1
|
Szymanska M, Basavaraja R, Meidan R. A tale of two endothelins: the rise and fall of the corpus luteum. Reprod Fertil Dev 2024; 37:RD24158. [PMID: 39680472 DOI: 10.1071/rd24158] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2024] [Accepted: 11/28/2024] [Indexed: 12/18/2024] Open
Abstract
Endothelins are small 21 amino acid peptides that interact with G-protein-coupled receptors. They are highly conserved across species and play important roles in vascular biology as well as in disease development and progression. Endothelins, mainly endothelin-1 and endothelin-2, are intricately involved in ovarian function and metabolism. These two peptides differ only in two amino acids but are encoded by different genes, which suggests an independent regulation and a cell-specific mode of expression. This review aims to comprehensively discuss the distinct regulation and roles of endothelin-1 and endothelin-2 regarding corpus luteum function throughout its life span.
Collapse
Affiliation(s)
- Magdalena Szymanska
- Department of Animal Sciences, The Robert H. Smith Faculty of Agriculture, Food and Environment, The Hebrew University of Jerusalem, Rehovot 7610001, Israel; and Present address: Department of Hormonal Action Mechanisms, Institute of Animal Reproduction and Food Research of the Polish Academy of Sciences, Olsztyn, Poland
| | - Raghavendra Basavaraja
- Department of Animal Sciences, The Robert H. Smith Faculty of Agriculture, Food and Environment, The Hebrew University of Jerusalem, Rehovot 7610001, Israel; and Present address: Department of Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Rina Meidan
- Department of Animal Sciences, The Robert H. Smith Faculty of Agriculture, Food and Environment, The Hebrew University of Jerusalem, Rehovot 7610001, Israel
| |
Collapse
|
2
|
Zaniker EJ, Zhang J, Russo D, Huang R, Suritis K, Drake RS, Barlow-Smith E, Shalek AK, Woodruff TK, Xiao S, Goods BA, Duncan FE. Follicle-intrinsic and spatially distinct molecular programs drive follicle rupture and luteinization during ex vivo mammalian ovulation. Commun Biol 2024; 7:1374. [PMID: 39443665 PMCID: PMC11500180 DOI: 10.1038/s42003-024-07074-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2024] [Accepted: 10/14/2024] [Indexed: 10/25/2024] Open
Abstract
During ovulation, the apical wall of the preovulatory follicle breaks down to facilitate gamete release. In parallel, the residual follicle wall differentiates into a progesterone-producing corpus luteum. Disruption of ovulation, whether through contraceptive intervention or infertility, has implications for women's health. In this study, we harness the power of an ex vivo ovulation model and machine-learning guided microdissection to identify differences between the ruptured and unruptured sides of the follicle wall. We demonstrate that the unruptured side exhibits clear markers of luteinization after ovulation while the ruptured side exhibits cell death signals. RNA-sequencing of individual follicle sides reveals 2099 differentially expressed genes (DEGs) between follicle sides without ovulation induction, and 1673 DEGs 12 h after induction of ovulation. Our model validates molecular patterns consistent with known ovulation biology even though this process occurs in the absence of the ovarian stroma, vasculature, and immune cells. We further identify previously unappreciated pathways including amino acid transport and Jag-Notch signaling on the ruptured side and glycolysis, metal ion processing, and IL-11 signaling on the unruptured side of the follicle. This study yields key insights into follicle-inherent, spatially-defined pathways that underlie follicle rupture, which may further understanding of ovulation physiology and advance women's health.
Collapse
Affiliation(s)
- Emily J Zaniker
- Department of Obstetrics and Gynecology, Feinberg School of Medicine, Northwestern University, Chicago, IL, 60611, USA
| | - Jiyang Zhang
- Department of Pharmacology and Toxicology, Ernest Mario School of Pharmacy, Rutgers University, Piscataway, NJ, USA
| | - Daniela Russo
- Institute for Medical Engineering & Science, Department of Chemistry, and Koch Institute for Integrative Cancer Research Massachusetts Institute of Technology, Cambridge, MA, 02139, USA
- Broad Institute, Harvard University & Massachusetts Institute of Technology, Cambridge, MA, 02139, USA
- The Ragon Institute of MGH, MIT and Harvard, Cambridge, MA, 02139, USA
| | - Ruixu Huang
- Thayer School of Engineering, Dartmouth College, Hanover, NH, USA
| | - Kristine Suritis
- Thayer School of Engineering, Dartmouth College, Hanover, NH, USA
| | - Riley S Drake
- Institute for Medical Engineering & Science, Department of Chemistry, and Koch Institute for Integrative Cancer Research Massachusetts Institute of Technology, Cambridge, MA, 02139, USA
- Broad Institute, Harvard University & Massachusetts Institute of Technology, Cambridge, MA, 02139, USA
- The Ragon Institute of MGH, MIT and Harvard, Cambridge, MA, 02139, USA
| | | | - Alex K Shalek
- Institute for Medical Engineering & Science, Department of Chemistry, and Koch Institute for Integrative Cancer Research Massachusetts Institute of Technology, Cambridge, MA, 02139, USA
- Broad Institute, Harvard University & Massachusetts Institute of Technology, Cambridge, MA, 02139, USA
- The Ragon Institute of MGH, MIT and Harvard, Cambridge, MA, 02139, USA
| | - Teresa K Woodruff
- Department of Obstetrics and Gynecology, Feinberg School of Medicine, Northwestern University, Chicago, IL, 60611, USA
- Department of Obstetrics and Gynecology, Michigan State University, East Lansing, MI, USA
| | - Shuo Xiao
- Department of Pharmacology and Toxicology, Ernest Mario School of Pharmacy, Rutgers University, Piscataway, NJ, USA
| | - Brittany A Goods
- Thayer School of Engineering, Dartmouth College, Hanover, NH, USA.
| | - Francesca E Duncan
- Department of Obstetrics and Gynecology, Feinberg School of Medicine, Northwestern University, Chicago, IL, 60611, USA.
| |
Collapse
|
3
|
Maurya S, Tripathi S, Arora T, Singh A. Adropin may regulate ovarian functions by improving antioxidant potential in adult mouse. J Steroid Biochem Mol Biol 2024; 242:106524. [PMID: 38670515 DOI: 10.1016/j.jsbmb.2024.106524] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/29/2024] [Revised: 03/14/2024] [Accepted: 04/15/2024] [Indexed: 04/28/2024]
Abstract
The corpus luteum (CL) is a temporary endocrine gland that synthesizes progesterone. The luteal progesterone plays a central role in the regulation of the estrous cycle as well as the implantation and maintenance of pregnancy. Our previous study showed the expression of adropin and its receptor, GPR19, in the luteal cells and its significant role in luteinization. The aim of the present study was to investigate the in vitro effect of adropin on hCG-induced ovarian functions in adult mice. We also evaluated the effect of exogenous treatment with adropin on ovarian steroidogenesis and anti-oxidant parameters, with special emphasis on CL function. Our results demonstrated that adropin acts synergistically with hCG to promote ovarian steroidogenesis and survival by increasing the expression of StAR, 3β-HSD, and aromatase proteins and decreasing the BAX/BCL2 ratio. Exogenous adropin treatment increased progesterone production by increasing the expression of GPR19, StAR and 3β-HSD enzymes in the mouse ovary. Also, adropin inhibited the luteal oxidative stress by increasing nuclear translocation of NRF-2 in CL, which resulted in increased HO-1 expression and SOD, catalase activity. Decreased oxidative stress might inhibit the translocation of NF-κB into the nucleus of luteal cells, resulting into increased survival and decreased apoptosis, as evident by decreased lipid peroxidation, BAX/BCL2 ratio, caspase 3, active caspase 3 expression, and TUNEL-positive cells in adropin treated mice. Our findings suggest that adropin can be a promising candidate that can enhance the survivability of the CL.
Collapse
Affiliation(s)
- Shweta Maurya
- Department of Zoology, Institute of Science, Banaras Hindu University, Varanasi 221005, India
| | - Shashank Tripathi
- Department of Zoology, Institute of Science, Banaras Hindu University, Varanasi 221005, India
| | | | - Ajit Singh
- Department of Zoology, Institute of Science, Banaras Hindu University, Varanasi 221005, India.
| |
Collapse
|
4
|
Henríquez S, Valdivia MJ, Mainigi M, Villarroel C, Velasquez L, Strauss Iii JF, Devoto L. The role of estrogen metabolites in human ovarian function. Steroids 2024; 203:109368. [PMID: 38278282 DOI: 10.1016/j.steroids.2024.109368] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/04/2023] [Revised: 01/15/2024] [Accepted: 01/16/2024] [Indexed: 01/28/2024]
Abstract
Estrogens produced by the ovary play diverse roles in controlling physiological changes in the function of the female reproductive system. Although estradiol acts through classical nuclear receptors, its metabolites (EMs) act by alternative pathways. It has been postulated that EMs act through paracrine-autocrine pathways to regulate key processes involved in normal follicular growth, corpus luteum (CL) development, function, and regression. The present review describes recent advances in understanding the role of EMs in human ovarian physiology during the menstrual cycle, including their role in anovulatory disorders and their action in other target tissues.
Collapse
Affiliation(s)
- Soledad Henríquez
- Institute for Maternal and Child Research (IDIMI), Faculty of Medicine, University of Chile, Santiago, Chile; Institute of Interdisciplinary Research in Biomedical Sciences (I3CBSEK), Faculty of Health Sciences, SEK University, Santiago, Chile.
| | - Maria Jose Valdivia
- Institute for Maternal and Child Research (IDIMI), Faculty of Medicine, University of Chile, Santiago, Chile
| | - Monica Mainigi
- Department of Obstetrics and Gynecology and Center for Research on Reproduction and Women's Health, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Claudio Villarroel
- Institute for Maternal and Child Research (IDIMI), Faculty of Medicine, University of Chile, Santiago, Chile
| | - Luis Velasquez
- Institute of Interdisciplinary Research in Biomedical Sciences (I3CBSEK), Faculty of Health Sciences, SEK University, Santiago, Chile
| | - Jerome F Strauss Iii
- Department of Obstetrics and Gynecology and Center for Research on Reproduction and Women's Health, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Luigi Devoto
- Institute for Maternal and Child Research (IDIMI), Faculty of Medicine, University of Chile, Santiago, Chile
| |
Collapse
|
5
|
Jacob T, Annusver K, Czarnewski P, Dalessandri T, Kalk C, Levra Levron C, Campamà Sanz N, Kastriti ME, Mikkola ML, Rendl M, Lichtenberger BM, Donati G, Björklund ÅK, Kasper M. Molecular and spatial landmarks of early mouse skin development. Dev Cell 2023; 58:2140-2162.e5. [PMID: 37591247 PMCID: PMC11088744 DOI: 10.1016/j.devcel.2023.07.015] [Citation(s) in RCA: 25] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2022] [Revised: 05/05/2023] [Accepted: 07/21/2023] [Indexed: 08/19/2023]
Abstract
A wealth of specialized cell populations within the skin facilitates its hair-producing, protective, sensory, and thermoregulatory functions. How the vast cell-type diversity and tissue architecture develops is largely unexplored. Here, with single-cell transcriptomics, spatial cell-type assignment, and cell-lineage tracing, we deconstruct early embryonic mouse skin during the key transitions from seemingly uniform developmental precursor states to a multilayered, multilineage epithelium, and complex dermal identity. We identify the spatiotemporal emergence of hair-follicle-inducing, muscle-supportive, and fascia-forming fibroblasts. We also demonstrate the formation of the panniculus carnosus muscle (PCM), sprouting blood vessels without pericyte coverage, and the earliest residence of mast and dendritic immune cells in skin. Finally, we identify an unexpected epithelial heterogeneity within the early single-layered epidermis and a signaling-rich periderm layer. Overall, this cellular and molecular blueprint of early skin development-which can be explored at https://kasperlab.org/tools-establishes histological landmarks and highlights unprecedented dynamic interactions among skin cells.
Collapse
Affiliation(s)
- Tina Jacob
- Department of Cell and Molecular Biology, Karolinska Institutet, 17177 Stockholm, Sweden
| | - Karl Annusver
- Department of Cell and Molecular Biology, Karolinska Institutet, 17177 Stockholm, Sweden
| | - Paulo Czarnewski
- Department of Biochemistry and Biophysics, National Bioinformatics Infrastructure Sweden, Science for Life Laboratory, Stockholm University, 17165 Stockholm, Sweden
| | - Tim Dalessandri
- Department of Cell and Molecular Biology, Karolinska Institutet, 17177 Stockholm, Sweden
| | - Christina Kalk
- Department of Cell and Molecular Biology, Karolinska Institutet, 17177 Stockholm, Sweden
| | - Chiara Levra Levron
- Department of Life Sciences and Systems Biology, Molecular Biotechnology Center, University of Turin, 10126 Turin, Italy
| | - Nil Campamà Sanz
- Department of Cell and Molecular Biology, Karolinska Institutet, 17177 Stockholm, Sweden
| | - Maria Eleni Kastriti
- Department of Physiology and Pharmacology, Karolinska Institutet, 17177 Stockholm, Sweden; Department of Neuroimmunology, Center for Brain Research, Medical University of Vienna, 1090 Vienna, Austria
| | - Marja L Mikkola
- Cell and Tissue Dynamics Research Program, Institute of Biotechnology, Helsinki Institute of Life Science, University of Helsinki, 00014 Helsinki, Finland
| | - Michael Rendl
- Institute for Regenerative Medicine, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA; Black Family Stem Cell Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA; Department of Cell, Developmental and Regenerative Biology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA; Department of Dermatology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA; Graduate School of Biomedical Sciences, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Beate M Lichtenberger
- Skin and Endothelium Research Division, Department of Dermatology, Medical University of Vienna, 1090 Vienna, Austria
| | - Giacomo Donati
- Department of Life Sciences and Systems Biology, Molecular Biotechnology Center, University of Turin, 10126 Turin, Italy
| | - Åsa K Björklund
- Department of Life Science, National Bioinformatics Infrastructure Sweden, Science for Life Laboratory, Chalmers University of Technology, 41296 Göteborg, Sweden
| | - Maria Kasper
- Department of Cell and Molecular Biology, Karolinska Institutet, 17177 Stockholm, Sweden.
| |
Collapse
|
6
|
Sharawy HA, Hegab AO, Mostagir A, Adlan F, Bazer FW, Elmetwally MA. Expression of genes for transport of water and angiogenesis, as well as biochemical biomarkers in Holstein dairy cows during the ovsynch program. Theriogenology 2023; 208:52-59. [PMID: 37315443 DOI: 10.1016/j.theriogenology.2023.05.025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2023] [Revised: 05/17/2023] [Accepted: 05/25/2023] [Indexed: 06/16/2023]
Abstract
Changes in expression of genes associated with angiogenesis and transport of water by cells, as well as biomarkers of oxidative stress were determined at specific times during the ovsynch protocol to synchronize estrus and breed Holstein dairy cows. Blood samples were taken from 82 lactating Holstein cows at the time of the 1st GnRH injection (G1), 7 days later at the time of the PGF2a (PG) injection, and 48 h after the PGF2a treatment when the second injection of GnRH was administered (G2). The serum was analyzed for malondialdehyde (MDA), reduced glutathione (GSH), glutathione peroxidase (GPX), nitric oxide (NO), catalase (CAT), and total antioxidant capacity (TAC). The expression of vascular endothelial growth factor (VEGF), vascular endothelial growth factor receptor 2 (VEGFR2), endothelial nitric oxide synthase (eNOS3), aquaporin 3 (AQP3), and AQP4 mRNAs in peripheral blood mononuclear cells (PBMCs) was analyzed. The number of copies of each of the mRNAs was quantified using qPCR. Pregnancy status was determining at 32 ± 3 days after insemination using an ultrasound "Sonoscape-5V″ model. Receiver operating curves (ROC) were used to assess the sensitivity and specificity of the biochemical parameters in serum to predict establishment of p The expression of MDA, GPX, and Catalase changed (P < 0·05) between G1, PG and G2 phases of the ovsynch protocol with higher levels at PG than at G1 and G2. The highest levels of NO were detected at G2. The ROC analyses identified NO, TAC and CAT as the most sensitive and specific biomarker for pregnancy with areas under the curve being 0.875 (P < 0.0001), 0.843 (P < 0.03), 0.833 (P < 0.017), sensitivity being 75.3, 42.86, and 26.27%, and specificity being 90, 90 and 85% respectively. The expression for VEGF, VEGFR2, eNOS3, AQP3, and AQP4 mRNAs was upregulated at PG compared to G1 and G2 phases of the ovsynch protocol. The results suggest that following the first injection of GnRH, there is an increase in expression of VEGF, VEGFR2, eNOS3, AQP3, and AQP4 mRNAs by the time of the PGF2a injection and then expression decreased. Further, ROC analyses identified increases in NO, TAC and CAT as the most sensitive and specific biomarkers with the greatest potential to predict establishment of pregnancy in Holstein cows.
Collapse
Affiliation(s)
- Heba A Sharawy
- Departments of Theriogenology, 35516, Mansoura, Egypt; Center for Reproductive Biotechnology, 35516, Mansoura, Egypt
| | - AbdelRaouf O Hegab
- Departments of Theriogenology, 35516, Mansoura, Egypt; Center for Reproductive Biotechnology, 35516, Mansoura, Egypt
| | - Amira Mostagir
- Departments of Theriogenology, 35516, Mansoura, Egypt; Center for Reproductive Biotechnology, 35516, Mansoura, Egypt; Clinical Teaching Hospital, Faculty of Veterinary Medicine, Mansoura University, 35516, Mansoura, Egypt
| | - Fatma Adlan
- Departments of Theriogenology, 35516, Mansoura, Egypt; Center for Reproductive Biotechnology, 35516, Mansoura, Egypt; Clinical Teaching Hospital, Faculty of Veterinary Medicine, Mansoura University, 35516, Mansoura, Egypt
| | - Fuller W Bazer
- Department of Animal Science, Texas A&M University, College Station, TX, USA
| | - Mohammed A Elmetwally
- Departments of Theriogenology, 35516, Mansoura, Egypt; Center for Reproductive Biotechnology, 35516, Mansoura, Egypt; Clinical Teaching Hospital, Faculty of Veterinary Medicine, Mansoura University, 35516, Mansoura, Egypt.
| |
Collapse
|
7
|
Shi Y, Kim HJ, Kim SY, Kim GE, Jin HJ. Lack of association between the VEGFA gene polymorphisms and preterm birth in Korean women. Genomics Inform 2023; 21:e29. [PMID: 37813625 PMCID: PMC10584649 DOI: 10.5808/gi.22064] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2022] [Revised: 06/05/2023] [Accepted: 06/24/2023] [Indexed: 10/11/2023] Open
Abstract
Preterm birth (PTB), a pregnancy-related disease, is defined as a birth before 37 weeks of gestation. It is a major cause of maternal mortality and morbidity worldwide, and its incidence rate is steadily increasing. Various genetic factors can contribute to the etiology of PTB. Vascular endothelial growth factor A (VEGFA) gene is an important angiogenic gene and its polymorphisms have been reported to be associated with PTB development. Therefore, we conducted a case-control study to evaluate the association between VEGFA rs699947, rs2010963, and rs3025039 polymorphisms and PTB in Korean women. A total of 271 subjects (116 patients with PTB and 155 women at ≥38 weeks of gestation) were analyzed in this study. The genotyping of VEGFA gene polymorphisms was performed using polymerase chain reaction- restriction fragment length polymorphism. No significant association between the patients with PTB and the control groups was confirmed. In the combination analysis, we found a significant association between PTB and VEGFA rs699947 CC-rs2010963 GG-rs3025039 CC combination (odds ratio, 3.77; 95% confidence interval, 1.091 to 13.032; p = 0.031). The VEGFA rs699947, rs2010963, and rs3025039 polymorphisms might have no genetic association with the pathogenesis of PTB in Korean women. However, the combination analysis indicates the possibility that VEGFA acts in PTB pathophysiology. Therefore, larger sample sets and replication studies are required to further elucidate our findings.
