1
|
Caltavituro A, Buonaiuto R, Salomone F, Pecoraro G, Martorana F, Lauro VD, Barchiesi G, Puglisi F, Del Mastro L, Montemurro F, Giuliano M, Arpino G, De Laurentiis M. Warming-up the immune cell engagers (ICEs) era in breast cancer: state of the art and future directions. Crit Rev Oncol Hematol 2025; 206:104577. [PMID: 39613237 DOI: 10.1016/j.critrevonc.2024.104577] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2024] [Revised: 11/18/2024] [Accepted: 11/22/2024] [Indexed: 12/01/2024] Open
Abstract
The advent of immune checkpoint inhibitors (ICIs) has deeply reshaped the therapeutic algorithm of triple-negative breast cancer (TNBC). However, there is considerable scope for better engagement of the immune system in other BC subtypes. ICIs have paved the way for investigations into emerging immunotherapeutic strategies, such as immune cell engagers (ICEs) that work by promoting efficient tumor cell killing through the redirection of immune system against cancer cells. Most ICEs are bispecific antibodies that simultaneously recognize and bind to both cancer and immune cells generating an artificial synapse. Major side effects are cytokine release syndrome, hepatotoxicity, and neurotoxicity related to inappropriate immune system activation. Here, we provide a comprehensive overview of this compounds, the available preclinical and clinical evidence supporting their investigation and development in BC also highlighting the challenges that have prevented their widespread use in oncology. Finally, major strategies are explored to broaden their use in BC.
Collapse
Affiliation(s)
- Aldo Caltavituro
- Department of Clinical Medicine and Surgery, University of Naples "Federico II", Via Sergio Pansini 5, Naples 80131, Italy; Clinical and Translational Oncology, Scuola Superiore Meridionale, Naples, Italy
| | - Roberto Buonaiuto
- Department of Clinical Medicine and Surgery, University of Naples "Federico II", Via Sergio Pansini 5, Naples 80131, Italy; Clinical and Translational Oncology, Scuola Superiore Meridionale, Naples, Italy
| | - Fabio Salomone
- Department of Clinical Medicine and Surgery, University of Naples "Federico II", Via Sergio Pansini 5, Naples 80131, Italy
| | - Giovanna Pecoraro
- Department of Clinical Medicine and Surgery, University of Naples "Federico II", Via Sergio Pansini 5, Naples 80131, Italy
| | - Federica Martorana
- Department of Clinical and Experimental Medicine, University of Catania, Catania 95123, Italy
| | - Vincenzo Di Lauro
- Department of Breast & Thoracic Oncology, Division of Breast Medical Oncology, Istituto Nazionale Tumori IRCCS 'Fondazione G. Pascale,' Naples, Italy.
| | - Giacomo Barchiesi
- Azienda Ospedaliera Universitaria Policlinico Umberto I, UOC Oncologia, Roma, Italy
| | - Fabio Puglisi
- Department of Medicine, University of Udine, Via Palladio 8, Udine 33100, Italy; Department of Medical Oncology, CRO Aviano, National Cancer Institute, IRCCS, Via Franco Gallini 2, Aviano, Pordenone 33081, Italy
| | - Lucia Del Mastro
- Department of Medical Oncology, UO Oncologia Medica 2, IRCCS Ospedale Policlinico San Martino, Largo R. Benzi 10, Genova 16132, Italy
| | - Filippo Montemurro
- Candiolo Cancer Institute, FPO-IRCCS, Strada Provinciale 142 -KM 3.95, Candiolo, Torino 10060, Italy
| | - Mario Giuliano
- Department of Clinical Medicine and Surgery, University of Naples "Federico II", Via Sergio Pansini 5, Naples 80131, Italy
| | - Grazia Arpino
- Department of Clinical Medicine and Surgery, University of Naples "Federico II", Via Sergio Pansini 5, Naples 80131, Italy
| | - Michelino De Laurentiis
- Department of Breast & Thoracic Oncology, Division of Breast Medical Oncology, Istituto Nazionale Tumori IRCCS 'Fondazione G. Pascale,' Naples, Italy
| |
Collapse
|
2
|
Trencsényi G, Csikos C, Képes Z. Targeted Radium Alpha Therapy in the Era of Nanomedicine: In Vivo Results. Int J Mol Sci 2024; 25:664. [PMID: 38203834 PMCID: PMC10779852 DOI: 10.3390/ijms25010664] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2023] [Revised: 12/20/2023] [Accepted: 12/27/2023] [Indexed: 01/12/2024] Open
Abstract
Targeted alpha-particle therapy using radionuclides with alpha emission is a rapidly developing area in modern cancer treatment. To selectively deliver alpha-emitting isotopes to tumors, targeting vectors, including monoclonal antibodies, peptides, small molecule inhibitors, or other biomolecules, are attached to them, which ensures specific binding to tumor-related antigens and cell surface receptors. Although earlier studies have already demonstrated the anti-tumor potential of alpha-emitting radium (Ra) isotopes-Radium-223 and Radium-224 (223/224Ra)-in the treatment of skeletal metastases, their inability to complex with target-specific moieties hindered application beyond bone targeting. To exploit the therapeutic gains of Ra across a wider spectrum of cancers, nanoparticles have recently been embraced as carriers to ensure the linkage of 223/224Ra to target-affine vectors. Exemplified by prior findings, Ra was successfully bound to several nano/microparticles, including lanthanum phosphate, nanozeolites, barium sulfate, hydroxyapatite, calcium carbonate, gypsum, celestine, or liposomes. Despite the lengthened tumor retention and the related improvement in the radiotherapeutic effect of 223/224Ra coupled to nanoparticles, the in vivo assessment of the radiolabeled nanoprobes is a prerequisite prior to clinical usage. For this purpose, experimental xenotransplant models of different cancers provide a well-suited scenario. Herein, we summarize the latest achievements with 223/224Ra-doped nanoparticles and related advances in targeted alpha radiotherapy.
Collapse
Affiliation(s)
- György Trencsényi
- Division of Nuclear Medicine and Translational Imaging, Department of Medical Imaging, Faculty of Medicine, University of Debrecen, Nagyerdei St. 98, H-4032 Debrecen, Hungary; (G.T.); (C.C.)
| | - Csaba Csikos
- Division of Nuclear Medicine and Translational Imaging, Department of Medical Imaging, Faculty of Medicine, University of Debrecen, Nagyerdei St. 98, H-4032 Debrecen, Hungary; (G.T.); (C.C.)
- Gyula Petrányi Doctoral School of Clinical Immunology and Allergology, Faculty of Medicine, University of Debrecen, Nagyerdei St. 98, H-4032 Debrecen, Hungary
| | - Zita Képes
- Division of Nuclear Medicine and Translational Imaging, Department of Medical Imaging, Faculty of Medicine, University of Debrecen, Nagyerdei St. 98, H-4032 Debrecen, Hungary; (G.T.); (C.C.)
| |
Collapse
|
3
|
Meckler JF, Levis DJ, Vang DP, Tuscano JM. A Novel bispecific T-cell engager (BiTE) targeting CD22 and CD3 has both in vitro and in vivo activity and synergizes with blinatumomab in an acute lymphoblastic leukemia (ALL) tumor model. Cancer Immunol Immunother 2023; 72:2939-2948. [PMID: 37247022 PMCID: PMC10412491 DOI: 10.1007/s00262-023-03444-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2023] [Accepted: 03/29/2023] [Indexed: 05/30/2023]
Abstract
Immunotherapy has revolutionized cancer therapy. Two recently FDA-approved immunotherapies for B-cell malignancies target CD19, in the form of a Bispecific T-Cell Engager (BiTE) antibody construct or chimeric antigen receptor T (CAR-T) cells. Blinatumomab, an FDA-approved BiTE, binds to CD19 on B cells and to CD3 on T cells, mediating effector-target cell contact and T-cell activation that results in effective elimination of target B cells. Although CD19 is expressed by essentially all B-cell malignancies at clinical presentation, relapses with loss or reduction in CD19 surface expression are increasingly recognized as a cause of treatment failure. Therefore, there is a clear need to develop therapeutics for alternate targets. We have developed a novel BiTE consisting of humanized anti-CD22 and anti-CD3 single chain variable fragments. Target binding of the anti-CD22 and anti-CD3 moieties was confirmed by flow cytometry. CD22-BiTE promoted in vitro cell-mediated cytotoxicity in a dose and effector: target (E:T)-dependent fashion. Additionally, in an established acute lymphoblastic leukemia (ALL) xenograft mouse model, CD22-BiTE demonstrated tumor growth inhibition, comparable to blinatumomab. Further, the combination of blinatumomab and CD22-BiTE yielded increased efficacy in vivo when compared to the single agents. In conclusion, we report here the development of a new BiTE with cytotoxic activity against CD22+ cells which could represent an alternate or complementary therapeutic option for B-cell malignancies.
Collapse
Affiliation(s)
- Joshua F Meckler
- Division of Hematology and Oncology, Department of Internal Medicine, University of California Davis School of Medicine, Sacramento, CA, USA
| | - Daniel J Levis
- Division of Hematology and Oncology, Department of Internal Medicine, University of California Davis School of Medicine, Sacramento, CA, USA
| | - Daniel P Vang
- Division of Hematology and Oncology, Department of Internal Medicine, University of California Davis School of Medicine, Sacramento, CA, USA
| | - Joseph M Tuscano
- Division of Hematology and Oncology, Department of Internal Medicine, University of California Davis School of Medicine, Sacramento, CA, USA.
- Department of Veterans Affairs, Northern California Healthcare System, Sacramento, CA, USA.
- Department of Internal Medicine, Division of Hematology and Oncology, University of California Davis Health System, 4501 X Street, Suite 3016, Sacramento, CA, 95817, USA.
| |
Collapse
|
4
|
Chen YJ, Chen M, Cheng TL, Tsai YS, Wang CH, Chen CY, Wu TY, Tzou SC, Wang KH, Cheng JJ, Kao AP, Lin SY, Chuang KH. A non-genetic engineering platform for rapidly generating and expanding cancer-specific armed T cells. J Biomed Sci 2023; 30:35. [PMID: 37259079 DOI: 10.1186/s12929-023-00929-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2022] [Accepted: 04/26/2023] [Indexed: 06/02/2023] Open
Abstract
BACKGROUND Cancer-specific adoptive T cell therapy has achieved successful milestones in multiple clinical treatments. However, the commercial production of cancer-specific T cells is often hampered by laborious cell culture procedures, the concern of retrovirus-based gene transfection, or insufficient T cell purity. METHODS In this study, we developed a non-genetic engineering technology for rapidly manufacturing a large amount of cancer-specific T cells by utilizing a unique anti-cancer/anti-CD3 bispecific antibody (BsAb) to directly culture human peripheral blood mononuclear cells (PBMCs). The anti-CD3 moiety of the BsAb bound to the T cell surface and stimulated the differentiation and proliferation of T cells in PBMCs. The anti-cancer moiety of the BsAb provided these BsAb-armed T cells with the cancer-targeting ability, which transformed the naïve T cells into cancer-specific BsAb-armed T cells. RESULTS With this technology, a large amount of cancer-specific BsAb-armed T cells can be rapidly generated with a purity of over 90% in 7 days. These BsAb-armed T cells efficiently accumulated at the tumor site both in vitro and in vivo. Cytotoxins (perforin and granzyme) and cytokines (TNF-α and IFN-γ) were dramatically released from the BsAb-armed T cells after engaging cancer cells, resulting in a remarkable anti-cancer efficacy. Notably, the BsAb-armed T cells did not cause obvious cytokine release syndrome or tissue toxicity in SCID mice bearing human tumors. CONCLUSIONS Collectively, the BsAb-armed T cell technology represents a simple, time-saving, and highly safe method to generate highly pure cancer-specific effector T cells, thereby providing an affordable T cell immunotherapy to patients.
Collapse
Affiliation(s)
- Yi-Jou Chen
- Graduate Institute of Pharmacognosy, Taipei Medical University, 250 Wu-Hsing Street, Taipei, Taiwan
| | - Michael Chen
- Graduate Institute of Pharmacognosy, Taipei Medical University, 250 Wu-Hsing Street, Taipei, Taiwan
| | - Tian-Lu Cheng
- Drug Development and Value Creation Research Center, Kaohsiung Medical University, Kaohsiung, Taiwan
- Graduate Institute of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan
- Department of Biomedical Science and Environmental Biology, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Yi-Shan Tsai
- Master Program in Clinical Genomics and Proteomics, Taipei Medical University, Taipei, Taiwan
| | - Chang-Hung Wang
- Ph.D. Program in Clinical Drug Development of Herbal Medicine, Taipei Medical University, Taipei, Taiwan
| | - Che-Yi Chen
- Ph.D. Program in Clinical Drug Development of Herbal Medicine, Taipei Medical University, Taipei, Taiwan
| | - Tung-Yun Wu
- Ph.D. Program in Clinical Drug Development of Herbal Medicine, Taipei Medical University, Taipei, Taiwan
| | - Shey-Cherng Tzou
- Departmet of Biological Science and Technology, National Yang Ming Chiao Tung University, Hsinchu, Taiwan
| | - Kai-Hung Wang
- Center for Reproductive Medicine, Kuo General Hospital, Tainan, Taiwan
| | - Jing-Jy Cheng
- National Research Institute of Chinese Medicine, Ministry of Health and Welfare, Taipei, Taiwan
| | | | - Shyr-Yi Lin
- Division of Gastroenterology and Hepatology, Department of Internal Medicine, Taipei Medical University Hospital, 252 Wu-Hsing Street, Taipei, Taiwan.
- Department of General Medicine, School of Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan.
- TMU Research Center of Cancer Translational Medicine, Taipei Medical University, Taipei, Taiwan.
| | - Kuo-Hsiang Chuang
- Graduate Institute of Pharmacognosy, Taipei Medical University, 250 Wu-Hsing Street, Taipei, Taiwan.
- Drug Development and Value Creation Research Center, Kaohsiung Medical University, Kaohsiung, Taiwan.
- Master Program in Clinical Genomics and Proteomics, Taipei Medical University, Taipei, Taiwan.
- Ph.D. Program in Clinical Drug Development of Herbal Medicine, Taipei Medical University, Taipei, Taiwan.
- Traditional Herbal Medicine Research Center of Taipei Medical University Hospital, Taipei, Taiwan.
- Ph.D Program in Biotechnology Research and Development, Taipei Medical University, Taipei, Taiwan.
- The Ph.D. Program of Translational Medicine, Taipei Medical University, Taipei, Taiwan.
| |
Collapse
|
5
|
Fang X, Xu J, Jin K, Qian J. Combining of immunotherapeutic approaches with chemotherapy for treatment of gastric cancer: Achievements and limitations. Int Immunopharmacol 2023; 118:110062. [PMID: 36965367 DOI: 10.1016/j.intimp.2023.110062] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2023] [Revised: 03/09/2023] [Accepted: 03/19/2023] [Indexed: 03/27/2023]
Abstract
Evidence reveals that gastric cancer (GC) is the fifth most common malignancy in humans, and about 770,000 people die from this cancer yearly. It has been reported that new cases and deaths from GC are more common in men than women. Therapeutic approaches, such as surgery, chemotherapy, and radiotherapy, have been common for treating GC. Nevertheless, due to the complications and limitations of these methods, researchers use novel approaches, such as immunotherapeutic or target therapies, to evaluate the effectiveness of treatment in patients with metastatic GC. Studies have shown that monotherapy is usually associated with unpromising outcomes, and combination therapy can be a more practical option for treating metastatic GC. Therefore, to clarify different aspects of chemotherapy and immunotherapy in patients with metastatic GC, this review discussed the achievements and challenges of combining immunotherapeutic methods with chemotherapeutic agents.
