1
|
Buya AB, Mahlangu P, Witika BA. From lab to industrial development of lipid nanocarriers using quality by design approach. Int J Pharm X 2024; 8:100266. [PMID: 39050378 PMCID: PMC11268122 DOI: 10.1016/j.ijpx.2024.100266] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2024] [Revised: 06/25/2024] [Accepted: 06/29/2024] [Indexed: 07/27/2024] Open
Abstract
Lipid nanocarriers have attracted a great deal of interest in the delivery of therapeutic molecules. Despite their many advantages, compliance with quality standards and reproducibility requirements still constrain their industrial production. The relatively high failure rate in lipid nanocarrier research and development can be attributed to immature bottom-up manufacturing practices, leading to suboptimal control of quality attributes. Recently, the pharmaceutical industry has moved toward quality-driven manufacturing, emphasizing the integration of product and process development through the principles of quality by design. Quality by design in the pharmaceutical industry involves a thorough understanding of the quality profile of the target product and involves an assessment of potential risks during the design and development phases of pharmaceutical dosage forms. By identifying essential quality characteristics, such as the active ingredients, excipients and manufacturing processes used during research and development, it becomes possible to effectively control these aspects throughout the life cycle of the drug. Successful commercialization of lipid nanocarriers can be achieved if large-scale challenges are addressed using the QbD approach. QbD has become an essential tool because of its advantages in improving processes and product quality. The application of the QbD approach to the development of lipid nanocarriers can provide comprehensive and remarkable knowledge enabling the manufacture of high-quality products with a high degree of regulatory flexibility. This article reviews the basic considerations of QbD and its application in the laboratory and large-scale development of lipid nanocarriers. Furthermore, it provides forward-looking guidance for the industrial production of lipid nanocarriers using the QbD approach.
Collapse
Affiliation(s)
- Aristote B. Buya
- Centre de Recherche en Sciences Humaines (CRESH), Ministère de la Recherche Scientifique et Innovation Technologique, Kinshasa XI, B.P. 212, Democratic Republic of the Congo
- University of Kinshasa, Faculty of Pharmaceutical Sciences, BP 212 Kinshasa XI, Democratic Republic of the Congo
| | - Phindile Mahlangu
- Department of Pharmaceutical Science, School of Pharmacy, Sefako Makgatho Health Sciences University, Pretoria, South Africa
| | - Bwalya A. Witika
- Department of Pharmaceutical Science, School of Pharmacy, Sefako Makgatho Health Sciences University, Pretoria, South Africa
| |
Collapse
|
2
|
El-Bakry R, Mahmoud DM, Eskander Attia M, Gamal Fouad A, H Mohammed N, Belal A, Miski SF, Khalid Aref Albezrah N, Abduljabbar MH, Mahmoud TM. Improving the targeting and therapeutic efficacy of anastrazole for the control of breast cancer: In vitro and in vivo characterization. Int J Pharm 2024; 665:124684. [PMID: 39270763 DOI: 10.1016/j.ijpharm.2024.124684] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2024] [Revised: 09/03/2024] [Accepted: 09/07/2024] [Indexed: 09/15/2024]
Abstract
Anastrazole (ASZ) is an effective aromatase inhibitor that is used for breast cancer treatment. Nevertheless, ASZ's effectiveness is diminished due to its low water solubility, unregulated release, absence of targeting, and inadequate patient compliance. The goal of the research was to create a hydrogel formulation of ASZ-loaded invasomes (ALI) to enhance the solubility, permeability, targeting, and efficacy of ASZ while also sustaining its release for treatment of breast cancer. The optimized ALI formulation was determined to be 3%w/v phospholipid, 0.15%w/v cholesterol, 3%v/v ethanol, and 1 %v/v cineole based on the results of the pre-formulation study. After conducting in vitro characterization of the optimum formulation, it was combined with carbopol for in vivo examination of its anti-tumor efficacy in a rat model of 7, 12-dimethylbenzanthracene. Compared to free ASZ, ALI hydrogel increased its penetration by 10.67 times and prolonged its release by 64.02%. Compared to the control positive group, ALI hydrogel reduced tumor volume by 99.19% and mortality by 10.93%. The anti-tumor effect of the ALI hydrogel was demonstrated by its ability to accumulate more ASZ in tumors and reduce hypercellular tumors. Overall, transdermal ALI hydrogel shows potential as a promising approach for treating breast cancer.
Collapse
Affiliation(s)
- Rana El-Bakry
- Department of Pharmacology and Toxicology, EL Saleheya EL Gadida University, EL Saleheya El Gadida, Sharkia, Egypt.
| | - Dina M Mahmoud
- Department of Pharmaceutics, Faculty of Pharmacy, El Saleheya El Gadida University, El Saleheya El Gadida, Sharkia, Egypt; Department of Pharmaceutics, Faculty of Pharmacy, Nahda University, Beni-Suef, Egypt.
| | - Mary Eskander Attia
- Pharmacology Department, Faculty of Medicine, Beni-Suef University, Beni-Suef, Egypt.
| | - Amr Gamal Fouad
- Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy, Beni-Suef University, Beni-Suef, Egypt.
| | - Nada H Mohammed
- Department of Pharmaceutics and Pharmaceutical Technology, Faculty of Pharmacy, Deraya University, Minya, 61768, Egypt.
| | - Amany Belal
- Department of Pharmaceutical Chemistry, College of Pharmacy, Taif University, Taif, 21944, Saudi Arabia.
| | - Samar F Miski
- Pharmacology and Toxicology Department, College of Pharmacy, Taibah University, Medina, Saudi Arabia.
| | | | - Maram H Abduljabbar
- Department of Pharmacology and Toxicology, College of Pharmacy, Taif University, P.O. Box 11099, Taif, 21944, Saudi Arabia.
| | - Tamer M Mahmoud
- Department of Pharmaceutics and Drug Manufacturing, Faculty of Pharmacy, Modern University for Technology and Information, Cairo, Egypt.
| |
Collapse
|
3
|
Kaushik D, Hitaishi P, Kumar A, Sen D, Kamil SM, Ghosh SK. Modulating a model membrane of sphingomyelin by a tricyclic antidepressant drug. Chem Phys Lipids 2024; 263:105419. [PMID: 38964567 DOI: 10.1016/j.chemphyslip.2024.105419] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2024] [Revised: 06/15/2024] [Accepted: 06/28/2024] [Indexed: 07/06/2024]
Abstract
Tricyclic medicine such as amitriptyline (AMT) hydrochloride, initially developed to treat depression, is also used to treat neuropathic pain, anxiety disorder, and migraines. The mechanism of functioning of this type of drugs is ambiguous. Understanding the mechanism is important for designing new drug molecules with higher pharmacological efficiency. Hence, in the present study, biophysical approaches have been taken to shed light on their interactions with a model cellular membrane of brain sphingomyelin in the form of monolayer and multi-lamellar vesicles. The surface pressure-area isotherm infers the partitioning of a drug molecule into the lipid monolayer at the air water interface, providing a higher surface area per molecule and reducing the in-plane elasticity. Further, the surface electrostatic potential of the lipid monolayer is found to increase due to the insertion of drug molecule. The interfacial rheology revealed a reduction of the in-plane viscoelasticity of the lipid film, which, depends on the adsorption of the drug molecule onto the film. Small-angle X-ray scattering (SAXS) measurements on multilamellar vesicles (MLVs) have revealed that the AMT molecules partition into the hydrophobic core of the lipid membrane, modifying the organization of lipids in the membrane. The modified physical state of less rigid membrane and the transformed electrostatics of the membrane could influence its interaction with synaptic vesicles and neurotransmitters making higher availability of the neurotransmitters in the synaptic cleft.
Collapse
Affiliation(s)
- Devansh Kaushik
- Department of Physics, School of Natural Sciences, Shiv Nadar Institution of Eminence, NH 91, Tehsil Dadri, Uttar Pradesh 201214, India
| | - Prashant Hitaishi
- Department of Physics, School of Natural Sciences, Shiv Nadar Institution of Eminence, NH 91, Tehsil Dadri, Uttar Pradesh 201214, India
| | - Ashwani Kumar
- Solid State Physics Division, Bhabha Atomic Research Centre, Trombay, Mumbai 400085, India
| | - Debasis Sen
- Solid State Physics Division, Bhabha Atomic Research Centre, Trombay, Mumbai 400085, India; Homi Bhabha National Institute, Anushaktinagar, Mumbai 400094, India
| | - Syed M Kamil
- Department of Physics, School of Natural Sciences, Shiv Nadar Institution of Eminence, NH 91, Tehsil Dadri, Uttar Pradesh 201214, India
| | - Sajal K Ghosh
- Department of Physics, School of Natural Sciences, Shiv Nadar Institution of Eminence, NH 91, Tehsil Dadri, Uttar Pradesh 201214, India.
| |
Collapse
|
4
|
Rahman RT, Koo BI, Jang J, Lee DJ, Choi S, Lee JB, Nam YS. Multilayered collagen-lipid hybrid nanovesicles for retinol stabilization and efficient skin delivery. Int J Pharm 2024; 661:124409. [PMID: 38955241 DOI: 10.1016/j.ijpharm.2024.124409] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2024] [Revised: 06/15/2024] [Accepted: 06/29/2024] [Indexed: 07/04/2024]
Abstract
Lipid-based nanocarriers have been extensively utilized for the solubilization and cutaneous delivery of water-insoluble active ingredients in skincare formulations. However, their practical application is often limited by structural instability, leading to premature release and degradation of actives. Here we present highly robust multilamellar nanovesicles, prepared by the polyionic self-assembly of unilamellar vesicles with hydrolyzed collagen peptides, to stabilize all-trans-retinol and enhance its cutaneous delivery. Our results reveal that the reinforced multilayer structure substantially enhances dispersion stability under extremely harsh conditions, like freeze-thaw cycles, and stabilizes the encapsulated retinol. Interestingly, these multilamellar vesicles exhibit significantly lower cytotoxicity to human dermal fibroblasts than their unilamellar counterparts, likely due to their smaller particle number per weight, minimizing potential disruptions to cellular membranes. In artificial skin models, retinol-loaded multilamellar vesicles effectively upregulate collagen-related gene expression while suppressing the synthesis of metalloproteinases. These findings suggest that the robust multilamellar vesicles can serve as effective nanocarriers for the efficient delivery and stabilization of bioactive compounds in cutaneous applications.
Collapse
Affiliation(s)
- Rafia Tasnim Rahman
- Department of Materials Science and Engineering, Korea Advanced Institute of Science and Technology, 291 Daehak-ro, Daejeon 34141, Republic of Korea
| | - Bon Il Koo
- Department of Materials Science and Engineering, Korea Advanced Institute of Science and Technology, 291 Daehak-ro, Daejeon 34141, Republic of Korea
| | - Jihui Jang
- Innovation Lab, Cosmax Research & Innovation Center, 662 Sampyong-dong, Bundang-gu, Seongnam, Gyeonggi-do 13486, Republic of Korea
| | - Dong Jae Lee
- Department of Materials Science and Engineering, Korea Advanced Institute of Science and Technology, 291 Daehak-ro, Daejeon 34141, Republic of Korea
| | - Saehan Choi
- Department of Materials Science and Engineering, Korea Advanced Institute of Science and Technology, 291 Daehak-ro, Daejeon 34141, Republic of Korea
| | - Jun Bae Lee
- Innovation Lab, Cosmax Research & Innovation Center, 662 Sampyong-dong, Bundang-gu, Seongnam, Gyeonggi-do 13486, Republic of Korea.
| | - Yoon Sung Nam
- Department of Materials Science and Engineering, Korea Advanced Institute of Science and Technology, 291 Daehak-ro, Daejeon 34141, Republic of Korea; Department of Biological Sciences, Korea Advanced Institute of Science and Technology, 291 Daehak-ro, Daejeon 34141, Republic of Korea.
| |
Collapse
|
5
|
Akl MA, Eldeen MA, Kassem AM. Beyond Skin Deep: Phospholipid-Based Nanovesicles as Game-Changers in Transdermal Drug Delivery. AAPS PharmSciTech 2024; 25:184. [PMID: 39138693 DOI: 10.1208/s12249-024-02896-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2024] [Accepted: 07/15/2024] [Indexed: 08/15/2024] Open
Abstract
Transdermal administration techniques have gained popularity due to their advantages over oral and parenteral methods. Noninvasive, self-administered delivery devices improve patient compliance and control drug release. Transdermal delivery devices struggle with the skin's barrier function. Molecules over 500 Dalton (Da) and ionized compounds don't permeate through the skin. Drug encapsulation in phospholipid-based vesicular systems is the most effective skin delivery technique. Vesicular carriers include bi-layered liposomes, ultra-deformable liposomes, ethanolic liposomes, transethosomes, and invasomes. These technologies enhance skin drug permeation by increasing formula solubilization, partitioning into the skin, and fluidizing the lipid barrier. Phospholipid-based delivery systems are safe and efficient, making them a promising pharmaceutical and cosmeceutical drug delivery technique. Still, making delivery systems requires knowledge about the physicochemical properties of the drug and carrier, manufacturing and process variables, skin delivery mechanisms, technological advances, constraints, and regulatory requirements. Consequently, this review covers recent research achievements addressing the mentioned concerns.
Collapse
Affiliation(s)
- Mohamed A Akl
- Department of Pharmaceutics and Pharmaceutical Technology, Faculty of Pharmacy (Boys), Al-Azhar University, Nasr City, Cairo, Egypt.