Collapse
Affiliation(s)
- Yue Shi
- Department of Biological Sciences, College of Science & Technology, Dankook University, Cheonan 31116, Korea
| | - Hyung Jun Kim
- Department of Biological Sciences, College of Science & Technology, Dankook University, Cheonan 31116, Korea
| | - Seong Yong Kim
- Department of Biological Sciences, College of Science & Technology, Dankook University, Cheonan 31116, Korea
| | - Ga Eun Kim
- Department of Biological Sciences, College of Science & Technology, Dankook University, Cheonan 31116, Korea
| | - Han Jun Jin
- Department of Biological Sciences, College of Science & Technology, Dankook University, Cheonan 31116, Korea
| |
Collapse
|
8
|
Yáñez U, Murillo AV, Becerra JJ, Herradón PG, Peña AI, Quintela LA. Comparison between transrectal palpation, B-mode and Doppler ultrasonography to assess luteal function in Holstein cattle. Front Vet Sci 2023; 10:1162589. [PMID: 37215471 PMCID: PMC10192625 DOI: 10.3389/fvets.2023.1162589] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2023] [Accepted: 03/31/2023] [Indexed: 05/24/2023] Open
Abstract
Introduction Over the years, the most common methods for monitoring reproductive health in cattle have varied from transrectal palpation to B-mode ultrasonography. Nowadays, some portable ultrasound equipment includes the Doppler mode. Therefore, the aim of this study was to compare the accuracy of the different methods to assess corpus luteum (CL) functionality. Methods In Experiment 1, 53 Holstein lactating cows undergoing a synchronization protocol were examined via transrectal palpation and B-mode scanning. Measurements for the largest diameter (LAD) and subjective size of CL (SCLS) were collected. Data were analyzed using correlation analysis and ROC Curves. In Experiment 2, 30 Holstein non-lactating cows with a CL were administered PGF2α and examined several times after injection, first in B-mode and then with Power Doppler. Measurements for LAD, CL area (CLA) and subjective and objective CL blood flow were collected. Blood samples were taken in both experiments to determine P4 concentration. Data were analyzed using correlation analysis and the GLM repeated measures test. Results Results for Experiment 1 showed that LAD was more accurate than SCLS. In Experiment 2, CLA was the best measurement to assess CL function, although both subjective and objective CL blood flow offer accurate information 24 h after PGF2α administration. Discussion Consequently, ultrasonography provides more accurate information about CL function than transrectal palpation. Although CLA seems to be an earlier indicator of luteal function than blood flow, 24 h after the onset of luteolysis, both parameters are valid.
Collapse
Affiliation(s)
- Uxía Yáñez
- Unit of Reproduction and Obstetrics, Department of Animal Pathology, Faculty of Veterinary Medicine, Universidade de Santiago de Compostela, Lugo, Spain
| | | | - Juan J. Becerra
- Unit of Reproduction and Obstetrics, Department of Animal Pathology, Faculty of Veterinary Medicine, Universidade de Santiago de Compostela, Lugo, Spain
| | - Pedro G. Herradón
- Unit of Reproduction and Obstetrics, Department of Animal Pathology, Faculty of Veterinary Medicine, Universidade de Santiago de Compostela, Lugo, Spain
| | - Ana I. Peña
- Unit of Reproduction and Obstetrics, Department of Animal Pathology, Faculty of Veterinary Medicine, Universidade de Santiago de Compostela, Lugo, Spain
| | - Luis A. Quintela
- Unit of Reproduction and Obstetrics, Department of Animal Pathology, Faculty of Veterinary Medicine, Universidade de Santiago de Compostela, Lugo, Spain
| |
Collapse
|
9
|
Bevilaqua JR, Rodriguez MGK, Maciel GS, Vergani GB, da Fonseca JF, Bartlewski PM, Oliveira MEF. Luteal Function, Biometrics, and Echotextural Attributes in Santa Inês Ewes Superovulated with Different Total Doses of Porcine Follicle-Stimulating Hormone. Animals (Basel) 2023; 13:ani13050873. [PMID: 36899731 PMCID: PMC10000133 DOI: 10.3390/ani13050873] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2023] [Revised: 02/15/2023] [Accepted: 02/24/2023] [Indexed: 03/04/2023] Open
Abstract
Premature regression of corpora lutea (PRCL) may adversely affect the outcome of hormonal ovarian superstimulation in small ruminants, and the total dose of exogenous gonadotropins used may be one of the causes of this condition. There were two major objectives of the present study: (1) to evaluate the effects of different superovulatory doses of porcine follicle-stimulating hormone (pFSH) on the biometry, blood perfusion (Doppler), and echotextural characteristics of luteal structures; and, (2) to determine the usefulness of biometric, vascular, and echotextural luteal variables, as well as measurements of circulating progesterone (P4) concentrations for early detection of PRCL in superovulated Santa Inês ewes. Twenty-seven Santa Inês ewes received an intravaginal P4-releasing device (CIDR) from Days 0 to 8 (Day 0 = random day of the anovulatory period). An IM injection of d-cloprostenol (37.5 μg) was given at the time of the CIDR insertion and withdrawal. On Day 6, all the ewes received 300 IU of eCG IM and were divided into three treatment groups (each n = 9): G100 (100 mg); G133 (133 mg); and G200 (200 mg of pFSH) administered IM every 12 h in eight injections. Transrectal ovarian ultrasonography and jugular blood sampling for serum P4 measurements were performed on Days 11 to 15. On the day of embryo recovery (Day 15), all the ewes underwent diagnostic videolaparoscopy and were classified, based on their luteal characteristics, into three response groups: nCL (ewes with normal CL only); rCL (ewes with regressing CL only); and ewes with both nCL and rCL following the superovulatory regimen. Our present results indicate that the total pFSH doses of 100 mg and 200 mg result in similar ovulatory responses and luteal function/biometrics, although the percentage of donor ewes with nCL was greater (p < 0.05) for G100 compared with the G200 animals. An application of 133 mg of pFSH was associated with diminished luteogenesis. Lastly, circulating P4 concentrations, ultrasonographic estimates of total luteal area, and CL pixel heterogeneity (standard deviation of numerical pixel values) are promising markers of luteal inadequacy in superovulated ewes.
Collapse
Affiliation(s)
- Júlia Ribeiro Bevilaqua
- Department of Pathology, Reproduction and One Health, School of Agricultural and Veterinarian Sciences, São Paulo State University, Jaboticabal 14884-900, SP, Brazil
| | - Mariana Garcia Kako Rodriguez
- Department of Pathology, Reproduction and One Health, School of Agricultural and Veterinarian Sciences, São Paulo State University, Jaboticabal 14884-900, SP, Brazil
| | - Giovanna Serpa Maciel
- Department of Pathology, Reproduction and One Health, School of Agricultural and Veterinarian Sciences, São Paulo State University, Jaboticabal 14884-900, SP, Brazil
| | - Gabriel Brun Vergani
- Department of Pathology, Reproduction and One Health, School of Agricultural and Veterinarian Sciences, São Paulo State University, Jaboticabal 14884-900, SP, Brazil
| | | | - Pawel Mieczyslaw Bartlewski
- Department of Biomedical Sciences, Ontario Veterinary College, University of Guelph, Guelph, ON N1G 2W1, Canada
| | - Maria Emilia Franco Oliveira
- Department of Pathology, Reproduction and One Health, School of Agricultural and Veterinarian Sciences, São Paulo State University, Jaboticabal 14884-900, SP, Brazil
- Correspondence:
| |
Collapse
|
10
|
Bertani G, Di Tinco R, Bertoni L, Orlandi G, Pisciotta A, Rosa R, Rigamonti L, Signore M, Bertacchini J, Sena P, De Biasi S, Villa E, Carnevale G. Flow-dependent shear stress affects the biological properties of pericyte-like cells isolated from human dental pulp. Stem Cell Res Ther 2023; 14:31. [PMID: 36805780 PMCID: PMC9938980 DOI: 10.1186/s13287-023-03254-2] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2022] [Accepted: 02/12/2023] [Indexed: 02/20/2023] Open
Abstract
BACKGROUND Human dental pulp stem cells represent a mesenchymal stem cell niche localized in the perivascular area of dental pulp and are characterized by low immunogenicity and immunomodulatory/anti-inflammatory properties. Pericytes, mural cells surrounding the endothelium of small vessels, regulate numerous functions including vessel growth, stabilization and permeability. It is well established that pericytes have a tight cross talk with endothelial cells in neoangiogenesis and vessel stabilization, which are regulated by different factors, i.e., microenvironment and flow-dependent shear stress. The aim of this study was to evaluate the effects of a pulsatile unidirectional flow in the presence or not of an inflammatory microenvironment on the biological properties of pericyte-like cells isolated from human dental pulp (hDPSCs). METHODS Human DPSCs were cultured under both static and dynamic conditions with or without pre-activated peripheral blood mononuclear cells (PBMCs). Pulsatile unidirectional flow shear stress was generated by using a specific peristaltic pump. The angiogenic potential and inflammatory properties of hDPSCs were evaluated through reverse phase protein microarrays (RPPA), confocal immunofluorescence and western blot analyses. RESULTS Our data showed that hDPSCs expressed the typical endothelial markers, which were up-regulated after endothelial induction, and were able to form tube-like structures. RPPA analyses revealed that these properties were modulated when a pulsatile unidirectional flow shear stress was applied to hDPSCs. Stem cells also revealed a downregulation of the immune-modulatory molecule PD-L1, in parallel with an up-regulation of the pro-inflammatory molecule NF-kB. Immune-modulatory properties of hDPSCs were also reduced after culture under flow-dependent shear stress and exposure to an inflammatory microenvironment. This evidence was strengthened by the detection of up-regulated levels of expression of pro-inflammatory cytokines in PBMCs. CONCLUSIONS In conclusion, the application of a pulsatile unidirectional flow shear stress induced a modulation of immunomodulatory/inflammatory properties of dental pulp pericyte-like cells.
Collapse
Affiliation(s)
- Giulia Bertani
- grid.7548.e0000000121697570Department of Surgery, Medicine Dentistry and Morphological Sciences With Interest in Transplant, University of Modena and Reggio Emilia, Modena, Italy
| | - Rosanna Di Tinco
- grid.7548.e0000000121697570Department of Surgery, Medicine Dentistry and Morphological Sciences With Interest in Transplant, University of Modena and Reggio Emilia, Modena, Italy
| | - Laura Bertoni
- grid.7548.e0000000121697570Department of Surgery, Medicine Dentistry and Morphological Sciences With Interest in Transplant, University of Modena and Reggio Emilia, Modena, Italy
| | - Giulia Orlandi
- grid.7548.e0000000121697570Department of Surgery, Medicine Dentistry and Morphological Sciences With Interest in Transplant, University of Modena and Reggio Emilia, Modena, Italy
| | - Alessandra Pisciotta
- grid.7548.e0000000121697570Department of Surgery, Medicine Dentistry and Morphological Sciences With Interest in Transplant, University of Modena and Reggio Emilia, Modena, Italy
| | - Roberto Rosa
- grid.7548.e0000000121697570Department of Engineering Sciences and Methods, University of Modena and Reggio Emilia, Modena, Italy
| | - Luca Rigamonti
- grid.7548.e0000000121697570Department of Chemical and Geological Sciences, University of Modena and Reggio Emilia, Modena, Italy
| | - Michele Signore
- grid.416651.10000 0000 9120 6856RPPA Unit, Proteomics Area, Core Facilities, Istituto Superiore di Sanità, Rome, Italy
| | - Jessika Bertacchini
- grid.7548.e0000000121697570Department of Surgery, Medicine Dentistry and Morphological Sciences With Interest in Transplant, University of Modena and Reggio Emilia, Modena, Italy
| | - Paola Sena
- grid.7548.e0000000121697570Department of Surgery, Medicine Dentistry and Morphological Sciences With Interest in Transplant, University of Modena and Reggio Emilia, Modena, Italy
| | - Sara De Biasi
- grid.7548.e0000000121697570Department of Medical and Surgical Sciences for Children and Adults, University of Modena and Reggio Emilia, Modena, Italy
| | - Erica Villa
- grid.7548.e0000000121697570Department of Surgery, Medicine Dentistry and Morphological Sciences With Interest in Transplant, University of Modena and Reggio Emilia, Modena, Italy
| | - Gianluca Carnevale
- Department of Surgery, Medicine Dentistry and Morphological Sciences With Interest in Transplant, University of Modena and Reggio Emilia, Modena, Italy.
| |
Collapse
|
11
|
Saleem M, Yousuf MR, Ghafoor A, Riaz A. Effect of three schemes of ovum pick-up on the follicular dynamics, gene expression, and in-vitro developmental competence of oocytes in Sahiwal cattle. Reprod Domest Anim 2022; 57:1230-1243. [PMID: 35771838 DOI: 10.1111/rda.14198] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2022] [Revised: 06/16/2022] [Accepted: 06/28/2022] [Indexed: 12/31/2022]
Abstract
This study aimed to compare the effect of three schemes of ovum pick-up (OPU) on follicular dynamics, oocytes recovery, oocytes quality, gene expression, nuclear maturation and in-vitro developmental competence of oocytes in Sahiwal cattle. Considering the follicle population, all the cows were divided equally in a 3 × 3 cross over design, and each cow received one of the three treatments: (a) twice weekly (TW; n = 6), (b) once weekly (OW; n = 6) and (c) bi-weekly OPU (BW; n = 6) in three periods, with the first OPU conducted on 4, 7 and 14 days after second dominant follicle puncture (DFP) in the TW, OW and BW OPU interval groups, respectively. The collected cumulus oocytes complexes (COCs) were graded into A, B, C and D grades depending on the number of layers of cumulus cells and homogeneous nature of cytoplasm. Nuclear maturation was assessed by staining the oocytes with Hoechst 33342. The growth rate (mm/day) of dominant follicle (DF) (F1) (0.49 ± 0.21 vs. 0.71 ± 0.26 vs. 1.30 ± 0.27) and first subordinate follicle (F2) (0.85 ± 0.27 vs. 0.71 ± 0.25 vs. 1.06 ± 0.29) did not differ (p > .05) among all the three groups. The proportion of animals bearing a corpus luteum (CL) in the BW OPU interval group (53.3%) was significantly higher (p < .05) as compared to TW (13.3%) and OW (18.3%) OPU interval groups. The number of medium-sized follicles and oocyte with grade A and B were significantly higher (p < .05) in the TW (1.16 ± 0.21 and 33.88 ± 0.03) OPU interval group as compared to the OW (0.88 ± 0.22 and 21.54 ± 0.03) and BW (0.55 ± 0.21 and 21.89 ± 0.02) OPU interval groups. However, the number of degenerated oocytes in BW (0.85 ± 0.16) OPU interval group was significantly higher (p < .05) as compared to the TW (0.16 ± 0.15) and OW (0.44 ± 0.16) OPU interval groups. Expression level of growth differentiation factor 9 in TW OPU interval group was significantly higher (p < .05) as compared to the OW and BW OPU interval groups. Likewise, expression level of bone morphogenetic protein 15 (BMP15) in the TW and BW OPU interval groups was significantly higher (p < .05) as compared to the OW OPU interval group. The nuclear maturation rate was significantly higher in the TW (63.64 ± 0.07) and BW (59.26 ± 0.08) OPU groups as compared to OW (51.43 ± 0.06) OPU interval group. However, the cleavage rate (59.30 ± 0.06 vs. 44.29 ± 0.06 vs. 56.67 ± 0.06) did not differ (p > .05) among the three groups. Whereas, the blastocyst rate tended to be higher (p = .06) in the TW (29.07 ± 0.05) and BW (28.33 ± 0.04) OPU interval groups as compared to OW (18.57 ± 0.05) OPU interval group. Taken together, it can be concluded that TW OPU interval scheme enhances the medium-sized follicles resulting in good quality oocytes, regulates the oocyte-derived paracrine factors, leading to higher nuclear maturation rates and improved embryonic development in-vitro.
Collapse
Affiliation(s)
- Muhammad Saleem
- Department of Theriogenology, Faculty of Veterinary Science, University of Veterinary and Animal Sciences, Lahore, Pakistan
| | - Muhammad Rizwan Yousuf
- Department of Theriogenology, Faculty of Veterinary Science, University of Veterinary and Animal Sciences, Lahore, Pakistan
| | - Aamir Ghafoor
- Department of Microbiology, Faculty of Veterinary Science, University of Veterinary and Animal Sciences, Lahore, Pakistan
| | - Amjad Riaz
- Department of Theriogenology, Faculty of Veterinary Science, University of Veterinary and Animal Sciences, Lahore, Pakistan
| |
Collapse
|
12
|
Bian H, Wang Y, Wu P, Han N, Wang L, Li X, Zhang X, Cho K, Zhang Y, Yin J, Jiang B. Rosmarinic Acid Suppresses Abdominal Aortic Aneurysm Progression in Apolipoprotein E-deficient Mice. PLANTA MEDICA 2022; 88:899-912. [PMID: 34741296 DOI: 10.1055/a-1659-3908] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
An abdominal aortic aneurysm is a life-threatening cardiovascular disorder caused by dissection and rupture. No effective medicine is currently available for the > 90% of patients whose aneurysms are below the surgical threshold. The present study investigated the impact of rosmarinic acid, salvianolic acid C, or salvianolic acid B on experimental abdominal aortic aneurysms. Abdominal aortic aneurysms were induced in apolipoprotein E-deficient mice via infusion of angiotensin II for 4 wks. Rosmarinic acid, salvianolic acid C, salvianolic acid B, or doxycycline as a positive control was provided daily through intraperitoneal injection. Administration of rosmarinic acid was found to decrease the thickness of the aortic wall, as determined by histopathological assay. Rosmarinic acid also exhibited protection against elastin fragmentation in aortic media and down-regulated cell apoptosis and proliferation in the aortic adventitia. Infiltration of macrophages, T lymphocytes, and neutrophils in aortic aneurysms was found, especially at the aortic adventitia. Rosmarinic acid, salvianolic acid C, or salvianolic acid B inhibited the infiltration on macrophages specifically, but these compounds did not influence T lymphocytes and neutrophils. Expression of matrix metalloproteinase 9 and macrophage migration inhibitory factor significantly increased in aortic aneurysms. Rosmarinic acid and salvianolic acid C decreased the expression of matrix metalloproteinase-9 in media, and rosmarinic acid also tended to reduce migration inhibitory factor expression. Further then, partial least squares-discriminate analysis was used to classify metabolic changes among different treatments. Rosmarinic acid affected most of the metabolites in the biosynthesis of the citrate cycle, fatty acid pathway significantly. Our present study on mice demonstrated that rosmarinic acid inhibited multiple pathological processes, which were the key features important in abdominal aortic aneurysm formation. Further study on rosmarinic acid, the novel candidate for aneurysmal therapy, should be undertaken to determine its potential for clinical use.
