1
|
Chen C, Xiang A, Lin X, Guo J, Liu J, Hu S, Rui T, Ye Q. Mitophagy: insights into its signaling molecules, biological functions, and therapeutic potential in breast cancer. Cell Death Discov 2024; 10:457. [PMID: 39472438 PMCID: PMC11522701 DOI: 10.1038/s41420-024-02226-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2024] [Revised: 10/18/2024] [Accepted: 10/23/2024] [Indexed: 11/02/2024] Open
Abstract
Mitophagy, a form of selective autophagy that removes damaged or dysfunctional mitochondria, plays a crucial role in maintaining mitochondrial and cellular homeostasis. Recent findings suggest that defective mitophagy is closely associated with various diseases, including breast cancer. Moreover, a better understanding of the multifaceted roles of mitophagy in breast cancer progression is crucial for the treatment of this disease. Here, we will summarize the molecular mechanisms of mitophagy process. In addition, we highlight the expression patterns and roles of mitophagy-related signaling molecules in breast cancer progression and the potential implications of mitophagy for the development of breast cancer, aiming to provide better therapeutic strategies for breast cancer treatment.
Collapse
Affiliation(s)
- Cong Chen
- Department of Breast Surgery, Affiliated Hangzhou First People's Hospital, School of Medicine, Westlake University, Hangzhou, China
| | - Aizhai Xiang
- Department of Breast Surgery, Affiliated Hangzhou First People's Hospital, School of Medicine, Westlake University, Hangzhou, China
| | - Xia Lin
- Department of Breast Surgery, Affiliated Hangzhou First People's Hospital, School of Medicine, Westlake University, Hangzhou, China
| | - Jufeng Guo
- Department of Breast Surgery, Affiliated Hangzhou First People's Hospital, School of Medicine, Westlake University, Hangzhou, China
| | - Jian Liu
- Department of Breast Surgery, Affiliated Hangzhou First People's Hospital, School of Medicine, Westlake University, Hangzhou, China
| | - Shufang Hu
- Department of Breast Surgery, Affiliated Hangzhou First People's Hospital, School of Medicine, Westlake University, Hangzhou, China
| | - Tao Rui
- Department of Breast Surgery, Affiliated Hangzhou First People's Hospital, School of Medicine, Westlake University, Hangzhou, China
| | - Qianwei Ye
- Department of Breast Surgery, Affiliated Hangzhou First People's Hospital, School of Medicine, Westlake University, Hangzhou, China.
| |
Collapse
|
2
|
Liu X, Sun Y, Gao Y, Zhang X, Li X, Zheng W, Liu M, Zhao T, Yuan XA, Yue M, Liu Z. Anticancer behavior of cyclometallated iridium(III)-tributyltin(IV) carboxylate schiff base complexes with aggregation-induced emission. J Inorg Biochem 2024; 262:112767. [PMID: 39486100 DOI: 10.1016/j.jinorgbio.2024.112767] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2024] [Revised: 10/19/2024] [Accepted: 10/25/2024] [Indexed: 11/04/2024]
Abstract
Cyclometallated iridium(III) and organotin(IV) carboxylate complexes have shown potential application value in the field of anticancer. However, the widespread aggregation-caused quenching (ACQ) effect of these complexes is not conducive to the exploration of their targeting and anticancer mechanism, and the idea of aggregation-induced emission (AIE) effect can effectively solve this problem. Then, AIE-activated cyclometallated iridium(III)-tributyltin(IV) carboxylate Schiff base complexes were designed and prepared in this study. Complexes exhibited AIE effect in highly concentrated solution or aggregative state, which facilitated the investigation of subcellular tissue targeting (mitochondria) and cell morphology. Compared with cyclometallated iridium(III) complex and tributyltin(IV) carboxylate monomers, these complexes showed the better in-vitro anti-proliferative activity toward A549 cells, confirming the favorable synergistic anticancer activity. Even for A549/DDP (cisplatin-resistance) cells, these complexes also exhibited the better activity. In addition, complexes showed a mitochondrial apoptotic pathway. Therefore, cyclometallated iridium(III)-tributyltin(IV) carboxylate Schiff base complexes can be used as the potential substitutes for platinum-based drugs and gain further application.
Collapse
Affiliation(s)
- Xicheng Liu
- Key Laboratory of Life-Organic Analysis of Shandong Province, Institute of Anticancer Agents Development and Theranostic Application, School of Chemistry and Chemical Engineering, Qufu Normal University, Qufu 273165, China.
| | - Yiwei Sun
- Key Laboratory of Life-Organic Analysis of Shandong Province, Institute of Anticancer Agents Development and Theranostic Application, School of Chemistry and Chemical Engineering, Qufu Normal University, Qufu 273165, China
| | - Yuan Gao
- Key Laboratory of Life-Organic Analysis of Shandong Province, Institute of Anticancer Agents Development and Theranostic Application, School of Chemistry and Chemical Engineering, Qufu Normal University, Qufu 273165, China
| | - Xinru Zhang
- Key Laboratory of Life-Organic Analysis of Shandong Province, Institute of Anticancer Agents Development and Theranostic Application, School of Chemistry and Chemical Engineering, Qufu Normal University, Qufu 273165, China
| | - Xiaoshuang Li
- Key Laboratory of Life-Organic Analysis of Shandong Province, Institute of Anticancer Agents Development and Theranostic Application, School of Chemistry and Chemical Engineering, Qufu Normal University, Qufu 273165, China
| | - Wenya Zheng
- Key Laboratory of Life-Organic Analysis of Shandong Province, Institute of Anticancer Agents Development and Theranostic Application, School of Chemistry and Chemical Engineering, Qufu Normal University, Qufu 273165, China
| | - Mengxian Liu
- Key Laboratory of Life-Organic Analysis of Shandong Province, Institute of Anticancer Agents Development and Theranostic Application, School of Chemistry and Chemical Engineering, Qufu Normal University, Qufu 273165, China
| | - Ting Zhao
- Key Laboratory of Life-Organic Analysis of Shandong Province, Institute of Anticancer Agents Development and Theranostic Application, School of Chemistry and Chemical Engineering, Qufu Normal University, Qufu 273165, China
| | - Xiang-Ai Yuan
- Key Laboratory of Life-Organic Analysis of Shandong Province, Institute of Anticancer Agents Development and Theranostic Application, School of Chemistry and Chemical Engineering, Qufu Normal University, Qufu 273165, China
| | - Mingbo Yue
- Key Laboratory of Life-Organic Analysis of Shandong Province, Institute of Anticancer Agents Development and Theranostic Application, School of Chemistry and Chemical Engineering, Qufu Normal University, Qufu 273165, China
| | - Zhe Liu
- Key Laboratory of Life-Organic Analysis of Shandong Province, Institute of Anticancer Agents Development and Theranostic Application, School of Chemistry and Chemical Engineering, Qufu Normal University, Qufu 273165, China.
| |
Collapse
|
3
|
Guo L, Li P, Jing Z, Gong Y, Lai K, Fu H, Dong H, Yang Z, Liu Z. Iminoamido chelated iridium(III) and ruthenium(II) anticancer complexes with mitochondria-targeting ability and potential to overcome cisplatin resistance. J Inorg Biochem 2024; 258:112631. [PMID: 38843774 DOI: 10.1016/j.jinorgbio.2024.112631] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2024] [Revised: 05/27/2024] [Accepted: 05/31/2024] [Indexed: 07/01/2024]
Abstract
A diverse set of neutral half-sandwich iminoamido iridium and ruthenium organometallic complexes is synthesized through the utilization of Schiff base pro-ligands with N˄N donors. Notably, these metal complexes with varying leaving groups (Cl- or OAc-) are formed by employing different quantities of the deprotonating agent NaOAc, and exhibit promising cytotoxicity against various cancer cell lines such as A549 and cisplatin-resistant A549/DDP lung cancer cells, as well as HeLa cells, with IC50 values spanning from 9.26 to 15.98 μM. Cytotoxicity and anticancer selectivity (SI: 1.9-2.4) of these metal complexes remain unaffected by variations in the metal center, leaving group, and ligand substitution. Further investigations reveal that these metal complexes specifically target mitochondria, leading to the depolarization of the mitochondrial membrane and instigating the production of intracellular reactive oxygen species. Furthermore, the metal complexes are found to induce late apoptosis and disrupt the cell cycle, leading to G2/M cell cycle arrest specifically in A549 cancer cells. In light of these findings, it is evident that the primary mechanism contributing to the anticancer effectiveness of these metal complexes is the redox pathway.
Collapse
Affiliation(s)
- Lihua Guo
- Key Laboratory of Life-Organic Analysis of Shandong Province, Key Laboratory of Green Natural Products and Pharmaceutical Intermediates in Colleges and Universities of Shandong Province, Institute of Anticancer Agents Development and Theranostic Application, School of Chemistry and Chemical Engineering, Qufu Normal University, Qufu 273165, PR China.
| | - Pengwei Li
- Key Laboratory of Life-Organic Analysis of Shandong Province, Key Laboratory of Green Natural Products and Pharmaceutical Intermediates in Colleges and Universities of Shandong Province, Institute of Anticancer Agents Development and Theranostic Application, School of Chemistry and Chemical Engineering, Qufu Normal University, Qufu 273165, PR China
| | - Zhihong Jing
- Key Laboratory of Life-Organic Analysis of Shandong Province, Key Laboratory of Green Natural Products and Pharmaceutical Intermediates in Colleges and Universities of Shandong Province, Institute of Anticancer Agents Development and Theranostic Application, School of Chemistry and Chemical Engineering, Qufu Normal University, Qufu 273165, PR China
| | - Yuwen Gong
- Key Laboratory of Life-Organic Analysis of Shandong Province, Key Laboratory of Green Natural Products and Pharmaceutical Intermediates in Colleges and Universities of Shandong Province, Institute of Anticancer Agents Development and Theranostic Application, School of Chemistry and Chemical Engineering, Qufu Normal University, Qufu 273165, PR China
| | - Kangning Lai
- Key Laboratory of Life-Organic Analysis of Shandong Province, Key Laboratory of Green Natural Products and Pharmaceutical Intermediates in Colleges and Universities of Shandong Province, Institute of Anticancer Agents Development and Theranostic Application, School of Chemistry and Chemical Engineering, Qufu Normal University, Qufu 273165, PR China
| | - Hanxiu Fu
- Key Laboratory of Life-Organic Analysis of Shandong Province, Key Laboratory of Green Natural Products and Pharmaceutical Intermediates in Colleges and Universities of Shandong Province, Institute of Anticancer Agents Development and Theranostic Application, School of Chemistry and Chemical Engineering, Qufu Normal University, Qufu 273165, PR China
| | - Heqian Dong
- Key Laboratory of Life-Organic Analysis of Shandong Province, Key Laboratory of Green Natural Products and Pharmaceutical Intermediates in Colleges and Universities of Shandong Province, Institute of Anticancer Agents Development and Theranostic Application, School of Chemistry and Chemical Engineering, Qufu Normal University, Qufu 273165, PR China
| | - Zhihao Yang
- Key Laboratory of Life-Organic Analysis of Shandong Province, Key Laboratory of Green Natural Products and Pharmaceutical Intermediates in Colleges and Universities of Shandong Province, Institute of Anticancer Agents Development and Theranostic Application, School of Chemistry and Chemical Engineering, Qufu Normal University, Qufu 273165, PR China
| | - Zhe Liu
- Key Laboratory of Life-Organic Analysis of Shandong Province, Key Laboratory of Green Natural Products and Pharmaceutical Intermediates in Colleges and Universities of Shandong Province, Institute of Anticancer Agents Development and Theranostic Application, School of Chemistry and Chemical Engineering, Qufu Normal University, Qufu 273165, PR China.
| |
Collapse
|
4
|
Kim J, Park SH, Kim DY, Ryu HW, Jun HS. Molecular Mechanisms of Anticarcinogenic Potential of Hydrocotyle umbellata and Its Major Components. Nutr Cancer 2024; 76:1018-1030. [PMID: 38994559 DOI: 10.1080/01635581.2024.2377344] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2024] [Revised: 06/27/2024] [Accepted: 07/02/2024] [Indexed: 07/13/2024]
Abstract
Despite the development of several anticancer treatments, there remains a need for new drugs that can overcome resistance and reduce side effects. While the medicinal herb Hydrocotyle umbellata (H. umbellata) has been used to relieve pain and inflammation, its antitumor properties have not yet been explored. In this study, we investigated the anticarcinogenic potential of H. umbellata extract (HUE) and its major components, as well as the underlying molecular mechanisms. Our results showed that HUE inhibited the growth of various tumor cell lines, including B16F10, without affecting non-cancer cells. Furthermore, HUE was effective in treating and preventing tumor growth in mice. Our mechanistic studies revealed that HUE inhibited cellular respiration, thereby reducing tumor cell proliferation. When combined with 2-deoxy-D-glucose, HUE demonstrated an enhanced anticancer effect by increasing the rate apoptosis. Analysis of the ethyl acetate and n-butanol fractions of HUE identified 1,3,4-trihydroxy-2-butanyl-α-d-glucopyranoside and caffeoylquinic acid derivatives as the major components responsible for the observed anticancer effects. In conclusion, our findings suggest that HUE and its two major components have the potential to be developed as effective therapeutic agents for a wide range of tumors by targeting cancer cell metabolism.
Collapse
Affiliation(s)
- Jaeyong Kim
- Department of Biotechnology and Bioinformatics, College of Science and Technology, Korea University, Sejong, Republic of Korea
| | - Sang Hyuk Park
- Department of Biotechnology and Bioinformatics, College of Science and Technology, Korea University, Sejong, Republic of Korea
| | - Doo-Young Kim
- Natural Medicine Research Center, Korea Research Institute of Bioscience and Biotechnology, Cheong-ju si, Chungcheongbuk-do, Republic of Korea
| | - Hyung Won Ryu
- Natural Medicine Research Center, Korea Research Institute of Bioscience and Biotechnology, Cheong-ju si, Chungcheongbuk-do, Republic of Korea
| | - Hyun Sik Jun
- Department of Biotechnology and Bioinformatics, College of Science and Technology, Korea University, Sejong, Republic of Korea
| |
Collapse
|
5
|
Ergul M, Kilic-Kurt Z, Aka Y, Kutuk O, Sahin-Inan ZD. The mechanism of anticancer effects of some pyrrolopyrimidine derivatives on HT-29 human colon cancer cells. Toxicol In Vitro 2024; 95:105757. [PMID: 38061602 DOI: 10.1016/j.tiv.2023.105757] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2023] [Accepted: 11/30/2023] [Indexed: 12/17/2023]
Abstract
In the present work, the mechanism of anticancer activity of some pyrrolopyrimidine derivatives was evaluated. Compounds 5 and 8 exhibiting significant antiproliferative activity against HT-29 cells with IC50 values of 4.17 μM and 2.96, arrested the cells at the G2/M phase and significantly induced apoptosis. The apoptotic potential of the compounds has been verified via ELISA assay, which resulted in increased BAX, PUMA, BIM, and cleaved caspase 3 expression and decreased BCL-XL and MCL-1 protein levels in HT-29 cells. Moreover, the immunofluorescence technique showing that compounds 5 and 8-treatment reduced Ki67 immunolocalization and increased the caspase 3 and p53 immunolocalization confirmed the apoptotic activity. While treatment of HT-29 cells to compounds 5 and 8 inhibited Akt and ERK1/2, there are no alterations in JNK and p38 signaling pathways. According to molecular docking results, compounds 5 and 8 occupied the active site of Akt kinase and showed important hydrogen bonding interactions with key amino acids. Also, siRNA-mediated depletion of BIM, PUMA, and BAX/BAK expression decreased apoptotic response in HT-29 cells upon exposure to compound 5 and compound 8. Compounds 5 and 8 trigger the activation of mitochondrial apoptosis in HT-29 cells. Additionally, we found that proapoptotic BH3-only proteins BIM and PUMA are required for the full engagement of mitochondrial apoptosis signaling. However, p53 was dispensable for compound 5- or compound 8-induced apoptosis in HT-29 cells.