- Department of Pharmaceutics, College of Pharmacy, The Islamic University, Najaf, 54001, Iraq.
| | - Muhammad Alaa Eldeen
- Cell Biology, Histology, & Genetics Division, Zoology Department, Faculty of Science, Zagazig University, Alsharquia, 7120001, Egypt
| | - Abdulsalam M Kassem
- Department of Pharmaceutics and Pharmaceutical Technology, Faculty of Pharmacy (Boys), Al-Azhar University, Nasr City, Cairo, Egypt.
| |
Collapse
|
6
|
An P, Zhao Q, Hao S, Wang X, Tian J, Ma Z. Recent Advancements and Trends of Topical Drug Delivery Systems in Psoriasis: A Review and Bibliometric Analysis. Int J Nanomedicine 2024; 19:7631-7671. [PMID: 39099792 PMCID: PMC11296365 DOI: 10.2147/ijn.s461514] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2024] [Accepted: 07/04/2024] [Indexed: 08/06/2024] Open
Abstract
Psoriasis is an immune-mediated inflammatory skin disease where topical therapy is crucial. While various dosage forms have enhanced the efficacy of current treatments, their limited permeability and lack of targeted delivery to the dermis and epidermis remain challenges. We reviewed the evolution of topical therapies for psoriasis and conducted a bibliometric analysis from 1993 to 2023 using a predictive linear regression model. This included a comprehensive statistical and visual evaluation of each model's validity, literature profiles, citation patterns, and collaborations, assessing R variance and mean squared error (MSE). Furthermore, we detailed the structural features and penetration pathways of emerging drug delivery systems for topical treatment, such as lipid-based, polymer-based, metallic nanocarriers, and nanocrystals, highlighting their advantages. This systematic overview indicates that future research should focus on developing novel drug delivery systems characterized by enhanced stability, biocompatibility, and drug-carrying capacity.
Collapse
Affiliation(s)
- Pingyu An
- Basic Medical College, Harbin Medical University, Harbin, People’s Republic of China
| | - Qiyue Zhao
- School of Nursing, Southern Medical University, Guangzhou, People’s Republic of China
| | - Siyu Hao
- Department of Dermatology, the Second Affiliated Hospital of Harbin Medical University, Harbin, People’s Republic of China
| | - Xiaodong Wang
- Department of Ultrasound, Harbin Medical University Cancer Hospital, Harbin, People’s Republic of China
| | - Jiangtian Tian
- Department of Cardiology, the Second Affiliated Hospital of Harbin Medical University, Harbin, People’s Republic of China
- The Key Laboratory of Myocardial Ischemia, Chinese Ministry of Education, Harbin, People’s Republic of China
| | - Zhiqiang Ma
- Department of Dermatology, the Second Affiliated Hospital of Harbin Medical University, Harbin, People’s Republic of China
| |
Collapse
|
7
|
Arpa MD, Çağlar EŞ, Güreşçi D, Sipahi H, Üstündağ Okur N. Novel Microemulsion Containing Benzocaine and Fusidic Acid Simultaneously: Formulation, Characterization, and In Vitro Evaluation for Wound Healing. AAPS PharmSciTech 2024; 25:53. [PMID: 38443698 DOI: 10.1208/s12249-024-02762-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2023] [Accepted: 02/06/2024] [Indexed: 03/07/2024] Open
Abstract
Modern drug carrier technologies, such as microemulsions with small droplet sizes and high surface areas, improve the ability of low water solubility active ingredients to permeate and localize. The goal of this study was to create microemulsion formulations for wound healing that contained both fusidic acid (FA), an antibacterial agent, and benzocaine (BNZ), a local anesthetic. Studies on characterization were carried out, including viscosity, droplet size, and zeta potential. The drug-loaded microemulsion had a stable structure with -3.014 ± 1.265 mV of zeta potential and 19.388 ± 0.480 nm of droplet size. In both in vitro release and ex vivo permeability studies, the microemulsion was compared with Fucidin cream and oily BNZ solution. According to the drug release studies, BNZ release from the microemulsion and the BNZ solution showed a similar profile (p > 0.05), while FA release from the microemulsion had a higher drug release compared to Fucidin cream (p < 0.001). The microemulsion presented lower drug permeation (p > 0.05) for both active ingredients, on the other hand, provided higher drug accumulation compared to the control preparations. Moreover, according to the results of in vitro wound healing activity, the microemulsion indicated a dose-dependent wound healing potential with the highest wound healing activity at the highest concentrations. To the best of our knowledge, this developed BNZ- and FA-loaded microemulsion would be a promising candidate to create new opportunities for wound healing thanks to present the active ingredients, which have low water solubility, in a single formulation and achieved higher accumulation than control preparations.
Collapse
Affiliation(s)
- Muhammet Davut Arpa
- Department of Pharmaceutical Technology, School of Pharmacy, Istanbul Medipol University, 34815, Istanbul, Turkey
| | - Emre Şefik Çağlar
- Department of Pharmaceutical Biotechnology, Faculty of Pharmacy, University of Health Sciences, 34668, Istanbul, Turkey
| | - Dilara Güreşçi
- Department of Pharmaceutical Toxicology, Faculty of Pharmacy, Yeditepe University, 34755, Istanbul, Turkey
| | - Hande Sipahi
- Department of Pharmaceutical Toxicology, Faculty of Pharmacy, Yeditepe University, 34755, Istanbul, Turkey
| | - Neslihan Üstündağ Okur
- Department of Pharmaceutical Technology, Faculty of Pharmacy, University of Health Sciences, 34668, Istanbul, Turkey.
| |
Collapse
|
8
|
Fadaei MS, Fadaei MR, Kheirieh AE, Rahmanian-Devin P, Dabbaghi MM, Nazari Tavallaei K, Shafaghi A, Hatami H, Baradaran Rahimi V, Nokhodchi A, Askari VR. Niosome as a promising tool for increasing the effectiveness of anti-inflammatory compounds. EXCLI JOURNAL 2024; 23:212-263. [PMID: 38487088 PMCID: PMC10938253 DOI: 10.17179/excli2023-6868] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Figures] [Subscribe] [Scholar Register] [Received: 12/06/2023] [Accepted: 01/16/2024] [Indexed: 03/17/2024]
Abstract
Niosomes are drug delivery systems with widespread applications in pharmaceutical research and the cosmetic industry. Niosomes are vesicles of one or more bilayers made of non-ionic surfactants, cholesterol, and charge inducers. Because of their bilayer characteristics, similar to liposomes, niosomes can be loaded with lipophilic and hydrophilic cargos. Therefore, they are more stable and cheaper in preparation than liposomes. They can be classified into four categories according to their sizes and structures, namely small unilamellar vesicles (SUVs), large unilamellar vesicles (LUVs,), multilamellar vesicles (MLVs), and multivesicular vesicles (MVVs). There are many methods for niosome preparation, such as thin-film hydration, solvent injection, and heating method. The current study focuses on the preparation methods and pharmacological effects of niosomes loaded with natural and chemical anti-inflammatory compounds in kinds of literature during the past decade. We found that most research was carried out to load anti-inflammatory agents like non-steroidal anti-inflammatory drugs (NSAIDs) into niosome vesicles. The studies revealed that niosomes could improve anti-inflammatory agents' physicochemical properties, including solubility, cellular uptake, stability, encapsulation, drug release and liberation, efficiency, and oral bioavailability or topical absorption. See also the graphical abstract(Fig. 1).
Collapse
Affiliation(s)
- Mohammad Saleh Fadaei
- Applied Biomedical Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Mohammad Reza Fadaei
- Department of Pharmaceutics, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Amir Emad Kheirieh
- Department of Pharmaceutics, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Pouria Rahmanian-Devin
- Applied Biomedical Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
- Department of Pharmaceutics, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
| | | | | | - Abouzar Shafaghi
- Department of Pharmaceutical Biotechnology, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Hooman Hatami
- Department of Pharmaceutics, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Vafa Baradaran Rahimi
- Department of Cardiovascular Diseases, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Ali Nokhodchi
- Lupin Pharmaceutical Research Center, 4006 NW 124th Ave., Coral Springs, Florida, FL 33065, USA
- Pharmaceutics Research Laboratory, School of Life Sciences, University of Sussex, Brighton BN1 9QJ, UK
| | - Vahid Reza Askari
- Applied Biomedical Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| |
Collapse
|
9
|
Amisha, Singh D, Kurmi BD, Singh A. Recent Advances in Nanocarrier-based Approaches to Atopic Dermatitis and Emerging Trends in Drug Development and Design. Curr Drug Deliv 2024; 21:932-960. [PMID: 37157192 DOI: 10.2174/1567201820666230508121716] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2022] [Revised: 02/25/2023] [Accepted: 03/17/2023] [Indexed: 05/10/2023]
Abstract
Atopic dermatitis (AD), commonly known as Eczema, is a non-communicable skin condition that tends to become chronic. The deteriorating immunological abnormalities are marked by mild to severe erythema, severe itching, and recurrent eczematous lesions. Different pharmacological approaches are used to treat AD. The problem with commercial topical preparations lies in the limitation of skin atrophy, systemic side effects, and burning sensation that decreases patient compliance. The carrier-based system promises to eliminate these shortcomings; thus, a novel approach to treating AD is required. Liposomes, microemulsions, solid lipid nanoparticles (SLNs), nanoemulsions, etc., have been developed recently to address this ailment. Despite extensive research in the development method and various techniques, it has been challenging to demonstrate the commercial feasibility of these carrier- based systems, which illustrates a gap among the different research areas. Further, different soft wares and other tools have proliferated among biochemists as part of a cooperative approach to drug discovery. It is crucial in designing, developing, and analyzing processes in the pharmaceutical industry and is widely used to reduce costs, accelerate the development of biologically innovative active ingredients, and shorten the development time. This review sheds light on the compilation of extensive efforts to combat this disease, the product development processes, commercial products along with patents in this regard, numerous options for each step of computer-aided drug design, including in silico pharmacokinetics, pharmacodynamics, and toxicity screening or predictions that are important in finding the drug-like compounds.
Collapse
Affiliation(s)
- Amisha
- Department of Pharmaceutics, ISF College of Pharmacy, Moga, 142001, India
| | - Dilpreet Singh
- Department of Pharmaceutics, ISF College of Pharmacy, Moga, 142001, India
| | - Balak Das Kurmi
- Department of Pharmaceutics, ISF College of Pharmacy, Moga, 142001, India
| | - Amrinder Singh
- Department of Pharmaceutics, ISF College of Pharmacy, Moga, 142001, India
| |
Collapse
|
10
|
Ahuja A, Bajpai M. Nanoformulations Insights: A Novel Paradigm for Antifungal Therapies and Future Perspectives. Curr Drug Deliv 2024; 21:1241-1272. [PMID: 37859317 DOI: 10.2174/0115672018270783231002115728] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2023] [Revised: 08/25/2023] [Accepted: 09/11/2023] [Indexed: 10/21/2023]
Abstract
Currently, fungal infections are becoming more prevalent worldwide. Subsequently, many antifungal agents are available to cure diseases like pemphigus, athlete's foot, acne, psoriasis, hyperpigmentation, albinism, and skin cancer. Still, they fall short due to pitfalls in physiochemical properties. Conventional medications like lotion, creams, ointments, poultices, and gels are available for antifungal therapy but present many shortcomings. They are associated with drug retention and poor penetration problems, resulting in drug resistance, hypersensitivity, and diminished efficacy. On the contrary, nanoformulations have gained tremendous potential in overcoming the drawbacks of conventional delivery. Furthermore, the potential breakthroughs of nanoformulations are site-specific targeting. It has improved bioavailability, patient-tailored approach, reduced drug retention and hypersensitivity, and improved skin penetration. Nowadays, nanoformulations are gaining popularity for antifungal therapy against superficial skin infections. Nanoformulations-based liposomes, niosomes, nanosponges, solid lipid nanoparticles, and potential applications have been explored for antifungal therapy due to enhanced activity and reduced toxicity. Researchers are now more focused on developing patient-oriented target-based nano delivery to cover the lacunas of conventional treatment with higher immune stimulatory effects. Future direction involves the construction of novel nanotherapeutic devices, nanorobotics, and robust methods. In addition, for the preparations of nanoformulations for clinical studies, animal modeling solves the problems of antifungal therapy. This review describes insights into various superficial fungal skin infections and their potential applications, nanocarrier-based drug delivery, and mechanism of action. In addition, it focuses on regulatory considerations, pharmacokinetic and pharmacodynamic studies, clinical trials, patents, challenges, and future inputs for researchers to improve antifungal therapy.
Collapse
Affiliation(s)
- Ashima Ahuja
- Institute of Pharmaceutical Research, GLA University, Mathura, Uttar Pradesh 281406, India
| | - Meenakshi Bajpai
- Institute of Pharmaceutical Research, GLA University, Mathura, Uttar Pradesh 281406, India
| |
Collapse
|
11
|
Tafish AM, El-Sherbiny M, Al‐Karmalawy AA, Soliman OAEA, Saleh NM. Carvacrol-Loaded Phytosomes for Enhanced Wound Healing: Molecular Docking, Formulation, DoE-Aided Optimization, and in vitro/in vivo Evaluation. Int J Nanomedicine 2023; 18:5749-5780. [PMID: 37849641 PMCID: PMC10578319 DOI: 10.2147/ijn.s421617] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2023] [Accepted: 10/01/2023] [Indexed: 10/19/2023] Open
Abstract
Background Despite recent advances in wound healing products, phytochemicals have been considered promising and attractive alternatives. Carvacrol (CAR), a natural phenolic compound, has been reported to be effective in wound healing. Purpose This work endeavored to develop novel CAR-loaded phytosomes for the enhancement of the wound healing process. Methods Molecular docking was performed to compare the affinities of the different types of phospholipids to CAR. Phytosomes were prepared by three methods (thin-film hydration, cosolvency, and salting out) using Lipoid S100 and Phospholipon 90H with three levels of saturation percent (0%, 50%, and 100%), and three levels of phospholipid molar percent (66.67%, 75%, and 80%). The optimization was performed using Design Expert where particle size, polydispersity index, and zeta potential were chosen as dependent variables. The optimized formula (F1) was further investigated regarding entrapment efficiency, TEM, 1H-NMR, FT-IR, DSC, X-RD, in vitro release, ex vivo permeation, and stability. Furthermore, it was incorporated into a hydrogel formulation, and an in vivo study was conducted to investigate the wound-healing properties of F1. Results F1 was chosen as the optimized formula prepared via the thin-film hydration method with a saturation percent and a phospholipid molar percent of zero and 66.67, respectively. TEM revealed the spherical shape of phytosomal vesicles with uniform size, while the results of 1H-NMR, FT-IR, DSC, and X-RD confirmed the formation of the phytosomal complex. F1 demonstrated a higher in vitro release and a slower permeation than free CAR. The wound area of F1-treated animals showed a marked reduction associated with a high degree of collagen fiber deposition and enhanced cellular proliferation. Conclusion F1 can be considered as a promising remedy for the enhancement of wound healing and hence it would be hoped to undergo further investigation.