Collapse
Affiliation(s)
- Huimiao Bian
- Shenyang Pharmaceutical University, Wenhua Road #103, Shenyang, China
- Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China
| | - Yang Wang
- West Yunnan University of Applied Sciences, Jinghong, Yunnan, China
- Metabo-Profile Biotechnology (Shanghai) Co. Ltd., Shanghai, China
| | - Peng Wu
- Shenyang Pharmaceutical University, Wenhua Road #103, Shenyang, China
- Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China
| | - Na Han
- Shenyang Pharmaceutical University, Wenhua Road #103, Shenyang, China
| | - Linlin Wang
- Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China
| | - Xue Li
- Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China
| | - XianJing Zhang
- Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China
| | - Kenka Cho
- Takarazuka University of Medical and Health Care, Hanayashiki-Midorigaoka, Takarazuka-city, Japan
| | - Yongyu Zhang
- West Yunnan University of Applied Sciences, Jinghong, Yunnan, China
| | - Jun Yin
- Shenyang Pharmaceutical University, Wenhua Road #103, Shenyang, China
| | - Baohong Jiang
- Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China
| |
Collapse
|
13
|
Bishop CV, Selvaraj V, Townson DH, Pate JL, Wiltbank MC. History, insights, and future perspectives on studies into luteal function in cattle. J Anim Sci 2022; 100:skac143. [PMID: 35772753 PMCID: PMC9246667 DOI: 10.1093/jas/skac143] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2022] [Accepted: 04/12/2022] [Indexed: 12/12/2022] Open
Abstract
The corpus luteum (CL) forms following ovulation from the remnant of the Graafian follicle. This transient tissue produces critical hormones to maintain pregnancy, including the steroid progesterone. In cattle and other ruminants, the presence of an embryo determines if the lifespan of the CL will be prolonged to ensure successful implantation and gestation, or if the tissue will undergo destruction in the process known as luteolysis. Infertility and subfertility in dairy and beef cattle results in substantial economic loss to producers each year. In addition, this has the potential to exacerbate climate change because more animals are needed to produce high-quality protein to feed the growing world population. Successful pregnancies require coordinated regulation of uterine and ovarian function by the developing embryo. These processes are often collectively termed "maternal recognition of pregnancy." Research into the formation, function, and destruction of the bovine CL by the Northeast Multistate Project, one of the oldest continuously funded Hatch projects by the USDA, has produced a large body of evidence increasing our knowledge of the contribution of ovarian processes to fertility in ruminants. This review presents some of the seminal research into the regulation of the ruminant CL, as well as identifying mechanisms that remain to be completely validated in the bovine CL. This review also contains a broad discussion of the roles of prostaglandins, immune cells, as well as mechanisms contributing to steroidogenesis in the ruminant CL. A triadic model of luteolysis is discussed wherein the interactions among immune cells, endothelial cells, and luteal cells dictate the ability of the ruminant CL to respond to a luteolytic stimulus, along with other novel hypotheses for future research.
Collapse
Affiliation(s)
- Cecily V Bishop
- Department of Animal and Rangeland Sciences, College of Agricultural Sciences, Oregon State University, Corvallis, OR 97331, USA
| | - Vimal Selvaraj
- Department of Animal Science, College of Agriculture and Life Sciences, Cornell University, Ithaca, NY 14853, USA
| | - David H Townson
- Department of Animal and Veterinary Sciences, The University of Vermont, Burlington, VT 05405, USA
| | - Joy L Pate
- Department of Animal Science, Center for Reproductive Biology and Health, Pennsylvania State University, State College, PA 16802, USA
| | - Milo C Wiltbank
- Department of Animal and Dairy Sciences, University of Wisconsin-Madison, Madison, WI 53706, USA
| |
Collapse
|
14
|
Goulet MR, Hutchings D, Donahue J, Elder D, Tsang PCW. Regulation of cellular communication network factor 1 by Ras homolog family member A in bovine steroidogenic luteal cells. J Anim Sci 2022; 100:6620789. [PMID: 35772754 DOI: 10.1093/jas/skac124] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2022] [Accepted: 04/08/2022] [Indexed: 12/24/2022] Open
Abstract
Development of the corpus luteum (CL) requires the growth of a new capillary network from preexisting vasculature, a process known as angiogenesis. Successful building of this capillary network occurs through a sequence of cellular events-differentiation, proliferation, migration, and adhesion-which are regulated by a suite of angiogenic proteins that includes cellular communication network factor 1 (CCN1). We previously reported that the expression of CCN1 was highest in luteal tissue obtained from the early-cycle, 4-d-old bovine CL (i.e., corpus hemorrhagicum) compared to the mid- and late-cycle CL. In the present study, we treated steroidogenic bovine luteal cells from early-cycle CL with luteinizing hormone (LH), but it had no effect on CCN1 expression. Direct stimulation of the canonical LH pathway with forskolin and dibutyryl-cyclic adenosine monophosphate (cAMP), however, inhibited CCN1 mRNA expression. In endothelial cells, stimulation of Ras homolog family member A (RhoA) induces CCN1 expression, whereas RhoA inactivation inhibits it. Yet, it is unknown if regulation of CCN1 in steroidogenic luteal cells works likewise. We hypothesized that a similar mechanism of CCN1 regulation exists in bovine luteal cells and that thrombin, a known RhoA activator, may be a physiologic trigger for this mechanism in the early-cycle CL. To test this hypothesis, ovaries were collected from lactating dairy cows on days 3 or 4 of the estrous cycle, and corpora lutea were dissected and dissociated. Steroidogenic luteal cells were suspended in defined Ham's F12 medium, supplemented with insulin/transferrin/selenium and gentamicin, and seeded into 6-well plates. After 24 h, spent medium was replaced with fresh Ham's F12, and the cells were cultured for 24 to 48 h. Cells were treated for 2 h with defined medium, 10% fetal bovine serum (FBS), thrombin (1, 5, 10 U/mL), or Rho Activator II (0.25, 1, 2 μg/mL). Cells were then lysed for RNA extraction, followed by cDNA generation, and quantitative polymerase chain reaction (qPCR). Thrombin (1, 5, 10 U/mL; n = 3) and Rho Activator II (0.25, 1, 2 μg/mL; n = 6) increased (P < 0.05) CCN1 mRNA expression. In summary, CCN1 in bovine steroidogenic luteal cells was induced by thrombin and appeared to be regulated in a Rho-dependent manner. Future work will elucidate the signaling partners downstream of Rho which leads to CCN1 gene expression.
Collapse
Affiliation(s)
- Michael R Goulet
- Department of Molecular, Cellular, and Biomedical Sciences, University of New Hampshire, Durham, NH 03824, USA
| | - Donnelly Hutchings
- Department of Molecular, Cellular, and Biomedical Sciences, University of New Hampshire, Durham, NH 03824, USA
| | - Jacob Donahue
- Department of Molecular, Cellular, and Biomedical Sciences, University of New Hampshire, Durham, NH 03824, USA
| | - Dean Elder
- Animal Resource Office, University of New Hampshire, Durham, NH 03824, USA
| | - Paul C W Tsang
- Department of Molecular, Cellular, and Biomedical Sciences, University of New Hampshire, Durham, NH 03824, USA
| |
Collapse
|
15
|
Poley M, Mora-Raimundo P, Shammai Y, Kaduri M, Koren L, Adir O, Shklover J, Shainsky-Roitman J, Ramishetti S, Man F, de Rosales RTM, Zinger A, Peer D, Ben-Aharon I, Schroeder A. Nanoparticles Accumulate in the Female Reproductive System during Ovulation Affecting Cancer Treatment and Fertility. ACS NANO 2022; 16:5246-5257. [PMID: 35293714 PMCID: PMC7613117 DOI: 10.1021/acsnano.1c07237] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/05/2023]
Abstract
Throughout the female menstrual cycle, physiological changes occur that affect the biodistribution of nanoparticles within the reproductive system. We demonstrate a 2-fold increase in nanoparticle accumulation in murine ovaries and uterus during ovulation, compared to the nonovulatory stage, following intravenous administration. This biodistribution pattern had positive or negative effects when drug-loaded nanoparticles, sized 100 nm or smaller, were used to treat different cancers. For example, treating ovarian cancer with nanomedicines during mouse ovulation resulted in higher drug accumulation in the ovaries, improving therapeutic efficacy. Conversely, treating breast cancer during ovulation, led to reduced therapeutic efficacy, due to enhanced nanoparticle accumulation in the reproductive system rather than at the tumor site. Moreover, chemotherapeutic nanoparticles administered during ovulation increased ovarian toxicity and decreased fertility compared to the free drug. The menstrual cycle should be accounted for when designing and implementing nanomedicines for females.
Collapse
Affiliation(s)
- Maria Poley
- Laboratory for Targeted Drug Delivery and Personalized Medicine Technologies, Department of Chemical Engineering, Technion – Israel Institute of Technology, Haifa 32000, Israel
| | - Patricia Mora-Raimundo
- Laboratory for Targeted Drug Delivery and Personalized Medicine Technologies, Department of Chemical Engineering, Technion – Israel Institute of Technology, Haifa 32000, Israel
| | - Yael Shammai
- Laboratory for Targeted Drug Delivery and Personalized Medicine Technologies, Department of Chemical Engineering, Technion – Israel Institute of Technology, Haifa 32000, Israel
| | - Maya Kaduri
- Laboratory for Targeted Drug Delivery and Personalized Medicine Technologies, Department of Chemical Engineering, Technion – Israel Institute of Technology, Haifa 32000, Israel
| | - Lilach Koren
- Laboratory for Targeted Drug Delivery and Personalized Medicine Technologies, Department of Chemical Engineering, Technion – Israel Institute of Technology, Haifa 32000, Israel
| | - Omer Adir
- Laboratory for Targeted Drug Delivery and Personalized Medicine Technologies, Department of Chemical Engineering, Technion – Israel Institute of Technology, Haifa 32000, Israel
- The Norman Seiden Multidisciplinary Program for Nanoscience and Nanotechnology, Technion – Israel Institute of Technology, Haifa 32000, Israel
| | - Jeny Shklover
- Laboratory for Targeted Drug Delivery and Personalized Medicine Technologies, Department of Chemical Engineering, Technion – Israel Institute of Technology, Haifa 32000, Israel
| | - Janna Shainsky-Roitman
- Laboratory for Targeted Drug Delivery and Personalized Medicine Technologies, Department of Chemical Engineering, Technion – Israel Institute of Technology, Haifa 32000, Israel
| | - Srinivas Ramishetti
- Laboratory of Precision NanoMedicine, Shmunis School for Biomedicine and Cancer Research, George S. Wise Faculty of Life Sciences, Center for Nanoscience and Nanotechnology, Department of Materials Sciences and Engineering, Iby and Aladar Fleischman Faculty of Engineering, and Cancer Biology Research Center, Tel Aviv University, Tel Aviv 69978, Israel
| | - Francis Man
- School of Biomedical Engineering & Imaging Sciences, King's College London, Lambeth Wing, St. Thomas Hospital, London, SE1 7EH, UK
| | - Rafael T. M. de Rosales
- School of Biomedical Engineering & Imaging Sciences, King's College London, Lambeth Wing, St. Thomas Hospital, London, SE1 7EH, UK
- London Centre for Nanotechnology, King's College London, Strand Campus, London, WC2R 2LS, UK
| | - Assaf Zinger
- Laboratory for Bioinspired Nano Engineering and Translational Therapeutics, Department of Chemical Engineering, Technion–Israel Institute of Technology, Haifa, 3200003 Israel
- Cardiovascular Sciences and Neurosurgery Departments, Houston Methodist Academic Institute, Houston, 77030 TX, USA
| | - Dan Peer
- Laboratory of Precision NanoMedicine, Shmunis School for Biomedicine and Cancer Research, George S. Wise Faculty of Life Sciences, Center for Nanoscience and Nanotechnology, Department of Materials Sciences and Engineering, Iby and Aladar Fleischman Faculty of Engineering, and Cancer Biology Research Center, Tel Aviv University, Tel Aviv 69978, Israel
| | - Irit Ben-Aharon
- Technion Integrated Cancer Center, Faculty of Medicine, Technion, 320000, Haifa, Israel
| | - Avi Schroeder
- Laboratory for Targeted Drug Delivery and Personalized Medicine Technologies, Department of Chemical Engineering, Technion – Israel Institute of Technology, Haifa 32000, Israel
| |
Collapse
|
16
|
Mlyczyńska E, Kieżun M, Kurowska P, Dawid M, Pich K, Respekta N, Daudon M, Rytelewska E, Dobrzyń K, Kamińska B, Kamiński T, Smolińska N, Dupont J, Rak A. New Aspects of Corpus Luteum Regulation in Physiological and Pathological Conditions: Involvement of Adipokines and Neuropeptides. Cells 2022; 11:957. [PMID: 35326408 PMCID: PMC8946127 DOI: 10.3390/cells11060957] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2022] [Revised: 02/28/2022] [Accepted: 03/08/2022] [Indexed: 11/17/2022] Open
Abstract
The corpus luteum is a small gland of great importance because its proper functioning determines not only the appropriate course of the estrous/menstrual cycle and embryo implantation, but also the subsequent maintenance of pregnancy. Among the well-known regulators of luteal tissue functions, increasing attention is focused on the role of neuropeptides and adipose tissue hormones-adipokines. Growing evidence points to the expression of these factors in the corpus luteum of women and different animal species, and their involvement in corpus luteum formation, endocrine function, angiogenesis, cells proliferation, apoptosis, and finally, regression. In the present review, we summarize the current knowledge about the expression and role of adipokines, such as adiponectin, leptin, apelin, vaspin, visfatin, chemerin, and neuropeptides like ghrelin, orexins, kisspeptin, and phoenixin in the physiological regulation of the corpus luteum function, as well as their potential involvement in pathologies affecting the luteal cells that disrupt the estrous cycle.
Collapse
Affiliation(s)
- Ewa Mlyczyńska
- Laboratory of Physiology and Toxicology of Reproduction, Institute of Zoology and Biomedical Research, Jagiellonian University in Krakow, 30-387 Krakow, Poland; (E.M.); (P.K.); (M.D.); (K.P.); (N.R.)
| | - Marta Kieżun
- Department of Animal Anatomy and Physiology, Faculty of Biology and Biotechnology, University of Warmia and Mazury in Olsztyn, 10-719 Olsztyn, Poland; (M.K.); (E.R.); (B.K.); (T.K.); (N.S.)
| | - Patrycja Kurowska
- Laboratory of Physiology and Toxicology of Reproduction, Institute of Zoology and Biomedical Research, Jagiellonian University in Krakow, 30-387 Krakow, Poland; (E.M.); (P.K.); (M.D.); (K.P.); (N.R.)
| | - Monika Dawid
- Laboratory of Physiology and Toxicology of Reproduction, Institute of Zoology and Biomedical Research, Jagiellonian University in Krakow, 30-387 Krakow, Poland; (E.M.); (P.K.); (M.D.); (K.P.); (N.R.)
| | - Karolina Pich
- Laboratory of Physiology and Toxicology of Reproduction, Institute of Zoology and Biomedical Research, Jagiellonian University in Krakow, 30-387 Krakow, Poland; (E.M.); (P.K.); (M.D.); (K.P.); (N.R.)
| | - Natalia Respekta
- Laboratory of Physiology and Toxicology of Reproduction, Institute of Zoology and Biomedical Research, Jagiellonian University in Krakow, 30-387 Krakow, Poland; (E.M.); (P.K.); (M.D.); (K.P.); (N.R.)
| | - Mathilde Daudon
- Unité Physiologie de la Reproduction et des Comportements, French National Institute for Agriculture, Food, and Environment, 37380 Nouzilly, France; (M.D.); (J.D.)
| | - Edyta Rytelewska
- Department of Animal Anatomy and Physiology, Faculty of Biology and Biotechnology, University of Warmia and Mazury in Olsztyn, 10-719 Olsztyn, Poland; (M.K.); (E.R.); (B.K.); (T.K.); (N.S.)
| | - Kamil Dobrzyń
- Department of Zoology, Faculty of Biology and Biotechnology, University of Warmia and Mazury in Olsztyn, 10-719 Olsztyn, Poland;
| | - Barbara Kamińska
- Department of Animal Anatomy and Physiology, Faculty of Biology and Biotechnology, University of Warmia and Mazury in Olsztyn, 10-719 Olsztyn, Poland; (M.K.); (E.R.); (B.K.); (T.K.); (N.S.)
| | - Tadeusz Kamiński
- Department of Animal Anatomy and Physiology, Faculty of Biology and Biotechnology, University of Warmia and Mazury in Olsztyn, 10-719 Olsztyn, Poland; (M.K.); (E.R.); (B.K.); (T.K.); (N.S.)
| | - Nina Smolińska
- Department of Animal Anatomy and Physiology, Faculty of Biology and Biotechnology, University of Warmia and Mazury in Olsztyn, 10-719 Olsztyn, Poland; (M.K.); (E.R.); (B.K.); (T.K.); (N.S.)
| | - Joelle Dupont
- Unité Physiologie de la Reproduction et des Comportements, French National Institute for Agriculture, Food, and Environment, 37380 Nouzilly, France; (M.D.); (J.D.)
| | - Agnieszka Rak
- Laboratory of Physiology and Toxicology of Reproduction, Institute of Zoology and Biomedical Research, Jagiellonian University in Krakow, 30-387 Krakow, Poland; (E.M.); (P.K.); (M.D.); (K.P.); (N.R.)
| |
Collapse
|
17
|
Guo B, Qu X, Chen Z, Yu J, Yan L, Zhu H. Transcriptome analysis reveals transforming growth factor-β1 prevents extracellular matrix degradation and cell adhesion during the follicular-luteal transition in cows. J Reprod Dev 2022; 68:12-20. [PMID: 34690213 PMCID: PMC8872751 DOI: 10.1262/jrd.2021-071] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2021] [Accepted: 09/29/2021] [Indexed: 11/20/2022] Open
Abstract
Ovarian angiogenesis is an extremely rapid process that occurs during the transition from follicle to corpus luteum (CL) and is crucial for reproduction. It is regulated by numerous factors including transforming growth factor-β1 (TGFB1). However, the regulatory mechanism of TGFB1 in ovarian angiogenesis is not fully understood. To address this, in this study we obtained high-throughput transcriptome analysis (RNA-seq) data from bovine luteinizing follicular cells cultured in a system mimicking angiogenesis and treated with TGFB1, and identified 455 differentially expressed genes (DEGs). Quantitative real-time PCR results confirmed the differential expression patterns of the 12 selected genes. Kyoto Encyclopedia of Genes and Genomes (KEGG) analysis identified that the MAPK and ErbB pathways, cell adhesion molecules (CAMs), and extracellular matrix (ECM)-receptor interactions may play pivotal roles in TGFB1-mediated inhibition of CL angiogenesis. TGFB1 phosphorylated ERK1/2 (MAPK1/3) and Akt, indicating that these pathways may play an important role in the regulation of angiogenesis. Several genes with specific functions in cell adhesion and ECM degradation were identified among the DEGs. In particular, TGFB1-induced upregulation of syndecan-1 (SDC1) and collagen type I alpha 1 chain (COL1A1) expression may contribute to the deposition of type I collagen in luteinizing follicular cells. These results indicate that TGFB1 inhibits cell adhesion and ECM degradation processes involving ERK1/2, ErbB, and PI3K/Akt signaling pathways, and leads to inhibition of angiogenesis during the follicular-luteal transition. Our results further reveal the molecular mechanisms underlying the actions of TGFB1 in early luteinization.