Collapse
Affiliation(s)
- Mustafa Ergul
- Department of Biochemistry, Faculty of Pharmacy, Sivas Cumhuriyet University, Sivas, Turkey
| | - Zuhal Kilic-Kurt
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Ankara University, Ankara, Turkey.
| | - Yeliz Aka
- Baskent University School of Medicine, Department of Immunology, Adana Dr. Turgut Noyan Medical and Research Center, Adana, Turkey
| | - Ozgur Kutuk
- Baskent University School of Medicine, Department of Immunology, Adana Dr. Turgut Noyan Medical and Research Center, Adana, Turkey
| | - Zeynep Deniz Sahin-Inan
- Department of Histology and Embryology, Faculty of Medicine, Sivas Cumhuriyet University, Sivas, Turkey
| |
Collapse
|
6
|
Xu J, Yu Y, Chen K, Wang Y, Zhu Y, Zou X, Xu X, Jiang Y. Astragalus polysaccharides ameliorate osteoarthritis via inhibiting apoptosis by regulating ROS-mediated ASK1/p38 MAPK signaling pathway targeting on TXN. Int J Biol Macromol 2024; 258:129004. [PMID: 38151083 DOI: 10.1016/j.ijbiomac.2023.129004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2023] [Revised: 12/14/2023] [Accepted: 12/21/2023] [Indexed: 12/29/2023]
Abstract
This research aims to explore the potential of astragalus polysaccharides (APS) in treating osteoarthritis. The primary component of APS extracted in this study was glucose, and noticeably it had a relatively high content of glucuronic acids. In vitro, APS reduced ROS levels, protected chondrocytes from apoptosis, and promoted collagen II expression by regulating ASK1 (apoptosis-signal-regulating kinase1)/p38 cell apoptosis pathway. Further co-immunoprecipitation and immunofluorescence localization experiments demonstrated that the thioredoxin (TXN) antioxidant system was responsible for its bioactivity. Moreover, TXN silencing remarkably blocked the protective effects of APS, indicating that APS inhibited chondrocyte apoptosis by targeting TXN. In vivo, APS effectively mitigated cartilage loss and chondrocyte apoptosis and decreased expressions of p-ASK1 and p-p38. Collectively, this research first demonstrated that APS could ameliorate osteoarthritis by ASK1/p38 signaling pathway through regulating thioredoxin. In conclusion, APS holds promise as a nutraceutical supplement for osteoarthritis in future drug development.
Collapse
Affiliation(s)
- Jintao Xu
- Department of Sports Medicine and Joint Surgery, Nanjing First Hospital, Nanjing Medical University, Nanjing, China; School of Chinese Medicine, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong, China
| | - Yaohui Yu
- Department of Sports Medicine and Joint Surgery, Nanjing First Hospital, Nanjing Medical University, Nanjing, China
| | - Kai Chen
- Department of Sports Medicine and Joint Surgery, Nanjing First Hospital, Nanjing Medical University, Nanjing, China
| | - Yishu Wang
- Department of Sports Medicine and Joint Surgery, Nanjing First Hospital, Nanjing Medical University, Nanjing, China
| | - Yi Zhu
- Department of Sports Medicine and Joint Surgery, Nanjing First Hospital, Nanjing Medical University, Nanjing, China
| | - Xiangjie Zou
- Jiangsu Province Hospital, The First Affiliated Hospital with Nanjing Medical University, Nanjing, China
| | - Xianghong Xu
- Department of Endocrinology, Nanjing First Hospital, Nanjing, China
| | - Yiqiu Jiang
- Department of Sports Medicine and Joint Surgery, Nanjing First Hospital, Nanjing Medical University, Nanjing, China.
| |
Collapse
|
7
|
Li P, Guo L, Li J, Yang Z, Fu H, Lai K, Dong H, Fan C, Liu Z. Mitochondria-targeted neutral and cationic iridium(III) anticancer complexes chelating simple hybrid sp 2-N/sp 3-N donor ligands. Dalton Trans 2024; 53:1977-1988. [PMID: 38205595 DOI: 10.1039/d3dt03700b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2024]
Abstract
Most platinum group-based cyclometalated neutral and cationic anticancer complexes with the general formula [(C^N)2Ir(XY)]0/+ (neutral complex: XY = bidentate anionic ligand; cationic complex: XY = bidentate neutral ligand) are notable owing to their intrinsic luminescence properties, good cell permeability, interaction with some biomolecular targets and unique mechanisms of action (MoAs). We herein synthesized a series of neutral and cationic amine-imine cyclometalated iridium(III) complexes using Schiff base ligands with sp2-N/sp3-N N^NH2 chelating donors. The cyclometalated iridium(III) complexes were identified by various techniques. They were stable in aqueous media, displayed moderate fluorescence and exhibited affinity toward bovine serum albumin (BSA). The complexes demonstrated promising cytotoxicity against lung cancer A549 cells, cisplatin-resistant lung cancer A549/DDP cells, cervical carcinoma HeLa cells and human liver carcinoma HepG2 cells, with IC50 values ranging from 9.98 to 19.63 μM. Unfortunately, these complexes had a low selectivity (selectivity index: 1.62-1.98) towards A549 cells and BEAS-2B normal cells. The charge pattern of the metal center (neutral or cationic) and ligand substituents showed little influence on the cytotoxicity and selectivity of these complexes. The study revealed that these complexes could target mitochondria, cause depolarization of the mitochondrial membrane, and trigger the production of intracellular ROS. Additionally, the complexes were observed to induce late apoptosis and perturb the cell cycle in the G2/M or S phase in A549 cells. Based on these results, it appears that the anticancer efficacy of these complexes was predominantly attributed to the redox mechanism.
Collapse
Affiliation(s)
- Pengwei Li
- Key Laboratory of Life-Organic Analysis of Shandong Province, Key Laboratory of Green Natural Products and Pharmaceutical Intermediates in Colleges and Universities of Shandong Province, Institute of Anticancer Agents Development and Theranostic Application, School of Chemistry and Chemical Engineering, Qufu Normal University, Qufu 273165, P. R. China.
| | - Lihua Guo
- Key Laboratory of Life-Organic Analysis of Shandong Province, Key Laboratory of Green Natural Products and Pharmaceutical Intermediates in Colleges and Universities of Shandong Province, Institute of Anticancer Agents Development and Theranostic Application, School of Chemistry and Chemical Engineering, Qufu Normal University, Qufu 273165, P. R. China.
| | - Jiaxing Li
- Key Laboratory of Life-Organic Analysis of Shandong Province, Key Laboratory of Green Natural Products and Pharmaceutical Intermediates in Colleges and Universities of Shandong Province, Institute of Anticancer Agents Development and Theranostic Application, School of Chemistry and Chemical Engineering, Qufu Normal University, Qufu 273165, P. R. China.
| | - Zhihao Yang
- Key Laboratory of Life-Organic Analysis of Shandong Province, Key Laboratory of Green Natural Products and Pharmaceutical Intermediates in Colleges and Universities of Shandong Province, Institute of Anticancer Agents Development and Theranostic Application, School of Chemistry and Chemical Engineering, Qufu Normal University, Qufu 273165, P. R. China.
| | - Hanxiu Fu
- Key Laboratory of Life-Organic Analysis of Shandong Province, Key Laboratory of Green Natural Products and Pharmaceutical Intermediates in Colleges and Universities of Shandong Province, Institute of Anticancer Agents Development and Theranostic Application, School of Chemistry and Chemical Engineering, Qufu Normal University, Qufu 273165, P. R. China.
| | - Kangning Lai
- Key Laboratory of Life-Organic Analysis of Shandong Province, Key Laboratory of Green Natural Products and Pharmaceutical Intermediates in Colleges and Universities of Shandong Province, Institute of Anticancer Agents Development and Theranostic Application, School of Chemistry and Chemical Engineering, Qufu Normal University, Qufu 273165, P. R. China.
| | - Heqian Dong
- Key Laboratory of Life-Organic Analysis of Shandong Province, Key Laboratory of Green Natural Products and Pharmaceutical Intermediates in Colleges and Universities of Shandong Province, Institute of Anticancer Agents Development and Theranostic Application, School of Chemistry and Chemical Engineering, Qufu Normal University, Qufu 273165, P. R. China.
| | - Chunyan Fan
- Key Laboratory of Life-Organic Analysis of Shandong Province, Key Laboratory of Green Natural Products and Pharmaceutical Intermediates in Colleges and Universities of Shandong Province, Institute of Anticancer Agents Development and Theranostic Application, School of Chemistry and Chemical Engineering, Qufu Normal University, Qufu 273165, P. R. China.
| | - Zhe Liu
- Key Laboratory of Life-Organic Analysis of Shandong Province, Key Laboratory of Green Natural Products and Pharmaceutical Intermediates in Colleges and Universities of Shandong Province, Institute of Anticancer Agents Development and Theranostic Application, School of Chemistry and Chemical Engineering, Qufu Normal University, Qufu 273165, P. R. China.
| |
Collapse
|
8
|
Guo L, Li P, Li J, Gong Y, Li X, Wen T, Wu X, Yang X, Liu Z. Potent Half-Sandwich 16-/18-Electron Iridium(III) and Ruthenium(II) Anticancer Complexes with Readily Available Amine-Imine Ligands. Inorg Chem 2023; 62:21379-21395. [PMID: 38096360 DOI: 10.1021/acs.inorgchem.3c03471] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2023]
Abstract
The synthesis and biological evaluation of stable 16-electron half-sandwich complexes have remained scarce. We herein present the different coordination modes (16-electron or 18-electron) between half-sandwich iridium(III) complexes and ruthenium(II) complexes derived from the same amine-imine ligands chelating hybrid sp3-N/sp2-N donors. The 16-electron iridium(III) and 18-electron ruthenium(II) complexes with different counteranions were obtained and identified by various techniques. The promising cytotoxicity of these complexes against A549 lung cancer cells, cisplatin-resistant A549/DPP cells, cervical carcinoma HeLa cells, and human hepatocellular liver carcinoma HepG2 cells was observed with IC50 values ranging from 5.4 to 16.3 μM. Moreover, these complexes showed a certain selectivity (selectivity index: 2.1-3.7) toward A549 cells and BEAS-2B normal cells. The variation of metal center, counteranion, 16/18-electron coordination mode, and ligand substituents showed little influence on the cytotoxicity and selectivity of these complexes. The mechanism of action study showed that these complexes could target mitochondria, induce the depolarization of the mitochondrial membrane, and promote the generation of intracellular reactive oxygen species (ROS). Further, the induction of cell apoptosis and the perturbation of the cell cycle in the G0/G1 phase were also observed for these complexes. Overall, it seems that the redox mechanism dominated the anticancer efficacy of these complexes.
Collapse
Affiliation(s)
- Lihua Guo
- Key Laboratory of Life-Organic Analysis of Shandong Province, Key Laboratory of Green Natural Products and Pharmaceutical Intermediates in Colleges and Universities of Shandong Province, School of Chemistry and Chemical Engineering, Qufu Normal University, Qufu 273165, P. R. China
| | - Pengwei Li
- Key Laboratory of Life-Organic Analysis of Shandong Province, Key Laboratory of Green Natural Products and Pharmaceutical Intermediates in Colleges and Universities of Shandong Province, School of Chemistry and Chemical Engineering, Qufu Normal University, Qufu 273165, P. R. China
| | - Jiaxing Li
- Key Laboratory of Life-Organic Analysis of Shandong Province, Key Laboratory of Green Natural Products and Pharmaceutical Intermediates in Colleges and Universities of Shandong Province, School of Chemistry and Chemical Engineering, Qufu Normal University, Qufu 273165, P. R. China
| | - Yuwen Gong
- Key Laboratory of Life-Organic Analysis of Shandong Province, Key Laboratory of Green Natural Products and Pharmaceutical Intermediates in Colleges and Universities of Shandong Province, School of Chemistry and Chemical Engineering, Qufu Normal University, Qufu 273165, P. R. China
| | - Xiaoyuan Li
- Key Laboratory of Life-Organic Analysis of Shandong Province, Key Laboratory of Green Natural Products and Pharmaceutical Intermediates in Colleges and Universities of Shandong Province, School of Chemistry and Chemical Engineering, Qufu Normal University, Qufu 273165, P. R. China
| | - Tingjun Wen
- Key Laboratory of Life-Organic Analysis of Shandong Province, Key Laboratory of Green Natural Products and Pharmaceutical Intermediates in Colleges and Universities of Shandong Province, School of Chemistry and Chemical Engineering, Qufu Normal University, Qufu 273165, P. R. China
| | - Xinxin Wu
- Key Laboratory of Life-Organic Analysis of Shandong Province, Key Laboratory of Green Natural Products and Pharmaceutical Intermediates in Colleges and Universities of Shandong Province, School of Chemistry and Chemical Engineering, Qufu Normal University, Qufu 273165, P. R. China
| | - Xinyi Yang
- Key Laboratory of Life-Organic Analysis of Shandong Province, Key Laboratory of Green Natural Products and Pharmaceutical Intermediates in Colleges and Universities of Shandong Province, School of Chemistry and Chemical Engineering, Qufu Normal University, Qufu 273165, P. R. China
| | - Zhe Liu
- Key Laboratory of Life-Organic Analysis of Shandong Province, Key Laboratory of Green Natural Products and Pharmaceutical Intermediates in Colleges and Universities of Shandong Province, School of Chemistry and Chemical Engineering, Qufu Normal University, Qufu 273165, P. R. China
| |
Collapse
|
9
|
Huang K, Xu B. Critical review of the phytochemical profiles and health-promoting effects of the edible mushroom Armillaria mellea. Food Funct 2023; 14:9518-9533. [PMID: 37850245 DOI: 10.1039/d3fo02334f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2023]
Abstract
Research on the nutritional and medicinal properties of wild edible mushrooms has witnessed a significant surge in recent years. Among these mushrooms, Armillaria mellea (AM) stands out due to its abundant biologically active components. The presence of biological compounds in AM, including carbohydrates, sterols, fatty acids, sesquiterpenes, non-hallucinogenic indole compounds and adenosine derivatives, has been demonstrated in previous studies. Notably, specific bioactive substances isolated from AM, such as armillarikin, have exhibited promising anticancer effects. In vitro studies have elucidated the mechanisms behind these effects, further emphasizing the potential of AM in cancer treatment. Consequently, the objective of this study is to provide a comprehensive overview of the phytochemical profiles of AM while thoroughly investigating its therapeutic benefits. Moreover, this research has uncovered novel and effective treatments, including the utilization of ultrasonic disruption extraction in food processing. These findings highlight the potential of AM as a functional food with possible medical applications. By exploring AM's phytochemical composition and therapeutic effects, this study aims to contribute to a deeper understanding of its potential as a valuable natural resource.
Collapse
Affiliation(s)
- Kaiyuan Huang
- Zhuhai Guangdong-Hong Kong Food Safety Testing Co., Ltd, Zhuhai 519087, China
- Food Science and Technology Program, Department of Life Sciences, BNU-HKBU United International College, Zhuhai 519087, Guangdong, China.
| | - Baojun Xu
- Food Science and Technology Program, Department of Life Sciences, BNU-HKBU United International College, Zhuhai 519087, Guangdong, China.
| |
Collapse
|
10
|
Fahmy HM, Mosleh AM, El-Sayed AA, El-Sherif AA. Novel palladium(II) and Zinc(II) Schiff base complexes: Synthesis, biophysical studies, and anticancer activity investigation. J Trace Elem Med Biol 2023; 79:127236. [PMID: 37285632 DOI: 10.1016/j.jtemb.2023.127236] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/20/2022] [Revised: 05/12/2023] [Accepted: 05/31/2023] [Indexed: 06/09/2023]
Abstract
BACKGROUND Schiff base metal complexes are considered promising chemotherapeutic agents due to their potential application in cancer therapy. METHODS The current work sought to synthesize a brand-new Schiff base ligand obtained from 2-hydroxybenzohydrazide and (E)- 1-(2-(p-tolyl)hydrazono)propan-2-one with metal ions which included Pd(II) and Zn(II) ions. Elemental analyses, FT-IR, mass spectra, 1H NMR, UV-Vis spectrometer, and computational analysis characterized the compound's structure. In vitro, the breast cancer cell line (MCF-7) was tested for its sensitivity to Schiff base (HL) and its Pd(II) and Zn(II) complexes. The half-maximal inhibitory concentration IC50 of the compounds was determined and used to perform the comet assay, which was carried out to reveal the photo-induced DNA damaging ability of the compounds of individual cells. Moreover, the compounds' effects on antioxidant defense systems of enzymes in cells: superoxide dismutase (SOD), catalase (CAT), and glutathione peroxidase (GPx) activities and oxidant Malondialdehyde (MDA) were examined in MCF-7 cells. RESULTS The Pd(II) complex displayed approximately the same IC50 as Cisplatin, while Zn(II) complex had better activity than Cisplatin with very low IC50, 1.40 μg/ml. Significant alterations in SOD, CAT, GPx, and MDA production were discovered, inducing oxidative stress, enlarging ROS production, and reducing the antioxidant amount. This change was approximately similar in most compounds. Consequently, it promoted apoptosis, particularly the Zn(II) complex, which demonstrated an improved impact because of its ability to influence the antioxidant defense systems of enzymes, mostly SOD and GPx, besides increasing MDA levels. CONCLUSION It can be concluded that Zn(II) complex is the most effective anticancer drug since it induced a very similar genotoxic effect as Cisplatin and has a very low IC50 value.
