1
|
Deurloo MHS, Eide S, Turlova E, Li Q, Spijker S, Sun HS, Groffen AJA, Feng ZP. Rasal1 regulates calcium dependent neuronal maturation by modifying microtubule dynamics. Cell Biosci 2024; 14:13. [PMID: 38246997 PMCID: PMC10800070 DOI: 10.1186/s13578-024-01193-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2023] [Accepted: 01/03/2024] [Indexed: 01/23/2024] Open
Abstract
BACKGROUND Rasal1 is a Ras GTPase-activating protein which contains C2 domains necessary for dynamic membrane association following intracellular calcium elevation. Membrane-bound Rasal1 inactivates Ras signaling through its RasGAP activity, and through such mechanisms has been implicated in regulating various cellular functions in the context of tumors. Although highly expressed in the brain, the contribution of Rasal1 to neuronal development and function has yet to be explored. RESULTS We examined the contributions of Rasal1 to neuronal development in primary culture of hippocampal neurons through modulation of Rasal1 expression using molecular tools. Fixed and live cell imaging demonstrate diffuse expression of Rasal1 throughout the cell soma, dendrites and axon which localizes to the neuronal plasma membrane in response to intracellular calcium fluctuation. Pull-down and co-immunoprecipitation demonstrate direct interaction of Rasal1 with PKC, tubulin, and CaMKII. Consequently, Rasal1 is found to stabilize microtubules, through post-translational modification of tubulin, and accordingly inhibit dendritic outgrowth and branching. Through imaging, molecular, and electrophysiological techniques Rasal1 is shown to promote NMDA-mediated synaptic activity and CaMKII phosphorylation. CONCLUSIONS Rasal1 functions in two separate roles in neuronal development; calcium regulated neurite outgrowth and the promotion of NMDA receptor-mediated postsynaptic events which may be mediated both by interaction with direct binding partners or calcium-dependent regulation of down-stream pathways. Importantly, the outlined molecular mechanisms of Rasal1 may contribute notably to normal neuronal development and synapse formation.
Collapse
Affiliation(s)
- M H S Deurloo
- Department of Physiology, University of Toronto, Toronto, Canada
| | - S Eide
- Department of Physiology, University of Toronto, Toronto, Canada
| | - E Turlova
- Department of Physiology, University of Toronto, Toronto, Canada
| | - Q Li
- Department of Physiology, University of Toronto, Toronto, Canada
| | - S Spijker
- Department Molecular and Cellular Neurobiology, Neurogenomics and Cognition Research, VU University of Amsterdam, Amsterdam, The Netherlands
| | - H-S Sun
- Department of Physiology, University of Toronto, Toronto, Canada
- Department of Surgery, University of Toronto, Toronto, Canada
| | - A J A Groffen
- Department of Functional Genomics, Center for Neurogenomics and Cognition Research, VU University Amsterdam, Amsterdam, The Netherlands
| | - Z-P Feng
- Department of Physiology, University of Toronto, Toronto, Canada.
| |
Collapse
|
2
|
Griffioen G. Calcium Dyshomeostasis Drives Pathophysiology and Neuronal Demise in Age-Related Neurodegenerative Diseases. Int J Mol Sci 2023; 24:13243. [PMID: 37686048 PMCID: PMC10487569 DOI: 10.3390/ijms241713243] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2023] [Revised: 08/21/2023] [Accepted: 08/23/2023] [Indexed: 09/10/2023] Open
Abstract
This review postulates that age-related neurodegeneration entails inappropriate activation of intrinsic pathways to enable brain plasticity through deregulated calcium (Ca2+) signalling. Ca2+ in the cytosol comprises a versatile signal controlling neuronal cell physiology to accommodate adaptive structural and functional changes of neuronal networks (neuronal plasticity) and, as such, is essential for brain function. Although disease risk factors selectively affect different neuronal cell types across age-related neurodegenerative diseases (NDDs), these appear to have in common the ability to impair the specificity of the Ca2+ signal. As a result, non-specific Ca2+ signalling facilitates the development of intraneuronal pathophysiology shared by age-related NDDs, including mitochondrial dysfunction, elevated reactive oxygen species (ROS) levels, impaired proteostasis, and decreased axonal transport, leading to even more Ca2+ dyshomeostasis. These core pathophysiological processes and elevated cytosolic Ca2+ levels comprise a self-enforcing feedforward cycle inevitably spiralling toward high levels of cytosolic Ca2+. The resultant elevated cytosolic Ca2+ levels ultimately gear otherwise physiological effector pathways underlying plasticity toward neuronal demise. Ageing impacts mitochondrial function indiscriminately of the neuronal cell type and, therefore, contributes to the feedforward cycle of pathophysiology development seen in all age-related NDDs. From this perspective, therapeutic interventions to safely restore Ca2+ homeostasis would mitigate the excessive activation of neuronal destruction pathways and, therefore, are expected to have promising neuroprotective potential.
Collapse
|
3
|
Urrutia PJ, González-Billault C. A Role for Second Messengers in Axodendritic Neuronal Polarity. J Neurosci 2023; 43:2037-2052. [PMID: 36948585 PMCID: PMC10039749 DOI: 10.1523/jneurosci.1065-19.2023] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2019] [Revised: 02/07/2023] [Accepted: 02/10/2023] [Indexed: 03/24/2023] Open
Abstract
Neuronal polarization is a complex molecular process regulated by intrinsic and extrinsic mechanisms. Nerve cells integrate multiple extracellular cues to generate intracellular messengers that ultimately control cell morphology, metabolism, and gene expression. Therefore, second messengers' local concentration and temporal regulation are crucial elements for acquiring a polarized morphology in neurons. This review article summarizes the main findings and current understanding of how Ca2+, IP3, cAMP, cGMP, and hydrogen peroxide control different aspects of neuronal polarization, and highlights questions that still need to be resolved to fully understand the fascinating cellular processes involved in axodendritic polarization.
Collapse
Affiliation(s)
- Pamela J Urrutia
- Department of Biology, Faculty of Sciences, Universidad de Chile, Santiago, Chile 7800003
- School of Medical Technology, Faculty of Medicine and Science, Universidad San Sebastián, Santiago, Chile 7510157
| | - Christian González-Billault
- Department of Biology, Faculty of Sciences, Universidad de Chile, Santiago, Chile 7800003
- Department of Neurosciences, Faculty of Medicine, Universidad de Chile, Santiago, Chile 8380453
- Geroscience Center for Brain Health and Metabolism, Santiago, Chile 7800003
- Buck Institute for Research on Aging, Novato, California 94945
| |
Collapse
|
4
|
Lee SM, Yeh PWL, Yeh HH. L-Type Calcium Channels Contribute to Ethanol-Induced Aberrant Tangential Migration of Primordial Cortical GABAergic Interneurons in the Embryonic Medial Prefrontal Cortex. eNeuro 2022; 9:ENEURO.0359-21.2021. [PMID: 34930830 PMCID: PMC8805770 DOI: 10.1523/eneuro.0359-21.2021] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2021] [Revised: 11/17/2021] [Accepted: 12/07/2021] [Indexed: 11/21/2022] Open
Abstract
Exposure of the fetus to alcohol (ethanol) via maternal consumption during pregnancy can result in fetal alcohol spectrum disorders (FASD), hallmarked by long-term physical, behavioral, and intellectual abnormalities. In our preclinical mouse model of FASD, prenatal ethanol exposure disrupts tangential migration of corticopetal GABAergic interneurons (GINs) in the embryonic medial prefrontal cortex (mPFC). We postulated that ethanol perturbed the normal pattern of tangential migration via enhancing GABAA receptor-mediated membrane depolarization that prevails during embryonic development in GABAergic cortical interneurons. However, beyond this, our understanding of the underlying mechanisms is incomplete. Here, we tested the hypothesis that the ethanol-enhanced depolarization triggers downstream an increase in high-voltage-activated nifedipine-sensitive L-type calcium channel (LTCC) activity and provide evidence implicating calcium dynamics in the signaling scheme underlying the migration of embryonic GINs and its aberrance. Tangentially migrating Nkx2.1+ GINs expressed immunoreactivity to Cav1.2, the canonical neuronal isoform of the L-type calcium channel. Prenatal ethanol exposure did not alter its protein expression profile in the embryonic mPFC. However, exposing ethanol concomitantly with the LTCC blocker nifedipine prevented the ethanol-induced aberrant migration both in vitro and in vivo In addition, whole-cell patch clamp recording of LTCCs in GINs migrating in embryonic mPFC slices revealed that acutely applied ethanol potentiated LTCC activity in migrating GINs. Based on evidence reported in the present study, we conclude that calcium is an important intracellular intermediary downstream of GABAA receptor-mediated depolarization in the mechanistic scheme of an ethanol-induced aberrant tangential migration of embryonic GABAergic cortical interneurons.
Collapse
Affiliation(s)
- Stephanie M Lee
- Department of Molecular and Systems Biology, Geisel School of Medicine at Dartmouth, Hanover, NH 03755
| | - Pamela W L Yeh
- Department of Molecular and Systems Biology, Geisel School of Medicine at Dartmouth, Hanover, NH 03755
| | - Hermes H Yeh
- Department of Molecular and Systems Biology, Geisel School of Medicine at Dartmouth, Hanover, NH 03755
| |
Collapse
|
5
|
Robbins M, Clayton E, Kaminski Schierle GS. Synaptic tau: A pathological or physiological phenomenon? Acta Neuropathol Commun 2021; 9:149. [PMID: 34503576 PMCID: PMC8428049 DOI: 10.1186/s40478-021-01246-y] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2021] [Accepted: 08/12/2021] [Indexed: 12/17/2022] Open
Abstract
In this review, we discuss the synaptic aspects of Tau pathology occurring during Alzheimer's disease (AD) and how this may relate to memory impairment, a major hallmark of AD. Whilst the clinical diagnosis of AD patients is a loss of working memory and long-term declarative memory, the histological diagnosis is the presence of neurofibrillary tangles of hyperphosphorylated Tau and Amyloid-beta plaques. Tau pathology spreads through synaptically connected neurons to impair synaptic function preceding the formation of neurofibrillary tangles, synaptic loss, axonal retraction and cell death. Alongside synaptic pathology, recent data suggest that Tau has physiological roles in the pre- or post- synaptic compartments. Thus, we have seen a shift in the research focus from Tau as a microtubule-stabilising protein in axons, to Tau as a synaptic protein with roles in accelerating spine formation, dendritic elongation, and in synaptic plasticity coordinating memory pathways. We collate here the myriad of emerging interactions and physiological roles of synaptic Tau, and discuss the current evidence that synaptic Tau contributes to pathology in AD.
Collapse
|
6
|
Roballo KCS, Gigley JP, Smith TA, Bittner GD, Bushman JS. Functional and immunological peculiarities of peripheral nerve allografts. Neural Regen Res 2021; 17:721-727. [PMID: 34472457 PMCID: PMC8530136 DOI: 10.4103/1673-5374.322445] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
This review addresses the accumulating evidence that live (not decellularized) allogeneic peripheral nerves are functionally and immunologically peculiar in comparison with many other transplanted allogeneic tissues. This is relevant because live peripheral nerve allografts are very effective at promoting recovery after segmental peripheral nerve injury via axonal regeneration and axon fusion. Understanding the immunological peculiarities of peripheral nerve allografts may also be of interest to the field of transplantation in general. Three topics are addressed: The first discusses peripheral nerve injury and the potential utility of peripheral nerve allografts for bridging segmental peripheral nerve defects via axon fusion and axon regeneration. The second reviews evidence that peripheral nerve allografts elicit a more gradual and less severe host immune response allowing for prolonged survival and function of allogeneic peripheral nerve cells and structures. Lastly, potential mechanisms that may account for the immunological differences of peripheral nerve allografts are discussed.