Collapse
Affiliation(s)
- Binbin Guo
- Laboratory of Animal Improvement and Reproduction, Institute of Animal Science, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, China
- Jiangsu Key Laboratory for Food Quality and Safety-State Key Laboratory Cultivation Base of Ministry of Science and Technology, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, China
| | - Xiaolu Qu
- Laboratory of Animal Improvement and Reproduction, Institute of Animal Science, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, China
- Jiangsu Key Laboratory for Food Quality and Safety-State Key Laboratory Cultivation Base of Ministry of Science and Technology, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, China
| | - Zhe Chen
- Laboratory of Animal Improvement and Reproduction, Institute of Animal Science, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, China
- Jiangsu Key Laboratory for Food Quality and Safety-State Key Laboratory Cultivation Base of Ministry of Science and Technology, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, China
| | - Jianning Yu
- Laboratory of Animal Improvement and Reproduction, Institute of Animal Science, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, China
- Jiangsu Key Laboratory for Food Quality and Safety-State Key Laboratory Cultivation Base of Ministry of Science and Technology, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, China
| | - Leyan Yan
- Laboratory of Animal Improvement and Reproduction, Institute of Animal Science, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, China
- Jiangsu Key Laboratory for Food Quality and Safety-State Key Laboratory Cultivation Base of Ministry of Science and Technology, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, China
| | - Huanxi Zhu
- Laboratory of Animal Improvement and Reproduction, Institute of Animal Science, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, China
- Jiangsu Key Laboratory for Food Quality and Safety-State Key Laboratory Cultivation Base of Ministry of Science and Technology, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, China
| |
Collapse
|
18
|
Meidan R, Basavaraja R. Interferon-Tau regulates a plethora of functions in the corpus luteum. Domest Anim Endocrinol 2022; 78:106671. [PMID: 34509740 DOI: 10.1016/j.domaniend.2021.106671] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/08/2021] [Revised: 08/10/2021] [Accepted: 08/11/2021] [Indexed: 01/01/2023]
Abstract
The corpus luteum (CL) plays a vital role in regulating the reproductive cycle, fertility, and in maintaining pregnancy. Interferon-tau (IFNT) is the maternal recognition of a pregnancy signal in domestic ruminants; its uterine, paracrine actions, which extend the CL lifespan, are widely established. However, considerable evidence also suggests a direct, endocrine role for IFNT. The purpose of this review is to highlight the importance of IFNT in CL maintenance, acting directly and in a cell-specific manner. A transcriptomic study revealed a distinct molecular profile of IFNT-exposed day 18, pregnant bovine CL, compared to the non-pregnant gland. A substantial fraction of the differentially expressed genes was downregulated, many of which are known to be elevated by prostaglandin F2A (PGF2A). In vitro, IFNT was found to mimic changes observed in the luteal transcriptome of early pregnancy. Key luteolytic genes such as endothelin-1 (EDN1), transforming growth factor-B1 (TGFB1), thrombospondins (THBSs) 1&2 and serpine-1 (SERPINE1) were downregulated in luteal endothelial cells. Luteal steroidogenic large cells (LGCs) were also found to be a target for the antilutelotytic actions of IFNT. IFNT-treated LGCs showed a significant reduction in the expression of the proapoptotic, antiangiogenic THBS1&2, as well as TGFBR1 and 2. Furthermore, IFNT was shown to be a potent survival factor for luteal cells in vivo and in vitro, activating diverse pathways to promote cell survival while suppressing cell death signals. Pentraxin 3 (PTX3), robustly upregulated by IFNT in various luteal cell types, mediated many of the prosurvival effects of IFNT in LGCs. A novel reciprocal inhibitory crosstalk between PTX3 and THBS1 lends further support to their respective survival and apoptotic actions in the CL. Even though IFNT did not directly regulate progesterone synthesis, it could maintain its concentrations, by increasing luteal cell survival and by supporting vascular stabilization. The direct effects of IFNT in the CL, enhancing cell survival and vasculature stabilization while curbing luteolytic activities, may constitute an important complementary branch leading to the extension of the luteal lifespan during early pregnancy.
Collapse
Affiliation(s)
- Rina Meidan
- Department of Animal Sciences, The Robert H. Smith Faculty of Agriculture, Food and Environment, The Hebrew University of Jerusalem, Rehovot, 7610001 Israel.
| | - Raghavendra Basavaraja
- Department of Animal Sciences, The Robert H. Smith Faculty of Agriculture, Food and Environment, The Hebrew University of Jerusalem, Rehovot, 7610001 Israel
| |
Collapse
|
19
|
McIntosh SZ, Quinn KE, Ashley RL. CXCL12 May Drive Inflammatory Potential in the Ovine Corpus Luteum During Implantation. Reprod Sci 2021; 29:122-132. [PMID: 34755321 PMCID: PMC8677687 DOI: 10.1007/s43032-021-00791-0] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2020] [Accepted: 10/31/2021] [Indexed: 11/01/2022]
Abstract
Adequate corpus luteum (CL) function is paramount to successful pregnancy. Structural and functional CL integrity is controlled by diverse cell types that contribute and respond to the local cytokine milieu. The chemokine ligand 12 (CXCL12) and receptor, CXCR4, are modulators of inflammation and cell survival, but little is understood about CXCL12-CXCR4 axis and CL functional regulation. Corpora lutea from control nonpregnant ewes (n = 5; day 10 estrous cycle (D10C)) and pregnant ewes (n = 5/day) on days 20 (D20P) and 30 (D30P) post-breeding were analyzed for gene and protein expression of CXCL12, CXCR4, and select inflammatory cytokines. In separate cell culture studies, cytokine production was evaluated following CXCL12 treatment. Abundance of CXCL12 and CXCR4 increased (P < 0.05) in pregnant ewes compared to nonpregnant ewes, as determined by a combination of quantitative PCR, immunoblot, and immunofluorescence microscopy. CXCR4 was detected in steroidogenic and nonsteroidogenic cells in ovine CL, and select pro-inflammatory mediators were greater in CL from pregnant ewes. In vitro studies revealed greater abundance of tumor necrosis factor (TNF) following CXCL12 administration (P = 0.05), while P4 levels in cell media were unchanged. Fully functional CL of pregnant ewes is characterized by increased abundance of inflammatory cytokines which may function in a luteotropic manner. We report concurrent increases in CXCL12, CXCR4, and select inflammatory mediators in ovine CL as early pregnancy progresses. We propose CXCL12 stimulates production of select cytokines, rather than P4 in the CL to assist in CL establishment and survival.
Collapse
Affiliation(s)
- Stacia Z McIntosh
- Department of Animal and Range Sciences, New Mexico State University, MSC 3-I, PO Box 30003, Las Cruces, NM, 88003, USA
| | - Kelsey E Quinn
- Department of Animal and Range Sciences, New Mexico State University, MSC 3-I, PO Box 30003, Las Cruces, NM, 88003, USA.,Department of Cell Biology and Physiology, University of North Carolina, Chapel Hill, NC, USA
| | - Ryan L Ashley
- Department of Animal and Range Sciences, New Mexico State University, MSC 3-I, PO Box 30003, Las Cruces, NM, 88003, USA.
| |
Collapse
|
20
|
Minela T, Santos A, Schuurmans EJ, Middleton EL, Pursley JR. The effect of a double dose of cloprostenol sodium on luteal blood flow and pregnancy rates per artificial insemination in lactating dairy cows. J Dairy Sci 2021; 104:12105-12116. [PMID: 34482970 DOI: 10.3168/jds.2020-20113] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2020] [Accepted: 06/30/2021] [Indexed: 11/19/2022]
Abstract
Inadequate luteolysis in fertility programs is a problem for lactating dairy cows treated with a single dose of PGF2α. The proportion of cows with complete luteolysis can be increased by administering 2 doses of PGF2α 24 h apart. This study hypothesized that a double dose of cloprostenol sodium (1.0 mg) could take the place of 2 doses 24 h apart due to its enhanced half-life. Cows were allocated to receive 1 of 3 treatments: negative controls: 0.5 mg of cloprostenol sodium (single; n = 337); positive controls: two 0.5-mg doses of cloprostenol sodium 24 h apart (two/24; n = 313); and treated: 1.0 mg of cloprostenol sodium (double; n = 298) at the final PGF2α of Double-Ovsynch. Cows received artificial insemination (AI) 16 h after final GnRH of Double-Ovsynch. Pregnancy diagnosis was determined at 24, 34, 62, and 184 d post-AI. Pregnancy loss was categorized in the following periods: between 24 to 34, 34 to 62, and 62 to 184 d post-AI. Ultrasonography (B-mode and color Doppler) was used to assess luteal function pre- and posttreatment with various doses of cloprostenol sodium. Luteal volume and luteal blood flow (LBF) from d 7 and 14 corpora lutea were determined before treatment (d -1), and 2 and 4 d after treatment. No evidence was observed of an effect of treatment on pregnancy rates per AI at 24, 34, or 62 d post-AI. No effect was observed of treatment on pregnancy losses occurring between d 24 and 34, 34, and 62, and between 62 and 184 d post-AI. However, third-plus parity cows treated with the single treatment had greater pregnancy loss compared with two/24 and double between d 24 and 34 post-AI. Third-plus parity cows that received the double treatment had lower LBF 2 and 4 d after treatment compared with cows treated with single. Amount of LBF present 4 d after treatment was not a predictor of pregnancy or pregnancy loss. A double dose (1.0 mg) of cloprostenol sodium may be a feasible alternative for fertility programs based on nondifferent outcomes to the two/24 treatment, lower pregnancy losses, and reduced LBF disappearance following treatment in third-plus parity cows in comparison with the single treatment.
Collapse
Affiliation(s)
- T Minela
- Department of Animal Science, Michigan State University, East Lansing 48824
| | - A Santos
- Department of Animal Science, Michigan State University, East Lansing 48824
| | - E J Schuurmans
- Department of Animal Science, Michigan State University, East Lansing 48824
| | - E L Middleton
- Department of Animal Science, Michigan State University, East Lansing 48824
| | - J R Pursley
- Department of Animal Science, Michigan State University, East Lansing 48824.
| |
Collapse
|
21
|
Pascuali N, Scotti L, Oubiña G, de Zúñiga I, Gomez Peña M, Pomilio C, Saravia F, Tesone M, Abramovich D, Parborell F. Platelet-derived growth factor B restores vascular barrier integrity and diminishes permeability in ovarian hyperstimulation syndrome. Mol Hum Reprod 2021; 26:585-600. [PMID: 32467982 DOI: 10.1093/molehr/gaaa038] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2019] [Revised: 04/08/2020] [Indexed: 01/29/2023] Open
Abstract
Although advances in the prediction and management of ovarian hyperstimulation syndrome (OHSS) have been introduced, complete prevention is not yet possible. Previously, we and other authors have shown that vascular endothelial growth factor, angiopoietins (ANGPTs) and sphingosine-1-phosphate are involved in OHSS etiology. In addition, we have demonstrated that ovarian protein levels of platelet-derived growth factor (PDGF) ligands -B and -D decrease in an OHSS rat model, whilst PDGFR-β and ANGPT2 remain unchanged. In the present work, we investigated the role of PDGF-B in OHSS by evaluating ligand protein levels in follicular fluid (FF) from women at risk of developing OHSS and by using an immature rat model of OHSS. We demonstrated that PDGF-B and PDGF-D are lower in FF from women at risk of developing OHSS compared to control patients (P < 0.05). In the OHSS rat model, PDGF-B (0.5 µg/ovary) administration decreased ovarian weight (P < 0.05), reduced serum progesterone (P < 0.05) and lowered the percentage of cysts (P < 0.05), compared to untreated OHSS rats, but had no effect on the proportion of follicles or corpora lutea (CL). PDGF-B treatment also restored the expression of steroidogenic acute regulatory protein (P < 0.05) and P450 cholesterol side-chain cleavage enzyme (P < 0.01) to control levels. In addition, PDGF-B increased the peri-endothelial cell area in CL and cystic structures, and reduced vascular permeability compared to untreated OHSS ovaries. Lastly, PDGF-B increased the levels of junction proteins claudin-5 (P < 0.05), occludin (P < 0.05) and β-catenin (P < 0.05), while boosting the extracellular deposition of collagen IV surrounding the ovarian vasculature (PP < 0.01), compared to OHSS alone. In conclusion, our findings indicate that PDGF-B could be another crucial mediator in the onset and development of OHSS, which may lead to the development of novel prediction markers and therapeutic strategies.
Collapse
Affiliation(s)
- Natalia Pascuali
- Instituto de Biología y Medicina Experimental (IByME) - CONICET, Buenos Aires, Argentina
| | - Leopoldina Scotti
- Instituto de Biología y Medicina Experimental (IByME) - CONICET, Buenos Aires, Argentina
| | - Gonzalo Oubiña
- Instituto de Biología y Medicina Experimental (IByME) - CONICET, Buenos Aires, Argentina
| | | | | | - Carlos Pomilio
- Instituto de Biología y Medicina Experimental (IByME) - CONICET, Buenos Aires, Argentina.,Departamento de Química Biológica, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Buenos Aires, Argentina
| | - Flavia Saravia
- Instituto de Biología y Medicina Experimental (IByME) - CONICET, Buenos Aires, Argentina.,Departamento de Química Biológica, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Buenos Aires, Argentina
| | - Marta Tesone
- Instituto de Biología y Medicina Experimental (IByME) - CONICET, Buenos Aires, Argentina.,Departamento de Química Biológica, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Buenos Aires, Argentina
| | - Dalhia Abramovich
- Instituto de Biología y Medicina Experimental (IByME) - CONICET, Buenos Aires, Argentina
| | - Fernanda Parborell
- Instituto de Biología y Medicina Experimental (IByME) - CONICET, Buenos Aires, Argentina
| |
Collapse
|
22
|
Li J, Quan X, Lei S, Huang Z, Wang Q, Xu P. PFOS Inhibited Normal Functional Development of Placenta Cells via PPARγ Signaling. Biomedicines 2021; 9:biomedicines9060677. [PMID: 34203907 PMCID: PMC8232579 DOI: 10.3390/biomedicines9060677] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2021] [Revised: 06/08/2021] [Accepted: 06/09/2021] [Indexed: 01/13/2023] Open
Abstract
Perfluorooctane sulfonic acid (PFOS), a persistent environmental pollutant, has adverse effects on gestation pregnancy. Peroxisome proliferator-activated receptor γ (PPARγ) is involved in angiogenesis, metabolic processes, anti-inflammatory, and reproductive development. However, the function of PPARγ in PFOS evoked disadvantageous effects on the placenta remain uncertain. Here, we explored the role of PPARγ in PFOS-induced placental toxicity. Cell viability, cell migration, angiogenesis, and mRNA expression were monitored by CCK-8 assay, wound healing assay, tube formation assay, and real-time PCR, respectively. Activation and overexpression of PPARγ were conducted by rosiglitazone or pcDNA-PPARγ, and inhibition and knockdown of PPARγ were performed by GW9662 or si-PPARγ. Results revealed that PFOS decreased cell growth, migration, angiogenesis, and increased inflammation in human HTR-8/SVneo and JEG-3 cells. Placenta diameter and fetal weight decreased in mice treated with PFOS (12.5 mg/kg). In addition, rosiglitazone or pcDNA-PPARγ rescued cell proliferation, migration, angiogenesis, and decreased inflammation induced by PFOS in HTR8/SVneo and JEG-3 cells. Furthermore, GW9662 or si-PPARγ exacerbated the inhibition of cell viability, migration, angiogenesis, and aggravated inflammation induced by PFOS in HTR-8/SVneo and JEG-3 cells. Meanwhile, the results of mRNA expression level were consistent with the cell representation. In conclusion, our findings revealed that PFOS induced placenta cell toxicity and functional damage through PPARγ pathway.
Collapse
Affiliation(s)
- Jing Li
- School of Public Health, Xuzhou Medical University, Xuzhou 221002, China; (J.L.); (X.Q.); (Z.H.); (Q.W.)
| | - Xiaojie Quan
- School of Public Health, Xuzhou Medical University, Xuzhou 221002, China; (J.L.); (X.Q.); (Z.H.); (Q.W.)
| | - Saifei Lei
- Center for Pharmacogenetics, Department of Pharmaceutical Sciences, University of Pittsburgh, Pittsburgh, PA 15261, USA;
| | - Zhenyao Huang
- School of Public Health, Xuzhou Medical University, Xuzhou 221002, China; (J.L.); (X.Q.); (Z.H.); (Q.W.)
| | - Qi Wang
- School of Public Health, Xuzhou Medical University, Xuzhou 221002, China; (J.L.); (X.Q.); (Z.H.); (Q.W.)
| | - Pengfei Xu
- Center for Pharmacogenetics, Department of Pharmaceutical Sciences, University of Pittsburgh, Pittsburgh, PA 15261, USA;
- Beijing Key Laboratory of Gene Resource and Molecular Development, College of Life Sciences, Beijing Normal University, Beijing 100875, China
- Correspondence: ; Tel.: +1-412-708-4694
| |
Collapse
|
23
|
Patil K, Hinduja I, Mukherjee S. Alteration in angiogenic potential of granulosa-lutein cells and follicular fluid contributes to luteal defects in polycystic ovary syndrome. Hum Reprod 2021; 36:1052-1064. [PMID: 33377483 DOI: 10.1093/humrep/deaa351] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2020] [Revised: 11/20/2020] [Indexed: 12/14/2022] Open
Abstract
STUDY QUESTION Is angiogenic potential of follicular fluid (FF) and granulosa-lutein cells (GLCs) altered in polycystic ovary syndrome (PCOS) and does it play a role in corpus luteum (CL) defect observed in them? SUMMARY ANSWER FF and GLCs of women with PCOS show reduced expression of pro-angiogenic factors compared to controls and exhibit a diminished capacity to induce angiogenesis. WHAT IS KNOWN ALREADY In women with PCOS, CL insufficiency and frequent miscarriage are reported, which may be due to defect in CL. The development of new blood vessels is essential to promote ovarian folliculogenesis and functional CL formation. The vasculature formation in CL which is important for its function is still unexplored in these women. STUDY DESIGN, SIZE, DURATION This case-control study was conducted in 30 healthy control women and 30 women with PCOS undergoing controlled ovarian hyperstimulation for IVF. The FF, GLCs and serum were collected from all participants during ovum pick up. PARTICIPANTS/MATERIALS, SETTING, METHODS The capacity of FF to induce angiogenesis was assessed by measuring levels of pro-angiogenic factors vascular endothelial growth factor (VEGF) and fibroblast growth factor 2 (FGF2) and its tube formation and wound healing potential using human umbilical vein endothelial cells (HUVECs). We investigated the angiogenic potential and endothelial cell-like nature of GLCs using several approaches such as the expression of angiogenic genes by quantitative PCR, DiI-conjugated acetylated low-density lipoproteins (Dil-Ac-LDL) internalization assay, tube formation assay, expression of endothelial cell markers by immunofluorescence analysis. In addition, correlation of transcript levels of angiogenic genes with oocyte parameters was studied. MAIN RESULTS AND THE ROLE OF CHANCE FF and serum levels of VEGF and FGF2 were significantly higher and lower, respectively, in PCOS compared to controls. The tube formation and wound healing capacity of HUVECs was found to be reduced when measured after supplementation with FF of women with PCOS compared to controls. This suggests a decreased angiogenic capacity of FF in women with PCOS. Tube formation (P = 0.003) and Dil-Ac-LDL internalization (P = 0.03) ability of GLCs were significantly reduced in women with PCOS compared to controls. Protein expression levels of endothelial markers, vascular endothelial growth factor A (VEGFA) (P = 0.004), vascular endothelial growth factor receptor 2 (VEGFR2) (P = 0.011), TEK Receptor Tyrosine Kinase (Tie-2) (P = 0.026), fibroblast growth factor receptor 1 (FGFR1) (P = 0.026) and CD31 (P = 0.035) and transcript levels of angiogenic genes VEGFA (P = 0.042), hypoxia inducing factor 1A (HIF1A) (P = 0.025), FGF2 (P = 0.038), angiopoietin 1 (ANGPT1) (P = 0.028), heparin sulfate proteoglycan 2 (HSPG2) (P = 0.016), ADAM metallopeptidase with thrombospondin type1 motif, 1 (ADAMTS1) (P = 0.027) and fibronectin 1 (FN1) (P = 0.016) were found to be low in GLCs of PCOS compared to controls. Thus, the findings of this study indicate that endothelial cell-like characteristics of GLCs were significantly decreased in PCOS. Furthermore, transcript levels of VEGFA (r = 0.46, P = 0.009), ADAMTS1 (r = 0.55, P = 0.001), FGF2 (r = 0.42, P = 0.022) and ANGPT2 (r = 0.47, P = 0.008) showed a positive correlation with oocyte fertilization rate. LIMITATIONS, REASONS FOR CAUTION The vasculature formation in CL is not possible to study in women, but we explored the angiogenic characteristics of FF and GLC obtained from women with PCOS to speculate any vascularization defect of CL in these women. The FF and GLCs were obtained from the stimulated cycle during oocyte retrieval, which may not exactly mimic the in-vivo condition. The small sample size is another limitation of this study. Larger sample size and support by color Doppler studies on CL blood flow would help to strengthen our findings. WIDER IMPLICATIONS OF THE FINDINGS Our findings suggest that the altered angiogenic potential of FF and GLCs may affect vasculature development required for CL formation and function in PCOS. These findings pave the way to devise therapeutic strategies to support angiogenesis process in follicle of women with PCOS, which may improve CL insufficiency, progesterone levels and prevent frequent miscarriages in these women. Furthermore, our study also hypothesizes that the vascularization around the ovarian follicles is also compromised which may lead to the growth arrest of the follicles in PCOS, however, this needs thorough investigations. STUDY FUNDING/COMPETING INTEREST(S) This work was supported by Grant BT/PR16524/MED/97/346/2016 from the Department of Biotechnology, Government of India. The authors have no conflicts of interest to disclose. TRIAL REGISTRATION NUMBER N/A.