Collapse
Affiliation(s)
- Xingliang Fang
- Department of Hepatobiliary Surgery, Affiliated Hospital of Shaoxing University, Shaoxing, Zhejiang 312000, China
| | - Jinfang Xu
- Department of Emergency Medicine, Affiliated Hospital of Shaoxing University, Shaoxing, Zhejiang 312000, China
| | - Ketao Jin
- Department of Colorectal Surgery, Affiliated Jinhua Hospital, Zhejiang University School of Medicine, Jinhua, Zhejiang 321000, China
| | - Jun Qian
- Department of Colorectal Surgery, Xinchang People's Hospital, Affiliated Xinchang Hospital, Wenzhou Medical University, Xinchang, Zhejiang 312500, China.
| |
Collapse
|
6
|
Nasiri F, Kazemi M, Mirarefin SMJ, Mahboubi Kancha M, Ahmadi Najafabadi M, Salem F, Dashti Shokoohi S, Evazi Bakhshi S, Safarzadeh Kozani P, Safarzadeh Kozani P. CAR-T cell therapy in triple-negative breast cancer: Hunting the invisible devil. Front Immunol 2022; 13. [DOI: https:/doi.org/10.3389/fimmu.2022.1018786] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/15/2023] Open
Abstract
Triple-negative breast cancer (TNBC) is known as the most intricate and hard-to-treat subtype of breast cancer. TNBC cells do not express the well-known estrogen receptor, progesterone receptor, and human epidermal growth factor receptor 2 (HER2) expressed by other breast cancer subtypes. This phenomenon leaves no room for novel treatment approaches including endocrine and HER2-specific antibody therapies. To date, surgery, radiotherapy, and systemic chemotherapy remain the principal therapy options for TNBC treatment. However, in numerous cases, these approaches either result in minimal clinical benefit or are nonfunctional, resulting in disease recurrence and poor prognosis. Nowadays, chimeric antigen receptor T cell (CAR-T) therapy is becoming more established as an option for the treatment of various types of hematologic malignancies. CAR-Ts are genetically engineered T lymphocytes that employ the body’s immune system mechanisms to selectively recognize cancer cells expressing tumor-associated antigens (TAAs) of interest and efficiently eliminate them. However, despite the clinical triumph of CAR-T therapy in hematologic neoplasms, CAR-T therapy of solid tumors, including TNBC, has been much more challenging. In this review, we will discuss the success of CAR-T therapy in hematological neoplasms and its caveats in solid tumors, and then we summarize the potential CAR-T targetable TAAs in TNBC studied in different investigational stages.
Collapse
|
7
|
Nasiri F, Kazemi M, Mirarefin SMJ, Mahboubi Kancha M, Ahmadi Najafabadi M, Salem F, Dashti Shokoohi S, Evazi Bakhshi S, Safarzadeh Kozani P, Safarzadeh Kozani P. CAR-T cell therapy in triple-negative breast cancer: Hunting the invisible devil. Front Immunol 2022; 13:1018786. [PMID: 36483567 PMCID: PMC9722775 DOI: 10.3389/fimmu.2022.1018786] [Citation(s) in RCA: 34] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2022] [Accepted: 10/24/2022] [Indexed: 11/23/2022] Open
Abstract
Triple-negative breast cancer (TNBC) is known as the most intricate and hard-to-treat subtype of breast cancer. TNBC cells do not express the well-known estrogen receptor, progesterone receptor, and human epidermal growth factor receptor 2 (HER2) expressed by other breast cancer subtypes. This phenomenon leaves no room for novel treatment approaches including endocrine and HER2-specific antibody therapies. To date, surgery, radiotherapy, and systemic chemotherapy remain the principal therapy options for TNBC treatment. However, in numerous cases, these approaches either result in minimal clinical benefit or are nonfunctional, resulting in disease recurrence and poor prognosis. Nowadays, chimeric antigen receptor T cell (CAR-T) therapy is becoming more established as an option for the treatment of various types of hematologic malignancies. CAR-Ts are genetically engineered T lymphocytes that employ the body's immune system mechanisms to selectively recognize cancer cells expressing tumor-associated antigens (TAAs) of interest and efficiently eliminate them. However, despite the clinical triumph of CAR-T therapy in hematologic neoplasms, CAR-T therapy of solid tumors, including TNBC, has been much more challenging. In this review, we will discuss the success of CAR-T therapy in hematological neoplasms and its caveats in solid tumors, and then we summarize the potential CAR-T targetable TAAs in TNBC studied in different investigational stages.
Collapse
Affiliation(s)
- Fatemeh Nasiri
- Department of Medical Biotechnology, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran
- Department of Production Platforms & Analytics, Human Health Therapeutics Research Centre, National Research Council Canada, Montreal, QC, Canada
| | - Mehrasa Kazemi
- Department of Laboratory Medicine, Thalassemia Research Center, Hemoglobinopathy Institute, Mazandaran University of Medical Sciences, Sari, Iran
| | | | - Maral Mahboubi Kancha
- Department of Medical Nanotechnology, School of Medicine, Shahroud University of Medical Sciences, Shahroud, Iran
| | - Milad Ahmadi Najafabadi
- Department of Medical Biotechnology, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran
| | - Faeze Salem
- Department of Medical Biotechnology, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran
| | - Setareh Dashti Shokoohi
- Department of Medical Biotechnology, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran
| | - Sahar Evazi Bakhshi
- Department of Anatomical Sciences, School of Medicine, Guilan University of Medical Sciences, Rasht, Iran
| | - Pouya Safarzadeh Kozani
- Department of Medical Biotechnology, Faculty of Paramedicine, Guilan University of Medical Sciences, Rasht, Iran
| | - Pooria Safarzadeh Kozani
- Department of Medical Biotechnology, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran
| |
Collapse
|
8
|
Guaitoli G, Neri G, Cabitza E, Natalizio S, Mastrodomenico L, Talerico S, Trudu L, Lauro C, Chiavelli C, Baschieri MC, Bruni A, Dominici M, Bertolini F. Dissecting Immunotherapy Strategies for Small Cell Lung Cancer: Antibodies, Ionizing Radiation and CAR-T. Int J Mol Sci 2022; 23:12728. [PMID: 36361523 PMCID: PMC9656696 DOI: 10.3390/ijms232112728] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2022] [Revised: 10/15/2022] [Accepted: 10/17/2022] [Indexed: 12/10/2023] Open
Abstract
Small cell lung cancer (SCLC) is a highly aggressive malignancy that accounts for about 14% of all lung cancers. Platinum-based chemotherapy has been the only available treatment for a long time, until the introduction of immune checkpoint inhibitors (ICIs) recently changed first-line standard of care and shed light on the pivotal role of the immune system. Despite improved survival in a subset of patients, a lot of them still do not benefit from first-line chemo-immunotherapy, and several studies are investigating whether different combination strategies (with both systemic and local treatments, such as radiotherapy) may improve patient outcomes. Moreover, research of biomarkers that may be used to predict patients' outcomes is ongoing. In addition to ICIs, immunotherapy offers other different strategies, including naked monoclonal antibodies targeting tumor associated antigens, conjugated antibody, bispecific antibodies and cellular therapies. In this review, we summarize the main evidence available about the use of immunotherapy in SCLC, the rationale behind combination strategies and the studies that are currently ongoing in this setting, in order to give the reader a clear and complete view of this rapidly expanding topic.
Collapse
Affiliation(s)
- Giorgia Guaitoli
- PhD Program Clinical and Experimental Medicine, University of Modena and Reggio Emilia, 41125 Modena, Italy
| | - Giovanni Neri
- PhD Program Clinical and Experimental Medicine, University of Modena and Reggio Emilia, 41125 Modena, Italy
- Laboratory of Cellular Therapy, Division of Oncology, Department of Medical and Surgical Sciences for Children & Adults, University of Modena and Reggio Emilia, 41124 Modena, Italy
| | - Eleonora Cabitza
- Division of Oncology, Department of Oncology and Hematology, Modena University Hospital, 41124 Modena, Italy
| | - Salvatore Natalizio
- Division of Oncology, Department of Oncology and Hematology, Modena University Hospital, 41124 Modena, Italy
| | - Luciana Mastrodomenico
- Division of Oncology, Department of Oncology and Hematology, Modena University Hospital, 41124 Modena, Italy
| | - Sabrina Talerico
- Division of Oncology, Department of Oncology and Hematology, Modena University Hospital, 41124 Modena, Italy
| | - Lucia Trudu
- Division of Oncology, Department of Oncology and Hematology, Modena University Hospital, 41124 Modena, Italy
| | - Chiara Lauro
- Radiotherapy Unit, Department of Oncology and Hematology, Modena University Hospital, 41124 Modena, Italy
| | - Chiara Chiavelli
- Laboratory of Cellular Therapy, Division of Oncology, Department of Medical and Surgical Sciences for Children & Adults, University of Modena and Reggio Emilia, 41124 Modena, Italy
| | - Maria Cristina Baschieri
- Laboratory of Cellular Therapy, Division of Oncology, Department of Medical and Surgical Sciences for Children & Adults, University of Modena and Reggio Emilia, 41124 Modena, Italy
| | - Alessio Bruni
- Radiotherapy Unit, Department of Oncology and Hematology, Modena University Hospital, 41124 Modena, Italy
| | - Massimo Dominici
- Laboratory of Cellular Therapy, Division of Oncology, Department of Medical and Surgical Sciences for Children & Adults, University of Modena and Reggio Emilia, 41124 Modena, Italy
- Division of Oncology, Department of Oncology and Hematology, Modena University Hospital, 41124 Modena, Italy
| | - Federica Bertolini
- Division of Oncology, Department of Oncology and Hematology, Modena University Hospital, 41124 Modena, Italy
| |
Collapse
|
9
|
Safarzadeh Kozani P, Safarzadeh Kozani P, Ahmadi Najafabadi M, Yousefi F, Mirarefin SMJ, Rahbarizadeh F. Recent Advances in Solid Tumor CAR-T Cell Therapy: Driving Tumor Cells From Hero to Zero? Front Immunol 2022; 13:795164. [PMID: 35634281 PMCID: PMC9130586 DOI: 10.3389/fimmu.2022.795164] [Citation(s) in RCA: 42] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2021] [Accepted: 04/04/2022] [Indexed: 12/21/2022] Open
Abstract
Chimeric antigen receptor T-cells (CAR-Ts) are known as revolutionary living drugs that have turned the tables of conventional cancer treatments in certain hematologic malignancies such as B-cell acute lymphoblastic leukemia (B-ALL) and diffuse large B-cell lymphoma (DLBCL) by achieving US Food and Drug Administration (FDA) approval based on their successful clinical outcomes. However, this type of therapy has not seen the light of victory in the fight against solid tumors because of various restricting caveats including heterogeneous tumor antigen expression and the immunosuppressive tumor microenvironments (TME) that negatively affect the tumor-site accessibility, infiltration, stimulation, activation, and persistence of CAR-Ts. In this review, we explore strategic twists including boosting vaccines and designing implementations that can support CAR-T expansion, proliferation, and tumoricidal capacity. We also step further by underscoring novel strategies for triggering endogenous antitumor responses and overcoming the limitation of poor CAR-T tumor-tissue infiltration and the lack of definitive tumor-specific antigens. Ultimately, we highlight how these approaches can address the mentioned arduous hurdles.
Collapse
Affiliation(s)
- Pouya Safarzadeh Kozani
- Department of Medical Biotechnology, Faculty of Paramedicine, Guilan University of Medical Sciences, Rasht, Iran
| | - Pooria Safarzadeh Kozani
- Department of Medical Biotechnology, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran
| | - Milad Ahmadi Najafabadi
- Department of Medical Biotechnology, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran
| | - Fatemeh Yousefi
- Department of Genetics, Faculty of Biological Sciences, Tarbiat Modares University, Tehran, Iran
| | | | - Fatemeh Rahbarizadeh
- Department of Medical Biotechnology, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran.,Research and Development Center of Biotechnology, Tarbiat Modares University, Tehran, Iran
| |
Collapse
|
10
|
Controlling Cell Trafficking: Addressing Failures in CAR T and NK Cell Therapy of Solid Tumours. Cancers (Basel) 2022; 14:cancers14040978. [PMID: 35205725 PMCID: PMC8870056 DOI: 10.3390/cancers14040978] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2021] [Revised: 02/09/2022] [Accepted: 02/11/2022] [Indexed: 02/04/2023] Open
Abstract
The precision guiding of endogenous or adoptively transferred lymphocytes to the solid tumour mass is obligatory for optimal anti-tumour effects and will improve patient safety. The recognition and elimination of the tumour is best achieved when anti-tumour lymphocytes are proximal to the malignant cells. For example, the regional secretion of soluble factors, cytotoxic granules, and cell-surface molecule interactions are required for the death of tumour cells and the suppression of neovasculature formation, tumour-associated suppressor, or stromal cells. The resistance of individual tumour cell clones to cellular therapy and the hostile environment of the solid tumours is a major challenge to adoptive cell therapy. We review the strategies that could be useful to overcoming insufficient immune cell migration to the tumour cell mass. We argue that existing 'competitive' approaches should now be revisited as complementary approaches to improve CAR T and NK cell therapy.
Collapse
|
11
|
Antonarelli G, Giugliano F, Corti C, Repetto M, Tarantino P, Curigliano G. Research and Clinical Landscape of Bispecific Antibodies for the Treatment of Solid Malignancies. Pharmaceuticals (Basel) 2021; 14:884. [PMID: 34577584 PMCID: PMC8468026 DOI: 10.3390/ph14090884] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2021] [Revised: 08/27/2021] [Accepted: 08/29/2021] [Indexed: 12/13/2022] Open
Abstract
Solid tumors adopt multiple mechanisms to grow, evade immune responses, and to withstand therapeutic approaches. A major breakthrough in the armamentarium of anti-cancer agents has been the introduction of monoclonal antibodies (mAbs), able to inhibit aberrantly activated pathways and/or to unleash antigen (Ag)-specific immune responses. Nonetheless, mAb-mediated targeted pressure often fails due to escape mechanisms, mainly Ag loss/downregulation, ultimately providing therapy resistance. Hence, in order to target multiple Ag at the same time, and to facilitate cancer-immune cells interactions, bispecific antibodies (bsAbs) have been developed and are being tested in clinical trials, yielding variable safety/efficacy results based on target selection and their structure. While in hematologic cancers the bsAb blinatumomab recently reached the Food and Drug Administration (FDA)-approval for B Cell Acute Lymphoblastic Leukemia, bsAbs use in solid tumors faces considerable challenges, such as target Ag selection, biodistribution, and the presence of an immune-suppressive tumor microenvironment (TME). This review will focus on the state-of-the art, the design, and the exploitation of bsAbs against solid malignancies, delineating their mechanisms of action, major pitfalls, and future directions.
