1
|
Schmidt R, Welzel B, Merten A, Naundorf H, Löscher W. Temporal development of seizure threshold and spontaneous seizures after neonatal asphyxia and the effect of prophylactic treatment with midazolam in rats. Exp Neurol 2024; 383:115042. [PMID: 39505250 DOI: 10.1016/j.expneurol.2024.115042] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2024] [Revised: 10/15/2024] [Accepted: 11/01/2024] [Indexed: 11/08/2024]
Abstract
Birth asphyxia (BA) and subsequent hypoxic-ischemic encephalopathy (HIE) is one of the most serious birth complications affecting full-term infants and can result in severe disabilities including mental retardation, cerebral palsy, and epilepsy. Animal models of BA and HIE are important to characterize the functional and behavioral correlates of injury, explore cellular and molecular mechanisms, and assess the potential of novel therapeutic strategies. Here we used a non-invasive, physiologically validated rat model of BA and acute neonatal seizures that mimics many features of BA and HIE in human infants to study (i) the temporal development of epilepsy with spontaneous recurrent seizures (SRS) in the weeks and months after the initial brain injury, (ii) alterations in seizure threshold and hippocampal EEG that may precede the onset of SRS, and (iii) the effect of prophylactic treatment with midazolam. For this purpose, a total of 89 rat pups underwent asphyxia or sham asphyxia at postnatal day 11 and were examined over 8-10.5 months. In vehicle-treated animals, the incidence of electroclinical SRS progressively increased from 0 % at 2.5 months to 50 % at 6.5 months, 75 % at 8.5 months, and > 80 % at 10.5 months after asphyxia. Unexpectedly, post-asphyxial rats did not differ from sham-exposed rats in seizure threshold or interictal epileptiform discharges in the EEG. Treatment with midazolam (1 mg/kg i.p.) after asphyxia, which suppressed acute symptomatic neonatal seizures in about 60 % of the rat pups, significantly reduced the incidence of SRS regardless of its effect on neonatal seizures. This antiepileptogenic effect of midazolam adds to the recently reported prophylactic effects of this drug on BA-induced neuroinflammation, brain damage, behavioral alterations, and cognitive impairment in the rat asphyxia model of HIE.
Collapse
Affiliation(s)
- Ricardo Schmidt
- Department of Pharmacology, Toxicology, and Pharmacy, University of Veterinary Medicine Hannover, Germany; Center for Systems Neuroscience Hannover, Germany; Translational Neuropharmacology Lab, NIFE, Department of Experimental Otology of the ENT Clinics, Hannover Medical School, Hannover, Germany
| | - Björn Welzel
- Department of Pharmacology, Toxicology, and Pharmacy, University of Veterinary Medicine Hannover, Germany
| | - Annika Merten
- Department of Pharmacology, Toxicology, and Pharmacy, University of Veterinary Medicine Hannover, Germany
| | - Hannah Naundorf
- Department of Pharmacology, Toxicology, and Pharmacy, University of Veterinary Medicine Hannover, Germany
| | - Wolfgang Löscher
- Department of Pharmacology, Toxicology, and Pharmacy, University of Veterinary Medicine Hannover, Germany; Center for Systems Neuroscience Hannover, Germany; Translational Neuropharmacology Lab, NIFE, Department of Experimental Otology of the ENT Clinics, Hannover Medical School, Hannover, Germany.
| |
Collapse
|
2
|
Lee W, Kim D, Kim JM, Kim EY. Dramatic improvement of drug-resistant epilepsy following cerebral infarction: a case report. J Med Case Rep 2024; 18:509. [PMID: 39468672 PMCID: PMC11520484 DOI: 10.1186/s13256-024-04863-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2024] [Accepted: 09/25/2024] [Indexed: 10/30/2024] Open
Abstract
BACKGROUND An estimated 30% of patients with epilepsy experience drug-resistant epilepsy, which is the failure to control seizures despite the use of two or more antiseizure medications. Although other treatment options are considered, these alternatives often prove ineffective. CASE PRESENTATION A 60-year-old East Asian male patient diagnosed with drug-resistant epilepsy experienced several seizures daily despite being on eight different antiseizure medications. Seizures began at age 15. He underwent epilepsy surgery at age 34, yet the seizures persisted. An electroencephalogram revealed multifocal sharp waves in the left hemisphere. Cerebral hemorrhages at ages 47, 50, and 56 were caused by head trauma during seizures. The patient became wheelchair-bound and now resides in a nursing home. At age 58, after suffering an acute cerebral infarction due to occlusion of the left internal carotid artery, his daily seizures ceased entirely. Despite remaining wheelchair-bound, he did not experience a significant decline in his quality of life. The cessation of seizures has reduced his risk of further trauma, and he has remained seizure-free for 3 years on just one antiseizure medication. CONCLUSION Surgical treatments for epilepsy often fail, with insufficient resection being a leading cause of these failures. In some cases, extensive destruction from an ischemic stroke may be beneficial. Furthermore, this case suggests that infarction therapy could be a potential treatment for patients with drug-resistant epilepsy.
Collapse
Affiliation(s)
- Wankiun Lee
- Department of Neurology, Chungnam National University Hospital, 282 Munhwa-Ro, Jung-Gu, Daejeon, 35015, Korea
| | - Daeyoung Kim
- Department of Neurology, Chungnam National University Hospital, 282 Munhwa-Ro, Jung-Gu, Daejeon, 35015, Korea
| | - Jae-Moon Kim
- Department of Neurology, Chungnam National University Hospital, 282 Munhwa-Ro, Jung-Gu, Daejeon, 35015, Korea
| | - Eun Young Kim
- Department of Neurology, Chungnam National University Sejong Hospital, 20 Bodeum7-Ro, Sejong, 30099, Korea.
| |
Collapse
|
3
|
Glazyrin YE, Veprintsev DV, Timechko EE, Minic Z, Zamay TN, Dmitrenko DV, Berezovski MV, Kichkailo AS. Comparative Proteomic Profiling of Blood Plasma Revealed Marker Proteins Involved in Temporal Lobe Epilepsy. Int J Mol Sci 2024; 25:7935. [PMID: 39063177 PMCID: PMC11276668 DOI: 10.3390/ijms25147935] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2024] [Revised: 07/15/2024] [Accepted: 07/19/2024] [Indexed: 07/28/2024] Open
Abstract
Temporal lobe epilepsy has various origins, involving or not involving structural changes in brain tissue. The mechanisms of epileptogenesis are associated with cell regulation and signaling disruptions expressed in varied levels of proteins. The blood plasma proteomic profiling of temporal lobe epilepsy patients (including magnetic resonance imaging (MRI)-positive and MRI-negative ones) and healthy volunteers using mass spectrometry and label-free quantification revealed a list of differently expressed proteins. Several apolipoproteins (APOA1, APOD, and APOA4), serpin protease inhibitors (SERPINA3, SERPINF1, etc.), complement components (C9, C8, and C1R), and a total of 42 proteins were found to be significantly upregulated in the temporal lobe epilepsy group. A classification analysis of these proteins according to their biological functions, as well as a review of the published sources, disclosed the predominant involvement of the processes mostly affected during epilepsy such as neuroinflammation, intracellular signaling, lipid metabolism, and oxidative stress. The presence of several proteins related to the corresponding compensatory mechanisms has been noted. After further validation, the newly identified temporal lobe epilepsy biomarker candidates may be used as epilepsy diagnostic tools, in addition to other less specific methods such as electroencephalography or MRI.
Collapse
Affiliation(s)
- Yury E. Glazyrin
- Laboratory for Digital Controlled Drugs and Theranostics, Federal Research Center “Krasnoyarsk Science Center of the Siberian Branch of the Russian Academy of Science”, Akademgorodok 50, 660036 Krasnoyarsk, Russia; (D.V.V.); (T.N.Z.); (A.S.K.)
- Laboratory for Biomolecular and Medical Technologies, Prof. V.F. Voino-Yasenetsky Krasnoyarsk State Medical University, Partizana Zheleznyaka 1, 660022 Krasnoyarsk, Russia
| | - Dmitry V. Veprintsev
- Laboratory for Digital Controlled Drugs and Theranostics, Federal Research Center “Krasnoyarsk Science Center of the Siberian Branch of the Russian Academy of Science”, Akademgorodok 50, 660036 Krasnoyarsk, Russia; (D.V.V.); (T.N.Z.); (A.S.K.)
| | - Elena E. Timechko
- Department of Medical Genetics and Clinical Neurophysiology, Prof. V.F. Voino-Yasenetsky Krasnoyarsk State Medical University, Partizana Zheleznyaka 1, 660022 Krasnoyarsk, Russia; (E.E.T.); (D.V.D.)
| | - Zoran Minic
- Department of Chemistry and Biomolecular Sciences, University of Ottawa, 10 Marie-Curie, Ottawa, ON K1N 6N5, Canada; (Z.M.); (M.V.B.)
| | - Tatiana N. Zamay
- Laboratory for Digital Controlled Drugs and Theranostics, Federal Research Center “Krasnoyarsk Science Center of the Siberian Branch of the Russian Academy of Science”, Akademgorodok 50, 660036 Krasnoyarsk, Russia; (D.V.V.); (T.N.Z.); (A.S.K.)
- Laboratory for Biomolecular and Medical Technologies, Prof. V.F. Voino-Yasenetsky Krasnoyarsk State Medical University, Partizana Zheleznyaka 1, 660022 Krasnoyarsk, Russia
| | - Diana V. Dmitrenko
- Department of Medical Genetics and Clinical Neurophysiology, Prof. V.F. Voino-Yasenetsky Krasnoyarsk State Medical University, Partizana Zheleznyaka 1, 660022 Krasnoyarsk, Russia; (E.E.T.); (D.V.D.)
| | - Maxim V. Berezovski
- Department of Chemistry and Biomolecular Sciences, University of Ottawa, 10 Marie-Curie, Ottawa, ON K1N 6N5, Canada; (Z.M.); (M.V.B.)
| | - Anna S. Kichkailo
- Laboratory for Digital Controlled Drugs and Theranostics, Federal Research Center “Krasnoyarsk Science Center of the Siberian Branch of the Russian Academy of Science”, Akademgorodok 50, 660036 Krasnoyarsk, Russia; (D.V.V.); (T.N.Z.); (A.S.K.)
- Laboratory for Biomolecular and Medical Technologies, Prof. V.F. Voino-Yasenetsky Krasnoyarsk State Medical University, Partizana Zheleznyaka 1, 660022 Krasnoyarsk, Russia
| |
Collapse
|
4
|
Kang Q, Zhang J, Xie C, Fang S, Chai W. Circular RNA SLC8A1 triggers hippocampal neuronal ferroptosis by regulating FUS-mediated ATF3 mRNA stability in epilepsy. Exp Cell Res 2024; 434:113848. [PMID: 37918704 DOI: 10.1016/j.yexcr.2023.113848] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2023] [Revised: 09/27/2023] [Accepted: 10/30/2023] [Indexed: 11/04/2023]
Abstract
BACKGROUND Epilepsy is a neurological disorder characterized by recurrent seizures and is often unresponsive to current treatment options. Ferroptosis, a recently defined iron-dependent regulated cell death, has been suggested as a potential therapeutic target for epilepsy due to its association with oxidative stress. Additionally, circRNA SLC8A1 (circSLC8A1) has been implicated in various neurological disorders and oxidative stress-related diseases but its involvement in epilepsy progression, particularly in relation to ferroptosis and oxidative stress, remains unclear. METHODS qRT-PCR, Western blot, IHC and ELISA assays were employed to validate the relative expression of targeted genes and proteins. The levels of ROS, iron, LOP and GSH were detected by commercial kits. RNA pull-down and RIP assays were employed to detect the interactions among circSLC8A1, FUS and ATF3. A rat epilepsy model was established for further in vivo confirmation. RESULTS AND CONCLUSION In this study, we investigated the potential involvement of circSLC8A1 in epilepsy progression and its connection to ferroptosis and oxidative stress. Our findings demonstrate that circSLC8A1 triggers neuronal ferroptosis by stabilizing ATF3 mRNA expression through recruitment with FUS. The induced neuronal ferroptosis contributes to epilepsy progression. These results enhance our understanding of epilepsy pathogenesis and may provide insights for the development of novel therapeutic strategies.
Collapse
Affiliation(s)
- Qin Kang
- Department of Neurology, Jiangxi Provincial People's Hospital, The First Affiliated Hospital of Nanchang Medical College, Nanchang, 330006, Jiangxi Province, PR China
| | - Ji Zhang
- Department of Neurology, Jiangxi Provincial People's Hospital, The First Affiliated Hospital of Nanchang Medical College, Nanchang, 330006, Jiangxi Province, PR China
| | - Chen Xie
- Department of Neurology, Jiangxi Provincial People's Hospital, The First Affiliated Hospital of Nanchang Medical College, Nanchang, 330006, Jiangxi Province, PR China
| | - Susu Fang
- Department of Neurology, Jiangxi Provincial People's Hospital, The First Affiliated Hospital of Nanchang Medical College, Nanchang, 330006, Jiangxi Province, PR China
| | - Wen Chai
- Department of Neurology, Jiangxi Provincial People's Hospital, The First Affiliated Hospital of Nanchang Medical College, Nanchang, 330006, Jiangxi Province, PR China.
| |
Collapse
|
5
|
Sanchez-Brualla I, Ghosh A, Gibatova VA, Quinlan S, Witherspoon E, Vicini S, Forcelli PA. Phenobarbital does not worsen outcomes of neonatal hypoxia on hippocampal LTP on rats. Front Neurol 2023; 14:1295934. [PMID: 38073649 PMCID: PMC10703306 DOI: 10.3389/fneur.2023.1295934] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2023] [Accepted: 11/06/2023] [Indexed: 10/28/2024] Open
Abstract
Introduction Neonatal hypoxia is a common cause of early-life seizures. Both hypoxia-induced seizures (HS), and the drugs used to treat them (e.g., phenobarbital, PB), have been reported to have long-lasting impacts on brain development. For example, in neonatal rodents, HS reduces hippocampal long-term potentiation (LTP), while PB exposure disrupts GABAergic synaptic maturation in the hippocampus. Prior studies have examined the impact of HS and drug treatment separately, but in the clinic, PB is unlikely to be given to neonates without seizures, and neonates with seizures are very likely to receive PB. To address this gap, we assessed the combined and separate impacts of neonatal HS and PB treatment on the development of hippocampal LTP. Methods Male and female postnatal day (P)7 rat pups were subjected to graded global hypoxia (or normoxia as a control) and treated with either PB (or vehicle as a control). On P13-14 (P13+) or P29-37 (P29+), we recorded LTP of the Schaffer collaterals into CA1 pyramidal layer in acute hippocampal slices. We compared responses to theta burst stimulation (TBS) and tetanization induction protocols. Results Under the TBS induction protocol, female rats showed an LTP impairment caused by HS, which appeared only at P29+. This impairment was delayed compared to male rats. While LTP in HS males was impaired at P13+, it normalized by P29+. Under the tetanization protocol, hypoxia produced larger LTP in males compared to female rats. PB injection, under TBS, did not exacerbate the effects of hypoxia. However, with the tetanization protocol, PB - on the background of HS - compensated for these effects, returning LTP to control levels. Discussion These results point to different susceptibility to hypoxia as a function of sex and age, and a non-detrimental effect of PB when administered after hypoxic seizures.
