook, NY, USA
| | - Justin Gardin
- Department of Molecular Genetics and Microbiology, Stony Brook University, Stony Brook, NY, USA.,Graduate Program in Molecular Genetics and Microbiology, Stony Brook University, Stony Brook, NY, USA
| | - James B Konopka
- Department of Molecular Genetics and Microbiology, Stony Brook University, Stony Brook, NY, USA
| |
Collapse
|
43
|
Global Role of Cyclic AMP Signaling in pH-Dependent Responses in Candida albicans. mSphere 2016; 1:mSphere00283-16. [PMID: 27921082 PMCID: PMC5137381 DOI: 10.1128/msphere.00283-16] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2016] [Accepted: 10/20/2016] [Indexed: 12/14/2022] Open
Abstract
Candida albicans is a human commensal and the causative agent of candidiasis, a potentially invasive and life-threatening infection. C. albicans experiences wide changes in pH during both benign commensalism (a common condition) and pathogenesis, and its morphology changes in response to this stimulus. Neutral pH is considered an activator of hyphal growth through Rim101, but the effect of low pH on other morphology-related pathways has not been extensively studied. We sought to determine the role of cyclic AMP signaling, a central regulator of morphology, in the sensing of pH. In addition, we asked broadly what cellular processes were altered by pH in both the presence and absence of this important signal integration system. We concluded that cAMP signaling is impacted by pH and that cAMP broadly impacts C. albicans physiology in both pH-dependent and -independent ways. Candida albicans behaviors are affected by pH, an important environmental variable. Filamentous growth is a pH-responsive behavior, where alkaline conditions favor hyphal growth and acid conditions favor growth as yeast. We employed filamentous growth as a tool to study the impact of pH on the hyphal growth regulator Cyr1, and we report that downregulation of cyclic AMP (cAMP) signaling by acidic pH contributes to the inhibition of hyphal growth in minimal medium with GlcNAc. Ras1 and Cyr1 are generally required for efficient hyphal growth, and the effects of low pH on Ras1 proteolysis and GTP binding are consistent with diminished cAMP output. Active alleles of ras1 do not suppress the hyphal growth defect at low pH, while dibutyryl cAMP partially rescues filamentous growth at low pH in a cyr1 mutant. These observations are consistent with Ras1-independent downregulation of Cyr1 by low pH. We also report that extracellular pH leads to rapid and prolonged decreases in intracellular pH, and these changes may contribute to reduced cAMP signaling by reducing intracellular bicarbonate pools. Transcriptomics analyses found that the loss of Cyr1 at either acidic or neutral pH leads to increases in transcripts involved in carbohydrate catabolism and protein translation and glycosylation and decreases in transcripts involved in oxidative metabolism, fluconazole transport, metal transport, and biofilm formation. Other pathways were modulated in pH-dependent ways. Our findings indicate that cAMP has a global role in pH-dependent responses, and this effect is mediated, at least in part, through Cyr1 in a Ras1-independent fashion. IMPORTANCECandida albicans is a human commensal and the causative agent of candidiasis, a potentially invasive and life-threatening infection. C. albicans experiences wide changes in pH during both benign commensalism (a common condition) and pathogenesis, and its morphology changes in response to this stimulus. Neutral pH is considered an activator of hyphal growth through Rim101, but the effect of low pH on other morphology-related pathways has not been extensively studied. We sought to determine the role of cyclic AMP signaling, a central regulator of morphology, in the sensing of pH. In addition, we asked broadly what cellular processes were altered by pH in both the presence and absence of this important signal integration system. We concluded that cAMP signaling is impacted by pH and that cAMP broadly impacts C. albicans physiology in both pH-dependent and -independent ways.
Collapse
|
44
|
Fleißner A, Herzog S. Signal exchange and integration during self-fusion in filamentous fungi. Semin Cell Dev Biol 2016; 57:76-83. [DOI: 10.1016/j.semcdb.2016.03.016] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2016] [Revised: 03/06/2016] [Accepted: 03/22/2016] [Indexed: 11/16/2022]
|
45
|
Abstract
The surveillance and elimination of fungal pathogens rely heavily on the sentinel behaviour of phagocytic cells of the innate immune system, especially macrophages and neutrophils. The efficiency by which these cells recognize, uptake and kill fungal pathogens depends on the size, shape and composition of the fungal cells and the success or failure of various fungal mechanisms of immune evasion. In this Review, we describe how fungi, particularly Candida albicans, interact with phagocytic cells and discuss the many factors that contribute to fungal immune evasion and prevent host elimination of these pathogenic microorganisms.