Collapse
Affiliation(s)
- Gabriele Antonarelli
- Division of Early Drug Development for Innovative Therapy, European Institute of Oncology, IRCCS, 20141 Milan, Italy; (G.A.); (F.G.); (C.C.); (M.R.); (P.T.)
- Department of Oncology and Haematology (DIPO), University of Milan, 20122 Milan, Italy
| | - Federica Giugliano
- Division of Early Drug Development for Innovative Therapy, European Institute of Oncology, IRCCS, 20141 Milan, Italy; (G.A.); (F.G.); (C.C.); (M.R.); (P.T.)
- Department of Oncology and Haematology (DIPO), University of Milan, 20122 Milan, Italy
| | - Chiara Corti
- Division of Early Drug Development for Innovative Therapy, European Institute of Oncology, IRCCS, 20141 Milan, Italy; (G.A.); (F.G.); (C.C.); (M.R.); (P.T.)
- Department of Oncology and Haematology (DIPO), University of Milan, 20122 Milan, Italy
| | - Matteo Repetto
- Division of Early Drug Development for Innovative Therapy, European Institute of Oncology, IRCCS, 20141 Milan, Italy; (G.A.); (F.G.); (C.C.); (M.R.); (P.T.)
- Department of Oncology and Haematology (DIPO), University of Milan, 20122 Milan, Italy
| | - Paolo Tarantino
- Division of Early Drug Development for Innovative Therapy, European Institute of Oncology, IRCCS, 20141 Milan, Italy; (G.A.); (F.G.); (C.C.); (M.R.); (P.T.)
- Department of Oncology and Haematology (DIPO), University of Milan, 20122 Milan, Italy
| | - Giuseppe Curigliano
- Division of Early Drug Development for Innovative Therapy, European Institute of Oncology, IRCCS, 20141 Milan, Italy; (G.A.); (F.G.); (C.C.); (M.R.); (P.T.)
- Department of Oncology and Haematology (DIPO), University of Milan, 20122 Milan, Italy
| |
Collapse
|
12
|
Marei HE, Althani A, Afifi N, Hasan A, Caceci T, Pozzoli G, Cenciarelli C. Current progress in chimeric antigen receptor T cell therapy for glioblastoma multiforme. Cancer Med 2021; 10:5019-5030. [PMID: 34145792 PMCID: PMC8335808 DOI: 10.1002/cam4.4064] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2021] [Revised: 05/25/2021] [Accepted: 05/27/2021] [Indexed: 12/17/2022] Open
Abstract
Glioblastoma multiforme (GBM) is one of the deadliest brain tumors with an unfavorable prognosis and overall survival of approximately 20 months following diagnosis. The current treatment for GBM includes surgical resections and chemo‐ and radiotherapeutic modalities, which are not effective. CAR‐T immunotherapy has been proven effective for CD19‐positive blood malignancies, and the application of CAR‐T cell therapy for solid tumors including GBM offers great hope for this aggressive tumor which has a limited response to current treatments. CAR‐T technology depends on the use of patient‐specific T cells genetically engineered to express specific tumor‐associated antigens (TAAs). Interaction of CAR‐T cells with tumor cells triggers the destruction/elimination of these cells by the induction of cytotoxicity and the release of different cytokines. Despite the great promise of CAR‐T cell‐based therapy several challenges exist. These include the heterogeneity of GBM cancer cells, aberrant various signaling pathways involved in tumor progression, antigen escape, the hostile inhibitory GBM microenvironment, T cell dysfunction, blood‐brain barrier, and defective antigen presentation. All need to be addressed before full application at the clinical level can begin. Herein we provide a focused review of the rationale for the use of different types of CAR‐T cells (including FcγRs), the different GBM‐associated antigens, the challenges still facing CAR‐T‐based therapy, and means to overcome such challenges. Finally, we enumerate currently completed and ongoing clinical trials, highlighting the different ways such trials are designed to overcome specific problems. Exploitation of the full potential of CAR‐T cell therapy for GBM depends on their solution.
Collapse
Affiliation(s)
- Hany E Marei
- Department of Cytology and Histology, Faculty of Veterinary Medicine, Mansoura University, Mansoura, Egypt
| | - Asmaa Althani
- Biomedical Research Center, Qatar University, Doha, Qatar
| | | | - Anwarul Hasan
- Department of Mechanical and Industrial Engineering, College of Engineering, Qatar University, Doha, Qatar
| | - Thomas Caceci
- Biomedical Sciences, Virginia Maryland College of Veterinary Medicine, Blacksburg, Virginia, USA
| | - Giacomo Pozzoli
- Pharmacology Unit, Fondazione Policlinico A. Gemelli, IRCCS, Rome, Italy
| | | |
Collapse
|
13
|
Nath K, Gandhi MK. Targeted Treatment of Follicular Lymphoma. J Pers Med 2021; 11:152. [PMID: 33671658 PMCID: PMC7926563 DOI: 10.3390/jpm11020152] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2021] [Revised: 02/13/2021] [Accepted: 02/15/2021] [Indexed: 12/14/2022] Open
Abstract
Follicular lymphoma (FL) is the most common indolent B-cell lymphoma. Advanced stage disease is considered incurable and is characterized by a prolonged relapsing/remitting course. A significant minority have less favorable outcomes, particularly those with transformed or early progressive disease. Recent advances in our understanding of the unique genetic and immune biology of FL have led to increasingly potent and precise novel targeted agents, suggesting that a chemotherapy-future may one day be attainable. The current pipeline of new therapeutics is unprecedented. Particularly exciting is that many agents have non-overlapping modes of action, offering potential new combinatorial options and synergies. This review provides up-to-date clinical and mechanistic data on these new therapeutics. Ongoing dedicated attention to basic, translational and clinical research will provide further clarity as to when and how to best use these agents, to improve efficacy without eliciting unnecessary toxicity.
Collapse
Affiliation(s)
- Karthik Nath
- Mater Research Institute, University of Queensland, Brisbane, QLD 4101, Australia;
| | - Maher K. Gandhi
- Mater Research Institute, University of Queensland, Brisbane, QLD 4101, Australia;
- Department of Haematology, Princess Alexandra Hospital, Brisbane, QLD 4102, Australia
| |
Collapse
|
14
|
Fucà G, Spagnoletti A, Ambrosini M, de Braud F, Di Nicola M. Immune cell engagers in solid tumors: promises and challenges of the next generation immunotherapy. ESMO Open 2021; 6:100046. [PMID: 33508733 PMCID: PMC7841318 DOI: 10.1016/j.esmoop.2020.100046] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2020] [Revised: 12/16/2020] [Accepted: 12/23/2020] [Indexed: 12/22/2022] Open
Abstract
In the landscape of cancer immunotherapy, immune cell engagers (ICEs) are rapidly emerging as a feasible and easy-to-deliver alternative to adoptive cell therapy for the antitumor redirection of immune effector cells. Even if in hematological malignancies this class of new therapeutics already hit the clinic, the development of ICEs in solid tumors still represents a challenge. Considering that ICEs are a rapidly expanding biotechnology in cancer therapy, we designed this review as a primer for clinicians, focusing on the major obstacles for the clinical implementation and the most translatable approaches proposed to overcome the limitations in solid tumors.
Collapse
Affiliation(s)
- G Fucà
- Immunotherapy and Innovative Therapeutics Unit, Medical Oncology and Hematology Department, Fondazione IRCCS Istituto Nazionale dei Tumori, Milan, Italy.
| | - A Spagnoletti
- Immunotherapy and Innovative Therapeutics Unit, Medical Oncology and Hematology Department, Fondazione IRCCS Istituto Nazionale dei Tumori, Milan, Italy
| | - M Ambrosini
- Immunotherapy and Innovative Therapeutics Unit, Medical Oncology and Hematology Department, Fondazione IRCCS Istituto Nazionale dei Tumori, Milan, Italy
| | - F de Braud
- Immunotherapy and Innovative Therapeutics Unit, Medical Oncology and Hematology Department, Fondazione IRCCS Istituto Nazionale dei Tumori, Milan, Italy; Oncology and Hemato-oncology Department, University of Milan, Milan, Italy
| | - M Di Nicola
- Immunotherapy and Innovative Therapeutics Unit, Medical Oncology and Hematology Department, Fondazione IRCCS Istituto Nazionale dei Tumori, Milan, Italy
| |
Collapse
|
15
|
Church DC, Pokorski JK. Cell Engineering with Functional Poly(oxanorbornene) Block Copolymers. Angew Chem Int Ed Engl 2020; 59:11379-11383. [PMID: 32281276 PMCID: PMC7482174 DOI: 10.1002/anie.202005148] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2020] [Indexed: 12/14/2022]
Abstract
Cell-based therapies are gaining prominence in treating a wide variety of diseases and using synthetic polymers to manipulate these cells provides an opportunity to impart function that could not be achieved using solely genetic means. Herein, we describe the utility of functional block copolymers synthesized by ring-opening metathesis polymerization (ROMP) that can insert directly into the cell membrane via the incorporation of long alkyl chains into a short polymer block leading to non-covalent, hydrophobic interactions with the lipid bilayer. Furthermore, we demonstrate that these polymers can be imbued with advanced functionalities. A photosensitizer was incorporated into these polymers to enable spatially controlled cell death by the localized generation of 1 O2 at the cell surface in response to red-light irradiation. In a broader context, we believe our polymer insertion strategy could be used as a general methodology to impart functionality onto cell-surfaces.
Collapse
Affiliation(s)
- Derek C Church
- Department of NanoEngineering, University of California San Diego, La Jolla, CA, 92093, USA
| | - Jonathan K Pokorski
- Department of NanoEngineering, University of California San Diego, La Jolla, CA, 92093, USA
| |
Collapse
|
16
|
Church DC, Pokorski JK. Cell Engineering with Functional Poly(oxanorbornene) Block Copolymers. Angew Chem Int Ed Engl 2020. [DOI: 10.1002/ange.202005148] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Derek C. Church
- Department of NanoEngineering University of California San Diego La Jolla CA 92093 USA
| | - Jonathan K. Pokorski
- Department of NanoEngineering University of California San Diego La Jolla CA 92093 USA
| |
Collapse
|
17
|
Kafil V, Saei AA, Tohidkia MR, Barar J, Omidi Y. Immunotargeting and therapy of cancer by advanced multivalence antibody scaffolds. J Drug Target 2020; 28:1018-1033. [DOI: 10.1080/1061186x.2020.1772796] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
Affiliation(s)
- Vala Kafil
- Research Center for Pharmaceutical Nanotechnology, Biomedicine Institute, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Amir Ata Saei
- Research Center for Pharmaceutical Nanotechnology, Biomedicine Institute, Tabriz University of Medical Sciences, Tabriz, Iran
- Department of Medical Biochemistry and Biophysics, Karolinska Institute, Stockholm, Sweden
| | - Mohammad Reza Tohidkia
- Research Center for Pharmaceutical Nanotechnology, Biomedicine Institute, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Jaleh Barar
- Research Center for Pharmaceutical Nanotechnology, Biomedicine Institute, Tabriz University of Medical Sciences, Tabriz, Iran
- Department of Pharmaceutics, Faculty of Pharmacy, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Yadollah Omidi
- Research Center for Pharmaceutical Nanotechnology, Biomedicine Institute, Tabriz University of Medical Sciences, Tabriz, Iran
- Department of Pharmaceutics, Faculty of Pharmacy, Tabriz University of Medical Sciences, Tabriz, Iran
| |
Collapse
|
18
|
Cavdarli S, Delannoy P, Groux-Degroote S. O-acetylated Gangliosides as Targets for Cancer Immunotherapy. Cells 2020; 9:cells9030741. [PMID: 32192217 PMCID: PMC7140702 DOI: 10.3390/cells9030741] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2020] [Revised: 03/16/2020] [Accepted: 03/16/2020] [Indexed: 12/25/2022] Open
Abstract
O-acetylation of sialic acid residues is one of the main modifications of gangliosides, and modulates ganglioside functions. O-acetylation of gangliosides is dependent on sialyl-O-acetyltransferases and sialyl-O-acetyl-esterase activities. CAS1 Domain-Containing Protein 1 (CASD1) is the only human sialyl-O-acetyltransferases (SOAT) described until now. O-acetylated ganglioside species are mainly expressed during embryonic development and in the central nervous system in healthy adults, but are re-expressed during cancer development and are considered as markers of cancers of neuroectodermal origin. However, the specific biological roles of O-acetylated gangliosides in developing and malignant tissues have not been extensively studied, mostly because of the requirement of specific approaches and tools for sample preparation and analysis. In this review, we summarize our current knowledge of ganglioside biosynthesis and expression in normal and pathological conditions, of ganglioside O-acetylation analysis and expression in cancers, and of the possible use of O-acetylated gangliosides as targets for cancer immunotherapy.
Collapse
Affiliation(s)
- Sumeyye Cavdarli
- UMR 8576 - UGSF - Unité de Glycobiologie Structurale et Fonctionnelle, CNRS, Université de Lille, F-59000 Lille, France; (S.C.); (P.D.)
- OGD2 Pharma, Institut de Recherche en Santé de l’Université de Nantes, 44007 Nantes, France
| | - Philippe Delannoy
- UMR 8576 - UGSF - Unité de Glycobiologie Structurale et Fonctionnelle, CNRS, Université de Lille, F-59000 Lille, France; (S.C.); (P.D.)
- Institut pour la Recherche sur le Cancer de Lille – IRCL – Place de Verdun, F-59000 Lille, France
| | - Sophie Groux-Degroote
- UMR 8576 - UGSF - Unité de Glycobiologie Structurale et Fonctionnelle, CNRS, Université de Lille, F-59000 Lille, France; (S.C.); (P.D.)
- Correspondence:
| |
Collapse
|
19
|
Liu P, Gao X, Lundin V, Shi C, Adem Y, Lin K, Jiang G, Kao YH, Yang F, Michels D, Marshall AG, Zhang HM. Probing the Impact of the Knob-into-Hole Mutations on the Structure and Function of a Therapeutic Antibody. Anal Chem 2019; 92:1582-1588. [PMID: 31815436 DOI: 10.1021/acs.analchem.9b04855] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Bispecific antibodies (BsAbs) have drawn increasing interest in the biopharmaceutical industry due to their advantage to bind two distinct antigens simultaneously. The knob-into-hole approach is an effective way to produce bispecific antibodies by driving heterodimerization with mutations in the CH3 domain of each half antibody. To better understand the conformational impact by the knob and hole mutations, we combined size-exclusion chromatography (SEC), differential scanning calorimetry (DSC), and hydrogen-deuterium exchange mass spectrometry (H/D exchange MS), to characterize the global and peptide-level conformational changes. We found no significant alteration in structure or conformational dynamics induced by the knob-into-hole framework, and the conformational stability is similar to the wild-type (WT) IgG4 molecules (except for some small difference in the CH3 domain) expressed in E. coli. Functional studies including antigen-binding and neonatal fragment crystallizable (Fc) receptor (FcRn) binding demonstrated no difference between the knob-into-hole and WT IgG4 molecules in E. coli.