Collapse
Affiliation(s)
- Heba M Fahmy
- Biophysics Department, Faculty of Science, Cairo University, Egypt.
| | - Ayaat M Mosleh
- Biophysics Department, Faculty of Science, Cairo University, Egypt
| | - Anwar A El-Sayed
- Biophysics Department, Faculty of Science, Cairo University, Egypt
| | | |
Collapse
|
11
|
Saha ST, Abdulla N, Zininga T, Shonhai A, Wadee R, Kaur M. 2-Hydroxypropyl-β-cyclodextrin (HPβCD) as a Potential Therapeutic Agent for Breast Cancer. Cancers (Basel) 2023; 15:2828. [PMID: 37345165 PMCID: PMC10216648 DOI: 10.3390/cancers15102828] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2023] [Revised: 05/11/2023] [Accepted: 05/15/2023] [Indexed: 06/23/2023] Open
Abstract
Cholesterol accumulation is documented in various malignancies including breast cancer. Consequently, depleting cholesterol in cancer cells can serve as a viable treatment strategy. We identified the potency of 2-hydroxypropyl-β-cyclodextrin (HPβCD), a cholesterol-depletor in vitro against two breast cancer cell lines: MCF-7 (Oestrogen-receptor positive, ER+) and MDA-MB-231 (Triple negative breast cancer (TNBC)). The results were then compared against two non-cancerous cell lines using cytotoxic-, apoptosis-, and cholesterol-based assays. Treatment with HPβCD showed preferential and significant cytotoxic potential in cancer cells, inducing apoptosis in both cancer cell lines (p < 0.001). This was mediated due to significant depletion of cholesterol (p < 0.001). We further tested HPβCD in a MF-1 mice (n = 14) xenograft model and obtained 73.9%, 94% and 100% reduction in tumour size for late-, intermediate-, and early-stage TNBC, respectively. We also detected molecular-level perturbations in the expression patterns of several genes linked to breast cancer and cholesterol signalling pathways using RT2-PCR arrays and have identified SFRP1 as a direct binding partner to HPβCD through SPR drug interaction analysis. This work unravels mechanistic insights into HPβCD-induced cholesterol depletion, which leads to intrinsic apoptosis induction. Results from this study potentiate employing cholesterol depletion as a promising unconventional anticancer therapeutic strategy, which warrants future clinical investigations.
Collapse
Affiliation(s)
- Sourav Taru Saha
- School of Molecular and Cell Biology, University of the Witwatersrand, Private Bag 3, WITS-2050, Johannesburg 2050, South Africa
| | - Naaziyah Abdulla
- School of Molecular and Cell Biology, University of the Witwatersrand, Private Bag 3, WITS-2050, Johannesburg 2050, South Africa
| | - Tawanda Zininga
- Department of Biochemistry and Microbiology, University of Venda, Private Bag X5050, Thohoyandou 0950, South Africa
- Department of Biochemistry, Stellenbosch University, Stellenbosch 7600, South Africa
| | - Addmore Shonhai
- Department of Biochemistry and Microbiology, University of Venda, Private Bag X5050, Thohoyandou 0950, South Africa
| | - Reubina Wadee
- Department of Anatomical Pathology, School of Pathology, University of the Witwatersrand/National Health Laboratory Service, Johannesburg 2000, South Africa
| | - Mandeep Kaur
- School of Molecular and Cell Biology, University of the Witwatersrand, Private Bag 3, WITS-2050, Johannesburg 2050, South Africa
| |
Collapse
|
12
|
Tripathi SK, Nandi S, Gupta PSP, Mondal S. Antioxidants supplementation improves the quality of in vitro produced ovine embryos with amendments in key development gene expressions. Theriogenology 2023; 201:41-52. [PMID: 36827868 DOI: 10.1016/j.theriogenology.2022.11.048] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2022] [Revised: 11/30/2022] [Accepted: 11/30/2022] [Indexed: 12/12/2022]
Abstract
The present study assessed the effects of supplementation of different antioxidants on oocyte maturation, embryo production, reactive oxygen species (ROS) production and expression of key developmental genes. In this study, using ovine as an animal model, we tested the hypothesis that antioxidant supplementation enhanced the developmental competence of oocytes. Ovine oocytes aspirated from local abattoir-derived ovaries were subjected to IVM with different concentrations of antioxidants [(Melatonin, Ascorbic acid (Vit C), alpha-tocopherol (Vit E), Sodium selenite (SS)]. Oocytes matured without any antioxidant supplementation were used as controls. The oocytes were assessed for maturation rates and ROS levels. Further, embryo production rates in terms of cleavage, blastocysts and total cell numbers were evaluated after performing in vitro fertilization. Real-Time PCR analysis was used to evaluate the expression of stress related gene (SOD-1), growth related (GDF-9, BMP-15), and apoptosis-related genes (BCL-2 and BAX). We observed that maturation rates were significantly higher in alpha-tocopherol (100 μM; 92.4%) groups followed by melatonin (30 μM; 89.1%) group. However, blastocyst rates in ascorbic acid (100 μM; 19.5%), melatonin (30 μM; 18.4%), alpha-tocopherol (100 μM; 18.2%), and sodium selenite (20 μM; 16.9%) groups were significantly higher (P 0.05) than that observed in the control groups. Total cell numbers in blastocysts in the melatonin, ascorbic acid and alpha-tocopherol groups were significantly higher than those observed in sodium selenite and control groups. ROS production was reduced in groups treated with melatonin (30 μM), vitamin C (100 μM), sodium selenite (20 μM) and α-tocopherol (200 μM) compared with that observed in the control group. Supplementation of antioxidants caused the alterations in mRNA expression of growth, stress, and apoptosis related gene expression in matured oocytes. The results recommend that antioxidants alpha-tocopherol (200 μM), sodium selenite (40 μM), melatonin (30 μM) and ascorbic acid (100 μM) during IVM reduced the oxidative stress by decreasing ROS levels in oocytes, thus improving embryo quantity and quality.
Collapse
Affiliation(s)
- S K Tripathi
- ICAR-National Institute of Animal Nutrition and Physiology, Adugodi, Bangalore, India
| | - S Nandi
- ICAR-National Institute of Animal Nutrition and Physiology, Adugodi, Bangalore, India.
| | - P S P Gupta
- ICAR-National Institute of Animal Nutrition and Physiology, Adugodi, Bangalore, India
| | - S Mondal
- ICAR-National Institute of Animal Nutrition and Physiology, Adugodi, Bangalore, India
| |
Collapse
|
13
|
El Samarji M, Younes M, El Khoury M, Haykal T, Elias N, Gasilova N, Menin L, Houri A, Machaka-Houri N, Rizk S. The Antioxidant and Proapoptotic Effects of Sternbergia clusiana Bulb Ethanolic Extract on Triple-Negative and Estrogen-Dependent Breast Cancer Cells In Vitro. PLANTS (BASEL, SWITZERLAND) 2023; 12:529. [PMID: 36771614 PMCID: PMC9920827 DOI: 10.3390/plants12030529] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/16/2022] [Revised: 01/12/2023] [Accepted: 01/16/2023] [Indexed: 06/18/2023]
Abstract
BACKGROUND Sternbergia clusiana belongs to the Amaryllidaceae family and is recognized for the valuable biological activity of its major bioactive compounds. The aim of the current is to evaluate the anticancer effects of the ethanolic bulb extract of Sternbergia clusiana (ScBEE) on breast cancer cells in vitro and to further reveal the underlying cellular mechanism. METHODS An MTS cell viability assay was performed on MDA-MB-231 and MCF-7 cells, along with cell cycle analysis, cell death ELISA, Western blot analysis and an ROS production assay to decipher the mechanism of death. LC-MS/MS was also performed to identify the chemical composition of this ethanolic extract. RESULTS The results show a selective antiproliferative effect on both cell lines with no effect on normal mesenchymal stem cells. Further analysis suggested the activation of the apoptotic pathway as reflected by the increase in cellular and DNA fragmentation and alterations in apoptotic proteins such as Bax, Bcl-2 and c-PARP. ScBEE was also found to exhibit antioxidant effect, as shown by a decrease in ROS production. The underlying mechanism of action was explained by the presence of several bioactive compounds identified by LC-MS/MS, including alkaloids, terpenoids and phenols, which are elaborated in the manuscript. CONCLUSION This study highlights the antioxidant and anticancerous properties of S.clusiana for breast cancer treatment.
Collapse
Affiliation(s)
- Mona El Samarji
- Department of Natural Sciences, Lebanese American University, Byblos P.O. Box 36, Lebanon
| | - Maria Younes
- Department of Natural Sciences, Lebanese American University, Byblos P.O. Box 36, Lebanon
| | - Marianne El Khoury
- Department of Natural Sciences, Lebanese American University, Byblos P.O. Box 36, Lebanon
| | - Tony Haykal
- Department of Natural Sciences, Lebanese American University, Byblos P.O. Box 36, Lebanon
| | - Nazira Elias
- Department of Natural Sciences, Lebanese American University, Byblos P.O. Box 36, Lebanon
| | - Natalia Gasilova
- Institute of Chemical Sciences and Engineering, Ecole Polytechnique Fédérale de Lausanne (EPFL), 1015 Lausanne, Switzerland
| | - Laure Menin
- Institute of Chemical Sciences and Engineering, Ecole Polytechnique Fédérale de Lausanne (EPFL), 1015 Lausanne, Switzerland
| | - Ahmad Houri
- Department of Natural Sciences, Lebanese American University, Beirut 1102-2801, Lebanon
| | - Nisrine Machaka-Houri
- Department of Life and Earth Science, Faculty of Sciences, Saint Joseph University, Ras Maska 1104-2020, Lebanon
| | - Sandra Rizk
- Department of Natural Sciences, Lebanese American University, Byblos P.O. Box 36, Lebanon
| |
Collapse
|
14
|
Antitumor Potential of Sericite Treatment Mediated by Cell Cycle Arrest in Triple-Negative MDA-MB231 Breast Cancer Cells. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2022; 2022:2885293. [PMID: 36199546 PMCID: PMC9527418 DOI: 10.1155/2022/2885293] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/23/2022] [Revised: 07/19/2022] [Accepted: 08/04/2022] [Indexed: 12/24/2022]
Abstract
Breast cancer is the most common cancer and the leading cause of cancer-related mortality among females worldwide. Triple-negative breast cancer (TNBC) accounts for about 10–15% of all breast cancers and is usually more aggressive and has a poorer prognosis. Sericite has been known to have antitumor and immune-stimulatory effects. Although the chemopreventive potential of sericite has been demonstrated in other cancers, its molecular pathways in TNBC still require investigation. Thus, in the present study, the antitumor mechanism of sericite against MDA-MB231 breast cancer cells was examined in vitro and in an in vivo xenograft mouse model. Sericite treatment reduced cell proliferation and cell proliferation marker proliferating cell nuclear antigen (PCNA) in MDA-MB231 cells. It also decreased the total cell number and arrested cells in the G0/G1 phase of the cell cycle with an increase in the phosphorylation of P53 and upregulation of cell cycle regulatory proteins P21 and P16. In addition, sericite treatment also induced apoptosis signaling, which was evident by the upregulation of apoptotic protein markers cleaved caspases 3 and 9. A reduction in reactive oxygen species (ROS), NADPH oxidase 4 (NOX4), p22phox, and heat shock proteins (HSPs) was also observed. Similar results were obtained in vivo with significantly reduced tumor volume in sericite-administered mice. Collectively, these findings suggest that sericite has antitumor potential based on its property to induce cell cycle arrest and apoptotic cell death and therefore could serve as a potential therapeutic agent and crucial candidate in anticancer drug development for TNBC.
Collapse
|
15
|
Shiau JP, Chuang YT, Tang JY, Yang KH, Chang FR, Hou MF, Yen CY, Chang HW. The Impact of Oxidative Stress and AKT Pathway on Cancer Cell Functions and Its Application to Natural Products. Antioxidants (Basel) 2022; 11:1845. [PMID: 36139919 PMCID: PMC9495789 DOI: 10.3390/antiox11091845] [Citation(s) in RCA: 26] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2022] [Revised: 09/14/2022] [Accepted: 09/16/2022] [Indexed: 01/10/2023] Open
Abstract
Oxidative stress and AKT serine-threonine kinase (AKT) are responsible for regulating several cell functions of cancer cells. Several natural products modulate both oxidative stress and AKT for anticancer effects. However, the impact of natural product-modulating oxidative stress and AKT on cell functions lacks systemic understanding. Notably, the contribution of regulating cell functions by AKT downstream effectors is not yet well integrated. This review explores the role of oxidative stress and AKT pathway (AKT/AKT effectors) on ten cell functions, including apoptosis, autophagy, endoplasmic reticulum stress, mitochondrial morphogenesis, ferroptosis, necroptosis, DNA damage response, senescence, migration, and cell-cycle progression. The impact of oxidative stress and AKT are connected to these cell functions through cell function mediators. Moreover, the AKT effectors related to cell functions are integrated. Based on this rationale, natural products with the modulating abilities for oxidative stress and AKT pathway exhibit the potential to regulate these cell functions, but some were rarely reported, particularly for AKT effectors. This review sheds light on understanding the roles of oxidative stress and AKT pathway in regulating cell functions, providing future directions for natural products in cancer treatment.
Collapse
Affiliation(s)
- Jun-Ping Shiau
- Division of Breast Oncology and Surgery, Department of Surgery, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung 80708, Taiwan or
| | - Ya-Ting Chuang
- Graduate Institute of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung 80708, Taiwan
| | - Jen-Yang Tang
- School of Post-Baccalaureate Medicine, Kaohsiung Medical University, Kaohsiung 80708, Taiwan
- Department of Radiation Oncology, Kaohsiung Medical University Hospital, Kaoshiung Medical University, Kaohsiung 80708, Taiwan
| | - Kun-Han Yang
- Graduate Institute of Natural Products, Kaohsiung Medical University, Kaohsiung 80708, Taiwan
| | - Fang-Rong Chang
- Graduate Institute of Natural Products, Kaohsiung Medical University, Kaohsiung 80708, Taiwan
| | - Ming-Feng Hou
- Division of Breast Oncology and Surgery, Department of Surgery, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung 80708, Taiwan or
- Department of Biomedical Science and Environmental Biology, College of Life Science, Kaohsiung Medical University, Kaohsiung 80708, Taiwan
| | - Ching-Yu Yen
- Department of Oral and Maxillofacial Surgery, Chi-Mei Medical Center, Tainan 71004, Taiwan
- School of Dentistry, Taipei Medical University, Taipei 11031, Taiwan
| | - Hsueh-Wei Chang
- Department of Biomedical Science and Environmental Biology, College of Life Science, Kaohsiung Medical University, Kaohsiung 80708, Taiwan
- Center for Cancer Research, Kaohsiung Medical University, Kaohsiung 80708, Taiwan
| |
Collapse
|
16
|
Abot A, Fried S, Cani PD, Knauf C. Reactive Oxygen Species/Reactive Nitrogen Species as Messengers in the Gut: Impact on Physiology and Metabolic Disorders. Antioxid Redox Signal 2022; 37:394-415. [PMID: 34714099 DOI: 10.1089/ars.2021.0100] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Significance: The role of reactive oxygen/nitrogen species as "friend" or "foe" messengers in the whole body is well characterized. Depending on the concentration in the tissue considered, these molecular actors exert beneficial or deleterious impacts leading to a pathological state, as observed in metabolic disorders such as type 2 diabetes and obesity. Recent Advances: Among the tissues impacted by oxidation and inflammation in this pathological state, the intestine is a site of dysfunction that can establish diabetic symptoms, such as alterations in the intestinal barrier, gut motility, microbiota composition, and gut/brain axis communication. In the intestine, reactive oxygen/nitrogen species (from the host and/or microbiota) are key factors that modulate the transition from physiological to pathological signaling. Critical Issues: Controlling the levels of intestinal reactive oxygen/nitrogen species is a complicated balance between positive and negative impacts that is in constant equilibrium. Here, we describe the synthesis and degradation of intestinal reactive oxygen/nitrogen species and their interactions with the host. The development of novel redox-based therapeutics that alter these processes could restore intestinal health in patients with metabolic disorders. Future Directions: Deciphering the mode of action of reactive oxygen/nitrogen species in the gut of obese/diabetic patients could result in a future therapeutic strategy that combines nutritional and pharmacological approaches. Consequently, preventive and curative treatments must take into account one of the first sites of oxidative and inflammatory dysfunctions in the body, that is, the intestine. Antioxid. Redox Signal. 37, 394-415.