Collapse
Affiliation(s)
- Lars P Erwig
- Aberdeen Fungal Group, College of Life Sciences and Medicine, Institute of Medical Sciences, University of Aberdeen, Aberdeen AB25 2ZD, UK.,GlaxoSmithKline, Gunnels Wood Road, Stevenage, Hertfordshire SG1 2NY, UK
| | - Neil A R Gow
- Aberdeen Fungal Group, College of Life Sciences and Medicine, Institute of Medical Sciences, University of Aberdeen, Aberdeen AB25 2ZD, UK
| |
Collapse
|
46
|
Xu H, Navarro-Ródenas A, Cooke JEK, Zwiazek JJ. Transcript profiling of aquaporins during basidiocarp development in Laccaria bicolor ectomycorrhizal with Picea glauca. MYCORRHIZA 2016; 26:19-31. [PMID: 25957233 DOI: 10.1007/s00572-015-0643-6] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/17/2015] [Accepted: 04/28/2015] [Indexed: 06/04/2023]
Abstract
Sporocarp formation is part of the reproductive stage in the life cycle of many mycorrhizal macrofungi. Sporocarp formation is accompanied by a transcriptomic switch and profound changes in regulation of the gene families that play crucial roles in the sporocarp initiation and maturation. Since sporocarp growth requires efficient water delivery, in the present study, we investigated changes in transcript abundance of six fungal aquaporin genes that could be cloned from the ectomycorrhizal fungus Laccaria bicolor strain UAMH8232, during the initiation and development of its basidiocarp. Aquaporins are intrinsic membrane proteins facilitating the transmembrane transport of water and other small neutral molecules. In controlled-environment experiments, we induced basidiocarp formation in L. bicolor, which formed ectomycorrhizal associations with white spruce (Picea glauca) seedlings. We profiled transcript abundance corresponding to six fungal aquaporin genes at six different developmental stages of basidiocarp growth and development. We also compared physiological parameters of non-inoculated to mycorrhizal seedlings with and without the presence of basidiocarps. Two L. bicolor aquaporins--JQ585592, a functional channel for CO2, NO and H2O2, and JQ585595, a functional water channel--showed the greatest degree of upregulation during development of the basidiocarp. Our findings point to the importance of aquaporin-mediated transmembrane water and CO2 transport during distinct stages of basidiocarp development.
Collapse
Affiliation(s)
- Hao Xu
- Department of Renewable Resources, University of Alberta, Edmonton, AB, Canada, T6G 2E3
| | | | - Janice E K Cooke
- Department of Biological Sciences, University of Alberta, Edmonton, AB, Canada, T6G 2E9
| | - Janusz J Zwiazek
- Department of Renewable Resources, University of Alberta, Edmonton, AB, Canada, T6G 2E3.
| |
Collapse
|
47
|
Ramakrishnan J, Rathore SS, Raman T. Review on fungal enzyme inhibitors – potential drug targets to manage human fungal infections. RSC Adv 2016. [DOI: 10.1039/c6ra01577h] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Abstract
The potential applications of enzyme inhibitors for the management of invasive fungal infections are explored.
Collapse
Affiliation(s)
- Jayapradha Ramakrishnan
- Centre for Research in Infectious Diseases (CRID)
- School of Chemical and Biotechnology
- SASTRA University
- Thanjavur
- India-613401
| | - Sudarshan Singh Rathore
- Centre for Research in Infectious Diseases (CRID)
- School of Chemical and Biotechnology
- SASTRA University
- Thanjavur
- India-613401
| | - Thiagarajan Raman
- Centre for Research in Infectious Diseases (CRID)
- School of Chemical and Biotechnology
- SASTRA University
- Thanjavur
- India-613401
| |
Collapse
|
48
|
d'Enfert C, Janbon G. Biofilm formation in Candida glabrata: What have we learnt from functional genomics approaches? FEMS Yeast Res 2015; 16:fov111. [PMID: 26678748 DOI: 10.1093/femsyr/fov111] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/14/2015] [Indexed: 12/13/2022] Open
Abstract
Biofilms are a source of therapeutic failures because of their intrinsic tolerance to antimicrobials. Candida glabrata is one of the pathogenic yeasts that is responsible for life-threatening disseminated infections and able to form biofilms on medical devices such as vascular and urinary catheters. Recent progresses in the functional genomics of C. glabrata have been applied to the study of biofilm formation, revealing the contribution of an array of genes to this process. In particular, the Yak1 kinase and the Swi/Snf chromatin remodeling complex have been shown to relieve the repression exerted by subtelomeric silencing on the expression of the EPA6 and EPA7 genes, thus allowing the encoded adhesins to exert their key roles in biofilm formation. This provides a framework to evaluate the contribution of other genes that have been genetically linked to biofilm development and, based on the function of their orthologs in Saccharomyces cerevisiae, appear to have roles in adaptation to nutrient deprivation, calcium signaling, cell wall remodeling and adherence. Future studies combining the use of in vitro and animal models of biofilm formation, omics approaches and forward or reverse genetics are needed to expand the current knowledge of C. glabrata biofilm formation and reveal the mechanisms underlying their antifungal tolerance.