Collapse
Affiliation(s)
- Ahmed Mowafy Tafish
- Department of Pharmaceutics, Faculty of Pharmacy, Mansoura University, Mansoura, 35516, Egypt
- Department of Pharmaceutical Technology, Faculty of Pharmacy, Horus University, New Damietta, 34518, Egypt
| | - Mohamed El-Sherbiny
- Department of Basic Medical Sciences, College of Medicine, AlMaarefa University, Riyadh, Saudi Arabia
- Department of Anatomy, Faculty of Medicine, Mansoura University, Mansoura, 35516, Egypt
| | - Ahmed A Al‐Karmalawy
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Horus University, New Damietta, 34518, Egypt
- Pharmaceutical Chemistry Department, Faculty of Pharmacy, Ahram Canadian University, 6th of October City, Giza, 12566, Egypt
| | | | - Noha Mohamed Saleh
- Department of Pharmaceutics, Faculty of Pharmacy, Mansoura University, Mansoura, 35516, Egypt
| |
Collapse
|
12
|
Singh S, Shukla R. Nanovesicular-Mediated Intranasal Drug Therapy for Neurodegenerative Disease. AAPS PharmSciTech 2023; 24:179. [PMID: 37658972 DOI: 10.1208/s12249-023-02625-5] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2023] [Accepted: 07/25/2023] [Indexed: 09/05/2023] Open
Abstract
Numerous neurodegenerative conditions, such as Alzheimer's, Huntington's, Parkinson's, amyotrophic lateral sclerosis, and glioblastoma multiform are now becoming significant concerns of global health. Formulation-related issues, physiological and anatomical barriers, post-administration obstacles, physical challenges, regulatory limitations, environmental hurdles, and health and safety issues have all hindered successful delivery and effective outcomes despite a variety of treatment options. In the current review, we covered the intranasal route, an alternative strategic route targeting brain for improved delivery across the BBB. The trans-nasal pathway is non-invasive, directing therapeutics directly towards brain, circumventing the barrier and reducing peripheral exposure. The delivery of nanosized vesicles loaded with drugs was also covered in the review. Nanovesicle systems are organised in concentric bilayered lipid membranes separated with aqueous layers. These carriers surmount the disadvantages posed by intranasal delivery of rapid mucociliary clearance and enzymatic degradation, and enhance retention of drug to reach the site of target. In conclusion, the review covers in-depth conclusions on numerous aspects of formulation of drug-loaded vesicular system delivery across BBB, current marketed nasal devices, significant jeopardies, potential therapeutic aids, and current advancements followed by future perspectives.
Collapse
Affiliation(s)
- Shalu Singh
- Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research-Raebareli, Bijnor-Sisendi Road, Sarojini Nagar, Near CRPF Base Camp, Lucknow, UP, 226002, India
| | - Rahul Shukla
- Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research-Raebareli, Bijnor-Sisendi Road, Sarojini Nagar, Near CRPF Base Camp, Lucknow, UP, 226002, India.
| |
Collapse
|
13
|
Garrós N, Bustos-Salgados P, Domènech Ò, Rodríguez-Lagunas MJ, Beirampour N, Mohammadi-Meyabadi R, Mallandrich M, Calpena AC, Colom H. Baricitinib Lipid-Based Nanosystems as a Topical Alternative for Atopic Dermatitis Treatment. Pharmaceuticals (Basel) 2023; 16:894. [PMID: 37375841 DOI: 10.3390/ph16060894] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2023] [Revised: 06/15/2023] [Accepted: 06/15/2023] [Indexed: 06/29/2023] Open
Abstract
Atopic dermatitis (AD) is a chronic autoimmune inflammatory skin disorder which causes a significant clinical problem due to its prevalence. The ongoing treatment for AD is aimed at improving the patient's quality of life. Additionally, glucocorticoids or immunosuppressants are being used in systemic therapy. Baricitinib (BNB) is a reversible Janus-associated kinase (JAK)-inhibitor; JAK is an important kinase involved in different immune responses. We aimed at developing and evaluating new topical liposomal formulations loaded with BNB for the treatment of flare ups. Three liposomal formulations were elaborated using POPC (1-palmitoyl-2-oleoyl-glycero-3-phosphocholine), CHOL (Cholesterol) and CER (Ceramide) in different proportions: (i) POPC, (ii) POPC:CHOL (8:2, mol/mol) and (iii) POPC:CHOL:CER (3.6:2.4:4.0 mol/mol/mol). They were physiochemically characterized over time. In addition, an in vitro release study, ex vivo permeation and retention studies in altered human skin (AHS) were also performed. Histological analysis was used to study the tolerance of the formulations on the skin. Lastly, the HET-CAM test was also performed to evaluate the irritancy capacity of the formulations, and the modified Draize test was performed to evaluate the erythema and edema capacity of the formulations on the altered skin. All liposomes showed good physicochemical properties and were stable for at least one month. POPC:CHOL:CER had the highest flux and permeation, and the retention in the skin was equal to that of POPC:CHOL. The formulations exhibited no harmful or irritating effects, and the histological examination revealed no changes in structure. The three liposomes have shown promising results for the aim of the study.
Collapse
Affiliation(s)
- Núria Garrós
- Departament de Farmàcia i Tecnologia Farmacèutica, i Fisicoquímica, Facultat de Farmàcia i Ciències de l'Alimentació, Universitat de Barcelona (UB), 08028 Barcelona, Spain
- Institut de Nanociència i Nanotecnologia, Universitat de Barcelona (UB), 645 Diagonal Avenue, 08028 Barcelona, Spain
| | - Paola Bustos-Salgados
- Departament de Farmàcia i Tecnologia Farmacèutica, i Fisicoquímica, Facultat de Farmàcia i Ciències de l'Alimentació, Universitat de Barcelona (UB), 08028 Barcelona, Spain
| | - Òscar Domènech
- Departament de Farmàcia i Tecnologia Farmacèutica, i Fisicoquímica, Facultat de Farmàcia i Ciències de l'Alimentació, Universitat de Barcelona (UB), 08028 Barcelona, Spain
- Institut de Nanociència i Nanotecnologia, Universitat de Barcelona (UB), 645 Diagonal Avenue, 08028 Barcelona, Spain
| | - María José Rodríguez-Lagunas
- Departament de Bioquímica i Fisiologia, Facultat de Farmàcia i Ciències de l'Alimentació, Universitat de Barcelona (UB), Av. Joan XXIII, 08028 Barcelona, Spain
| | - Negar Beirampour
- Departament de Farmàcia i Tecnologia Farmacèutica, i Fisicoquímica, Facultat de Farmàcia i Ciències de l'Alimentació, Universitat de Barcelona (UB), 08028 Barcelona, Spain
| | - Roya Mohammadi-Meyabadi
- Departament de Farmàcia i Tecnologia Farmacèutica, i Fisicoquímica, Facultat de Farmàcia i Ciències de l'Alimentació, Universitat de Barcelona (UB), 08028 Barcelona, Spain
- Institut de Nanociència i Nanotecnologia, Universitat de Barcelona (UB), 645 Diagonal Avenue, 08028 Barcelona, Spain
| | - Mireia Mallandrich
- Departament de Farmàcia i Tecnologia Farmacèutica, i Fisicoquímica, Facultat de Farmàcia i Ciències de l'Alimentació, Universitat de Barcelona (UB), 08028 Barcelona, Spain
- Institut de Nanociència i Nanotecnologia, Universitat de Barcelona (UB), 645 Diagonal Avenue, 08028 Barcelona, Spain
| | - Ana C Calpena
- Departament de Farmàcia i Tecnologia Farmacèutica, i Fisicoquímica, Facultat de Farmàcia i Ciències de l'Alimentació, Universitat de Barcelona (UB), 08028 Barcelona, Spain
- Institut de Nanociència i Nanotecnologia, Universitat de Barcelona (UB), 645 Diagonal Avenue, 08028 Barcelona, Spain
| | - Helena Colom
- Departament de Farmàcia i Tecnologia Farmacèutica, i Fisicoquímica, Facultat de Farmàcia i Ciències de l'Alimentació, Universitat de Barcelona (UB), 08028 Barcelona, Spain
| |
Collapse
|
14
|
Izhar MP, Hafeez A, Kushwaha P, Simrah. Drug Delivery Through Niosomes: A Comprehensive Review with Therapeutic Applications. J CLUST SCI 2023. [DOI: 10.1007/s10876-023-02423-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/28/2023]
|
15
|
Adnan M, Haider MF, Naseem N, Haider T. Transethosomes: A Promising Challenge for Topical Delivery Short Title: Transethosomes for Topical Delivery. Drug Res (Stuttg) 2023; 73:200-212. [PMID: 36736354 DOI: 10.1055/a-1974-9078] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Skin provides an excellent barrier to molecular transport, as the stratum corneum is the most formidable barrier to the passage of most pharmaceuticals. Various attempts have been made to improve drug administration into the body through intact skin. Though very few routes are as attractive as the topical route, drug transport through the skin is challenging. To overcome the challenges, researchers have found a system in which the drug is encapsulated into the vesicle, penetrating deeper into the skin to hit the target site. Vesicular systems like transethosome, an ultra- deformable vesicle (UDV), tend to accumulate in the skin layers. Since transethosomes have small particle size and can easily alter the shape of vesicles compared to other vesicular systems, they can penetrate through the layers of skin. Hence, the drug encapsulated into transethosomes can easily reach the target site. Transethosomes consist of ethanol and phospholipids along with an edge activator. Ethanol and edge activator help to enhance the skin permeation of transethosomes. Various methods of preparation of transethosomes, comparison of transethosomes with other lipid vesicles, characterization of transethosomes, and application of transethosomes have been covered in this review. Transethosomes can deliver a different variety of drugs, such as anticancer, corticosteroids, proteins and peptides, analgesics.
Collapse
Affiliation(s)
- Mohammad Adnan
- Faculty of Pharmacy, Integral University, Lucknow, India
| | | | - Nazish Naseem
- Faculty of Pharmacy, Integral University, Lucknow, India
| | - Tanweer Haider
- Amity Institute of Pharmacy, Amity University, Gwalior, Madhya Pradesh, India
| |
Collapse
|
16
|
Adnan M, Afzal O, S A Altamimi A, Alamri MA, Haider T, Faheem Haider M. Development and optimization of transethosomal gel of apigenin for topical delivery: In-vitro, ex-vivo and cell line assessment. Int J Pharm 2023; 631:122506. [PMID: 36535455 DOI: 10.1016/j.ijpharm.2022.122506] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2022] [Revised: 12/10/2022] [Accepted: 12/14/2022] [Indexed: 12/23/2022]
Abstract
The main aim of this study was to optimize the transethosomes of apigenin formulated by the thin film hydration method using surfactant Span 80. Response surface Box-Behnken design with three levels of three factors was used to design and optimize the formulations. The prepared transethosomal formulations were characterized for entrapment efficiency, vesicle size, and flux to obtain the optimized formulation batch. The optimized batch was further incorporated into the gel and characterized for the in-vitro, ex-vivo, and cytotoxic studies. The result showed the optimized transethosomes were smooth, nanosized, unilamellar, and spherical with an entrapment efficiency of 78.75 ± 3.14 %, a vesicle size of 108.75 ± 2.31 nm, and a flux of 4.10 ± 0.63 µg/cm2/h. In-vitro cumulative drug release of transethosomal gel of apigenin (TEL gel) and the conventional gel was 92.25 ± 3.5 % and 53.40 ± 3.10 %, respectively, after 24 h study. Ex-vivo permeation of TEL gel and conventional gel showed 86.20 ± 3.60 % and 51.20 ± 3.20 % permeation of apigenin at 24 h, respectively. A cytotoxic study confirmed that TEL gel significantly reduces cell viability compared to conventional gel. The results suggested that topical application of apigenin transethosomal gel may be a better treatment strategy for skin cancer because of the prolonged sustained release of the drug and the better permeability of apigenin through the skin.
Collapse
Affiliation(s)
- Mohammad Adnan
- Faculty of Pharmacy, Integral University, Lucknow 226026, India.
| | - Obaid Afzal
- Department of Pharmaceutical Chemistry, College of Pharmacy, Prince Sattam Bin Abdulaziz University, Al-Kharj 11942, Saudi Arabia.
| | - Abdulmalik S A Altamimi
- Department of Pharmaceutical Chemistry, College of Pharmacy, Prince Sattam Bin Abdulaziz University, Al-Kharj 11942, Saudi Arabia.
| | - Mubarak A Alamri
- Department of Pharmaceutical Chemistry, College of Pharmacy, Prince Sattam Bin Abdulaziz University, Al-Kharj 11942, Saudi Arabia.
| | - Tanweer Haider
- Amity Institute of Pharmacy, Amity University, Gwalior, Madhya Pradesh 474005, India.
| | - Md Faheem Haider
- Faculty of Pharmacy, Integral University, Lucknow 226026, India.
| |
Collapse
|
17
|
Salimi A, Mohammad Soleymani H, Mohammad Soleymani S. Altered Skin Permeation of Finasteride Using Clove Oil, Urea, and Lyophilized Powder of Grape Seed Extract. Adv Pharm Bull 2023; 13:96-103. [PMID: 36721808 PMCID: PMC9871283 DOI: 10.34172/apb.2023.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2020] [Revised: 10/04/2021] [Accepted: 12/31/2021] [Indexed: 02/03/2023] Open
Abstract
Purpose: Finasteride is a 5-alpha reductase inhibitor used to treat hair loss and acne. The skin permeation of finasteride is one of the main challenges associated with dermal drug delivery. One way to overcome the skin barrier is to use penetration enhancers. The purpose of this study was to investigate the effect of some penetration enhancers on finasteride permeability on the skin, as well as the effect of pretreatment time on their efficacy. Methods: In order to determine the effect of penetration enhancers on the skin permeability of finasteride, the skin was exposed to clove oil, urea, and lyophilized powder of grape seed extract (LPGSE) at different pretreatment times (2, 4 h), and then the permeability parameters were determined by passing the drug through the skin. Results: The results of this study showed that clove oil, urea, and LPGSE increased the transfer of finasteride from the skin. The highest rate of permeation was observed with clove oil (4 h), and the least permeability was observed with urea (4 h). Conclusion: Increasing the pretreatment time with clove oil and LPGSE increases the permeability of finasteride. Meanwhile, the increase in pretreatment time with urea reduces the penetration of finasteride from the skin due to reversible effects.