Collapse
Affiliation(s)
- Irene Sanchez-Brualla
- Department of Pharmacology and Physiology, Georgetown University, Washington, DC, United States
| | - Anjik Ghosh
- Department of Pharmacology and Physiology, Georgetown University, Washington, DC, United States
| | - Viktoriya A. Gibatova
- Department of Pharmacology and Physiology, Georgetown University, Washington, DC, United States
| | - Sean Quinlan
- Department of Pharmacology and Physiology, Georgetown University, Washington, DC, United States
| | - Eric Witherspoon
- Department of Pharmacology and Physiology, Georgetown University, Washington, DC, United States
| | - Stefano Vicini
- Department of Pharmacology and Physiology, Georgetown University, Washington, DC, United States
- Interdisciplinary Program in Neuroscience, Georgetown University, Washington, DC, United States
- Department of Neuroscience, Georgetown University, Washington, DC, United States
| | - Patrick A. Forcelli
- Department of Pharmacology and Physiology, Georgetown University, Washington, DC, United States
- Interdisciplinary Program in Neuroscience, Georgetown University, Washington, DC, United States
- Department of Neuroscience, Georgetown University, Washington, DC, United States
| |
Collapse
|
6
|
Vasilieva AA, Timechko EE, Lysova KD, Paramonova AI, Yakimov AM, Kantimirova EA, Dmitrenko DV. MicroRNAs as Potential Biomarkers of Post-Traumatic Epileptogenesis: A Systematic Review. Int J Mol Sci 2023; 24:15366. [PMID: 37895044 PMCID: PMC10607802 DOI: 10.3390/ijms242015366] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2023] [Revised: 10/16/2023] [Accepted: 10/17/2023] [Indexed: 10/29/2023] Open
Abstract
Structural or post-traumatic epilepsy often develops after brain tissue damage caused by traumatic brain injury, stroke, infectious diseases of the brain, etc. Most often, between the initiating event and epilepsy, there is a period without seizures-a latent period. At this time, the process of restructuring of neural networks begins, leading to the formation of epileptiform activity, called epileptogenesis. The prediction of the development of the epileptogenic process is currently an urgent and difficult task. MicroRNAs are inexpensive and minimally invasive biomarkers of biological and pathological processes. The aim of this study is to evaluate the predictive ability of microRNAs to detect the risk of epileptogenesis. In this study, we conducted a systematic search on the MDPI, PubMed, ScienceDirect, and Web of Science platforms. We analyzed publications that studied the aberrant expression of circulating microRNAs in epilepsy, traumatic brain injury, and ischemic stroke in order to search for microRNAs-potential biomarkers for predicting epileptogenesis. Thus, 31 manuscripts examining biomarkers of epilepsy, 19 manuscripts examining biomarkers of traumatic brain injury, and 48 manuscripts examining biomarkers of ischemic stroke based on circulating miRNAs were analyzed. Three miRNAs were studied: miR-21, miR-181a, and miR-155. The findings showed that miR-21 and miR-155 are associated with cell proliferation and apoptosis, and miR-181a is associated with protein modifications. These miRNAs are not strictly specific, but they are involved in processes that may be indirectly associated with epileptogenesis. Also, these microRNAs may be of interest when they are studied in a cohort with each other and with other microRNAs. To further study the microRNA-based biomarkers of epileptogenesis, many factors must be taken into account: the time of sampling, the type of biological fluid, and other nuances. Currently, there is a need for more in-depth and prolonged studies of epileptogenesis.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Diana V. Dmitrenko
- Department of Medical Genetics and Clinical Neurophysiology of Postgraduate Education, V.F. Voino-Yasenetsky Krasnoyarsk State Medical University, Krasnoyarsk 660022, Russia; (A.A.V.); (E.E.T.); (K.D.L.); (A.I.P.)
| |
Collapse
|
7
|
Liu JX, Fang CL, Zhang K, Ma RF, Zhou HS, Chen L, Wang QL, Lu YX, Wang TH, Xiong LL. Transcranial Doppler Ultrasonography detection on cerebrovascular flow for evaluating neonatal hypoxic-ischemic encephalopathy modeling. Front Neurosci 2023; 17:962001. [PMID: 37250420 PMCID: PMC10213400 DOI: 10.3389/fnins.2023.962001] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2022] [Accepted: 01/18/2023] [Indexed: 05/31/2023] Open
Abstract
Objective This study aimed to investigate the feasibility of Transcranial Doppler Ultrasonography (TCD) in evaluating neonatal hypoxic-ischemic encephalopathy (NHIE) modeling through monitoring the alteration of cerebrovascular flow in neonatal hypoxic-ischemic (HI) rats. Methods Postnatal 7-day-old Sprague Dawley (SD) rats were divided into the control group, HI group, and hypoxia (H) group. TCD was applied to assess the changes of cerebral blood vessels, cerebrovascular flow velocity, and heart rate (HR) in sagittal and coronal sections at 1, 2, 3, and 7 days after the operation. For accuracy, cerebral infarct of rats was examined by 2,3,5-Triphenyl tetrazolium chloride (TTC) staining and Nissl staining to simultaneously verify the establishment of NHIE modeling. Results Coronal and sagittal TCD scans revealed obvious alteration of cerebrovascular flow in main cerebral vessels. Obvious cerebrovascular back-flow was observed in anterior cerebral artery (ACA), basilar artery (BA), middle cerebral artery (MCA) of HI rats, along with accelerated cerebrovascular flows in the left internal carotid artery (ICA-L) and BA, decreased flows in right internal carotid artery (ICA-R) relative to those in the H and control groups. The alterations of cerebral blood flows in neonatal HI rats indicated successful ligation of right common carotid artery. Besides, TTC staining further validated the cerebral infarct was indeed caused due to ligation-induced insufficient blood supply. Damage to nervous tissues was also revealed by Nissl staining. Conclusion Cerebral blood flow assessment by TCD in neonatal HI rats contributed to cerebrovascular abnormalities observed in a real-time and non-invasive way. The present study elicits the potentials to utilize TCD as an effective means for monitoring the progression of injury as well as NHIE modeling. The abnormal appearance of cerebral blood flow is also beneficial to the early warning and effective detection in clinical practice.
Collapse
Affiliation(s)
- Jin-Xiang Liu
- Department of Anesthesiology, Affiliated Hospital of Zunyi Medical University, Zunyi, Guizhou, China
- Laboratory Animal Department, Kunming Medical University, Kunming, China
| | - Chang-Le Fang
- Laboratory Animal Department, Kunming Medical University, Kunming, China
- School of Anesthesiology, Southwest Medical University, Luzhou, China
| | - Kun Zhang
- Shantou Ultrasonic Instrument Research Institute Co., Ltd., Shantou, Guangdong, China
| | - Rui-Fang Ma
- Laboratory Animal Department, Kunming Medical University, Kunming, China
| | - Hong-Su Zhou
- Department of Anesthesiology, Affiliated Hospital of Zunyi Medical University, Zunyi, Guizhou, China
| | - Li Chen
- Institute of Neurological Disease, Translational Neuroscience Center, West China Hospital, Sichuan University, Chengdu, China
| | - Qiu-Lin Wang
- Department of Clinical Medicine, Chongqing Medical University, Chongqing, China
| | - Yu-Xuan Lu
- School of Anesthesiology, Southwest Medical University, Luzhou, China
| | - Ting-Hua Wang
- Laboratory Animal Department, Kunming Medical University, Kunming, China
- Institute of Neurological Disease, Translational Neuroscience Center, West China Hospital, Sichuan University, Chengdu, China
| | - Liu-Lin Xiong
- Department of Anesthesiology, Affiliated Hospital of Zunyi Medical University, Zunyi, Guizhou, China
- Yunnan Key Laboratory of Primate Biomedical Research, Kunming University of Science and Technology, Kunming, China
| |
Collapse
|
8
|
Johnson KJ, Moy B, Rensing N, Robinson A, Ly M, Chengalvala R, Wong M, Galindo R. Functional neuropathology of neonatal hypoxia-ischemia by single-mouse longitudinal electroencephalography. Epilepsia 2022; 63:3037-3050. [PMID: 36054439 PMCID: PMC10176800 DOI: 10.1111/epi.17403] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2022] [Revised: 08/26/2022] [Accepted: 08/26/2022] [Indexed: 01/11/2023]
Abstract
OBJECTIVE Neonatal cerebral hypoxia-ischemia (HI) results in symptomatic seizures and long-term neurodevelopmental disability. The Rice-Vannucci model of rodent neonatal HI has been used extensively to examine and translate the functional consequences of acute and chronic HI-induced encephalopathy. Yet, longitudinal electrophysiological characterization of this brain injury model has been limited by the size of the neonatal mouse's head and postnatal maternal dependency. We overcome this challenge by employing a novel method of longitudinal single-mouse electroencephalography (EEG) using chronically implanted subcranial electrodes in the term-equivalent mouse pup. We characterize the neurophysiological disturbances occurring during awake and sleep states in the acute and chronic phases following newborn brain injury. METHODS C57BL/6 mice underwent long-term bilateral subcranial EEG and electromyographic electrode placement at postnatal day 9 followed by unilateral carotid cauterization and exposure to 40 minutes of hypoxia the following day. EEG recordings were obtained prior, during, and intermittently after the HI procedure from postnatal day 10 to weaning age. Quantitative EEG and fast Fourier transform analysis were used to evaluate seizures, cortical cerebral dysfunction, and disturbances in vigilance states. RESULTS We observed neonatal HI-provoked electrographic focal and bilateral seizures during or immediately following global hypoxia and most commonly contralateral to the ischemic injury. Spontaneous chronic seizures were not seen. Injured mice developed long-term asymmetric EEG background attenuation in all frequencies and most prominently during non-rapid eye movement (NREM) sleep. HI mice also showed transient impairments in vigilance state duration and transitions during the first 2 days following injury. SIGNIFICANCE The functional burden of mouse neonatal HI recorded by EEG resembles closely that of the injured human newborn. The use of single-mouse longitudinal EEG in this immature model can advance our understanding of the developmental and pathophysiological mechanisms of neonatal cerebral injury and help translate novel therapeutic strategies against this devastating condition.
Collapse
Affiliation(s)
- Kevin J Johnson
- Department of Neurology, Division of Pediatric & Developmental Neurology, Washington University School of Medicine, St. Louis, Missouri, USA
| | - Brianna Moy
- Department of Neurology, Division of Pediatric & Developmental Neurology, Washington University School of Medicine, St. Louis, Missouri, USA
| | - Nicholas Rensing
- Department of Neurology, Division of Pediatric & Developmental Neurology, Washington University School of Medicine, St. Louis, Missouri, USA
| | - Alexia Robinson
- Department of Neurology, Division of Pediatric & Developmental Neurology, Washington University School of Medicine, St. Louis, Missouri, USA
| | - Michael Ly
- Department of Neurology, Division of Pediatric & Developmental Neurology, Washington University School of Medicine, St. Louis, Missouri, USA
| | - Ramya Chengalvala
- Department of Neurology, Division of Pediatric & Developmental Neurology, Washington University School of Medicine, St. Louis, Missouri, USA
| | - Michael Wong
- Department of Neurology, Division of Pediatric & Developmental Neurology, Washington University School of Medicine, St. Louis, Missouri, USA
| | - Rafael Galindo
- Department of Neurology, Division of Pediatric & Developmental Neurology, Washington University School of Medicine, St. Louis, Missouri, USA
| |
Collapse
|
9
|
Katsarou AM, Kubova H, Auvin S, Mantegazza M, Barker-Haliski M, Galanopoulou AS, Reid CA, Semple BD. A companion to the preclinical common data elements for rodent models of pediatric acquired epilepsy: A report of the TASK3-WG1B, Pediatric and Genetic Models Working Group of the ILAE/AES Joint Translational Task Force. Epilepsia Open 2022. [PMID: 35950641 DOI: 10.1002/epi4.12641] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2021] [Accepted: 02/08/2022] [Indexed: 11/05/2022] Open
Abstract
Epilepsy syndromes during the early years of life may be attributed to an acquired insult, such as hypoxic-ischemic injury, infection, status epilepticus, or brain trauma. These conditions are frequently modeled in experimental rodents to delineate mechanisms of epileptogenesis and investigate novel therapeutic strategies. However, heterogeneity and subsequent lack of reproducibility of such models across laboratories is an ongoing challenge to maintain scientific rigor and knowledge advancement. To address this, as part of the TASK3-WG1B Working Group of the International League Against Epilepsy/American Epilepsy Society Joint Translational Task Force, we have developed a series of case report forms (CRFs) to describe common data elements for pediatric acquired epilepsy models in rodents. The "Rodent Models of Pediatric Acquired Epilepsy" Core CRF was designed to capture cohort-general information; while two Specific CRFs encompass physical induction models and chemical induction models, respectively. This companion manuscript describes the key elements of these models and why they are important to be considered and reported consistently. Together, these CRFs provide investigators with the tools to systematically record critical information regarding their chosen model of acquired epilepsy during early life, for improved standardization and transparency across laboratories. These outcomes will support the ultimate goal of such research; that is, to understand the childhood onset-specific biology of epileptogenesis after acquired insults, and translate this knowledge into therapeutics to improve pediatric patient outcomes and minimize the lifetime burden of epilepsy.
Collapse
Affiliation(s)
- Anna-Maria Katsarou
- Laboratory of Developmental Epilepsy, Saul R. Korey Department of Neurology, Albert Einstein College of Medicine, Bronx, New York, USA
| | - Hana Kubova
- Institute of Physiology, Academy of Sciences of the Czech Republic, Prague, Czech Republic
| | - Stéphane Auvin
- Service de Neurologie Pédiatrique, Hôpital Robert-Debré, INSERM UMR 1141, APHP, Université de Paris, Paris, France
- Institut Universitaire de France (IUF), Paris, France
| | - Massimo Mantegazza
- Inserm, LabEx ICST, Institute of Molecular and Cellular Pharmacology (IPMC), CNRS UMR7275, Université Côte d'Azur, Valbonne-Sophia Antipolis, France
| | - Melissa Barker-Haliski
- Department of Pharmacy, School of Pharmacy, University of Washington, Seattle, Washington, USA
| | - Aristea S Galanopoulou
- Laboratory of Developmental Epilepsy, Saul R. Korey Department of Neurology, Albert Einstein College of Medicine, Bronx, New York, USA
- Isabelle Rapin Division of Child Neurology, Laboratory of Developmental Epilepsy, Dominick P. Purpura Department of Neuroscience, Albert Einstein College of Medicine, Bronx, New York, USA
| | - Christopher A Reid
- Epilepsy Research Centre, Department of Medicine, University of Melbourne, Austin Health, Heidelberg, Victoria, Australia
- Florey Institute of Neuroscience and Mental Health, University of Melbourne, Parkville, Victoria, Australia
| | - Bridgette D Semple
- Department of Neuroscience, Monash University, Melbourne, Victoria, Australia
- Department of Neurology, Alfred Health, Prahran, Victoria, Australia
- Department of Medicine (Royal Melbourne Hospital), The University of Melbourne, Parkville, Victoria, Australia
| |
Collapse
|
10
|
Zayachkivsky A, Lehmkuhle MJ, Ekstrand JJ, Dudek FE. Background suppression of electrical activity is a potential biomarker of subsequent brain injury in a rat model of neonatal hypoxia-ischemia. J Neurophysiol 2022; 128:118-130. [PMID: 35675445 DOI: 10.1152/jn.00024.2022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Electrographic seizures and abnormal background activity in the neonatal electroencephalogram (EEG) may differentiate between harmful versus benign brain insults. Using two animal models of neonatal seizures, electrical activity was recorded in freely behaving rats and examined quantitatively during successive time periods with field-potential recordings obtained shortly after the brain insult (i.e., 0-4 days). Single-channel, differential recordings with miniature wireless telemetry were used to analyze spontaneous electrographic seizures and background suppression of electrical activity after 1) hypoxia-ischemia (HI), which is a model of neonatal encephalopathy that causes acute seizures and a large brain lesion with possible development of epilepsy, 2) hypoxia alone (Ha), which causes severe acute seizures without an obvious lesion or subsequent epilepsy, and 3) sham control rats. Background EEG exhibited increases in power as a function of age in control animals. Although background electrical activity was depressed in all frequency bands immediately after HI, suppression in the β and γ bands was greatest and lasted longest. Spontaneous electrographic seizures were recorded, but only in a few HI-treated animals. Ha-treated rat pups were similar to sham controls, they had no subsequent spontaneous electrographic seizures after the treatment and background suppression was only briefly observed in one frequency band. Thus, the normal age-dependent maturation of electrical activity patterns in control animals was significantly disrupted after HI. Suppression of the background EEG observed here after HI-induced acute seizures and subsequent brain injury may be a noninvasive biomarker for detecting severe brain injuries and may help predict subsequent epilepsy.NEW & NOTEWORTHY Biomarkers of neonatal brain injury are needed. Hypoxia-ischemia (HI) in immature rat pups caused severe brain injury, which was associated with strongly suppressed background EEG. The suppression was most robust in the β and γ bands; it started immediately after the HI injury and persisted for days. Thus, background suppression may be a noninvasive biomarker for detecting severe brain injuries and may help predict subsequent epilepsy.