Collapse
Affiliation(s)
- Christophe d'Enfert
- Institut Pasteur, Unité Biologie et Pathogénicité Fongiques, Département Mycologie, F-75015 Paris, France INRA, USC2019, F-75015 Paris, France
| | - Guilhem Janbon
- Institut Pasteur, Unité Biologie et Pathogénicité Fongiques, Département Mycologie, F-75015 Paris, France INRA, USC2019, F-75015 Paris, France
| |
Collapse
|
49
|
Navarro-RóDenas A, Xu H, Kemppainen M, Pardo AG, Zwiazek JJ. Laccaria bicolor aquaporin LbAQP1 is required for Hartig net development in trembling aspen (Populus tremuloides). PLANT, CELL & ENVIRONMENT 2015; 38:2475-86. [PMID: 25857333 DOI: 10.1111/pce.12552] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/27/2014] [Accepted: 03/22/2015] [Indexed: 05/27/2023]
Abstract
The development of ectomycorrhizal associations is crucial for growth of many forest trees. However, the signals that are exchanged between the fungus and the host plant during the colonization process are still poorly understood. In this study, we have identified the relationship between expression patterns of Laccaria bicolor aquaporin LbAQP1 and the development of ectomycorrhizal structures in trembling aspen (Populus tremuloides) seedlings. The peak expression of LbAQP1 was 700-fold higher in the hyphae within the root than in the free-living mycelium after 24 h of direct interaction with the roots. Moreover, in LbAQP1 knock-down strains, a non-mycorrhizal phenotype was developed without the Hartig net and the expression of the mycorrhizal effector protein MiSSP7 quickly declined after an initial peak on day 5 of interaction of the fungal hyphae with the roots. The increase in the expression of LbAQP1 required a direct contact of the fungus with the root and it modulated the expression of MiSSP7. We have also determined that LbAQP1 facilitated NO, H2 O2 and CO2 transport when heterologously expressed in yeast. The report demonstrates that the L. bicolor aquaporin LbAQP1 acts as a molecular signalling channel, which is fundamental for the development of Hartig net in root tips of P. tremuloides.
Collapse
Affiliation(s)
| | - Hao Xu
- Department of Renewable Resources, University of Alberta, Edmonton, AB, T6G 2E3, Canada
| | - Minna Kemppainen
- Laboratorio de Micología Molecular, Departamento de Ciencia y Tecnología, Universidad Nacional de Quilmes and Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Bernal, Provincia de Buenos Aires, B1876BXD, Argentina
| | - Alejandro G Pardo
- Laboratorio de Micología Molecular, Departamento de Ciencia y Tecnología, Universidad Nacional de Quilmes and Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Bernal, Provincia de Buenos Aires, B1876BXD, Argentina
| | - Janusz J Zwiazek
- Department of Renewable Resources, University of Alberta, Edmonton, AB, T6G 2E3, Canada
| |
Collapse
|
50
|
Volodyaev I, Beloussov LV. Revisiting the mitogenetic effect of ultra-weak photon emission. Front Physiol 2015; 6:241. [PMID: 26441668 PMCID: PMC4561347 DOI: 10.3389/fphys.2015.00241] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2014] [Accepted: 08/11/2015] [Indexed: 11/13/2022] Open
Abstract
This paper reviews the 90 years long controversial history of the so-called "mitogenetic radiation," the first case of non-chemical distant interactions, reported by Gurwitsch (1923). It was soon described as ultraweak UV, emitted by a number of biological systems, and stimulating mitosis in "competent" (in this sense) cells. In the following 20 years this phenomenon attracted enormous interest of the scientific community, and gave rise to more than 700 publications around the world. Yet, this wave of research vanished after several ostensibly disproving works in late 1930-s, and was not resumed later, regardless of quite serious grounds for that. The authors discuss separately two aspects of the problem: (1) do living organisms emit ultraweak radiation in the UV range (irrespective of whether it has any biological role), and (2) are there any real effects of this ultraweak photon emission (UPE) upon cell division and/or other biological functions? Analysis of the available data permits to conclude, that UV fraction of UPE should be regarded real, while its biological effects are difficult to reproduce. This causes a paradox. A number of presently known qualities of UPE were initially discovered (predicted?) by the "early workers" on the basis of biological effects. Yet the qualities they discovered were proved later (the UV component of UPE, the sources of UPE among biological systems, etc…), while the biological effect they used for UPE "detection" remains questionable. Importance of this area for basic biology and medicine, and potential usefulness of UPE as a non-invasive research method, invite scientists to attack this problem again, applying powerful research facilities of modern science. Yet, because of complexity and uncertainty of the problem, further progress in this area demands comprehensive examination of both positive and negative works, with particular attention to their methodical details.
Collapse
Affiliation(s)
- Ilya Volodyaev
- Laboratory of Developmental Biophysics, Department of Embryology, Faculty of Biology, Moscow State UniversityMoscow, Russia
| | | |
Collapse
|