Collapse
Affiliation(s)
| | - Jason P Gigley
- Department of Molecular Biology, University of Wyoming, Laramie, WY, USA
| | - Tyler A Smith
- Department of Molecular Biosciences, University of Texas at Austin, Austin, TX, USA
| | - George D Bittner
- Department of Neuroscience, University of Texas at Austin, Austin, TX, USA
| | | |
Collapse
|
7
|
Glaser T, Shimojo H, Ribeiro DE, Martins PPL, Beco RP, Kosinski M, Sampaio VFA, Corrêa-Velloso J, Oliveira-Giacomelli Á, Lameu C, de Jesus Santos AP, de Souza HDN, Teng YD, Kageyama R, Ulrich H. ATP and spontaneous calcium oscillations control neural stem cell fate determination in Huntington's disease: a novel approach for cell clock research. Mol Psychiatry 2021; 26:2633-2650. [PMID: 32350390 DOI: 10.1038/s41380-020-0717-5] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/30/2019] [Revised: 03/12/2020] [Accepted: 03/24/2020] [Indexed: 12/22/2022]
Abstract
Calcium, the most versatile second messenger, regulates essential biology including crucial cellular events in embryogenesis. We investigated impacts of calcium channels and purinoceptors on neuronal differentiation of normal mouse embryonic stem cells (ESCs), with outcomes being compared to those of in vitro models of Huntington's disease (HD). Intracellular calcium oscillations tracked via real-time fluorescence and luminescence microscopy revealed a significant correlation between calcium transient activity and rhythmic proneuronal transcription factor expression in ESCs stably expressing ASCL-1 or neurogenin-2 promoters fused to luciferase reporter genes. We uncovered that pharmacological manipulation of L-type voltage-gated calcium channels (VGCCs) and purinoceptors induced a two-step process of neuronal differentiation. Specifically, L-type calcium channel-mediated augmentation of spike-like calcium oscillations first promoted stable expression of ASCL-1 in differentiating ESCs, which following P2Y2 purinoceptor activation matured into GABAergic neurons. By contrast, there was neither spike-like calcium oscillations nor responsive P2Y2 receptors in HD-modeling stem cells in vitro. The data shed new light on mechanisms underlying neurogenesis of inhibitory neurons. Moreover, our approach may be tailored to identify pathogenic triggers of other developmental neurological disorders for devising targeted therapies.
Collapse
Affiliation(s)
- Talita Glaser
- Department of Biochemistry, Institute of Chemistry, University of Sao Paulo, Sao Paulo, Brazil
| | - Hiromi Shimojo
- Institute for Frontier Life and Medical Sciences, Kyoto University, Kyoto, Japan.,Graduate School of Frontier Biosciences, Osaka University, Suita, Japan
| | - Deidiane Elisa Ribeiro
- Department of Biochemistry, Institute of Chemistry, University of Sao Paulo, Sao Paulo, Brazil
| | | | - Renata Pereira Beco
- Department of Biochemistry, Institute of Chemistry, University of Sao Paulo, Sao Paulo, Brazil
| | - Michal Kosinski
- Departments of Physical Medicine & Rehabilitation and Neurosurgery, Harvard Medical School, Spaulding Rehabilitation Hospital and Brigham and Women's Hospital, Boston, MA, USA.,Translative Plataform for Regenerative Medicine, Mossakowski Medical Research Centre, Polish Academy of Sciences, Warsaw, Poland
| | | | - Juliana Corrêa-Velloso
- Department of Biochemistry, Institute of Chemistry, University of Sao Paulo, Sao Paulo, Brazil
| | | | - Claudiana Lameu
- Department of Biochemistry, Institute of Chemistry, University of Sao Paulo, Sao Paulo, Brazil
| | | | | | - Yang D Teng
- Departments of Physical Medicine & Rehabilitation and Neurosurgery, Harvard Medical School, Spaulding Rehabilitation Hospital and Brigham and Women's Hospital, Boston, MA, USA
| | - Ryoichiro Kageyama
- Institute for Frontier Life and Medical Sciences, Kyoto University, Kyoto, Japan
| | - Henning Ulrich
- Department of Biochemistry, Institute of Chemistry, University of Sao Paulo, Sao Paulo, Brazil.
| |
Collapse
|
8
|
Kiyoshi C, Tedeschi A. Axon growth and synaptic function: A balancing act for axonal regeneration and neuronal circuit formation in CNS trauma and disease. Dev Neurobiol 2020; 80:277-301. [PMID: 32902152 PMCID: PMC7754183 DOI: 10.1002/dneu.22780] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2020] [Revised: 08/29/2020] [Accepted: 08/31/2020] [Indexed: 12/13/2022]
Abstract
Axons in the adult mammalian central nervous system (CNS) fail to regenerate inside out due to intrinsic and extrinsic neuronal determinants. During CNS development, axon growth, synapse formation, and function are tightly regulated processes allowing immature neurons to effectively grow an axon, navigate toward target areas, form synaptic contacts and become part of information processing networks that control behavior in adulthood. Not only immature neurons are able to precisely control the expression of a plethora of genes necessary for axon extension and pathfinding, synapse formation and function, but also non-neuronal cells such as astrocytes and microglia actively participate in sculpting the nervous system through refinement, consolidation, and elimination of synaptic contacts. Recent evidence indicates that a balancing act between axon regeneration and synaptic function may be crucial for rebuilding functional neuronal circuits after CNS trauma and disease in adulthood. Here, we review the role of classical and new intrinsic and extrinsic neuronal determinants in the context of CNS development, injury, and disease. Moreover, we discuss strategies targeting neuronal and non-neuronal cell behaviors, either alone or in combination, to promote axon regeneration and neuronal circuit formation in adulthood.
Collapse
Affiliation(s)
- Conrad Kiyoshi
- Department of Neuroscience, Wexner Medical Center, The Ohio State University, Columbus, OH 43210, USA
| | - Andrea Tedeschi
- Department of Neuroscience, Wexner Medical Center, The Ohio State University, Columbus, OH 43210, USA
- Discovery Theme on Chronic Brain Injury, The Ohio State University, Columbus, OH 43210, USA
| |
Collapse
|
9
|
Myocyte Enhancer Factor 2A (MEF2A) Defines Oxytocin-Induced Morphological Effects and Regulates Mitochondrial Function in Neurons. Int J Mol Sci 2020; 21:ijms21062200. [PMID: 32209973 PMCID: PMC7139413 DOI: 10.3390/ijms21062200] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2020] [Revised: 03/16/2020] [Accepted: 03/20/2020] [Indexed: 02/06/2023] Open
Abstract
The neuropeptide oxytocin (OT) is a well-described modulator of socio-emotional traits, such as anxiety, stress, social behavior, and pair bonding. However, when dysregulated, it is associated with adverse psychiatric traits, such as various aspects of autism spectrum disorder (ASD). In this study, we identify the transcription factor myocyte enhancer factor 2A (MEF2A) as the common link between OT and cellular changes symptomatic for ASD, encompassing neuronal morphology, connectivity, and mitochondrial function. We provide evidence for MEF2A as the decisive factor defining the cellular response to OT: while OT induces neurite retraction in MEF2A expressing neurons, OT causes neurite outgrowth in absence of MEF2A. A CRISPR-Cas-mediated knockout of MEF2A and retransfection of an active version or permanently inactive mutant, respectively, validated our findings. We also identified the phosphatase calcineurin as the main upstream regulator of OT-induced MEF2A signaling. Further, MEF2A signaling dampens mitochondrial functioning in neurons, as MEF2A knockout cells show increased maximal cellular respiration, spare respiratory capacity, and total cellular ATP. In summary, we reveal a central role for OT-induced MEF2A activity as major regulator of cellular morphology as well as neuronal connectivity and mitochondrial functioning, with broad implications for a potential treatment of disorders based on morphological alterations or mitochondrial dysfunction.
Collapse
|
10
|
ANO1/TMEM16A regulates process maturation in radial glial cells in the developing brain. Proc Natl Acad Sci U S A 2019; 116:12494-12499. [PMID: 31147466 PMCID: PMC6589654 DOI: 10.1073/pnas.1901067116] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023] Open
Abstract
Neural stem cells (NSCs) are primary progenitor cells in the early developmental stage in the brain that initiate a diverse lineage of differentiated neurons and glia. Radial glial cells (RGCs), a type of neural stem cell in the ventricular zone, are essential for nurturing and delivering new immature neurons to the appropriate cortical target layers. Here we report that Anoctamin 1 (ANO1)/TMEM16A, a Ca2+-activated chloride channel, mediates the Ca2+-dependent process extension of RGCs. ANO1 is highly expressed and functionally active in RGCs of the mouse embryonic ventricular zone. Knockdown of ANO1 suppresses RGC process extension and protrusions, whereas ANO1 overexpression stimulates process extension. Among various trophic factors, brain-derived neurotrophic factor (BDNF) activates ANO1, which is required for BDNF-induced process extension in RGCs. More importantly, Ano1-deficient mice exhibited disrupted cortical layers and reduced cortical thickness. We thus conclude that the regulation of RGC process extension by ANO1 contributes to the normal formation of mouse embryonic brain.
Collapse
|
11
|
Calcium Activity Dynamics Correlate with Neuronal Phenotype at a Single Cell Level and in a Threshold-Dependent Manner. Int J Mol Sci 2019; 20:ijms20081880. [PMID: 30995769 PMCID: PMC6515432 DOI: 10.3390/ijms20081880] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2019] [Revised: 04/08/2019] [Accepted: 04/10/2019] [Indexed: 12/23/2022] Open
Abstract
Calcium is a ubiquitous signaling molecule that plays a vital role in many physiological processes. Recent work has shown that calcium activity is especially critical in vertebrate neural development. Here, we investigated if calcium activity and neuronal phenotype are correlated only on a population level or on the level of single cells. Using Xenopus primary cell culture in which individual cells can be unambiguously identified and associated with a molecular phenotype, we correlated calcium activity with neuronal phenotype on the single-cell level. This analysis revealed that, at the neural plate stage, a high frequency of low-amplitude spiking activity correlates with an excitatory, glutamatergic phenotype, while high-amplitude spiking activity correlates with an inhibitory, GABAergic phenotype. Surprisingly, we also found that high-frequency, low-amplitude spiking activity correlates with neural progenitor cells and that differentiating cells exhibit higher spike amplitude. Additional methods of analysis suggested that differentiating marker tubb2b-expressing cells exhibit relatively persistent and predictable calcium activity compared to the irregular activity of neural progenitor cells. Our study highlights the value of using a range of thresholds for analyzing calcium activity data and underscores the importance of employing multiple methods to characterize the often irregular, complex patterns of calcium activity during early neural development.
Collapse
|
12
|
Galvao J, Iwao K, Apara A, Wang Y, Ashouri M, Shah TN, Blackmore M, Kunzevitzky NJ, Moore DL, Goldberg JL. The Krüppel-Like Factor Gene Target Dusp14 Regulates Axon Growth and Regeneration. Invest Ophthalmol Vis Sci 2019; 59:2736-2747. [PMID: 29860460 PMCID: PMC5983061 DOI: 10.1167/iovs.17-23319] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
Purpose Adult central nervous system (CNS) neurons are unable to regenerate their axons after injury. Krüppel-like transcription factor (KLF) family members regulate intrinsic axon growth ability in vitro and in vivo, but mechanisms downstream of these transcription factors are not known. Methods Purified retinal ganglion cells (RGCs) were transduced to express exogenous KLF9, KLF16, KLF7, or KLF11; microarray analysis was used to identify downstream genes, which were screened for effects on axon growth. Dual-specificity phosphatase 14 (Dusp14) was further studied using genetic (siRNA, shRNA) and pharmacologic (PTP inhibitor IV) manipulation to assess effects on neurite length in vitro and survival and regeneration in vivo after optic nerve crush in rats and mice. Results By screening genes regulated by KLFs in RGCs, we identified Dusp14 as a critical gene target limiting axon growth and regeneration downstream of KLF9's ability to suppress axon growth in RGCs. The KLF9-Dusp14 pathway inhibited activation of mitogen-activated protein kinases normally critical to neurotrophic signaling of RGC survival and axon elongation. Decreasing Dusp14 expression or disrupting its function in RGCs increased axon growth in vitro and promoted survival and optic nerve regeneration after optic nerve injury in vivo. Conclusions These results link intrinsic and extrinsic regulators of axon growth and suggest modulation of the KLF9-Dusp14 pathway as a potential approach to improve regeneration in the adult CNS after injury.