Collapse
Affiliation(s)
- Anne Abot
- Université Paul Sabatier, Toulouse III, INSERM U1220, Institut de Recherche en Santé Digestive (IRSD), CHU Purpan, Toulouse, France.,International Research Project (IRP), European Lab "NeuroMicrobiota," Brussels, Belgium and Toulouse, France
| | - Steven Fried
- Université Paul Sabatier, Toulouse III, INSERM U1220, Institut de Recherche en Santé Digestive (IRSD), CHU Purpan, Toulouse, France.,International Research Project (IRP), European Lab "NeuroMicrobiota," Brussels, Belgium and Toulouse, France
| | - Patrice D Cani
- International Research Project (IRP), European Lab "NeuroMicrobiota," Brussels, Belgium and Toulouse, France.,UCLouvain, Université Catholique de Louvain, Louvain Drug Research Institute, WELBIO, Walloon Excellence in Life Sciences and BIOtechnology, Metabolism and Nutrition Research Group, Brussels, Belgium
| | - Claude Knauf
- Université Paul Sabatier, Toulouse III, INSERM U1220, Institut de Recherche en Santé Digestive (IRSD), CHU Purpan, Toulouse, France.,International Research Project (IRP), European Lab "NeuroMicrobiota," Brussels, Belgium and Toulouse, France
| |
Collapse
|
17
|
Khan MA, Singh R, Siddiqui S, Ahmad I, Ahmad R, Upadhyay S, Barkat MA, Ali AMA, Zia Q, Srivastava A, Trivedi A, Husain I, Srivastava AN, Mishra DP. Anticancer potential of Phoenix dactylifera L. seed extract in human cancer cells and pro-apoptotic effects mediated through caspase-3 dependent pathway in human breast cancer MDA-MB-231 cells: an in vitro and in silico investigation. BMC Complement Med Ther 2022; 22:68. [PMID: 35291987 PMCID: PMC8922853 DOI: 10.1186/s12906-022-03533-0] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2021] [Accepted: 02/07/2022] [Indexed: 12/24/2022] Open
Abstract
Background Phoenix dactylifera L. has a diverse set of pharmacological properties due to its distinct phytochemical profile. The purpose of this study was to investigate the anticancer potential of Phoenix dactylifera seed extract (PDSE) in human breast cancer MDA-MB-231 and MCF-7 cells, as well as liver cancer HepG2 cells, and to investigate the anticancer efficacy in triple-negative MDA-MB-231 cells, followed by in silico validation of the molecular interaction between active components of PDSE and caspase-3, an apoptosis executioner protein . Methods In this study, human cancer cell lines were cultured and subsequently treated with 10 to 100 μg/mL of PDSE. MTT test was performed to determine the cell viability, MMP was measured using fluorescent probe JC-1, nuclear condensation was determined by Hoechst 33258 dye, Annexin V-FITC & PI staining and cell cycle analysis were evaluated through flow cytometer, and apoptotic markers were detected using western blotting. The bioactive agents in PDSE were identified using high-performance liquid chromatography (HPLC) analysis. The binding affinity was validated using molecular docking tools AutoDock Vina and iGEMDOCK v2.1. Results Cell viability data indicated that PDSE inhibited cell proliferation in both breast cancer cells and liver cancer cells. MDA-MB-231 cells showed maximum growth inhibition with an IC50 value of 85.86 μg/mL for PDSE. However, PDSE did not show any significant toxicity against the normal Vero cell line. PDSE induced MMP loss and formation of apoptotic bodies, enhanced late apoptosis at high doses and arrested cells in the S phase of cell cycle. PDSE activated the enzymatic activity of cleaved caspase-3 and caused the cleavage of poly-ADB ribose polymerase (PARP) protein. PDSE upregulated pro-apoptotic Bax protein markedly but no significant effect on tumor suppressor protein p53, while it downregulated the anti-apoptotic Bcl-2 protein expression. HPLC analysis showed the presence of rutin and quercetin bioactive flavonols in ethanolic extract of PDS. Interestingly, both active components revealed a strong binding interaction with amino acid residues of caspase-3 (PDB ID: 2XYP; Hetero 4-mer - A2B2) protein. Conclusion PDS could serve as a potential medicinal source for apoptotic cell death in human breast cancer cells and, thus, could be used as a promising and crucial candidate in anticancer drug development. This study warrants further in vivo research, followed by clinical investigation. Supplementary Information The online version contains supplementary material available at 10.1186/s12906-022-03533-0.
Collapse
Affiliation(s)
- Mohsin Ali Khan
- Research and Development Unit, Era's Lucknow Medical College and Hospital, Era University, Lucknow, 226003, India
| | - Romila Singh
- Cell Death Research Laboratory, LSS-106, Endocrinology Division, CSIR-Central Drug Research Institute, Jankipuram Extension, Lucknow, 226031, India
| | - Sahabjada Siddiqui
- Department of Biotechnology, Era's Lucknow Medical College and Hospital, Era University, Lucknow, 226003, India.
| | - Imran Ahmad
- Department of Biochemistry, King George's Medical University, Lucknow, 226003, India
| | - Rumana Ahmad
- Department of Biochemistry, Era's Lucknow Medical College and Hospital, Era University, Lucknow, 226003, India
| | - Shivbrat Upadhyay
- Department of Biotechnology, Era's Lucknow Medical College and Hospital, Era University, Lucknow, 226003, India
| | - Md Abul Barkat
- Department of Pharmaceutics, College of Pharmacy, University of Hafr Al-Batin, Al Jamiah, Hafr Al Batin, 39524, Saudi Arabia
| | - Ahmed Mahmoud Abdelhaleem Ali
- Department of Pharmaceutics and Industrial Pharmacy, College of Pharmacy, Taif University, P. O. Box 11099, Taif, 21944, Saudi Arabia
| | - Qamar Zia
- Health and Basic Science Research Centre, Majmaah University, Majmaah, 11952, Saudi Arabia.,Department of Medical Laboratory Sciences, College of Applied Medical Sciences, Majmaah University, Majmaah, 11952, Saudi Arabia
| | - Aditi Srivastava
- Department of Biochemistry, Era's Lucknow Medical College and Hospital, Era University, Lucknow, 226003, India
| | - Anchal Trivedi
- Department of Biochemistry, Era's Lucknow Medical College and Hospital, Era University, Lucknow, 226003, India
| | - Ishrat Husain
- Department of Biochemistry, Era's Lucknow Medical College and Hospital, Era University, Lucknow, 226003, India
| | - Anand Narain Srivastava
- Department of Pathology, Era's Lucknow Medical College and Hospital, Era University, Lucknow, 226003, India
| | - Durga Prasad Mishra
- Cell Death Research Laboratory, LSS-106, Endocrinology Division, CSIR-Central Drug Research Institute, Jankipuram Extension, Lucknow, 226031, India.
| |
Collapse
|
18
|
Gallic Acid Enhances the Anti-Cancer Effect of Temozolomide in Human Glioma Cell Line via Inhibition of Akt and p38-MAPK Pathway. Processes (Basel) 2022. [DOI: 10.3390/pr10030448] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
(1) Background: Temozolomide (TMZ), an oral alkylating agent, is used to treat malignant gliomas and other difficult-to-treat tumors. TMZ can enter the cerebrospinal fluid p.o. (per os) and does not need hepatic metabolism for activation of its use as a standard chemotherapeutic regimen after surgical resection of malignant glioma of the brain. However, the prognosis remains poor for most patients, and the survival rate is still unsatisfactory. Gallic acid (Ga) is a secondary metabolite existent in numerous plants. Ga shows various bioactivities, including antioxidant, anti-inflammatory, anticancer and antimicrobial effects. In this study, the latent enhanced anti-cancer efficacy of Ga in TMZ-treated U87MG cells (a human glioma line) was evaluated. (2) Methods: The U87MG cell line was cultured for 24 h. The cells were incubated with Ga alone, TMZ alone, or their combination for various time points. Cell viability and the drug combination index were evaluated by an XTT-based analysis and isobologram analysis, respectively. DNA destruction and intracellular reactive oxygen species (ROS) generation were analyzed by flow cytometer. The expression of various proteins was assessed via Western blotting. (3) Results: Compared with the action of TMZ alone or Ga alone, TMZ/Ga combination augmented the inhibition of cellular viability and apoptotic level in the U87MG glioma cell line. This enhanced anti-cancer effect correlated with the decreased expression of Bcl-2 and p-Akt, and corresponded with the activation of the p38 mitogen-activated protein kinase (MAPK) pathway. In addition, Ga suppressed the TMZ-promoted ROS generation. (4) Conclusions: Ga can augment the anti-cancer effect of TMZ via the repression of Bcl-2 expression and Akt activation and the enhancement of the p38 MAPK pathway. Our results offer a novel probable approach for the medical treatment of malignant glioma.
Collapse
|
19
|
Panchangam RL, Rao RN, Balamurali MM, Hingamire TB, Shanmugam D, Manickam V, Chanda K. Antitumor Effects of Ir(III)-2 H-Indazole Complexes for Triple Negative Breast Cancer. Inorg Chem 2021; 60:17593-17607. [PMID: 34767343 DOI: 10.1021/acs.inorgchem.1c02193] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
In this work, we have synthesized a series of novel C,N-cyclometalated 2H-indazole-ruthenium(II) and -iridium(III) complexes with varying substituents (H, CH3, isopropyl, and CF3) in the R4 position of the phenyl ring of the 2H-indazole chelating ligand. All of the complexes were characterized by 1H, 13C, high-resolution mass spectrometry, and elemental analysis. The methyl-substituted 2H-indazole-Ir(III) complex was further characterized by single-crystal X-ray analysis. The cytotoxic activity of new ruthenium(II) and iridium(III) compounds has been evaluated in a panel of triple negative breast cancer (TNBC) cell lines (MDA-MB-231 and MDA-MB-468) and colon cancer cell line HCT-116 to investigate their structure-activity relationships. Most of these new complexes have shown appreciable activity, comparable to or significantly better than that of cisplatin in TNBC cell lines. R4 substitution of the phenyl ring of the 2H-indazole ligand with methyl and isopropyl substituents showed increased potency in ruthenium(II) and iridium(III) complexes compared to that of their parent compounds in all cell lines. These novel transition metal-based complexes exhibited high specificity toward cancer cells by inducing alterations in the metabolism and proliferation of cancer cells. In general, iridium complexes are more active than the corresponding ruthenium complexes. The new Ir(III)-2H-indazole complex with an isopropyl substituent induced mitochondrial damage by generating large amounts of reactive oxygen species (ROS), which triggered mitochondrion-mediated apoptosis in TNBC cell line MDA-MB-468. Moreover, this complex also induced G2/M phase cell cycle arrest and inhibited cellular migration of TNBC cells. Our findings reveal the key roles of the novel C-N-cyclometalated 2H-indazole-Ir(III) complex to specifically induce toxicity in cancer cell lines through contributing effects of ROS-induced mitochondrial disruption along with chromosomal and mitochondrial DNA target inhibition.
Collapse
Affiliation(s)
- Rajeeva Lochana Panchangam
- Department of Biosciences, School of Biosciences and Technology, Vellore Institute of Technology, Vellore 632014, India
| | - Ramdas Nishanth Rao
- Department of Chemistry, School of Advanced Science, Vellore Institute of Technology, Vellore 632014, India
| | - Musuvathi Motilal Balamurali
- Chemistry Division, School of Advanced Sciences, Vellore Institute of Technology, Chennai Campus, Chennai 600127, India
| | - Tejashri B Hingamire
- Biochemical Sciences Division, CSIR-National Chemical Laboratory, Pune 411008, India.,Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Dhanasekaran Shanmugam
- Biochemical Sciences Division, CSIR-National Chemical Laboratory, Pune 411008, India.,Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Venkatraman Manickam
- Department of Biosciences, School of Biosciences and Technology, Vellore Institute of Technology, Vellore 632014, India
| | - Kaushik Chanda
- Department of Chemistry, School of Advanced Science, Vellore Institute of Technology, Vellore 632014, India
| |
Collapse
|
20
|
Wang L, Cheng L, Ma L, Ahmad Farooqi A, Qiao G, Zhang Y, Ye H, Liu M, Huang J, Yang X, Lin X, Cao S. Alnustone inhibits the growth of hepatocellular carcinoma via ROS- mediated PI3K/Akt/mTOR/p70S6K axis. Phytother Res 2021; 36:525-542. [PMID: 34847624 DOI: 10.1002/ptr.7337] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2021] [Revised: 10/28/2021] [Accepted: 11/03/2021] [Indexed: 01/05/2023]
Abstract
Alnustone, a diarylheptane compound, exhibits potent growth inhibition against hepatocellular carcinoma (HCC) BEL-7402 cells. However, the underlying mechanisms associated with its anticancer activity remain unknown. In the present study, we evaluated the anticancer effect of alnustone against several human cancers focused on HCC and the possible associated mechanisms. The results showed that alnustone significantly inhibited the growth of several cancer cells by CCK-8 assay. Alnustone markedly induced apoptosis and decreased mitochondrial membrane potential in BEL-7402 and HepG2 cells. Alnustone inhibited the expression of proteins related to apoptosis and PI3K/Akt/mTOR/p70S6K pathways and generated ROS production in BEL-7402 and HepG2 cells. Moreover, N-acetyl-L-cysteine (NAC, a ROS inhibitor) could significantly reverse the effects of alnustone on the growth inhibition of BEL-7402 and HepG2 cells and the expression of proteins related to apoptosis and PI3K/Akt/mTOR signaling pathway in HepG2 cells. Furthermore, alnustone significantly inhibited tumor growth of HepG2 xenografts, obviously induced apoptosis in the tumor tissues and improved the pathological condition of liver tissues of mice in vivo. The study provides evidence that alnustone is effective against HCC via ROS-mediated PI3K/Akt/mTOR/p70S6K pathway and the compound has the potential to be developed as a novel anticancer agent for the treatment of HCC clinically.
Collapse
Affiliation(s)
- Linlin Wang
- Department of Pharmacology, Southwest Medical University, Luzhou, Sichuan, China
| | - Li Cheng
- Department of Pharmacology, Southwest Medical University, Luzhou, Sichuan, China
| | - Li Ma
- Rizhao Hospital of Traditional Chinese Medicine, Rizhao, Shandong, China
| | - Ammad Ahmad Farooqi
- Department of Molecular Oncology, Institute of Biomedical and Genetic Engineering (IBGE), Islamabad, Pakistan
| | - Gan Qiao
- Department of Pharmacology, Southwest Medical University, Luzhou, Sichuan, China
| | - Yuxi Zhang
- Department of Pharmacology, Southwest Medical University, Luzhou, Sichuan, China
| | - Hanlin Ye
- Department of Pharmacology, Southwest Medical University, Luzhou, Sichuan, China
| | - Minghua Liu
- Department of Pharmacology, Southwest Medical University, Luzhou, Sichuan, China
| | - Jianlin Huang
- Department of Pharmacology, Southwest Medical University, Luzhou, Sichuan, China
| | - Xiaohui Yang
- Department of Pharmacology, Southwest Medical University, Luzhou, Sichuan, China
| | - Xiukun Lin
- Department of Pharmacology, Southwest Medical University, Luzhou, Sichuan, China.,Delisi Group Co. Ltd., Zhucheng, Shandong, China
| | - Shousong Cao
- Department of Pharmacology, Southwest Medical University, Luzhou, Sichuan, China
| |
Collapse
|
21
|
Turkez H, Tozlu OO, Arslan ME, Mardinoglu A. Safety and Efficacy Assessments to Take Antioxidants in Glioblastoma Therapy: From In Vitro Experiences to Animal and Clinical Studies. Neurochem Int 2021; 150:105168. [PMID: 34450218 DOI: 10.1016/j.neuint.2021.105168] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2021] [Revised: 08/16/2021] [Accepted: 08/17/2021] [Indexed: 12/28/2022]
Abstract
Glioblastoma (GBM) is considered one of the most common malignant brain tumors, occurring as over 15% of all primary central nervous system and brain neoplasms. The unique and standard treatment option towards GBM involves the combination of surgical resection followed by radiotherapy (RT) and chemotherapy (CT). However, due to the aggressive nature and heterogeneity of GBMs, they remained difficult to treat. Recent findings from preclinical studies have revealed that disruption of the redox balance via using either oxidative or anti-oxidative agents in GBM presented an effective and promising therapeutic approach. A limited number of clinical trials substantially encouraged their concomitant use with RT or CT. Thus, treatment of GBMs may benefit from natural or synthetic antioxidative compounds as novel therapeutics. Despite the presence of variegated in vitro and in vivo studies focusing on safety and efficacy issues of these promising therapeutics, nowadays their translation to clinics is far from applicability due to several challenges. In this review, we briefly introduce the enzymatic and non-enzymatic antioxidant defense systems as well as potential signaling pathways related to the pathogenesis of GBM with a special interest in antioxidant mechanisms. In addition, we describe the advantages and limitations of antioxidant supplementation in GBM cases or disease models as well as growing challenges for GBM therapies with antioxidants in the future.