Collapse
Affiliation(s)
- Krutika Patil
- Department of Molecular Endocrinology, ICMR-National Institute for Research in Reproductive Health, Parel, Mumbai 400012, India
| | - Indira Hinduja
- Hinduja IVF Centre, P.D. Hinduja National Hospital and Medical Research Centre, Mumbai 400016, India
| | - Srabani Mukherjee
- Department of Molecular Endocrinology, ICMR-National Institute for Research in Reproductive Health, Parel, Mumbai 400012, India
| |
Collapse
|
24
|
Minela T, Pursley JR. Effect of cloprostenol sodium dose on luteal blood flow and volume measurements in Holstein heifers with both day-4 and day-10 corpora lutea. J Dairy Sci 2021; 104:9327-9339. [PMID: 34024609 DOI: 10.3168/jds.2020-19933] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2020] [Accepted: 04/14/2021] [Indexed: 11/19/2022]
Abstract
Establishment of a vascular system within the corpus luteum (CL) is critical for progesterone (P4) secretion. Measurement of luteal blood flow (LBF) may be a feasible way to determine luteolysis induced with cloprostenol sodium (CLO). Our overall objective was to establish timelines to assess luteolysis via Doppler ultrasonography. Estrous cycles were synchronized in 11- to 12-mo-old Holstein heifers (n = 37). Heifers were injected CLO at a random stage of the estrous cycle 12 d from treatment. Gonadotropin-releasing hormone (GnRH) was administered 2 (d -10) and 8 d (d -4) after the initial CLO. This satisfied the study objective of inducing simultaneous presence of CL at d 4 of development (D4 CL) and CL at d 10 of development (D10 CL) on the day of treatment with different CLO doses (hereafter referred to as d 0). Heifers were randomly assigned to 1 of 5 treatments on d 0: negative control (NC) consisting of no treatment with CLO (n = 8); a quarter dose of CLO (0.125 mg; n = 8); half dose of CLO (0.25 mg; n = 8); full dose of CLO (0.5 mg; n = 8); or positive control (PC) consisting of 4 doses of 0.5 mg of CLO at 24-h intervals starting at d 0 (n = 5). Data collection was performed at d 0 (before and 1 h after treatment) and 2, 4, 6, and 8 d following treatment, to determine luteal volume (LV), LBF, and circulating concentrations of P4. Both NC and PC were efficient in mimicking physiological scenarios that occur during normal luteal development and luteolysis. Heifers that received PC had complete LBF disappearance of both D4 and D10 CL between d 2 and 4 after the first of 4 CLO treatments given 24 h apart (average 4.0 ± 0.0 and 3.2 ± 0.7 d, respectively). Complete LBF disappearance was used as a luteolysis marker. Treatment with different doses of CLO did not impair luteal development of the D4 CL. However, concurrent complete LBF disappearance for D10 CL in heifers treated with half (5/8 heifers) and full doses of CLO (8/8 heifers) resulted in less LBF in the half dose, and less LV and LBF in the full-dose treatment, in D4 CL at d 8 post-treatment, compared with NC. Treatment with various doses of CLO induced an acute increase in LBF 1 h after treatment, regardless of dose in D10 but not in D4 CL. We found a lack of dose response in LV reduction of D4 and D10 CL. Interestingly, LV of the D10 CL decreased in untreated NC between d 0 and 8 after treatment (d 10-18 of luteal development). Assessment with color Doppler ultrasound was sensitive enough to identify dose-response patterns in Holstein heifers (absence, partial, or complete luteolysis) following various doses of CLO. Variability in time to complete LBF disappearance of mature D10 CL following a full dose of CLO limits the use of Doppler ultrasonography to detect luteolysis at a single time point following treatment.
Collapse
Affiliation(s)
- T Minela
- Department of Animal Science, Michigan State University, East Lansing 48824
| | - J R Pursley
- Department of Animal Science, Michigan State University, East Lansing 48824.
| |
Collapse
|
25
|
Yan L, Qu X, Yu J, Robinson RS, Woad KJ, Shi Z. Transforming growth factor-β1 disrupts angiogenesis during the follicular-luteal transition through the Smad-serpin family E member 1 (SERPINE1)/serpin family B member 5 (SERPINB5) signalling pathway in the cow. Reprod Fertil Dev 2021; 33:643-654. [PMID: 38600656 DOI: 10.1071/rd20325] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2020] [Accepted: 04/13/2021] [Indexed: 04/12/2024] Open
Abstract
Intense angiogenesis is critical for the development of the corpus luteum and is tightly regulated by numerous factors. However, the exact role transforming growth factor-β1 (TGFB1) plays during this follicular-luteal transition remains unclear. This study hypothesised that TGFB1, acting through TGFB receptor 1 (TGFBR1) and Smad2/3 signalling, would suppress angiogenesis during the follicular-luteal transition. Using a serum-free luteinising follicular angiogenesis culture system, TGFB1 (1 and 10ngmL-1 ) markedly disrupted the formation of capillary-like structures, reducing the endothelial cell network area and the number of branch points (P <0.001 compared with control). Furthermore, TGFB1 activated canonical Smad signalling and inhibited endothelial nitric oxide synthase (NOS3 ) mRNA expression, but upregulated latent TGFB-binding protein and TGFBR1 , serpin family E member 1 (SERPINE1 ) and serpin family B member 5 (SERPINB5 ) mRNA expression. SB431542, a TGFBR1 inhibitor, reversed the TGFB1-induced upregulation of SERPINE1 and SERPINB5 . In addition, TGFB1 reduced progesterone synthesis by decreasing the expression of steroidogenic acute regulatory protein (STAR ), cytochrome P450 family 11 subfamily A member 1 (CYP11A1 ) and 3β-hydroxysteroid dehydrogenase (HSD3B1 ) expression. These results show that TGFB1 regulates NOS3 , SERPINE1 and SERPINB5 expression via TGFBR1 and Smad2/3 signalling and this could be the mechanism by which TGFB1 suppresses endothelial networks. Thereby, TGFB1 may provide critical homeostatic control of angiogenesis during the follicular-luteal transition. The findings of this study reveal the molecular mechanisms underlying the actions of TGFB1 in early luteinisation, which may lead to novel therapeutic strategies to reverse luteal inadequacy.
Collapse
Affiliation(s)
- Leyan Yan
- Laboratory of Animal Improvement and Reproduction, Institute of Animal Science, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, China; and Jiangsu Key Laboratory for Food Quality and Safety-State Key Laboratory Cultivation Base of Ministry of Science and Technology, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, China
| | - Xiaolu Qu
- Laboratory of Animal Improvement and Reproduction, Institute of Animal Science, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, China; and Jiangsu Key Laboratory for Food Quality and Safety-State Key Laboratory Cultivation Base of Ministry of Science and Technology, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, China
| | - Jianning Yu
- Laboratory of Animal Improvement and Reproduction, Institute of Animal Science, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, China; and Jiangsu Key Laboratory for Food Quality and Safety-State Key Laboratory Cultivation Base of Ministry of Science and Technology, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, China
| | - Robert S Robinson
- School of Veterinary Medicine and Science, University of Nottingham, Sutton Bonington Campus, Loughborough, Leicestershire LE12 5RD, UK
| | - Kathryn J Woad
- School of Veterinary Medicine and Science, University of Nottingham, Sutton Bonington Campus, Loughborough, Leicestershire LE12 5RD, UK
| | - Zhendan Shi
- Laboratory of Animal Improvement and Reproduction, Institute of Animal Science, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, China; and Jiangsu Key Laboratory for Food Quality and Safety-State Key Laboratory Cultivation Base of Ministry of Science and Technology, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, China; and Corresponding author
| |
Collapse
|
26
|
Li Z, Li D, Rao Y, Wei L, Liu M, Zheng G, Yao Y, Hou X, Chen Y, Ruan XZ. SCAP knockout in SM22α-Cre mice induces defective angiogenesis in the placental labyrinth. Biomed Pharmacother 2021; 133:111011. [PMID: 33227706 DOI: 10.1016/j.biopha.2020.111011] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2020] [Revised: 11/04/2020] [Accepted: 11/09/2020] [Indexed: 12/12/2022] Open
Abstract
The placental labyrinth is important for the exchange of nutrients and gases between the mother and the embryo in mice. This interface contains cells of both trophoblast and allantoic mesodermal origin that together produce maternal blood sinuses and placental blood vessels. However, the molecular mechanisms that take place during process of placental labyrinth development, especially concerning fetal capillaries, are not well understood. SREBP cleavage-activating protein (SCAP), a membrane protein, is required for the synthesis of fatty acids and cholesterol. Recently, when we crossed the offspring of the cross between smooth muscle 22 alpha (SM22α)- Cre recombinase (Cre) mice and SCAPloxp/loxp mice to research the function of SCAP in vascular smooth muscle cells (VSMCs) during certain pathological processes, we found that there were no resultant SM22α-Cre-specific SCAP knockout (KO) pups (SM22α-Cre+SCAPflox/flox; hereafter referred to as SCAP KO). Through anatomic studies of these embryos and placentas, we found that SCAP KO resulted in defective placental vessels and abnormal fetal morphology. Further immunohistochemical and immunocytochemical analyses suggested that SCAP is knocked out in the pericytes of the placental labyrinth. Compared to wildtype mice, SCAP KO placentas had abnormal vasculature in the labyrinth and lower levels of angiogenesis. By using RNA-seq and western blotting, we found that the expression of some genes and proteins in SCAP KO placentas was changed, including those related to pericyte/endothelial interactions genes and angiogenesis. Our results suggest that the proper organizational structure of the placental labyrinth depends on SCAP expression in pericytes.
Collapse
Affiliation(s)
- Zhe Li
- Centre for Lipid Research, Key Laboratory of Molecular Biology for Infectious Diseases, Ministry of Education, Institute for Viral Hepatitis, Department of Infectious Diseases, The Second Affiliated Hospital, Chongqing Medical University, Chongqing, China
| | - Danyang Li
- Centre for Lipid Research, Key Laboratory of Molecular Biology for Infectious Diseases, Ministry of Education, Institute for Viral Hepatitis, Department of Infectious Diseases, The Second Affiliated Hospital, Chongqing Medical University, Chongqing, China
| | - Yuhan Rao
- Centre for Lipid Research, Key Laboratory of Molecular Biology for Infectious Diseases, Ministry of Education, Institute for Viral Hepatitis, Department of Infectious Diseases, The Second Affiliated Hospital, Chongqing Medical University, Chongqing, China
| | - Li Wei
- Centre for Lipid Research, Key Laboratory of Molecular Biology for Infectious Diseases, Ministry of Education, Institute for Viral Hepatitis, Department of Infectious Diseases, The Second Affiliated Hospital, Chongqing Medical University, Chongqing, China
| | - Mihua Liu
- Centre for Lipid Research, Key Laboratory of Molecular Biology for Infectious Diseases, Ministry of Education, Institute for Viral Hepatitis, Department of Infectious Diseases, The Second Affiliated Hospital, Chongqing Medical University, Chongqing, China
| | - Guo Zheng
- Centre for Lipid Research, Key Laboratory of Molecular Biology for Infectious Diseases, Ministry of Education, Institute for Viral Hepatitis, Department of Infectious Diseases, The Second Affiliated Hospital, Chongqing Medical University, Chongqing, China
| | - Yingcheng Yao
- Centre for Lipid Research, Key Laboratory of Molecular Biology for Infectious Diseases, Ministry of Education, Institute for Viral Hepatitis, Department of Infectious Diseases, The Second Affiliated Hospital, Chongqing Medical University, Chongqing, China
| | - Xiaoli Hou
- Centre for Lipid Research, Key Laboratory of Molecular Biology for Infectious Diseases, Ministry of Education, Institute for Viral Hepatitis, Department of Infectious Diseases, The Second Affiliated Hospital, Chongqing Medical University, Chongqing, China
| | - Yaxi Chen
- Centre for Lipid Research, Key Laboratory of Molecular Biology for Infectious Diseases, Ministry of Education, Institute for Viral Hepatitis, Department of Infectious Diseases, The Second Affiliated Hospital, Chongqing Medical University, Chongqing, China.
| | - Xiong Z Ruan
- Centre for Lipid Research, Key Laboratory of Molecular Biology for Infectious Diseases, Ministry of Education, Institute for Viral Hepatitis, Department of Infectious Diseases, The Second Affiliated Hospital, Chongqing Medical University, Chongqing, China; National Clinical Research Center for Aging and Medicine, Huashan Hospital, Fudan University, Shanghai, China; John Moorhead Research Laboratory, Centre for Nephrology, University College London Medical School, Royal Free Campus, University College London, London, United Kingdom.
| |
Collapse
|
27
|
Transcriptome profiling of different developmental stages of corpus luteum during the estrous cycle in pigs. Genomics 2020; 113:366-379. [PMID: 33309770 DOI: 10.1016/j.ygeno.2020.12.008] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2020] [Revised: 11/17/2020] [Accepted: 12/06/2020] [Indexed: 12/22/2022]
Abstract
To better understand the molecular basis of corpus luteum (CL) development and function RNA-Seq was utilized to identify differentially expressed genes (DEGs) in porcine CL during different physiological stages of the estrous cycle viz. early (EL), mid (ML), late (LL) and regressed (R) luteal. Stage wise comparisons obtained 717 (EL vs. ML), 568 (EL vs. LL), 527 (EL vs. R), 786 (ML vs. LL), 474 (ML vs. R) and 534 (LL vs. R) DEGs with log2(FC) ≥1 and p < 0.05. The process of angiogenesis, steroidogenesis, signal transduction, translation, cell proliferation and tissue remodelling were significantly (p < 0.05) enriched in EL, ML and LL stages, where as apoptosis was most active in regressed stage. Pathway analysis revealed that most annotated genes were associated with lipid metabolism, translation, immune and endocrine system pathways depicting intra-luteal control of diverse CL function. The network analysis identified genes AR, FOS, CDKN1A, which were likely the novel hub genes regulating CL physiology.
Collapse
|
28
|
Feldman I, Alon B, Nesher G, Wolak T, Breuer GS. Ruptured hemorrhagic corpus luteum as a presenting symptom of systemic lupus erythematous. Clin Rheumatol 2020; 39:3127-3129. [PMID: 32488769 DOI: 10.1007/s10067-020-05197-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2020] [Revised: 05/18/2020] [Accepted: 05/20/2020] [Indexed: 11/29/2022]
Abstract
A young female presented to the emergency room with ruptured hemorrhagic corpus luteum (RHCL). Her workup revealed a new diagnosis of SLE with nephritis and positive lupus anticoagulant (LAC) test without thrombocytopenia. We reviewed the literature and found one similar case of a 23-year-old subject who presented with a RHCL that was found to be the presenting symptom of SLE; unlike the current case, the patient presented with severe anemia (Hg 6.7 g/dl) and thrombocytopenia (10,000/ml). Possible mechanisms are discussed.
Collapse
Affiliation(s)
- Itamar Feldman
- Department of Internal Medicine, Shaare Zedek Medical Center, P.O. Box 3235, Jerusalem, Israel.,Rheumatology Unit, Shaare Zedek Medical Center, P.O. Box 3235, Jerusalem, Israel
| | - Bnaya Alon
- Department of Internal Medicine, Shaare Zedek Medical Center, P.O. Box 3235, Jerusalem, Israel.,Nephrology Unit, Shaare Zedek Medical Center, P.O. Box 3235, Jerusalem, Israel
| | - Gideon Nesher
- Department of Internal Medicine, Shaare Zedek Medical Center, P.O. Box 3235, Jerusalem, Israel.,Rheumatology Unit, Shaare Zedek Medical Center, P.O. Box 3235, Jerusalem, Israel.,Hadassah Hebrew University School of Medicine, 9112001, Jerusalem, Israel
| | - Talia Wolak
- Department of Internal Medicine, Shaare Zedek Medical Center, P.O. Box 3235, Jerusalem, Israel.,Hadassah Hebrew University School of Medicine, 9112001, Jerusalem, Israel
| | - Gabriel S Breuer
- Department of Internal Medicine, Shaare Zedek Medical Center, P.O. Box 3235, Jerusalem, Israel. .,Rheumatology Unit, Shaare Zedek Medical Center, P.O. Box 3235, Jerusalem, Israel. .,Hadassah Hebrew University School of Medicine, 9112001, Jerusalem, Israel.
| |
Collapse
|
29
|
Abstract
There has been increasing interest in the role of hypoxia in the microenvironment of organs, because of the discovery of hypoxia-inducible factor-1 (HIF1), which acts as a transcription factor for many genes activated specifically under hypoxic conditions. The ovary changes day by day during the estrous cycle as it goes through phases of follicular growth, ovulation, and formation and regression of the corpus luteum (CL). These phenomena are regulated by hypothalamic and pituitary hormones, sex steroids, peptides and cytokines, as well as oxygen conditions. Hypoxia strongly induces angiogenesis via transcription of a potent angiogenic factor, vascular endothelial growth factor (VEGF), that is regulated by HIF1. A CL forms with a rapid increase of angiogenesis that is mainly induced by HIF1-VEGF signaling. Hypoxia also contributes to luteolysis by down-regulating progesterone synthesis and by up-regulating apoptosis of luteal cells. This review focuses on recent studies on the roles of hypoxia- and HIF1-regulated genes in the regulation of bovine CL function.