Collapse
Affiliation(s)
- Joana Galvao
- Byers Eye Institute, Stanford University, Palo Alto, California, United States.,Shiley Eye Center, University of California San Diego, La Jolla, California, United States
| | - Keiichiro Iwao
- Bascom Palmer Eye Institute, University of Miami Miller School of Medicine, Miami, Florida, United States
| | - Akintomide Apara
- Bascom Palmer Eye Institute, University of Miami Miller School of Medicine, Miami, Florida, United States
| | - Yan Wang
- Shiley Eye Center, University of California San Diego, La Jolla, California, United States.,Bascom Palmer Eye Institute, University of Miami Miller School of Medicine, Miami, Florida, United States
| | - Masoumeh Ashouri
- Shiley Eye Center, University of California San Diego, La Jolla, California, United States
| | - Tejas Nimish Shah
- Shiley Eye Center, University of California San Diego, La Jolla, California, United States
| | - Murray Blackmore
- Bascom Palmer Eye Institute, University of Miami Miller School of Medicine, Miami, Florida, United States
| | - Noelia J Kunzevitzky
- Byers Eye Institute, Stanford University, Palo Alto, California, United States.,Shiley Eye Center, University of California San Diego, La Jolla, California, United States.,Bascom Palmer Eye Institute, University of Miami Miller School of Medicine, Miami, Florida, United States.,Center for Computational Science, University of Miami, Miami, Florida, United States
| | - Darcie L Moore
- Bascom Palmer Eye Institute, University of Miami Miller School of Medicine, Miami, Florida, United States
| | - Jeffrey L Goldberg
- Byers Eye Institute, Stanford University, Palo Alto, California, United States.,Shiley Eye Center, University of California San Diego, La Jolla, California, United States.,Bascom Palmer Eye Institute, University of Miami Miller School of Medicine, Miami, Florida, United States
| |
Collapse
|
13
|
Tarasova EO, Gaydukov AE, Balezina OP. Calcineurin and Its Role in Synaptic Transmission. BIOCHEMISTRY (MOSCOW) 2018; 83:674-689. [PMID: 30195324 DOI: 10.1134/s0006297918060056] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
Calcineurin (CaN) is a serine/threonine phosphatase widely expressed in different cell types and structures including neurons and synapses. The most studied role of CaN is its involvement in the functioning of postsynaptic structures of central synapses. The role of CaN in the presynaptic structures of central and peripheral synapses is less understood, although it has generated a considerable interest and is a subject of a growing number of studies. The regulatory role of CaN in synaptic vesicle endocytosis in the synapse terminals is actively studied. In recent years, new targets of CaN have been identified and its role in the regulation of enzymes and neurotransmitter secretion in peripheral neuromuscular junctions has been revealed. CaN is the only phosphatase that requires calcium and calmodulin for activation. In this review, we present details of CaN molecular structure and give a detailed description of possible mechanisms of CaN activation involving calcium, enzymes, and endogenous and exogenous inhibitors. Known and newly discovered CaN targets at pre- and postsynaptic levels are described. CaN activity in synaptic structures is discussed in terms of functional involvement of this phosphatase in synaptic transmission and neurotransmitter release.
Collapse
Affiliation(s)
- E O Tarasova
- Lomonosov Moscow State University, Faculty of Biology, Moscow, 119991, Russia
| | - A E Gaydukov
- Lomonosov Moscow State University, Faculty of Biology, Moscow, 119991, Russia. .,Pirogov Russian National Research Medical University, Moscow, 117997, Russia
| | - O P Balezina
- Lomonosov Moscow State University, Faculty of Biology, Moscow, 119991, Russia
| |
Collapse
|
14
|
NMDA receptors inhibit axonal outgrowth by inactivating Akt and activating GSK-3β via calcineurin in cultured immature hippocampal neurons. Exp Cell Res 2018; 371:389-398. [PMID: 30176218 DOI: 10.1016/j.yexcr.2018.08.033] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2018] [Revised: 07/10/2018] [Accepted: 08/30/2018] [Indexed: 12/16/2022]
Abstract
Neurons are highly polarized cells with an axon and dendritic arbors. It is still not well studied that how formation and elaboration of axon and dendrites is controlled by diffusible signaling factors such as glutamate via specific receptors. We found that N-methyl-D-aspartate (NMDA) receptors were enriched (stage 2-3) but decreased expression (stage 4-5) at tip of axon of cultured hippocampal neurons during distinct development stages. Inhibition of NMDA receptor activity by competitive antagonist DL-2-amino-5-phosphonovalerate (APV) or channel blocker MK801 promoted axonal outgrowth at the early stages, whereas inhibited dendritic development in later stages. Meanwhile, knockdown of NMDA receptors also promoted axonal outgrowth and branch in immature neurons. Furthermore, GluN2B but not GluN2A subunit inhibited axonal outgrowth in immature hippocampal neurons. Finally, we found that NMDA receptors inhibited axonal outgrowth by inactivating Akt and activating GSK-3β signaling in a calcineurin-dependent manner. Taken together, our results demonstrate that stabilization GSK-3β activation in the axon growth cone by Ca2+ influx through NMDA receptors may be involved in regulation of axon formation in immature neurons at early stages.
Collapse
|
15
|
Dubový P, Klusáková I, Hradilová-Svíženská I, Joukal M. Expression of Regeneration-Associated Proteins in Primary Sensory Neurons and Regenerating Axons After Nerve Injury-An Overview. Anat Rec (Hoboken) 2018; 301:1618-1627. [PMID: 29740961 DOI: 10.1002/ar.23843] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2017] [Revised: 11/09/2017] [Accepted: 12/08/2017] [Indexed: 12/20/2022]
Abstract
Peripheral nerve injury results in profound alterations of the affected neurons resulting from the interplay between intrinsic and extrinsic molecular events. Restarting the neuronal regenerative program is an important prerequisite for functional recovery of the injured peripheral nerve. The primary sensory neurons with their cell bodies in the dorsal root ganglia provide a useful in vivo and in vitro model for studying the mechanisms that regulate intrinsic neuronal regeneration capacity following axotomy. These studies frequently need to indicate the regenerative status of the corresponding neurons. We summarize the critical issues regarding immunohistochemical detection of several regeneration-associated proteins as markers for the initiation of the regeneration program in rat primary sensory neurons and indicators of axon regeneration in the peripheral nerves. This overview also includes our own results of GAP43 and SCG10 expression in different DRG neurons following double immunostaining with molecular markers of neuronal subpopulations (NF200, CGRP, and IB4) as well as transcription factors (ATF3 and activated STAT3) following unilateral sciatic nerve injury. Anat Rec, 301:1618-1627, 2018. © 2018 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Petr Dubový
- Department of Anatomy, Cellular and Molecular Research Group, Masaryk University, Brno, Czechia, Czech Republic
| | - Ilona Klusáková
- Department of Anatomy, Cellular and Molecular Research Group, Masaryk University, Brno, Czechia, Czech Republic
| | - Ivana Hradilová-Svíženská
- Department of Anatomy, Cellular and Molecular Research Group, Masaryk University, Brno, Czechia, Czech Republic
| | - Marek Joukal
- Department of Anatomy, Cellular and Molecular Research Group, Masaryk University, Brno, Czechia, Czech Republic
| |
Collapse
|
16
|
Promoting bioengineered tooth innervation using nanostructured and hybrid scaffolds. Acta Biomater 2017; 50:493-501. [PMID: 28057509 DOI: 10.1016/j.actbio.2017.01.001] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2016] [Revised: 12/27/2016] [Accepted: 01/01/2017] [Indexed: 12/27/2022]
Abstract
The innervation of teeth mediated by axons originating from the trigeminal ganglia is essential for their function and protection. Immunosuppressive therapy using Cyclosporine A (CsA) was found to accelerate the innervation of transplanted tissues and particularly that of bioengineered teeth. To avoid the CsA side effects, we report in this study the preparation of CsA loaded poly(lactic-co-glycolic acid) (PLGA) nanoparticles, their embedding on polycaprolactone (PCL)-based scaffolds and their possible use as templates for the innervation of bioengineered teeth. This PCL scaffold, approved by the FDA and capable of mimicking the extracellular matrix, was obtained by electrospinning and decorated with CsA-loaded PLGA nanoparticles to allow a local sustained action of this immunosuppressive drug. Dental re-associations were co-implanted with a trigeminal ganglion on functionalized scaffolds containing PLGA and PLGA/cyclosporine in adult ICR mice during 2weeks. Histological analyses showed that the designed scaffolds did not alter the teeth development after in vivo implantation. The study of the innervation of the dental re-associations by indirect immunofluorescence and transmission electron microscopy (TEM), showed that 88.4% of the regenerated teeth were innervated when using the CsA-loaded PLGA scaffold. The development of active implants thus allows their potential use in the context of dental engineering. STATEMENT OF SIGNIFICANCE Tooth innervation is essential for their function and protection and this can be promoted in vivo using polymeric scaffolds functionalized with immunosuppressive drug-loaded nanoparticles. Immunosuppressive therapy using biodegradable nanoparticles loaded with Cyclosporine A was found to accelerate the innervation of bioengineered teeth after two weeks of implantation.
Collapse
|
17
|
Hoffman A, Taleski G, Sontag E. The protein serine/threonine phosphatases PP2A, PP1 and calcineurin: A triple threat in the regulation of the neuronal cytoskeleton. Mol Cell Neurosci 2017; 84:119-131. [PMID: 28126489 DOI: 10.1016/j.mcn.2017.01.005] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2016] [Revised: 01/16/2017] [Accepted: 01/21/2017] [Indexed: 01/08/2023] Open
Abstract
The microtubule, F-actin and neurofilament networks play a critical role in neuronal cell morphogenesis, polarity and synaptic plasticity. Significantly, the assembly/disassembly and stability of these cytoskeletal networks is crucially modulated by protein phosphorylation and dephosphorylation events. Herein, we aim to more closely examine the role played by three major neuronal Ser/Thr protein phosphatases, PP2A, PP1 and calcineurin, in the homeostasis of the neuronal cytoskeleton. There is strong evidence that these enzymes interact with and dephosphorylate a variety of cytoskeletal proteins, resulting in major regulation of neuronal cytoskeletal dynamics. Conversely, we also discuss how multi-protein cytoskeletal scaffolds can also influence the regulation of these phosphatases, with important implications for neuronal signalling and homeostasis. Not surprisingly, deregulation of these cytoskeletal scaffolds and phosphatase dysfunction are associated with many neurological diseases.
Collapse
Affiliation(s)
- Alexander Hoffman
- School of Biomedical Sciences and Pharmacy, Faculty of Health and Medicine, and Hunter Medical Research Institute, University of Newcastle, Callaghan, NSW 2308, Australia
| | - Goce Taleski
- School of Biomedical Sciences and Pharmacy, Faculty of Health and Medicine, and Hunter Medical Research Institute, University of Newcastle, Callaghan, NSW 2308, Australia
| | - Estelle Sontag
- School of Biomedical Sciences and Pharmacy, Faculty of Health and Medicine, and Hunter Medical Research Institute, University of Newcastle, Callaghan, NSW 2308, Australia.
| |
Collapse
|
18
|
Jacquemet G, Baghirov H, Georgiadou M, Sihto H, Peuhu E, Cettour-Janet P, He T, Perälä M, Kronqvist P, Joensuu H, Ivaska J. L-type calcium channels regulate filopodia stability and cancer cell invasion downstream of integrin signalling. Nat Commun 2016; 7:13297. [PMID: 27910855 PMCID: PMC5146291 DOI: 10.1038/ncomms13297] [Citation(s) in RCA: 119] [Impact Index Per Article: 14.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2016] [Accepted: 09/19/2016] [Indexed: 01/03/2023] Open
Abstract
Mounting in vitro, in vivo and clinical evidence suggest an important role for filopodia in driving cancer cell invasion. Using a high-throughput microscopic-based drug screen, we identify FDA-approved calcium channel blockers (CCBs) as potent inhibitors of filopodia formation in cancer cells. Unexpectedly, we discover that L-type calcium channels are functional and frequently expressed in cancer cells suggesting a previously unappreciated role for these channels during tumorigenesis. We further demonstrate that, at filopodia, L-type calcium channels are activated by integrin inside-out signalling, integrin activation and Src. Moreover, L-type calcium channels promote filopodia stability and maturation into talin-rich adhesions through the spatially restricted regulation of calcium entry and subsequent activation of the protease calpain-1. Altogether we uncover a novel and clinically relevant signalling pathway that regulates filopodia formation in cancer cells and propose that cycles of filopodia stabilization, followed by maturation into focal adhesions, directs cancer cell migration and invasion. Filopodia have a prominent role in driving cancer cell invasion. Here, the authors show that L-type calcium channels are a druggable target regulating filopodia stability and maturation into focal adhesions in metastatic breast cancer cells.