Collapse
Affiliation(s)
- Hasan Turkez
- Department of Medical Biology, Faculty of Medicine, Ataturk University, 25240, Erzurum, Turkey
| | - Ozlem Ozdemir Tozlu
- Department of Molecular Biology and Genetics, Faculty of Science, 25250; Erzurum Technical University, Erzurum, Turkey
| | - Mehmet Enes Arslan
- Department of Molecular Biology and Genetics, Faculty of Science, 25250; Erzurum Technical University, Erzurum, Turkey
| | - Adil Mardinoglu
- Centre for Host-Microbiome Interactions, Faculty of Dentistry, Oral & Craniofacial Sciences, King's College London, London, SE1 9RT, UK; Science for Life Laboratory, KTH - Royal Institute of Technology, Stockholm, SE-17121, Sweden.
| |
Collapse
|
22
|
Pintarič R, Matela J, Pintarič Š, Novak M, Filipič M. Evaluation of potential toxicity of Steriplant ©N aerosolization toward human alveolar cells A459 in vitro. Toxicol Ind Health 2021; 37:520-527. [PMID: 34353172 DOI: 10.1177/07482337211031681] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Protection of patients against hospital-acquired infections is of major importance. Disinfection of magnetic resonance imaging suites is, due to their unique properties and environment particularly, difficult to implement. We developed an OPTI-JET CS MD 2ZE aerosolizator for disinfection of a magnetic resonance imaging suite using the electrolyzed oxidizing water biocide Steriplant©N. The disinfection of the magnetic resonance imaging suite with this system reduced from the number of colony formed unit/m3 air by 87% and 96% in 6 and 15 min of disinfection, respectively. It is well known that exposure of personnel or patients to aerosols may represent risk to the respiratory system; therefore, the aim of this study was to assess potential cytotoxicity and genotoxicity of Steriplant©N aerosolization toward human alveolar cells A459 in vitro. The A459 cells were exposed to aerosol containing different concentrations (50% and 100% v/v) of Steripalnt©N for 6 min in a chamber that had been constructed to simulate the conditions in the magnetic resonance imaging suite. The cytotoxicity was evaluated by measuring iodide uptake, and the genotoxicity was determined by measuring formation of phosphorylated H2AX histones, a marker for deoxyribonucleic acid double-strand breaks, immediately after the aerosolization and after 1, 4, and 24 h postincubation. The results demonstrated that aerosolization with Steriplant©N at conditions reflecting aerosolization in a magnetic resonance imaging suite is not cytotoxic and does not exhibit genotoxic potential in vitro.
Collapse
Affiliation(s)
- Robert Pintarič
- Department of Radiology, 112806University Medical Centre Maribor, Maribor, Slovenia
| | - Jože Matela
- Department of Radiology, 112806University Medical Centre Maribor, Maribor, Slovenia
| | - Štefan Pintarič
- Department for Sampling and Coordination, Veterinary Faculty, 54767University of Ljubljana, Ljubljana, Slovenia
| | - Matjaž Novak
- Department for Genetic Toxicology and Cancer Biology, 54766National Institute of Biology, Večna, Slovenia
| | - Metka Filipič
- Department for Genetic Toxicology and Cancer Biology, 54766National Institute of Biology, Večna, Slovenia
| |
Collapse
|
23
|
Botto L, Bulbarelli A, Lonati E, Cazzaniga E, Tassotti M, Mena P, Del Rio D, Palestini P. Study of the Antioxidant Effects of Coffee Phenolic Metabolites on C6 Glioma Cells Exposed to Diesel Exhaust Particles. Antioxidants (Basel) 2021; 10:antiox10081169. [PMID: 34439417 PMCID: PMC8388867 DOI: 10.3390/antiox10081169] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2021] [Revised: 07/12/2021] [Accepted: 07/19/2021] [Indexed: 01/17/2023] Open
Abstract
The contributing role of environmental factors to the development of neurodegenerative diseases has become increasingly evident. Here, we report that exposure of C6 glioma cells to diesel exhaust particles (DEPs), a major constituent of urban air pollution, causes intracellular reactive oxygen species (ROS) production. In this scenario, we suggest employing the possible protective role that coffee phenolic metabolites may have. Coffee is a commonly consumed hot beverage and a major contributor to the dietary intake of (poly) phenols. Taking into account physiological concentrations, we analysed the effects of two different coffee phenolic metabolites mixes consisting of compounds derived from bacterial metabolization reactions or phase II conjugations, as well as caffeic acid. The results showed that these mixes were able to counteract DEP-induced oxidative stress. The cellular components mediating the downregulation of ROS included extracellular signal-regulated kinase 1/2 (ERK1/2), nuclear factor erythroid 2-related factor 2 (Nrf2), heme oxygenase-1 (HO-1), and uncoupling protein 2 (UCP2). Contrary to coffee phenolic metabolites, the treatment with N-acetylcysteine (NAC), a known antioxidant, was found to be ineffective in preventing the DEP exposure oxidant effect. These results revealed that coffee phenolic metabolites could be promising candidates to protect against some adverse health effects of daily exposure to air pollution.
Collapse
Affiliation(s)
- Laura Botto
- School of Medicine and Surgery, University of Milano-Bicocca, 20900 Monza, Italy; (L.B.); (A.B.); (E.L.); (E.C.)
| | - Alessandra Bulbarelli
- School of Medicine and Surgery, University of Milano-Bicocca, 20900 Monza, Italy; (L.B.); (A.B.); (E.L.); (E.C.)
- POLARIS Centre, University of Milano-Bicocca, 20126 Milano, Italy
- Bicocca Center of Science and Technology for Food, University of Milano-Bicocca, Piazza della Scienza, 2, 20126 Milano, Italy
| | - Elena Lonati
- School of Medicine and Surgery, University of Milano-Bicocca, 20900 Monza, Italy; (L.B.); (A.B.); (E.L.); (E.C.)
- Bicocca Center of Science and Technology for Food, University of Milano-Bicocca, Piazza della Scienza, 2, 20126 Milano, Italy
| | - Emanuela Cazzaniga
- School of Medicine and Surgery, University of Milano-Bicocca, 20900 Monza, Italy; (L.B.); (A.B.); (E.L.); (E.C.)
- Bicocca Center of Science and Technology for Food, University of Milano-Bicocca, Piazza della Scienza, 2, 20126 Milano, Italy
| | - Michele Tassotti
- Human Nutrition Unit, Department of Food and Drug, University of Parma, 43121 Parma, Italy; (M.T.); (P.M.); (D.D.R.)
| | - Pedro Mena
- Human Nutrition Unit, Department of Food and Drug, University of Parma, 43121 Parma, Italy; (M.T.); (P.M.); (D.D.R.)
| | - Daniele Del Rio
- Human Nutrition Unit, Department of Food and Drug, University of Parma, 43121 Parma, Italy; (M.T.); (P.M.); (D.D.R.)
- School of Advanced Studies on Food and Nutrition, University of Parma, 43121 Parma, Italy
| | - Paola Palestini
- School of Medicine and Surgery, University of Milano-Bicocca, 20900 Monza, Italy; (L.B.); (A.B.); (E.L.); (E.C.)
- POLARIS Centre, University of Milano-Bicocca, 20126 Milano, Italy
- Bicocca Center of Science and Technology for Food, University of Milano-Bicocca, Piazza della Scienza, 2, 20126 Milano, Italy
- Correspondence:
| |
Collapse
|
24
|
Dolmatova LS, Ulanova OA, Timchenko NF. Effect of a Heat-Stable Toxin of Yersinia pseudotuberculosis on the Functional and Phenotypic Traits of Two Types of Phagocytes in the Holothurian Eupentacta fraudatrix. BIOL BULL+ 2021. [DOI: 10.1134/s1062359021040051] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
25
|
Barteková M, Adameová A, Görbe A, Ferenczyová K, Pecháňová O, Lazou A, Dhalla NS, Ferdinandy P, Giricz Z. Natural and synthetic antioxidants targeting cardiac oxidative stress and redox signaling in cardiometabolic diseases. Free Radic Biol Med 2021; 169:446-477. [PMID: 33905865 DOI: 10.1016/j.freeradbiomed.2021.03.045] [Citation(s) in RCA: 46] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/15/2021] [Revised: 03/22/2021] [Accepted: 03/25/2021] [Indexed: 12/12/2022]
Abstract
Cardiometabolic diseases (CMDs) are metabolic diseases (e.g., obesity, diabetes, atherosclerosis, rare genetic metabolic diseases, etc.) associated with cardiac pathologies. Pathophysiology of most CMDs involves increased production of reactive oxygen species and impaired antioxidant defense systems, resulting in cardiac oxidative stress (OxS). To alleviate OxS, various antioxidants have been investigated in several diseases with conflicting results. Here we review the effect of CMDs on cardiac redox homeostasis, the role of OxS in cardiac pathologies, as well as experimental and clinical data on the therapeutic potential of natural antioxidants (including resveratrol, quercetin, curcumin, vitamins A, C, and E, coenzyme Q10, etc.), synthetic antioxidants (including N-acetylcysteine, SOD mimetics, mitoTEMPO, SkQ1, etc.), and promoters of antioxidant enzymes in CMDs. As no antioxidant indicated for the prevention and/or treatment of CMDs has reached the market despite the large number of preclinical and clinical studies, a sizeable translational gap is evident in this field. Thus, we also highlight potential underlying factors that may contribute to the failure of translation of antioxidant therapies in CMDs.
Collapse
Affiliation(s)
- Monika Barteková
- Institute for Heart Research, Centre of Experimental Medicine, Slovak Academy of Sciences, 84104 Bratislava, Slovakia; Institute of Physiology, Faculty of Medicine, Comenius University in Bratislava, 81372 Bratislava, Slovakia.
| | - Adriana Adameová
- Institute for Heart Research, Centre of Experimental Medicine, Slovak Academy of Sciences, 84104 Bratislava, Slovakia; Department of Pharmacology and Toxicology, Faculty of Pharmacy, Comenius University in Bratislava, 83232 Bratislava, Slovakia
| | - Anikó Görbe
- Department of Pharmacology and Pharmacotherapy, Semmelweis University, 1085 Budapest, Hungary; Pharmahungary Group, 6722 Szeged, Hungary
| | - Kristína Ferenczyová
- Institute for Heart Research, Centre of Experimental Medicine, Slovak Academy of Sciences, 84104 Bratislava, Slovakia
| | - Oľga Pecháňová
- Institute of Normal and Pathological Physiology, Centre of Experimental Medicine, Slovak Academy of Sciences, 81371 Bratislava, Slovakia
| | - Antigone Lazou
- Laboratory of Animal Physiology, School of Biology, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece
| | - Naranjan S Dhalla
- Institute of Cardiovascular Sciences, St. Boniface Hospital Albrechtsen Research Centre, And Department of Physiology & Pathophysiology, Max Rady College of Medicine, University of Manitoba, Winnipeg, MB R3E 0W2, Canada
| | - Péter Ferdinandy
- Department of Pharmacology and Pharmacotherapy, Semmelweis University, 1085 Budapest, Hungary; Pharmahungary Group, 6722 Szeged, Hungary
| | - Zoltán Giricz
- Department of Pharmacology and Pharmacotherapy, Semmelweis University, 1085 Budapest, Hungary; Pharmahungary Group, 6722 Szeged, Hungary
| |
Collapse
|
26
|
Enășescu DA, Moisescu MG, Imre M, Greabu M, Ripszky Totan A, Stanescu-Spinu I, Burcea M, Albu C, Miricescu D. Lutein Treatment Effects on the Redox Status and Metalloproteinase-9 (MMP-9) in Oral Cancer Squamous Cells-Are There Therapeutical Hopes? MATERIALS 2021; 14:ma14112968. [PMID: 34072756 PMCID: PMC8199462 DOI: 10.3390/ma14112968] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/31/2021] [Revised: 05/27/2021] [Accepted: 05/28/2021] [Indexed: 01/03/2023]
Abstract
Carotenoids loaded in nanoparticles should be regarded as a promising way to increase the availability in healthy cells and to induce apoptosis in cancer. Lutein is a carotenoid that, in contrast to beta-carotene, has no known toxicities. Oral cancer represents one of the most frequent types of cancer world-wide with an incidence rate of about 9% of all types of cancer. Almost 95% of all oral cancers are represented by squamous cell carcinomas (OSCC). The aim of this study was to review and analyse the effects of lutein and Poly(d,l-lactide-co-glycolide) (PLGA) Nps containing lutein (Lut Nps) on oxidative stress biomarkers (OXSR-1, FOXO-3, TAC) and collagen degradation biomarker-MMP-9, in human cells BICR10 of buccal mucosa squamous carcinoma. Lut Nps were prepared by the emulsion-solvent evaporation method. MMP, OXSR-1, TAC, FOXO-3 and MMP-9 were measured in tumour cell lysates by the ELISA technique. Our results have shown that in Lut 100 cells and Lut Nps the OXSR1 (p < 0.001, p < 0.001) and TAC (p < 0.001, p < 0.001) values were significantly higher than in control cells. The Lut 100 and Lut Nps FOXO-3 levels revealed no significant differences versus the control. MMP-9 levels were significantly reduced (p < 0.001) in the Lut Nps cells versus control cells. In our study conditions, lutein and lutein Nps did not trigger an oxidative stress by ROS induction. However, lutein Nps treatment seemed to have a positive effect, by downregulating the MMP-9 levels. Loaded in Nps, lutein could be regarded as a protective factor against local invasiveness, in whose molecular landscape MMPs, and especially MMP-9 are the main actors.
Collapse
Affiliation(s)
- Dan Alexandru Enășescu
- Department of Biochemistry, Faculty of Dental Medicine, University of Medicine and Pharmacy Carol Davila, 8 Eroii Sanitari Blvd., Sector 5, 050474 Bucharest, Romania; (D.A.E.); (M.G.); (I.S.-S.); (D.M.)
| | - Mihaela Georgeta Moisescu
- Department Biophysics and Cellular Biotechnology, University of Medicine and Pharmacy Carol Davila, 8 Eroii Sanitari Blvd., Sector 5, 050474 Bucharest, Romania;
- Excellence Centre for Research in Biophysics and Cellular Biotechnology, University of Medicine and Pharmacy Carol Davila, 8 Eroii Sanitari Blvd., Sector 5, 050474 Bucharest, Romania
| | - Marina Imre
- Department of Complete Denture, Faculty of Dental Medicine, Carol Davila University of Medicine and Pharmacy, 8 Eroii Sanitari Blvd., Sector 5, 050474 Bucharest, Romania;
| | - Maria Greabu
- Department of Biochemistry, Faculty of Dental Medicine, University of Medicine and Pharmacy Carol Davila, 8 Eroii Sanitari Blvd., Sector 5, 050474 Bucharest, Romania; (D.A.E.); (M.G.); (I.S.-S.); (D.M.)
| | - Alexandra Ripszky Totan
- Department of Biochemistry, Faculty of Dental Medicine, University of Medicine and Pharmacy Carol Davila, 8 Eroii Sanitari Blvd., Sector 5, 050474 Bucharest, Romania; (D.A.E.); (M.G.); (I.S.-S.); (D.M.)
- Correspondence: (A.R.T.); (C.A.)
| | - Iulia Stanescu-Spinu
- Department of Biochemistry, Faculty of Dental Medicine, University of Medicine and Pharmacy Carol Davila, 8 Eroii Sanitari Blvd., Sector 5, 050474 Bucharest, Romania; (D.A.E.); (M.G.); (I.S.-S.); (D.M.)
| | - Marian Burcea
- Department of Ophthalmology, Faculty of General Medicine, University of Medicine and Pharmacy Carol Davila, 8 Eroilor Sanitari Blvd., 050474 Bucharest, Romania;
| | - Crenguta Albu
- Department of Genetics, Faculty of General Medicine, University of Medicine and Pharmacy Carol Davila, 8 Eroilor Sanitari Blvd., 050474 Bucharest, Romania
- Correspondence: (A.R.T.); (C.A.)
| | - Daniela Miricescu
- Department of Biochemistry, Faculty of Dental Medicine, University of Medicine and Pharmacy Carol Davila, 8 Eroii Sanitari Blvd., Sector 5, 050474 Bucharest, Romania; (D.A.E.); (M.G.); (I.S.-S.); (D.M.)
| |
Collapse
|
27
|
Harish BS, Raja MRC, Mahapatra SK, Uppuluri KB. Production Enhancement of an Anticoagulant Trypsin Inhibitor from Oceanimonas sp. BPMS22 and Its Anti-cancer Activity. Int J Pept Res Ther 2021. [DOI: 10.1007/s10989-020-10078-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
|
28
|
Ndlovu S, Nagiah S, Abdul NS, Ghazi T, Chuturgoon AA. Deoxynivalenol downregulates NRF2-induced cytoprotective response in human hepatocellular carcinoma (HepG2) cells. Toxicon 2021; 193:4-12. [PMID: 33515572 DOI: 10.1016/j.toxicon.2021.01.017] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2020] [Revised: 01/18/2021] [Accepted: 01/22/2021] [Indexed: 02/07/2023]
Abstract
Deoxynivalenol (DON) commonly infects agricultural foods; it exhibits toxicity by inducing oxidative stress and inhibiting protein synthesis. Nuclear factor erythroid 2-related factor 2 (NRF2) regulates the cellular antioxidant response. We investigated the cytotoxicity of DON and its effect on the NRF2 antioxidant response in HepG2 cells. The Methyl Thiazol Tetrazolium (MTT), glutathione (GSH) and ATP assays evaluated toxicity, whilst lipid peroxidation and membrane damage were assessed using the Thiobarbituric acid reactive substance (TBARS) and lactate dehydrogenase (LDH) assays. Protein expression of NRF2, phosphorylated (p-ser40) NRF2, catalase (CAT), superoxide dismutase 2 (SOD2), and Sirtuin 3 (Sirt3) were quantified by Western Blotting. Gene expression of glutathione peroxidase (GPx), CAT and SOD2 was determined using qPCR. DON decreased cell viability, GSH concentrations and ATP levels and increased lipid peroxidation and membrane damage. DON significantly decreased total NRF2 and increased p-NRF2 and downregulated the transcription and translation of NRF2 target antioxidant enzymes. Further, expression of the mitochondrial stress response protein, Sirt3 was significantly decreased. In conclusion, DON induced oxidative stress and downregulated NRF2-induced cytoprotection by suppressing the antioxidant signalling mechanism in HepG2 cells.