Collapse
Affiliation(s)
- Anayatollah Salimi
- Nanotechnology Research Center, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, IR Iran.,Department of Pharmaceutics, School of Pharmacy, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, IR Iran
| | - Hamid Mohammad Soleymani
- Petroleum Research Laboratory, School of Chemical Engineering, Iran University of Science and Technology, Tehran, Iran
| | - Saeed Mohammad Soleymani
- Department of Clinical Pharmacy, School of Pharmacy, Shahid Beheshti University of Medical Sciences, Tehran, Iran.,Corresponding Author: Saeed Mohammad Soleymani,
| |
Collapse
|
18
|
Eita AS, M. A. Makky A, Anter A, Khalil IA. Repurposing of atorvastatin emulsomes as a topical antifungal agent. Drug Deliv 2022; 29:3414-3431. [DOI: 10.1080/10717544.2022.2149898] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022] Open
Affiliation(s)
- Alaa S. Eita
- Department of Pharmaceutics, College of Pharmaceutical Sciences and Drug Manufacturing, Misr University for Science and Technology (MUST), 6th of October, Giza, Egypt
| | - Amna M. A. Makky
- Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy, Cairo University, Cairo, Egypt
| | - Asem Anter
- Microbiology Unit, Drug Factory, College of Pharmaceutical Sciences and Drug Manufacturing, Misr University for Science and Technology (MUST), 6th of October, Giza, Egypt
| | - Islam A. Khalil
- Department of Pharmaceutics, College of Pharmaceutical Sciences and Drug Manufacturing, Misr University for Science and Technology (MUST), 6th of October, Giza, Egypt
| |
Collapse
|
19
|
Zhang M, Hong S, Sun X, Zhou Y, Luo Y, Liu L, Wang J, Wang C, Lin N, Li X. Exploration of and insights into advanced topical nanocarrier systems for the treatment of psoriasis. Front Med (Lausanne) 2022; 9:1017126. [PMID: 36590975 PMCID: PMC9797688 DOI: 10.3389/fmed.2022.1017126] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2022] [Accepted: 11/28/2022] [Indexed: 12/23/2022] Open
Abstract
Psoriasis is a chronic inflammatory skin disease with an underlying autoimmune pathogenesis that has brought great distress to patients. Current treatment options include topical therapy, systemic therapy, and phototherapy. By disrupting the stratum corneum, nanocarriers have unique advantages in allowing drug carriers to be tailored to achieve targeted drug delivery, improve efficacy, and minimize adverse effects. Furthermore, despite their limited success in market translatability, nanocarriers have been extensively studied for psoriasis, owing to their excellent preclinical results. As topical formulations are the first line of treatment, utilize the safest route, and facilitate a targeted approach, this study, we specifically describes the management of psoriasis using topical agents in conjunction with novel drug delivery systems. The characteristics, advantages, weaknesses, and mechanisms of individual nanocarriers, when applied as topical anti-psoriatic agents, were reviewed to distinguish each nanocarrier.
Collapse
Affiliation(s)
- Miao Zhang
- Department of Dermatology, Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China,Institute of Dermatology, Shanghai Academy of Traditional Chinese Medicine, Shanghai, China
| | - Seokgyeong Hong
- Department of Dermatology, Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China,Institute of Dermatology, Shanghai Academy of Traditional Chinese Medicine, Shanghai, China
| | - Xiaoying Sun
- Institute of Dermatology, Shanghai Academy of Traditional Chinese Medicine, Shanghai, China
| | - Yaqiong Zhou
- Institute of Dermatology, Shanghai Academy of Traditional Chinese Medicine, Shanghai, China
| | - Ying Luo
- Institute of Dermatology, Shanghai Academy of Traditional Chinese Medicine, Shanghai, China
| | - Liu Liu
- Department of Dermatology, Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China,Institute of Dermatology, Shanghai Academy of Traditional Chinese Medicine, Shanghai, China
| | - Jiao Wang
- Department of Dermatology, Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China,Institute of Dermatology, Shanghai Academy of Traditional Chinese Medicine, Shanghai, China
| | - Chunxiao Wang
- Department of Dermatology, Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China,Institute of Dermatology, Shanghai Academy of Traditional Chinese Medicine, Shanghai, China
| | - Naixuan Lin
- Department of Dermatology, Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China,Institute of Dermatology, Shanghai Academy of Traditional Chinese Medicine, Shanghai, China
| | - Xin Li
- Department of Dermatology, Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China,Institute of Dermatology, Shanghai Academy of Traditional Chinese Medicine, Shanghai, China,*Correspondence: Xin Li,
| |
Collapse
|
20
|
Kumar B, Pandey M, Aggarwal R, Sahoo PK. A comprehensive review on invasomal carriers incorporating natural terpenes for augmented transdermal delivery. FUTURE JOURNAL OF PHARMACEUTICAL SCIENCES 2022. [DOI: 10.1186/s43094-022-00440-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/03/2022] Open
Abstract
Abstract
Background
Transdermal drug delivery is one of the most widely used drug administration routes, which offer several advantages over other routes of drug delivery. The apical layer of the skin called the stratum corneum is the most dominant obstacle in the transdermal drug delivery, which restricts the passage of drugs across the skin. Considerable strategies have been applied to enhance the rate of permeation across the epithelial cells; however, the most widely used strategy is the use of sorption boosters, also known as permeation enhancers.
Main body
Terpenes were considered as efficient skin permeation enhancers and are generally recognized as safe as per Food and Drug Administration. Terpenes improve the permeability of drugs either by destructing the stratum corneum’s tightly packed lipid framework, excessive diffusivity of drug in cell membrane or by rampant drug partitioning into epithelial cells. Various vesicular systems have been developed and utilized for the transdermal delivery of many drugs. Invasomes are one such novel vesicular system developed which are composed of phospholipids, ethanol and terpenes. The combined presence of ethanol and terpenes provides exceptional flexibility to the vesicles and improves the permeation across the barrier offered due to the stratum corneum as both ethanol and terpenes act as permeation enhancers. Therefore, utilization of invasomes as carriers to facilitate higher rate of drug permeation through the skin can be a very useful approach to improve transdermal drug delivery of a drug.
Conclusion
The paper focuses on a broad updated view of terpenes as effective permeation enhancers and invasomes along with their applications in the pharmaceutical formulations.
Collapse
|
21
|
Elaboration of novel gel-core oleosomes encapsulating phytoconstituent for targeted topical delivery in a vitiligo-induced mouse model: Focus on antioxidant and anti-inflammatory pathways. J Drug Deliv Sci Technol 2022. [DOI: 10.1016/j.jddst.2022.104119] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
|
22
|
Liu JK. Natural products in cosmetics. NATURAL PRODUCTS AND BIOPROSPECTING 2022; 12:40. [PMID: 36437391 PMCID: PMC9702281 DOI: 10.1007/s13659-022-00363-y] [Citation(s) in RCA: 31] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/11/2022] [Accepted: 11/11/2022] [Indexed: 05/14/2023]
Abstract
The global cosmetics market reached US$500 billion in 2017 and is expected to exceed US$800 billion by 2023, at around a 7% annual growth rate. The cosmetics industry is emerging as one of the fastest-growing industries of the past decade. Data shows that the Chinese cosmetics market was US$60 billion in 2021. It is expected to be the world's number one consumer cosmetics market by 2050, with a size of approximately US$450 billion. The influence of social media and the internet has raised awareness of the risks associated with the usage of many chemicals in cosmetics and the health benefits of natural products derived from plants and other natural resources. As a result, the cosmetic industry is now paying more attention to natural products. The present review focus on the possible applications of natural products from various biological sources in skin care cosmetics, including topical care products, fragrances, moisturizers, UV protective, and anti-wrinkle products. In addition, the mechanisms of targets for evaluation of active ingredients in cosmetics and the possible benefits of these bioactive compounds in rejuvenation and health, and their potential role in cosmetics are also discussed.
Collapse
Affiliation(s)
- Ji-Kai Liu
- Wuhan Institute of Health, Shenzhen Moore Vaporization Health & Medical Technology Co., Ltd., Wuhan, 430074, People's Republic of China.
- School of Pharmaceutical Sciences, South-Central University for Nationalities, Wuhan, 430074, People's Republic of China.
| |
Collapse
|
23
|
Saleem K, Siddiqui B, .ur.Rehman A, Taqi MM, Ahmed N. Exploiting Recent Trends in the Treatment of Androgenic Alopecia through Topical Nanocarriers of Minoxidil. AAPS PharmSciTech 2022; 23:292. [DOI: 10.1208/s12249-022-02444-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2022] [Accepted: 10/10/2022] [Indexed: 11/29/2022] Open
|
24
|
Mehta N, Pai R. Amalgamation of Nanoparticles within Drug Carriers: A Synergistic Approach or a Futile Attempt? Pharm Nanotechnol 2022; 10:PNT-EPUB-126127. [PMID: 36056844 DOI: 10.2174/2211738510666220902150449] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2022] [Revised: 04/25/2022] [Accepted: 05/03/2022] [Indexed: 11/22/2022]
Abstract
In recent years, nanotechnology has gained much attention from scientists and significant advances in therapeutic potential. Nano-delivery systems have emerged as an effective way in order to improve the therapeutic properties of drugs including solubility, stability, prolongation of half-life as well as promoting the accumulation of drug at the target site. The nanoparticles have also been incorporated into various conventional drug delivery systems. This review study aims to introduce the amalgamation of nanoparticles into drug carriers. To overcome the limitations of single nanoparticles such as toxicity, high instability, rapid drug release as well as limited drug loading capacity, a multi-component system is developed. Liposomes, microparticles, nanofibers, dendrimers etc., are promising drug carriers, having some limitations that can be minimized, and the compilation of nanoparticles synergizes the properties. The amalgamated nanocarriers are used for the diagnostic purpose as well as treatment of various chronic diseases. It also increases the solubility of hydrophobic drugs. However, each system has its advantages and disadvantages based on its physicochemical properties, efficacy, and other parameters. This review details the past and present state of development for the fusion of nanoparticles within drug carriers and from which we identify future research works needed for the same.
Collapse
Affiliation(s)
- Nikhil Mehta
- Shobhaben Pratapbhai Patel School of Pharmacy and Technology Management, SVKM\\\'s NMIMS, V.L. Mehta Road, Vile Parle (W), Mumbai- 400056, India
| | - Rohan Pai
- Shobhaben Pratapbhai Patel School of Pharmacy and Technology Management, SVKM\\\'s NMIMS, V.L. Mehta Road, Vile Parle (W), Mumbai- 400056, India
| |
Collapse
|
25
|
In vivo therapeutic efficacy of Curcuma longa extract loaded ethosomes on wound healing. Vet Res Commun 2022; 46:1033-1049. [PMID: 35796857 DOI: 10.1007/s11259-022-09952-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2021] [Accepted: 06/04/2022] [Indexed: 10/17/2022]
Abstract
Since ancient times, medicinal plants are widely accepted to promote the health and wellness of animals and mankind. The medicinal plant-based therapies have limitations of delayed onset of action, inconsistent absorption, low bioavailability, oxidation, and poor solubility. The encapsulation studies suggested improved efficacy. Therefore, the present study attempts to evaluate the efficacy of Curcuma longa extracts encapsulated in Ethosome on wound healing model compared to crude extract. The Curcuma longa extract swere prepared by cold percolation method and total curcuminoid content was determined by Reverse phase-HPLC. Three Ethosomal suspensions (ETS1, ETS2, and ETS3) were prepared and characterized for particle distribution, morphology, and absorption spectrum by Zetasizer, Scanning Electron Microscopy, and FTIR respectively. The Ethosomal suspension with the highest entrapment efficiency was applied topically at a varying concentrations (0.25, 0.5, and 1 g/cm2) on the surgically created wounds in rats. The efficacy of wound healing was evaluated by clinical observation, macroscopic evaluation of granulation tissue, colour digital image processing, and histology. The methanolic extract of Curcuma longa showed better antibacterial potential than ethanolic and aqueous. The total Curcuminoid content in the Curcuma longa rhizome was 4.03%. The size, PDI, zeta potential, and viscosity of Ethosomal suspension ranged from 34.8 to 371 nm, 0.236-1.178, 15.6-36.8mV, and 0.8460-0.8510, respectively. The ETS3 was found the most optimum combination with the highest entrapment efficiency and the topical application at a dose rate of 0.5 g/cm2 and 1.0 g/cm2 resulted in comparable wound contracture, pain score, histopathological score as compared to control groups.It was concluded that the Curcuma longa encapsulation in Ethosome resulted in improved wound appearance, granulation tissue score, and appearance with a shortened period of wound resolution at the cellular level as compared to crude extract.