Collapse
Affiliation(s)
- A Zayachkivsky
- Department of Neurosurgery, University of Utah School of Medicine, Salt Lake City, Utah
| | - M J Lehmkuhle
- Department of Neurosurgery, University of Utah School of Medicine, Salt Lake City, Utah
| | - J J Ekstrand
- Department of Pediatrics, University of Utah School of Medicine, Salt Lake City, Utah
| | - F E Dudek
- Department of Neurosurgery, University of Utah School of Medicine, Salt Lake City, Utah
| |
Collapse
|
11
|
Gupta S, Kadam SD. Interictal Discharges: All Roads Lead to Rome? Epilepsy Curr 2022; 22:252-254. [PMID: 36187148 PMCID: PMC9483753 DOI: 10.1177/15357597221098809] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Human Interictal Epileptiform Discharges Are Bidirectional Traveling Waves
Echoing Ictal Discharges Smith EH, Liou J-Y, Merricks EM, et al. Elife. 2022;11:e73541.
Published 2022 Jan 20. doi:10.7554/eLife.73541. Interictal epileptiform discharges (IEDs), also known as interictal spikes, are large
intermittent electrophysiological events observed between seizures in patients with
epilepsy. Although they occur far more often than seizures, IEDs are less studied, and
their relationship to seizures remains unclear. To better understand this
relationship, we examined multi-day recordings of microelectrode arrays implanted in
human epilepsy patients, allowing us to precisely observe the spatiotemporal
propagation of IEDs, spontaneous seizures, and how they relate. These recordings
showed that the majority of IEDs are traveling waves, traversing the same path as
ictal discharges during seizures, and with a fixed direction relative to seizure
propagation. Moreover, the majority of IEDs, like ictal discharges, were
bidirectional, with 1 predominant and a second, less frequent antipodal direction.
These results reveal a fundamental spatiotemporal similarity between IEDs and ictal
discharges. These results also imply that most IEDs arise in brain tissue outside the
site of seizure onset and propagate toward it, indicating that the propagation of IEDs
provides useful information for localizing the seizure focus.
Collapse
|
12
|
Hwang Y, Kadam SD. Targeting Epileptogenesis: A Conceptual Black Hole or Light at the End of the Tunnel? Epilepsy Curr 2021; 21:372-375. [PMID: 34924840 PMCID: PMC8655252 DOI: 10.1177/15357597211030384] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/02/2022] Open
|
13
|
Liu H, Zhang L. Clustering of Spontaneous Recurrent Seizures in a Mouse Model of Extended Hippocampal Kindling. Front Neurol 2021; 12:738986. [PMID: 34899563 PMCID: PMC8654732 DOI: 10.3389/fneur.2021.738986] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2021] [Accepted: 11/05/2021] [Indexed: 02/03/2023] Open
Abstract
Acute repetitive seizures or seizure clusters are common in epileptic patients. Seizure clusters are associated with a high risk of developing status epilepticus and increased morbidity and mortality. Seizure clusters are also recognizable in spontaneous recurrent seizures (SRS) that occur in animal models of epilepsy. The electrical kindling of a limbic structure is a commonly used model of temporal lobe epilepsy. Although classic kindling over the course of a few weeks does not generally induce SRS, extended kindling over the course of a few months can induce SRS in several animal species. SRS in kindled cats often occur in clusters, but the existence of seizure clusters in rodent models of extended kindling remains to be demonstrated. We explored the existence of seizure clusters in mice following extended hippocampal kindling. Adult male mice (C57BL/6) experienced twice daily hippocampal stimulations and underwent continuous 24-hour electroencephalogram (EEG)-video monitoring after ≥80 stimulations. SRS events were recognized by EEG discharges and associated motor seizures. Seizure clusters, defined as ≥4 seizures per cluster and intra-cluster inter-seizure intervals ≤ 120 min, were observed in 19 of the 20 kindled mice. Individual mice showed variable seizure clusters in terms of cluster incidence and circadian-like expression patterns. For clusters consisting of 4-7 seizures and intra-seizure intervals ≤ 20 min, no consistent changes in inter-seizure intervals, EEG discharge duration, or motor seizure severity scores were observed approaching cluster termination. These results suggested that seizure clustering represents a prominent feature of SRS in hippocampal kindled mice. We speculate that, despite experimental limitations and confounding factors, systemic homeostatic mechanisms that have yet to be explored may play an important role in governing the occurrence and termination of seizure clusters.
Collapse
Affiliation(s)
- Haiyu Liu
- Department of Neurosurgery, The First Hospital of Jilin University, Changchun, China.,Krembil Research Institute, University Health Network, Toronto, ON, Canada
| | - Liang Zhang
- Krembil Research Institute, University Health Network, Toronto, ON, Canada.,Division of Neurology, Department of Medicine, University of Toronto, Toronto, ON, Canada
| |
Collapse
|
14
|
Gailus B, Naundorf H, Welzel L, Johne M, Römermann K, Kaila K, Löscher W. Long-term outcome in a noninvasive rat model of birth asphyxia with neonatal seizures: Cognitive impairment, anxiety, epilepsy, and structural brain alterations. Epilepsia 2021; 62:2826-2844. [PMID: 34458992 DOI: 10.1111/epi.17050] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2021] [Revised: 07/30/2021] [Accepted: 08/09/2021] [Indexed: 11/28/2022]
Abstract
OBJECTIVE Birth asphyxia is a major cause of hypoxic-ischemic encephalopathy (HIE) in neonates and often associated with mortality, neonatal seizures, brain damage, and later life motor, cognitive, and behavioral impairments and epilepsy. Preclinical studies on rodent models are needed to develop more effective therapies for preventing HIE and its consequences. Thus far, the most popular rodent models have used either exposure of intact animals to hypoxia-only, or a combination of hypoxia and carotid occlusion, for the induction of neonatal seizures and adverse outcomes. However, such models lack systemic hypercapnia, which is a fundamental constituent of birth asphyxia with major effects on neuronal excitability. Here, we use a recently developed noninvasive rat model of birth asphyxia with subsequent neonatal seizures to study later life adverse outcome. METHODS Intermittent asphyxia was induced for 30 min by exposing male and female postnatal day 11 rat pups to three 7 + 3-min cycles of 9% and 5% O2 at constant 20% CO2 . All pups exhibited convulsive seizures after asphyxia. A set of behavioral tests were performed systematically over 14 months following asphyxia, that is, a large part of the rat's life span. Video-electroencephalographic (EEG) monitoring was used to determine whether asphyxia led to the development of epilepsy. Finally, structural brain alterations were examined. RESULTS The animals showed impaired spatial learning and memory and increased anxiety when tested at an age of 3-14 months. Video-EEG at ~10 months showed an abundance of spontaneous seizures, which was paralleled by neurodegeneration in the hippocampus and thalamus, and by aberrant mossy fiber sprouting. SIGNIFICANCE The present model of birth asphyxia recapitulates several of the later life consequences associated with human HIE. This model thus allows evaluation of the efficacy of novel therapies designed to prevent HIE and seizures following asphyxia, and of how such therapies might alleviate long-term adverse consequences.
Collapse
Affiliation(s)
- Björn Gailus
- Department of Pharmacology, Toxicology, and Pharmacy, University of Veterinary Medicine, Hannover, Germany.,Center for Systems Neuroscience, Hannover, Germany
| | - Hannah Naundorf
- Department of Pharmacology, Toxicology, and Pharmacy, University of Veterinary Medicine, Hannover, Germany.,Center for Systems Neuroscience, Hannover, Germany
| | - Lisa Welzel
- Department of Pharmacology, Toxicology, and Pharmacy, University of Veterinary Medicine, Hannover, Germany
| | - Marie Johne
- Department of Pharmacology, Toxicology, and Pharmacy, University of Veterinary Medicine, Hannover, Germany.,Center for Systems Neuroscience, Hannover, Germany
| | - Kerstin Römermann
- Department of Pharmacology, Toxicology, and Pharmacy, University of Veterinary Medicine, Hannover, Germany
| | - Kai Kaila
- Molecular and Integrative Biosciences, University of Helsinki, Helsinki, Finland.,Neuroscience Center (HiLIFE), University of Helsinki, Helsinki, Finland
| | - Wolfgang Löscher
- Department of Pharmacology, Toxicology, and Pharmacy, University of Veterinary Medicine, Hannover, Germany.,Center for Systems Neuroscience, Hannover, Germany
| |
Collapse
|
15
|
Tatum S, Smith ZZ, Taylor JA, Poulsen DJ, Dudek FE, Barth DS. Sensitivity of unilateral- versus bilateral-onset spike-wave discharges to ethosuximide and carbamazepine in the fluid percussion injury rat model of traumatic brain injury. J Neurophysiol 2021; 125:2166-2177. [PMID: 33949882 DOI: 10.1152/jn.00098.2021] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Unilateral-onset spike-wave discharges (SWDs) following fluid percussion injury (FPI) in rats have been used for nearly two decades as a model for complex partial seizures in human posttraumatic epilepsy (PTE). This study determined if SWDs with a unilateral versus bilateral cortical onset differed. In this experiment, 2-mo-old rats received severe FPI (3 atm) or sham surgery and were instrumented for chronic video-electrocorticography (ECoG) recording (up to 9 mo). The antiseizure drug, carbamazepine (CBZ), and the antiabsence drug, ethosuximide (ETX), were administered separately to determine if they selectively suppressed unilateral- versus bilateral-onset SWDs, respectively. SWDs did not significantly differ between FPI and sham rats on any measured parameter (wave-shape, frequency spectrum, duration, or age-related progression), including unilateral (∼17%) versus bilateral (∼83%) onsets. SWDs with a unilateral onset preferentially originated ipsilateral to the craniotomy in both FPI and sham rats, suggesting that the unilateral-onset SWDs were related to surgical injury and not specifically to FPI. ETX profoundly suppressed SWDs with either unilateral or bilateral onsets, and CBZ had no effect on either type of SWD. These results suggest that SWDs with either a unilateral or bilateral onset have a pharmacosensitivity similar to absence seizures and are very different from the complex partial seizures of PTE. Therefore, SWDs with a unilateral onset after FPI are not a model of the complex partial seizures that occur in PTE, and their use for finding new treatments for PTE could be counterproductive, particularly if their close similarity to normal brain oscillations is not acknowledged.NEW & NOTEWORTHY Unilateral-onset spike-wave discharges (SWDs) in rats have been used to model complex partial seizures in human posttraumatic epilepsy (PTE), compared to bilateral-onset SWDs thought to reflect human absence seizures. Here, we show that both unilateral- and bilateral-onset SWDs following traumatic brain injury are suppressed by the antiabsence drug ethosuximide and are unaffected by the antiseizure drug carbamazepine. We propose that unilateral-onset SWDs are not useful for studying mechanisms of, or treatments for, PTE.
Collapse
Affiliation(s)
- Sean Tatum
- Department of Psychology and Neuroscience, University of Colorado, Boulder, Colorado
| | - Zachariah Z Smith
- Department of Psychology and Neuroscience, University of Colorado, Boulder, Colorado
| | - Jeremy A Taylor
- Department of Psychology and Neuroscience, University of Colorado, Boulder, Colorado
| | - David J Poulsen
- Department of Neurosurgery, University at Buffalo Jacob's School of Medicine and Biomedical Sciences, Buffalo, New York
| | - F Edward Dudek
- Department of Neurosurgery, University of Utah School of Medicine, Salt Lake City, Utah
| | - Daniel S Barth
- Department of Psychology and Neuroscience, University of Colorado, Boulder, Colorado
| |
Collapse
|
16
|
Kudlacek J, Chvojka J, Kumpost V, Hermanovska B, Posusta A, Jefferys JGR, Maturana MI, Novak O, Cook MJ, Otahal J, Hlinka J, Jiruska P. Long-term seizure dynamics are determined by the nature of seizures and the mutual interactions between them. Neurobiol Dis 2021; 154:105347. [PMID: 33771663 DOI: 10.1016/j.nbd.2021.105347] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2020] [Revised: 03/05/2021] [Accepted: 03/22/2021] [Indexed: 02/07/2023] Open
Abstract
The seemingly random and unpredictable nature of seizures is a major debilitating factor for people with epilepsy. An increasing body of evidence demonstrates that the epileptic brain exhibits long-term fluctuations in seizure susceptibility, and seizure emergence seems to be a consequence of processes operating over multiple temporal scales. A deeper insight into the mechanisms responsible for long-term seizure fluctuations may provide important information for understanding the complex nature of seizure genesis. In this study, we explored the long-term dynamics of seizures in the tetanus toxin model of temporal lobe epilepsy. The results demonstrate the existence of long-term fluctuations in seizure probability, where seizures form clusters in time and are then followed by seizure-free periods. Within each cluster, seizure distribution is non-Poissonian, as demonstrated by the progressively increasing inter-seizure interval (ISI), which marks the approaching cluster termination. The lengthening of ISIs is paralleled by: increasing behavioral seizure severity, the occurrence of convulsive seizures, recruitment of extra-hippocampal structures and the spread of electrographic epileptiform activity outside of the limbic system. The results suggest that repeated non-convulsive seizures obey the 'seizures-beget-seizures' principle, leading to the occurrence of convulsive seizures, which decrease the probability of a subsequent seizure and, thus, increase the following ISI. The cumulative effect of repeated convulsive seizures leads to cluster termination, followed by a long inter-cluster period. We propose that seizures themselves are an endogenous factor that contributes to long-term fluctuations in seizure susceptibility and their mutual interaction determines the future evolution of disease activity.
Collapse
Affiliation(s)
- Jan Kudlacek
- Department of Physiology, Second Faculty of Medicine, Charles University, Prague, Czech Republic; Department of Developmental Epileptology, Institute of Physiology of the Czech Academy of Sciences, Prague, Czech Republic; Department of Circuit Theory, Faculty of Electrical Engineering, Czech Technical University in Prague, Prague, Czech Republic
| | - Jan Chvojka
- Department of Physiology, Second Faculty of Medicine, Charles University, Prague, Czech Republic; Department of Developmental Epileptology, Institute of Physiology of the Czech Academy of Sciences, Prague, Czech Republic; Department of Circuit Theory, Faculty of Electrical Engineering, Czech Technical University in Prague, Prague, Czech Republic
| | - Vojtech Kumpost
- Department of Developmental Epileptology, Institute of Physiology of the Czech Academy of Sciences, Prague, Czech Republic; Department of Circuit Theory, Faculty of Electrical Engineering, Czech Technical University in Prague, Prague, Czech Republic
| | - Barbora Hermanovska
- Department of Physiology, Second Faculty of Medicine, Charles University, Prague, Czech Republic; Department of Developmental Epileptology, Institute of Physiology of the Czech Academy of Sciences, Prague, Czech Republic
| | - Antonin Posusta
- Department of Developmental Epileptology, Institute of Physiology of the Czech Academy of Sciences, Prague, Czech Republic
| | - John G R Jefferys
- Department of Physiology, Second Faculty of Medicine, Charles University, Prague, Czech Republic
| | - Matias I Maturana
- The Graeme Clark Institute & Department of Medicine, St Vincent's Hospital, The University of Melbourne, Melbourne, Australia; Seer Medical, Melbourne, Australia
| | - Ondrej Novak
- Department of Physiology, Second Faculty of Medicine, Charles University, Prague, Czech Republic
| | - Mark J Cook
- The Graeme Clark Institute & Department of Medicine, St Vincent's Hospital, The University of Melbourne, Melbourne, Australia
| | - Jakub Otahal
- Department of Developmental Epileptology, Institute of Physiology of the Czech Academy of Sciences, Prague, Czech Republic
| | - Jaroslav Hlinka
- Department of Nonlinear Modelling, Institute of Computer Science of the Czech Academy of Sciences, Prague 182 07, Czech Republic; National Institute of Mental Health, Klecany, Czech Republic.
| | - Premysl Jiruska
- Department of Physiology, Second Faculty of Medicine, Charles University, Prague, Czech Republic; Department of Developmental Epileptology, Institute of Physiology of the Czech Academy of Sciences, Prague, Czech Republic.
| |
Collapse
|
17
|
Vega-García A, Feria-Romero I, García-Juárez A, Munguia-Madera AC, Montes-Aparicio AV, Zequeida-Muñoz E, Garcia-Albavera E, Orozco-Suárez S. Cannabinoids: A New Perspective on Epileptogenesis and Seizure Treatment in Early Life in Basic and Clinical Studies. Front Behav Neurosci 2021; 14:610484. [PMID: 33510627 PMCID: PMC7835327 DOI: 10.3389/fnbeh.2020.610484] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2020] [Accepted: 11/26/2020] [Indexed: 01/19/2023] Open
Abstract
Neural hyperexcitability in the event of damage during early life, such as hyperthermia, hypoxia, traumatic brain injury, status epilepticus, or a pre-existing neuroinflammatory condition, can promote the process of epileptogenesis, which is defined as the sequence of events that converts a normal circuit into a hyperexcitable circuit and represents the time that occurs between the damaging event and the development of spontaneous seizure activity or the establishment of epilepsy. Epilepsy is the most common neurological disease in the world, characterized by the presence of seizures recurring without apparent provocation. Cannabidiol (CBD), a phytocannabinoid derived from the subspecies Cannabis sativa (CS), is the most studied active ingredient and is currently studied as a therapeutic strategy: it is an anticonvulsant mainly used in children with catastrophic epileptic syndromes and has also been reported to have anti-inflammatory and antioxidant effects, supporting it as a therapeutic strategy with neuroprotective potential. However, the mechanisms by which CBD exerts these effects are not entirely known, and the few studies on acute and chronic models in immature animals have provided contradictory results. Thus, it is difficult to evaluate the therapeutic profile of CBD, as well as the involvement of the endocannabinoid system in epileptogenesis in the immature brain. Therefore, this review focuses on the collection of scientific data in animal models, as well as information from clinical studies on the effects of cannabinoids on epileptogenesis and their anticonvulsant and adverse effects in early life.