Collapse
Affiliation(s)
- Peilu Liu
- Proten Analytical Chemistry , Genentech, A Member of the Roche Group , 1 DNA Way , South San Francisco , California 94080 , United States.,Department of Chemistry and Biochemistry, 95 Chieftain Way , Florida State University , Tallahassee , Florida 32304 , United States
| | - Xuan Gao
- Biological Technologies , Genentech, A Member of the Roche Group , 1 DNA Way , South San Francisco , California 94080 , United States
| | - Victor Lundin
- Proten Analytical Chemistry , Genentech, A Member of the Roche Group , 1 DNA Way , South San Francisco , California 94080 , United States
| | - Catherine Shi
- Pharmaceutical Development , Genentech, A Member of the Roche Group , 1 DNA Way , South San Francisco , California 94080 , United States
| | - Yilma Adem
- Pharmaceutical Development , Genentech, A Member of the Roche Group , 1 DNA Way , South San Francisco , California 94080 , United States
| | - Kevin Lin
- Analytical Operations , Genentech, A Member of the Roche Group , 1 DNA Way , South San Francisco , California 94080 , United States
| | - Guoying Jiang
- Biological Technologies , Genentech, A Member of the Roche Group , 1 DNA Way , South San Francisco , California 94080 , United States
| | - Yung-Hsiang Kao
- Proten Analytical Chemistry , Genentech, A Member of the Roche Group , 1 DNA Way , South San Francisco , California 94080 , United States
| | - Feng Yang
- Proten Analytical Chemistry , Genentech, A Member of the Roche Group , 1 DNA Way , South San Francisco , California 94080 , United States
| | - David Michels
- Proten Analytical Chemistry , Genentech, A Member of the Roche Group , 1 DNA Way , South San Francisco , California 94080 , United States
| | - Alan G Marshall
- Department of Chemistry and Biochemistry, 95 Chieftain Way , Florida State University , Tallahassee , Florida 32304 , United States.,Ion Cyclotron Resonance Program , National High Magnetic Field Laboratory , 1800 E. Paul Dirac Drive , Tallahassee , Florida 32310 , United States
| | - Hui-Min Zhang
- Proten Analytical Chemistry , Genentech, A Member of the Roche Group , 1 DNA Way , South San Francisco , California 94080 , United States
| |
Collapse
|
20
|
Li D, Li X, Zhou WL, Huang Y, Liang X, Jiang L, Yang X, Sun J, Li Z, Han WD, Wang W. Genetically engineered T cells for cancer immunotherapy. Signal Transduct Target Ther 2019; 4:35. [PMID: 31637014 PMCID: PMC6799837 DOI: 10.1038/s41392-019-0070-9] [Citation(s) in RCA: 132] [Impact Index Per Article: 22.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2019] [Revised: 08/21/2019] [Accepted: 08/22/2019] [Indexed: 02/06/2023] Open
Abstract
T cells in the immune system protect the human body from infection by pathogens and clear mutant cells through specific recognition by T cell receptors (TCRs). Cancer immunotherapy, by relying on this basic recognition method, boosts the antitumor efficacy of T cells by unleashing the inhibition of immune checkpoints and expands adaptive immunity by facilitating the adoptive transfer of genetically engineered T cells. T cells genetically equipped with chimeric antigen receptors (CARs) or TCRs have shown remarkable effectiveness in treating some hematological malignancies, although the efficacy of engineered T cells in treating solid tumors is far from satisfactory. In this review, we summarize the development of genetically engineered T cells, outline the most recent studies investigating genetically engineered T cells for cancer immunotherapy, and discuss strategies for improving the performance of these T cells in fighting cancers.
Collapse
Affiliation(s)
- Dan Li
- Department of Biotherapy, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, and the Collaborative Innovation Center for Biotherapy, 610041 Chengdu, China
| | - Xue Li
- Department of Biotherapy, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, and the Collaborative Innovation Center for Biotherapy, 610041 Chengdu, China
| | - Wei-Lin Zhou
- Department of Biotherapy, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, and the Collaborative Innovation Center for Biotherapy, 610041 Chengdu, China
| | - Yong Huang
- Department of Biotherapy, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, and the Collaborative Innovation Center for Biotherapy, 610041 Chengdu, China
| | - Xiao Liang
- Department of Biotherapy, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, and the Collaborative Innovation Center for Biotherapy, 610041 Chengdu, China
- Department of Medical Oncology, Cancer Center, West China Hospital, West China Medical School, Sichuan University, and the Collaborative Innovation Center for Biotherapy, 610041 Chengdu, China
| | - Lin Jiang
- Department of Biotherapy, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, and the Collaborative Innovation Center for Biotherapy, 610041 Chengdu, China
| | - Xiao Yang
- Department of Biotherapy, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, and the Collaborative Innovation Center for Biotherapy, 610041 Chengdu, China
| | - Jie Sun
- Department of Cell Biology, and Bone Marrow Transplantation Center of the First Affiliated Hospital, Zhejiang University School of Medicine, 310058 Zhejiang, China
- Institute of Hematology, Zhejiang University & Laboratory of Stem cell and Immunotherapy Engineering, 310058 Zhejing, China
| | - Zonghai Li
- State Key Laboratory of Oncogenes and Related Genes, Shanghai Cancer Institute, Renji Hospital, Shanghai Jiaotong University School of Medicine, 200032 Shanghai, China
- CARsgen Therapeutics, 200032 Shanghai, China
| | - Wei-Dong Han
- Molecular & Immunological Department, Biotherapeutic Department, Chinese PLA General Hospital, No. 28 Fuxing Road, 100853 Beijing, China
| | - Wei Wang
- Department of Biotherapy, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, and the Collaborative Innovation Center for Biotherapy, 610041 Chengdu, China
| |
Collapse
|
21
|
CAR-T cells secreting BiTEs circumvent antigen escape without detectable toxicity. Nat Biotechnol 2019; 37:1049-1058. [PMID: 31332324 DOI: 10.1038/s41587-019-0192-1] [Citation(s) in RCA: 381] [Impact Index Per Article: 63.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2019] [Accepted: 06/14/2019] [Indexed: 12/16/2022]
Abstract
Chimeric antigen receptor (CAR)-T-cell therapy for solid tumors is limited due to heterogeneous target antigen expression and outgrowth of tumors lacking the antigen targeted by CAR-T cells directed against single antigens. Here, we developed a bicistronic construct to drive expression of a CAR specific for EGFRvIII, a glioblastoma-specific tumor antigen, and a bispecific T-cell engager (BiTE) against EGFR, an antigen frequently overexpressed in glioblastoma but also expressed in normal tissues. CART.BiTE cells secreted EGFR-specific BiTEs that redirect CAR-T cells and recruit untransduced bystander T cells against wild-type EGFR. EGFRvIII-specific CAR-T cells were unable to completely treat tumors with heterogenous EGFRvIII expression, leading to outgrowth of EGFRvIII-negative, EGFR-positive glioblastoma. However, CART.BiTE cells eliminated heterogenous tumors in mouse models of glioblastoma. BiTE-EGFR was locally effective but was not detected systemically after intracranial delivery of CART.BiTE cells. Unlike EGFR-specific CAR-T cells, CART.BiTE cells did not result in toxicity against human skin grafts in vivo.
Collapse
|
22
|
Lee ES, Shin JM, Son S, Ko H, Um W, Song SH, Lee JA, Park JH. Recent Advances in Polymeric Nanomedicines for Cancer Immunotherapy. Adv Healthc Mater 2019; 8:e1801320. [PMID: 30666822 DOI: 10.1002/adhm.201801320] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2018] [Revised: 12/08/2018] [Indexed: 12/20/2022]
Abstract
Immunotherapy has emerged as a promising approach to treat cancer, since it facilitates eradication of cancer by enhancing innate and/or adaptive immunity without using cytotoxic drugs. Of the immunotherapeutic approaches, significant clinical potentials are shown in cancer vaccination, immune checkpoint therapy, and adoptive cell transfer. Nevertheless, conventional immunotherapies often involve immune-related adverse effects, such as liver dysfunction, hypophysitis, type I diabetes, and neuropathy. In an attempt to address these issues, polymeric nanomedicines are extensively investigated in recent years. In this review, recent advances in polymeric nanomedicines for cancer immunotherapy are highlighted and thoroughly discussed in terms of 1) antigen presentation, 2) activation of antigen-presenting cells and T cells, and 3) promotion of effector cells. Also, the future perspectives to develop ideal nanomedicines for cancer immunotherapy are provided.
Collapse
Affiliation(s)
- Eun Sook Lee
- Department of Health Sciences and Technology; SAIHST; Sungkyunkwan University; Suwon 16419 Republic of Korea
| | - Jung Min Shin
- School of Chemical Engineering; College of Engineering; Sungkyunkwan University; Suwon 16419 Republic of Korea
| | - Soyoung Son
- Department of Health Sciences and Technology; SAIHST; Sungkyunkwan University; Suwon 16419 Republic of Korea
| | - Hyewon Ko
- Department of Health Sciences and Technology; SAIHST; Sungkyunkwan University; Suwon 16419 Republic of Korea
| | - Wooram Um
- Department of Health Sciences and Technology; SAIHST; Sungkyunkwan University; Suwon 16419 Republic of Korea
| | - Seok Ho Song
- School of Chemical Engineering; College of Engineering; Sungkyunkwan University; Suwon 16419 Republic of Korea
| | - Jae Ah Lee
- School of Chemical Engineering; College of Engineering; Sungkyunkwan University; Suwon 16419 Republic of Korea
| | - Jae Hyung Park
- Department of Health Sciences and Technology; SAIHST; Sungkyunkwan University; Suwon 16419 Republic of Korea
- School of Chemical Engineering; College of Engineering; Sungkyunkwan University; Suwon 16419 Republic of Korea
| |
Collapse
|
23
|
Sun W, Zhang N, Zhang Y, Shao Z, Gong L, Wei W. Immunophenotypes and clinical features of lymphocytes in the labial gland of primary Sjogren's syndrome patients. J Clin Lab Anal 2018; 32:e22585. [PMID: 29923220 PMCID: PMC6282844 DOI: 10.1002/jcla.22585] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2018] [Accepted: 05/16/2018] [Indexed: 12/15/2022] Open
Abstract
Objective To investigate consistency of lymphocyte immunophenotype between labial gland and peripheral blood in patients with primary Sjogren's syndrome (pSS). Methods Seventy‐one pSS patients and 35 patients with maxillofacial trauma were included in the study. Based on the ratio of CD20 to CD3 in labial gland from 71 pSS patients, they were divided into the high and (n = 48) and low CD20 expression group (n = 23). Lymphocyte immunophenotypes in labial glands, course of disease, erythrocyte sedimentation rate (ESR), C‐reactive protein, immunoglobulin, and complement levels were analyzed. Results In the labial gland, the levels of IgG, IgA, IgM, and C3c were higher, but C1q was lower in the pSS group than in the control group (all P < .05). CD20 was detected in labial gland samples of all pSS patients, in which CD3 was positive in 66 (93.0%) patients, and negative in 5 (7.0%). The plasma levels of IgG, IgA, IgM, and CRP, and ESR were higher, but serum C4 level was lower in pSS patients than in the control group (all P < .01). Serum IgG level, ESR, and labial gland CD20 were higher in the high CD20 expression group than the low expression group (all P < .05). Conclusion Primary Sjogren's syndrome patients had a higher expression of CD20 positive infiltrating lymphocytes of the labial gland, accompanied with the changes of immunoglobulins, and complements in both the labial gland and peripheral blood.
Collapse
Affiliation(s)
- Wenwen Sun
- Department of Rheumatology and Immunology, Tianjin Medical University General Hospital, Tianjin, China
| | - Na Zhang
- Department of Rheumatology and Immunology, Tianjin Medical University General Hospital, Tianjin, China
| | - Yujie Zhang
- Department of Pathology, Tianjin Medical University General Hospital, Tianjin, China
| | - Zonghong Shao
- Department of Hematology, Tianjin Medical University General Hospital, Tianjin, China
| | - Lu Gong
- Department of Rheumatology and Immunology, Tianjin Medical University General Hospital, Tianjin, China
| | - Wei Wei
- Department of Rheumatology and Immunology, Tianjin Medical University General Hospital, Tianjin, China
| |
Collapse
|
24
|
Nakasone ES, Hurvitz SA, McCann KE. Harnessing the immune system in the battle against breast cancer. Drugs Context 2018; 7:212520. [PMID: 29456568 PMCID: PMC5810622 DOI: 10.7573/dic.212520] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2017] [Revised: 01/16/2018] [Accepted: 01/17/2018] [Indexed: 12/14/2022] Open
Abstract
Breast cancer is the most prevalent malignancy in women and the second most common cause of cancer-related death worldwide. Despite major innovations in early detection and advanced therapeutics, up to 30% of women with node-negative breast cancer and 70% of women with node-positive breast cancer will develop recurrence. The recognition that breast tumors are infiltrated by a complex array of immune cells that influence their development, progression, and metastasis, as well as their responsiveness to systemic therapies has sparked major interest in the development of immunotherapies. In fact, not only the native host immune system can be altered to promote potent antitumor response, but also its components can be manipulated to generate effective therapeutic strategies. We present here a review of the major approaches to immunotherapy in breast cancers, both successes and failures, as well as new therapies on the horizon.
Collapse
Affiliation(s)
- Elizabeth S Nakasone
- Department of Medicine, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA, USA
| | - Sara A Hurvitz
- Division of Hematology/Oncology, Department of Medicine, University of California Los Angeles, Los Angeles, CA, USA
| | - Kelly E McCann
- Division of Hematology/Oncology, Department of Medicine, University of California Los Angeles, Los Angeles, CA, USA
| |
Collapse
|
25
|
Alibakhshi A, Abarghooi Kahaki F, Ahangarzadeh S, Yaghoobi H, Yarian F, Arezumand R, Ranjbari J, Mokhtarzadeh A, de la Guardia M. Targeted cancer therapy through antibody fragments-decorated nanomedicines. J Control Release 2017; 268:323-334. [DOI: 10.1016/j.jconrel.2017.10.036] [Citation(s) in RCA: 105] [Impact Index Per Article: 13.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2017] [Revised: 10/22/2017] [Accepted: 10/24/2017] [Indexed: 01/10/2023]
|
26
|
Abstract
Glioblastoma multiforme (GBM) is the most progressive primary brain tumor. Targeting a novel and highly specific tumor antigen is one of the strategies to overcome tumors. EGFR variant III (EGFRvIII) is present in 25%-33% of all patients with GBM and is exclusively expressed on tumor tissue cells. Currently, there are various approaches to target EGFRvIII, including CAR T-cell therapy, therapeutic vaccines, antibodies, and Bi-specific T Cell Engager. In this review, we focus on the preclinical and clinical findings of targeting EGFRvIII for GBM.