Collapse
Affiliation(s)
- Siqiniseko Ndlovu
- Discipline of Medical Biochemistry, School of Laboratory Medicine and Medical Sciences, College of Health Sciences, University of KwaZulu-Natal, Durban, 4041, South Africa
| | - Savania Nagiah
- Discipline of Medical Biochemistry, School of Laboratory Medicine and Medical Sciences, College of Health Sciences, University of KwaZulu-Natal, Durban, 4041, South Africa
| | - Naeem Sheik Abdul
- Discipline of Medical Biochemistry, School of Laboratory Medicine and Medical Sciences, College of Health Sciences, University of KwaZulu-Natal, Durban, 4041, South Africa
| | - Terisha Ghazi
- Discipline of Medical Biochemistry, School of Laboratory Medicine and Medical Sciences, College of Health Sciences, University of KwaZulu-Natal, Durban, 4041, South Africa
| | - Anil A Chuturgoon
- Discipline of Medical Biochemistry, School of Laboratory Medicine and Medical Sciences, College of Health Sciences, University of KwaZulu-Natal, Durban, 4041, South Africa.
| |
Collapse
|
29
|
Zhao YZ, Lin MT, Lan QH, Zhai YY, Xu HL, Xiao J, Kou L, Yao Q. Silk Fibroin-Modified Disulfiram/Zinc Oxide Nanocomposites for pH Triggered Release of Zn 2+ and Synergistic Antitumor Efficacy. Mol Pharm 2020; 17:3857-3869. [PMID: 32833457 DOI: 10.1021/acs.molpharmaceut.0c00604] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Disulfiram (DSF) is an FDA-approved anti-alcoholic drug that has recently proven to be effective in cancer treatment. However, the short half-life in the bloodstream and the metal ion-dependent antitumor activity significantly limited the further application of DSF in the clinical field. To this end, we constructed a silk fibroin modified disulfiram/zinc oxide nanocomposites (SF/DSF@ZnO) to solubilize and stabilize DSF, and, more importantly, achieve pH triggered Zn2+ release and subsequent synergistic antitumor activity. The prepared SF/DSF@ZnO nanocomposites were spherical and had a high drug loading. Triggered by the lysosomal pH, SF/DSF@ZnO could induce the rapid release of Zn2+ under the acidic conditions and caused nanoparticulate disassembly along with DSF release. In vitro experiments showed that cytotoxicity of DSF could be enhanced by the presence of Zn2+, and further amplified when encapsulated into SF/DSF@ZnO nanocomposites. It was confirmed that the significantly amplified cytotoxicity of SF/DSF@ZnO was resulted from pH-triggered Zn2+ release, inhibited cell migration, and increased ROS production. In vivo study showed that SF/DSF@ZnO nanocomposites significantly increased the tumor accumulation and prolonged the retention time. In vivo antitumor experiments in the xenograft model showed that SF/DSF@ZnO exerted the highest tumor-inhibition rate among all the drug treatments. Therefore, this exquisite study established silk fibroin-modified disulfiram/zinc oxide nanocomposites, SF/DSF@ZnO, where ZnO not only acted as a delivery carrier but also served as a metal ion reservoir to achieve synergistic antitumor efficacy. The established DSF nanoformulation displayed excellent therapeutic potential in future cancer treatment.
Collapse
Affiliation(s)
- Ying-Zheng Zhao
- Department of Ultrasonography, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou 32500, Zhejiang, China.,School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou 325035, China
| | - Meng-Ting Lin
- School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou 325035, China.,Department of Pharmacy, The Affiliated Wenling Hospital of Wenzhou Medical University, Wenling 317500, China
| | - Qing-Hua Lan
- School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou 325035, China
| | - Yuan-Yuan Zhai
- School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou 325035, China
| | - He-Lin Xu
- School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou 325035, China
| | - Jian Xiao
- School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou 325035, China
| | - Longfa Kou
- Department of Pharmacy, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou 325027, China
| | - Qing Yao
- Department of Ultrasonography, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou 32500, Zhejiang, China.,School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou 325035, China
| |
Collapse
|
30
|
Ajsuvakova OP, Tinkov AA, Aschner M, Rocha JB, Michalke B, Skalnaya MG, Skalny AV, Butnariu M, Dadar M, Sarac I, Aaseth J, Bjørklund G. Sulfhydryl groups as targets of mercury toxicity. Coord Chem Rev 2020; 417:213343. [PMID: 32905350 PMCID: PMC7470069 DOI: 10.1016/j.ccr.2020.213343] [Citation(s) in RCA: 142] [Impact Index Per Article: 35.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
The present study addresses existing data on the affinity and conjugation of sulfhydryl (thiol; -SH) groups of low- and high-molecular-weight biological ligands with mercury (Hg). The consequences of these interactions with special emphasis on pathways of Hg toxicity are highlighted. Cysteine (Cys) is considered the primary target of Hg, and link its sensitivity with thiol groups and cellular damage. In vivo, Hg complexes play a key role in Hg metabolism. Due to the increased affinity of Hg to SH groups in Cys residues, glutathione (GSH) is reactive. The geometry of Hg(II) glutathionates is less understood than that with Cys. Both Cys and GSH Hg-conjugates are important in Hg transport. The binding of Hg to Cys mediates multiple toxic effects of Hg, especially inhibitory effects on enzymes and other proteins that contain free Cys residues. In blood plasma, albumin is the main Hg-binding (Hg2+, CH3Hg+, C2H5Hg+, C6H5Hg+) protein. At the Cys34 residue, Hg2+ binds to albumin, whereas other metals likely are bound at the N-terminal site and multi-metal binding sites. In addition to albumin, Hg binds to multiple Cys-containing enzymes (including manganese-superoxide dismutase (Mn-SOD), arginase I, sorbitol dehydrogenase, and δ-aminolevulinate dehydratase, etc.) involved in multiple processes. The affinity of Hg for thiol groups may also underlie the pathways of Hg toxicity. In particular, Hg-SH may contribute to apoptosis modulation by interfering with Akt/CREB, Keap1/Nrf2, NF-κB, and mitochondrial pathways. Mercury-induced oxidative stress may ensue from Cys-Hg binding and inhibition of Mn-SOD (Cys196), thioredoxin reductase (TrxR) (Cys497) activity, as well as limiting GSH (GS-HgCH3) and Trx (Cys32, 35, 62, 65, 73) availability. Moreover, Hg-thiol interaction also is crucial in the neurotoxicity of Hg by modulating the cytoskeleton and neuronal receptors, to name a few. However, existing data on the role of Hg-SH binding in the Hg toxicity remains poorly defined. Therefore, more research is needed to understand better the role of Hg-thiol binding in the molecular pathways of Hg toxicology and the critical role of thiols to counteract negative effects of Hg overload.
Collapse
Affiliation(s)
- Olga P. Ajsuvakova
- Yaroslavl State University, Yaroslavl, Russia
- Federal Scientific Center of Biological Systems and Agrotechnologies of the Russian Academy of Sciences, Orenburg, Russia
- IM Sechenov First Moscow State Medical University, Moscow, Russia
| | - Alexey A. Tinkov
- Yaroslavl State University, Yaroslavl, Russia
- Federal Scientific Center of Biological Systems and Agrotechnologies of the Russian Academy of Sciences, Orenburg, Russia
- IM Sechenov First Moscow State Medical University, Moscow, Russia
| | - Michael Aschner
- IM Sechenov First Moscow State Medical University, Moscow, Russia
- Department of Molecular Pharmacology, Albert Einstein College of Medicine, Bronx, NY, USA
| | - João B.T. Rocha
- Departamento de Bioquímica e Biologia Molecular, CCNE, Universidade Federal de Santa Maria, Santa Maria, RS, Brazil
| | | | | | - Anatoly V. Skalny
- Yaroslavl State University, Yaroslavl, Russia
- Federal Scientific Center of Biological Systems and Agrotechnologies of the Russian Academy of Sciences, Orenburg, Russia
- IM Sechenov First Moscow State Medical University, Moscow, Russia
| | - Monica Butnariu
- Banat’s University of Agricultural Sciences and Veterinary Medicine “King Michael I of Romania” from Timișoara, Timişoara, Romania
- CONEM Romania Biotechnology and Environmental Sciences Group, Banat’s University of Agricultural Sciences and Veterinary Medicine “King Michael I of Romania” from Timișoara, Timişoara, Romania
| | - Maryam Dadar
- Razi Vaccine and Serum Research Institute, Agricultural Research, Education and Extension Organization (AREEO), Karaj, Iran
| | - Ioan Sarac
- Banat’s University of Agricultural Sciences and Veterinary Medicine “King Michael I of Romania” from Timișoara, Timişoara, Romania
- CONEM Romania Biotechnology and Environmental Sciences Group, Banat’s University of Agricultural Sciences and Veterinary Medicine “King Michael I of Romania” from Timișoara, Timişoara, Romania
| | - Jan Aaseth
- IM Sechenov First Moscow State Medical University, Moscow, Russia
- Research Department, Innlandet Hospital Trust, Brumunddal, Norway
| | - Geir Bjørklund
- Council for Nutritional and Environmental Medicine (CONEM), Mo i Rana, Norway
| |
Collapse
|
31
|
Ohgino K, Terai H, Yasuda H, Nukaga S, Hamamoto J, Tani T, Kuroda A, Arai D, Ishioka K, Masuzawa K, Ikemura S, Kawada I, Naoki K, Fukunaga K, Soejima K. Intracellular levels of reactive oxygen species correlate with ABT-263 sensitivity in non-small-cell lung cancer cells. Cancer Sci 2020; 111:3793-3801. [PMID: 32687646 PMCID: PMC7541018 DOI: 10.1111/cas.14569] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2019] [Revised: 06/25/2020] [Accepted: 07/04/2020] [Indexed: 12/13/2022] Open
Abstract
ABT‐263 (Navitoclax) is a BH3‐mimetic drugs targeting anti‐apoptotic B‐cell lymphoma‐2 (BCL‐2) family proteins, including BCL‐2, BCL‐xL, and BCL‐w, thereby inducing apoptosis. In small‐cell lung cancer (SCLC) cells, the response to ABT‐263 is associated with the expression of myeloid cell leukemia‐1 (MCL‐1) protein, however the efficacy of ABT‐263 in non‐small‐cell lung cancer (NSCLC) has not been thoroughly evaluated. There are currently no established biomarkers for predicting the efficacy of ABT‐263 treatment in NSCLC. We screened a panel of different NSCLC cell lines and found that ABT‐263 inhibited cell proliferation and induced apoptosis in Calu‐1, Calu‐3, and BID007 cells. Inconsistent with previous reports on SCLC, low levels of MCL‐1 did not predict the response to ABT‐263 in NSCLC cells, however we found that intracellular levels of reactive oxygen species (ROS) in cancer cells were associated with sensitivity to ABT‐263 in NSCLC cells. We also showed that increasing the level of intracellular ROS could enhance the sensitivity to ABT‐263 in NSCLC cells. In summary, we propose that the intracellular levels of ROS could be used as a potential novel biomarker for predicting a response to ABT‐263 in NSCLC. Furthermore, we show some evidence supporting the further assessment of ABT‐263 as a new therapeutic strategy in patients with NSCLC combined with agents regulating ROS levels. We believe that our findings and follow‐up studies on this matter would lead to novel diagnostic and treatment strategies in patients with NSCLC.
Collapse
Affiliation(s)
- Keiko Ohgino
- Department of Pulmonary Medicine, School of Medicine, Keio University, Tokyo, Japan
| | - Hideki Terai
- Division of Translational Research, Clinical and Translational Research Center, School of Medicine, Keio University, Tokyo, Japan.,Department of Respiratory Medicine, Kitasato University, Kitasato Institute Hospital, Tokyo, Japan
| | - Hiroyuki Yasuda
- Department of Pulmonary Medicine, School of Medicine, Keio University, Tokyo, Japan
| | - Shigenari Nukaga
- Department of Pulmonary Medicine, School of Medicine, Keio University, Tokyo, Japan
| | - Junko Hamamoto
- Department of Pulmonary Medicine, School of Medicine, Keio University, Tokyo, Japan
| | - Tetsuo Tani
- Department of Pulmonary Medicine, School of Medicine, Keio University, Tokyo, Japan
| | - Aoi Kuroda
- Department of Pulmonary Medicine, School of Medicine, Keio University, Tokyo, Japan
| | - Daisuke Arai
- Department of Pulmonary Medicine, School of Medicine, Keio University, Tokyo, Japan
| | - Kota Ishioka
- Department of Pulmonary Medicine, School of Medicine, Keio University, Tokyo, Japan
| | - Keita Masuzawa
- Department of Pulmonary Medicine, School of Medicine, Keio University, Tokyo, Japan
| | | | - Ichiro Kawada
- Department of Pulmonary Medicine, School of Medicine, Keio University, Tokyo, Japan
| | - Katsuhiko Naoki
- Department of Respiratory Medicine, Kitasato University School of Medicine, Sagamihara-city, Japan
| | - Koichi Fukunaga
- Department of Pulmonary Medicine, School of Medicine, Keio University, Tokyo, Japan
| | - Kenzo Soejima
- Division of Translational Research, Clinical and Translational Research Center, School of Medicine, Keio University, Tokyo, Japan
| |
Collapse
|
32
|
Coulidiati TH, Dantas BB, Faheina-Martins GV, de Morais Gomes ER, Gonçalves JCR, de Araújo DAM. Proapoptotic Effects of triazol-1,4-Naphthoquinones Involve Intracellular ROS Production and MAPK/ERK Pathway in Human Leukemia Cells. Anticancer Agents Med Chem 2020; 20:2089-2098. [PMID: 32698747 DOI: 10.2174/1871520620666200721124221] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2020] [Revised: 06/01/2020] [Accepted: 06/17/2020] [Indexed: 01/01/2023]
Abstract
BACKGROUND The natural products constitute an important source of antitumor and cytotoxic agents. Naphthoquinones are effectively quinones present in different plants, with demonstrated anticancer activities. A recent study conducted by our group demonstrated the antileukemic potential of two novel triazol-1,4- naphthoquinones derivatives, PTN (2-(4-Phenyl-1H-1,2,3-triazol-1-yl)-1,4-naphthoquinone) and MPTN (2-[4- (4-Methoxyphenyl)-1H-1,2,3-triazol-1-yl]-1,4-naphthoquinone). Although, the mechanisms underlying the proapoptotic effects of PTN and MPTN have not been fully elucidated so far. OBJECTIVE The aim of this study was to evaluate the proapoptotic mechanism of PTN and MPTN in human acute leukemia cells. METHODS We used fluorescence microscopy to observe acridine orange and annexin V staining cells. Flow cytometry assay has also been used for ROS quantification, BAX and cytochrome c proteins expression and apoptosis analysis. MTT assay and western blotting technique have been performed as well for MAPK pathway analysis. RESULTS By using the acridine orange and annexin V staining with fluorescence microscopy, we have characterized the proapoptotic effects of PTN and MPTN in HL-60 cells involving the intrinsic mitochondrial pathway, since these compounds promoted an increase in the intracellular BAX and cytochrome c protein levels (p<0.05). We further demonstrated that apoptosis induction in HL-60 cells was mediated by increasing intracellular ROS levels via ERK but not p38 MAPKs pathway. CONCLUSION Taken together, these results have demonstrated that PTN and MPTN are promising tools for the development of new anti-leukemic drugs.