Collapse
|
26
|
Fatima I, Rasul A, Shah S, Saadullah M, Islam N, Khames A, Salawi A, Ahmed MM, Almoshari Y, Abbas G, Abourehab MAS, Mehmood Khan S, Chauhdary Z, Alshamrani M, Namazi NI, Naguib DM. Novasomes as Nano-Vesicular Carriers to Enhance Topical Delivery of Fluconazole: A New Approach to Treat Fungal Infections. Molecules 2022; 27:2936. [PMID: 35566287 PMCID: PMC9103678 DOI: 10.3390/molecules27092936] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2022] [Revised: 04/27/2022] [Accepted: 04/29/2022] [Indexed: 11/16/2022] Open
Abstract
The occurrence of fungal infections has increased over the past two decades. It is observed that superficial fungal infections are treated by conventional dosage forms, which are incapable of treating deep infections due to the barrier activity possessed by the stratum corneum of the skin. This is why the need for a topical preparation with advanced penetration techniques has arisen. This research aimed to encapsulate fluconazole (FLZ) in a novasome in order to improve the topical delivery. The novasomes were prepared using the ethanol injection technique and characterized for percent entrapment efficiency (EE), particle size (PS), zeta potential (ZP), drug release, Fourier-transform infrared spectroscopy (FTIR), differential scanning calorimetry (DSC), thermogravimetric analysis (TGA), scanning electron microscopy (SEM) and antifungal activity. The FN7 formulation with 94.45% EE, 110 nm PS and -24 ZP proved to be the best formulation. The FN7 formulation showed a 96% release of FLZ in 8 h. FTIR showed the compatibility of FLZ with excipients and DSC studies confirmed the thermal stability of FLZ in the developed formulation. The FN7 formulation showed superior inhibition of the growth of Candida albicans compared to the FLZ suspension using a resazurin reduction assay, suggesting high efficacy in inhibiting fungal growth.
Collapse
Affiliation(s)
- Iman Fatima
- Department of Pharmaceutics, Faculty of Pharmaceutical Sciences, Government College University Faisalabad, Faisalabad 38000, Pakistan; (I.F.); (N.I.)
| | - Akhtar Rasul
- Department of Pharmaceutics, Faculty of Pharmaceutical Sciences, Government College University Faisalabad, Faisalabad 38000, Pakistan; (I.F.); (N.I.)
| | - Shahid Shah
- Department of Pharmacy Practice, Faculty of Pharmaceutical Sciences, Government College University Faisalabad, Faisalabad 38000, Pakistan;
| | - Malik Saadullah
- Department of Pharmaceutical Chemistry, Faculty of Pharmaceutical Sciences, Government College University Faisalabad, Faisalabad 38000, Pakistan;
| | - Nayyer Islam
- Department of Pharmaceutics, Faculty of Pharmaceutical Sciences, Government College University Faisalabad, Faisalabad 38000, Pakistan; (I.F.); (N.I.)
| | - Ahmed Khames
- Department of Pharmaceutics and Industrial Pharmacy, College of Pharmacy, Taif University, Taif 21944, Saudi Arabia;
| | - Ahmad Salawi
- Department of Pharmaceutics, College of Pharmacy, Jazan University, Jazan 45142, Saudi Arabia; (A.S.); (Y.A.); (M.A.)
| | | | - Yosif Almoshari
- Department of Pharmaceutics, College of Pharmacy, Jazan University, Jazan 45142, Saudi Arabia; (A.S.); (Y.A.); (M.A.)
| | - Ghulam Abbas
- Department of Pharmaceutics, Faculty of Pharmaceutical Sciences, Government College University Faisalabad, Faisalabad 38000, Pakistan; (I.F.); (N.I.)
| | - Mohammed A. S. Abourehab
- Department of Pharmaceutics, Faculty of Pharmacy, Umm Al-Qura University, Makkah 21955, Saudi Arabia;
- Department of Pharmaceutics and Industrial Pharmacy, College of Pharmacy, Minia University, Minia 61519, Egypt
| | - Sajid Mehmood Khan
- Faculty of Pharmacy and Alternative Medicine, The Islamia University Bahawalpur, Bahawalpur 63100, Pakistan;
| | - Zunera Chauhdary
- Department of Pharmacology, Faculty of Pharmaceutical Sciences, Government College University Faisalabad, Faisalabad 38000, Pakistan;
| | - Meshal Alshamrani
- Department of Pharmaceutics, College of Pharmacy, Jazan University, Jazan 45142, Saudi Arabia; (A.S.); (Y.A.); (M.A.)
| | - Nader Ibrahim Namazi
- Pharmaceutics and Pharmaceutical Technology Department, College of Pharmacy, Taibah University, Al Madinah Al Munawarah 30001, Saudi Arabia;
| | - Demiana M. Naguib
- Department of Pharmaceutics, Faculty of Pharmacy, Nahda University (NUB), Beni-Suef 62511, Egypt;
| |
Collapse
|
27
|
Zaki RM, Ibrahim MA, Alshora DH, El Ela AESA. Formulation and Evaluation of Transdermal Gel Containing Tacrolimus-Loaded Spanlastics: In Vitro, Ex Vivo and In Vivo Studies. Polymers (Basel) 2022; 14:polym14081528. [PMID: 35458277 PMCID: PMC9024636 DOI: 10.3390/polym14081528] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2022] [Revised: 04/06/2022] [Accepted: 04/07/2022] [Indexed: 01/27/2023] Open
Abstract
Our goal was to prepare Span 60-based elastic nanovesicles (spanlastics (SPLs)) of tacrolimus (TCR) using the adapted ethanol injection method, characterize them, and evaluate their ability to improve the transdermal permeation of the active substance. The impact of two different concentrations of penetration enhancers, namely, propylene glycol and oleic acid, on the entrapment efficiency, vesicle size, and zeta potential was assessed. Moreover, in vitro release through a semipermeable membrane and ex vivo penetration through hairless rat skin were performed. Morphological examination and pharmacokinetics were performed for one selected formulation (F3OA1). TCR-loaded SPLs were effectively formulated with two different concentrations of permeation enhancers, and the effect of these enhancers on their physicochemical properties differed in accordance with the concentration and kind of enhancer used. The results of in vitro release displayed a considerable (p < 0.05) enhancement compared to the suspension of the pure drug, and there was a correlation between the in vitro and ex vivo results. The selected TCR-loaded nanovesicles incorporated into a gel base showed appreciable advantages over the oral drug suspension and the TCR-loaded gel. Additionally, the pharmacokinetic parameters were significantly (p < 0.05) improved based on our findings. Moreover, the AUC0−7 ng·h/mL form F3 OA1 was 3.36-fold higher than that after the administration of the TCR oral suspension.
Collapse
Affiliation(s)
- Randa Mohammed Zaki
- Department of Pharmaceutics, Faculty of Pharmacy, Prince Sattam Bin Abdulaziz University, Al-Kharj 11942, Saudi Arabia;
- Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy, Beni-Suef University, Beni-Suef 62514, Egypt
| | - Mohamed A. Ibrahim
- Department of Pharmaceutics, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia; (M.A.I.); (A.E.S.A.E.E.)
- Department of Pharmaceutics and Industrial Pharmacy, College of Pharmacy, Al-Azhar University, Assiut 71524, Egypt
| | - Doaa H. Alshora
- Department of Pharmaceutics, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia; (M.A.I.); (A.E.S.A.E.E.)
- Correspondence:
| | - Amal El Sayeh Abou El Ela
- Department of Pharmaceutics, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia; (M.A.I.); (A.E.S.A.E.E.)
- Department of Pharmaceutics, College of Pharmacy, Assiut University, Assiut 71526, Egypt
| |
Collapse
|
28
|
Formulation and In Vitro Efficacy Assessment of Teucrium marum Extract Loading Hyalurosomes Enriched with Tween 80 and Glycerol. NANOMATERIALS 2022; 12:nano12071096. [PMID: 35407213 PMCID: PMC9000414 DOI: 10.3390/nano12071096] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/04/2022] [Revised: 03/23/2022] [Accepted: 03/25/2022] [Indexed: 02/01/2023]
Abstract
The extract of Teucrium marum L. (Lamiaceae) was obtained using the aerial parts of the plant, by means of a maceration process. Verbascoside, caffeic acids derivatives and flavonols were the main components contained in the extract as detected using high-performance liquid chromatography coupled with diode array detector (HPLC–DAD) as an analytical method. The extract was successfully incorporated into hyalurosomes, which were further enriched by adding a water cosolvent (glycerol) and a surfactant (Tween 80), thus obtaining glycerohyalurosomes. Liposomes, transfersomes and glycerosomes were prepared as well and used as comparisons. All vesicles were small, as the mean diameter was never higher than ~115 nm, thus ideal for topical application and stable on storage, probably thanks to the highly negative surface charge of the vesicles (~−33 mV). The cryo-TEM images confirmed the formation of close-packed, oligolamellar and multicompartment hyalurosomes and glycerohyalurosomes in which around 95% of the used extract was retained, confirming their ability to simultaneously load a wide range of molecules having different chemical natures. Moreover, the extract, when loaded in hyalurosomes and glycerohyalurosomes was able to counteract the damages induced in the fibroblasts by hydrogen peroxide to a better extent (viability~110%) than that loaded in the other vesicles (viability~100%), and effectively promoted their proliferation and migration ensuring the healing of the wound performed in a cell monolayer (scratch assay) during 48 h of experiment. Overall in vitro results confirmed the potential of glycerohyalurosomes as delivery systems for T. marum extract for the treatment of skin lesions connected with oxidative stress.
Collapse
|
29
|
Li N, Qin Y, Dai D, Wang P, Shi M, Gao J, Yang J, Xiao W, Song P, Xu R. Transdermal Delivery of Therapeutic Compounds With Nanotechnological Approaches in Psoriasis. Front Bioeng Biotechnol 2022; 9:804415. [PMID: 35141215 PMCID: PMC8819148 DOI: 10.3389/fbioe.2021.804415] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2021] [Accepted: 12/20/2021] [Indexed: 12/12/2022] Open
Abstract
Psoriasis is a chronic, immune-mediated skin disorder involving hyperproliferation of the keratinocytes in the epidermis. As complex as its pathophysiology, the optimal treatment for psoriasis remains unsatisfactorily addressed. Though systemic administration of biological agents has made an impressive stride in moderate-to-severe psoriasis, a considerable portion of psoriatic conditions were left unresolved, mainly due to adverse effects from systemic drug administration or insufficient drug delivery across a highly packed stratum corneum via topical therapies. Along with the advances in nanotechnologies, the incorporation of nanomaterials as topical drug carriers opens an obvious prospect for the development of antipsoriatic topicals. Hence, this review aims to distinguish the benefits and weaknesses of individual nanostructures when applied as topical antipsoriatics in preclinical psoriatic models. In view of specific features of each nanostructure, we propose that a proper combination of distinctive nanomaterials according to the physicochemical properties of loaded drugs and clinical features of psoriatic patients is becoming a promising option that potentially drives the translation of nanomaterials from bench to bedside with improved transdermal drug delivery and consequently therapeutic effects.
Collapse
Affiliation(s)
- Ning Li
- Institute of Basic Theory for Chinese Medicine, China Academy of Chinese Medical Sciences, Beijing, China
| | - Yeping Qin
- Guang’anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Dan Dai
- Guang’anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Pengyu Wang
- Guang’anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Mingfei Shi
- Institute of Basic Theory for Chinese Medicine, China Academy of Chinese Medical Sciences, Beijing, China
| | - Junwei Gao
- Institute of Basic Theory for Chinese Medicine, China Academy of Chinese Medical Sciences, Beijing, China
| | - Jinsheng Yang
- Institute of Basic Theory for Chinese Medicine, China Academy of Chinese Medical Sciences, Beijing, China
| | - Wei Xiao
- State Key Laboratory of New-tech for Chinese Medicine Pharmaceutical Process, Jiangsu Kanion Pharmaceutical Co., Ltd, Lianyungang, China
- *Correspondence: Wei Xiao, ; Ping Song, ; Ruodan Xu,
| | - Ping Song
- Guang’anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
- *Correspondence: Wei Xiao, ; Ping Song, ; Ruodan Xu,
| | - Ruodan Xu
- Institute of Basic Theory for Chinese Medicine, China Academy of Chinese Medical Sciences, Beijing, China
- Interdisciplinary of Nanoscience Center (iNANO), Aarhus University, Aarhus, Denmark
- *Correspondence: Wei Xiao, ; Ping Song, ; Ruodan Xu,
| |
Collapse
|
30
|
Elhalmoushy PM, Elsheikh MA, Matar NA, El-Hadidy WF, Kamel MA, Omran GA, Elnaggar YS. Novel Berberine-Loaded Hyalurosomes as A Promising Nanodermatological Treatment for Vitiligo: Biochemical, Biological and Gene Expression Studies. Int J Pharm 2022; 615:121523. [DOI: 10.1016/j.ijpharm.2022.121523] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2021] [Revised: 01/16/2022] [Accepted: 01/24/2022] [Indexed: 01/16/2023]
|
31
|
Topical Administration of Drugs Incorporated in Carriers Containing Phospholipid Soft Vesicles for the Treatment of Skin Medical Conditions. Pharmaceutics 2021; 13:pharmaceutics13122129. [PMID: 34959410 PMCID: PMC8706871 DOI: 10.3390/pharmaceutics13122129] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2021] [Revised: 12/01/2021] [Accepted: 12/07/2021] [Indexed: 11/23/2022] Open
Abstract
This review focuses on the improved topical treatment of various medical skin conditions by the use of drugs delivered from carriers containing phospholipid soft vesicles. Topical drug delivery has many advantages over other ways of administration, having increased patient compliance, avoiding the first-pass effect following oral drug administration or not requesting multiple doses administration. However, the skin barrier prevents the access of the applied drug, affecting its therapeutic activity. Carriers containing phospholipid soft vesicles are a new approach to enhance drug delivery into the skin and to improve the treatment outcome. These vesicles contain molecules that have the property to fluidize the phospholipid bilayers generating the soft vesicle and allowing it to penetrate into the deep skin layers. Ethosomes, glycerosomes and transethosomes are soft vesicles containing ethanol, glycerol or a mixture of ethanol and a surfactant, respectively. We review a large number of publications on the research carried out in vitro, in vivo in animal models and in humans in clinical studies, with compositions containing various active molecules for treatment of skin medical conditions including skin infections, skin inflammation, psoriasis, skin cancer, acne vulgaris, hair loss, psoriasis and skin aging.