Collapse
Affiliation(s)
- Angélica Vega-García
- Departamento de Fisiología, Facultad de Medicina, Universidad Nacional Autónoma de México, Ciudad de México, Mexico
| | - Iris Feria-Romero
- Unidad de Investigación Médica en Enfermedades Neurológicas, Hospital de Especialidades, "Dr. Bernardo Sepúlveda", Centro Médico Nacional Siglo XXI, Instituto Mexicano del Seguro Social, IMSS, Ciudad de México, Mexico
| | - Anais García-Juárez
- División de Ciencias Biológicas y Ambientales, Centro Universitario de Ciencias Biológicas y Agropecuarias, Universidad de Guadalajara, Guadalajara, Mexico
| | - Ana Ch Munguia-Madera
- Unidad de Investigación Médica en Enfermedades Neurológicas, Hospital de Especialidades, "Dr. Bernardo Sepúlveda", Centro Médico Nacional Siglo XXI, Instituto Mexicano del Seguro Social, IMSS, Ciudad de México, Mexico
| | - Alexia V Montes-Aparicio
- Unidad de Investigación Médica en Enfermedades Neurológicas, Hospital de Especialidades, "Dr. Bernardo Sepúlveda", Centro Médico Nacional Siglo XXI, Instituto Mexicano del Seguro Social, IMSS, Ciudad de México, Mexico
| | | | | | - Sandra Orozco-Suárez
- Unidad de Investigación Médica en Enfermedades Neurológicas, Hospital de Especialidades, "Dr. Bernardo Sepúlveda", Centro Médico Nacional Siglo XXI, Instituto Mexicano del Seguro Social, IMSS, Ciudad de México, Mexico
| |
Collapse
|
18
|
Menéndez Méndez A, Smith J, Engel T. Neonatal Seizures and Purinergic Signalling. Int J Mol Sci 2020; 21:ijms21217832. [PMID: 33105750 PMCID: PMC7660091 DOI: 10.3390/ijms21217832] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2020] [Revised: 10/18/2020] [Accepted: 10/20/2020] [Indexed: 02/07/2023] Open
Abstract
Neonatal seizures are one of the most common comorbidities of neonatal encephalopathy, with seizures aggravating acute injury and clinical outcomes. Current treatment can control early life seizures; however, a high level of pharmacoresistance remains among infants, with increasing evidence suggesting current anti-seizure medication potentiating brain damage. This emphasises the need to develop safer therapeutic strategies with a different mechanism of action. The purinergic system, characterised by the use of adenosine triphosphate and its metabolites as signalling molecules, consists of the membrane-bound P1 and P2 purinoreceptors and proteins to modulate extracellular purine nucleotides and nucleoside levels. Targeting this system is proving successful at treating many disorders and diseases of the central nervous system, including epilepsy. Mounting evidence demonstrates that drugs targeting the purinergic system provide both convulsive and anticonvulsive effects. With components of the purinergic signalling system being widely expressed during brain development, emerging evidence suggests that purinergic signalling contributes to neonatal seizures. In this review, we first provide an overview on neonatal seizure pathology and purinergic signalling during brain development. We then describe in detail recent evidence demonstrating a role for purinergic signalling during neonatal seizures and discuss possible purine-based avenues for seizure suppression in neonates.
Collapse
Affiliation(s)
- Aida Menéndez Méndez
- Department of Physiology and Medical Physics, RCSI University of Medicine and Health Sciences, Dublin D02 YN77, Ireland; (A.M.M.); (J.S.)
| | - Jonathon Smith
- Department of Physiology and Medical Physics, RCSI University of Medicine and Health Sciences, Dublin D02 YN77, Ireland; (A.M.M.); (J.S.)
- FutureNeuro, Science Foundation Ireland Research Centre for Chronic and Rare Neurological Diseases, RCSI University of Medicine and Health Sciences, Dublin D02 YN77, Ireland
| | - Tobias Engel
- Department of Physiology and Medical Physics, RCSI University of Medicine and Health Sciences, Dublin D02 YN77, Ireland; (A.M.M.); (J.S.)
- FutureNeuro, Science Foundation Ireland Research Centre for Chronic and Rare Neurological Diseases, RCSI University of Medicine and Health Sciences, Dublin D02 YN77, Ireland
- Correspondence: ; Tel.: +35-314-025-199
| |
Collapse
|
19
|
Wagley PK, Williamson J, Skwarzynska D, Kapur J, Burnsed J. Continuous Video Electroencephalogram during Hypoxia-Ischemia in Neonatal Mice. J Vis Exp 2020. [PMID: 32597865 DOI: 10.3791/61346] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023] Open
Abstract
Hypoxia ischemia is the most common cause of neonatal seizures. Animal models are crucial for understanding the mechanisms and physiology underlying neonatal seizures and hypoxia ischemia. This manuscript describes a method for continuous video electroencephalogram (EEG) monitoring in neonatal mice to detect seizures and analyze EEG background during hypoxia ischemia. Use of video and EEG in conjunction allows description of seizure semiology and confirmation of seizures. This method also allows analysis of power spectrograms and EEG background pattern trends over the experimental time period. In this hypoxia ischemia model, the method allows EEG recording prior to injury to obtain a normative baseline and during injury and recovery. Total monitoring time is limited by the inability to separate pups from the mother for longer than four hours. Although, we have used a model of hypoxic-ischemic seizures in this manuscript, this method for neonatal video EEG monitoring could be applied to diverse disease and seizure models in rodents.
Collapse
Affiliation(s)
- Pravin K Wagley
- Department of Pediatrics, University of Virginia; Department of Neurology, University of Virginia
| | | | | | - Jaideep Kapur
- Department of Neurology, University of Virginia; Brain Institute, University of Virginia; Department of Neuroscience, University of Virginia
| | - Jennifer Burnsed
- Department of Pediatrics, University of Virginia; Department of Neurology, University of Virginia;
| |
Collapse
|
20
|
Crisp DN, Cheung W, Gliske SV, Lai A, Freestone DR, Grayden DB, Cook MJ, Stacey WC. Quantifying epileptogenesis in rats with spontaneous and responsive brain state dynamics. Brain Commun 2020; 2:fcaa048. [PMID: 32671339 PMCID: PMC7331126 DOI: 10.1093/braincomms/fcaa048] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2019] [Revised: 03/06/2020] [Accepted: 03/27/2020] [Indexed: 12/17/2022] Open
Abstract
There is a crucial need to identify biomarkers of epileptogenesis that will help predict later development of seizures. This work identifies two novel electrophysiological biomarkers that quantify epilepsy progression in a rat model of epileptogenesis. The long-term tetanus toxin rat model was used to show the development and remission of epilepsy over several weeks. We measured the response to periodic electrical stimulation and features of spontaneous seizure dynamics over several weeks. Both biomarkers showed dramatic changes during epileptogenesis. Electrically induced responses began to change several days before seizures began and continued to change until seizures resolved. These changes were consistent across animals and allowed development of an algorithm that could differentiate which animals would later develop epilepsy. Once seizures began, there was a progression of seizure dynamics that closely follows recent theoretical predictions, suggesting that the underlying brain state was changing over time. This research demonstrates that induced electrical responses and seizure onset dynamics are useful biomarkers to quantify dynamical changes in epileptogenesis. These tools hold promise for robust quantification of the underlying epileptogenicity and prediction of later development of seizures.
Collapse
Affiliation(s)
- Dakota N Crisp
- Department of Biomedical Engineering, BioInterfaces Institute, University of Michigan, Ann Arbor, MI 48109, USA
| | - Warwick Cheung
- Department of Biomedical Engineering, University of Melbourne, Melbourne, VIC 3010, Australia
- Department of Medicine, St. Vincent’s Hospital, University of Melbourne, Melbourne, VIC 3065, Australia
| | - Stephen V Gliske
- Department of Neurology, University of Michigan, Ann Arbor, MI 48109, USA
| | - Alan Lai
- Department of Medicine, St. Vincent’s Hospital, University of Melbourne, Melbourne, VIC 3065, Australia
| | - Dean R Freestone
- Department of Medicine, St. Vincent’s Hospital, University of Melbourne, Melbourne, VIC 3065, Australia
| | - David B Grayden
- Department of Biomedical Engineering, University of Melbourne, Melbourne, VIC 3010, Australia
- Department of Medicine, St. Vincent’s Hospital, University of Melbourne, Melbourne, VIC 3065, Australia
| | - Mark J Cook
- Department of Medicine, St. Vincent’s Hospital, University of Melbourne, Melbourne, VIC 3065, Australia
| | - William C Stacey
- Department of Biomedical Engineering, BioInterfaces Institute, University of Michigan, Ann Arbor, MI 48109, USA
- Department of Neurology, University of Michigan, Ann Arbor, MI 48109, USA
- Correspondence to: William Stacey, MD PhD Departments of Neurology and Biomedical Engineering, BioInterfaces Institute, University of Michigan 1500 E. Medical Center Dr., Ann Arbor, MI 48109, USA E-mail:
| |
Collapse
|
21
|
Abstract
Psychiatric and cognitive disturbances are the most common comorbidities of epileptic disorders in children. The successful treatment of these comorbidities faces many challenges including their etiologically heterogonous nature. Translational neurobehavioral research in age-tailored and clinically relevant rodent seizure models offers a controlled setting to investigate emotional and cognitive behavioral disturbances, their causative factors, and potentially novel treatment interventions. In this review, we propose a conceptual framework that provides a nonsubjective approach to rodent emotional behavioral testing with a focus on the clinically relevant outcome of behavioral response adaptability. We also describe the battery of neurobehavioral tests that we tailored to seizure models with prominent amygdalo-hippocampal involvement, including testing panels for anxiety-like, exploratory, and hyperactive behaviors (the open-field and light-dark box tests), depressive-like behaviors (the forced swim test), and visuospatial navigation (Morris water maze). The review also discusses the modifications we introduced to active avoidance testing in order to simultaneously test auditory and hippocampal-dependent emotionally relevant learning and memory. When interpreting the significance and clinical relevance of the behavioral responses obtained from a given testing panel, it is important to avoid a holistic disease-based approach as a specific panel may not necessarily mirror a disease entity. The analysis of measurable behavioral responses has to be performed in the context of outcomes obtained from multiple related and complementary neurobehavioral testing panels. Behavioral testing is also complemented by mechanistic electrophysiological and molecular investigations.
Collapse
|
22
|
Leo A, De Caro C, Nesci V, Tallarico M, De Sarro G, Russo E, Citraro R. Modeling poststroke epilepsy and preclinical development of drugs for poststroke epilepsy. Epilepsy Behav 2020; 104:106472. [PMID: 31427267 DOI: 10.1016/j.yebeh.2019.106472] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/05/2019] [Revised: 07/23/2019] [Accepted: 07/26/2019] [Indexed: 12/21/2022]
Abstract
Stroke is a severe clinical issue for global public health, representing the third leading cause of death and a major cause of disability in developed countries. Progresses in the pharmacological treatment of the acute stroke have given rise to a significant decrease in its mortality rate. However, as a result, there has been an increasing number of stroke survivors living with disability worldwide. Poststroke epilepsy (PSE) is a common clinical complication following stroke. Seizures can arise in close temporal association with stroke damage and/or after a variably longer interval. Overall, PSE have a good prognosis; in fact, its responding rate to antiepileptic drugs (AEDs) is higher than other types of epilepsy. However, regarding pharmacological treatment, some issues are still unresolved. To this aim, a deeper understanding of mechanisms underlying the transformation of infarcted tissue into an epileptic focus or better from a nonepileptic brain to an epileptic brain is also mandatory for PSE. However, studying epileptogenesis in patients with PSE clearly has several limitations and difficulties; therefore, modeling PSE is crucial. Until now, different experimental models have been used to study the etiopathology of cerebrovascular stroke with or without infarction, but few studies focused on poststroke epileptogenesis and PSE. In this review, we show a brief overview on the features emerging from preclinical research into experimental PSE, which could affect the discovery of biomarkers and therapy strategies for poststroke epileptogenesis. This article is part of the Special Issue "Seizures & Stroke".
Collapse
Affiliation(s)
- Antonio Leo
- Science of Health Department, School of Medicine, University "Magna Graecia" of Catanzaro, Viale Europa e Germaneto, 88100 Catanzaro, Italy
| | - Carmen De Caro
- Science of Health Department, School of Medicine, University "Magna Graecia" of Catanzaro, Viale Europa e Germaneto, 88100 Catanzaro, Italy
| | - Valentina Nesci
- Science of Health Department, School of Medicine, University "Magna Graecia" of Catanzaro, Viale Europa e Germaneto, 88100 Catanzaro, Italy
| | - Martina Tallarico
- Science of Health Department, School of Medicine, University "Magna Graecia" of Catanzaro, Viale Europa e Germaneto, 88100 Catanzaro, Italy
| | - Giovambattista De Sarro
- Science of Health Department, School of Medicine, University "Magna Graecia" of Catanzaro, Viale Europa e Germaneto, 88100 Catanzaro, Italy
| | - Emilio Russo
- Science of Health Department, School of Medicine, University "Magna Graecia" of Catanzaro, Viale Europa e Germaneto, 88100 Catanzaro, Italy.
| | - Rita Citraro
- Science of Health Department, School of Medicine, University "Magna Graecia" of Catanzaro, Viale Europa e Germaneto, 88100 Catanzaro, Italy
| |
Collapse
|
23
|
Semple BD, Dill LK, O'Brien TJ. Immune Challenges and Seizures: How Do Early Life Insults Influence Epileptogenesis? Front Pharmacol 2020; 11:2. [PMID: 32116690 PMCID: PMC7010861 DOI: 10.3389/fphar.2020.00002] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2019] [Accepted: 01/03/2020] [Indexed: 12/16/2022] Open
Abstract
The development of epilepsy, a process known as epileptogenesis, often occurs later in life following a prenatal or early postnatal insult such as cerebral ischemia, stroke, brain trauma, or infection. These insults share common pathophysiological pathways involving innate immune activation including neuroinflammation, which is proposed to play a critical role in epileptogenesis. This review provides a comprehensive overview of the latest preclinical evidence demonstrating that early life immune challenges influence neuronal hyperexcitability and predispose an individual to later life epilepsy. Here, we consider the range of brain insults that may promote the onset of chronic recurrent spontaneous seizures at adulthood, spanning intrauterine insults (e.g. maternal immune activation), perinatal injuries (e.g. hypoxic–ischemic injury, perinatal stroke), and insults sustained during early postnatal life—such as fever-induced febrile seizures, traumatic brain injuries, infections, and environmental stressors. Importantly, all of these insults represent, to some extent, an immune challenge, triggering innate immune activation and implicating both central and systemic inflammation as drivers of epileptogenesis. Increasing evidence suggests that pro-inflammatory cytokines such as interleukin-1 and subsequent signaling pathways are important mediators of seizure onset and recurrence, as well as neuronal network plasticity changes in this context. Our current understanding of how early life immune challenges prime microglia and astrocytes will be explored, as well as how developmental age is a critical determinant of seizure susceptibility. Finally, we will consider the paradoxical phenomenon of preconditioning, whereby these same insults may conversely provide neuroprotection. Together, an improved appreciation of the neuroinflammatory mechanisms underlying the long-term epilepsy risk following early life insults may provide insight into opportunities to develop novel immunological anti-epileptogenic therapeutic strategies.