Collapse
Affiliation(s)
- Guillaume Jacquemet
- Turku Centre for Biotechnology, University of Turku, FIN-20520 Turku, Finland
| | - Habib Baghirov
- Turku Centre for Biotechnology, University of Turku, FIN-20520 Turku, Finland
| | - Maria Georgiadou
- Turku Centre for Biotechnology, University of Turku, FIN-20520 Turku, Finland
| | - Harri Sihto
- Laboratory of Molecular Oncology, Translational Cancer Biology program, University of Helsinki, FIN-00290 Helsinki, Finland
| | - Emilia Peuhu
- Turku Centre for Biotechnology, University of Turku, FIN-20520 Turku, Finland
| | | | - Tao He
- VTT Medical Biotechnology, Technical Research Centre of Finland, FIN-20520 Turku, Finland
| | - Merja Perälä
- VTT Medical Biotechnology, Technical Research Centre of Finland, FIN-20520 Turku, Finland
| | - Pauliina Kronqvist
- Department of Pathology, University of Turku and Turku University Hospital, FIN-20520 Turku, Finland
| | - Heikki Joensuu
- Laboratory of Molecular Oncology, Translational Cancer Biology program, University of Helsinki, FIN-00290 Helsinki, Finland.,Department of Oncology, Helsinki University Hospital, FIN-00290 Helsinki, Finland
| | - Johanna Ivaska
- Turku Centre for Biotechnology, University of Turku, FIN-20520 Turku, Finland.,Department of Biochemistry, University of Turku, FIN-20520 Turku, Finland
| |
Collapse
|
19
|
Calcium signaling in axon guidance. Trends Neurosci 2014; 37:424-32. [DOI: 10.1016/j.tins.2014.05.008] [Citation(s) in RCA: 45] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2014] [Revised: 05/15/2014] [Accepted: 05/23/2014] [Indexed: 01/22/2023]
|
20
|
Nordman JC, Kabbani N. Microtubule dynamics at the growth cone are mediated by α7 nicotinic receptor activation of a Gαq and IP3 receptor pathway. FASEB J 2014; 28:2995-3006. [PMID: 24687992 DOI: 10.1096/fj.14-251439] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
The α7 nicotinic receptor (α7) plays an important role in neuronal growth and structural plasticity in the developing brain. We have recently characterized a G-protein-signaling pathway regulated by α7 that directs the growth of neurites in developing neural cells. Now we show that choline activation of α7 promotes a rise in intracellular calcium from local ER stores via Gαq signaling, leading to IP3 receptor (IP3R) activation at the growth cone of differentiating PC12 cells. A mutant α7 significantly attenuated in calcium conductance (D44A; P<0.001) was found to be unable to promote IP3R signaling and calcium store release. In addition, calcium elevation via α7 correlates with a significant attenuation in the rate of microtubule invasion of the growth cone (P<0.001). This process was also attenuated in the D44A mutant and blocked by an inhibitor of the IP3R, suggesting that calcium flow through the α7 channel and activation of the Gαq pathway are necessary for growth. Taken together, the findings reveal an inhibitory mechanism of α7 on cytoskeletal growth via the intracellular calcium activity of the receptor channel and the Gαq signaling pathway at the growth cone.-Nordman, J. C., Kabbani, N. Microtubule dynamics at the growth cone are mediated by α7 nicotinic receptor activation of a Gαq and IP3 receptor pathway.
Collapse
Affiliation(s)
- Jacob C Nordman
- Department of Molecular Neuroscience, Krasnow Institute for Advanced Study, George Mason University, Fairfax, Virginia, USA
| | - Nadine Kabbani
- Department of Molecular Neuroscience, Krasnow Institute for Advanced Study, George Mason University, Fairfax, Virginia, USA
| |
Collapse
|
21
|
Kökten T, Bécavin T, Keller L, Weickert JL, Kuchler-Bopp S, Lesot H. Immunomodulation stimulates the innervation of engineered tooth organ. PLoS One 2014; 9:e86011. [PMID: 24465840 PMCID: PMC3899083 DOI: 10.1371/journal.pone.0086011] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2013] [Accepted: 12/04/2013] [Indexed: 01/24/2023] Open
Abstract
The sensory innervation of the dental mesenchyme is essential for tooth function and protection. Sensory innervation of the dental pulp is mediated by axons originating from the trigeminal ganglia and is strictly regulated in time. Teeth can develop from cultured re-associations between dissociated dental epithelial and mesenchymal cells from Embryonic Day 14 mouse molars, after implantation under the skin of adult ICR mice. In these conditions however, the innervation of the dental mesenchyme did not occur spontaneously. In order to go further with this question, complementary experimental approaches were designed. Cultured cell re-associations were implanted together with trigeminal ganglia for one or two weeks. Although axonal growth was regularly observed extending from the trigeminal ganglia to all around the forming teeth, the presence of axons in the dental mesenchyme was detected in less than 2.5% of samples after two weeks, demonstrating a specific impairment of their entering the dental mesenchyme. In clinical context, immunosuppressive therapy using cyclosporin A was found to accelerate the innervation of transplanted tissues. Indeed, when cultured cell re-associations and trigeminal ganglia were co-implanted in cyclosporin A-treated ICR mice, nerve fibers were detected in the dental pulp, even reaching odontoblasts after one week. However, cyclosporin A shows multiple effects, including direct ones on nerve growth. To test whether there may be a direct functional relationship between immunomodulation and innervation, cell re-associations and trigeminal ganglia were co-implanted in immunocompromised Nude mice. In these conditions as well, the innervation of the dental mesenchyme was observed already after one week of implantation, but axons reached the odontoblast layer after two weeks only. This study demonstrated that immunodepression per se does stimulate the innervation of the dental mesenchyme.
Collapse
Affiliation(s)
- Tunay Kökten
- Institut National de la Santé Et de la Recherche Médicale (INSERM) Unité Mixte de Recherche (UMR)1109, team “Osteoarticular and Dental Regenerative NanoMedicine”, Faculté de Médecine, Université de Strasbourg, Strasbourg, France
- Faculté de Chirurgie Dentaire, Université de Strasbourg, Strasbourg, France
| | - Thibault Bécavin
- Institut National de la Santé Et de la Recherche Médicale (INSERM) Unité Mixte de Recherche (UMR)1109, team “Osteoarticular and Dental Regenerative NanoMedicine”, Faculté de Médecine, Université de Strasbourg, Strasbourg, France
| | - Laetitia Keller
- Institut National de la Santé Et de la Recherche Médicale (INSERM) Unité Mixte de Recherche (UMR)1109, team “Osteoarticular and Dental Regenerative NanoMedicine”, Faculté de Médecine, Université de Strasbourg, Strasbourg, France
| | - Jean-Luc Weickert
- Service de Microscopie Electronique, Institut de Génétique et de Biologie Moléculaire et Cellulaire (IGBMC), INSERM Unité (U)964, Centre National de la Recherche Scientifique (CNRS) UMR1704, Université de Strasbourg, Illkirch, France
| | - Sabine Kuchler-Bopp
- Institut National de la Santé Et de la Recherche Médicale (INSERM) Unité Mixte de Recherche (UMR)1109, team “Osteoarticular and Dental Regenerative NanoMedicine”, Faculté de Médecine, Université de Strasbourg, Strasbourg, France
- Faculté de Chirurgie Dentaire, Université de Strasbourg, Strasbourg, France
| | - Hervé Lesot
- Institut National de la Santé Et de la Recherche Médicale (INSERM) Unité Mixte de Recherche (UMR)1109, team “Osteoarticular and Dental Regenerative NanoMedicine”, Faculté de Médecine, Université de Strasbourg, Strasbourg, France
- Faculté de Chirurgie Dentaire, Université de Strasbourg, Strasbourg, France
- * E-mail:
| |
Collapse
|
22
|
Sutherland DJ, Goodhill GJ. The interdependent roles of Ca(2+) and cAMP in axon guidance. Dev Neurobiol 2013; 75:402-10. [PMID: 25783999 DOI: 10.1002/dneu.22144] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2013] [Revised: 10/14/2013] [Accepted: 10/30/2013] [Indexed: 01/21/2023]
Abstract
Axon guidance is a fundamental process in the developing and regenerating nervous system that is necessary for accurate neuronal wiring and proper brain function. Two of the most important second messengers in axon guidance are Ca(2+) and cAMP. Recently experimental and theoretical studies have uncovered a Ca(2+) - and cAMP-dependent mechanism for switching between attraction and repulsion. Here, we review this process and related Ca(2+) and cAMP interactions, the mechanisms by which necessary intracellular calcium elevations are created, and the pathways, which effect attractive and repulsive responses to the switch.
Collapse
Affiliation(s)
- Daniel J Sutherland
- Queensland Brain Institute, The University of Queensland, St Lucia, QLD, 4072, Australia
| | | |
Collapse
|
23
|
Spitzer NC, Borodinsky LN, Root CM. Imaging and manipulating calcium transients in developing Xenopus spinal neurons. Cold Spring Harb Protoc 2013; 2013:653-64. [PMID: 23818661 DOI: 10.1101/pdb.prot066803] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
Many forms of electrical excitability expressed in the embryonic nervous system depend on Ca(2+) influx. This discovery has stimulated investigation of the functions of spontaneous elevations of intracellular Ca(2+) and their roles in neuronal development. We present a protocol for imaging different classes of intracellular Ca(2+) transients in embryonic Xenopus (amphibian) spinal neurons grown in dissociated cell culture and in the intact neural tube (the developing spinal cord), focusing on early stages of neuronal differentiation around the time of neural tube closure. The protocol describes methods for gain-of-function and loss-of-function experiments to reveal the functions of these Ca(2+) transients. The methods can also be applied to explant and organotypic cultures. The procedures are sufficiently simple that they can be further adapted for dissociated neuronal cell cultures from other developing embryos, embryonic spinal cords of vertebrates such as zebrafish, and ganglia in the developing nervous systems of invertebrates.
Collapse
Affiliation(s)
- Nicholas C Spitzer
- Neurobiology Section and Center for Molecular Genetics, Kavli Institute for Brain and Mind, Division of Biological Sciences, University of California at San Diego, La Jolla, California 92093, USA
| | | | | |
Collapse
|
24
|
Ethanol modulates spontaneous calcium waves in axonal growth cones in vitro. Brain Sci 2013; 3:615-26. [PMID: 24961417 PMCID: PMC4061854 DOI: 10.3390/brainsci3020615] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2013] [Revised: 04/12/2013] [Accepted: 04/16/2013] [Indexed: 11/25/2022] Open
Abstract
In developing neurons the frequency of long duration, spontaneous, transient calcium (Ca2+) elevations localized to the growth cone, is inversely related to the rate of axon elongation and increases several fold when axons pause. Here we report that these spontaneous Ca2+ transients with slow kinetics, called Ca2+ waves, are modulated by conditions of ethanol exposure that alter axonal growth dynamics. Using time-series fluorescence calcium imaging we found that acute treatment of fetal rat hippocampal neurons with 43 or 87 mM ethanol at an early stage of development in culture decreased the percent of axon growth cones showing at least one Ca2+ wave during 10 min of recording, from 18% in controls to 5% in cultures exposed to ethanol. Chronic exposure to 43 mM ethanol also reduced the incidence of Ca2+ waves to 8%, but exposure to 87 mM ethanol increased their incidence to 31%. Neither chronic nor acute ethanol affected the peak amplitude, time to peak or total duration of Ca2+ waves. In some experiments, we determined the temporal correlation between Ca2+ waves and growth and non-growth phases of axonal growth dynamics. As expected, waves were most prevalent in stationary or retracting growth cones in all treatment groups, except in cultures exposed chronically to 87 mM ethanol. Thus, the relationship between growth cone Ca2+ waves and axon growth dynamics is disrupted by ethanol.