Collapse
|
32
|
Despotopoulou D, Lagopati N, Pispas S, Gazouli M, Demetzos C, Pippa N. The technology of transdermal delivery nanosystems: from design and development to preclinical studies. Int J Pharm 2021; 611:121290. [PMID: 34788674 DOI: 10.1016/j.ijpharm.2021.121290] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2021] [Revised: 11/02/2021] [Accepted: 11/08/2021] [Indexed: 12/18/2022]
Abstract
Transdermal administration has gained much attention due to the remarkable advantages such as patient compliance, drug escape from first-pass elimination, favorable pharmacokinetic profile and prolonged release properties. However, the major limitation of these systems is the limited skin penetration of the stratum corneum, the skin's most important barrier, which protects the body from the insertion of substances from the environment. Transdermal drug delivery systems are aiming to the disruption of the stratum corneum in order for the active pharmaceutical ingredients to enter successfully the circulation. Therefore, nanoparticles are holding a great promise because they can act as effective penetration enhancers due to their small size and other physicochemical properties that will be analyzed thoroughly in this report. Apart from the investigation of the physicochemical parameters, a comparison between the different types of nanoparticles will be performed. The complexity of skin anatomy and the unclear mechanisms of penetration should be taken into consideration to reach some realistic conclusions regarding the way that the described parameters affect the skin permeability. To the best of the authors knowledge, this is among the few reports on the literature describing the technology of transdermal delivery systems and how this technology affects the biological activity.
Collapse
Affiliation(s)
- Despoina Despotopoulou
- Department of Pharmaceutical Technology, Faculty of Pharmacy, Panepistimioupolis Zografou 15771, National and Kapodistrian University of Athens, Athens, Greece
| | - Nefeli Lagopati
- Department of Histology and Embryology, Medical School, National Kapodistrian University of Athens, Greece
| | - Stergios Pispas
- Theoretical and Physical Chemistry Institute, National Hellenic Research Foundation, 48 Vassileos Constantinou Avenue, 11635 Athens, Greece
| | - Maria Gazouli
- Department of Basic Medical Science, Laboratory of Biology, School of Medicine National and Kapodistrian University of Athens, Greece
| | - Costas Demetzos
- Department of Pharmaceutical Technology, Faculty of Pharmacy, Panepistimioupolis Zografou 15771, National and Kapodistrian University of Athens, Athens, Greece
| | - Natassa Pippa
- Department of Pharmaceutical Technology, Faculty of Pharmacy, Panepistimioupolis Zografou 15771, National and Kapodistrian University of Athens, Athens, Greece; Theoretical and Physical Chemistry Institute, National Hellenic Research Foundation, 48 Vassileos Constantinou Avenue, 11635 Athens, Greece.
| |
Collapse
|
33
|
Enhanced Skin Performance of Emulgel vs. Cream as Systems for Topical Delivery of Herbal Actives (Immortelle Extract and Hemp Oil). Pharmaceutics 2021; 13:pharmaceutics13111919. [PMID: 34834334 PMCID: PMC8623303 DOI: 10.3390/pharmaceutics13111919] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2021] [Revised: 11/04/2021] [Accepted: 11/09/2021] [Indexed: 11/16/2022] Open
Abstract
Immortelle, as rich source of chlorogenic acid and the phloroglucinol alpha-pyrone compound arzanol, possesses anti-inflammatory and antioxidant properties, affects cell regeneration, and has positive effect on many skin conditions. Hemp oil, characterized by a favorable omega-6 to omega-3 ratio, as well as an abundance of essential fatty acids and vitamin E, participates in immunoregulation and also act as an anti-inflammatory. In the present study, we examined the effect on the skin of creams and emulgels with immortelle extract and hemp oil, by comparing them to placebo samples and a non-treated control. A long-term in vivo study of biophysical skin characteristics, which lasted for 30 days, was conducted on 25 healthy human volunteers. Measured parameters were electrical capacitance of the stratum corneum, trans-epidermal water loss (TEWL), and skin pH and erythema index. Further, a sensory study was carried out in which the panelists had to choose descriptive terms for sensory attributes in questionnaire. The results showed that application of all preparations led to increase of skin hydration and TEWL reduction, while the skin was not irritated, and its normal pH was not disrupted. This study also showed importance of the carrier. Not only were emulgels described by panelists as preparations with better sensory properties, there was a significant difference between the skin hydration effect of emulgel with immortelle extract and hemp oil compared to the placebo emulgel, which was not the case with creams. Such findings indicated enhanced delivery of herbal active substances from emulgel compared to the cream.
Collapse
|
34
|
Mombeiny R, Tavakol S, Kazemi M, Mehdizadeh M, Hasanzadeh A, Karimi Babaahmadi M, Abedi A, Keyhanvar P. Anti-inflammatory ethosomal nanoformulation in combination with iontophoresis in chronic wound healing: An ex vivo study. IET Nanobiotechnol 2021; 15:710-718. [PMID: 34694760 PMCID: PMC8806119 DOI: 10.1049/nbt2.12069] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2021] [Revised: 08/29/2021] [Accepted: 09/08/2021] [Indexed: 11/20/2022] Open
Abstract
Prescription of anti-inflammatory drugs may be considered as a promising strategy in chronic wound healing where the inflammatory disturbance has delayed the healing process. It seems that hydrocortisone 17-butyrate (HB17) would be promising in the form of a nano-formulation to enhance drug delivery efficacy. In the present study, transdermal delivery of nano-HB17 in combination with iontophoresis was investigated ex vivo. Ethosomal-HB17 was synthesised using lecithin, ethanol and cholesterol with a different ratio by hot method. The negative ethosomal-HB17 particle size was around 244 ± 4.3 nm with high stability of up to 30 days. Additionally, evaluated entrapment efficiency of HB17 in ethosomes by high performance liquid chromatography was 40.6 ± 2.21%. Moreover, the permeation speed and amount of H17B in complete-thickness rat skin in the presence and absence of iontophoresis showed that the penetration of free H17B and ethosomal-H17B formulations were zero and 7.98 μg/cm2 in 120 min, respectively. Whereas in the case of applying iontophoresis, permeation amount obtained was zero and 19.69 μg/cm2 in 30 min in free H17B and ethosomal-H17B formulations, respectively. It has been concluded that transdermal delivery of ethosomal-H17B is an effective strategy to enhance drug delivery and it will be improved when it is combined with iontophoresis.
Collapse
Affiliation(s)
- Reza Mombeiny
- Nanotechnology Research Center, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran.,Cellular and Molecular Research Center, Iran University of Medical Sciences, Tehran, Iran
| | - Shima Tavakol
- Cellular and Molecular Research Center, Iran University of Medical Sciences, Tehran, Iran
| | - Mostafa Kazemi
- Cellular and Molecular Research Center, Iran University of Medical Sciences, Tehran, Iran
| | - Mehdi Mehdizadeh
- Cellular and Molecular Research Center, Faculty of Advanced Technologies in Medicine, Department of Anatomy, Iran University of Medical Sciences, Tehran, Iran
| | - Akbar Hasanzadeh
- Cellular and Molecular Research Center, Iran University of Medical Sciences, Tehran, Iran
| | - Mohammad Karimi Babaahmadi
- Department of Medical Biotechnology, Faculty of Advanced Medical Sciences, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Ali Abedi
- Department of Life Sciences Engineering, Faculty of New Sciences and Technology, University of Tehran, Tehran, Iran
| | - Peyman Keyhanvar
- Cellular and Molecular Research Center, Iran University of Medical Sciences, Tehran, Iran.,Department of Medical Biotechnology, Faculty of Advanced Medical Sciences, Tabriz University of Medical Sciences, Tabriz, Iran.,Department of Life Sciences Engineering, Faculty of New Sciences and Technology, University of Tehran, Tehran, Iran.,Stem Cell Research Center, Stem Cells and Regenerative Medicine Institute, Tabriz University of Medical Sciences, Tabriz, Iran.,Stem Cell and Regenerative Medicine Institute (SCARM), Tabriz University of Medical Sciences, Tabriz, Iran.,Technology and Society Network (CKTSN), Universal Scientific Education and Research Network (USERN), Tehran, Iran
| |
Collapse
|
35
|
Sully RE, Moore CJ, Garelick H, Loizidou E, Podoleanu AG, Gubala V. Nanomedicines and microneedles: a guide to their analysis and application. ANALYTICAL METHODS : ADVANCING METHODS AND APPLICATIONS 2021; 13:3326-3347. [PMID: 34313266 DOI: 10.1039/d1ay00954k] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
The fast-advancing progress in the research of nanomedicine and microneedle applications in the past two decades has suggested that the combination of the two concepts could help to overcome some of the challenges we are facing in healthcare. They include poor patient compliance with medication and the lack of appropriate administration forms that enable the optimal dose to reach the target site. Nanoparticles as drug vesicles can protect their cargo and deliver it to the target site, while evading the body's defence mechanisms. Unfortunately, despite intense research on nanomedicine in the past 20 years, we still haven't answered some crucial questions, e.g. about their colloidal stability in solution and their optimal formulation, which makes the translation of this exciting technology from the lab bench to a viable product difficult. Dissolvable microneedles could be an effective way to maintain and stabilise nano-sized formulations, whilst enhancing the ability of nanoparticles to penetrate the stratum corneum barrier. Both concepts have been individually investigated fairly well and many analytical techniques for tracking the fate of nanomaterials with their precious cargo, both in vitro and in vivo, have been established. Yet, to the best of our knowledge, a comprehensive overview of the analytical tools encompassing the concepts of microneedles and nanoparticles with specific and successful examples is missing. In this review, we have attempted to briefly analyse the challenges associated with nanomedicine itself, but crucially we provide an easy-to-navigate scheme of methods, suitable for characterisation and imaging the physico-chemical properties of the material matrix.
Collapse
Affiliation(s)
- Rachel E Sully
- Medway School of Pharmacy, Universities of Greenwich and Kent, Anson Building, Central Avenue, Chatham, ME4 4TB, UK.
| | | | | | | | | | | |
Collapse
|
36
|
Mura P, Maestrelli F, Cirri M, Nerli G, Di Cesare Mannelli L, Ghelardini C, Mennini N. Improvement of Butamben Anesthetic Efficacy by the Development of Deformable Liposomes Bearing the Drug as Cyclodextrin Complex. Pharmaceutics 2021; 13:pharmaceutics13060872. [PMID: 34204807 PMCID: PMC8231615 DOI: 10.3390/pharmaceutics13060872] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2021] [Revised: 06/07/2021] [Accepted: 06/09/2021] [Indexed: 12/13/2022] Open
Abstract
This work was aimed at enhancing butamben (BTB) anesthetic efficacy by the "drug-in cyclodextrin (CD)-in deformable liposomes" strategy. In the study, phase-solubility studies with natural (α-, β-, γ-) and derivative (hydroxypropyl-α-and β-, sulfobutylether-β, methyl-β) CDs evidenced the highest BTB affinity for βCD and its derivatives and indicated methyl-βCD (RAMEB) as the best carrier. Drug-RAMEB complexes were prepared by different techniques and were characterized for solid-state and dissolution properties. The best BTB-RAMEB product was chosen for entrapment in the aqueous core of deformable liposomes containing stearylamine, either alone or with sodium cholate, as edge activators. Double-loaded (DL) liposomes, bearing the lipophilic drug (0.5% w/v) in the bilayer and its hydrophilic RAMEB complex (0.5% w/v) in the aqueous core, were compared to single-loaded (SL) liposomes bearing 1% w/v plain drug in the bilayer. All vesicles showed homogeneous dimensions (i.e., below 300 nm), high deformability, and excellent entrapment efficiency. DL-liposomes were more effective than SL ones in limiting drug leakage (<5% vs. >10% after a 3 months storage at 4 °C). In vivo experiments in rabbits proved that all liposomal formulations significantly (p < 0.05) increased the intensity and duration of drug anesthetic action compared to its hydroalcoholic solution; however, DL liposomes were significantly (p < 0.05) more effective than SL ones in prolonging BTB anesthetic effect, owing to the presence of the drug-RAMEB complex in the vesicle core, acting as a reservoir. DL liposomes containing both edge activators were found to have the best performance.
Collapse
Affiliation(s)
- Paola Mura
- Department of Chemistry, University of Florence, via Schiff 6, Sesto Fiorentino, 50019 Florence, Italy; (P.M.); (F.M.); (M.C.); (G.N.)
| | - Francesca Maestrelli
- Department of Chemistry, University of Florence, via Schiff 6, Sesto Fiorentino, 50019 Florence, Italy; (P.M.); (F.M.); (M.C.); (G.N.)
| | - Marzia Cirri
- Department of Chemistry, University of Florence, via Schiff 6, Sesto Fiorentino, 50019 Florence, Italy; (P.M.); (F.M.); (M.C.); (G.N.)
| | - Giulia Nerli
- Department of Chemistry, University of Florence, via Schiff 6, Sesto Fiorentino, 50019 Florence, Italy; (P.M.); (F.M.); (M.C.); (G.N.)
| | - Lorenzo Di Cesare Mannelli
- Department of Neuroscience, Psychology, Drug Research and Child Health (NEUROFARBA), Pharmacology and Toxicology Section, University of Florence, 50139 Florence, Italy; (L.D.C.M.); (C.G.)
| | - Carla Ghelardini
- Department of Neuroscience, Psychology, Drug Research and Child Health (NEUROFARBA), Pharmacology and Toxicology Section, University of Florence, 50139 Florence, Italy; (L.D.C.M.); (C.G.)
| | - Natascia Mennini
- Department of Chemistry, University of Florence, via Schiff 6, Sesto Fiorentino, 50019 Florence, Italy; (P.M.); (F.M.); (M.C.); (G.N.)