Collapse
Affiliation(s)
- Bridgette D Semple
- Department of Neuroscience, Central Clinical School, Monash University, Melbourne, VIC, Australia.,Department of Medicine, Royal Melbourne Hospital, The University of Melbourne, Parkville, VIC, Australia.,Department of Neurology, Alfred Health, Melbourne, VIC, Australia
| | - Larissa K Dill
- Department of Neuroscience, Central Clinical School, Monash University, Melbourne, VIC, Australia.,Department of Neurology, Alfred Health, Melbourne, VIC, Australia
| | - Terence J O'Brien
- Department of Neuroscience, Central Clinical School, Monash University, Melbourne, VIC, Australia.,Department of Medicine, Royal Melbourne Hospital, The University of Melbourne, Parkville, VIC, Australia.,Department of Neurology, Alfred Health, Melbourne, VIC, Australia
| |
Collapse
|
24
|
Kang SK, Ammanuel S, Adler DA, Kadam SD. Rescue of PB-resistant neonatal seizures with single-dose of small-molecule TrkB antagonist show long-term benefits. Epilepsy Res 2020; 159:106249. [PMID: 31864171 PMCID: PMC6953748 DOI: 10.1016/j.eplepsyres.2019.106249] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2019] [Revised: 12/02/2019] [Accepted: 12/06/2019] [Indexed: 12/14/2022]
Abstract
A recently characterized CD-1 mouse model of phenobarbital (PB)-resistant neonatal ischemic-seizures (i.e.; unilateral carotid ligation) was shown to be associated with age-dependent (P7 vs. P10) acute seizure severity and PB-efficacy (i.e.; PB-resistant vs. PB-responsive). ANA12, a novel small-molecule TrkB antagonist, rescued the PB-resistance at P7 in a dose-dependent manner and prevented the post-ischemic downregulation of KCC2, the chief Cl- extruder in neurons. The long-term consequences of this novel rescue-intervention with ANA12 + PB in P7 and P10 ligated pups was investigated and compared to the standard first-line protocol of PB-alone loading dose. The mice underwent neurobehavioral testing, 24 h video-EEG-EMG monitoring, and immunohistochemistry in ipsi- and contralateral cortices as adults following the neonatal interventions. ANA12 + PB rescued the emergence of hyperactivity in post-ischemic P7, but not in P10 pups as adults. ANA12 + PB administration at neither P7 nor P10 significantly altered 24 h macro-sleep architecture in adults when compared to PB-alone. Behavioral state-dependent gamma (35-50 Hz) power homeostasis showed the most significant between-group differences that were age-dependent. ANA12 + PB treatment, but not PB-alone, rescued the loss of gamma power homeostasis present in P7 ligate-control but absent in P10 ligate group, highlighting the age-dependence. In contrast, PB-alone treatment, but not ANA12+PB, significantly reduced the elevated delta-AUC observed in P10 ligate-controls, when PB is efficacious by itself. These results indicate that the rescue of acute PB-resistant neonatal seizures using a novel intervention positively modulates the long-term outcomes at P7 when the seizures are refractory.
Collapse
Affiliation(s)
- S K Kang
- Department of Neuroscience, Hugo Moser Research Institute at Kennedy Krieger, Baltimore, MD 21205, USA
| | - S Ammanuel
- Department of Biomedical Engineering, Johns Hopkins University, Baltimore, MD 21205, USA
| | - D A Adler
- Department of Biomedical Engineering, Johns Hopkins University, Baltimore, MD 21205, USA
| | - S D Kadam
- Department of Neuroscience, Hugo Moser Research Institute at Kennedy Krieger, Baltimore, MD 21205, USA; Departments of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA.
| |
Collapse
|
25
|
Krishnamurthy K, Huang YZ, Harward SC, Sharma KK, Tamayo DL, McNamara JO. Regression of Epileptogenesis by Inhibiting Tropomyosin Kinase B Signaling following a Seizure. Ann Neurol 2019; 86:939-950. [PMID: 31525273 PMCID: PMC7531259 DOI: 10.1002/ana.25602] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2019] [Revised: 09/11/2019] [Accepted: 09/12/2019] [Indexed: 11/11/2022]
Abstract
OBJECTIVE Temporal lobe epilepsy (TLE) is a devastating disease in which seizures persist in 35% of patients despite optimal use of antiseizure drugs. Clinical and preclinical evidence implicates seizures themselves as one factor promoting epilepsy progression. What is the molecular consequence of a seizure that promotes progression? Evidence from preclinical studies led us to hypothesize that activation of tropomyosin kinase B (TrkB)-phospholipase-C-gamma-1 (PLCγ1) signaling induced by a seizure promotes epileptogenesis. METHODS To examine the effects of inhibiting TrkB signaling on epileptogenesis following an isolated seizure, we implemented a modified kindling model in which we induced a seizure through amygdala stimulation and then used either a chemical-genetic strategy or pharmacologic methods to disrupt signaling for 2 days following the seizure. The severity of a subsequent seizure was assessed by behavioral and electrographic measures. RESULTS Transient inhibition of TrkB-PLCγ1 signaling initiated after an isolated seizure limited progression of epileptogenesis, evidenced by the reduced severity and duration of subsequent seizures. Unexpectedly, transient inhibition of TrkB-PLCγ1 signaling initiated following a seizure also reverted a subset of animals to an earlier state of epileptogenesis. Remarkably, inhibition of TrkB-PLCγ1 signaling in the absence of a recent seizure did not reduce severity of subsequent seizures. INTERPRETATION These results suggest a novel strategy for limiting progression or potentially ameliorating severity of TLE whereby transient inhibition of TrkB-PLCγ1 signaling is initiated following a seizure. ANN NEUROL 2019;86:939-950.
Collapse
Affiliation(s)
| | | | | | | | | | - James O. McNamara
- Duke University Department of Neurobiology
- Duke University Department of Pharmacology & Cancer Biology
- Duke University Department of Neurology
| |
Collapse
|
26
|
Chauvière L. Update on temporal lobe‐dependent information processing, in health and disease. Eur J Neurosci 2019; 51:2159-2204. [DOI: 10.1111/ejn.14594] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2019] [Revised: 09/06/2019] [Accepted: 09/27/2019] [Indexed: 01/29/2023]
Affiliation(s)
- Laëtitia Chauvière
- INSERM U1266 Institut de Psychiatrie et de Neurosciences de Paris (IPNP) Paris France
| |
Collapse
|
27
|
Burnsed J, Skwarzyńska D, Wagley PK, Isbell L, Kapur J. Neuronal Circuit Activity during Neonatal Hypoxic-Ischemic Seizures in Mice. Ann Neurol 2019; 86:927-938. [PMID: 31509619 DOI: 10.1002/ana.25601] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2019] [Revised: 09/09/2019] [Accepted: 09/09/2019] [Indexed: 12/19/2022]
Abstract
OBJECTIVE To identify circuits active during neonatal hypoxic-ischemic (HI) seizures and seizure propagation using electroencephalography (EEG), behavior, and whole-brain neuronal activity mapping. METHODS Mice were exposed to HI on postnatal day 10 using unilateral carotid ligation and global hypoxia. EEG and video were recorded for the duration of the experiment. Using immediate early gene reporter mice, active cells expressing cfos were permanently tagged with reporter protein tdTomato during a 90-minute window. After 1 week, allowing maximal expression of the reporter protein, whole brains were processed, lipid cleared, and imaged with confocal microscopy. Whole-brain reconstruction and analysis of active neurons (colocalized tdTomato/NeuN) were performed. RESULTS HI resulted in seizure behaviors that were bilateral or unilateral tonic-clonic and nonconvulsive in this model. Mice exhibited characteristic EEG background patterns such as burst suppression and suppression. Neuronal activity mapping revealed bilateral motor cortex and unilateral, ischemic somatosensory cortex, lateral thalamus, and hippocampal circuit activation. Immunohistochemical analysis revealed regional differences in myelination, which coincide with these activity patterns. Astrocytes and blood vessel endothelial cells also expressed cfos during HI. INTERPRETATION Using a combination of EEG, seizure semiology analysis, and whole-brain neuronal activity mapping, we suggest that this rodent model of neonatal HI results in EEG patterns similar to those observed in human neonates. Activation patterns revealed in this study help explain complex seizure behaviors and EEG patterns observed in neonatal HI injury. This pattern may be, in part, secondary to regional differences in development in the neonatal brain. ANN NEUROL 2019;86:927-938.
Collapse
Affiliation(s)
- Jennifer Burnsed
- Department of Pediatrics, University of Virginia, Charlottesville, VA.,Department of Neurology, University of Virginia, Charlottesville, VA
| | - Daria Skwarzyńska
- Department of Pediatrics, University of Virginia, Charlottesville, VA
| | - Pravin K Wagley
- Department of Pediatrics, University of Virginia, Charlottesville, VA
| | - Laura Isbell
- College of Arts and Sciences, University of Virginia, Charlottesville, VA
| | - Jaideep Kapur
- Department of Neurology, University of Virginia, Charlottesville, VA.,University of Virginia Brain Institute, University of Virginia, Charlottesville, VA.,Department of Neuroscience, University of Virginia, Charlottesville, VA
| |
Collapse
|
28
|
Melin E, Nanobashvili A, Avdic U, Gøtzsche CR, Andersson M, Woldbye DPD, Kokaia M. Disease Modification by Combinatorial Single Vector Gene Therapy: A Preclinical Translational Study in Epilepsy. MOLECULAR THERAPY-METHODS & CLINICAL DEVELOPMENT 2019; 15:179-193. [PMID: 31660420 PMCID: PMC6807261 DOI: 10.1016/j.omtm.2019.09.004] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/17/2019] [Accepted: 09/09/2019] [Indexed: 12/31/2022]
Abstract
Gene therapy has been suggested as a plausible novel approach to achieve seizure control in patients with focal epilepsy that do not adequately respond to pharmacological treatment. We investigated the seizure-suppressant potential of combinatorial neuropeptide Y and Y2 receptor single vector gene therapy based on adeno-associated virus serotype 1 (AAV1) in rats. First, a dose-response study in the systemic kainate-induced acute seizure model was performed, whereby the 1012 genomic particles (gp)/mL titer of the vector was selected as an optimal concentration. Second, an efficacy study was performed in the intrahippocampal kainate chronic model of spontaneous recurrent seizures (SRSs), designed to reflect a likely clinical scenario, with magnetic resonance image (MRI)-guided focal unilateral administration of the vector in the hippocampus during the chronic stage of the disease. The efficacy study demonstrated a favorable outcome of the gene therapy, with a 31% responder rate (more than 50% reduction in SRS frequency) and 13% seizure-freedom rate, whereas no such effects were observed in the control animals. The inter-SRS and SRS cluster intervals were also significantly prolonged in the treated group compared to controls. In addition, the SRS duration was significantly reduced in the treated group but not in the controls. This study establishes the SRS-suppressant ability of the single vector combinatorial neuropeptide Y/Y2 receptor gene therapy in a clinically relevant chronic model of epilepsy.
Collapse
Affiliation(s)
- Esbjörn Melin
- Experimental Epilepsy Group, Epilepsy Centre, Lund University Hospital, Sölvegatan 17, 221 84 Lund, Sweden
| | - Avtandil Nanobashvili
- Experimental Epilepsy Group, Epilepsy Centre, Lund University Hospital, Sölvegatan 17, 221 84 Lund, Sweden.,CombiGene AB, Medicon Village, Scheelevägen 2, 223 81 Lund, Sweden
| | - Una Avdic
- Experimental Epilepsy Group, Epilepsy Centre, Lund University Hospital, Sölvegatan 17, 221 84 Lund, Sweden
| | - Casper R Gøtzsche
- CombiGene AB, Medicon Village, Scheelevägen 2, 223 81 Lund, Sweden.,Laboratory of Neural Plasticity, Center for Neuroscience, University of Copenhagen, Blegdamsvej 3B, 2200 Copenhagen, Denmark
| | - My Andersson
- Experimental Epilepsy Group, Epilepsy Centre, Lund University Hospital, Sölvegatan 17, 221 84 Lund, Sweden
| | - David P D Woldbye
- Laboratory of Neural Plasticity, Center for Neuroscience, University of Copenhagen, Blegdamsvej 3B, 2200 Copenhagen, Denmark
| | - Merab Kokaia
- Experimental Epilepsy Group, Epilepsy Centre, Lund University Hospital, Sölvegatan 17, 221 84 Lund, Sweden
| |
Collapse
|
29
|
Marchi A, Pennaroli D, Lagarde S, McGonigal A, Bonini F, Carron R, Lépine A, Villeneuve N, Trebuchon A, Pizzo F, Scavarda D, Bartolomei F. Epileptogenicity and surgical outcome in post stroke drug resistant epilepsy in children and adults. Epilepsy Res 2019; 155:106155. [DOI: 10.1016/j.eplepsyres.2019.106155] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2019] [Revised: 06/04/2019] [Accepted: 06/11/2019] [Indexed: 10/26/2022]
|
30
|
Kipnis PA, Sullivan BJ, Kadam SD. Sex-Dependent Signaling Pathways Underlying Seizure Susceptibility and the Role of Chloride Cotransporters. Cells 2019; 8:cells8050448. [PMID: 31085988 PMCID: PMC6562404 DOI: 10.3390/cells8050448] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2019] [Revised: 05/04/2019] [Accepted: 05/09/2019] [Indexed: 12/18/2022] Open
Abstract
Seizure incidence, severity, and antiseizure medication (ASM) efficacy varies between males and females. Differences in sex-dependent signaling pathways that determine network excitability may be responsible. The identification and validation of sex-dependent molecular mechanisms that influence seizure susceptibility is an emerging focus of neuroscience research. The electroneutral cation-chloride cotransporters (CCCs) of the SLC12A gene family utilize Na+-K+-ATPase generated electrochemical gradients to transport chloride into or out of neurons. CCCs regulate neuronal chloride gradients, cell volume, and have a strong influence over the electrical response to the inhibitory neurotransmitter GABA. Acquired or genetic causes of CCCs dysfunction have been linked to seizures during early postnatal development, epileptogenesis, and refractoriness to ASMs. A growing number of studies suggest that the developmental expression of CCCs, such as KCC2, is sex-dependent. This review will summarize the reports of sexual dimorphism in epileptology while focusing on the role of chloride cotransporters and their associated modulators that can influence seizure susceptibility.
Collapse
Affiliation(s)
- Pavel A Kipnis
- Neuroscience Laboratory, Hugo Moser Research Institute at Kennedy Krieger, Baltimore, MD 21205, USA.
| | - Brennan J Sullivan
- Neuroscience Laboratory, Hugo Moser Research Institute at Kennedy Krieger, Baltimore, MD 21205, USA.
| | - Shilpa D Kadam
- Neuroscience Laboratory, Hugo Moser Research Institute at Kennedy Krieger, Baltimore, MD 21205, USA.