Collapse
Affiliation(s)
- Ryo Nishimura
- Laboratory of Theriogenology, Joint Department of Veterinary Medicine, Faculty of Agriculture, Tottori University, Tottori 680-8553, Japan
| | - Kiyoshi Okuda
- Obihiro University of Agriculture & Veterinary Medicine, Hokkaido 080-8555, Japan
| |
Collapse
|
30
|
Coelho‐Santos V, Shih AY. Postnatal development of cerebrovascular structure and the neurogliovascular unit. WILEY INTERDISCIPLINARY REVIEWS. DEVELOPMENTAL BIOLOGY 2020; 9:e363. [PMID: 31576670 PMCID: PMC7027551 DOI: 10.1002/wdev.363] [Citation(s) in RCA: 66] [Impact Index Per Article: 13.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/31/2019] [Revised: 08/23/2019] [Accepted: 08/26/2019] [Indexed: 12/22/2022]
Abstract
The unceasing metabolic demands of brain function are supported by an intricate three-dimensional network of arterioles, capillaries, and venules, designed to effectively distribute blood to all neurons and to provide shelter from harmful molecules in the blood. The development and maturation of this microvasculature involves a complex interplay between endothelial cells with nearly all other brain cell types (pericytes, astrocytes, microglia, and neurons), orchestrated throughout embryogenesis and the first few weeks after birth in mice. Both the expansion and regression of vascular networks occur during the postnatal period of cerebrovascular remodeling. Pial vascular networks on the brain surface are dense at birth and are then selectively pruned during the postnatal period, with the most dramatic changes occurring in the pial venular network. This is contrasted to an expansion of subsurface capillary networks through the induction of angiogenesis. Concurrent with changes in vascular structure, the integration and cross talk of neurovascular cells lead to establishment of blood-brain barrier integrity and neurovascular coupling to ensure precise control of macromolecular passage and metabolic supply. While we still possess a limited understanding of the rules that control cerebrovascular development, we can begin to assemble a view of how this complex process evolves, as well as identify gaps in knowledge for the next steps of research. This article is categorized under: Nervous System Development > Vertebrates: Regional Development Vertebrate Organogenesis > Musculoskeletal and Vascular Nervous System Development > Vertebrates: General Principles.
Collapse
Affiliation(s)
- Vanessa Coelho‐Santos
- Center for Developmental Biology and Regenerative MedicineSeattle Children's Research InstituteSeattleWashington
- Department of PediatricsUniversity of WashingtonSeattleWashington
| | - Andy Y. Shih
- Center for Developmental Biology and Regenerative MedicineSeattle Children's Research InstituteSeattleWashington
- Department of PediatricsUniversity of WashingtonSeattleWashington
| |
Collapse
|
31
|
Lee SH, Lee S. Change of Ras and its guanosine triphosphatases (GTPases) during development and regression in bovine corpus luteum. Theriogenology 2019; 144:16-26. [PMID: 31887652 DOI: 10.1016/j.theriogenology.2019.12.014] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2019] [Revised: 10/28/2019] [Accepted: 12/19/2019] [Indexed: 12/30/2022]
Abstract
The aim of this study was to determine the change of Ras and its guanosine triphosphatases (GTPases) proteins in the bovine corpus luteum (CL) during estrous cycle and investigate protein-protein interaction between hormone receptors and Ras proteins via angiogenetic and apoptotic factors using bioinformatics database. The bovine CLs at proliferation phase (PP), secretion phase (SP), and regression phase (RP) were dissected from abattoir ovaries (n = 4/stage), whole of the tissue samples was used to analyze two-dimensional electrophoresis (2-DE), mRNA, and protein analysis. The protein-protein interaction between the Ras GTPases proteins and hormone receptors were analyzed using Search Tool for the Retrieval of Interacting Genes (STRING) database. The Ras protein activator like 3 (RASAL3), Ras GTPase activating protein 3 (RASA3), Ras guanine nucleotide exchange factors 1 beta (RasGEF1B) were discovered by the 2-DE and mass spectrometry in bovine CLs, and the protein spots of RASA3 and RASAL3 were significantly increased in the SPCL compared to the PPCL, whereas the RasGEF1B was reduced in the PPCL (P < 0.05). The mRNA and proteins expression of progesterone receptor, estrogen receptor alpha (ERα), vascular endothelial growth factor A (VEGFA), angiopoietin 1 (Ang1), VEGF receptor2 (VEGFR2), and Tie2 were significantly increased, but intrinsic and extrinsic apoptotic factors were decreased in PPCL and SPCL compared to RPCL (P < 0.05). Based on STRING database, we determined that RasGEF1B is activated by ERα via VEGFA and VEGFR2, then RasGEF1B activates H-Ras and R-Ras. In addition, the RasGAP protein was significantly increased, however, the RasGEF, H-Ras and R-Ras proteins were reduced in SPCL compared to PPCL and RPCL (P < 0.05). In summary, the RasGEF and Ras proteins were raised during the development, whereas the RasGAP was increased when development was completed, then the Ras and its GTPases dramatically decreased at the regression in bovine CL. In conclusion, these results suggest that Ras and Ras GTPases could be changed during development and regression, activated by the ERα via angiogenetic signaling during proliferation, and may be important to understanding of the Ras and its GTPases system for estrous cycle in bovine CL.
Collapse
Affiliation(s)
- S H Lee
- Discipline of ICT, University of Tasmania, Hobart, Tasmania, Australia
| | - S Lee
- College of Animal Life Sciences, Kangwon National University, Chuncheon, Republic of Korea.
| |
Collapse
|
32
|
Figueira LM, Alves NG, Souza-Fabjan JMG, Oliveira MEF, Lima RR, Souza GN, Fonseca JF. Preovulatory follicular dynamics, ovulatory response and embryo yield in Lacaune ewes subjected to synchronous estrus induction protocols and non-surgical embryo recovery. Theriogenology 2019; 145:238-246. [PMID: 31753477 DOI: 10.1016/j.theriogenology.2019.11.004] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2019] [Revised: 10/29/2019] [Accepted: 11/06/2019] [Indexed: 10/25/2022]
Abstract
The objective of this study was to assess the effect of the duration of progesterone-based estrus induction protocols on preovulatory follicular dynamics, ovulatory response, and embryo yield after non-surgical embryo recovery (NSER) in Lacaune ewes. Females received acetate medroxyprogesterone intravaginal sponges for six (G-6; n = 14) or nine (G-9; n = 14) days plus d-cloprostenol and eCG 24 h before sponge removal (Day 0). Preovulatory follicular dynamics and the luteal characteristics are evaluated by B-mode and Color-Doppler ultrasonography. NSER was performed five to six days after ovulation. The estrous behavior rate was 85.7% for both groups, and the percentage of ewes that ovulated was 92.9% in G-6 and 100% in G-9. The day of wave emergence (relative to Day 0) did not differ (P > 0.05) between G-6 (-3.0 ± 0.5) and G-9 (-4.2 ± 0.5). The number of follicles of size 4.1-5.0 mm was higher (P < 0.05) in G-9 (1.4 ± 0.2) compared to G-6 (0.8 ± 0.2) during the Days -4 to 0. At NSER, the transcervical penetration rate was 95.2% (20/21) and its duration time was lower (P < 0.05) in G-9 (3.4 ± 0.6 min) than in G-6 (7.2 ± 1.3 min). The number of ovulations and viable embryos was higher (P < 0.05) in G-9 (2.9 ± 0.3 and 1.3 ± 0.4, respectively) than in G-6 (1.9 ± 0.3 and 0.4 ± 0.2, respectively). In conclusion, the 9-day protocol promoted higher ovulation rate and embryo yield; moreover, the cervical dilation treatment allowed NSER in a high percentage of Lacaune ewes.
Collapse
Affiliation(s)
- Lucas Machado Figueira
- Universidade Federal de Lavras, Av. Doutor Sylvio Menicucci, 1001 - Kennedy, CEP 37200-000, Lavras, MG, Brazil; Universidade Federal Fluminense Federal, Rua Vital Brazil Filho, 64, CEP 24220-008, Niterói-RJ, Brazil
| | - Nadja Gomes Alves
- Universidade Federal de Lavras, Av. Doutor Sylvio Menicucci, 1001 - Kennedy, CEP 37200-000, Lavras, MG, Brazil.
| | | | - Maria Emilia Franco Oliveira
- Universidade Estadual Paulista "Júlio de Mesquita Filho", Via de Acesso Prof. Paulo Donato Castelane, s/n, Zona Rural, CEP 14884-900, Jaboticabal, SP, Brazil
| | - Renato Ribeiro Lima
- Universidade Federal de Lavras, Av. Doutor Sylvio Menicucci, 1001 - Kennedy, CEP 37200-000, Lavras, MG, Brazil
| | - Guilherme Nunes Souza
- Universidade Federal Fluminense Federal, Rua Vital Brazil Filho, 64, CEP 24220-008, Niterói-RJ, Brazil; Embrapa Gado de Leite, Rua Eugênio do Nascimento, 610 - Dom Bosco, CEP 36038-330, Juiz de Fora, MG, Brazil
| | - Jeferson Ferreira Fonseca
- Embrapa Caprinos e Ovinos, Estrada Sobral/Groaíras, Km 4, CP D10, CEP 62011-000, Sobral, CE, Brazil.
| |
Collapse
|
33
|
Abdulrahman N, Fair T. Contribution of the immune system to follicle differentiation, ovulation and early corpus luteum formation. Anim Reprod 2019; 16:440-448. [PMID: 32435287 PMCID: PMC7234072 DOI: 10.21451/1984-3143-ar2019-0087] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2019] [Accepted: 07/25/2019] [Indexed: 12/30/2022] Open
Abstract
Much of what we know about the involvement of the immune system in periovulatory follicle differentiation, ovulation and subsequent formation of the corpus luteum in cattle is drawn from the findings of studies in several mammalian livestock species. By integrating published histological data from cattle, sheep and pigs and referring back to the more comprehensive knowledge bank that exists for mouse and humans we can sketch out the key cells of the immune system and the cytokines and growth factors that they produce that are involved in follicle differentiation and luteinization, ovulation and early follicle development. These contributions are reviewed and the key findings, discussed.
Collapse
Affiliation(s)
- Noof Abdulrahman
- School of Agriculture & Food Sciences, University College Dublin, Belfield, Dublin 4, Ireland.
| | - Trudee Fair
- School of Agriculture & Food Sciences, University College Dublin, Belfield, Dublin 4, Ireland.
| |
Collapse
|
34
|
Iacono E, Lucci M, Mari G, Merlo B. Luteal Blood Flow and progesterone concentration during first and second postpartum estrous cycle in lactating dairy cows. Reprod Domest Anim 2019; 54:1341-1347. [PMID: 31306526 DOI: 10.1111/rda.13513] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2019] [Accepted: 07/07/2019] [Indexed: 11/29/2022]
Abstract
The aim of the present study was to determine the differences in corpus luteum (CL) functionality between the first postpartum estrous cycle and the following cycle in lactating dairy cows. Luteal blood flow (LBF), luteal size and blood progesterone (P4) concentration were monitored during the first and second postpartum estrous cycle. During the first and second postpartum estrous cycle, the mean LBF value increased (p < .05) from early to late dioestrus, while it decreased rapidly in proestrus, resulting statistically lower (p < .05) than those registered in all previous phases. Statistically significant differences were not observed between overall LBF during first and second postpartum estrous cycle (p > .05). During the first postpartum estrous cycle, P4 blood concentrations showed a significant reduction (p < .05) from dioestrus to proestrus. A different trend of P4 concentrations was observed during the second postpartum estrous cycle, where mean P4 value registered in proestrus resulted statistically lower than those registered in the previous cycle phases (p < .05). The mean P4 concentration registered over the first postpartum estrous cycle resulted statistically lower (p < .05) than that registered during the second one. A significant correlation between P4 concentrations and LBF was registered only during the second postpartum estrous cycle. Results indicate that during the first postpartum estrous cycle, P4 concentration was independent of luteal blood flow and luteal size.
Collapse
Affiliation(s)
- Eleonora Iacono
- Department of Veterinary Medical Sciences, University of Bologna, Bologna, Italy
| | | | - Gaetano Mari
- Department of Veterinary Medical Sciences, University of Bologna, Bologna, Italy
| | - Barbara Merlo
- Department of Veterinary Medical Sciences, University of Bologna, Bologna, Italy
| |
Collapse
|
35
|
Lu E, Li C, Wang J, Zhang C. Inflammation and angiogenesis in the corpus luteum. J Obstet Gynaecol Res 2019; 45:1967-1974. [PMID: 31373134 DOI: 10.1111/jog.14076] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2019] [Accepted: 07/15/2019] [Indexed: 12/15/2022]
Abstract
Angiogenesis is a very important process that helps establish and maintain the normal structure and function of the corpus luteum (CL). Early luteal development can be considered a kind of physiological injury with an inflammatory response; therefore, the inflammatory response may play an important role in the luteal angiogenesis. The inflammatory response is companied by activated leukocytes and their mediators. For luteal tissue, numerous activated leukocytes such as macrophages, neutrophils and eosinophils are present in the early luteal phase and are widely involved in neovascularization. The objective of this review is to describe the role of the inflammatory factors in the angiogenesis and to discuss their mechanism. Knowledge of action and mechanism of these inflammatory factors on angiogenic activity will be beneficial for the understanding of luteal function.
Collapse
Affiliation(s)
- Enhang Lu
- Joint Programme of Nanchang University and Queen Mary University of London, School of Medicine, Nanchang University, Nanchang, China
| | - Chunjie Li
- Forth Clinical College, School of Medicine, Nanchang University, Nanchang, China
| | - Jing Wang
- Department of Microbiology, School of Medicine, Nanchang University, Nanchang, China
| | - Chunping Zhang
- Department of Cell Biology, School of Medicine, Nanchang University, Nanchang, China
| |
Collapse
|
36
|
Pathak S, Pham TT, Jeong JH, Byun Y. Immunoisolation of pancreatic islets via thin-layer surface modification. J Control Release 2019; 305:176-193. [DOI: 10.1016/j.jconrel.2019.04.034] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2019] [Revised: 04/15/2019] [Accepted: 04/22/2019] [Indexed: 12/13/2022]
|
37
|
Impact of Ergot Alkaloids on Female Reproduction in Domestic Livestock Species. Toxins (Basel) 2019; 11:toxins11060364. [PMID: 31234268 PMCID: PMC6628433 DOI: 10.3390/toxins11060364] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2019] [Revised: 06/13/2019] [Accepted: 06/14/2019] [Indexed: 01/10/2023] Open
Abstract
Fescue toxicosis is a multifaceted syndrome that elicits many negative effects on livestock consuming ergot alkaloids produced by endophyte-infected tall fescue. The economic losses associated with fescue toxicosis are primarily due to reproductive failure including altered cyclicity, suppressed hormone secretion, reduced pregnancy rates, agalactia, and reduced offspring birth weights. For decades, a multitude of research has investigated the physiological and cellular mechanisms of these reproductive failures associated with fescue toxicosis. This review will summarize the various effects of ergot alkaloids on female reproduction in grazing livestock species.
Collapse
|
38
|
Faria VRD, Pinho RO, Camilo BS, Guimarães JD, Fonseca E Silva F, Lopes PS, Silva PV, Teixeira SA, Veroneze R, Penitente-Filho JM, Guimarães SEF. Genes expression and phenotypic differences in corpus luteum and cumulus cells of commercial line and piau breed gilts. Theriogenology 2019; 136:111-117. [PMID: 31254724 DOI: 10.1016/j.theriogenology.2019.06.034] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2018] [Revised: 06/17/2019] [Accepted: 06/18/2019] [Indexed: 11/27/2022]
Abstract
We aimed to characterize the expression of angiogenesis-related genes in corpus luteum (CL) and cumulus cells (CC) during estrous cycle in gilts of different genetic groups, as well as to study the relation between gene expression and phenotypic data. Forty five gilts were used as follows: L1, Commercial Line 1 (Large White x Landrace x Duroc) (n = 15); L2, Commercial Line 2 (Large White x Landrace x Pietrain) (n = 15); and Piau, Piau breed gilts (n = 15). Estrus observation started from 120 days of age. After the second observed estrus females were slaughtered (n = 3) on days 3, 5, 10, 14 and 18 of estrous cycle (first day of estrous cycle as Day 0). CL sampling was performed on days 3, 5, 10 and 14 and collection of CC and follicular fluid on days 14 and 18. Follicular fluid was used for analysis of estradiol levels and CC and CL samples for analysis of angiogenesis-related genes expression, ANGPT-1/-2 and TEK in CC and MMP-2, VEGFA, VEGFR-1/-2, ANGPT-1/-2 and TEK in CL. Piau gilts showed lower ovulation rate than both L1 and L2 gilts (P < 0.05), lower number of large antral follicles (>6 mm) at 18 days than L2 gilts (P < 0.05), and smaller diameter of the largest follicles at 14 days than L1 gilts (P < 0.05). Piau and L2 gilts showed higher estradiol levels in follicular fluid on day 18. Expression of ANGPT-1 and -2 genes in CC did not differ among genetic groups neither among days of the estrous cycle, but TEK gene expression was higher in L1 than L2 gilts on day 18. Expression of VEGFA, VEGFR-2 and MMP-2 genes in CL did not differ among genetic groups and days of cycle, but VEGFR-1 expression was higher in Piau than L2 gilts on days 10 and 14, and it was higher in L1 than L2 gilts on day 14. The ANGPT-1/-2 and TEK genes expression in CL were significantly higher in Piau than L1 gilts on day 10. The ANGPT-2/ANGPT-1 gene expression ratio in CL was higher in L1 than Piau and L2 gilts at 14 days, suggesting a shorter luteal phase for L1 gilts. Results indicated differences among genetic groups for the pattern of the angiogenesis-related genes expression in CL along estrous cycles, which may be reflected in phenotypic traits such as ovulation rate, estradiol levels in follicular fluid and number and diameter of antral follicles.