- Correspondence: ; Tel.: +39-055-4573710
| |
Collapse
|
37
|
Topical delivery of cyclosporine loaded tailored niosomal nanocarriers for improved skin penetration and deposition in psoriasis: Optimization, ex vivo and animal studies. J Drug Deliv Sci Technol 2021. [DOI: 10.1016/j.jddst.2021.102441] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
|
38
|
Paiva-Santos AC, Silva AL, Guerra C, Peixoto D, Pereira-Silva M, Zeinali M, Mascarenhas-Melo F, Castro R, Veiga F. Ethosomes as Nanocarriers for the Development of Skin Delivery Formulations. Pharm Res 2021; 38:947-970. [PMID: 34036520 DOI: 10.1007/s11095-021-03053-5] [Citation(s) in RCA: 77] [Impact Index Per Article: 25.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2021] [Accepted: 05/03/2021] [Indexed: 12/19/2022]
Abstract
The use of nanotechnology has been extensively explored for developing efficient drug delivery systems towards topical and transdermal applications. Ethosomes constitute a vesicular nanocarrier containing a relatively high concentration of ethanol (20-45%). Ethanol is a well-known permeation enhancer, which confers ethosomes unique features, including high elasticity and deformability, allowing them to penetrate deeply across the skin and enhance drug permeation and deposition. The improved composition of ethosomes offer, thereby, significant advantages in the delivery of therapeutic agents over particularly the conventional liposomes regarding different pathologies, including acne, psoriasis, alopecia, skin infections, hormonal deficiencies, among others. This review provides a comprehensive overview of the ethosomal system and an assessment of its potential as an efficient nanocarrier towards the skin delivery of active ingredients. Special attention is given to the composition of ethosomes and the mechanism of skin permeation, as well as their potential applications in different pathologies, particularly skin pathologies (acne, psoriasis, atopic dermatitis, skin cancer and skin infections). Some examples of ethosome-based formulations for the management of skin disorders are also highlighted. Besides the need for further studies, particularly in humans, ethosomal-based formulations hold great promise in the skin delivery of active ingredients, which increasingly asserts oneself as a viable alternative to the oral route.
Collapse
Affiliation(s)
- Ana Cláudia Paiva-Santos
- Department of Pharmaceutical Technology, Faculty of Pharmacy of the University of Coimbra, University of Coimbra, Pólo das Ciências da Saúde, Azinhaga de Santa Comba, 3000-548, Coimbra, Portugal.
- REQUIMTE/LAQV, Group of Pharmaceutical Technology, Faculty of Pharmacy of the University of Coimbra, University of Coimbra, Coimbra, Portugal.
| | - Ana Luísa Silva
- Department of Pharmaceutical Technology, Faculty of Pharmacy of the University of Coimbra, University of Coimbra, Pólo das Ciências da Saúde, Azinhaga de Santa Comba, 3000-548, Coimbra, Portugal
| | - Catarina Guerra
- Department of Pharmaceutical Technology, Faculty of Pharmacy of the University of Coimbra, University of Coimbra, Pólo das Ciências da Saúde, Azinhaga de Santa Comba, 3000-548, Coimbra, Portugal
| | - Diana Peixoto
- Department of Pharmaceutical Technology, Faculty of Pharmacy of the University of Coimbra, University of Coimbra, Pólo das Ciências da Saúde, Azinhaga de Santa Comba, 3000-548, Coimbra, Portugal
| | - Miguel Pereira-Silva
- Department of Pharmaceutical Technology, Faculty of Pharmacy of the University of Coimbra, University of Coimbra, Pólo das Ciências da Saúde, Azinhaga de Santa Comba, 3000-548, Coimbra, Portugal
- REQUIMTE/LAQV, Group of Pharmaceutical Technology, Faculty of Pharmacy of the University of Coimbra, University of Coimbra, Coimbra, Portugal
| | - Mahdi Zeinali
- Student Research Committee and Faculty of Pharmacy, Tabriz University of Medical Sciences, Tabriz, Iran
- Drug Applied Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Filipa Mascarenhas-Melo
- Department of Pharmaceutical Technology, Faculty of Pharmacy of the University of Coimbra, University of Coimbra, Pólo das Ciências da Saúde, Azinhaga de Santa Comba, 3000-548, Coimbra, Portugal
| | - Ricardo Castro
- Department of Pharmaceutical Technology, Faculty of Pharmacy of the University of Coimbra, University of Coimbra, Pólo das Ciências da Saúde, Azinhaga de Santa Comba, 3000-548, Coimbra, Portugal
- CQC, Department of Chemistry of the University of Coimbra, University of Coimbra, Coimbra, Portugal
| | - Francisco Veiga
- Department of Pharmaceutical Technology, Faculty of Pharmacy of the University of Coimbra, University of Coimbra, Pólo das Ciências da Saúde, Azinhaga de Santa Comba, 3000-548, Coimbra, Portugal
- REQUIMTE/LAQV, Group of Pharmaceutical Technology, Faculty of Pharmacy of the University of Coimbra, University of Coimbra, Coimbra, Portugal
| |
Collapse
|
39
|
Sinico C, Maria Fadda A, Valenti D, Pireddu R, Corrias F, Schlich M, Pitzanti G, Lai F. Nanoliposomes@Transcutol for In Vitro Skin Delivery of 8-Methoxypsoralen. JOURNAL OF NANOSCIENCE AND NANOTECHNOLOGY 2021; 21:2901-2906. [PMID: 33653456 DOI: 10.1166/jnn.2021.19047] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
8-methoxypsoralen is the most common drug in psoralen plus ultraviolet light irradiation therapy for the treatment of severe psoriasis. Despite of the efficacy, its classic oral administration leads to several serious adverse effects. However, the topical psoralen application produces a drug skin accumulation lower than that obtained by oral administration, due to the drug low skin permeability. In this paper, 8-methoxypsoralen loaded Penetration Enhancer-containing Vesicles were prepared using soy phosphatidylcholine and the penetration enhancer Transcutol® (5% or 10%) and characterized in terms of size, polydispersity index, zeta potential and encapsulation efficiency. No statistically significant differences in both size (~135 nm) and encapsulation efficiency (~65%) were found for different Transcutol® concentration. Transdermal delivery study assessed by Franz diffusion cells, showed that the 8-methoxypsoralen mainly accumulated into the stratum corneum. Moreover, after Penetration Enhancer-containing Vesicles application, the drug recovered in this layer is almost double of that delivered by conventional liposomes, while no significant difference was found from the different Transcutol® concentrations. Finally, biocompatibility checked by an MTT assay, demonstrated that the incubation of human keratinocytes for 24 h with 8-methoxypsoralen loaded Penetration Enhancer-containing Vesicles did not significantly reduce cell viability.
Collapse
Affiliation(s)
- Chiara Sinico
- Department of Life and Environmental Sciences, University of Cagliari, Cagliari 09124, Italy
| | - Anna Maria Fadda
- Department of Life and Environmental Sciences, University of Cagliari, Cagliari 09124, Italy
| | - Donatella Valenti
- Department of Life and Environmental Sciences, University of Cagliari, Cagliari 09124, Italy
| | - Rosa Pireddu
- Department of Life and Environmental Sciences, University of Cagliari, Cagliari 09124, Italy
| | - Francesco Corrias
- Department of Life and Environmental Sciences, University of Cagliari, Cagliari 09124, Italy
| | - Michele Schlich
- Department of Life and Environmental Sciences, University of Cagliari, Cagliari 09124, Italy
| | - Giulia Pitzanti
- Department of Life and Environmental Sciences, University of Cagliari, Cagliari 09124, Italy
| | - Francesco Lai
- Department of Life and Environmental Sciences, University of Cagliari, Cagliari 09124, Italy
| |
Collapse
|
40
|
Perminaite K, Maria Fadda A, Sinico C, Ramanauskiene K. Formulation of Liposomes Containing Royal Jelly and Their Quality Assessment. JOURNAL OF NANOSCIENCE AND NANOTECHNOLOGY 2021; 21:2841-2846. [PMID: 33653449 DOI: 10.1166/jnn.2021.19053] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Royal jelly, a gelatinuous consistency bee product produced and secreted by the hypopharyngeal and mandibular glands of worker honeybees, is beneficial in the treatment of dermatological conditions, likely through its content of the fatty acid 10-hydroxy-2-decenoic acid (10-HDA). However, 10-HAD poorly penetrates into skin. Thus, in this work, we produced royal jelly incorporated liposomes with the aim of increasing skin penetration of 10-HDA. Lipid nanocarriers were prepared by the thin lipid-film hydration method. Size and polydispersity index of the nanocarrier particles, and their stability over 30 days were measured. The effects of royal jelly and 10-HDA liposomal formulations on the viability of immortalized human keratinocyte cells were tested with the 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide assay. The skin penetration of 10-HDA from liposomal formulations and royal jelly solution was studied in vitro with Franz type vertical diffusion cells using porcine skin as limiting membrane. As result, small liposomes were achieved, and the efficacy of the obtained nanoformulations was examined by means of in vitro cell assays with a HaCaT immortalized human keratinocyte cell culture line. Finally, the skin penetration experiments showed that liposomal incorporation greatly increased 10-HDA penetration into skin layers.
Collapse
Affiliation(s)
- Kristina Perminaite
- Department of Clinical Pharmacy, Faculty of Pharmacy, Lithuanian University of Health Sciences, Kaunas LT-44307, Lithuania
| | - Anna Maria Fadda
- Department of Life and Environmental Sciences, Unit of Drug Sciences, University of Cagliari, Cagliari 09124, Italy
| | - Chiara Sinico
- Department of Life and Environmental Sciences, Unit of Drug Sciences, University of Cagliari, Cagliari 09124, Italy
| | - Kristina Ramanauskiene
- Department of Clinical Pharmacy, Faculty of Pharmacy, Lithuanian University of Health Sciences, Kaunas LT-44307, Lithuania
| |
Collapse
|
41
|
Xie J, Huang S, Huang H, Deng X, Yue P, Lin J, Yang M, Han L, Zhang DK. Advances in the Application of Natural Products and the Novel Drug Delivery Systems for Psoriasis. Front Pharmacol 2021; 12:644952. [PMID: 33967781 PMCID: PMC8097153 DOI: 10.3389/fphar.2021.644952] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2020] [Accepted: 03/01/2021] [Indexed: 12/16/2022] Open
Abstract
Psoriasis, an incurable autoimmune skin disease, is one of the most common immune-mediated disorders. Presently, numerous clinical research studies are underway, and treatment options are available. However, these treatments focus on improving symptoms of the disease and fail to achieve a radical cure; they also have certain toxic side effects. In recent years, natural products have increasingly gained attention because of their high efficiency and low toxicity. Despite their obvious therapeutic effects, natural products’ biological activity was limited by their instability, poor solubility, and low bioavailability. Novel drug delivery systems, including liposomes, lipospheres, nanostructured lipid carriers, niosomes, nanoemulsions, nanospheres, microneedles, ethosomes, nanocrystals, and foams could potentially overcome the limitations of poor water solubility and permeability in traditional drug delivery systems. Thus, to achieve a therapeutic effect, the drug can reach the epidermis and dermis in psoriatic lesions to interact with the immune cells and cytokines.
Collapse
Affiliation(s)
- Jin Xie
- State Key Laboratory of Southwestern Chinese Medicine Resources, Pharmacy School, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Shengjie Huang
- State Key Laboratory of Southwestern Chinese Medicine Resources, Pharmacy School, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Haozhou Huang
- State Key Laboratory of Southwestern Chinese Medicine Resources, Pharmacy School, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Xuan Deng
- State Key Laboratory of Southwestern Chinese Medicine Resources, Pharmacy School, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Pengfei Yue
- State Key Laboratory of Innovation Medicine and High Efficiency and Energy Saving Pharmaceutical Equipment, Jiangxi University of Traditional Chinese Medicine, Nanchang, China
| | - Junzhi Lin
- TCM Regulating Metabolic Diseases Key Laboratory of Sichuan Province, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Ming Yang
- State Key Laboratory of Innovation Medicine and High Efficiency and Energy Saving Pharmaceutical Equipment, Jiangxi University of Traditional Chinese Medicine, Nanchang, China
| | - Li Han
- State Key Laboratory of Southwestern Chinese Medicine Resources, Pharmacy School, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Ding-Kun Zhang
- State Key Laboratory of Southwestern Chinese Medicine Resources, Pharmacy School, Chengdu University of Traditional Chinese Medicine, Chengdu, China.,State Key Laboratory of Innovation Medicine and High Efficiency and Energy Saving Pharmaceutical Equipment, Jiangxi University of Traditional Chinese Medicine, Nanchang, China
| |
Collapse
|
42
|
Skin penetration/permeation success determinants of nanocarriers: Pursuit of a perfect formulation. Colloids Surf B Biointerfaces 2021; 203:111748. [PMID: 33853001 DOI: 10.1016/j.colsurfb.2021.111748] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2020] [Revised: 03/12/2021] [Accepted: 04/03/2021] [Indexed: 12/14/2022]
Abstract
The advent of nanocarriers in the field of pharmaceutical drug delivery, while exhibiting considerable advantages, has created challenges for researchers. Among the applications of nanocarriers, drug delivery to the skin has attracted increasing attention in recent decades due to its advantages over oral and parenteral administration. Accordingly, this work attempts to discuss the major obstacles surrounding topically applied formulations and different nanocarriers' potential to overcome these barriers to investigate whether their passive penetration through the skin is likely. Therefore, skin anatomical views and transcutaneous pathways are briefly reviewed. Factors commonly thought to influence skin penetration are discussed from the perspective of particularly penetrating nanocarriers. The formulation of these nanocarriers is outlined, and promising constituents are highlighted to help investigators optimize nanocarrier formulations.