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA.
| |
Collapse
|
31
|
Taraschenko O, Fox HS, Pittock SJ, Zekeridou A, Gafurova M, Eldridge E, Liu J, Dravid SM, Dingledine R. A mouse model of seizures in anti-N-methyl-d-aspartate receptor encephalitis. Epilepsia 2019; 60:452-463. [PMID: 30740690 PMCID: PMC6684284 DOI: 10.1111/epi.14662] [Citation(s) in RCA: 40] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2018] [Revised: 01/10/2019] [Accepted: 01/11/2019] [Indexed: 12/25/2022]
Abstract
OBJECTIVE Seizures develop in 80% of patients with anti-N-methyl-d-aspartate receptor (NMDAR) encephalitis, and these represent a major cause of morbidity and mortality. Anti-NMDAR antibodies have been linked to memory loss in encephalitis; however, their role in seizures has not been established. We determined whether anti-NMDAR antibodies from autoimmune encephalitis patients are pathogenic for seizures. METHODS We performed continuous intracerebroventricular infusion of cerebrospinal fluid (CSF) or purified immunoglobulin (IgG) from the CSF of patients with anti-NMDAR encephalitis or polyclonal rabbit anti-NMDAR IgG, in male C57BL/6 mice. Seizure status during a 2-week treatment was assessed with video-electroencephalography. We assessed memory, anxiety-related behavior, and motor function at the end of treatment and assessed the extent of neuronal damage and gliosis in the CA1 region of hippocampus. We also performed whole-cell patch recordings from the CA1 pyramidal neurons in hippocampal slices of mice with seizures. RESULTS Prolonged exposure to rabbit anti-NMDAR IgG, patient CSF, or human IgG purified from the CSF of patients with encephalitis induced seizures in 33 of 36 mice. The median number of seizures recorded in 2 weeks was 13, 39, and 35 per mouse in these groups, respectively. We observed only 18 brief nonconvulsive seizures in 11 of 29 control mice (median seizure count of 0) infused with vehicle (n = 4), normal CSF obtained from patients with noninflammatory central nervous system (CNS) conditions (n = 12), polyclonal rabbit IgG (n = 7), albumin (n = 3), and normal human IgG (n = 3). We did not observe memory deficits, anxiety-related behavior, or motor impairment measured at 2 weeks in animals treated with CSF from affected patients or rabbit IgG. Furthermore, there was no evidence of hippocampal cell loss or astrocyte proliferation in the same mice. SIGNIFICANCE Our findings indicate that autoantibodies can induce seizures in anti-NMDAR encephalitis and offer a model for testing novel therapies for refractory autoimmune seizures.
Collapse
Affiliation(s)
- Olga Taraschenko
- Department of Neurological Sciences, Division of Epilepsy, University of Nebraska Medical Center, Omaha, NE
| | - Howard S. Fox
- Department of Pharmacology and Experimental Neuroscience, University of Nebraska Medical Center, Omaha, NE
| | - Sean J. Pittock
- Departments of Neurology, Laboratory Medicine and Pathology, Mayo Clinic College of Medicine, Rochester, MN
| | - Anastasia Zekeridou
- Departments of Neurology, Laboratory Medicine and Pathology, Mayo Clinic College of Medicine, Rochester, MN
| | - Maftuna Gafurova
- University of Nebraska Omaha, College of Arts and Sciences, Omaha, NE
| | - Ember Eldridge
- Department of Neurological Sciences, Division of Epilepsy, University of Nebraska Medical Center, Omaha, NE
| | - Jinxu Liu
- Department of Pharmacology, Creighton University, Omaha, NE
| | | | - Raymond Dingledine
- Department of Pharmacology, Emory University School of Medicine, Atlanta, GA
| |
Collapse
|
32
|
McNally MA, Chavez-Valdez R, Felling RJ, Flock DL, Northington FJ, Stafstrom CE. Seizure Susceptibility Correlates with Brain Injury in Male Mice Treated with Hypothermia after Neonatal Hypoxia-Ischemia. Dev Neurosci 2019; 40:1-10. [PMID: 30820019 PMCID: PMC9109068 DOI: 10.1159/000496468] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2018] [Accepted: 12/20/2018] [Indexed: 11/19/2022] Open
Abstract
Hypoxic-ischemic encephalopathy is a common neonatal brain injury associated with significant morbidity and mortality despite the administration of therapeutic hypothermia (TH). Neonatal seizures and subsequent chronic epilepsy are frequent in this patient population and current treatments are partially effective. We used a neonatal murine hypoxia-ischemia (HI) model to test whether the severity of hippocampal and cortical injury predicts seizure susceptibility 8 days after HI and whether TH mitigates this susceptibility. HI at postnatal day 10 (P10) caused hippocampal injury not mitigated by TH in male or female pups. TH did not confer protection against flurothyl seizure susceptibility at P18 in this model. Hippocampal (R2 = 0.33, p = 0.001) and cortical (R2 = 0.33, p = 0.003) injury directly correlated with seizure susceptibility in male but not female pups. Thus, there are sex-specific consequences of neonatal HI on flurothyl seizure susceptibility in a murine neonatal HI model. Further studies are necessary to elucidate the underlying mechanisms of sex dimorphism in seizure susceptibility after neonatal HI.
Collapse
Affiliation(s)
- Melanie A McNally
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA,
- Department of Neurology, Boston Children's Hospital, Harvard Medical School, Boston, Massachusetts, USA,
| | - Raul Chavez-Valdez
- Department of Pediatrics (Neonatology), Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Ryan J Felling
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Debra L Flock
- Department of Pediatrics (Neonatology), Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Frances J Northington
- Department of Pediatrics (Neonatology), Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Carl E Stafstrom
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| |
Collapse
|
33
|
Abstract
The brain is the most complex organ of the body, and many pathological processes underlying various brain disorders are poorly understood. Limited accessibility hinders observation of such processes in the in vivo brain, and experimental freedom is often insufficient to enable informative manipulations. In vitro preparations (brain slices or cultures of dissociated neurons) offer much better accessibility and reduced complexity and have yielded valuable new insights into various brain disorders. Both types of preparations have their advantages and limitations with regard to lifespan, preservation of in vivo brain structure, composition of cell types, and the link to behavioral outcome is often unclear in in vitro models. While these limitations hamper general usage of in vitro preparations to study, e.g., brain development, in vitro preparations are very useful to study neuronal and synaptic functioning under pathologic conditions. This chapter addresses several brain disorders, focusing on neuronal and synaptic functioning, as well as network aspects. Recent progress in the fields of brain circulation disorders, excitability disorders, and memory disorders will be discussed, as well as limitations of current in vitro models.
Collapse
|
34
|
Apoptosis and proliferation in the inferior colliculus during postnatal development and epileptogenesis in audiogenic Krushinsky-Molodkina rats. Epilepsy Behav 2018; 88:227-234. [PMID: 30316149 DOI: 10.1016/j.yebeh.2018.09.023] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/16/2018] [Revised: 08/24/2018] [Accepted: 09/16/2018] [Indexed: 12/11/2022]
Abstract
It is known that audiogenic seizure (AGS) expression is based on the activation of the midbrain structures such as the inferior colliculus (IC). It was demonstrated that excessive sound exposure during the postnatal developments of the IC in rats led to AGS susceptibility in adulthood, which correlated with underdevelopment of the IC. In adult rodents, noise overstimulation induced apoptosis in the IC. The purpose of this study was to investigate postnatal development of the IC in rats genetically prone to AGS and to check if audiogenic kindling would activate apoptosis and/or proliferation in the IC. In our study, we used inbred audiogenic Krushinsky-Molodkina (KM) rats, which are characterized by age-dependent seizure expression. Analysis of postnatal development showed the increased number of proliferating cells in the IC central nucleus of KM rats on the 14th postnatal day (P14) in comparison with those of Wistar rats. Moreover, we also observed increased apoptosis level and decreased general cell population in the IC central nucleus. These data pointed towards a delayed development of the IC in KM rats. Analysis of the IC central nucleus of KM rat after audiogenic kindling for a week, with one AGS per day, demonstrated dramatically increased cell death, which was accompanied with a reduction of general cell population. Audiogenic kindling also decreased proliferation in the IC central nucleus. However, a week after the last AGS, the number of proliferating cells was increased, which supposes a certain compensatory mechanism to prevent cell loss.
Collapse
|
35
|
Song H, Mylvaganam SM, Wang J, Mylvaganam SMK, Wu C, Carlen PL, Eubanks JH, Feng J, Zhang L. Contributions of the Hippocampal CA3 Circuitry to Acute Seizures and Hyperexcitability Responses in Mouse Models of Brain Ischemia. Front Cell Neurosci 2018; 12:278. [PMID: 30210302 PMCID: PMC6123792 DOI: 10.3389/fncel.2018.00278] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2018] [Accepted: 08/08/2018] [Indexed: 12/29/2022] Open
Abstract
The hippocampal circuitry is widely recognized as susceptible to ischemic injury and seizure generation. However, hippocampal contribution to acute non-convulsive seizures (NCS) in models involving middle cerebral artery occlusion (MCAO) remains to be determined. To address this, we occluded the middle cerebral artery in adult C57 black mice and monitored electroencephalographic (EEG) discharges from hippocampal and neocortical areas. Electrographic discharges in the absence of convulsive motor behaviors were observed within 90 min following occlusion of the middle cerebral artery. Hippocampal discharges were more robust than corresponding cortical discharges in all seizure events examined, and hippocampal discharges alone or with minimal cortical involvement were also observed in some seizure events. Seizure development was associated with ipsilateral hippocampal injuries as determined by subsequent histological examinations. We also introduced hypoxia-hypoglycemia episodes in mouse brain slices and examined regional hyperexcitable responses ex vivo. Extracellular recordings showed that the hippocampal CA3 region had a greater propensity for exhibiting single/multiunit activities or epileptiform field potentials following hypoxic-hypoglycemic (HH) episodes compared to the CA1, dentate gyrus, entorhinal cortical (EC) or neocortical regions. Whole-cell recordings revealed that CA3 pyramidal neurons exhibited excessive excitatory postsynaptic currents, attenuated inhibitory postsynaptic currents and intermittent or repetitive spikes in response to HH challenge. Together, these observations suggest that hippocampal discharges, possibly as a result of CA3 circuitry hyperexcitability, are a major component of acute NCS in a mouse model of MCAO.
Collapse
Affiliation(s)
- Hongmei Song
- Krembil Research Institute, University Health Network, Toronto, ON, Canada
- Department of Neurosurgery, The First Hospital of Jilin University, Changchun, China
| | | | - Justin Wang
- Krembil Research Institute, University Health Network, Toronto, ON, Canada
| | | | - Chiping Wu
- Krembil Research Institute, University Health Network, Toronto, ON, Canada
| | - Peter L. Carlen
- Krembil Research Institute, University Health Network, Toronto, ON, Canada
- Department of Medicine (Neurology), University of Toronto, Toronto, ON, Canada
- Department of Physiology, University of Toronto, Toronto, ON, Canada
| | - James H. Eubanks
- Krembil Research Institute, University Health Network, Toronto, ON, Canada
- Department of Surgery (Neurosurgery), University of Toronto, Toronto, ON, Canada
| | - Jiachun Feng
- Department of Neurology, The First Hospital of Jilin University, Changchun, China
| | - Liang Zhang
- Krembil Research Institute, University Health Network, Toronto, ON, Canada
- Department of Medicine (Neurology), University of Toronto, Toronto, ON, Canada
| |
Collapse
|
36
|
Abstract
Epilepsy is a chronic neurological disorder affecting 65 million people worldwide. The etiologies of seizures can often be identified as genetic, metabolic, structural, immunologic or infectious, but in many cases the cause is unknown with the current diagnostic tools. Epileptogenesis is a process during which genetic or other acquired etiologies/insults lead to functional, structural, or network reorganization changes in the brain that may lead to the development of, or progression of, spontaneous seizures. During development, there are continuous changes in the structure, function, and network operation that also show sex specificity, which may alter the mechanisms underlying the generation of seizures (ictogenesis) and epileptogenesis. Understanding the mechanisms of early life epileptogenesis will enable the development of rationally designed age- and sex-appropriate therapies that would improve the overall quality of patients' lives. Here, we discuss some of these processes that may affect seizure generation and epileptogenesis in the neonatal brain.
Collapse
Affiliation(s)
- Anna-Maria Katsarou
- Saul R. Korey Department of Neurology, Albert Einstein College of Medicine, Bronx, New York, USA,Laboratory of Developmental Epilepsy, Albert Einstein College of Medicine, Bronx, New York, USA
| | - Aristea S. Galanopoulou
- Saul R. Korey Department of Neurology, Albert Einstein College of Medicine, Bronx, New York, USA,Laboratory of Developmental Epilepsy, Albert Einstein College of Medicine, Bronx, New York, USA,Montefiore/Einstein Epilepsy Center, Albert Einstein College of Medicine, Bronx, New York, USA,Dominick P. Purpura Department of Neuroscience, Albert Einstein College of Medicine, Bronx, New York, USA
| | - Solomon L. Moshé
- Saul R. Korey Department of Neurology, Albert Einstein College of Medicine, Bronx, New York, USA,Laboratory of Developmental Epilepsy, Albert Einstein College of Medicine, Bronx, New York, USA,Montefiore/Einstein Epilepsy Center, Albert Einstein College of Medicine, Bronx, New York, USA,Dominick P. Purpura Department of Neuroscience, Albert Einstein College of Medicine, Bronx, New York, USA,Department of Pediatrics, Albert Einstein College of Medicine, Bronx, New York, USA,Corresponding author. Address: Department of Neurology, Albert Einstein College of Medicine, 1410 Pelham Parkway South, Rose F. Kennedy Center, Rm 316, Bronx, NY 10461, USA. Tel.: +1 718-430-2447; fax: +1 718-430-8899. (S.L. Moshé)
| |
Collapse
|
37
|
Kasahara Y, Ikegaya Y, Koyama R. Neonatal Seizure Models to Study Epileptogenesis. Front Pharmacol 2018; 9:385. [PMID: 29720941 PMCID: PMC5915831 DOI: 10.3389/fphar.2018.00385] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2018] [Accepted: 04/04/2018] [Indexed: 12/11/2022] Open
Abstract
Current therapeutic strategies for epilepsy include anti-epileptic drugs and surgical treatments that are mainly focused on the suppression of existing seizures rather than the occurrence of the first spontaneous seizure. These symptomatic treatments help a certain proportion of patients, but these strategies are not intended to clarify the cellular and molecular mechanisms underlying the primary process of epilepsy development, i.e., epileptogenesis. Epileptogenic changes include reorganization of neural and glial circuits, resulting in the formation of an epileptogenic focus. To achieve the goal of developing “anti-epileptogenic” drugs, we need to clarify the step-by-step mechanisms underlying epileptogenesis for patients whose seizures are not controllable with existing “anti-epileptic” drugs. Epileptogenesis has been studied using animal models of neonatal seizures because such models are useful for studying the latent period before the occurrence of spontaneous seizures and the lowering of the seizure threshold. Further, neonatal seizure models are generally easy to handle and can be applied for in vitro studies because cells in the neonatal brain are suitable for culture. Here, we review two animal models of neonatal seizures for studying epileptogenesis and discuss their features, specifically focusing on hypoxia-ischemia (HI)-induced seizures and febrile seizures (FSs). Studying these models will contribute to identifying the potential therapeutic targets and biomarkers of epileptogenesis.