Collapse
Affiliation(s)
| | | | - Breno Soares Camilo
- Department of Veterinary, Universidade Federal de Viçosa, Viçosa, MG, Brazil.
| | | | | | - Paulo Sávio Lopes
- Department of Animal Science, Universidade Federal de Viçosa, Viçosa, MG, Brazil.
| | | | | | - Renata Veroneze
- Department of Animal Science, Universidade Federal de Viçosa, Viçosa, MG, Brazil.
| | | | | |
Collapse
|
39
|
Jha SK, Rauniyar K, Chronowska E, Mattonet K, Maina EW, Koistinen H, Stenman UH, Alitalo K, Jeltsch M. KLK3/PSA and cathepsin D activate VEGF-C and VEGF-D. eLife 2019; 8:44478. [PMID: 31099754 PMCID: PMC6588350 DOI: 10.7554/elife.44478] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2019] [Accepted: 05/16/2019] [Indexed: 11/13/2022] Open
Abstract
Vascular endothelial growth factor-C (VEGF-C) acts primarily on endothelial cells, but also on non-vascular targets, for example in the CNS and immune system. Here we describe a novel, unique VEGF-C form in the human reproductive system produced via cleavage by kallikrein-related peptidase 3 (KLK3), aka prostate-specific antigen (PSA). KLK3 activated VEGF-C specifically and efficiently through cleavage at a novel N-terminal site. We detected VEGF-C in seminal plasma, and sperm liquefaction occurred concurrently with VEGF-C activation, which was enhanced by collagen and calcium binding EGF domains 1 (CCBE1). After plasmin and ADAMTS3, KLK3 is the third protease shown to activate VEGF-C. Since differently activated VEGF-Cs are characterized by successively shorter N-terminal helices, we created an even shorter hypothetical form, which showed preferential binding to VEGFR-3. Using mass spectrometric analysis of the isolated VEGF-C-cleaving activity from human saliva, we identified cathepsin D as a protease that can activate VEGF-C as well as VEGF-D. The lymphatic system is composed of networks of vessels that drain fluids from the body’s tissues and filter it back into the blood. Growing these vessels depends on a factor known as VEGF-C, which is released in an inactive form and must be cut by enzymes before it can work. One enzyme that is known to activate the VEGF-C signal when the early embryo is developing is ADAMTS3. If this signal fails to switch on this can result in a condition known as lymphedema – whereby problems in the lymphatic system cause tissues to swell due to insufficient drainage. However, it is unknown whether the VEGF-C signal can be activated by enzymes other than ADAMTS3. To investigate this Jha, Rauniyar et al. tested a specific family of proteins commonly found in the human prostate, which have previously been predicted to act on VEGF-C. This revealed that the lymphatic vessel growth factor can also be activated by an enzyme found in seminal fluid called prostate specific antigen, or PSA for short. To see if enzymes in other bodily fluids could switch on VEGF-C, different components of human saliva were separated and tested to see which could cut inactive VEGF-C. This showed that VEGF-C could be converted to an active form by another enzyme called cathepsin D. Unexpectedly, Jha, Rauniyar et al. found that VEGF-C was also present in semen. For conception to occur PSA must liquify the semen following ejaculation. It was discovered that PSA activates VEGF-C just as the semen starts to liquify, suggesting that the lymphatic vessel growth factor might also play an important role in reproduction. In addition to VEGF-C, both PSA and cathepsin D were found to activate another growth factor called VEGF-D, which has an unknown role in the human body. VEGF-C helps the spread of tumors, and blocking the two enzymes that activate this growth factor may be a new therapeutic approach for cancer. However, more work is needed to validate which types of tumor, if any, use these enzymes to activate VEGF-C. In addition, understanding the relationship between PSA and VEGF-C could help improve our knowledge of human reproduction.
Collapse
Affiliation(s)
- Sawan Kumar Jha
- Individualized Drug Therapy Research Program, University of Helsinki, Helsinki, Finland.,Wihuri Research Institute, Helsinki, Finland
| | - Khushbu Rauniyar
- Individualized Drug Therapy Research Program, University of Helsinki, Helsinki, Finland
| | - Ewa Chronowska
- Individualized Drug Therapy Research Program, University of Helsinki, Helsinki, Finland.,Jagiellonian University Medical College, Cracow, Poland
| | - Kenny Mattonet
- Max Planck Institute for Heart and Lung Research, Bad Nauheim, Germany
| | - Eunice Wairimu Maina
- Individualized Drug Therapy Research Program, University of Helsinki, Helsinki, Finland
| | - Hannu Koistinen
- Department of Clinical Chemistry, University of Helsinki, Helsinki, Finland.,Helsinki University Hospital, Helsinki, Finland
| | - Ulf-Håkan Stenman
- Department of Clinical Chemistry, University of Helsinki, Helsinki, Finland.,Helsinki University Hospital, Helsinki, Finland
| | - Kari Alitalo
- Wihuri Research Institute, Helsinki, Finland.,Helsinki University Hospital, Helsinki, Finland.,Translational Cancer Medicine Research Program, University of Helsinki, Helsinki, Finland
| | - Michael Jeltsch
- Individualized Drug Therapy Research Program, University of Helsinki, Helsinki, Finland.,Wihuri Research Institute, Helsinki, Finland
| |
Collapse
|
40
|
Felipez MV, Acosta T, Ungerfeld R. Sexual stimulation as a luteolytic inductor in beef heifers. Theriogenology 2019; 132:83-87. [PMID: 31004877 DOI: 10.1016/j.theriogenology.2019.04.003] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2019] [Revised: 04/03/2019] [Accepted: 04/04/2019] [Indexed: 10/27/2022]
Abstract
The objective was to determine if the introduction of androgenized steers or females in oestrus has luteolytic effects during the advanced luteal phase (Day 12-13 of the cycle, Day of ovulation = Day 0) in heifers by analysing the changes in corpus luteum (CL) size and perfused area together with progesterone (P4) secretion. Experiment 1 (EXP1) was carried out in May (autumn) with 12 Angus and Angus X Hereford heifers and experiment 2 (EXP2) in September (spring) with 20 heifers of the same breed. Procedures for both experiments were the same. Firstly, oestrus was synchronized in heifers, then, transrectal colour doppler ultrasonography was performed daily from Day 10 to Day 12 of the cycle in all animals. On Day 12 in the afternoon, animals were allocated to two experimental groups (control and biostimulated) and maintained separated (minimum distance: 1000 m) until the end of each experiment. In EXP1, two androgenized steers were introduced into the biostimulated group (BAS) and compared with unstimulated control group (CON1). In EXP2, 20 animals were separated into control group (CON2) and biostimulated group (BHE), in which 4 oestrous heifers were introduced on Day 12 in the afternoon, and 4 more on day 13. The oestrous heifers were injected with 2 mg i.m. of oestradiol benzoate every 12 h until the end of the experiment to maintain the receptiveness. In both experiments, from Day 13 until the day on which detectable luteal blood flow (irrigation) disappeared, colour doppler ultrasonography was performed every 12 h in both groups. Blood samples were collected from all heifers every 12 h from Day 10 to the day in which irrigation disappeared. In EXP1 there was no effect of treatment on CL volume. The BAS had less CL's perfused area than controls 0.09 ± 0.02 cm2 vs 0.16 ± 0.02 cm2, respectively (p = 0.015), less percentage of perfused area (2.4 ± 0.4% vs 4.2 ± 0.4%; p = 0,011), and lower progesterone (P4) concentration than CON1 (2.7 ± 1.0 ng/mL vs 5.8 ± 0.9 ng/mL respectively; p = 0.046). On Day 14.5 of the cycle, the BAS tended to have a lower concentration of P4 than the CON1 (p = 0.06) and on Days 15.5, 16, 16.5, 17, 17.5, 19.5 the P4 concentration was lower in BAS than in CON1 (p < 0.05). In EXP2 there were no treatment effects in any of the studied variables. Overall, it was concluded that the introduction of androgenized steers during heifers' advanced luteal phase of heifers advanced the luteolytic process. However, the introduction of oestrous heifers had no effect on luteal activity.
Collapse
Affiliation(s)
- María Victoria Felipez
- Departamento de Fisiología, Facultad de Veterinaria, Lasplaces 1620, Montevideo, 11600, Uruguay
| | - Tomás Acosta
- Obihiro University of Agriculture and Veterinary Medicine, Field Center of Animal Science and Agriculture, Obihiro, Japan
| | - Rodolfo Ungerfeld
- Departamento de Fisiología, Facultad de Veterinaria, Lasplaces 1620, Montevideo, 11600, Uruguay.
| |
Collapse
|
41
|
Baufeld A, Koczan D, Vanselow J. L-lactate induces specific genome wide alterations of gene expression in cultured bovine granulosa cells. BMC Genomics 2019; 20:273. [PMID: 30953450 PMCID: PMC6451254 DOI: 10.1186/s12864-019-5657-6] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2018] [Accepted: 03/29/2019] [Indexed: 12/11/2022] Open
Abstract
Background Previously, we could show that L-lactate affects cultured bovine granulosa cells (GC) in a specific manner driving the cells into an early pre-ovulatory phenotype. Here we studied genome wide effects in L-lactate-treated GC to further elucidate the underlying mechanisms that are responsible for the L-lactate induced transformation. Cultured estrogen producing GC treated either with L-lactate or vehicle control were subjected to mRNA microarray analysis. Results The analysis revealed 487 differentially expressed clusters, representing 461 annotated genes. Of these, 333 (= 318 genes) were identified as up- and 154 (= 143 genes) as down-regulated. As the top up-regulated genes we detected TXNIP, H19 and AHSG as well as our previously established marker transcripts RGS2 and PTX3. The top down-regulated genes included VNN1, SLC27A2 and GFRA1, but also MYC and the GC marker transcript CYP19A1. Pathway analysis with differentially expressed genes indicated “cAMP-mediated signaling” and “Axon guidance signaling” among the most affected pathways. Furthermore, estradiol, progesterone and Vegf were identified as potential upstream regulators. An effector network analysis by IPA provided first hints that processes of “angiogenesis” and “vascularization”, but also “cell movement” appeared to be activated, whereas “organismal death” was predicted to be inhibited. Conclusions Our data clearly show that L-lactate alters gene expression in cultured bovine GC in a broad, but obviously specific manner. Pathway analysis revealed that the mode of L-lactate action in GC initiates angiogenic processes, but also migratory events like cell movement and axonal guidance signaling, thus supporting the transformation of GC into an early luteal phenotype. Electronic supplementary material The online version of this article (10.1186/s12864-019-5657-6) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Anja Baufeld
- Institute of Reproductive Biology, Leibniz Institute for Farm Animal Biology (FBN), Wilhelm-Stahl-Allee 2, 18196, Dummerstorf, Germany
| | - Dirk Koczan
- Institute for Immunology, University of Rostock, 18055, Rostock, Germany
| | - Jens Vanselow
- Institute of Reproductive Biology, Leibniz Institute for Farm Animal Biology (FBN), Wilhelm-Stahl-Allee 2, 18196, Dummerstorf, Germany.
| |
Collapse
|
42
|
Garcia Kako Rodriguez M, Serpa Maciel G, Ramirez Uscategui RA, Correia Santos VJ, Perecin Nociti R, Del Aguila da Silva P, Rossi Feliciano MA, Zandonadi Brandão F, Ferreira Fonseca J, Franco Oliveira ME. Early luteal development in Santa Inês ewes superovulated with reduced doses of porcine follicle‐stimulating hormone. Reprod Domest Anim 2018; 54:456-463. [DOI: 10.1111/rda.13374] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2018] [Accepted: 11/04/2018] [Indexed: 01/05/2023]
Affiliation(s)
| | - Giovanna Serpa Maciel
- Faculdade de Ciências Agrárias e Veterinárias UNESP—Universidade Estadual Paulista Jaboticabal Brazil
| | | | | | - Ricardo Perecin Nociti
- Faculdade de Ciências Agrárias e Veterinárias UNESP—Universidade Estadual Paulista Jaboticabal Brazil
| | | | | | | | | | | |
Collapse
|
43
|
Gram A, Redmer DA, Kowalewski MP, Dorsam ST, Valkov V, Warang P, Reyaz A, Bass CS, Kaminski SL, Grazul-Bilska AT. Angiopoietin expression in ovine corpora lutea during the luteal phase: Effects of nutrition, arginine and follicle stimulating hormone. Gen Comp Endocrinol 2018; 269:131-140. [PMID: 30195024 DOI: 10.1016/j.ygcen.2018.09.003] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/21/2017] [Revised: 09/02/2018] [Accepted: 09/04/2018] [Indexed: 11/15/2022]
Abstract
The aim of this study was to evaluate angiopoietin (ANGPT) 1 and 2, and tyrosine-protein kinase receptor 2 (TIE2) expression in the corpora lutea (CL) of FSH-treated, or non-treated sheep administered arginine (Arg) or vehicle (saline, Sal), and fed a control (C), excess (O) or restricted (U) diet. Ewes from each dietary group were treated with Arg or Sal (experiment 1), and with FSH (experiment 2). Luteal tissues were collected at the early-, mid- and/or late-luteal phases of the estrous cycle. Protein and mRNA expression was determined using immunohistochemistry followed by image analysis, and quantitative RT-PCR, respectively. The results demonstrated that ANGPT1 and TIE2 proteins were localized to luteal capillaries and endothelial cells of larger blood vessels, and ANGPT2 was localized to tunica media of larger blood vessels. TIE2 protein was also present in luteal cells. In experiment 1, ANGPT1 protein expression was greater in O than C during early- and mid-luteal phases, and was greatest during late-luteal phase, less at the mid- and least at the early-luteal phase; 2) TIE2 protein expression was greatest at the mid-, less at the early- and least at the late-luteal phase; 3) ANGPT1 and 2 mRNA expression was greater at the mid- and late- than the early-luteal phase, and TIE2 mRNA expression was greatest at the late-, less at the mid- and least at the early-luteal phase. The ANGPT1/2 ratio was less at the early- than mid- or late-luteal phases. In experiment 2, ANGPT1 protein expression was greater in O during the mid-luteal phase than in other groups, and was greater at the mid- than early-luteal phase. TIE2 protein expression was highest at the mid-, less at the early- and least during the late-luteal phase. ANGPT1 and 2, and TIE2 mRNA expression was higher at the mid- than the early-luteal phase. During mid-luteal phase, ANGPT1 mRNA expression was greater in C than O and U, ANGPT2 was greatest in C, less in O and least in U, and TIE2 mRNA expression was greater in C than O and U. The ANGPT1/2 ratio was higher in U than in any other group. Comparison of FSH vs. Sal treatment effects (experiment 2 vs. experiment 1) demonstrated that FSH affected ANGPT1 and/or -2, and TIE2 protein and mRNA expression depending on luteal phase and/or diet. Thus, expression of ANGPTs and TIE2 in the CL changes during the luteal lifespan, indicating their involvement in luteal vascular formation, stabilization and degradation. Moreover, this study has demonstrated that plane of nutrition and/or FSH treatment affect the ANGPT system, and may alter luteal vascularity and luteal function in sheep.
Collapse
Affiliation(s)
- Aykut Gram
- Institute of Veterinary Anatomy, Vetsuisse Faculty, University of Zurich, Zurich, Switzerland
| | - Dale A Redmer
- Department of Animal Sciences, North Dakota State University, Fargo, ND 58108, USA
| | - Mariusz P Kowalewski
- Institute of Veterinary Anatomy, Vetsuisse Faculty, University of Zurich, Zurich, Switzerland
| | - Sheri T Dorsam
- Department of Animal Sciences, North Dakota State University, Fargo, ND 58108, USA
| | - Veselina Valkov
- Department of Animal Sciences, North Dakota State University, Fargo, ND 58108, USA
| | - Prajakta Warang
- Department of Animal Sciences, North Dakota State University, Fargo, ND 58108, USA
| | - Arshi Reyaz
- Department of Animal Sciences, North Dakota State University, Fargo, ND 58108, USA
| | - Casie S Bass
- Department of Animal Sciences, North Dakota State University, Fargo, ND 58108, USA
| | - Samantha L Kaminski
- Department of Animal Sciences, North Dakota State University, Fargo, ND 58108, USA
| | - Anna T Grazul-Bilska
- Department of Animal Sciences, North Dakota State University, Fargo, ND 58108, USA.
| |
Collapse
|
44
|
Camaioni A, Klinger FG, Campagnolo L, Salustri A. The Influence of Pentraxin 3 on the Ovarian Function and Its Impact on Fertility. Front Immunol 2018; 9:2808. [PMID: 30555480 PMCID: PMC6283082 DOI: 10.3389/fimmu.2018.02808] [Citation(s) in RCA: 36] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2018] [Accepted: 11/14/2018] [Indexed: 12/26/2022] Open
Abstract
Follicular development is a highly coordinated process that in humans takes more than 6 months. Pituitary gonadotropins and a variety of locally produced growth factors and cytokines are involved in determining a precise sequence of changes in cell metabolism, proliferation, vascularization, and matrix remodeling in order to obtain a follicle with full ovulatory and steroidogenic capability. A low-grade inflammation can alter such processes leading to premature arrest of follicular growth and female reproductive failure. On the other hand, factors that are involved in inflammatory response as well as in innate immunity are physiologically upregulated in the follicle at the final stage of maturation and play an essential role in ovulation and fertilization. The generation of pentraxin 3 (PTX3) deficient mice provided the first evidence that this humoral pattern recognition molecule of the innate immunity has a non-redundant role in female fertility. The expression, localization, and molecular interactions of PTX3 in the periovulatory follicle have been extensively studied in the last 10 years. In this review, we summarize findings demonstrating that PTX3 is synthesized before ovulation by cells surrounding the oocyte and actively participates in the organization of the hyaluronan-rich provisional matrix required for successful fertilization. Data in humans tend to confirm these findings, indicating PTX3 as a biomarker of oocyte quality. Moreover, we discuss the emerging evidence that in humans altered PTX3 systemic levels, determined by genetic variations and/or low-grade chronic inflammation, can also impact the growth and development of the follicle and affect the incidence of ovarian disorders.
Collapse
Affiliation(s)
- Antonella Camaioni
- Histology and Embryology Section, Department of Biomedicine and Prevention, University of Rome "Tor Vergata," Rome, Italy
| | - Francesca Gioia Klinger
- Histology and Embryology Section, Department of Biomedicine and Prevention, University of Rome "Tor Vergata," Rome, Italy
| | - Luisa Campagnolo
- Histology and Embryology Section, Department of Biomedicine and Prevention, University of Rome "Tor Vergata," Rome, Italy
| | - Antonietta Salustri
- Histology and Embryology Section, Department of Biomedicine and Prevention, University of Rome "Tor Vergata," Rome, Italy
| |
Collapse
|
45
|
Baddela VS, Sharma A, Viergutz T, Koczan D, Vanselow J. Low Oxygen Levels Induce Early Luteinization Associated Changes in Bovine Granulosa Cells. Front Physiol 2018; 9:1066. [PMID: 30131718 PMCID: PMC6090175 DOI: 10.3389/fphys.2018.01066] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2018] [Accepted: 07/17/2018] [Indexed: 11/29/2022] Open
Abstract
During follicle maturation, oxygen levels continuously decrease in the follicular fluid and reach lowest levels in the preovulatory follicle. The current study was designed to comprehensively understand effects of low oxygen levels on bovine granulosa cells (GC) using our established estrogen active GC culture model. As evident from flow cytometry analysis the viability of GC was not found to be affected at severely low oxygen condition (1% O2) compared to normal (atmospheric) oxygen condition (21% O2). Estimations of hormone concentrations using competitive radioimmunoassay revealed that the production of estradiol and progesterone was significantly reduced at low oxygen condition. To understand the genome-wide changes of gene expression, mRNA microarray analysis was performed using Affymetrix's Bovine Gene 1.0 ST Arrays. This resulted in the identification of 1104 differentially regulated genes of which 505 were up- and 599 down-regulated under low oxygen conditions. Pathway analysis using Ingenuity pathway analyzer (IPA) identified 36 significantly affected (p < 0.05) canonical pathways. Importantly, pathways like "Estrogen-mediated S-phase Entry" and "Cyclins and Cell Cycle Regulation" were found to be greatly down-regulated at low oxygen levels. This was experimentally validated using flow cytometry based cell cycle analysis. Up-regulation of critical genes associated with angiogenesis, inflammation, and glucose metabolism, and down-regulation of FSH signaling, steroidogenesis and cell proliferation indicated that low oxygen levels induced early luteinization associated changes in granulosa cells. Identification of unmethylated CpG sites in the CYP19A1 promoter region suggests that granulosa cells were not completely transformed into luteal cells under the present low oxygen in vitro condition. In addition, the comparison with earlier published in vivo microarray data indicated that 1107 genes showed a similar expression pattern in granulosa cells at low oxygen levels (in vitro) as found in preovulatory follicles after the LH surge (in vivo). Overall, our findings demonstrate for the first time that low oxygen levels in preovulatory follicles may play an important role in supporting early events of luteinization in granulosa cells.