Collapse
Affiliation(s)
- Ju Yang
- The Comprehensive Cancer Centre of Drum Tower Hospital, Medical School of Nanjing University, Clinical Cancer Institute of Nanjing University, Nanjing 210008, China
| | - Jing Yan
- The Comprehensive Cancer Centre of Drum Tower Hospital, Medical School of Nanjing University, Clinical Cancer Institute of Nanjing University, Nanjing 210008, China
| | - Baorui Liu
- The Comprehensive Cancer Centre of Drum Tower Hospital, Medical School of Nanjing University, Clinical Cancer Institute of Nanjing University, Nanjing 210008, China.
| |
Collapse
|
27
|
Zhang X, Yang Y, Fan D, Xiong D. The development of bispecific antibodies and their applications in tumor immune escape. Exp Hematol Oncol 2017; 6:12. [PMID: 28469973 PMCID: PMC5414286 DOI: 10.1186/s40164-017-0072-7] [Citation(s) in RCA: 76] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2017] [Accepted: 04/27/2017] [Indexed: 12/13/2022] Open
Abstract
During the past two decades, a great evolution of bispecific antibodies (BsAbs) for therapeutic applications has been made. BsAbs can bind simultaneously two different antigens or epitopes, which leads to a wide range of applications including redirecting T cells or NK cells to tumor cells, blocking two different signaling pathways, dual targeting of different disease mediators, and delivering payloads to targeted sites. Aside from approved catumaxomab (anti-CD3 and anti-EpCAM) and blinatumomab (anti-CD3 and anti-CD19), many more BsAbs are now in various phases of clinical development. Here, this review focus on the development of bispecific antibodies and their applications in tumor immune escape.
Collapse
Affiliation(s)
- Xiaolong Zhang
- State Key Laboratory of Experimental Hematology, Institute of Hematology and Hospital of Blood Diseases, Chinese Academy of Medical Science and Peking Union Medical College, Tianjin, 300020 People's Republic of China
| | - Yuanyuan Yang
- State Key Laboratory of Experimental Hematology, Institute of Hematology and Hospital of Blood Diseases, Chinese Academy of Medical Science and Peking Union Medical College, Tianjin, 300020 People's Republic of China
| | - Dongmei Fan
- State Key Laboratory of Experimental Hematology, Institute of Hematology and Hospital of Blood Diseases, Chinese Academy of Medical Science and Peking Union Medical College, Tianjin, 300020 People's Republic of China
| | - Dongsheng Xiong
- State Key Laboratory of Experimental Hematology, Institute of Hematology and Hospital of Blood Diseases, Chinese Academy of Medical Science and Peking Union Medical College, Tianjin, 300020 People's Republic of China
| |
Collapse
|
28
|
Luo F, Qian J, Yang J, Deng Y, Zheng X, Liu J, Chu Y. Bifunctional αHER2/CD3 RNA-engineered CART-like human T cells specifically eliminate HER2(+) gastric cancer. Cell Res 2016; 26:850-3. [PMID: 27339087 DOI: 10.1038/cr.2016.81] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Affiliation(s)
- Feifei Luo
- Department of Digestive Diseases, Huashan Hospital and Department of Immunology of School of Basic Medical Sciences, Fudan University, Shanghai 200032, China.,Biotherapy Research Center, Fudan University, Shanghai 200032, China
| | - Jiawen Qian
- Biotherapy Research Center, Fudan University, Shanghai 200032, China
| | - Jiao Yang
- Biotherapy Research Center, Fudan University, Shanghai 200032, China
| | - Yuting Deng
- Biotherapy Research Center, Fudan University, Shanghai 200032, China
| | - Xiujuan Zheng
- Biotherapy Research Center, Fudan University, Shanghai 200032, China
| | - Jie Liu
- Department of Digestive Diseases, Huashan Hospital and Department of Immunology of School of Basic Medical Sciences, Fudan University, Shanghai 200032, China.,Biotherapy Research Center, Fudan University, Shanghai 200032, China
| | - Yiwei Chu
- Department of Digestive Diseases, Huashan Hospital and Department of Immunology of School of Basic Medical Sciences, Fudan University, Shanghai 200032, China.,Biotherapy Research Center, Fudan University, Shanghai 200032, China
| |
Collapse
|
29
|
Wu X, Sereno AJ, Huang F, Lewis SM, Lieu RL, Weldon C, Torres C, Fine C, Batt MA, Fitchett JR, Glasebrook AL, Kuhlman B, Demarest SJ. Fab-based bispecific antibody formats with robust biophysical properties and biological activity. MAbs 2016; 7:470-82. [PMID: 25774965 DOI: 10.1080/19420862.2015.1022694] [Citation(s) in RCA: 48] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
A myriad of innovative bispecific antibody (BsAb) platforms have been reported. Most require significant protein engineering to be viable from a development and manufacturing perspective. Single-chain variable fragments (scFvs) and diabodies that consist only of antibody variable domains have been used as building blocks for making BsAbs for decades. The drawback with Fv-only moieties is that they lack the native-like interactions with CH1/CL domains that make antibody Fab regions stable and soluble. Here, we utilize a redesigned Fab interface to explore 2 novel Fab-based BsAbs platforms. The redesigned Fab interface designs limit heavy and light chain mixing when 2 Fabs are co-expressed simultaneously, thus allowing the use of 2 different Fabs within a BsAb construct without the requirement of one or more scFvs. We describe the stability and activity of a HER2×HER2 IgG-Fab BsAb, and compare its biophysical and activity properties with those of an IgG-scFv that utilizes the variable domains of the same parental antibodies. We also generated an EGFR × CD3 tandem Fab protein with a similar format to a tandem scFv (otherwise known as a bispecific T cell engager or BiTE). We show that the Fab-based BsAbs have superior biophysical properties compared to the scFv-based BsAbs. Additionally, the Fab-based BsAbs do not simply recapitulate the activity of their scFv counterparts, but are shown to possess unique biological activity.
Collapse
Key Words
- BiTE, bispecific T cell engager
- BsAb, bispecific antibody
- CD, circular dichroism
- DSC, differential scanning calorimetry
- Fab interface design
- Fab, antigen binding antibody fragment
- Fv, variable domains antibody fragment
- HC, antibody heavy chain
- IgG-Fab
- LC, antibody light chain
- LCMS, liquid chromatography with in-line mass spectrometry
- SEC-LC, size exclusion chromatography with in-line static light scattering
- T cell
- Tm, temperature at the midpoint of thermal unfolding
- bispecific antibody
- mAb, monoclonal antibody
- scFv, single chain Fv
- tandem Fab
Collapse
Affiliation(s)
- Xiufeng Wu
- a Eli Lilly Biotechnology Center ; San Diego , CA , USA
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
30
|
Warnders FJ, Waaijer SJH, Pool M, Lub-de Hooge MN, Friedrich M, Terwisscha van Scheltinga AGT, Deegen P, Stienen SK, Pieslor PC, Cheung HK, Kosterink JGW, de Vries EGE. Biodistribution and PET Imaging of Labeled Bispecific T Cell-Engaging Antibody Targeting EpCAM. J Nucl Med 2016; 57:812-7. [PMID: 26848172 DOI: 10.2967/jnumed.115.168153] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2015] [Accepted: 01/13/2016] [Indexed: 01/21/2023] Open
Abstract
UNLABELLED AMG 110, a bispecific T cell engager (BiTE) antibody construct, induces T cell-mediated cancer cell death by cross-linking epithelial cell adhesion molecule (EpCAM) on tumor cells with a cluster of differentiation 3 ε (CD3ε) on T cells. We labeled AMG 110 with (89)Zr or near-infrared fluorescent dye (IRDye) 800CW to study its tumor targeting and tissue distribution. METHODS Biodistribution and tumor uptake of (89)Zr-AMG 110 was studied up to 6 d after intravenous administration to nude BALB/c mice bearing high EpCAM-expressing HT-29 colorectal cancer xenografts. Tumor uptake of (89)Zr-AMG 110 was compared with uptake in head and neck squamous cell cancer FaDu (intermediate EpCAM) and promyelocytic leukemia HL60 (EpCAM-negative) xenografts. Intratumoral distribution in HT-29 tumors was studied using 800CW-AMG 110. RESULTS Tumor uptake of (89)Zr-AMG 110 can be clearly visualized using small-animal PET imaging up to 72 h after injection. The highest tumor uptake of (89)Zr-AMG 110 at the 40-μg dose level was observed at 6 and 24 h (respectively, 5.35 ± 0.22 and 5.30 ± 0.20 percentage injected dose per gram; n = 3 and 4). Tumor uptake of (89)Zr-AMG 110 was EpCAM-specific and correlated with EpCAM expression. 800CW-AMG 110 accumulated at the tumor cell surface in viable EpCAM-expressing tumor tissue. CONCLUSION PET and fluorescent imaging provided real-time information about AMG 110 distribution and tumor uptake in vivo. Our data support using (89)Zr and IRDye 800CW to evaluate tumor and tissue uptake kinetics of bispecific T cell engager antibody constructs in preclinical and clinical settings.
Collapse
Affiliation(s)
- Frank J Warnders
- Department of Clinical Pharmacy and Pharmacology, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
| | - Stijn J H Waaijer
- Department of Medical Oncology, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
| | - Martin Pool
- Department of Medical Oncology, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
| | - Marjolijn N Lub-de Hooge
- Department of Clinical Pharmacy and Pharmacology, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands Department of Nuclear Medicine and Molecular Imaging, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
| | | | | | | | | | | | | | - Jos G W Kosterink
- Department of Clinical Pharmacy and Pharmacology, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands Department of Pharmacy, Section of Pharmacotherapy and Pharmaceutical Care, University of Groningen, Groningen, The Netherlands
| | - Elisabeth G E de Vries
- Department of Medical Oncology, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
| |
Collapse
|
31
|
Regan D, Guth A, Coy J, Dow S. Cancer immunotherapy in veterinary medicine: Current options and new developments. Vet J 2015; 207:20-28. [PMID: 26545847 DOI: 10.1016/j.tvjl.2015.10.008] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2014] [Revised: 09/24/2015] [Accepted: 10/04/2015] [Indexed: 12/12/2022]
Abstract
Excitement in the field of tumor immunotherapy is being driven by several remarkable breakthroughs in recent years. This review will cover recent advances in cancer immunotherapy, including the use of T cell checkpoint inhibitors, engineered T cells, cancer vaccines, and anti-B cell and T cell antibodies. Inhibition of T cell checkpoint molecules such as PD-1 and CTLA-4 using monoclonal antibodies has achieved notable success against advanced tumors in humans, including melanoma, renal cell carcinoma, and non-small cell lung cancer. Therapy with engineered T cells has also demonstrated remarkable tumor control and regression in human trials. Autologous cancer vaccines have recently demonstrated impressive prolongation of disease-free intervals and survival times in dogs with lymphoma. In addition, caninized monoclonal antibodies targeting CD20 and CD52 just recently received either full (CD20) or conditional (CD52) licensing by the United States Department of Agriculture for clinical use in the treatment of canine B-cell and T-cell lymphomas, respectively. Thus, immunotherapy for cancer is rapidly moving to the forefront of cancer treatment options in veterinary medicine as well as human medicine.
Collapse
Affiliation(s)
- Daniel Regan
- Animal Cancer Center, Department of Clinical Sciences, Colorado State University, Ft. Collins, CO 80523, USA
| | - Amanda Guth
- Animal Cancer Center, Department of Clinical Sciences, Colorado State University, Ft. Collins, CO 80523, USA
| | - Jonathan Coy
- Animal Cancer Center, Department of Clinical Sciences, Colorado State University, Ft. Collins, CO 80523, USA
| | - Steven Dow
- Animal Cancer Center, Department of Clinical Sciences, Colorado State University, Ft. Collins, CO 80523, USA.
| |
Collapse
|
32
|
Redman JM, Hill EM, AlDeghaither D, Weiner LM. Mechanisms of action of therapeutic antibodies for cancer. Mol Immunol 2015; 67:28-45. [PMID: 25911943 PMCID: PMC4529810 DOI: 10.1016/j.molimm.2015.04.002] [Citation(s) in RCA: 118] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2015] [Revised: 03/29/2015] [Accepted: 04/03/2015] [Indexed: 02/06/2023]
Abstract
The therapeutic utility of antibodies and their derivatives is achieved by various means. The FDA has approved several targeted antibodies that disrupt signaling of various growth factor receptors for the treatment of a number of cancers. Rituximab, and other anti-CD20 monoclonal antibodies are active in B cell malignancies. As more experience has been gained with anti-CD20 monoclonal antibodies, the multifactorial nature of their anti-tumor mechanisms has emerged. Other targeted antibodies function to dampen inhibitory checkpoints. These checkpoint inhibitors have recently achieved dramatic results in several cancers, including melanoma. These and related antibodies continue to be investigated in the clinical and pre-clinical settings. Novel antibody structures that target two or more antigens have also made their way into clinical use. Tumor targeted antibodies can also be conjugated to chemo- or radiotherapeutic agents, or catalytic toxins, as a means to deliver toxic payloads to cancer cells. Here we provide a review of these mechanisms and a discussion of their relevance to current and future clinical applications.
Collapse
Affiliation(s)
- J M Redman
- Departments of Oncology and Internal Medicine, Georgetown University Medical Center and Lombardi Comprehensive Cancer Center, Washington, DC, United States
| | - E M Hill
- Departments of Oncology and Internal Medicine, Georgetown University Medical Center and Lombardi Comprehensive Cancer Center, Washington, DC, United States
| | - D AlDeghaither
- Departments of Oncology and Internal Medicine, Georgetown University Medical Center and Lombardi Comprehensive Cancer Center, Washington, DC, United States
| | - L M Weiner
- Departments of Oncology and Internal Medicine, Georgetown University Medical Center and Lombardi Comprehensive Cancer Center, Washington, DC, United States.
| |
Collapse
|
33
|
Harrington KH, Gudgeon CJ, Laszlo GS, Newhall KJ, Sinclair AM, Frankel SR, Kischel R, Chen G, Walter RB. The Broad Anti-AML Activity of the CD33/CD3 BiTE Antibody Construct, AMG 330, Is Impacted by Disease Stage and Risk. PLoS One 2015; 10:e0135945. [PMID: 26305211 PMCID: PMC4549148 DOI: 10.1371/journal.pone.0135945] [Citation(s) in RCA: 45] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2015] [Accepted: 07/28/2015] [Indexed: 01/10/2023] Open
Abstract
The CD33/CD3-bispecific T-cell engaging (BiTE) antibody construct, AMG 330, potently lyses CD33+ leukemic cells in vitro. Using specimens from 41 patients with acute myeloid leukemia (AML), we studied the factors that might contribute to clinical response or resistance. For this purpose, thawed aliquots of primary AML samples were immunophenotypically characterized and subjected to various doses of AMG 330 in the presence or absence of healthy donor T-cells. After 48 hours, drug-specific cytotoxicity was quantified and correlated with CD33 expression levels, amounts of T-cells present, and other disease characteristics. AMG 330 caused modest cytotoxicity that was correlated with the amount of autologous T-cells (P = 0.0001) but not CD33 expression, as AMG 330 exerted marked cytotoxic effects in several specimens with minimal CD33 expression. With healthy donor T-cells added, AMG 330 cytotoxicity depended on the drug dose and effector:target (E:T) cell ratio. High cytotoxic activity was observed even with minimal CD33 expression, and AMG 330 cytotoxicity and CD33 expression correlated only at high E:T cell ratio and high AMG 330 doses (P<0.003). AMG 330 resulted in significantly higher cytotoxicity in specimens from patients with newly diagnosed AML than those with relapsed/refractory disease despite similar levels of CD33 on myeloblasts. AMG 330 cytotoxicity also appeared greater in specimens from patients with favorable-risk disease as compared to other specimens. Together, our data demonstrate that AMG 330 is highly active in primary AML specimens across the entire disease spectrum, while suggesting the presence of yet undefined, CD33-independent, relative resistance mechanisms in specific patient subsets.