Collapse
|
25
|
Glaser T, Resende RR, Ulrich H. Implications of purinergic receptor-mediated intracellular calcium transients in neural differentiation. Cell Commun Signal 2013; 11:12. [PMID: 23414261 PMCID: PMC3598966 DOI: 10.1186/1478-811x-11-12] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2012] [Accepted: 02/04/2013] [Indexed: 12/02/2022] Open
Abstract
Purinergic receptors participate, in almost every cell type, in controlling metabolic activities and many physiological functions including signal transmission, proliferation and differentiation. While most of P2Y receptors induce transient elevations of intracellular calcium concentration by activation of intracellular calcium pools and forward these signals as waves which can also be transmitted into neighboring cells, P2X receptors produce calcium spikes which also include activation of voltage-operating calcium channels. P2Y and P2X receptors induce calcium transients that activate transcription factors responsible for the progress of differentiation through mediators including calmodulin and calcineurin. Expression of P2X2 as well as of P2X7 receptors increases in differentiating neurons and glial cells, respectively. Gene expression silencing assays indicate that these receptors are important for the progress of differentiation and neuronal or glial fate determination. Metabotropic receptors, mostly P2Y1 and P2Y2 subtypes, act on embryonic cells or cells at the neural progenitor stage by inducing proliferation as well as by regulation of neural differentiation through NFAT translocation. The scope of this review is to discuss the roles of purinergic receptor-induced calcium spike and wave activity and its codification in neurodevelopmental and neurodifferentiation processes.
Collapse
Affiliation(s)
- Talita Glaser
- Departamento de Bioquímica, Instituto de Química, Universidade de São Paulo, Avenida Professor Lineu Prestes, 748, São Paulo, CEP 05508-900, Brazil.
| | | | | |
Collapse
|
26
|
Yoon YJ, White SL, Ni X, Gokin AP, Martin-Caraballo M. Downregulation of GluA2 AMPA receptor subunits reduces the dendritic arborization of developing spinal motoneurons. PLoS One 2012; 7:e49879. [PMID: 23226228 PMCID: PMC3511505 DOI: 10.1371/journal.pone.0049879] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2012] [Accepted: 10/15/2012] [Indexed: 11/19/2022] Open
Abstract
AMPA receptors lacking the GluA2 subunit allow a significant influx of Ca(2+) ions. Although Ca(2+)-permeable AMPA receptors are a familiar feature at early stages of development, the functional significance of these receptors during the maturation of the nervous system remains to be established. Chicken lumbar motoneurons express Ca(2+)-permeable AMPA receptors at E6 but the Ca(2+) permeability of AMPA receptors decreases ∼3-fold by E11. Considering that activity-dependent changes in intracellular Ca(2+) regulates dendritic outgrowth, in this study we investigated whether downregulation of GluA2 expression during a critical period of development alters the dendritic arborization of spinal motoneurons in ovo. We use an avian replication-competent retroviral vector RCASBP (B) carrying the marker red fluorescent protein (RFP) and a GluA2 RNAi construct to downregulate GluA2 expression. Chicken embryos were infected at E2 with one of the following constructs: RCASBP(B)-RFP, RCASBP(B)-RFP-scrambled RNAi, or RCASBP(B)-RFP-GluA2 RNAi. Infection of chicken embryos at E2 resulted in widespread expression of RFP throughout the spinal cord with ≥60% of Islet1/2-positive motoneurons infected, resulting in a significant reduction in GluA2 protein expression. Downregulation of GluA2 expression had no effect on the dendritic arborization of E6 motoneurons. However, downregulation of GluA2 expression caused a significant reduction in the dendritic arborization of E11 motoneurons. Neither motoneuron survival nor maturation of network activity was affected by changes in GluA2 expression. These findings demonstrate that increased GluA2 expression and changes in the Ca(2+) permeability of AMPA receptors regulate the dendritic arborization of spinal cord motoneurons during a critical period of development.
Collapse
Affiliation(s)
- Yone J. Yoon
- Department of Biology, University of Vermont, Burlington, Vermont, United States of America
| | - Sheryl L. White
- Department of Anatomy and Neurobiology, College of Medicine, University of Vermont, Burlington, Vermont, United States of America
| | - Xianglian Ni
- Department of Biology, University of Vermont, Burlington, Vermont, United States of America
| | - Alexander P. Gokin
- Department of Biology, University of Vermont, Burlington, Vermont, United States of America
| | - Miguel Martin-Caraballo
- Department of Pharmaceutical Sciences, School of Pharmacy, University of Maryland Eastern Shore, Princess Anne, Maryland, United States of America
| |
Collapse
|
27
|
Zhang XF, Hyland C, Van Goor D, Forscher P. Calcineurin-dependent cofilin activation and increased retrograde actin flow drive 5-HT-dependent neurite outgrowth in Aplysia bag cell neurons. Mol Biol Cell 2012; 23:4833-48. [PMID: 23097492 PMCID: PMC3521690 DOI: 10.1091/mbc.e12-10-0715] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Abstract
Neurite outgrowth in response to soluble growth factors often involves changes in intracellular Ca(2+); however, mechanistic roles for Ca(2+) in controlling the underlying dynamic cytoskeletal processes have remained enigmatic. Bag cell neurons exposed to serotonin (5-hydroxytryptamine [5-HT]) respond with a threefold increase in neurite outgrowth rates. Outgrowth depends on phospholipase C (PLC) → inositol trisphosphate → Ca(2+) → calcineurin signaling and is accompanied by increased rates of retrograde actin network flow in the growth cone P domain. Calcineurin inhibitors had no effect on Ca(2+) release or basal levels of retrograde actin flow; however, they completely suppressed 5-HT-dependent outgrowth and F-actin flow acceleration. 5-HT treatments were accompanied by calcineurin-dependent increases in cofilin activity in the growth cone P domain. 5-HT effects were mimicked by direct activation of PLC, suggesting that increased actin network treadmilling may be a widespread mechanism for promoting neurite outgrowth in response to neurotrophic factors.
Collapse
Affiliation(s)
- Xiao-Feng Zhang
- Department of Molecular, Cellular, and Developmental Biology, Yale University, New Haven, CT 06520, USA
| | | | | | | |
Collapse
|
28
|
ErbB1 epidermal growth factor receptor is a valid target for reducing the effects of multiple inhibitors of axonal regeneration. Exp Neurol 2012; 239:82-90. [PMID: 23022459 PMCID: PMC3556781 DOI: 10.1016/j.expneurol.2012.09.007] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2012] [Revised: 08/24/2012] [Accepted: 09/20/2012] [Indexed: 01/07/2023]
Abstract
Pharmacological inhibitors of epidermal growth factor receptor (ErbB1) attenuate the ability of CNS myelin to inhibit axonal regeneration. However, it has been claimed that such effects are mediated by off-target interactions. We have tested the role of ErbB1 in axonal regeneration by culturing neurons from ErbB1 knockout mice in the presence of various inhibitors of axonal regeneration: CNS myelin, chondroitin sulfate proteoglycans (CSPG), fibrinogen or polyinosinic:polycytidylic acid (poly I:C). We confirmed that ErbB1 was activated in cultures of cerebellar granule cells exposed to inhibitors of axonal regeneration and that ErbB1 kinase inhibitors promoted neurite outgrowth under these conditions. In the presence of myelin, fibrinogen, CSPG and poly I:C ErbB1 −/− neurons grew longer neurites than neurons expressing ErbB1. Furthermore, inhibitors of ErbB1 kinase did not improve neurite outgrowth from ErbB1 −/− neurons, ruling out an off-target mechanism of action. ErbB1 kinase activity is therefore a valid target for promoting axonal elongation in the presence of many of the molecules believed to contribute to the failure of axonal regeneration in the injured CNS.
Collapse
|
29
|
Baumgärtel K, Mansuy IM. Neural functions of calcineurin in synaptic plasticity and memory. Learn Mem 2012; 19:375-84. [PMID: 22904368 DOI: 10.1101/lm.027201.112] [Citation(s) in RCA: 127] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
Major brain functions depend on neuronal processes that favor the plasticity of neuronal circuits while at the same time maintaining their stability. The mechanisms that regulate brain plasticity are complex and engage multiple cascades of molecular components that modulate synaptic efficacy. Protein kinases (PKs) and phosphatases (PPs) are among the most important of these components that act as positive and negative regulators of neuronal signaling and plasticity, respectively. In these cascades, the PP protein phosphatase 2B or calcineurin (CaN) is of particular interest because it is the only Ca(2+)-activated PP in the brain and a major regulator of key proteins essential for synaptic transmission and neuronal excitability. This review describes the primary properties of CaN and illustrates its functions and modes of action by focusing on several representative targets, in particular glutamate receptors, striatal enriched protein phosphatase (STEP), and neuromodulin (GAP43), and their functional significance for synaptic plasticity and memory.
Collapse
Affiliation(s)
- Karsten Baumgärtel
- Dorris Neuroscience Center, Department of Cell Biology, The Scripps Research Institute, La Jolla, California 92037-1000, USA
| | | |
Collapse
|
30
|
Descazeaud V, Mestre E, Marquet P, Essig M. Calcineurin regulation of cytoskeleton organization: a new paradigm to analyse the effects of calcineurin inhibitors on the kidney. J Cell Mol Med 2012; 16:218-27. [PMID: 21801302 PMCID: PMC3823286 DOI: 10.1111/j.1582-4934.2011.01398.x] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Abstract
Calcineurin is a serine/threonine phosphatase originally involved in the immune response but is also known for its role as a central mediator in various non-immunological intracellular signals. The nuclear factor of activated T cell (NFAT) proteins are the most widely described substrates of calcineurin, but ongoing work has uncovered other substrates among which are the cytoskeleton organizing proteins (i.e. cofilin, synaptopodin, WAVE-1). Control over cytoskeletal proteins is of outmost interest because the phenotypic properties of cells are dependent on cytoskeleton architecture integrity, while rearrangements of the cytoskeleton are implicated in both physiological and pathological processes. Previous works investigating the role of calcineurin on the cytoskeleton have focused on neurite elongation, myocyte hypertrophic response and recently in kidney cells structure. Nuclear factor of activated T cell activation is expectedly identified in the signalling pathways for calcineurin-induced cytoskeleton organization, however new NFAT-independent pathways have also been uncovered. The aim of this review is to summarize the current knowledge on the effects of calcineurin on cytoskeletal proteins and related intracellular pathways. These newly described properties of calcineurin on cytoskeletal proteins may explain some of the beneficial or deleterious effects observed in kidney cells associated with the use of the calcineurin inhibitors, cyclosporine and tacrolimus.