Collapse
|
43
|
|
44
|
Protein-induced metamorphosis of unilamellar lipid vesicles to multilamellar hybrid vesicles. J Control Release 2021; 331:187-197. [PMID: 33422501 DOI: 10.1016/j.jconrel.2021.01.004] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2020] [Revised: 12/19/2020] [Accepted: 01/05/2021] [Indexed: 12/17/2022]
Abstract
Protein encapsulation into nanocarriers has been extensively studied to improve the efficacy and stability of therapeutic proteins. However, the chemical modification of proteins or new synthetic carrier materials are essential to achieve a high encapsulation efficiency and structural stability of proteins, which hinders their clinical applications. New strategies to physically incorporate proteins into nanocarriers feasible for clinical uses are required to overcome the current limitation. Here we report the spontaneous protein-induced reorganization of 'pre-formed' unilamellar lipid vesicles to efficiently incorporate proteins within multilamellar protein-lipid hybrid vesicles without chemical modification. Epidermal growth factor (EGF) binds to the surface of cationic unilamellar lipid vesicles and induces layer-by-layer self-assembly of the vesicles. The protein is spontaneously entrapped in the interstitial layers of a multilamellar structure with extremely high loading efficiency, ~99%, through polyionic interactions as predicted by molecular dynamics simulation. The loaded protein exhibits much higher structural, chemical, and biological stability compared to free protein. The method is also successfully applied to several other proteins. This work provides a promising method for the highly efficient encapsulation of therapeutic proteins into multilamellar lipid vesicles without the use of specialized instruments, high energy, coupling agents, or organic solvents.
Collapse
|
45
|
Liu Q, Xu J, Liao K, Tang N. Oral Bioavailability Improvement of Tailored Rosuvastatin Loaded Niosomal Nanocarriers to Manage Ischemic Heart Disease: Optimization, Ex Vivo and In Vivo Studies. AAPS PharmSciTech 2021; 22:58. [PMID: 33502651 DOI: 10.1208/s12249-021-01934-x] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2020] [Accepted: 01/13/2021] [Indexed: 12/19/2022] Open
Abstract
Rosuvastatin is an efficient antihyperlipidemic agent; however, being a BCS class II molecule, it shows poor oral bioavailability of < 20%. The present study focused on the improvement of oral bioavailability of rosuvastatin using tailored niosomes. The niosomes were prepared by film hydration method and sonication using cholesterol and Span 40. The Box-Behnken design (BBD) was applied to optimize the size (98 nm) and the entrapment efficacy (77%) of the niosomes by selecting cholesterol at 122 mg, Span 40 at 0.52%, and hydration time at 29.88 min. The transmission electron microscopy image showed spherical shape niosomes with smooth surface without aggregation. The ex vivo intestinal permeability studies showed significant improvement in the rosuvastatin permeation (95.5% after 2 h) using niosomes in comparison to the rosuvastatin suspension (40.1% after 2 h). The in vivo pharmacokinetic parameters in the rat model confirmed the improvement in the oral bioavailability with optimized rosuvastatin loaded niosomes (relative bioavailability = 2.01) in comparison to the rosuvastatin suspension, due to high surface area of niosomes and its lymphatic uptake via transcellular route. In conclusion, the optimized rosuvastatin loaded niosomes offers a promising approach to improve the oral bioavailability of rosuvastatin.
Collapse
|
46
|
Mosallam S, Ragaie MH, Moftah NH, Elshafeey AH, Abdelbary AA. Use of Novasomes as a Vesicular Carrier for Improving the Topical Delivery of Terconazole: In Vitro Characterization, In Vivo Assessment and Exploratory Clinical Experimentation. Int J Nanomedicine 2021; 16:119-132. [PMID: 33447031 PMCID: PMC7802774 DOI: 10.2147/ijn.s287383] [Citation(s) in RCA: 31] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2020] [Accepted: 12/01/2020] [Indexed: 12/16/2022] Open
Abstract
Purpose This manuscript aimed at encapsulating an antifungal terconazole (TCZ) into innovative novasomes for improving its penetration into the skin and clinically modulating its therapeutic efficacy. Methods Novasomes containing free fatty acid (FFA) as a penetration enhancer were formulated using ethanol injection technique based on 24 full factorial design to explore the impact of various formulation variables on novasomes characteristics regarding entrapment efficiency percent (EE%), particle size (PS), polydispersity index (PDI), and zeta potential (ZP). The optimum formulation was chosen using Design-Expert® software and utilized for further explorations. Results The chosen formulation (N15; including 100 mg lipid components and Span 80 to oleic acid in a ratio of 2:1 (w/w)) exhibited an EE% = 99.45 ± 0.78%, PS = 623.00 ± 2.97 nm, PDI = 0.40 ± 0.04, and ZP = −73.85 ± 0.64 mV. N15 showed spherical vesicles with a higher deformability index (DI) (9.62 ± 0.15 g) compared to traditional niosomal formulation (0.92 ± 0.12 g). Further, N15 showed superior inhibition of Candida albicans growth relative to TCZ suspension using XTT (2,3-bis-(2-methyloxy-4-nitro-5-sulfophenyl)-2H-tetrazolium-5-carboxanilide) reduction assay. Moreover, in vivo skin deposition tests revealed a superior TCZ deposition inside the skin from N15 in comparison to traditional niosomal formulation and TCZ suspension. Furthermore, histopathological examination for rats assured the safety of N15 for topical use. A clinical study conducted on infants suffering from napkin candidiasis proved the superiority of N15 to placebo in providing a complete cure of such fungal infections. Conclusion Concisely, the obtained outcomes confirmed the pronounced efficacy of N15 to successfully treat skin fungal infections.
Collapse
Affiliation(s)
- Shaimaa Mosallam
- Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy, October 6 University, Giza, Egypt
| | - Maha H Ragaie
- Department of Dermatology, STD's and Andrology, Faculty of Medicine, Minia University, Al-Minya, Egypt
| | - Noha H Moftah
- Department of Dermatology, STD's and Andrology, Faculty of Medicine, Minia University, Al-Minya, Egypt
| | - Ahmed Hassen Elshafeey
- Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy, Cairo University, Cairo, Egypt
| | - Aly Ahmed Abdelbary
- Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy, Cairo University, Cairo, Egypt.,School of Life and Medical Sciences, University of Hertfordshire Hosted by Global Academic Foundation, Cairo, Egypt
| |
Collapse
|
47
|
Uchino T, Fujimori S, Hatta I, Miyazaki Y, Kamiya D, Fujino H, Suzuki R, Kirishita Y, Eda T, Murashima K, Kagawa Y. Development of novel polyglycerol fatty acid ester-based nanoparticles for the dermal delivery of tocopherol acetate. Int J Pharm 2021; 592:120004. [PMID: 33127489 DOI: 10.1016/j.ijpharm.2020.120004] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2020] [Revised: 10/06/2020] [Accepted: 10/18/2020] [Indexed: 11/17/2022]
Abstract
The aim of this study was to develop and evaluate novel polyglycerol fatty acid ester (PGFE)-based nanoparticles (NPs) for the dermal delivery of tocopherol acetate (TA). TA-loaded PGFE-based NPs (PGFE-NPs) were prepared by mixing PGFE, soya phosphatidylcholine, dimyristoylphosphatidylglycerol, and TA with film using the film rehydration and extrusion method. The prepared formulations were analyzed by dynamic light scattering, small-angle X-ray diffraction and polarization microscopy. An in vitro skin accumulation test was performed with TA under occlusive and non-occlusive applications, using Yucatan micropig skin. The size range of the TA-loaded liposome and PGFE-NPs was 107-128 nm, and they were encapsulated in 1.6-2.3 mg/mL TA. All PGFE-NP formulations were negatively charged and stable for 2 weeks. Under occlusive applications, all formulations induced small amounts of TA accumulation in the epidermis but not in the dermis. However, under non-occlusive applications, some of PGFE-NP formulations enhanced TA accumulation in the epidermis. Furthermore, only the polyglycerol 4-laurate (PG4L)-based formulation induced dermal TA accumulation with the change in the formulation from a vesicular to bilayer stacked structure following water evaporation under non-occlusive applications. These results indicated that the novel TA-loaded PG4L formulation enabled the dermal delivery of TA in non-occlusive applications.
Collapse
Affiliation(s)
- Tomonobu Uchino
- Department of Clinical Pharmaceutics, School of Pharmaceutical Sciences, University of Shizuoka, 52-1 Yada, Suruga-ku, Shizuoka 422-8526, Japan.
| | - Shun Fujimori
- Department of Clinical Pharmaceutics, School of Pharmaceutical Sciences, University of Shizuoka, 52-1 Yada, Suruga-ku, Shizuoka 422-8526, Japan
| | - Ichiro Hatta
- Department of Research, Nagoya Industrial Science Research Institute, 1-13 Yotsuyadori, Chikusa-ku, Nagoya 464-0819, Japan
| | - Yasunori Miyazaki
- Department of Clinical Pharmaceutics, School of Pharmaceutical Sciences, University of Shizuoka, 52-1 Yada, Suruga-ku, Shizuoka 422-8526, Japan
| | - Daichi Kamiya
- Department of Clinical Pharmaceutics, School of Pharmaceutical Sciences, University of Shizuoka, 52-1 Yada, Suruga-ku, Shizuoka 422-8526, Japan
| | - Hiyori Fujino
- Department of Clinical Pharmaceutics, School of Pharmaceutical Sciences, University of Shizuoka, 52-1 Yada, Suruga-ku, Shizuoka 422-8526, Japan
| | - Rie Suzuki
- Department of Clinical Pharmaceutics, School of Pharmaceutical Sciences, University of Shizuoka, 52-1 Yada, Suruga-ku, Shizuoka 422-8526, Japan
| | - Yukako Kirishita
- Department of Clinical Pharmaceutics, School of Pharmaceutical Sciences, University of Shizuoka, 52-1 Yada, Suruga-ku, Shizuoka 422-8526, Japan
| | - Takashi Eda
- Department of Clinical Pharmaceutics, School of Pharmaceutical Sciences, University of Shizuoka, 52-1 Yada, Suruga-ku, Shizuoka 422-8526, Japan
| | - Kenji Murashima
- Research and Development Center, Sakamoto Yakuhin Kogyo Co., Ltd., 3-1-62 Ayumino, Izumi, Osaka 594-1157, Japan
| | - Yoshiyuki Kagawa
- Department of Clinical Pharmaceutics, School of Pharmaceutical Sciences, University of Shizuoka, 52-1 Yada, Suruga-ku, Shizuoka 422-8526, Japan
| |
Collapse
|
48
|
Kassem AA, Abd El-Alim SH. Vesicular Nanocarriers: A Potential Platform for Dermal and Transdermal Drug Delivery. NANOPHARMACEUTICALS: PRINCIPLES AND APPLICATIONS VOL. 2 2021. [DOI: 10.1007/978-3-030-44921-6_5] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
49
|
Lasoń E. Topical Administration of Terpenes Encapsulated in Nanostructured Lipid-Based Systems. Molecules 2020; 25:molecules25235758. [PMID: 33297317 PMCID: PMC7730254 DOI: 10.3390/molecules25235758] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2020] [Revised: 11/27/2020] [Accepted: 12/03/2020] [Indexed: 12/17/2022] Open
Abstract
Terpenes are a group of phytocompounds that have been used in medicine for decades owing to their significant role in human health. So far, they have been examined for therapeutic purposes as antibacterial, anti-inflammatory, antitumoral agents, and the clinical potential of this class of compounds has been increasing continuously as a source of pharmacologically interesting agents also in relation to topical administration. Major difficulties in achieving sustained delivery of terpenes to the skin are connected with their low solubility and stability, as well as poor cell penetration. In order to overcome these disadvantages, new delivery technologies based on nanostructures are proposed to improve bioavailability and allow controlled release. This review highlights the potential properties of terpenes loaded in several types of lipid-based nanocarriers (liposomes, solid lipid nanoparticles, and nanostructured lipid carriers) used to overcome free terpenes' form limitations and potentiate their therapeutic properties for topical administration.
Collapse
Affiliation(s)
- Elwira Lasoń
- Faculty of Chemical Engineering and Technology, Cracow University of Technology, Warszawska St 24, 31-155 Kraków, Poland
| |
Collapse
|
50
|
Nangare S, Dugam S. Smart invasome synthesis, characterizations, pharmaceutical applications, and pharmacokinetic perspective: a review. FUTURE JOURNAL OF PHARMACEUTICAL SCIENCES 2020. [DOI: 10.1186/s43094-020-00145-8] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
Abstract
Background
Scientists are constantly looking for the introduction of unique drug delivery systems for the existing drug molecule. Since the skin is one of the primary and essential organs of the human body, it needs successful research development for the delivery of the drug. While the skin is assumed a human body’s multifunctional organ, it has minimal permeability across the stratum corneum (SC). Since this is an influential barrier for the active agent, several carrier platforms to surmount this obstacle have been created. Invasomes are the liposomal vesicles, which incorporate small quantities of ethanol and terpenes or a mixture of terpenes, as potentials for improved penetration of the skin. The rate of penetration of invasomes through the skin is significantly greater than that of liposomes and ethosomes. Invasomes focus on providing a series of benefits namely enhanced drug effectiveness, increased conformity, and ease for patients.
Main body
The present article portrays insights of invasomes which include composition and preparation methods of invasomes. The article gives a brief review of the penetration mechanism, synthesis process, and characterizations of invasomes. The article gives a point by point audit about pharmaceutical applications, viz. anticancer, antihypertensive, anti-acne, vitamin analog, anticholinergic, antioxidant, etc. The pharmacokinetic properties of invasomes have also been described.
Conclusion
The key goal of an invasome-based delivery system is not only to strengthen the efficacy and safety of the drug but also to dramatically increase patient conformity and the therapeutic value to a significant extent. The delivery of drugs via the skin membrane in advanced drug delivery systems is a fascinating fact. Many pharmaceutical studies have shown that plentiful drug molecules are less soluble, have less bioavailability and stability, have less penetration, etc. Therefore, a new form of dosage with exceptional characteristics like invasomes can be created.
Graphical abstract
Collapse
|