Collapse
MESH Headings
- Adult
- Aged
- Aged, 80 and over
- Antibodies, Bispecific/administration & dosage
- Antibodies, Bispecific/adverse effects
- CD3 Complex/biosynthesis
- Cytotoxicity, Immunologic/drug effects
- Female
- Gene Expression Regulation, Leukemic/drug effects
- Humans
- Immunophenotyping
- Leukemia, Myeloid, Acute/drug therapy
- Leukemia, Myeloid, Acute/immunology
- Leukemia, Myeloid, Acute/pathology
- Male
- Middle Aged
- Sialic Acid Binding Ig-like Lectin 3/biosynthesis
- T-Lymphocytes/drug effects
- T-Lymphocytes/immunology
Collapse
Affiliation(s)
- Kimberly H. Harrington
- Clinical Research Division, Fred Hutchinson Cancer Research Center, Seattle, Washington, United States of America
| | - Chelsea J. Gudgeon
- Clinical Research Division, Fred Hutchinson Cancer Research Center, Seattle, Washington, United States of America
| | - George S. Laszlo
- Clinical Research Division, Fred Hutchinson Cancer Research Center, Seattle, Washington, United States of America
| | | | | | | | | | - Guang Chen
- Amgen, Inc., Seattle, Washington, United States of America
| | - Roland B. Walter
- Clinical Research Division, Fred Hutchinson Cancer Research Center, Seattle, Washington, United States of America
- Department of Medicine, Division of Hematology, University of Washington, Seattle, Washington, United States of America
- Department of Epidemiology, University of Washington, Seattle, Washington, United States of America
- * E-mail:
| |
Collapse
|
34
|
T-cell ligands modulate the cytolytic activity of the CD33/CD3 BiTE antibody construct, AMG 330. Blood Cancer J 2015; 5:e340. [PMID: 26295610 PMCID: PMC4558592 DOI: 10.1038/bcj.2015.68] [Citation(s) in RCA: 47] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2015] [Accepted: 07/21/2015] [Indexed: 12/19/2022] Open
Abstract
Preclinical and emerging clinical studies demonstrate that bispecific T-cell engaging (BiTE) antibody constructs can potently lyse targeted tumor cells, but the determinants for their activity remain incompletely understood. Using human acute myeloid leukemia (AML) cell lines engineered to overexpress individual T-cell ligands, we found that expression of the inhibitory ligands, PD-L1 and PD-L2, reduced the cytolytic activity of the BiTE antibody construct targeting CD33, AMG 330; conversely, expression of the activating ligands, CD80 and CD86, augmented the cytotoxic activity of AMG 330. Consistent with these findings, treatment with an activating antibody directed at the co-stimulatory T-cell receptor, CD28, significantly increased AMG 330-induced cytotoxicity in human AML cell lines. Using specimens from 12 patients with newly diagnosed or relapsed/refractory AML, we found that activation of CD28 also increased the activity of AMG 330 in primary human AML cells (P=0.023). Together, our findings indicate that T-cell ligands and co-receptors modulate the anti-tumor activity of the CD33/CD3 BiTE antibody construct, AMG 330. These findings suggest that such ligands/co-receptors could serve as biomarkers of response and that co-treatment strategies with pharmacological modulators of T-cell receptor signaling could be utilized to further enhance the activity of this targeted therapeutic.
Collapse
|
35
|
Abstract
The immune system is designed to discriminate between self and tumor tissue. Through genetic recombination, there is fundamentally no limit to the number of tumor antigens that immune cells can recognize. Yet, tumors use a variety of immunosuppressive mechanisms to evade immunity. Insight into how the immune system interacts with tumors is expanding rapidly and has accelerated the translation of immunotherapies into medical breakthroughs. Herein, we appraise novel strategies that exploit the patient's immune system to kill cancer. We review various forms of immune-based therapies, which have shown significant promise in patients with hematologic malignancies, including (i) conventional monoclonal therapies like rituximab; (ii) engineered monoclonal antibodies called bispecific T-cell engagers; (iii) monoclonal antibodies and pharmaceutical drugs that block inhibitory T-cell pathways (i.e. PD-1, CTLA-4, and IDO); and (iv) adoptive cell transfer therapy with T cells engineered to express chimeric antigen receptors or T-cell receptors. We also assess the idea of using these therapies in combination and conclude by suggesting multi-prong approaches to improve treatment outcomes and curative responses in patients.
Collapse
Affiliation(s)
- Michelle H Nelson
- Department of Microbiology and Immunology, Hollings Cancer Center, Medical University of South Carolina, Charleston, SC, USA; Department of Surgery, Hollings Cancer Center, Medical University of South Carolina, Charleston, SC, USA
| | | |
Collapse
|
36
|
Choi BD, Gedeon PC, Herndon JE, Archer GE, Reap EA, Sanchez-Perez L, Mitchell DA, Bigner DD, Sampson JH. Human regulatory T cells kill tumor cells through granzyme-dependent cytotoxicity upon retargeting with a bispecific antibody. Cancer Immunol Res 2015; 1:163. [PMID: 24570975 DOI: 10.1158/2326-6066.cir-13-0049] [Citation(s) in RCA: 60] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
A major mechanism by which human regulatory T cells (T(regs)) have been shown to suppress and kill autologous immune cells is through the granzyme-perforin pathway. However, it is unknown whether T(regs) also possess the capacity to kill tumor cells using similar mechanisms. Bispecific antibodies (bscAbs) have emerged as a promising class of therapeutics that activate T cells against tumor antigens without the need for classical MHC-restricted TCR recognition. Here, we show that a bscAb targeting the tumor-specific mutation of the epidermal growth factor receptor, EGFRvIII, redirects human CD4(+)CD25(+)FoxP3(+) T(regs) to kill glioblastoma (GBM) cells. This activity was significantly abrogated by inhibitors of the granzyme-perforin pathway. Notably, analyses of human primary GBM also displayed diffuse infiltration of granzyme-expressing FoxP3(+) T cells. Together, these data suggest that despite their known suppressive functions, tumor-infiltrating T(regs) possess potent cytotoxic mechanisms that can be co-opted for efficient tumor cell lysis.
Collapse
Affiliation(s)
- Bryan D Choi
- Duke Brain Tumor Immunotherapy Program, Division of Neurosurgery, Department of Surgery, Duke University Medical Center, Durham, NC 27710 ; Department of Pathology, Duke University Medical Center, Durham, NC 27710
| | - Patrick C Gedeon
- Duke Brain Tumor Immunotherapy Program, Division of Neurosurgery, Department of Surgery, Duke University Medical Center, Durham, NC 27710 ; Department of Biomedical Engineering, Duke University, Durham, NC 27708
| | - James E Herndon
- Department of Biostatistics and Bioinformatics, Duke University, Durham, NC 27710
| | - Gary E Archer
- Duke Brain Tumor Immunotherapy Program, Division of Neurosurgery, Department of Surgery, Duke University Medical Center, Durham, NC 27710
| | - Elizabeth A Reap
- Duke Brain Tumor Immunotherapy Program, Division of Neurosurgery, Department of Surgery, Duke University Medical Center, Durham, NC 27710
| | - Luis Sanchez-Perez
- Duke Brain Tumor Immunotherapy Program, Division of Neurosurgery, Department of Surgery, Duke University Medical Center, Durham, NC 27710
| | - Duane A Mitchell
- Duke Brain Tumor Immunotherapy Program, Division of Neurosurgery, Department of Surgery, Duke University Medical Center, Durham, NC 27710 ; Department of Pathology, Duke University Medical Center, Durham, NC 27710 ; The Preston Robert Tisch Brain Tumor Center at Duke, Duke University Medical Center, Durham, NC 27710
| | - Darell D Bigner
- Department of Pathology, Duke University Medical Center, Durham, NC 27710 ; The Preston Robert Tisch Brain Tumor Center at Duke, Duke University Medical Center, Durham, NC 27710
| | - John H Sampson
- Duke Brain Tumor Immunotherapy Program, Division of Neurosurgery, Department of Surgery, Duke University Medical Center, Durham, NC 27710 ; Department of Pathology, Duke University Medical Center, Durham, NC 27710 ; The Preston Robert Tisch Brain Tumor Center at Duke, Duke University Medical Center, Durham, NC 27710
| |
Collapse
|
37
|
Tang J, Shen D, Zhang J, Ligler FS, Cheng K. Bispecific antibodies, nanoparticles and cells: bringing the right cells to get the job done. Expert Opin Biol Ther 2015; 15:1251-5. [PMID: 26004388 DOI: 10.1517/14712598.2015.1049944] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Pre-arming therapeutic cells with bispecific antibodies (BiAbs) before infusion can home the cells to specific tissue antigens in the body. With the development of nanotechnology, we developed a novel strategy, namely magnetic bispecific cell engager (MagBICE), that combines BiAbs with biodegradable iron nanoparticles. Compared to conventional BiAbs, the latter enables magnetic targeting and imaging. This editorial discusses current knowledge of BiAbs and their applications in targeting activated T cells to cancerous tissues or targeting bone marrow-derived stem cells to myocardial infarction. We will also discuss the fabrication of MagBICE and its application in treating rodents with myocardial infarction.
Collapse
Affiliation(s)
- Junnan Tang
- North Carolina State University, College of Veterinary Medicine, Department of Molecular Biomedical Sciences and Center for Comparative Medicine and Translational Research , Raleigh, NC , USA
| | | | | | | | | |
Collapse
|
38
|
de Gruijl TD, Janssen AB, van Beusechem VW. Arming oncolytic viruses to leverage antitumor immunity. Expert Opin Biol Ther 2015; 15:959-71. [PMID: 25959450 DOI: 10.1517/14712598.2015.1044433] [Citation(s) in RCA: 47] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
INTRODUCTION Over the past decade, the cytolytic capabilities of oncolytic viruses (OVs), exploited to selectively eliminate neoplastic cells, have become secondary to their use to elicit a tumor-directed immune response. AREAS COVERED Here, based on an NCBI-PubMed literature survey, we review the efforts undertaken to arm OVs in order to improve therapeutic antitumor responses upon administration of these agents. Specifically, we explore the different options to modulate immune suppression in the tumor microenvironment (TME) and to facilitate the generation of effective antitumor responses that have been investigated in conjunction with OVs in recent years. EXPERT OPINION Their induction of immunogenic tumor cell death and association with pro-inflammatory signals make OVs attractive immunotherapeutic modalities. The first promising clinical results with immunologically armed OVs warrant their further optimization and development. OVs should be modified to avoid detrimental effects of pre-existent anti-OV immunity as well as for increased tumor targeting and selectivity, so as to ultimately allow for systemic administration while achieving local immune potentiation and tumor elimination in the TME. In particular, a combination of trans-genes encoding bispecific T-cell engagers, immune checkpoint blockers and antigen-presenting cell enhancers will remove suppressive hurdles in the TME and allow for optimal antitumor efficacy of armed OVs.
Collapse
Affiliation(s)
- Tanja D de Gruijl
- VU University Medical Center - Cancer Center Amsterdam, Department of Medical Oncology , Room VUmc-CCA 2.44, De Boelelaan 1117, 1081 HV Amsterdam , The Netherlands +31 20 4444063 ;
| | | | | |
Collapse
|
39
|
Suryadevara CM, Gedeon PC, Sanchez-Perez L, Verla T, Alvarez-Breckenridge C, Choi BD, Fecci PE, Sampson JH. Are BiTEs the "missing link" in cancer therapy? Oncoimmunology 2015; 4:e1008339. [PMID: 26155413 DOI: 10.1080/2162402x.2015.1008339] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2014] [Revised: 01/07/2015] [Accepted: 01/08/2015] [Indexed: 02/06/2023] Open
Abstract
Conventional treatment for cancer routinely includes surgical resection and some combination of chemotherapy and radiation. These approaches are frequently accompanied by unintended and highly toxic collateral damage to healthy tissues, which are offset by only marginal prognostic improvements in patients with advanced cancers. This unfortunate balance has driven the development of novel therapies that aim to target tumors both safely and efficiently. Over the past decade, mounting evidence has supported the therapeutic utility of T-cell-centered cancer immunotherapy, which, in its various iterations, has been shown capable of eliciting highly precise and robust antitumor responses both in animal models and human trials. The identification of tumor-specific targets has further fueled a growing interest in T-cell therapies given their potential to circumvent the non-specific nature of traditional treatments. Of the several strategies geared toward achieving T-cell recognition of tumor, bispecific antibodies (bsAbs) represent a novel class of biologics that have garnered enthusiasm in recent years due to their versatility, specificity, safety, cost, and ease of production. Bispecific T-cell Engagers (BiTEs) are a subclass of bsAbs that are specific for CD3 on one arm and a tumor antigen on the second. As such, BiTEs function by recruiting and activating polyclonal populations of T-cells at tumor sites, and do so without the need for co-stimulation or conventional MHC recognition. Blinatumomab, a well-characterized BiTE, has emerged as a promising recombinant bscCD19×CD3 construct that has demonstrated remarkable antitumor activity in patients with B-cell malignancies. This clinical success has resulted in the rapid extension of BiTE technology against a greater repertoire of tumor antigens and the recent US Food and Drug Administration's (FDA) accelerated approval of blinatumomab for the treatment of a rare form of acute lymphoblastic leukemia (ALL). In this review, we dissect the role of T-cell therapeutics in the new era of cancer immunotherapy, appraise the value of CAR T-cells in the context of solid tumors, and discuss why the BiTE platform may rescue several of the apparent deficits and shortcomings of competing immunotherapies to support its widespread clinical application.