Collapse
Affiliation(s)
- Yuka Kasahara
- Laboratory of Chemical Pharmacology, Graduate School of Pharmaceutical Sciences, The University of Tokyo, Tokyo, Japan
| | - Yuji Ikegaya
- Laboratory of Chemical Pharmacology, Graduate School of Pharmaceutical Sciences, The University of Tokyo, Tokyo, Japan
| | - Ryuta Koyama
- Laboratory of Chemical Pharmacology, Graduate School of Pharmaceutical Sciences, The University of Tokyo, Tokyo, Japan
| |
Collapse
|
38
|
Lim JA, Moon J, Kim TJ, Jun JS, Park B, Byun JI, Sunwoo JS, Park KI, Lee ST, Jung KH, Jung KY, Kim M, Jeon D, Chu K, Lee SK. Clustering of spontaneous recurrent seizures separated by long seizure-free periods: An extended video-EEG monitoring study of a pilocarpine mouse model. PLoS One 2018; 13:e0194552. [PMID: 29558523 PMCID: PMC5860752 DOI: 10.1371/journal.pone.0194552] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2017] [Accepted: 03/06/2018] [Indexed: 02/07/2023] Open
Abstract
Seizure clustering is a common and significant phenomenon in patients with epilepsy. The clustering of spontaneous recurrent seizures (SRSs) in animal models of epilepsy, including mouse pilocarpine models, has been reported. However, most studies have analyzed seizures for a short duration after the induction of status epilepticus (SE). In this study, we investigated the detailed characteristics of seizure clustering in the chronic stage of a mouse pilocarpine-induced epilepsy model for an extended duration by continuous 24/7 video-EEG monitoring. A seizure cluster was defined as the occurrence of one or more seizures per day for at least three consecutive days and at least five seizures during the cluster period. We analyzed the cluster duration, seizure-free period, cluster interval, and numbers of seizures within and outside the seizure clusters. The video-EEG monitoring began 84.5±33.7 days after the induction of SE and continued for 53.7±20.4 days. Every mouse displayed seizure clusters, and 97.0% of the seizures occurred within a cluster period. The seizure clusters were followed by long seizure-free periods of 16.3±6.8 days, showing a cyclic pattern. The SRSs also occurred in a grouped pattern within a day. We demonstrate that almost all seizures occur in clusters with a cyclic pattern in the chronic stage of a mouse pilocarpine-induced epilepsy model. The seizure-free periods between clusters were long. These findings should be considered when performing in vivo studies using this animal model. Furthermore, this model might be appropriate for studying the unrevealed mechanism of ictogenesis.
Collapse
Affiliation(s)
- Jung-Ah Lim
- Department of Neurology, Comprehensive Epilepsy Center, Laboratory for Neurotherapeutics, Biomedical Research Institute, Seoul National University Hospital, Seoul, South Korea.,Department of Neurology, Gangnam Sacred Heart Hospital, Hallym University College of Medicine, Seoul, South Korea
| | - Jangsup Moon
- Department of Neurology, Comprehensive Epilepsy Center, Laboratory for Neurotherapeutics, Biomedical Research Institute, Seoul National University Hospital, Seoul, South Korea
| | - Tae-Joon Kim
- Department of Neurology, Comprehensive Epilepsy Center, Laboratory for Neurotherapeutics, Biomedical Research Institute, Seoul National University Hospital, Seoul, South Korea
| | - Jin-Sun Jun
- Department of Neurology, Comprehensive Epilepsy Center, Laboratory for Neurotherapeutics, Biomedical Research Institute, Seoul National University Hospital, Seoul, South Korea
| | - Byeongsu Park
- Department of Neurology, Comprehensive Epilepsy Center, Laboratory for Neurotherapeutics, Biomedical Research Institute, Seoul National University Hospital, Seoul, South Korea.,Department of Neurology, Ulsan University Hospital, Ulsan University College of Medicine, Ulsan, Korea
| | - Jung-Ick Byun
- Department of Neurology, Comprehensive Epilepsy Center, Laboratory for Neurotherapeutics, Biomedical Research Institute, Seoul National University Hospital, Seoul, South Korea.,Department of Neurology, Kyung Hee University Hospital at Gangdong, Seoul, South Korea
| | - Jun-Sang Sunwoo
- Department of Neurology, Comprehensive Epilepsy Center, Laboratory for Neurotherapeutics, Biomedical Research Institute, Seoul National University Hospital, Seoul, South Korea.,Department of Neurology, Soonchunhyang University School of Medicine, Seoul, South Korea
| | - Kyung-Il Park
- Department of Neurology, Comprehensive Epilepsy Center, Laboratory for Neurotherapeutics, Biomedical Research Institute, Seoul National University Hospital, Seoul, South Korea.,Department of Neurology, Seoul National University Hospital Healthcare System Gangnam Center, Seoul, South Korea
| | - Soon-Tae Lee
- Department of Neurology, Comprehensive Epilepsy Center, Laboratory for Neurotherapeutics, Biomedical Research Institute, Seoul National University Hospital, Seoul, South Korea
| | - Keun-Hwa Jung
- Department of Neurology, Comprehensive Epilepsy Center, Laboratory for Neurotherapeutics, Biomedical Research Institute, Seoul National University Hospital, Seoul, South Korea
| | - Ki-Young Jung
- Department of Neurology, Comprehensive Epilepsy Center, Laboratory for Neurotherapeutics, Biomedical Research Institute, Seoul National University Hospital, Seoul, South Korea
| | - Manho Kim
- Department of Neurology, Comprehensive Epilepsy Center, Laboratory for Neurotherapeutics, Biomedical Research Institute, Seoul National University Hospital, Seoul, South Korea
| | - Daejong Jeon
- Advanced Neural Technologies, Co., Seoul, South Korea
| | - Kon Chu
- Department of Neurology, Comprehensive Epilepsy Center, Laboratory for Neurotherapeutics, Biomedical Research Institute, Seoul National University Hospital, Seoul, South Korea
| | - Sang Kun Lee
- Department of Neurology, Comprehensive Epilepsy Center, Laboratory for Neurotherapeutics, Biomedical Research Institute, Seoul National University Hospital, Seoul, South Korea
| |
Collapse
|
39
|
Abstract
Epilepsy, characterized by spontaneous recurrent seizures (SRS), is a serious and common neurological disorder afflicting an estimated 1% of the population worldwide. Animal experiments, especially those utilizing small laboratory rodents, remain essential to understanding the fundamental mechanisms underlying epilepsy and to prevent, diagnose, and treat this disease. While much attention has been focused on epileptogenesis in animal models of epilepsy, there is little discussion on SRS, the hallmark of epilepsy. This is in part due to the technical difficulties of rigorous SRS detection. In this review, we comprehensively summarize both genetic and acquired models of SRS and discuss the methodology used to monitor and detect SRS in mice and rats.
Collapse
Affiliation(s)
- Bin Gu
- Department of Cell Biology and Physiology, University of North Carolina, Chapel Hill, NC 27599, USA.
| | - Katherine A Dalton
- Psychology & Neuroscience Program, University of North Carolina, Chapel Hill, NC 27599, USA
| |
Collapse
|
40
|
Smith ZZ, Benison AM, Bercum FM, Dudek FE, Barth DS. Progression of convulsive and nonconvulsive seizures during epileptogenesis after pilocarpine-induced status epilepticus. J Neurophysiol 2018; 119:1818-1835. [PMID: 29442558 DOI: 10.1152/jn.00721.2017] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Although convulsive seizures occurring during pilocarpine-induced epileptogenesis have received considerable attention, nonconvulsive seizures have not been closely examined, even though they may reflect the earliest signs of epileptogenesis and potentially guide research on antiepileptogenic interventions. The definition of nonconvulsive seizures based on brain electrical activity alone has been controversial. Here we define and quantify electrographic properties of convulsive and nonconvulsive seizures in the context of the acquired epileptogenesis that occurs after pilocarpine-induced status epilepticus (SE). Lithium-pilocarpine was used to induce the prolonged repetitive seizures characteristic of SE; when SE was terminated with paraldehyde, seizures returned during the 2-day period after pilocarpine treatment. A distinct latent period ranging from several days to >2 wk was then measured with continuous, long-term video-EEG. Nonconvulsive seizures dominated the onset of epileptogenesis and consistently preceded the first convulsive seizures but were still present later. Convulsive and nonconvulsive seizures had similar durations. Postictal depression (background suppression of the EEG) lasted for >100 s after both convulsive and nonconvulsive seizures. Principal component analysis was used to quantify the spectral evolution of electrical activity that characterized both types of spontaneous recurrent seizures. These studies demonstrate that spontaneous nonconvulsive seizures have electrographic properties similar to convulsive seizures and confirm that nonconvulsive seizures link the latent period and the onset of convulsive seizures during post-SE epileptogenesis in an animal model. Nonconvulsive seizures may also reflect the earliest signs of epileptogenesis in human acquired epilepsy, when intervention could be most effective. NEW & NOTEWORTHY Nonconvulsive seizures usually represent the first bona fide seizure following a latent period, dominate the early stages of epileptogenesis, and change in severity in a manner consistent with the progressive nature of epileptogenesis. This analysis demonstrates that nonconvulsive and convulsive seizures have different behavioral outcomes but similar electrographic signatures. Alternatively, epileptiform spike-wave discharges fail to recapitulate several key seizure features and represent a category of electrical activity separate from nonconvulsive seizures in this model.
Collapse
Affiliation(s)
- Zachariah Z Smith
- Department of Psychology and Neuroscience, University of Colorado , Boulder, Colorado
| | - Alexander M Benison
- Department of Psychology and Neuroscience, University of Colorado , Boulder, Colorado
| | - Florencia M Bercum
- Department of Psychology and Neuroscience, University of Colorado , Boulder, Colorado
| | - F Edward Dudek
- Department of Neurosurgery, University of Utah School of Medicine , Salt Lake City, Utah
| | - Daniel S Barth
- Department of Psychology and Neuroscience, University of Colorado , Boulder, Colorado
| |
Collapse
|
41
|
Abstract
Hypoxic-ischemic encephalopathy (HIE) refers to acute brain injury that results from perinatal asphyxia. HIE is a major cause of neonatal seizures, and outcomes can range from apparent recovery to severe cognitive impairment, cerebral palsy, and epilepsy. Acute partial seizures frequently aid in indicating the severity and localization of brain injury. However, evidence also suggests that the occurrence of seizures further increases the likelihood of epilepsy in later life regardless of the severity of the initial injury. Here, we describe a neonatal rat model of seizure-provoking mild hypoxia without overt brain injury that has been used to investigate potential epileptogenic effects of hypoxia-associated seizures alone on neonatal brain development. Clinically, HIE is defined by brain injury, and thus, this model is not intended to mimic clinical HIE. Rather, its utility is in providing a model to understand the dynamic and long-term regulation of brain function and how this can be perturbed by early life seizures that are provoked by a commonly encountered pathophysiological trigger. Additionally, the model allows the study of brain pathophysiology without the potential confound of variable neuroanatomical changes that are reactive to widespread cell death.
Collapse
Affiliation(s)
- Jason A Justice
- Department of Surgery, Texas A&M University Health Science Center, College of Medicine, Temple, TX, USA
| | - Russell M Sanchez
- Division of Neurology, Department of Pediatrics, Emory University School of Medicine, Atlanta, GA, USA.
| |
Collapse
|
42
|
Zhao Y, Li X, Zhang K, Tong T, Cui R. The Progress of Epilepsy after Stroke. Curr Neuropharmacol 2018; 16:71-78. [PMID: 28606039 PMCID: PMC5771387 DOI: 10.2174/1570159x15666170613083253] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2017] [Revised: 07/14/2017] [Accepted: 05/02/2017] [Indexed: 01/29/2023] Open
Abstract
BACKGROUND Epilepsy is the second most common disease caused by multiple factors and characterized by an excessive discharge of certain neurons in the nervous system. Cerebrovascular disease, including stroke, is viewed as the most common cause of epilepsy in the elderly population, accounting for 30%-50% of the newly diagnosed cases of epilepsy cases in this age group. METHODS Data were collected from Web of Science, Medline, Pubmed, Scopus, through searching of these keywords: "Stroke" and "epilepsy". RESULTS Depending on the underlying cerebrovascular disease, 3%-30% of patients after stroke may develop post-stroke epilepsy (PSE), which has a negative effect on stroke prognosis and the quality of life. CONCLUSION In this review, we summarized new aspects emerging from research into PSE, including definition, epidemiology, risk factors, mechanism, accessory examination and treatment strategies for post-stroke epilepsy, which will enrich our knowledge of this disorder.
Collapse
Affiliation(s)
- Yinghao Zhao
- Department of Thoracic Surgery, the Second Hospital of Jilin University; Jilin Provincial Key Laboratory on Molecular and Chemical Genetic, Changchun, Jilin, P.R. China
| | - Xiangyan Li
- Center of Chinese Medicine and Bio-Engineering Research and Development, Changchun University of Chinese Medicine, The Affiliated Hospital to Changchun University of Chinese Medicine, Changchun, Jilin, P.R. China
| | - Kun Zhang
- Jilin Provincial Key Laboratory on Molecular and Chemical Genetic, the Second Hospital of Jilin University, 218 Ziqiang Street, Changchun130041, P.R. China
| | - Ti Tong
- Department of Thoracic Surgery, the Second Hospital of Jilin University; Jilin Provincial Key Laboratory on Molecular and Chemical Genetic, Changchun, Jilin, P.R. China
| | - Ranji Cui
- Jilin Provincial Key Laboratory on Molecular and Chemical Genetic, the Second Hospital of Jilin University, 218 Ziqiang Street, Changchun130041, P.R. China
| |
Collapse
|
43
|
Sharma S, Puttachary S, Thippeswamy T. Glial source of nitric oxide in epileptogenesis: A target for disease modification in epilepsy. J Neurosci Res 2017; 97:1363-1377. [PMID: 29230865 DOI: 10.1002/jnr.24205] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2017] [Revised: 10/31/2017] [Accepted: 11/20/2017] [Indexed: 12/11/2022]
Abstract
Epileptogenesis is the process of developing an epileptic condition and/or its progression once it is established. The molecules that initiate, promote, and propagate remarkable changes in the brain during epileptogenesis are emerging as targets for prevention/treatment of epilepsy. Epileptogenesis is a continuous process that follows immediately after status epilepticus (SE) in animal models of acquired temporal lobe epilepsy (TLE). Both SE and epileptogenesis are potential therapeutic targets for the discovery of anticonvulsants and antiepileptogenic or disease-modifying agents. For translational studies, SE targets are appropriate for screening anticonvulsive drugs prior to their advancement as therapeutic agents, while targets of epileptogenesis are relevant for identification and development of therapeutic agents that can either prevent or modify the disease or its onset. The acute seizure models do not reveal antiepileptogenic properties of anticonvulsive drugs. This review highlights the important components of epileptogenesis and the long-term impact of intervening one of these components, nitric oxide (NO), in rat and mouse kainate models of TLE. NO is a putative pleotropic gaseous neurotransmitter and an important contributor of nitro-oxidative stress that coexists with neuroinflammation and epileptogenesis. The long-term impact of inhibiting the glial source of NO during early epileptogenesis in the rat model of TLE is reviewed. The importance of sex as a biological variable in disease modification strategies in epilepsy is also briefly discussed.
Collapse
Affiliation(s)
- Shaunik Sharma
- Epilepsy Research Laboratory, Department of Biomedical Sciences, College of Veterinary Medicine, Iowa State University, Ames, Iowa
| | | | - Thimmasettappa Thippeswamy
- Epilepsy Research Laboratory, Department of Biomedical Sciences, College of Veterinary Medicine, Iowa State University, Ames, Iowa
| |
Collapse
|
44
|
Abstract
Radiotelemetry is increasingly being recognized not just as the gold standard but a necessity for validation of gestational hypertension seen in preeclampsia. Here we describe radiotelemetry probe implantation into the descending aorta of Sprague-Dawley rats to allow real-time blood pressure recording over the entire gestational period. This is a valuable tool to be able to track changes in maternal blood pressure throughout gestation and the efficacy of novel therapeutic agents in controlling hypertension.