Collapse
|
31
|
Hutchins BI, Li L, Kalil K. Wnt/calcium signaling mediates axon growth and guidance in the developing corpus callosum. Dev Neurobiol 2012; 71:269-83. [PMID: 20936661 PMCID: PMC3099647 DOI: 10.1002/dneu.20846] [Citation(s) in RCA: 68] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
It has been shown in vivo that Wnt5a gradients surround the corpus callosum and guide callosal axons after the midline (postcrossing) by Wnt5a-induced repulsion via Ryk receptors. In dissociated cortical cultures we showed that Wnt5a simultaneously promotes axon outgrowth and repulsion by calcium signaling. Here to test the role of Wnt5a/calcium signaling in a complex in vivo environment we used sensorimotor cortical slices containing the developing corpus callosum. Plasmids encoding the cytoplasmic marker DsRed and the genetically encoded calcium indicator GCaMP2 were electroporated into one cortical hemisphere. Postcrossing callosal axons grew 50% faster than pre-crossing axons and higher frequencies of calcium transients in axons and growth cones correlated well with outgrowth. Application of pharmacological inhibitors to the slices showed that signaling pathways involving calcium release through IP3 receptors and calcium entry through TRP channels regulate post-crossing axon outgrowth and guidance. Co-electroporation of Ryk siRNA and DsRed revealed that knock down of the Ryk receptor reduced outgrowth rates of postcrossing but not precrossing axons by 50% and caused axon misrouting. Guidance errors in axons with Ryk knockdown resulted from reduced calcium activity. In the corpus callosum CaMKII inhibition reduced the outgrowth rate of postcrossing (but not precrossing) axons and caused severe guidance errors which resulted from reduced CaMKII-dependent repulsion downstream of Wnt/calcium. We show for the first time that Wnt/Ryk calcium signaling mechanisms regulating axon outgrowth and repulsion in cortical cultures are also essential for the proper growth and guidance of postcrossing callosal axons which involve axon repulsion through CaMKII.
Collapse
|
32
|
Tonelli FMP, Santos AK, Gomes DA, da Silva SL, Gomes KN, Ladeira LO, Resende RR. Stem cells and calcium signaling. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2012; 740:891-916. [PMID: 22453975 DOI: 10.1007/978-94-007-2888-2_40] [Citation(s) in RCA: 90] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
The increasing interest in stem cell research is linked to the promise of developing treatments for many lifethreatening, debilitating diseases, and for cell replacement therapies. However, performing these therapeutic innovations with safety will only be possible when an accurate knowledge about the molecular signals that promote the desired cell fate is reached. Among these signals are transient changes in intracellular Ca(2+) concentration [Ca(2+)](i). Acting as an intracellular messenger, Ca(2+) has a key role in cell signaling pathways in various differentiation stages of stem cells. The aim of this chapter is to present a broad overview of various moments in which Ca(2+)-mediated signaling is essential for the maintenance of stem cells and for promoting their development and differentiation, also focusing on their therapeutic potential.
Collapse
Affiliation(s)
- Fernanda M P Tonelli
- Nanomaterials Laboratory, Department of Physics, Insitute of Exact Sciences, Federal University of Minas Gerais, Belo Horizonte, MG, Brazil
| | | | | | | | | | | | | |
Collapse
|
33
|
Buchser WJ, Slepak TI, Gutierrez-Arenas O, Bixby JL, Lemmon VP. Kinase/phosphatase overexpression reveals pathways regulating hippocampal neuron morphology. Mol Syst Biol 2010; 6:391. [PMID: 20664637 PMCID: PMC2925531 DOI: 10.1038/msb.2010.52] [Citation(s) in RCA: 62] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2009] [Accepted: 06/12/2010] [Indexed: 01/20/2023] Open
Abstract
Kinases and phosphatases that regulate neurite number versus branching versus extension are weakly correlated. The kinase family that most strongly enhances neurite growth is a family of non-protein kinases; sugar kinases related to NADK. Pathway analysis revealed that genes in several cancer pathways were highly active in enhancing neurite growth.
In neural development, neuronal precursors differentiate, migrate, extend long axons and dendrites, and finally establish connections with their targets. Clinical conditions such as spinal cord injury, traumatic brain injury, stroke, multiple sclerosis, Parkinson's disease, Huntington's disease, and Alzheimer's disease are often associated with a loss of axon and/or dendrite connectivity and treatment strategies would be enhanced by new therapies targeting cell intrinsic mechanisms of axon elongation and regeneration. Phosphorylation controls most cellular processes, including the cell cycle, proliferation, metabolism, and apoptosis. Neuronal differentiation, including axon formation and elongation, is also regulated by a wide range of kinases and phosphatases. For example, the non-receptor tyrosine kinase Src is required for cell adhesion molecule-dependent neurite outgrowth. In addition to individual kinases and phosphatases, signaling pathways like the MAPK, growth factor signaling, PIP3, cytoskeletal, and calcium-dependent pathways have been shown to impinge on or control neuronal process development. Recent results have implicated GSK3 and PTEN as therapeutically relevant targets in axonal regeneration after injury. However, these and other experiments have studied only a small fraction of the total kinases and phosphatases in the genome. Because of recent advances in genomic knowledge, large-scale cDNA production, and high-throughput phenotypic analysis, it is now possible to take a more comprehensive approach to understanding the functions of kinases and phosphatases in neurons. We performed a large, unbiased set of experiments to answer the question ‘what effect does the overexpression of genes encoding kinases, phosphatases, and related proteins have on neuronal morphology?' We used ‘high-content analysis' to obtain detailed results about the specific phenotypes of neurons. We studied embryonic rat hippocampal neurons because of their stereotypical development in vitro (Dotti et al, 1988) and their widespread use in studies of neuronal differentiation and signaling. We transfected over 700 clones encoding kinases and phosphatases into hippocampal neurons and analyzed the resulting changes in neuronal morphology. Many known genes, including PP1a, ERK1, ErbB2, atypical PKC, Calcineurin, CaMK2, IGF1R, FGFR, GSK3, and PIK3 were observed to have significant effects on neurite outgrowth in our system, consistent with earlier findings in the literature. We obtained quantitative data for many cellular and neuronal morphological parameters from each neuron imaged. These included nuclear morphology (nuclear area and Hoechst dye intensity), soma morphology (tubulin intensity, area, and shape), and numerous parameters of neurite morphology (e.g. tubulin intensity along the neurites, number of primary neurites, neurite length, number of branches, distance from the cell body to the branches, number of crossing points, width and area of the neurites, and longest neurite; Supplementary Figure 1). Other parameters were reported on a ‘per well' basis, including the percentage of transfected neurons in a condition, as well as the percentage of neurons initiating neurite growth. Data for each treatment were normalized to a control (pSport CAT) within the same experiment, then aggregated across replicate experiments. Correlations among the 19 normalized parameters were analyzed for neurons transfected with all kinase and phosphatase clones (Figure 2). On the basis of this analysis, the primary variables that define the neurite morphology are primary neurite count, neurite average length, and average branches. Interestingly, primary neurite count was not well correlated with neurite length or branching. The Pearson correlation coefficient (r2) between the number of primary neurites and the average length of the neurites was 0.3, and between the number of primary neurites and average branching was 0.2. In contrast, the correlation coefficient of average branching with neurite average length was 0.7. The most likely explanation is that signaling mechanisms underlying the neurite number determination are different than those controlling length/branching of the neurites. Related proteins are often involved in similar neuronal functions. For example, families of receptor protein tyrosine phosphatases are involved in motor axon extension and guidance in both Drosophila and in vertebrates, and a large family of Eph receptor tyrosine kinases regulates guidance of retinotectal projections, motor axons, and axons in the corpus callosum. We therefore asked whether families of related genes produced similar phenotypes when overexpressed in hippocampal neurons. Our set of genes covered 40% of the known protein kinases, and many of the non-protein kinases and phosphatases. Gene families commonly exhibit redundant function. Redundant gene function has often been identified when two or more knockouts are required to produce a phenotype. Our technique allowed us to measure whether different members of gene families had similar (potentially redundant) or distinct effects on neuronal phenotype. To determine whether groups of related genes affect neuronal morphology in similar ways, we used sequence alignment information to construct gene clusters (Figure 6). Genes were clustered at nine different thresholds of similarity (called ‘tiers'). The functional effect for a particular parameter was then averaged within each cluster of a given tier, and statistics were performed to determine the significance of the effect. We analyzed the results for three key neurite parameters (average neurite length, primary neurite count, and average branching). Genes that perturbed each of these phenotypes are grouped in Figure 6. Eight families, most with only a few genes, produced significant changes for one or two parameters. A diverse family of non-protein kinases had a positive effect on neurite outgrowth in three of the four parameters analyzed. This family of kinases consisted of a variety of enzymes, mostly sugar and lipid kinases. A similar analysis was performed using pathway cluster analysis with pathways from the KEGG database, rather than sequence homology. Interestingly, pathways involved in cancer cell proliferation potentiated neurite extension and branching. Our studies have identified a large number of kinases and phosphatases, as well as structurally and functionally defined families of these proteins, that affect neuronal process formation in specific ways. We have provided an analytical methodology and new tools to analyze functional data, and have implicated genes with novel functions in neuronal development. Our studies are an important step towards the goal of a molecular description of the intrinsic control of axodendritic growth. Development and regeneration of the nervous system requires the precise formation of axons and dendrites. Kinases and phosphatases are pervasive regulators of cellular function and have been implicated in controlling axodendritic development and regeneration. We undertook a gain-of-function analysis to determine the functions of kinases and phosphatases in the regulation of neuron morphology. Over 300 kinases and 124 esterases and phosphatases were studied by high-content analysis of rat hippocampal neurons. Proteins previously implicated in neurite growth, such as ERK1, GSK3, EphA8, FGFR, PI3K, PKC, p38, and PP1a, were confirmed to have effects in our functional assays. We also identified novel positive and negative neurite growth regulators. These include neuronal-developmentally regulated kinases such as the activin receptor, interferon regulatory factor 6 (IRF6) and neural leucine-rich repeat 1 (LRRN1). The protein kinase N2 (PKN2) and choline kinase α (CHKA) kinases, and the phosphatases PPEF2 and SMPD1, have little or no established functions in neuronal function, but were sufficient to promote neurite growth. In addition, pathway analysis revealed that members of signaling pathways involved in cancer progression and axis formation enhanced neurite outgrowth, whereas cytokine-related pathways significantly inhibited neurite formation.
Collapse
Affiliation(s)
- William J Buchser
- The Miami Project to Cure Paralysis, Department of Pharmacology, University of Miami, Miller School of Medicine, Miami, FL 33136-1060, USA
| | | | | | | | | |
Collapse
|
34
|
Integrins and ion channels in cell migration: implications for neuronal development, wound healing and metastatic spread. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2010; 674:107-23. [PMID: 20549944 DOI: 10.1007/978-1-4419-6066-5_10] [Citation(s) in RCA: 61] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Cells migration is necessary for proper embryonic development and adult tissue remodeling. Its mechanisms determine the physiopathology of processes such as neuronal targeting, inflammation, wound healing and metastatic spread. Crawling of cells onto solid surfaces requires a controlled sequence of cell protrusions and retractions that mainly depends on sophisticated regulation of the actin cytoskeleton, although the contribution of microtubules should not be neglected. This process is triggered and modulated by a combination of diffusible and fixed environmental signals. External cues are sensed and integrated by membrane receptors, including integrins, which transduce these signals into cellular signaling pathways, often centered on the small GTPase proteins belonging to the Rho family. These pathways regulate the coordinated cytoskeletal rearrangements necessary for proper timing of adhesion, contraction and detachement at the front and rear side of cells finding their way through the extracellular spaces. The overall process involves continuous modulation of cell motility, shape and volume, in which ion channels play major roles. In particular, Ca2+ signals have both global and local regulatory effects on cell motility, because they target the contractile proteins as well as many regulatory proteins. After reviewing the fundamental mechanisms of eukaryotic cell migration onto solid substrates, we briefly describe how integrin receptors and ion channels are involved in cell movement. We next examine a few processes in which these mechanisms have been studied in depth. We thus illustrate how integrins and K+ channels control cell volume and migration, how intracellular Ca2+ homeostasis affects the motility of neuronal growth cones and what is known about the ion channel roles in epithelial cell migration. These mechanisms are implicated in a variety of pathological processes, such as the disruption of neural circuits and wound healing. Finally, we describe the interaction between neoplastic cells and their local environment and how derangement of adhesion can lead to metastatic spread. It is likely that the cellular mechanisms controlled by integrin receptors, ion channels or both participate in the entire metastatic process. Until now, however, evidence is limited to a few steps of the metastatic cascade, such as brain tumor invasiveness.