Collapse
Key Words
- ACT, adoptive cell therapy
- AICD, activation induced cell death
- ALL, acute lymphoblastic leukemia
- APC, antigen presenting cell
- BiTE, bispecific T-cell engager
- BsAb, bispecific antibody
- CAR, chimeric antigen receptors
- CHO, chinese hamster ovary
- CML, chronic myeloid leukemia
- GBM, glioblastoma
- MAb, monoclonal antibody
- MHC, major histocompatibility complex
- OS, overall survival
- ScFv, single chain variable fragment
- T lymphocytes
- TAA, tumor associated antigens
- TCR, T-cell receptor
- TIL, tumor infiltrating lymphocytes
- TREG, regulatory T-cells
- TSA, tumor specific antigens
- VV, vaccinia virus
- bispecific antibodies
- immunotherapy
- malignancies
Collapse
Affiliation(s)
- Carter M Suryadevara
- Duke Brain Tumor Immunotherapy Program; Division of Neurosurgery; Department of Surgery; Duke University Medical Center ; Durham, NC, USA ; Department of Pathology; Duke University Medical Center ; Durham, NC, USA ; The Preston Robert Tisch Brain Tumor Center; Duke University Medical Center ; Durham, NC, USA
| | - Patrick C Gedeon
- Duke Brain Tumor Immunotherapy Program; Division of Neurosurgery; Department of Surgery; Duke University Medical Center ; Durham, NC, USA ; The Preston Robert Tisch Brain Tumor Center; Duke University Medical Center ; Durham, NC, USA ; Department of Biomedical Engineering; Duke University ; Durham, NC, USA
| | - Luis Sanchez-Perez
- Duke Brain Tumor Immunotherapy Program; Division of Neurosurgery; Department of Surgery; Duke University Medical Center ; Durham, NC, USA ; The Preston Robert Tisch Brain Tumor Center; Duke University Medical Center ; Durham, NC, USA
| | - Terence Verla
- Duke Brain Tumor Immunotherapy Program; Division of Neurosurgery; Department of Surgery; Duke University Medical Center ; Durham, NC, USA ; The Preston Robert Tisch Brain Tumor Center; Duke University Medical Center ; Durham, NC, USA
| | | | - Bryan D Choi
- Department of Neurosurgery; Massachusetts General Hospital and Harvard Medical School ; Boston, MA, USA
| | - Peter E Fecci
- Duke Brain Tumor Immunotherapy Program; Division of Neurosurgery; Department of Surgery; Duke University Medical Center ; Durham, NC, USA ; The Preston Robert Tisch Brain Tumor Center; Duke University Medical Center ; Durham, NC, USA
| | - John H Sampson
- Duke Brain Tumor Immunotherapy Program; Division of Neurosurgery; Department of Surgery; Duke University Medical Center ; Durham, NC, USA ; Department of Pathology; Duke University Medical Center ; Durham, NC, USA ; The Preston Robert Tisch Brain Tumor Center; Duke University Medical Center ; Durham, NC, USA ; Department of Biomedical Engineering; Duke University ; Durham, NC, USA
| |
Collapse
|
40
|
Ahmed M, Cheng M, Cheung IY, Cheung NK. Human derived dimerization tag enhances tumor killing potency of a T-cell engaging bispecific antibody. Oncoimmunology 2015; 4:e989776. [PMID: 26137406 PMCID: PMC4485828 DOI: 10.4161/2162402x.2014.989776] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2014] [Accepted: 11/15/2014] [Indexed: 11/25/2022] Open
Abstract
Bispecific antibodies (BsAbs) have proven highly efficient T cell recruiters for cancer immunotherapy by virtue of one tumor antigen-reactive single chain variable fragment (scFv) and another that binds CD3. In order to enhance the antitumor potency of these tandem scFv BsAbs (tsc-BsAbs), we exploited the dimerization domain of the human transcription factor HNF1α to enhance the avidity of a tsc-BsAb to the tumor antigen disialoganglioside GD2 while maintaining functional monovalency to CD3 to limit potential toxicity. The dimeric tsc-BsAb showed increased avidity to GD2, enhanced T cell mediated killing of neuroblastoma and melanoma cell lines in vitro (32–37 fold), exhibited a near 4-fold improvement in serum half-life, and enhanced tumor ablation in mouse xenograft models. We propose that the use of this HNF1α-derived dimerization tag may be a novel and effective strategy to increase the potency of T-cell engaging antibodies for clinical cancer immunotherapy.
Collapse
Affiliation(s)
- Mahiuddin Ahmed
- Department of Pediatrics; Memorial Sloan Kettering Cancer Center ; New York, NY USA
| | - Ming Cheng
- Department of Pediatrics; Memorial Sloan Kettering Cancer Center ; New York, NY USA
| | - Irene Y Cheung
- Department of Pediatrics; Memorial Sloan Kettering Cancer Center ; New York, NY USA
| | - N K Cheung
- Department of Pediatrics; Memorial Sloan Kettering Cancer Center ; New York, NY USA
| |
Collapse
|
41
|
Zou J, Chen D, Zong Y, Ye S, Tang J, Meng H, An G, Zhang X, Yang L. Immunotherapy based on bispecific T-cell engager with hIgG1 Fc sequence as a new therapeutic strategy in multiple myeloma. Cancer Sci 2015; 106:512-21. [PMID: 25664501 PMCID: PMC4452151 DOI: 10.1111/cas.12631] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2014] [Revised: 01/28/2015] [Accepted: 02/04/2015] [Indexed: 11/27/2022] Open
Abstract
Bispecific antibodies play an important role in immunotherapy. They have received intense interest from pharmaceutical enterprises. The first antibody drug, OKT3 (muromonab-CD3), showed great performance in clinical treatment. We have successfully developed a single-chain variable fragment (ScFv) combination of anti-CD3 ScFv and anti-CD138 ScFv with the hIgG1 Fc (hIgFc) sequence. The novel bispecific T-cell engager (BiTE) with an additional hIgFc (BiTE-hIgFc, STL001) can target T cells, natural killer cells, and multiple myeloma cells (RPMI-8226 or U266). In addition, BiTE-hIgFc (STL001) has nanomolar-level affinity to recombinant human CD138 protein and shows more potent antitumor activity against RPMI-8226 cells than that of separate aCD3-ScFv-hIgFc and aCD138-ScFv-hIgFc, or the isotype mAb in vitro or in vivo.
Collapse
Affiliation(s)
- Jianxuan Zou
- The Cyrus Tang Hematology Center, Soochow University, Suzhou, China.,Collaborative Innovation Center of Hematology, Soochow University, Suzhou, China
| | - Dan Chen
- The Cyrus Tang Hematology Center, Soochow University, Suzhou, China.,Collaborative Innovation Center of Hematology, Soochow University, Suzhou, China
| | - Yunhui Zong
- Suzhou Cancer Immunotherapy and Diagnosis Engineering Center, Suzhou, China
| | - Sisi Ye
- Suzhou Cancer Immunotherapy and Diagnosis Engineering Center, Suzhou, China
| | - Jinle Tang
- The Cyrus Tang Hematology Center, Soochow University, Suzhou, China.,Collaborative Innovation Center of Hematology, Soochow University, Suzhou, China
| | - Huimin Meng
- The Cyrus Tang Hematology Center, Soochow University, Suzhou, China.,Collaborative Innovation Center of Hematology, Soochow University, Suzhou, China
| | - Gangli An
- The Cyrus Tang Hematology Center, Soochow University, Suzhou, China.,Collaborative Innovation Center of Hematology, Soochow University, Suzhou, China
| | - Xingding Zhang
- Suzhou Cancer Immunotherapy and Diagnosis Engineering Center, Suzhou, China
| | - Lin Yang
- The Cyrus Tang Hematology Center, Soochow University, Suzhou, China.,Collaborative Innovation Center of Hematology, Soochow University, Suzhou, China
| |
Collapse
|
42
|
Prentice KM, Wallace A, Eakin CM. Inline Protein A Mass Spectrometry for Characterization of Monoclonal Antibodies. Anal Chem 2015; 87:2023-8. [PMID: 25647041 DOI: 10.1021/ac504502e] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Affiliation(s)
- Kenneth M. Prentice
- Department of Analytical
Sciences, Amgen Inc., 1201 Amgen Court West, Seattle, Washington 98119, United States
| | - Alison Wallace
- Department of Analytical
Sciences, Amgen Inc., 1201 Amgen Court West, Seattle, Washington 98119, United States
| | - Catherine M. Eakin
- Department of Analytical
Sciences, Amgen Inc., 1201 Amgen Court West, Seattle, Washington 98119, United States
| |
Collapse
|
43
|
Choi BD, Pastan I, Bigner DD, Sampson JH. A novel bispecific antibody recruits T cells to eradicate tumors in the "immunologically privileged" central nervous system. Oncoimmunology 2014; 2:e23639. [PMID: 23734318 PMCID: PMC3654588 DOI: 10.4161/onci.23639] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2013] [Accepted: 01/16/2013] [Indexed: 01/01/2023] Open
Abstract
Bispecific T-cell engagers (BiTEs) may break multiple barriers that currently limit the use of immunotherapy in glioblastoma patients. We have recently described a novel BiTE specific for a mutated form of the epidermal growth factor receptor, EGFRvIII, that exerts potent antineoplastic effects against established invasive tumors of the brain.
Collapse
Affiliation(s)
- Bryan D Choi
- Duke Brain Tumor Immunotherapy Program; Division of Neurosurgery; Department of Surgery; Duke University Medical Center; Durham, NC USA ; Department of Pathology; Duke University Medical Center; Durham, NC USA ; The Preston Robert Tisch Brain Tumor Center at Duke; Duke University Medical Center; Durham, NC USA
| | | | | | | |
Collapse
|
44
|
Cheng K, Shen D, Hensley MT, Middleton R, Sun B, Liu W, De Couto G, Marbán E. Magnetic antibody-linked nanomatchmakers for therapeutic cell targeting. Nat Commun 2014; 5:4880. [PMID: 25205020 PMCID: PMC4175574 DOI: 10.1038/ncomms5880] [Citation(s) in RCA: 100] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2014] [Accepted: 07/31/2014] [Indexed: 12/15/2022] Open
Abstract
Stem cell transplantation is a promising strategy for therapeutic cardiac regeneration, but current therapies are limited by inefficient interaction between potentially beneficial cells (either exogenously transplanted or endogenously recruited) and the injured tissue. Here we apply targeted nanomedicine to achieve in vivo cell-mediated tissue repair, imaging and localized enrichment without cellular transplantation. Iron nanoparticles are conjugated with two types of antibodies (one against antigens on therapeutic cells and the other directed at injured cells) to produce magnetic bifunctional cell engager (MagBICE). The antibodies link the therapeutic cells to the injured cells, whereas the iron core of MagBICE enables physical enrichment and imaging. We treat acute myocardial infarction by targeting exogenous bone marrow-derived stem cells (expressing CD45) or endogenous CD34-positive cells to injured cardiomyocytes (expressing myosin light chain. Targeting can be further enhanced by magnetic attraction, leading to augmented functional benefits. MagBICE represents a generalizable platform technology for regenerative medicine.
Collapse
Affiliation(s)
- Ke Cheng
- 1] Cedars-Sinai Heart Institute, 8700 Beverly Boulevard, Los Angeles, California 90048, USA [2] Department of Molecular Biomedical Sciences, Center for Comparative Medicine and Translational Research, College of Veterinary Medicine, 1060 William Moore Drive, North Carolina State University, Raleigh, North Carolina 27607, USA [3] Joint Department of Biomedical Engineering, University of North Carolina at Chapel Hill and North Carolina State University, Raleigh, North Carolina 27607, USA
| | - Deliang Shen
- Department of Cardiology, First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan 450052, China
| | - M Taylor Hensley
- Department of Molecular Biomedical Sciences, Center for Comparative Medicine and Translational Research, College of Veterinary Medicine, 1060 William Moore Drive, North Carolina State University, Raleigh, North Carolina 27607, USA
| | - Ryan Middleton
- Cedars-Sinai Heart Institute, 8700 Beverly Boulevard, Los Angeles, California 90048, USA
| | - Baiming Sun
- Cedars-Sinai Heart Institute, 8700 Beverly Boulevard, Los Angeles, California 90048, USA
| | - Weixin Liu
- Cedars-Sinai Heart Institute, 8700 Beverly Boulevard, Los Angeles, California 90048, USA
| | - Geoffrey De Couto
- Cedars-Sinai Heart Institute, 8700 Beverly Boulevard, Los Angeles, California 90048, USA
| | - Eduardo Marbán
- Cedars-Sinai Heart Institute, 8700 Beverly Boulevard, Los Angeles, California 90048, USA
| |
Collapse
|
45
|
Reardon DA, Freeman G, Wu C, Chiocca EA, Wucherpfennig KW, Wen PY, Fritsch EF, Curry WT, Sampson JH, Dranoff G. Immunotherapy advances for glioblastoma. Neuro Oncol 2014; 16:1441-58. [PMID: 25190673 DOI: 10.1093/neuonc/nou212] [Citation(s) in RCA: 143] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Survival for patients with glioblastoma, the most common high-grade primary CNS tumor, remains poor despite multiple therapeutic interventions including intensifying cytotoxic therapy, targeting dysregulated cell signaling pathways, and blocking angiogenesis. Exciting, durable clinical benefits have recently been demonstrated for a number of other challenging cancers using a variety of immunotherapeutic approaches. Much modern research confirms that the CNS is immunoactive rather than immunoprivileged. Preliminary results of clinical studies demonstrate that varied vaccine strategies have achieved encouraging evidence of clinical benefit for glioblastoma patients, although multiple variables will likely require systematic investigation before optimal outcomes are realized. Initial preclinical studies have also revealed promising results with other immunotherapies including cell-based approaches and immune checkpoint blockade. Clinical studies to evaluate a wide array of immune therapies for malignant glioma patients are being rapidly developed. Important considerations going forward include optimizing response assessment and identifiying correlative biomarkers for predict therapeutic benefit. Finally, the potential of complementary combinatorial immunotherapeutic regimens is highly exciting and warrants expedited investigation.