Collapse
Affiliation(s)
- Tangbadioa H Coulidiati
- Department of Life and Earth Sciences, Research and Training Unit in Science and Technology, University Norbert Zongo of Koudougou, BP 376, Koudougou, Burkina Faso,Laboratory of Cellular and Molecular Biotechnology, Department of Biotechnology, Federal University of Paraíba, 58051-900, João Pessoa-PB, Brazil
| | - Bruna B Dantas
- Laboratory of Cellular and Molecular Biotechnology, Department of Biotechnology, Federal University of Paraíba, 58051-900, João Pessoa-PB, Brazil
| | - Glaucia V Faheina-Martins
- Laboratory of Cellular and Molecular Biotechnology, Department of Biotechnology, Federal University of Paraíba, 58051-900, João Pessoa-PB, Brazil
| | - Enéas Ricardo de Morais Gomes
- Laboratory of Cellular and Molecular Biotechnology, Department of Biotechnology, Federal University of Paraíba, 58051-900, João Pessoa-PB, Brazil
| | - Juan C R Gonçalves
- Laboratory of Cellular and Molecular Biotechnology, Department of Biotechnology, Federal University of Paraíba, 58051-900, João Pessoa-PB, Brazil,Department of Pharmaceutical Sciences, Federal University of Paraíba, 58051-900, João Pessoa-PB, Brazil
| | - Demetrius A Machado de Araújo
- Laboratory of Cellular and Molecular Biotechnology, Department of Biotechnology, Federal University of Paraíba, 58051-900, João Pessoa-PB, Brazil
| |
Collapse
|
33
|
Polyphenolic Composition and Anti-Melanoma Activity of White Forsythia ( Abeliophyllum distichum Nakai) Organ Extracts. PLANTS 2020; 9:plants9060757. [PMID: 32560393 PMCID: PMC7356668 DOI: 10.3390/plants9060757] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/06/2020] [Revised: 06/15/2020] [Accepted: 06/15/2020] [Indexed: 12/13/2022]
Abstract
Abeliophyllum distichum Nakai, commonly called white forsythia, is a monotypic genus endemic to Korea. Although A. distichum is mainly used as an ornamental plant because of its horticultural value, recent studies have demonstrated its bioactivities, including antioxidant and anti-inflammatory activities, prompting us to investigate the potential anticancer effect of A. distichum organ extracts (leaves, fruit, and branches) against human melanoma SK-MEL-2 cells. The methanol extract of A. distichum leaves (AL) exhibited dose- and time-dependent cytotoxicities against SK-MEL-2 cells but not against HDFa human dermal fibroblasts. Based on high-performance liquid chromatography analysis, we identified 18 polyphenolic compounds from A. distichum organ extracts and suggest that differences in anticancer activity between organ extracts should be caused by different compositions of polyphenolic compounds. Additionally, the Annexin V/propidium iodide staining assay and analysis of caspase activity and expression indicated that AL induced cell death, including early and late apoptosis, as well as necrosis, by inducing the extrinsic pathway. Furthermore, we analyzed the differentially expressed genes between mock- and AL-treated cells using RNA-seq technology, suggesting that the anti-melanoma action of AL is mediated by down-regulation of the phosphoinositide 3-kinase (PI3K)/Akt signaling pathway. Taken together, these results shed light on the potential use of A. distichum as a green resource with potent anti-melanoma activity.
Collapse
|
34
|
Relationship between the antiproliferative properties of Cu(II) complexes with the Schiff base derived from pyridine-2-carboxaldehyde and 5,6-diamino-1,3-dimethyluracil and the redox status mediated by antioxidant defense systems on glioma tumoral cells. J Inorg Biochem 2020; 207:111053. [DOI: 10.1016/j.jinorgbio.2020.111053] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2019] [Revised: 02/06/2020] [Accepted: 03/02/2020] [Indexed: 12/24/2022]
|
35
|
A promising therapeutic combination for metastatic prostate cancer: Chloroquine as autophagy inhibitor and palladium(II) barbiturate complex. Biochimie 2020; 175:159-172. [PMID: 32497551 DOI: 10.1016/j.biochi.2020.05.010] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2020] [Revised: 05/15/2020] [Accepted: 05/17/2020] [Indexed: 12/16/2022]
Abstract
Autophagy is a catabolic process for cells that can provide energy sources and allows cancer cells to evade cell death. Therefore, studies on the combination of autophagy inhibitors with drugs are increasing as a new treatment modality in cancer. Previously, we reported the anti-tumor activity of a Palladium (Pd)(II) complex against different types of cancer in vitro and in vivo. Chloroquine (CQ), the worldwide used anti-malarial drug, has recently been focused as a chemosensitizer in cancer treatment. The aim of this study was to investigate the efficacy of a combined treatment of these agents that work through different mechanisms to provide an effective treatment modality for metastatic prostate cancer that is certainly fatal. Metastatic prostate cancer cell lines (PC-3 and LNCaP) were treated with Pd (II) complex, CQ, and their combination. The combination enhanced apoptosis by increasing phosphatidylserine translocation and pro-apoptotic proteins. Apoptosis was confirmed by the use of apoptosis inhibitor. The formation of acidic vesicular organelles (AVOs) was observed by acridine orange staining in fluorescence microscopy. The Pd (II) complex increased AVOs formation in prostate cancer cells and CQ-pretreatment has potentiated this effect. Importantly, treatment with CQ suppressed the pro-survival function of autophagy, which might have contributed to enhanced cytotoxicity. In addition, PI3K/AKT/mTOR-related protein expressions were altered after the combination of treatments. Our results suggest that combination treatment enhances apoptotic cell death possibly via the inhibition of autophagy, and may therefore be regarded as a novel and better approach for the treatment of metastatic prostate cancer.
Collapse
|
36
|
Abstract
The process of embryonic development is crucial and radically influences preimplantation embryo competence. It involves oocyte maturation, fertilization, cell division and blastulation and is characterized by different key phases that have major influences on embryo quality. Each stage of the process of preimplantation embryonic development is led by important signalling pathways that include very many regulatory molecules, such as primary and secondary messengers. Many studies, both in vivo and in vitro, have shown the importance of the contribution of reactive oxygen species (ROS) as important second messengers in embryo development. ROS may originate from embryo metabolism and/or oocyte/embryo surroundings, and their effect on embryonic development is highly variable, depending on the needs of the embryo at each stage of development and on their environment (in vivo or under in vitro culture conditions). Other studies have also shown the deleterious effects of ROS in embryo development, when cellular tissue production overwhelms antioxidant production, leading to oxidative stress. This stress is known to be the cause of many cellular alterations, such as protein, lipid, and DNA damage. Considering that the same ROS level can have a deleterious effect on the fertilizing oocyte or embryo at certain stages, and a positive effect at another stage of the development process, further studies need to be carried out to determine the rate of ROS that benefits the embryo and from what rate it starts to be harmful, this measured at each key phase of embryonic development.
Collapse
|
37
|
Maruszewska A, Tarasiuk J. Quercetin Triggers Induction of Apoptotic and Lysosomal Death of Sensitive and Multidrug Resistant Leukaemia HL60 Cells. Nutr Cancer 2020; 73:484-501. [PMID: 32329631 DOI: 10.1080/01635581.2020.1752745] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
Multidrug resistance (MDR) constitutes the major cause of the failure in anticancer therapy. One of the most important mechanisms leading to the occurrence of MDR is related to the modulation of cellular death pathways. The aim of this study was to determine the effect of quercetin (Q) on triggering the programed death of human promyelocytic leukemia sensitive cells HL60 as well as multidrug resistant HL60/VINC cells overexpressing P-glycoprotein and HL60/MX2 cells characterized by the presence of mutated α isoform of topoisomerase II and the absence of β isoform of this enzyme. Q exerted comparable cytotoxic activities toward sensitive HL60 cells and their MDR counterparts. It was also found that this compound modulated the cellular level of reactive oxygen species (ROS) and led to the marked decrease in cellular GSH level. Furthermore, it was demonstrated that Q used at IC50 and IC90 significantly increased the percentage of sub-G1 subpopulation of all studied leukemia cells causing oligonucleosomal DNA fragmentation. The present study also indicated that Q used at IC90 triggers predominantly programed cell death of sensitive HL60 cells and their MDR counterparts by induction of apoptosis occurring with the involvement of caspase-3 and caspase-8 as well as by lysosome membrane permeabilization-dependent mechanisms.
Collapse
Affiliation(s)
- Agnieszka Maruszewska
- Department of Biochemistry, Faculty of Biology, University of Szczecin, Szczecin, Poland.,Molecular Biology and Biotechnology Center, Faculty of Biology, University of Szczecin, Szczecin, Poland
| | - Jolanta Tarasiuk
- Department of Biochemistry, Faculty of Biology, University of Szczecin, Szczecin, Poland.,Molecular Biology and Biotechnology Center, Faculty of Biology, University of Szczecin, Szczecin, Poland
| |
Collapse
|
38
|
Liang Y, Kong D, Zhang Y, Li S, Li Y, Ramamoorthy A, Ma J. Fisetin Inhibits Cell Proliferation and Induces Apoptosis via JAK/STAT3 Signaling Pathways in Human Thyroid TPC 1 Cancer Cells. BIOTECHNOL BIOPROC E 2020. [DOI: 10.1007/s12257-019-0326-9] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
39
|
Chui A, Zhang Q, Dai Q, Shi SH. Oxidative stress regulates progenitor behavior and cortical neurogenesis. Development 2020; 147:dev.184150. [PMID: 32041791 DOI: 10.1242/dev.184150] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2019] [Accepted: 01/17/2020] [Indexed: 12/13/2022]
Abstract
Orderly division of radial glial progenitors (RGPs) in the developing mammalian cerebral cortex generates deep and superficial layer neurons progressively. However, the mechanisms that control RGP behavior and precise neuronal output remain elusive. Here, we show that the oxidative stress level progressively increases in the developing mouse cortex and regulates RGP behavior and neurogenesis. As development proceeds, numerous gene pathways linked to reactive oxygen species (ROS) and oxidative stress exhibit drastic changes in RGPs. Selective removal of PRDM16, a transcriptional regulator highly expressed in RGPs, elevates ROS level and induces expression of oxidative stress-responsive genes. Coinciding with an enhanced level of oxidative stress, RGP behavior was altered, leading to abnormal deep and superficial layer neuron generation. Simultaneous expression of mitochondrially targeted catalase to reduce cellular ROS levels significantly suppresses cortical defects caused by PRDM16 removal. Together, these findings suggest that oxidative stress actively regulates RGP behavior to ensure proper neurogenesis in the mammalian cortex.
Collapse
Affiliation(s)
- Angela Chui
- Developmental Biology Program, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, 1275 York Avenue, New York, NY 10065, USA .,Neuroscience Graduate Program, Weill Cornell Medical College, 1300 York Avenue, New York, NY 10065, USA
| | - Qiangqiang Zhang
- Developmental Biology Program, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, 1275 York Avenue, New York, NY 10065, USA
| | - Qi Dai
- Department of Molecular Biosciences, The Wenner-Gren Institute, Stockholm University, SE-106 91 Stockholm, Sweden
| | - Song-Hai Shi
- Developmental Biology Program, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, 1275 York Avenue, New York, NY 10065, USA .,Neuroscience Graduate Program, Weill Cornell Medical College, 1300 York Avenue, New York, NY 10065, USA.,IDG/McGovern Institute for Brain Research, Tsinghua-Peking Center for Life Sciences, Beijing Frontier Center of Biological Molecules, School of Life Sciences, Tsinghua University, Beijing 100084, China
| |
Collapse
|
40
|
Mohammed ET, Hashem KS, Ahmed AE, Aly MT, Aleya L, Abdel-Daim MM. Ginger extract ameliorates bisphenol A (BPA)-induced disruption in thyroid hormones synthesis and metabolism: Involvement of Nrf-2/HO-1 pathway. THE SCIENCE OF THE TOTAL ENVIRONMENT 2020; 703:134664. [PMID: 31757552 DOI: 10.1016/j.scitotenv.2019.134664] [Citation(s) in RCA: 57] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/27/2019] [Revised: 09/24/2019] [Accepted: 09/24/2019] [Indexed: 06/10/2023]
Abstract
Environmental exposure to BPA is alarming because of the potential health threats for example those concerning the thyroid glands which may show signs of oxidative stress. This original study aimed to investigate the possible antioxidant protective effects of ginger extract (GE) against BPA-induced thyroid injury in male rats, focusing on its effect on Nrf-2/HO-1 signaling and thyroid hormone synthesis regulating genes. The cascade of events in thyroid injury induced by chronic exposure to BPA (200 mg/kg b.w/day for 35 days) involved a preliminary overproduction of ROS followed by significant (p ≤ 0.05) depletion of reduced glutathione (GSH) levels and superoxide dismutase (SOD) activity as well as significant increases of malondialdehyde (MDA) contents, myeloperoxidase (MPO) activity and inducible nitric oxide synthase (iNOS) gene expression. These actions consequently down-regulate the Nrf-2/HO-I signaling which eventually resulting in the DNA fragmentation within the thyroid tissues. Moreover, BPA administration caused a reduction of thyroid iodide uptake evidenced by significant inhibitions (p ≤ 0.05) of sodium-iodide symporter (NIS), thyroid peroxidase (TPO) and thyroid-stimulating hormone receptor (TSHR) mRNA expressions within the thyroid glands. A subsequent significant decreased serum levels of T3 and T4 accompanied by a significantly increased serum TSH level were also detected. These findings were confirmed by the severe pathological changes detected in the thyroid tissue of BPA treated rats. These biochemical and histological alterations were significantly alleviated with ginger administration (250 mg/kg b.w/day for 35 days) plus BPA. In conclusion, ginger extract is a potent antioxidant that can effectively protect against BPA-induced thyroid oxidative damage by activating the Nrf-2/HO-1 gene expressions and enhancing the thyroid hormones synthesis. This is the first study to show the contribution of Nrf-2/HO-1 pathway to the protective effect of ginger extract against BPA-induced thyroid oxidative damage and thyroid hormonal disruption.
Collapse
Affiliation(s)
- Eman T Mohammed
- Department of Biochemistry, Faculty of Veterinary Medicine, Beni-Suef University, Egypt
| | - Khalid S Hashem
- Department of Biochemistry, Faculty of Veterinary Medicine, Beni-Suef University, Egypt
| | - Amr E Ahmed
- Department of Biotechnology and Life Sciences, Faculty of Postgraduate Studies for Advanced Sciences, Beni-Suef University, Egypt
| | - Mohamed Tarek Aly
- Department of Biotechnology and Life Sciences, Faculty of Postgraduate Studies for Advanced Sciences, Beni-Suef University, Egypt
| | - Lotfi Aleya
- Chrono-Environment Laboratory, UMR CNRS 6249, Bourgogne Franche-Comté University Besançon Cedex, France.
| | - Mohamed M Abdel-Daim
- Department of Zoology, Science College, King Saud University, Riyadh 11451, Saudi Arabia; Department of Pharmacology, Faculty of Veterinary Medicine, Suez Canal University, Ismailia 41522, Egypt.
| |
Collapse
|
41
|
Domarecka E, Skarzynska M, Szczepek AJ, Hatzopoulos S. Use of zebrafish larvae lateral line to study protection against cisplatin-induced ototoxicity: A scoping review. Int J Immunopathol Pharmacol 2020; 34:2058738420959554. [PMID: 33084473 PMCID: PMC7786420 DOI: 10.1177/2058738420959554] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2020] [Accepted: 08/26/2020] [Indexed: 12/18/2022] Open
Abstract
AIM The present review aimed to consolidate and analyze the recent information about the use of zebrafish in studies concerning cisplatin-induced ototoxicity and otoprotection. MATERIAL AND METHODS The PubMed, Web of Science, and Scopus databanks were searched using the following MESH terms: zebrafish, cisplatin, ototoxicity. The identified publications were screened according to inclusion and exclusion criteria and the 26 qualifying manuscripts were included in the full-text analysis. The experimental protocols, including cisplatin concentrations, the exposure duration and the outcome measurements used in zebrafish larvae studies, were evaluated and the reported knowledge was summarized. RESULTS Twenty-six substances protecting from cisplatin-induced toxicity were identified with the use of zebrafish larvae. These substances include quinine, salvianolic acid B, berbamine 6, benzamil, quercetin, dexmedetomidine, dexamethsanone, quinoxaline, edaravone, apocynin, dimethyl sulfoxide, KR-22335, SRT1720, ORC-13661, 3-MA, D-methionine, mdivi-1, FUT-175, rapamycin, Z-LLF-CHO, ATX, NAC, CYM-5478, CHCP1, CHCP2 and leupeptin. The otoprotective effects of compounds were attributed to their anti-ROS, anti-apoptotic and cisplatin uptake-blocking properties. The broadest range of protection was achieved when the experimental flow used preconditioning with an otoprotective compound and later a co-incubation with cisplatin. Protection against a high concentration of cisplatin was observed only in protocols using short exposure times (4 and 6 h). CONCLUSIONS The data extracted from the selected papers confirm that despite the differences between the human and the zebra fish hearing thresholds (as affected by cisplatin), the sensory cells of zebrafish and larval zebrafish are a valuable tool which could be used: (i) for the discovery of novel otoprotective substances and compounds; (ii) to screen their side effects and (iii) to extend the knowledge on the mechanisms of cisplatin-induced inner ear damage. For future studies, the development of a consensus experimental protocol is highly recommended.