Collapse
Affiliation(s)
- Vijay S. Baddela
- Reproductive Biology, Leibniz Institute for Farm Animal Biology (FBN), Dummerstorf, Germany
| | - Arpna Sharma
- Reproductive Biology, Leibniz Institute for Farm Animal Biology (FBN), Dummerstorf, Germany
| | - Torsten Viergutz
- Reproductive Biology, Leibniz Institute for Farm Animal Biology (FBN), Dummerstorf, Germany
| | - Dirk Koczan
- Institute of Immunology, University of Rostock, Rostock, Germany
| | - Jens Vanselow
- Reproductive Biology, Leibniz Institute for Farm Animal Biology (FBN), Dummerstorf, Germany
| |
Collapse
|
46
|
Faustmann G, Meinitzer A, Magnes C, Tiran B, Obermayer-Pietsch B, Gruber HJ, Ribalta J, Rock E, Roob JM, Winklhofer-Roob BM. Progesterone-associated arginine decline at luteal phase of menstrual cycle and associations with related amino acids and nuclear factor kB activation. PLoS One 2018; 13:e0200489. [PMID: 29990354 PMCID: PMC6039037 DOI: 10.1371/journal.pone.0200489] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2018] [Accepted: 06/27/2018] [Indexed: 11/18/2022] Open
Abstract
Background/Objectives Given their role in female reproduction, the effects of progesterone on arginine and related amino acids, polyamines and NF-κB p65 activation were studied across the menstrual cycle. Methods Arginine, ornithine and citrulline as well as putrescine, spermidine, spermine, and N-acetyl-putrescine were determined in plasma, NF-κB p65 activation in peripheral blood mononuclear cells and progesterone in serum of 28 women at early (T1) and late follicular (T2) and mid (T3) and late (T4) luteal phase. Results Arginine and related amino acids declined from T1 and T2 to T3 and T4, while progesterone increased. At T3, arginine, ornithine, and citrulline were inversely related with progesterone. Changes (ΔT3-T2) in arginine, ornithine, and citrulline were inversely related with changes (ΔT3-T2) in progesterone. Ornithine and citrulline were positively related with arginine, as were changes (ΔT3-T2) in ornithine and citrulline with changes (ΔT3-T2) in arginine. At T2, NF-κB p65 activation was positively related with arginine. Polyamines did not change and were not related to progesterone. All results described were significant at P < 0.001. Conclusions This study for the first time provides data, at the plasma and PBMC level, supporting a proposed regulatory node of arginine and related amino acids, progesterone and NF-κB p65 at luteal phase of the menstrual cycle, aimed at successful preparation of pregnancy.
Collapse
Affiliation(s)
- Gernot Faustmann
- Human Nutrition & Metabolism Research and Training Center, Institute of Molecular Biosciences, Karl-Franzens University, Graz, Austria
- Clinical Division of Nephrology, Department of Internal Medicine, Medical University, Graz, Austria
| | - Andreas Meinitzer
- Clinical Institute of Medical and Chemical Laboratory Diagnostics, Medical University, Graz, Austria
| | - Christoph Magnes
- Institute for Biomedicine and Health Sciences, HEALTH, Joanneum Research Forschungsgesellschaft m.b.H., Graz, Austria
| | - Beate Tiran
- Clinical Institute of Medical and Chemical Laboratory Diagnostics, Medical University, Graz, Austria
| | | | - Hans-Jürgen Gruber
- Clinical Institute of Medical and Chemical Laboratory Diagnostics, Medical University, Graz, Austria
| | - Josep Ribalta
- Unitat de Recerca de Lipids I Arteriosclerosi, Facultat de Medicina, Universitat Rovira I Virgili, Facultat Medicina i Ciències de la Salut, Reus, Spain
| | - Edmond Rock
- Unité de Nutrition Humaine, Centre Auvergne Rhône-Alpes, Institut National de la Recherche Agronomique, Saint-Gènes-Champanelle, France
| | - Johannes M. Roob
- Clinical Division of Nephrology, Department of Internal Medicine, Medical University, Graz, Austria
| | - Brigitte M. Winklhofer-Roob
- Human Nutrition & Metabolism Research and Training Center, Institute of Molecular Biosciences, Karl-Franzens University, Graz, Austria
- * E-mail:
| |
Collapse
|
47
|
Tabecka-Lonczynska A, Mytych J, Solek P, Kulpa-Greszta M, Sowa-Kucma M, Koziorowski M. Vascular endothelial growth factor (VEGF-A) and fibroblast growth factor (FGF-2) as potential regulators of seasonal reproductive processes in male European bison (Bison bonasus, Linnaeus 1758). Gen Comp Endocrinol 2018; 263:72-79. [PMID: 29626449 DOI: 10.1016/j.ygcen.2018.04.007] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/23/2017] [Revised: 03/04/2018] [Accepted: 04/03/2018] [Indexed: 11/25/2022]
Abstract
Growth factors: vascular endothelial growth factor A (VEGF-A) and fibroblast growth factor (FGF-2) were reported to affect normal physiological reproductive processes in human, domestic and free living animals. Moreover, some reports suggest that VEGF-A and FGF-2 may be directly involved in the control of the annual reproductive cycle of seasonally breeding animals but detailed knowledge is still missing. Our study aimed to demonstrate the expression of mRNA and protein for both factors in the tissues of testis and epididymis (caput, corpus, cauda) at different periods of the year (March, June, November, December) in European bison as a model of seasonally breeding animal. Results suggest, that VEGF-A expression was more pronounced in testis than in epididymis and the highest expression was noted in December and June. Surprisingly, the highest protein accumulation was observed in June at the same level in all tissues analyzed. On the other hand, the highest FGF-2 mRNA expression was noted in testis in June and in epididymis in March. However, no differences in protein expression of FGF-2 were found between analyzed groups. The results indicate that both factors are necessary for proper functioning of the reproductive system and their levels differ seasonally. Perhaps, it is linked to increased need of these factors in the testis as well as epididymis during preparation for the reproductive functions. Moreover, VEGF-A and FGF-2 not only may regulate reproductive functions by affecting vascularization and cell nutrition, but it also may be possible that they possess protective functions by stabilizing the reproductive cells. Therefore, obtained results provide new insight into mechanisms underlying seasonal breeding of the male European bison.
Collapse
Affiliation(s)
- Anna Tabecka-Lonczynska
- Department of Animal Physiology and Reproduction, Faculty of Biotechnology, University of Rzeszow, Werynia 502, 36-100 Kolbuszowa, Poland.
| | - Jennifer Mytych
- Department of Animal Physiology and Reproduction, Faculty of Biotechnology, University of Rzeszow, Werynia 502, 36-100 Kolbuszowa, Poland
| | - Przemyslaw Solek
- Department of Animal Physiology and Reproduction, Faculty of Biotechnology, University of Rzeszow, Werynia 502, 36-100 Kolbuszowa, Poland
| | - Magdalena Kulpa-Greszta
- Department of Animal Physiology and Reproduction, Faculty of Biotechnology, University of Rzeszow, Werynia 502, 36-100 Kolbuszowa, Poland
| | - Magdalena Sowa-Kucma
- Institute of Pharmacology, Polish Academy of Sciences, Department of Neurobiology, Laboratory of Trace Elements Neurobiology, Smeta 12, 31-343 Kraków, Poland; Department of Human Physiology, Institute of Clinical and Experimental Medicine, Medical Faculty, University of Rzeszow, Kopisto 2a, 35-310 Rzeszów, Poland
| | - Marek Koziorowski
- Department of Animal Physiology and Reproduction, Faculty of Biotechnology, University of Rzeszow, Werynia 502, 36-100 Kolbuszowa, Poland
| |
Collapse
|
48
|
Kraisoon A, Redmer DA, Bass CS, Navanukraw C, Dorsam ST, Valkov V, Reyaz A, Grazul-Bilska AT. Corpora lutea in superovulated ewes fed different planes of nutrition. Domest Anim Endocrinol 2018; 62:16-23. [PMID: 28886590 DOI: 10.1016/j.domaniend.2017.08.002] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/16/2017] [Revised: 07/28/2017] [Accepted: 08/05/2017] [Indexed: 02/06/2023]
Abstract
The corpus luteum (CL) is an ovarian structure which is critical for the maintenance of reproductive cyclicity and pregnancy support. Diet and/or diet components may affect some luteal functions. FSH is widely used to induce multiple follicle development and superovulation. We hypothesized that FSH would affect luteal function in ewes fed different nutritional planes. Therefore, the aim of this study was to determine if FSH-treatment affects (1) ovulation rate; (2) CL weight; (3) cell proliferation; (4) vascularity; (5) expression of endothelial nitric oxide (eNOS) and soluble guanylate cyclase (sGC) proteins; and (6) luteal and serum progesterone (P4) concentration in control (C), overfed (O), and underfed (U) ewes at the early- and mid-luteal phases. In addition, data generated from this study were compared to data obtained from nonsuperovulated sheep and described by Bass et al. Ewes were categorized by weight and randomly assigned into nutrition groups: C (2.14 Mcal/kg; n = 11), O (2xC; n = 12), and U (0.6xC; n = 11). Nutritional treatment was initiated 60 d prior to day 0 of the estrous cycle. Ewes were injected with FSH on day 13-15 of the first estrous cycle, and blood samples and ovaries were collected at early- and mid-luteal phases of the second estrous cycle. The number of CL/ewe was determined, and CL was dissected and weighed. CL was fixed for evaluation of expression of Ki67 (a proliferating cell marker), CD31 (an endothelial cell marker), and eNOS and sGC proteins using immunohistochemistry and image analysis. From day 0 until tissue collection, C maintained, O gained, and U lost body weight. The CL number was greater (P < 0.03) in C and O than U. Weights of CL, cell proliferation, vascularity, and eNOS but not sGC expression were greater (P < 0.001), and serum, but not luteal tissue, P4 concentrations tended to be greater (P = 0.09) at the early- than mid-luteal phase. Comparisons of CL measurements demonstrated greater (P < 0.01) cell proliferation and serum P4 concentration, but less vascularity at the early and mid-luteal phases, and less CL weight at the mid-luteal phase in superovulated than nonsuperovulated ewes; however, concentration of P4 in luteal tissues was similar in both groups. Thus, in superovulated ewes, luteal cell proliferation and vascularity, expression of eNOS, and serum P4 concentration depend on the stage of luteal development, but not diet. Comparison to control ewes demonstrated several differences and some similarities in luteal functions after FSH-induced superovulation.
Collapse
Affiliation(s)
- A Kraisoon
- Department of Animal Science, Faculty of Agriculture, Khon Kaen University, Khon Kaen, Thailand
| | - D A Redmer
- Department of Animal Sciences, North Dakota State University, Fargo, ND, USA
| | - C S Bass
- Department of Animal Sciences, North Dakota State University, Fargo, ND, USA
| | - C Navanukraw
- Department of Animal Science, Faculty of Agriculture, Khon Kaen University, Khon Kaen, Thailand; Agricultural Biotechnology Research Center for Sustainable Economy (ABRCSE), Khon Kaen University, Khon Kaen, Thailand
| | - S T Dorsam
- Department of Animal Sciences, North Dakota State University, Fargo, ND, USA
| | - V Valkov
- Department of Animal Sciences, North Dakota State University, Fargo, ND, USA
| | - A Reyaz
- Department of Animal Sciences, North Dakota State University, Fargo, ND, USA
| | - A T Grazul-Bilska
- Department of Animal Sciences, North Dakota State University, Fargo, ND, USA.
| |
Collapse
|
49
|
Gecaj RM, Schanzenbach CI, Kirchner B, Pfaffl MW, Riedmaier I, Tweedie-Cullen RY, Berisha B. The Dynamics of microRNA Transcriptome in Bovine Corpus Luteum during Its Formation, Function, and Regression. Front Genet 2017; 8:213. [PMID: 29326752 PMCID: PMC5736867 DOI: 10.3389/fgene.2017.00213] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2017] [Accepted: 11/30/2017] [Indexed: 12/22/2022] Open
Abstract
The formation, function, and subsequent regression of the ovarian corpus luteum (CL) are dynamic processes that enable ovary cyclical activity. Studies in whole ovary tissue have found microRNAs (miRNAs) to by critical for ovary function. However, relatively little is known about the role of miRNAs in the bovine CL. Utilizing small RNA next-generation sequencing we profiled miRNA transcriptome in bovine CL during the entire physiological estrous cycle, by sampling the CL on days: d 1–2, d 3–4, and d 5–7 (early CL, eCL), d 8–12 (mid CL, mCL), d 13–16 (late CL, lCL), and d > 18 (regressed CL, rCL). We characterized patterns of miRNAs abundance and identified 42 miRNAs that were consistent significantly different expressed (DE) in the eCL relative to their expression at each of the analyzed stages (mCL, lCL, and rCL). Out of these, bta-miR-210-3p, −2898, −96, −7-5p, −183-5p, −182, and −202 showed drastic up-regulation with a fold-change of ≥2.0 and adjusted P < 0.01 in the eCL, while bta-miR-146a was downregulated at lCL and rCL vs. the eCL. Another 24, 11, and 21 miRNAs were significantly DE only between individual comparisons, eCL vs. the mCL, lCL, and rCL, respectively. Irrespective of cycle stage two miRNAs, bta-miR-21-5p and bta-miR-143 were identified as the most abundant miRNAs species and show opposing expression abundance. Whilst bta-miR-21-5p peaked in number of reads in the eCL and was significantly downregulated in the mCL and lCL, bta-miR-143 reached its peak in the rCL and is significantly downregulated in the eCL. MiRNAs with significant DE in at least one cycle stage (CL class) were further grouped into eight distinct clusters by the self-organizing tree algorithm (SOTA). Half of the clusters contain miRNAs with low-expression, whilst the other half contain miRNAs with high-expression levels during eCL. Prediction analysis for significantly DE miRNAs resulted in target genes involved with CL formation, functionalization and CL regression. This study is the most comprehensive profiling of miRNA transcriptome in bovine CL covering the entire estrous cycle and provides a compact database for further functional validation and biomarker identification relevant for CL viability and fertility.
Collapse
Affiliation(s)
- Rreze M Gecaj
- Department of Animal Husbandry and Biotechnology, Faculty of Agriculture and Veterinary, University of Pristina, Pristina, Albania
| | - Corina I Schanzenbach
- Department of Animal Physiology & Immunology, Weihenstephan, Technical University of Munich, Munich, Germany.,Department of Environmental Systems Science, ETH Zürich, Zurich, Switzerland
| | - Benedikt Kirchner
- Department of Animal Physiology & Immunology, Weihenstephan, Technical University of Munich, Munich, Germany.,Dr. von Hauner Children's Hospital, Ludwig Maximillian Universität, München, Germany
| | - Michael W Pfaffl
- Department of Animal Physiology & Immunology, Weihenstephan, Technical University of Munich, Munich, Germany
| | - Irmgard Riedmaier
- Department of Physiology, TUM School of Life Sciences Weihenstephan, Technical University of Munich, Freising, Germany.,Eurofins Medigenomix Forensik GmbH, Ebersberg, Germany
| | - Ry Y Tweedie-Cullen
- Department of Health Science and Technology, ETH Zürich, Zurich, Switzerland
| | - Bajram Berisha
- Department of Animal Husbandry and Biotechnology, Faculty of Agriculture and Veterinary, University of Pristina, Pristina, Albania.,Department of Animal Physiology & Immunology, Weihenstephan, Technical University of Munich, Munich, Germany
| |
Collapse
|
50
|
Nishimura R, Hasegawa H, Yamashita M, Ito N, Okamoto Y, Takeuchi T, Kubo T, Iga K, Kimura K, Hishinuma M, Okuda K. Hypoxia increases glucose transporter 1 expression in bovine corpus luteum at the early luteal stage. J Vet Med Sci 2017; 79:1878-1883. [PMID: 29046497 PMCID: PMC5709568 DOI: 10.1292/jvms.17-0284] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
A major role of the corpus luteum (CL) is to produce progesterone (P4). The CL has immature vasculature shortly after ovulation, suggesting it exists under hypoxic conditions. Hypoxia-inducible factor-1 (HIF1) induces the expression of glucose transporter 1 (GLUT1). To clarify the physiological roles of GLUT1 in bovine CL, we examined GLUT1 mRNA expression in the CL under hypoxic conditions by quantitative RT-PCR. We also measured the effects of glucose (0-25 mM) and GLUT1 inhibitors (cytochalasin B, STF-31) on P4 production in bovine luteal cells. GLUT1 mRNA expression in bovine CL was higher at the early luteal stage compared to the other later stages. Hypoxia (3% O2) increased GLUT1 mRNA expression in early luteal cells, but not in mid luteal cells. Glucose (0-25 mM) increased P4 production in early luteal cells, but not in mid luteal cells. Both GLUT1 inhibitors decreased P4 production in early and mid luteal cells. Overall, the results suggest that GLUT1 (possibly induced by hypoxic conditions in the early CL) plays a role in the establishment and development of bovine CL, especially in supporting luteal P4 synthesis at the early luteal stage.
Collapse
Affiliation(s)
- Ryo Nishimura
- Laboratory of Theriogenology, Joint Department of Veterinary Medicine, Faculty of Agriculture, Tottori University, 4-101 Koyama-cho Minami, Tottori 680-8553, Japan.,Laboratory of Reproductive Physiology, Graduate School of Agriculture, Tottori University, 4-101 Koyama-cho Minami, Tottori 680-8553, Japan
| | - Hiroki Hasegawa
- Laboratory of Reproductive Physiology, Graduate School of Agriculture, Tottori University, 4-101 Koyama-cho Minami, Tottori 680-8553, Japan
| | - Masamichi Yamashita
- Joint Department of Veterinary Clinical Medicine, Faculty of Agriculture, Tottori University, 4-101 Koyama-cho Minami, Tottori 680-8553, Japan
| | - Norihiko Ito
- Joint Department of Veterinary Clinical Medicine, Faculty of Agriculture, Tottori University, 4-101 Koyama-cho Minami, Tottori 680-8553, Japan
| | - Yoshiharu Okamoto
- Joint Department of Veterinary Clinical Medicine, Faculty of Agriculture, Tottori University, 4-101 Koyama-cho Minami, Tottori 680-8553, Japan
| | - Takashi Takeuchi
- Joint Department of Veterinary Clinical Medicine, Faculty of Agriculture, Tottori University, 4-101 Koyama-cho Minami, Tottori 680-8553, Japan
| | - Tomoaki Kubo
- United Graduate School of Veterinary Science, Gifu University, Gifu 501-1193, Japan
| | - Kosuke Iga
- Division of Livestock and Forage Research, Beef Cattle Production Group, Tohoku Agricultural Research Center, NARO, Iwate 020-0198, Japan
| | - Koji Kimura
- Laboratory of Reproductive Physiology, Graduate School of Environmental and Life Science, Okayama University, Okayama 700-8530, Japan
| | - Mitsugu Hishinuma
- Laboratory of Theriogenology, Joint Department of Veterinary Medicine, Faculty of Agriculture, Tottori University, 4-101 Koyama-cho Minami, Tottori 680-8553, Japan
| | - Kiyoshi Okuda
- Laboratory of Reproductive Physiology, Graduate School of Environmental and Life Science, Okayama University, Okayama 700-8530, Japan.,Obihiro University of Agriculture and Veterinary Medicine, Hokkaido 080-8555, Japan
| |
Collapse
|