Collapse
Affiliation(s)
- David A Reardon
- Center for Neuro-Oncology, Dana-Farber/Brigham and Women's Cancer Center, Boston, Massachusetts (D.A.R., P.Y.W.); Department of Cancer Immunology and AIDS, Dana-Farber Cancer Institute, Boston, Massachusetts (G.F., C.W., K.W.W.); Department of Medical Oncology, Dana-Farber/Brigham and Women's Cancer Center, Boston, Massachusetts (D.A.R., C.W.); Department of Neurosurgery, Brigham and Women's Hospital, Boston, Massachusetts (E.A.C.); Division of Neuro-Oncology, Department of Neurology, Brigham and Women's Hospital, Boston, Massachusetts (P.Y.W.); Division of Neurosurgery, Department of Surgery, Duke University Medical Center, Durham, North Carolina (J.H.S.); Department of Neurosurgery, Massachusetts General Hospital, Boston, Massachusetts (W.T.C.); Department of Medical Oncology and Cancer Vaccine Center, Dana-Farber/Brigham and Women's Cancer Center, Boston, Massachusetts (C.W., E.F.F., G.D.); Department of Medicine, Brigham and Women's Hospital, Boston, Massachusetts (G.D.)
| | - Gordon Freeman
- Center for Neuro-Oncology, Dana-Farber/Brigham and Women's Cancer Center, Boston, Massachusetts (D.A.R., P.Y.W.); Department of Cancer Immunology and AIDS, Dana-Farber Cancer Institute, Boston, Massachusetts (G.F., C.W., K.W.W.); Department of Medical Oncology, Dana-Farber/Brigham and Women's Cancer Center, Boston, Massachusetts (D.A.R., C.W.); Department of Neurosurgery, Brigham and Women's Hospital, Boston, Massachusetts (E.A.C.); Division of Neuro-Oncology, Department of Neurology, Brigham and Women's Hospital, Boston, Massachusetts (P.Y.W.); Division of Neurosurgery, Department of Surgery, Duke University Medical Center, Durham, North Carolina (J.H.S.); Department of Neurosurgery, Massachusetts General Hospital, Boston, Massachusetts (W.T.C.); Department of Medical Oncology and Cancer Vaccine Center, Dana-Farber/Brigham and Women's Cancer Center, Boston, Massachusetts (C.W., E.F.F., G.D.); Department of Medicine, Brigham and Women's Hospital, Boston, Massachusetts (G.D.)
| | - Catherine Wu
- Center for Neuro-Oncology, Dana-Farber/Brigham and Women's Cancer Center, Boston, Massachusetts (D.A.R., P.Y.W.); Department of Cancer Immunology and AIDS, Dana-Farber Cancer Institute, Boston, Massachusetts (G.F., C.W., K.W.W.); Department of Medical Oncology, Dana-Farber/Brigham and Women's Cancer Center, Boston, Massachusetts (D.A.R., C.W.); Department of Neurosurgery, Brigham and Women's Hospital, Boston, Massachusetts (E.A.C.); Division of Neuro-Oncology, Department of Neurology, Brigham and Women's Hospital, Boston, Massachusetts (P.Y.W.); Division of Neurosurgery, Department of Surgery, Duke University Medical Center, Durham, North Carolina (J.H.S.); Department of Neurosurgery, Massachusetts General Hospital, Boston, Massachusetts (W.T.C.); Department of Medical Oncology and Cancer Vaccine Center, Dana-Farber/Brigham and Women's Cancer Center, Boston, Massachusetts (C.W., E.F.F., G.D.); Department of Medicine, Brigham and Women's Hospital, Boston, Massachusetts (G.D.)
| | - E Antonio Chiocca
- Center for Neuro-Oncology, Dana-Farber/Brigham and Women's Cancer Center, Boston, Massachusetts (D.A.R., P.Y.W.); Department of Cancer Immunology and AIDS, Dana-Farber Cancer Institute, Boston, Massachusetts (G.F., C.W., K.W.W.); Department of Medical Oncology, Dana-Farber/Brigham and Women's Cancer Center, Boston, Massachusetts (D.A.R., C.W.); Department of Neurosurgery, Brigham and Women's Hospital, Boston, Massachusetts (E.A.C.); Division of Neuro-Oncology, Department of Neurology, Brigham and Women's Hospital, Boston, Massachusetts (P.Y.W.); Division of Neurosurgery, Department of Surgery, Duke University Medical Center, Durham, North Carolina (J.H.S.); Department of Neurosurgery, Massachusetts General Hospital, Boston, Massachusetts (W.T.C.); Department of Medical Oncology and Cancer Vaccine Center, Dana-Farber/Brigham and Women's Cancer Center, Boston, Massachusetts (C.W., E.F.F., G.D.); Department of Medicine, Brigham and Women's Hospital, Boston, Massachusetts (G.D.)
| | - Kai W Wucherpfennig
- Center for Neuro-Oncology, Dana-Farber/Brigham and Women's Cancer Center, Boston, Massachusetts (D.A.R., P.Y.W.); Department of Cancer Immunology and AIDS, Dana-Farber Cancer Institute, Boston, Massachusetts (G.F., C.W., K.W.W.); Department of Medical Oncology, Dana-Farber/Brigham and Women's Cancer Center, Boston, Massachusetts (D.A.R., C.W.); Department of Neurosurgery, Brigham and Women's Hospital, Boston, Massachusetts (E.A.C.); Division of Neuro-Oncology, Department of Neurology, Brigham and Women's Hospital, Boston, Massachusetts (P.Y.W.); Division of Neurosurgery, Department of Surgery, Duke University Medical Center, Durham, North Carolina (J.H.S.); Department of Neurosurgery, Massachusetts General Hospital, Boston, Massachusetts (W.T.C.); Department of Medical Oncology and Cancer Vaccine Center, Dana-Farber/Brigham and Women's Cancer Center, Boston, Massachusetts (C.W., E.F.F., G.D.); Department of Medicine, Brigham and Women's Hospital, Boston, Massachusetts (G.D.)
| | - Patrick Y Wen
- Center for Neuro-Oncology, Dana-Farber/Brigham and Women's Cancer Center, Boston, Massachusetts (D.A.R., P.Y.W.); Department of Cancer Immunology and AIDS, Dana-Farber Cancer Institute, Boston, Massachusetts (G.F., C.W., K.W.W.); Department of Medical Oncology, Dana-Farber/Brigham and Women's Cancer Center, Boston, Massachusetts (D.A.R., C.W.); Department of Neurosurgery, Brigham and Women's Hospital, Boston, Massachusetts (E.A.C.); Division of Neuro-Oncology, Department of Neurology, Brigham and Women's Hospital, Boston, Massachusetts (P.Y.W.); Division of Neurosurgery, Department of Surgery, Duke University Medical Center, Durham, North Carolina (J.H.S.); Department of Neurosurgery, Massachusetts General Hospital, Boston, Massachusetts (W.T.C.); Department of Medical Oncology and Cancer Vaccine Center, Dana-Farber/Brigham and Women's Cancer Center, Boston, Massachusetts (C.W., E.F.F., G.D.); Department of Medicine, Brigham and Women's Hospital, Boston, Massachusetts (G.D.)
| | - Edward F Fritsch
- Center for Neuro-Oncology, Dana-Farber/Brigham and Women's Cancer Center, Boston, Massachusetts (D.A.R., P.Y.W.); Department of Cancer Immunology and AIDS, Dana-Farber Cancer Institute, Boston, Massachusetts (G.F., C.W., K.W.W.); Department of Medical Oncology, Dana-Farber/Brigham and Women's Cancer Center, Boston, Massachusetts (D.A.R., C.W.); Department of Neurosurgery, Brigham and Women's Hospital, Boston, Massachusetts (E.A.C.); Division of Neuro-Oncology, Department of Neurology, Brigham and Women's Hospital, Boston, Massachusetts (P.Y.W.); Division of Neurosurgery, Department of Surgery, Duke University Medical Center, Durham, North Carolina (J.H.S.); Department of Neurosurgery, Massachusetts General Hospital, Boston, Massachusetts (W.T.C.); Department of Medical Oncology and Cancer Vaccine Center, Dana-Farber/Brigham and Women's Cancer Center, Boston, Massachusetts (C.W., E.F.F., G.D.); Department of Medicine, Brigham and Women's Hospital, Boston, Massachusetts (G.D.)
| | - William T Curry
- Center for Neuro-Oncology, Dana-Farber/Brigham and Women's Cancer Center, Boston, Massachusetts (D.A.R., P.Y.W.); Department of Cancer Immunology and AIDS, Dana-Farber Cancer Institute, Boston, Massachusetts (G.F., C.W., K.W.W.); Department of Medical Oncology, Dana-Farber/Brigham and Women's Cancer Center, Boston, Massachusetts (D.A.R., C.W.); Department of Neurosurgery, Brigham and Women's Hospital, Boston, Massachusetts (E.A.C.); Division of Neuro-Oncology, Department of Neurology, Brigham and Women's Hospital, Boston, Massachusetts (P.Y.W.); Division of Neurosurgery, Department of Surgery, Duke University Medical Center, Durham, North Carolina (J.H.S.); Department of Neurosurgery, Massachusetts General Hospital, Boston, Massachusetts (W.T.C.); Department of Medical Oncology and Cancer Vaccine Center, Dana-Farber/Brigham and Women's Cancer Center, Boston, Massachusetts (C.W., E.F.F., G.D.); Department of Medicine, Brigham and Women's Hospital, Boston, Massachusetts (G.D.)
| | - John H Sampson
- Center for Neuro-Oncology, Dana-Farber/Brigham and Women's Cancer Center, Boston, Massachusetts (D.A.R., P.Y.W.); Department of Cancer Immunology and AIDS, Dana-Farber Cancer Institute, Boston, Massachusetts (G.F., C.W., K.W.W.); Department of Medical Oncology, Dana-Farber/Brigham and Women's Cancer Center, Boston, Massachusetts (D.A.R., C.W.); Department of Neurosurgery, Brigham and Women's Hospital, Boston, Massachusetts (E.A.C.); Division of Neuro-Oncology, Department of Neurology, Brigham and Women's Hospital, Boston, Massachusetts (P.Y.W.); Division of Neurosurgery, Department of Surgery, Duke University Medical Center, Durham, North Carolina (J.H.S.); Department of Neurosurgery, Massachusetts General Hospital, Boston, Massachusetts (W.T.C.); Department of Medical Oncology and Cancer Vaccine Center, Dana-Farber/Brigham and Women's Cancer Center, Boston, Massachusetts (C.W., E.F.F., G.D.); Department of Medicine, Brigham and Women's Hospital, Boston, Massachusetts (G.D.)
| | - Glenn Dranoff
- Center for Neuro-Oncology, Dana-Farber/Brigham and Women's Cancer Center, Boston, Massachusetts (D.A.R., P.Y.W.); Department of Cancer Immunology and AIDS, Dana-Farber Cancer Institute, Boston, Massachusetts (G.F., C.W., K.W.W.); Department of Medical Oncology, Dana-Farber/Brigham and Women's Cancer Center, Boston, Massachusetts (D.A.R., C.W.); Department of Neurosurgery, Brigham and Women's Hospital, Boston, Massachusetts (E.A.C.); Division of Neuro-Oncology, Department of Neurology, Brigham and Women's Hospital, Boston, Massachusetts (P.Y.W.); Division of Neurosurgery, Department of Surgery, Duke University Medical Center, Durham, North Carolina (J.H.S.); Department of Neurosurgery, Massachusetts General Hospital, Boston, Massachusetts (W.T.C.); Department of Medical Oncology and Cancer Vaccine Center, Dana-Farber/Brigham and Women's Cancer Center, Boston, Massachusetts (C.W., E.F.F., G.D.); Department of Medicine, Brigham and Women's Hospital, Boston, Massachusetts (G.D.)
| |
Collapse
|
46
|
Hamakubo T, Kusano-Arai O, Iwanari H. Generation of antibodies against membrane proteins. BIOCHIMICA ET BIOPHYSICA ACTA-PROTEINS AND PROTEOMICS 2014; 1844:1920-1924. [PMID: 25135856 DOI: 10.1016/j.bbapap.2014.08.007] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/01/2014] [Revised: 07/30/2014] [Accepted: 08/12/2014] [Indexed: 12/12/2022]
Abstract
The monoclonal antibody has become an important therapeutic in the treatment of both hematological malignancies and solid tumors. The recent success of antibody-drug conjugates (ADCs) has broadened the extent of the potential target molecules in cancer immunotherapy. As a result, even molecules of low abundance have become targets for cytotoxic reagents. The multi-pass membrane proteins are an emerging target for the next generation antibody therapeutics. One outstanding challenge is the difficulty in preparing a sufficient amount of these membrane proteins so as to be able to generate the functional antibody. We have pursued the expression of various membrane proteins on the baculovirus particle and the utilization of displayed protein for immunization. The strong antigenicity of the virus acts either as a friend or foe in the making of an efficient antibody against an immunologically tolerant antigen. This article is part of a Special Issue entitled: Recent advances in molecular engineering of antibody.
Collapse
Affiliation(s)
- Takao Hamakubo
- Department of Quantitative Biology and Medicine, Research Center for Advanced Science and Technology, The University of Tokyo, 4-6-1 Komaba, Meguro, Tokyo 153-8904, Japan.
| | - Osamu Kusano-Arai
- Department of Quantitative Biology and Medicine, Research Center for Advanced Science and Technology, The University of Tokyo, 4-6-1 Komaba, Meguro, Tokyo 153-8904, Japan; Institute of Immunology Co. Ltd, .1-1-10 Koraku, Bunkyo, Tokyo 112-0004, Japan
| | - Hiroko Iwanari
- Department of Quantitative Biology and Medicine, Research Center for Advanced Science and Technology, The University of Tokyo, 4-6-1 Komaba, Meguro, Tokyo 153-8904, Japan
| |
Collapse
|
47
|
Affiliation(s)
- Steven M Albelda
- Thoracic Oncology Research Laboratory, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Steve H Thorne
- University of Pittsburgh Cancer Institute and Departments of Surgery and Immunology, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| |
Collapse
|
48
|
The past and future of CD33 as therapeutic target in acute myeloid leukemia. Blood Rev 2014; 28:143-53. [DOI: 10.1016/j.blre.2014.04.001] [Citation(s) in RCA: 116] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2014] [Revised: 04/11/2014] [Accepted: 04/14/2014] [Indexed: 02/05/2023]
|
49
|
Gedeon PC, Choi BD, Hodges TR, Mitchell DA, Bigner DD, Sampson JH. An EGFRvIII-targeted bispecific T-cell engager overcomes limitations of the standard of care for glioblastoma. Expert Rev Clin Pharmacol 2014; 6:375-86. [PMID: 23927666 DOI: 10.1586/17512433.2013.811806] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
While advanced surgical techniques, radiation therapy and chemotherapeutic regimens provide a tangible benefit for patients with glioblastoma (GBM), the average survival from the time of diagnosis remains less than 15 months. Current therapy for GBM is limited by the nonspecific nature of treatment, prohibiting therapy that is aggressive and prolonged enough to eliminate all malignant cells. As an alternative, bispecific antibodies can redirect the immune system to eliminate malignant cells with exquisite potency and specificity. We have recently developed an EGF receptor variant III (EGFRvIII)-targeted bispecific antibody that redirects T cells to eliminate EGFRvIII-expressing GBM. The absolute tumor specificity of EGFRvIII and the lack of immunologic crossreactivity with healthy cells allow this therapeutic to overcome limitations associated with the nonspecific nature of the current standard of care for GBM. Evidence indicates that the molecule can exert therapeutically significant effects in the CNS following systemic administration. Additional advantages in terms of ease-of-production and off-the-shelf availability further the clinical utility of this class of therapeutics.
Collapse
Affiliation(s)
- Patrick C Gedeon
- Duke Brain Tumor Immunotherapy Program, Division of Neurosurgery, Department of Surgery, Duke University Medical Center, Durham, NC 27710, USA.
| | | | | | | | | | | |
Collapse
|
50
|
Abstract
The experience with gemtuzumab ozogamicin has highlighted both the potential value and limitations of antibodies in acute myeloid leukemia (AML). Recently, bispecific T-cell engager (BiTE) antibodies have emerged as a means to harness polyclonal cytotoxic T-cells and cause highly efficient lysis of targeted tumor cells. Promising early results have been obtained with the CD19-directed BiTE antibody, blinatumomab, in patients with acute lymphoblastic leukemia. A first candidate for AML is the CD33/CD3 molecule, AMG 330, for which several recent preclinical studies demonstrated high potency and efficacy in destroying CD33(+) human AML cells. Many questions remain to be addressed, but BiTE antibodies may offer an exciting new tool in a disease for which the outcomes in many patients remain unsatisfactory.
Collapse
Affiliation(s)
- Roland B Walter
- Clinical Research Division, Fred Hutchinson Cancer Research Center, 1100 Fairview Ave N, D2-190, Seattle, WA 98109-1024, USA
| |
Collapse
|