Collapse
Affiliation(s)
- Ewa Domarecka
- Department of Otorhinolaryngology, Head and Neck Surgery, Berlin Institute of Health, Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, Berlin, Germany
| | - Magda Skarzynska
- Institute of Sensory Organs, Kajetany, Poland
- Institute of Physiology and Pathology of Hearing, Warsaw, Poland
| | - Agnieszka J Szczepek
- Department of Otorhinolaryngology, Head and Neck Surgery, Berlin Institute of Health, Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, Berlin, Germany
| | | |
Collapse
|
42
|
Protective Effects of Aqueous Extract of Mentha suaveolens against Oxidative Stress-Induced Damages in Human Keratinocyte HaCaT Cells. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2019; 2019:5045491. [PMID: 31662774 PMCID: PMC6778877 DOI: 10.1155/2019/5045491] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/17/2019] [Accepted: 08/23/2019] [Indexed: 12/21/2022]
Abstract
Mentha suaveolens is an aromatic herb that has a wide range of biological activities, including antimicrobial, antifungal, anti-inflammatory, and hepatoprotective properties. Although there are a few reports on the antioxidant property of M. suaveolens, its cytoprotective activity against oxidative stress has not been reported yet. The objective of this study was to determine the protective activity of M. suaveolens aqueous extract (MSAE) against hydrogen peroxide- (H2O2-) induced oxidative stress and apoptosis in human keratinocyte HaCaT cells. MSAE pretreatment decreased H2O2-induced cytotoxicity and suppressed H2O2-induced intracellular ROS generation. Furthermore, MSAE suppressed expression levels of H2O2-induced apoptotic genes such as cleaved caspase-3, caspase-9, and cleaved poly (ADP-ribose) polymerase (PARP). Pretreatment with MSAE induced expression of phase II enzyme such as HO-1 through translocation of NF-E2-related factor (Nrf2) upon H2O2 exposure. These results revealed that the cytoprotective effect of MSAE against oxidative stress-induced cell death was associated with activation of Nrf2-mediated phase II enzyme expression.
Collapse
|
43
|
An W, Lai H, Zhang Y, Liu M, Lin X, Cao S. Apoptotic Pathway as the Therapeutic Target for Anticancer Traditional Chinese Medicines. Front Pharmacol 2019; 10:758. [PMID: 31354479 PMCID: PMC6639427 DOI: 10.3389/fphar.2019.00758] [Citation(s) in RCA: 54] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2019] [Accepted: 06/11/2019] [Indexed: 12/12/2022] Open
Abstract
Cancer is a leading cause of morbidity and mortality worldwide. Apoptosis is a process of programmed cell death and it plays a vital role in human development and tissue homeostasis. Mounting evidence indicates that apoptosis is closely related to the survival of cancer and it has emerged as a key target for the discovery and development of novel anticancer drugs. Various studies indicate that targeting the apoptotic signaling pathway by anticancer drugs is an important mechanism in cancer therapy. Therefore, numerous novel anticancer agents have been discovered and developed from traditional Chinese medicines (TCMs) by targeting the cellular apoptotic pathway of cancer cells and shown clinically beneficial effects in cancer therapy. This review aims to provide a comprehensive discussion for the role, pharmacology, related biology, and possible mechanism(s) of a number of important anticancer TCMs and their derivatives mainly targeting the cellular apoptotic pathway. It may have important clinical implications in cancer therapy.
Collapse
Affiliation(s)
- Weixiao An
- Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou, China.,Department of Pharmacy, Nanchong Central Hospital, Nanchong, China
| | - Honglin Lai
- Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou, China.,Department of Pharmacy, Affliated Hospital of Traditional Chinese Medicine, Southwest Medical University, Luzhou, China
| | - Yangyang Zhang
- Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou, China
| | - Minghua Liu
- Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou, China
| | - Xiukun Lin
- Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou, China
| | - Shousong Cao
- Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou, China
| |
Collapse
|
44
|
ROS-Mediated Cancer Cell Killing through Dietary Phytochemicals. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2019; 2019:9051542. [PMID: 31217841 PMCID: PMC6536988 DOI: 10.1155/2019/9051542] [Citation(s) in RCA: 109] [Impact Index Per Article: 21.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/27/2019] [Accepted: 04/18/2019] [Indexed: 02/07/2023]
Abstract
Reactive oxygen species (ROS) promote carcinogenesis by inducing genetic mutations, activating oncogenes, and raising oxidative stress, which all influence cell proliferation, survival, and apoptosis. Cancer cells display redox imbalance due to increased ROS level compared to normal cells. This unique feature in cancer cells may, therefore, be exploited for targeted therapy. Over the past few decades, natural compounds have attracted attention as potential cancer therapies because of their ability to maintain cellular redox homeostasis with minimal toxicity. Preclinical studies show that bioactive dietary polyphenols exert antitumor effects by inducing ROS-mediated cytotoxicity in cancer cells. These bioactive compounds also regulate cell proliferation, survival, and apoptotic and antiapoptotic signalling pathways. In this review, we discuss (i) how ROS is generated and (ii) regulated and (iii) the cell signalling pathways affected by ROS. We also discuss (iv) the various dietary phytochemicals that have been implicated to have cancer therapeutic effects through their ROS-related functions.
Collapse
|
45
|
Buz PT, Duman FD, Erkisa M, Demirci G, Ari F, Ulukaya E, Acar HY. Development of near-infrared region luminescent N-acetyl-L-cysteine-coated Ag 2S quantum dots with differential therapeutic effect. Nanomedicine (Lond) 2019; 14:969-987. [PMID: 30917096 DOI: 10.2217/nnm-2018-0214] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
AIM N-acetyl-L-cysteine (NAC) is a free radical scavenger. We developed NAC-coated Ag2S (NAC-Ag2S) quantum dot (QD) as an optical imaging and therapeutic agent. MATERIALS & METHODS QDs were synthesized in water. Their optical imaging potential and toxicity were studied in vitro. RESULTS NAC-Ag2S QDs have strong emission, that is tunable between 748 and 840 nm, and are stable in biologically relevant media. QDs showed significant differences both in cell internalization and toxicity in vitro. QDs were quite toxic to breast and cervical cancer cells but not to lung derived cells despite the higher uptake. NAC-Ag2S reduces reactive oxygen species (ROS) but causes cell death via DNA damage and apoptosis. CONCLUSION NAC-Ag2S QDs are stable and strong signal-generating theranostic agents offering selective therapeutic effects.
Collapse
Affiliation(s)
| | | | - Merve Erkisa
- Department of Clinical Biochemistry, School of Medicine, Istinye University, Istanbul 34010, Turkey
| | - Gozde Demirci
- Graduate School of Materials Science & Engineering, Koc University, Rumelifeneri Yolu, Sariyer, Istanbul 34450, Turkey
| | - Ferda Ari
- Department of Biology, Uludag University, Bursa 16059, Turkey
| | - Engin Ulukaya
- Department of Clinical Biochemistry, School of Medicine, Istinye University, Istanbul 34010, Turkey
| | - Havva Yagci Acar
- Department of Chemistry, Koc University, Istanbul 34450, Turkey.,Surface Science & Technology Center (KUYTAM), Koc University, Istanbul 34450, Turkey
| |
Collapse
|
46
|
Liposomal Curcumin is Better than Curcumin to Alleviate Complications in Experimental Diabetic Mellitus. Molecules 2019; 24:molecules24050846. [PMID: 30818888 PMCID: PMC6429477 DOI: 10.3390/molecules24050846] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2019] [Revised: 02/19/2019] [Accepted: 02/26/2019] [Indexed: 01/14/2023] Open
Abstract
Curcumin (CC) is known to have anti-inflammatory and anti-oxidative properties and has already been tested for its efficiency in different diseases including diabetes mellitus (DM). New formulations and route administration were designed to obtain products with higher bioavailability. Our study aimed to test the effect of intraperitoneal (i.p.) administration of liposomal curcumin (lCC) as pre-treatment in streptozotocin(STZ)-induced DM in rats on oxidative stress, liver, and pancreatic functional parameters. Forty-two Wistar-Bratislava rats were randomly divided into six groups (seven animals/group): control (no diabetes), control-STZ (STZ-induced DM —60 mg/100g body weight a single dose intraperitoneal administration, and no CC pre-treatment), two groups with DM and CC pre-treatment (1mg/100g bw—STZ + CC1, 2 mg/100g bw—STZ + CC2), and two groups with DM and lCC pre-treatment (1 mg/100g bw—STZ + lCC1, 2 mg/100g bw—STZ + lCC1). Intraperitoneal administration of Curcumin in diabetic rats showed a significant reduction of nitric oxide, malondialdehyde, total oxidative stress, and catalase for both evaluated formulations (CC and lCC) compared to control group (p < 0.005), with higher efficacy of lCC formulation compared to CC solution (p < 0.002, excepting catalase for STZ + CC2vs. STZ + lCC1when p = 0.0845). The CC and lCC showed hepatoprotective and hypoglycemic effects, a decrease in oxidative stress and improvement in anti-oxidative capacity status against STZ-induced DM in rats (p < 0.002). The lCC also proved better efficacy on MMP-2, and -9 plasma levels as compared to CC (p < 0.003, excepting STZ + CC2 vs. STZ + lCC1 comparison with p = 0.0553). The lCC demonstrated significantly better efficacy as compared to curcumin solution on all serum levels of the investigated markers, sustaining its possible use as adjuvant therapy in DM.
Collapse
|
47
|
Ramírez-Expósito MJ, Martínez-Martos JM. The Delicate Equilibrium between Oxidants and Antioxidants in Brain Glioma. Curr Neuropharmacol 2019; 17:342-351. [PMID: 29512467 PMCID: PMC6482474 DOI: 10.2174/1570159x16666180302120925] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2017] [Revised: 01/03/2018] [Accepted: 02/02/2018] [Indexed: 11/22/2022] Open
Abstract
Gliomas are the most frequent brain tumors in the adult population and unfortunately the adjuvant therapies are not effective. Brain tumorigenesis has been related both to the increased levels of free radicals as inductors of severe damages in healthy cells, but also with the reduced response of endogenous enzyme and non-enzymatic antioxidant defenses. In turn, both processes induce the change to malignant cells. In this review, we analyzed the role of the imbalance between free radicals production and antioxidant mechanism in the development and progression of gliomas but also the influence of redox status on the two major distinctive forms of programmed cell death related to cancer: apoptosis and autophagy. These data may be the reference to the development of new pharmacological options based on redox microenvironment for glioma treatment.
Collapse
Affiliation(s)
- María Jesús Ramírez-Expósito
- Experimental and Clinical Physiopathology Research Group CTS-1039; Department of Health Sciences, Faculty of Health Sciences; University of Jaén, Campus Universitario Las Lagunillas, Jaén, Spain
| | - José Manuel Martínez-Martos
- Experimental and Clinical Physiopathology Research Group CTS-1039; Department of Health Sciences, Faculty of Health Sciences; University of Jaén, Campus Universitario Las Lagunillas, Jaén, Spain
| |
Collapse
|
48
|
Mora DPP, Santiago KB, Conti BJ, de Oliveira Cardoso E, Conte FL, Oliveira LPG, de Assis Golim M, Uribe JFC, Gutiérrez RM, Buitrago MR, Popova M, Trusheva B, Bankova V, García OT, Sforcin JM. The chemical composition and events related to the cytotoxic effects of propolis on osteosarcoma cells: A comparative assessment of Colombian samples. Phytother Res 2018; 33:591-601. [DOI: 10.1002/ptr.6246] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2018] [Revised: 11/05/2018] [Accepted: 11/08/2018] [Indexed: 12/14/2022]
Affiliation(s)
| | - Karina Basso Santiago
- Institute of Biosciences; São Paulo State University (UNESP), Campus Botucatu; Brazil
| | - Bruno José Conti
- Institute of Biosciences; São Paulo State University (UNESP), Campus Botucatu; Brazil
| | | | - Fernanda Lopes Conte
- Institute of Biosciences; São Paulo State University (UNESP), Campus Botucatu; Brazil
| | | | | | | | | | | | - Milena Popova
- Bulgarian Academy of Sciences; Institute of Organic Chemistry with Centre of Phytochemistry; Sofia Bulgaria
| | - Boryana Trusheva
- Bulgarian Academy of Sciences; Institute of Organic Chemistry with Centre of Phytochemistry; Sofia Bulgaria
| | - Vassya Bankova
- Bulgarian Academy of Sciences; Institute of Organic Chemistry with Centre of Phytochemistry; Sofia Bulgaria
| | | | - José Maurício Sforcin
- Institute of Biosciences; São Paulo State University (UNESP), Campus Botucatu; Brazil
| |
Collapse
|
49
|
Li F, Cui L, Yu D, Hao H, Liu Y, Zhao X, Pang Y, Zhu H, Du W. Exogenous glutathione improves intracellular glutathione synthesis via the γ‐glutamyl cycle in bovine zygotes and cleavage embryos. J Cell Physiol 2018; 234:7384-7394. [DOI: 10.1002/jcp.27497] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2018] [Accepted: 09/07/2018] [Indexed: 01/14/2023]
Affiliation(s)
- Feng Li
- Embryo Biotechnology and Reproduction Laboratory, Institute of Animal Science, Chinese Academy of Agricultural Sciences Beijing China
| | - Lixin Cui
- Embryo Biotechnology and Reproduction Laboratory, Institute of Animal Science, Chinese Academy of Agricultural Sciences Beijing China
| | - Dawei Yu
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences Beijing China
| | - Haisheng Hao
- Embryo Biotechnology and Reproduction Laboratory, Institute of Animal Science, Chinese Academy of Agricultural Sciences Beijing China
| | - Yan Liu
- Embryo Biotechnology and Reproduction Laboratory, Institute of Animal Science, Chinese Academy of Agricultural Sciences Beijing China
| | - Xueming Zhao
- Embryo Biotechnology and Reproduction Laboratory, Institute of Animal Science, Chinese Academy of Agricultural Sciences Beijing China
| | - Yunwei Pang
- Embryo Biotechnology and Reproduction Laboratory, Institute of Animal Science, Chinese Academy of Agricultural Sciences Beijing China
| | - Huabin Zhu
- Embryo Biotechnology and Reproduction Laboratory, Institute of Animal Science, Chinese Academy of Agricultural Sciences Beijing China
| | - Weihua Du
- Embryo Biotechnology and Reproduction Laboratory, Institute of Animal Science, Chinese Academy of Agricultural Sciences Beijing China
| |
Collapse
|
50
|
Bonam SR, Wu YS, Tunki L, Chellian R, Halmuthur MSK, Muller S, Pandy V. What Has Come out from Phytomedicines and Herbal Edibles for the Treatment of Cancer? ChemMedChem 2018; 13:1854-1872. [PMID: 29927521 DOI: 10.1002/cmdc.201800343] [Citation(s) in RCA: 39] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2018] [Revised: 06/19/2018] [Indexed: 12/20/2022]
Abstract
Several modern treatment strategies have been adopted to combat cancer with the aim of minimizing toxicity. Medicinal plant-based compounds with the potential to treat cancer have been widely studied in preclinical research and have elicited many innovations in cutting-edge clinical research. In parallel, researchers have eagerly tried to decrease the toxicity of current chemotherapeutic agents either by combining them with herbals or in using herbals alone. The aim of this article is to present an update of medicinal plants and their bioactive compounds, or mere changes in the bioactive compounds, along with herbal edibles, which display efficacy against diverse cancer cells and in anticancer therapy. It describes the basic mechanism(s) of action of phytochemicals used either alone or in combination therapy with other phytochemicals or herbal edibles. This review also highlights the remarkable synergistic effects that arise between certain herbals and chemotherapeutic agents used in oncology. The anticancer phytochemicals used in clinical research are also described; furthermore, we discuss our own experience related to semisynthetic derivatives, which are developed based on phytochemicals. Overall, this compilation is intended to facilitate research and development projects on phytopharmaceuticals for successful anticancer drug discovery.
Collapse
Affiliation(s)
- Srinivasa Reddy Bonam
- UMR 7242 CNRS, Biotechnology and Cell Signaling, University of Strasbourg, Laboratory of Excellence Medalis, Illkirch, 67400, France.,Vaccine Immunology Laboratory, Natural Product Chemistry Division, CSIR - Indian Institute of Chemical Technology (IICT), Hyderabad, 500007, India.,Academy of Scientific and Innovative Research, CSIR - Indian Institute of Chemical Technology, Hyderabad, 500007, India
| | - Yuan Seng Wu
- Department of Pharmacology, Faculty of Medicine, University of Malaya, 50603, Kuala Lumpur, Malaysia
| | - Lakshmi Tunki
- Vaccine Immunology Laboratory, Natural Product Chemistry Division, CSIR - Indian Institute of Chemical Technology (IICT), Hyderabad, 500007, India
| | - Ranjithkumar Chellian
- Department of Pharmacology, Faculty of Medicine, University of Malaya, 50603, Kuala Lumpur, Malaysia
| | - Mahabalarao Sampath Kumar Halmuthur
- Vaccine Immunology Laboratory, Natural Product Chemistry Division, CSIR - Indian Institute of Chemical Technology (IICT), Hyderabad, 500007, India.,Academy of Scientific and Innovative Research, CSIR - Indian Institute of Chemical Technology, Hyderabad, 500007, India
| | - Sylviane Muller
- UMR 7242 CNRS, Biotechnology and Cell Signaling, University of Strasbourg, Laboratory of Excellence Medalis, Illkirch, 67400, France.,University of Strasbourg Institute for Advanced Study (USIAS), Strasbourg, 67000, France
| | - Vijayapandi Pandy
- Department of Pharmacology, Faculty of Medicine, University of Malaya, 50603, Kuala Lumpur, Malaysia.,Department of Pharmacology, Chalapathi Institute of Pharmaceutical Sciences, Lam, Guntur, Andhra Pradesh, 522034, India
| |
Collapse
|