Collapse
|
35
|
Takayama Y, Moriguchi H, Kotani K, Jimbo Y. Spontaneous Calcium Transients in Cultured Cortical Networks During Development. IEEE Trans Biomed Eng 2009; 56:2949-56. [DOI: 10.1109/tbme.2009.2028419] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
|
36
|
Kilka S, Erdmann F, Migdoll A, Fischer G, Weiwad M. The proline-rich N-terminal sequence of calcineurin Abeta determines substrate binding. Biochemistry 2009; 48:1900-10. [PMID: 19154138 DOI: 10.1021/bi8019355] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Three different genes of catalytic subunit A of the Ca(2+)-dependent serine/threonine protein phosphatase calcineurin (CaN) are encoded in the human genome forming heterodimers with regulatory subunit B. Even though physiological roles of CaN have been investigated extensively, less is known about the specific functions of the different catalytic isoforms. In this study, all human CaN holoenzymes containing either the alpha, beta, or gamma isoform of the catalytic subunit (CaN alpha, beta, or gamma, respectively) were expressed for the first time. Comparative kinetic analysis of the dephosphorylation of five specific CaN substrates provided evidence that the distinct isoforms of the catalytic subunit confer substrate specificities to the holoenzymes. CaN alpha dephosphorylates the transcription factor Elk-1 with 7- and 2-fold higher catalytic efficiencies than the beta and gamma isoforms, respectively. CaN gamma exhibits the highest k(cat)/K(m) value for DARPP-32, whereas the catalytic efficiencies for the dephosphorylation of NFAT and RII peptide were 3- and 5-fold lower, respectively, when compared with the other isoforms. Elk-1 and NFAT reporter gene activity measurements revealed even more pronounced substrate preferences of CaNA isoforms. Moreover, kinetic analysis demonstrated that CaN beta exhibits for all tested protein substrates the lowest K(m) values. Enzymatic characterization of the CaN beta(P14G/P18G) variant as well as the N-terminal truncated form CaN beta(22-524) revealed that the proline-rich sequence of CaN beta is involved in substrate recognition. CaN beta(22-524) exhibits an at least 4-fold decreased substrate affinity and a 5-fold increased turnover number. Since this study demonstrates that all CaN isoforms display the same cytoplasmic subcellular distribution and are expressed in each tested cell line, differences in substrate specificities may determine specific physiological functions of the distinct isoforms.
Collapse
Affiliation(s)
- Susann Kilka
- Max Planck Research Unit for Enzymology of Protein Folding, Weinbergweg 22, D-06120 Halle/Saale, Germany
| | | | | | | | | |
Collapse
|
37
|
Schwartz N, Schohl A, Ruthazer ES. Neural activity regulates synaptic properties and dendritic structure in vivo through calcineurin/NFAT signaling. Neuron 2009; 62:655-69. [PMID: 19524525 DOI: 10.1016/j.neuron.2009.05.007] [Citation(s) in RCA: 78] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2008] [Revised: 03/13/2009] [Accepted: 05/07/2009] [Indexed: 11/16/2022]
Abstract
The calcium-regulated protein phosphatase Calcineurin (CaN) participates in synaptic plasticity and the regulation of transcription factors, including Nuclear Factor of Activated T cells (NFAT). To understand how CaN contributes to neuronal circuit development, whole-cell mEPSC recordings and multiphoton imaging were performed in the visual system of living Xenopus laevis tadpoles electroporated to express either a CaN phosphatase inhibitor or N-VIVIT, a nuclear localization sequence-tagged VIVIT peptide that blocks the binding of CaN to select substrates including NFAT. Both strategies increased mEPSC frequency and dendritic arbor complexity in tectal neurons over 3 days. Expression of either of two constitutively active Xenopus NFATs (CA-NFATs) restored normal synaptic properties in neurons expressing N-VIVIT. However, the morphological phenotype was only rescued by a CA-NFAT bearing an intact regulatory domain, implying that transcriptional control of morphological and electrophysiological properties of neurons is mediated by distinct NFAT interactions.
Collapse
Affiliation(s)
- Neil Schwartz
- Montreal Neurological Institute, McGill University, Montréal, QC H3A 2B4, Canada
| | | | | |
Collapse
|
38
|
McMahon SS, Albermann S, Rooney GE, Moran C, Hynes J, Garcia Y, Dockery P, O'Brien T, Windebank AJ, Barry FP. Effect of cyclosporin A on functional recovery in the spinal cord following contusion injury. J Anat 2009; 215:267-79. [PMID: 19558472 DOI: 10.1111/j.1469-7580.2009.01107.x] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022] Open
Abstract
Considerable evidence has shown that the immunosuppressant drug cyclosporin A (CsA) may have neuroprotective properties which can be exploited in the treatment of spinal cord injury. The aim of this study was to investigate the cellular environment within the spinal cord following injury and determine whether CsA has an effect on altering cellular interactions to promote a growth-permissive environment. CsA was administered to a group of rats 4 days after they endured a moderate contusion injury. Functional recovery was assessed using the Basso Beattie Bresnahan (BBB) locomotor rating scale at 3, 5 and 7 weeks post-injury. The rats were sacrificed 3 and 7 weeks post-injury and the spinal cords were sectioned, stained using histological and immunohistochemical methods and analysed. Using stereology, the lesion size and cellular environment in the CsA-treated and control groups was examined. Little difference in lesion volume was observed between the two groups. An improvement in functional recovery was observed within CsA-treated animals at 3 weeks. Although we did not see significant reduction in tissue damage, there were some notable differences in the proportion of individual cells contributing to the lesion. CsA administration may be used as a technique to control the cell population of the lesion, making it more permissive to neuronal regeneration once the ideal environment for regeneration and the effects of CsA administration at different time points post-injury have been identified.
Collapse
Affiliation(s)
- Siobhan S McMahon
- Department of Anatomy, National University of Ireland, Galway, Ireland
| | | | | | | | | | | | | | | | | | | |
Collapse
|
39
|
Abstract
Transmitter release at high probability phasic synapses of crayfish neuromuscular junctions depresses by over 50% in 60 min when stimulated at 0.2 Hz. Inhibition of the protein phosphatase calcineurin by intracellular pre-synaptic injection of autoinhibitory peptide inhibited low-frequency depression (LFD) and resulted in facilitation of transmitter release. Since this inhibitor had no major effects when injected into the post-synaptic cell, only pre-synaptic calcineurin activity is necessary for LFD. To examine changes in phosphoproteins during LFD we performed a phosphoproteomic screen on proteins extracted from motor axons and nerve terminals after LFD induction or treatment with various drugs that affect kinase and phosphatase activity. Proteins separated by PAGE were stained with phospho-specific/total protein ratio stains (Pro-Q Diamond/SYPRO Ruby) to identify protein bands for analysis by mass spectrometry. Phosphorylation of actin and tubulin decreased during LFD, but increased when calcineurin was blocked. Tubulin and phosphoactin immunoreactivity in pre-synaptic terminals were also reduced after LFD. The actin depolymerizing drugs cytochalasin and latrunculin and the microtubule stabilizer taxol inhibited LFD. Therefore, dephosphorylation of pre-synaptic actin and tubulin and consequent changes in the cytoskeleton may regulate LFD. LFD is unlike long-term depression found in mammalian synapses because the latter requires in most instances post-synaptic calcineurin activity.Thus, this simpler invertebrate synapse discloses a novel pre-synaptic depression mechanism.
Collapse
|
40
|
Arie Y, Iketani M, Takamatsu K, Mikoshiba K, Goshima Y, Takei K. Developmental changes in the regulation of calcium-dependent neurite outgrowth. Biochem Biophys Res Commun 2009; 379:11-5. [DOI: 10.1016/j.bbrc.2008.11.128] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2008] [Accepted: 11/23/2008] [Indexed: 10/21/2022]
|
41
|
Harrill JA, Li Z, Wright FA, Radio NM, Mundy WR, Tornero-Velez R, Crofton KM. Transcriptional response of rat frontal cortex following acute in vivo exposure to the pyrethroid insecticides permethrin and deltamethrin. BMC Genomics 2008; 9:546. [PMID: 19017407 PMCID: PMC2626604 DOI: 10.1186/1471-2164-9-546] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2008] [Accepted: 11/18/2008] [Indexed: 12/23/2022] Open
Abstract
Background Pyrethroids are neurotoxic pesticides that interact with membrane bound ion channels in neurons and disrupt nerve function. The purpose of this study was to characterize and explore changes in gene expression that occur in the rat frontal cortex, an area of CNS affected by pyrethroids, following an acute low-dose exposure. Results Rats were acutely exposed to either deltamethrin (0.3 – 3 mg/kg) or permethrin (1 – 100 mg/kg) followed by collection of cortical tissue at 6 hours. The doses used range from those that cause minimal signs of intoxication at the behavioral level to doses well below apparent no effect levels in the whole animal. A statistical framework based on parallel linear (SAM) and isotonic regression (PIR) methods identified 95 and 53 probe sets as dose-responsive. The PIR analysis was most sensitive for detecting transcripts with changes in expression at the NOAEL dose. A sub-set of genes (Camk1g, Ddc, Gpd3, c-fos and Egr1) was then confirmed by qRT-PCR and examined in a time course study. Changes in mRNA levels were typically less than 3-fold in magnitude across all components of the study. The responses observed are consistent with pyrethroids producing increased neuronal excitation in the cortex following a low-dose in vivo exposure. In addition, Significance Analysis of Function and Expression (SAFE) identified significantly enriched gene categories common for both pyrethroids, including some relating to branching morphogenesis. Exposure of primary cortical cell cultures to both compounds resulted in an increase (~25%) in the number of neurite branch points, supporting the results of the SAFE analysis. Conclusion In the present study, pyrethroids induced changes in gene expression in the frontal cortex near the threshold for decreases in ambulatory motor activity in vivo. The penalized regression methods performed similarly in detecting dose-dependent changes in gene transcription. Finally, SAFE analysis of gene expression data identified branching morphogenesis as a biological process sensitive to pyrethroids and subsequent in vitro experiments confirmed this predicted effect. The novel findings regarding pyrethroid effects on branching morphogenesis indicate these compounds may act as developmental neurotoxicants that affect normal neuronal morphology.
Collapse
Affiliation(s)
- Joshua A Harrill
- Curriculum in Toxicology, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA.
| | | | | | | | | | | | | |
Collapse
|
42
|
Gakhar-Koppole N, Hundeshagen P, Mandl C, Weyer SW, Allinquant B, Müller U, Ciccolini F. Activity requires soluble amyloid precursor protein alpha to promote neurite outgrowth in neural stem cell-derived neurons via activation of the MAPK pathway. Eur J Neurosci 2008; 28:871-82. [PMID: 18717733 DOI: 10.1111/j.1460-9568.2008.06398.x] [Citation(s) in RCA: 84] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
It is known that activity modulates neuronal differentiation in the adult brain but the signalling mechanisms underlying this process remain to be identified. We show here that activity requires soluble amyloid precursor protein (sAPP) to enhance neurite outgrowth of young neurons differentiating from neural stem cells. Inhibition of sAPP secretion and anti-APP antibodies both abolished the effect of depolarization on neurite outgrowth, whereas exogenous sAPPalpha, similar to depolarization, induced neurite elongation. Depolarization and sAPPalpha both required active N-methyl-D-aspartic acid receptor (NMDAR) and mitogen-activated protein kinase (MAPK)/extracellular signal-regulated kinase (ERK) recruitment to induce neurite outgrowth. However, depolarization and sAPPalpha played different roles in modulating this signalling cascade. Depolarization induced ERK phosphorylation with fast kinetics via activation of NMDAR. By contrast, acute application of sAPPalpha did not lead to ERK activation. However, continuous generation of sAPPalpha was necessary for depolarization-induced ERK phosphorylation, indicating that sAPPalpha promotes MAPK/ERK recruitment by an indirect mechanism. In addition, we found that blockade of NMDAR down-regulated APP expression, whereas depolarization increased sAPPalpha, suggesting that activity may also act upstream of sAPP signalling by regulating the amount of cellular APP and extracellular sAPPalpha. Finally, we show that soluble amyloid precursor-like protein 2 (sAPLP2), but not sAPLP1, is functionally redundant to sAPP in promoting neurite outgrowth and that soluble members of the APP family require membrane-bound APP to enhance neurite outgrowth. In summary, these experiments indicate a novel role of APP family members in activity-dependent neuronal differentiation.