Collapse
|
45
|
Watanabe S, Saito M, Soma M, Miyaoka H, Takahashi M. A novel device for continuous long-term electroencephalogram recording and drug administration in mice with a nice, powerful and sophisticated wired system. J Neurosci Methods 2017; 286:22-30. [PMID: 28433578 DOI: 10.1016/j.jneumeth.2017.04.005] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2017] [Revised: 04/10/2017] [Accepted: 04/11/2017] [Indexed: 01/08/2023]
Abstract
BACKGROUND To elucidate mechanisms of epileptogenesis and epileptic maturation, and to develop new AEDs, it is indispensable to administer various drugs and to examine their effects on EEG over a long period of observation. NEW METHOD We constructed a device for the continuous measurement of electroencephalography (EEG) and the infusion of anti-epileptic drugs over a prolonged period of time in moving mice. The system includes a slip ring and a swivel to prevent twisting of the recording cable and infusion tube, respectively. We introduced three arms, ball bearing, and stabilizing frame to rotate the slip ring and swivel with only a small applied force, and to facilitate the start of rotation of the slip ring and the swivel. RESULTS Continuous EEG recording was successfully performed for up to 63 days in 99 mice, for a total of 1872 days of EEG data. Continuous drug infusion with continuous EEG recording was successfully performed for up to 22 days. COMPARISON WITH EXISTING METHOD(S) Our system is superior to current system in continuous drug delivery during long-term EEG recording in moving mouse. CONCLUSIONS Our device will be quite useful for long-term EEG recording and drug application in moving mice.
Collapse
Affiliation(s)
- Shigeru Watanabe
- Department of Psychiatry, Kitasato University School of Medicine, 2-1-1 Asamizodai, Minami-ku, Sagamihara-shi, Kanagawa 252-0380, Japan.
| | - Masanori Saito
- Department of Psychiatry, Kitasato University School of Medicine, 2-1-1 Asamizodai, Minami-ku, Sagamihara-shi, Kanagawa 252-0380, Japan.
| | - Masaki Soma
- Department of Research & Development Center, Kitasato University School of Medicine, 1-15-1 Kitasato, Minami-ku, Sagamihara-shi, Kanagawa 252-0374, Japan.
| | - Hitoshi Miyaoka
- Department of Psychiatry, Kitasato University School of Medicine, 2-1-1 Asamizodai, Minami-ku, Sagamihara-shi, Kanagawa 252-0380, Japan.
| | - Masami Takahashi
- Department of Biochemistry, Kitasato University School of Medicine, 1-15-1 Kitasato, Minami-ku, Sagamihara-shi, Kanagawa 252-0374, Japan.
| |
Collapse
|
46
|
Spampanato J, Dudek FE. Targeted Interneuron Ablation in the Mouse Hippocampus Can Cause Spontaneous Recurrent Seizures. eNeuro 2017; 4:ENEURO.0130-17.2017. [PMID: 28785726 PMCID: PMC5520752 DOI: 10.1523/eneuro.0130-17.2017] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2017] [Revised: 06/30/2017] [Accepted: 07/11/2017] [Indexed: 12/21/2022] Open
Abstract
The death of GABAergic interneurons has long been hypothesized to contribute to acquired epilepsy. These experiments tested the hypothesis that focal interneuron lesions cause acute seizures [i.e., status epilepticus (SE)] and/or chronic epilepsy [i.e., persistent spontaneous recurrent seizures (SRSs)]. To selectively ablate interneurons, Gad2-ires-Cre mice were injected unilaterally in the CA1 area of the dorsal hippocampus with an adeno-associated virus containing the diphtheria toxin receptor (DTR). Simultaneously, an electrode, connected to a miniature telemetry device, was positioned at the injection site for chronic recordings of local field potentials (LFPs). Two weeks after virus transfection, intraperitoneal injection of DT consistently caused focal, specific, and extensive ablation of interneurons. Long-term, continuous monitoring revealed that all mice with DT-induced interneuron lesions had SRSs. Seizures lasted tens of seconds and interseizure intervals were several hours (or days); therefore, these interneuron lesions did not induce SE. The SRSs occurred 3-5 d after DT treatment, which is the estimated time required for DT-induced cell death; therefore, induction of SRSs occurred without the latent period typical of acquired epilepsy. In five of six DT-treated mice, SRSs stopped within days, suggesting that the DT-induced interneuron lesions did not usually cause epilepsy. In one mouse, however, SRSs occurred for ≥34 d after interneuron ablation, similar to epilepsy after experimental SE. Sham control mice had no detectable seizures, confirming that the SRSs were due to ablation of interneurons. These data show that selective interneuron ablation consistently caused SRSs but not SE; and, at least under the conditions used here, interneuron lesions rarely led to persistent SRSs (i.e., epilepsy).
Collapse
Affiliation(s)
- Jay Spampanato
- Department of Neurosurgery, University of Utah School of Medicine, Salt Lake City, UT 84108
| | - F Edward Dudek
- Department of Neurosurgery, University of Utah School of Medicine, Salt Lake City, UT 84108
| |
Collapse
|
47
|
Billinghurst LL, Beslow LA, Abend NS, Uohara M, Jastrzab L, Licht DJ, Ichord RN. Incidence and predictors of epilepsy after pediatric arterial ischemic stroke. Neurology 2017; 88:630-637. [PMID: 28087825 DOI: 10.1212/wnl.0000000000003603] [Citation(s) in RCA: 45] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2016] [Accepted: 11/23/2016] [Indexed: 11/15/2022] Open
Abstract
OBJECTIVE To determine the cumulative incidence and clinical predictors of remote symptomatic seizures and epilepsy after pediatric arterial ischemic stroke (AIS). METHODS We performed a retrospective analysis of 218 participants with neonatal AIS (NAIS), presumed perinatal AIS (PPAIS), and childhood AIS (CAIS) from a single-center prospective consecutive cohort enrolled from 2006 to 2014. Medical records were reviewed for timing, semiology, and treatment of acute symptomatic seizures, remote symptomatic seizures (RSS), and epilepsy. Cumulative incidence of RSS and epilepsy were assessed using survival analysis. RESULTS Acute symptomatic seizures occurred in 94% of NAIS (n = 70/74) and 17% of CAIS (n = 18/105). Younger children were more likely to present with seizures at stroke ictus, and acute symptomatic seizures were predictive of later RSS and epilepsy in CAIS. Median follow-up for the entire cohort was 34 months, interquartile range 44.9 months (16.3-61.2). Estimated cumulative incidence of RSS at 2 years was 19% in NAIS, 24% in PPAIS, and 7% in CAIS. Estimated cumulative incidence of epilepsy at 2 years was 11% in NAIS, 19% in PPAIS, and 7% in CAIS. The median time to these outcomes was <2 years in all stroke subtypes. Among participants developing epilepsy (n = 34), seizures were often well-controlled at last follow-up with median Engel class of ≤2 (<1 seizure/month). CONCLUSIONS RSS and epilepsy are important neurologic sequelae of pediatric AIS. Children with perinatal stroke and CAIS with acute symptomatic seizures are at increased risk of these outcomes. These cohorts need further study to identify biomarkers and potential therapeutic targets for epileptogenesis.
Collapse
Affiliation(s)
- Lori L Billinghurst
- From the Division of Neurology (L.L.B., L.A.B., N.S.A., L.J., D.J.L., R.N.I.), The Children's Hospital of Philadelphia, Perelman School of Medicine at the University of Pennsylvania; and Temple University School of Medicine (M.U.), Philadelphia, PA.
| | - Lauren A Beslow
- From the Division of Neurology (L.L.B., L.A.B., N.S.A., L.J., D.J.L., R.N.I.), The Children's Hospital of Philadelphia, Perelman School of Medicine at the University of Pennsylvania; and Temple University School of Medicine (M.U.), Philadelphia, PA
| | - Nicholas S Abend
- From the Division of Neurology (L.L.B., L.A.B., N.S.A., L.J., D.J.L., R.N.I.), The Children's Hospital of Philadelphia, Perelman School of Medicine at the University of Pennsylvania; and Temple University School of Medicine (M.U.), Philadelphia, PA
| | - Michael Uohara
- From the Division of Neurology (L.L.B., L.A.B., N.S.A., L.J., D.J.L., R.N.I.), The Children's Hospital of Philadelphia, Perelman School of Medicine at the University of Pennsylvania; and Temple University School of Medicine (M.U.), Philadelphia, PA
| | - Laura Jastrzab
- From the Division of Neurology (L.L.B., L.A.B., N.S.A., L.J., D.J.L., R.N.I.), The Children's Hospital of Philadelphia, Perelman School of Medicine at the University of Pennsylvania; and Temple University School of Medicine (M.U.), Philadelphia, PA
| | - Daniel J Licht
- From the Division of Neurology (L.L.B., L.A.B., N.S.A., L.J., D.J.L., R.N.I.), The Children's Hospital of Philadelphia, Perelman School of Medicine at the University of Pennsylvania; and Temple University School of Medicine (M.U.), Philadelphia, PA
| | - Rebecca N Ichord
- From the Division of Neurology (L.L.B., L.A.B., N.S.A., L.J., D.J.L., R.N.I.), The Children's Hospital of Philadelphia, Perelman School of Medicine at the University of Pennsylvania; and Temple University School of Medicine (M.U.), Philadelphia, PA
| |
Collapse
|
48
|
Different response to antiepileptic drugs according to the type of epileptic events in a neonatal ischemia-reperfusion model. Neurobiol Dis 2016; 99:145-153. [PMID: 28042096 DOI: 10.1016/j.nbd.2016.12.023] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2016] [Revised: 12/16/2016] [Accepted: 12/28/2016] [Indexed: 12/23/2022] Open
Abstract
Perinatal arterial stroke is the most frequent form of cerebral infarction in children. Neonatal seizures are the most frequent symptom during the neonatal period. The current management of perinatal stroke is based on supportive care. It is currently unknown if treatment of the seizures modifies the outcome, and no clinical studies have focused on seizures during neonatal stroke. We studied the effect of phenobarbital and levetiracetam on an ischemic-reperfusion stroke model in P7 rats using prolonged electroencephalographic recordings and a histologic analysis of the brain (24h after injury). The following two types of epileptic events were observed: 1) bursts of high amplitude spikes during ischemia and the first hours of reperfusion and 2) organized seizures consisting in discharges of a 1-2Hz spike-and-wave. Both phenobarbital and levetiracetam decreased the total duration of the bursts of high amplitude spikes. Phenobarbital also delayed the start of seizures without changing the total duration of epileptic discharges. The markedly limited efficacy of the antiepileptic drugs studied in our neonatal stroke rat model is frequently observed in human neonatal seizures. Both drugs did not modify the stroke volume, which suggests that the modification of the quantity of bursts of high amplitude spikes does not influence the infarct size. In the absence of a reduction in seizure burden by the antiepileptic drugs, we increased the seizure burden and stroke volume by combining our neonatal stroke model with a lithium-pilocarpine-induced status epilepticus. Our data suggest that the reduction of burst of spikes did not influence the stroke volume. The presence of organized seizure with a pattern close to what is observed in human newborns seems related to the presence of the infarct. Further research is required to determine the relationship between seizure burden and infarct volume.
Collapse
|
49
|
Berdichevsky Y, Saponjian Y, Park K, Roach B, Pouliot W, Lu K, Swiercz W, Dudek FE, Staley KJ. Staged anticonvulsant screening for chronic epilepsy. Ann Clin Transl Neurol 2016; 3:908-923. [PMID: 28097203 PMCID: PMC5224819 DOI: 10.1002/acn3.364] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2016] [Revised: 09/15/2016] [Accepted: 09/15/2016] [Indexed: 01/06/2023] Open
Abstract
OBJECTIVE Current anticonvulsant screening programs are based on seizures evoked in normal animals. One-third of epileptic patients do not respond to the anticonvulsants discovered with these models. We evaluated a tiered program based on chronic epilepsy and spontaneous seizures, with compounds advancing from high-throughput in vitro models to low-throughput in vivo models. METHODS Epileptogenesis in organotypic hippocampal slice cultures was quantified by lactate production and lactate dehydrogenase release into culture media as rapid assays for seizure-like activity and cell death, respectively. Compounds that reduced these biochemical measures were retested with in vitro electrophysiological confirmation (i.e., second stage). The third stage involved crossover testing in the kainate model of chronic epilepsy, with blinded analysis of spontaneous seizures after continuous electrographic recordings. RESULTS We screened 407 compound-concentration combinations. The cyclooxygenase inhibitor, celecoxib, had no effect on seizures evoked in normal brain tissue but demonstrated robust antiseizure activity in all tested models of chronic epilepsy. INTERPRETATION The use of organotypic hippocampal cultures, where epileptogenesis occurs on a compressed time scale, and where seizure-like activity and seizure-induced cell death can be easily quantified with biomarker assays, allowed us to circumvent the throughput limitations of in vivo chronic epilepsy models. Ability to rapidly screen compounds in a chronic model of epilepsy allowed us to find an anticonvulsant that would be missed by screening in acute models.
Collapse
Affiliation(s)
- Yevgeny Berdichevsky
- Department of Electrical and Computer Engineering and Bioengineering ProgramLehigh UniversityBethlehemPennsylvania18015
| | - Yero Saponjian
- Department of NeurologyMassachusetts General HospitalBostonMassachusetts02129
- Harvard Medical SchoolBostonMassachusetts02129
| | - Kyung‐Il Park
- Department of NeurologySeoul National University Hospital Healthcare System Gangnam CenterSeoulSouth Korea06236
| | - Bonnie Roach
- Department of NeurosurgeryUniversity of Utah School of MedicineSalt Lake CityUtah84108
| | - Wendy Pouliot
- Department of NeurosurgeryUniversity of Utah School of MedicineSalt Lake CityUtah84108
| | - Kimberly Lu
- Boston University School of MedicineBostonMassachusetts02119
| | - Waldemar Swiercz
- Department of NeurologyMassachusetts General HospitalBostonMassachusetts02129
- Harvard Medical SchoolBostonMassachusetts02129
| | - F. Edward Dudek
- Department of NeurosurgeryUniversity of Utah School of MedicineSalt Lake CityUtah84108
| | - Kevin J. Staley
- Department of NeurologyMassachusetts General HospitalBostonMassachusetts02129
- Harvard Medical SchoolBostonMassachusetts02129
| |
Collapse
|
50
|
Chhabria K, Chakravarthy VS. Low-Dimensional Models of "Neuro-Glio-Vascular Unit" for Describing Neural Dynamics under Normal and Energy-Starved Conditions. Front Neurol 2016; 7:24. [PMID: 27014179 PMCID: PMC4783418 DOI: 10.3389/fneur.2016.00024] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2015] [Accepted: 02/18/2016] [Indexed: 01/08/2023] Open
Abstract
The motivation of developing simple minimal models for neuro-glio-vascular (NGV) system arises from a recent modeling study elucidating the bidirectional information flow within the NGV system having 89 dynamic equations (1). While this was one of the first attempts at formulating a comprehensive model for neuro-glio-vascular system, it poses severe restrictions in scaling up to network levels. On the contrary, low-dimensional models are convenient devices in simulating large networks that also provide an intuitive understanding of the complex interactions occurring within the NGV system. The key idea underlying the proposed models is to describe the glio-vascular system as a lumped system, which takes neural firing rate as input and returns an “energy” variable (analogous to ATP) as output. To this end, we present two models: biophysical neuro-energy (Model 1 with five variables), comprising KATP channel activity governed by neuronal ATP dynamics, and the dynamic threshold (Model 2 with three variables), depicting the dependence of neural firing threshold on the ATP dynamics. Both the models show different firing regimes, such as continuous spiking, phasic, and tonic bursting depending on the ATP production coefficient, ɛp, and external current. We then demonstrate that in a network comprising such energy-dependent neuron units, ɛp could modulate the local field potential (LFP) frequency and amplitude. Interestingly, low-frequency LFP dominates under low ɛp conditions, which is thought to be reminiscent of seizure-like activity observed in epilepsy. The proposed “neuron-energy” unit may be implemented in building models of NGV networks to simulate data obtained from multimodal neuroimaging systems, such as functional near infrared spectroscopy coupled to electroencephalogram and functional magnetic resonance imaging coupled to electroencephalogram. Such models could also provide a theoretical basis for devising optimal neurorehabilitation strategies, such as non-invasive brain stimulation for stroke patients.
Collapse
Affiliation(s)
- Karishma Chhabria
- Computational Biophysics and Neurosciences Laboratory, Department of Biotechnology, Bhupat and Jyoti Mehta School of Biosciences, Indian Institute of Technology Madras , Chennai , India
| | - V Srinivasa Chakravarthy
- Computational Biophysics and Neurosciences Laboratory, Department of Biotechnology, Bhupat and Jyoti Mehta School of Biosciences, Indian Institute of Technology Madras , Chennai , India
| |
Collapse
|