Collapse
Affiliation(s)
- Nidhi Gakhar-Koppole
- Department of Neurobiology, Interdisciplinary Centre for Neurosciences, Heidelberg, Germany
| | | | | | | | | | | | | |
Collapse
|
43
|
Ingram EA, Toyoda I, Wen X, Buckmaster PS. Prolonged infusion of inhibitors of calcineurin or L-type calcium channels does not block mossy fiber sprouting in a model of temporal lobe epilepsy. Epilepsia 2008; 50:56-64. [PMID: 18616558 DOI: 10.1111/j.1528-1167.2008.01704.x] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
PURPOSE It would be useful to selectively block granule cell axon (mossy fiber) sprouting to test its functional role in temporal lobe epileptogenesis. Targeting axonal growth cones may be an effective strategy to block mossy fiber sprouting. L-type calcium channels and calcineurin, a calcium-activated phosphatase, are critical for normal growth cone function. Previous studies have provided encouraging evidence that blocking L-type calcium channels or inhibiting calcineurin during epileptogenic treatments suppresses mossy fiber sprouting. METHODS Rats were treated systemically with pilocarpine to induce status epilepticus, which lasted at least 2 h. Then, osmotic pumps and cannulae were implanted to infuse calcineurin inhibitors (FK506 or cyclosporin A) or an L-type calcium channel blocker (nicardipine) into the dorsal dentate gyrus. After 28 days of continuous infusion, extent of mossy fiber sprouting was evaluated with Timm staining and stereological methods. RESULTS Percentages of volumes of the granule cell layer plus molecular layer that were Timm-positive were similar in infused and noninfused hippocampi. CONCLUSIONS These findings suggest inhibiting calcineurin or L-type calcium channels does not block mossy fiber sprouting in the pilocarpine-treated rat model of temporal lobe epilepsy.
Collapse
Affiliation(s)
- Elizabeth A Ingram
- Department of Comparative Medicine, Stanford University, Stanford, California, USA
| | | | | | | |
Collapse
|
44
|
To KCW, Church J, O'Connor TP. Growth cone collapse stimulated by both calpain- and Rho-mediated pathways. Neuroscience 2008; 153:645-53. [PMID: 18407419 DOI: 10.1016/j.neuroscience.2008.02.043] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2007] [Revised: 01/22/2008] [Accepted: 02/14/2008] [Indexed: 10/22/2022]
Abstract
The signal transduction pathways regulating growth cone motility remain poorly defined. Previously, we have characterized the inhibitory molecule, motuporamine C (MotC), as a robust stimulator of growth cone collapse. Utilizing MotC as a research tool to elucidate pathways involved with collapse, we have previously shown that the Rho-Rho kinase (ROCK) pathway is partially required for collapse. In this study, we report MotC induces a high-amplitude rise in intracellular free Ca(2+) concentration levels in chicks, resulting in the activation of the Ca(2+)-sensitive protease, calpain. Furthermore, we show that while calpain is necessary for collapse, inhibition of calpain only partially attenuates MotC-mediated collapse. Instead, concomitant inhibition of both the Rho-ROCK and calpain pathways has an additive effect in attenuating the collapse response to MotC. To our knowledge, this is the first demonstration of concurrent activation of calpain and Rho-ROCK signaling during growth cone collapse. Our data support a model of growth cone collapse that requires the combinatorial regulation of multiple signal transduction cascades that likely target different cellular mechanisms to induce this motile response.
Collapse
Affiliation(s)
- K C W To
- Department of Cellular and Physiological Sciences, University of British Columbia, Vancouver, British Columbia, Canada
| | | | | |
Collapse
|
45
|
Hui K, Fei GH, Saab BJ, Su J, Roder JC, Feng ZP. Neuronal calcium sensor-1 modulation of optimal calcium level for neurite outgrowth. Development 2008; 134:4479-89. [PMID: 18039973 DOI: 10.1242/dev.008979] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Neurite extension and branching are affected by activity-dependent modulation of intracellular Ca2+, such that an optimal window of [Ca2+] is required for outgrowth. Our understanding of the molecular mechanisms regulating this optimal [Ca2+]i remains unclear. Taking advantage of the large growth cone size of cultured primary neurons from pond snail Lymnaea stagnalis combined with dsRNA knockdown, we show that neuronal calcium sensor-1 (NCS-1) regulates neurite extension and branching, and activity-dependent Ca2+ signals in growth cones. An NCS-1 C-terminal peptide enhances only neurite branching and moderately reduces the Ca2+ signal in growth cones compared with dsRNA knockdown. Our findings suggest that at least two separate structural domains in NCS-1 independently regulate Ca2+ influx and neurite outgrowth, with the C-terminus specifically affecting branching. We describe a model in which NCS-1 regulates cytosolic Ca2+ around the optimal window level to differentially control neurite extension and branching.
Collapse
Affiliation(s)
- Kwokyin Hui
- Department of Physiology, Faculty of Medicine, University of Toronto, Toronto, M5S 1A8, Canada
| | | | | | | | | | | |
Collapse
|
46
|
Wu D, Huang W, Richardson PM, Priestley JV, Liu M. TRPC4 in Rat Dorsal Root Ganglion Neurons Is Increased after Nerve Injury and Is Necessary for Neurite Outgrowth. J Biol Chem 2008; 283:416-426. [DOI: 10.1074/jbc.m703177200] [Citation(s) in RCA: 66] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
|
47
|
Porta S, Martí E, de la Luna S, Arbonés ML. Differential expression of members of the RCAN family of calcineurin regulators suggests selective functions for these proteins in the brain. Eur J Neurosci 2007; 26:1213-26. [PMID: 17767500 DOI: 10.1111/j.1460-9568.2007.05749.x] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
Abstract
RCANs, also called Down Syndrome Critical Region-1 (DSCR1)-like proteins, Modulatory Calcineurin Interacting Proteins (MCIPs) or calcipressins, are regulators of calcineurin, a Ca(2+)-dependent protein phosphatase involved in several neuronal functions. Despite the potential importance of the RCAN proteins in brain physiology, very little is known about their relative abundance and distribution patterns in the central nervous system. In this study we report the expression and distribution of RCAN mRNA transcripts and proteins in the mouse brain. RT-PCR and Western blot analysis showed that all Rcan mRNAs (Rcan1-1, Rcan1-2, Rcan2-1, Rcan2-3 and Rcan3) and their corresponding protein products (RCAN1-L, RCAN1-S, RCAN2-L, RCAN2-S and RCAN3) are present in every adult mouse brain region examined. All protein isoforms are also expressed in these same brain regions at early postnatal stages. Within regions, RCAN1-L, RCAN1-S, RCAN2-L and RCAN3 are differentially expressed depending on the region and developmental stage, whereas RCAN2-S is distributed homogeneously. Detailed immunohistochemical analysis revealed significant differences in the cellular and subcellular distributions of RCAN proteins. In the adult, RCAN1 was mainly expressed in the neuropil throughout the brain. Although at lower levels, RCAN3 was also detected throughout the neuropil. In contrast, RCAN2 was highly expressed in scattered neurons, in both the nucleus and the cytoplasm. Interestingly, RCAN2 is the only member of the RCAN family that was detected in glial cells. Finally, the expression patterns of RCANs at early postnatal stages differed from those of the adult, in different brain areas, in both their distributions and relative abundance, suggesting that the expression of these proteins could be regulated during neuronal differentiation. The nonoverlapping expression patterns of the RCAN proteins shown here highlight the existence of different physiological scenarios and therefore suggest different RCAN functional activities in the brain, depending on the cellular context and developmental stage.
Collapse
Affiliation(s)
- Sílvia Porta
- Center for Genomic Regulation (CRG), UPF, Dr Aiguader 88, E-08003 Barcelona, Spain
| | | | | | | |
Collapse
|
48
|
Hansen MR, Roehm PC, Xu N, Green SH. Overexpression of Bcl-2 or Bcl-xL prevents spiral ganglion neuron death and inhibits neurite growth. Dev Neurobiol 2007; 67:316-25. [PMID: 17443790 DOI: 10.1002/dneu.20346] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Spiral ganglion neurons (SGNs) provide afferent innervation to the cochlea and rely on contact with hair cells (HCs) for their survival. Following deafferentation due to hair cell loss, SGNs gradually die. In a rat culture model, we explored the ability of prosurvival members of the Bcl-2 family of proteins to support the survival and neurite outgrowth of SGNs. We found that overexpression of either Bcl-2 or Bcl-xL significantly increases SGN survival in the absence of neurotrophic factors, establishing that the Bcl-2 pathway is sufficient for SGN cell survival and that SGN deprived of trophic support die by an apoptotic mechanism. However, in contrast to observations in central neurons and PC12 cells where Bcl-2 appears to promote neurite growth, both Bcl-2 and Bcl-xL overexpression dramatically inhibit neurite outgrowth in SGNs. This inhibition of neurite growth by Bcl-2 occurs in nearly all SGNs even in the presence of multiple neurotrophic factors implying that Bcl-2 directly inhibits neurite growth rather than simply rescuing a subpopulation of neurons incapable of extending neurites without additional stimuli. Thus, although overexpression of prosurvival members of the Bcl-2 family prevents SGN loss following trophic factor deprivation, the inhibition of neurite growth by these molecules may limit their efficacy for support of auditory nerve maintenance or regeneration following hair cell loss.
Collapse
Affiliation(s)
- Marlan R Hansen
- Department of Otolaryngology, Head, and Neck Surgery, University of Iowa, Iowa City, Iowa 52242, USA.
| | | | | | | |
Collapse
|
49
|
Raivich G, Makwana M. The making of successful axonal regeneration: Genes, molecules and signal transduction pathways. ACTA ACUST UNITED AC 2007; 53:287-311. [PMID: 17079020 DOI: 10.1016/j.brainresrev.2006.09.005] [Citation(s) in RCA: 131] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2006] [Revised: 09/12/2006] [Accepted: 09/18/2006] [Indexed: 12/16/2022]
Abstract
Unlike its central counterpart, the peripheral nervous system is well known for its comparatively good potential for regeneration following nerve fiber injury. This ability is mirrored by the de novo expression or upregulation of a wide variety of molecules including transcription factors, growth-stimulating substances, cell adhesion molecules, intracellular signaling enzymes and proteins involved in regulating cell-surface cytoskeletal interactions, that promote neurite outgrowth in cultured neurons. However, their role in vivo is less known. Recent studies using neutralizing antibodies, gene inactivation and overexpression techniques have started to shed light on those endogenous molecules that play a key role in axonal outgrowth and the process of successful functional repair in the injured nervous system. The aim of the current review is to provide a summary on this rapidly growing field and the experimental techniques used to define the specific effects of candidate signaling molecules on axonal regeneration in vivo.
Collapse
Affiliation(s)
- Gennadij Raivich
- Perinatal Brain Repair Group, Department of Obstetrics and Gynaecology, University College London, 86-96 Chenies Mews, London, UK.
| | | |
Collapse
|
50
|
Abstract
The construction of the brain during embryonic development was thought to be largely independent of its electrical activity. In this view, proliferation, migration and differentiation of neurons are driven entirely by genetic programs and activity is important only at later stages in refinement of connections. However, recent findings demonstrate that activity plays essential roles in early development of the nervous system. Activity has similar roles in the incorporation of newly born neurons in the adult nervous system, suggesting that there are general rules underlying activity-dependent development. The extensive involvement of activity makes it likely that it is required at all developmental stages as a necessary partner with genetic programs.
Collapse
Affiliation(s)
- Nicholas C Spitzer
- Neurobiology Section, Division of Biological Sciences and Centre for Molecular Genetics, Kavli Institute for Brain and Mind, University of California San Diego, La Jolla, California 92093-0357, USA.
| |
Collapse
|