1
|
Nataraj K, Schonfeld M, Rodriguez A, Sharma M, Weinman S, Tikhanovich I. Androgen Effects on Alcohol-induced Liver Fibrosis Are Controlled by a Notch-dependent Epigenetic Switch. Cell Mol Gastroenterol Hepatol 2024; 19:101414. [PMID: 39349250 DOI: 10.1016/j.jcmgh.2024.101414] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/01/2024] [Revised: 09/23/2024] [Accepted: 09/24/2024] [Indexed: 10/02/2024]
Abstract
BACKGROUND & AIMS Alcohol-associated liver disease (ALD) is a major cause of alcohol-related mortality. Sex is an important variable; however, the mechanism behind sex differences is not yet established. METHODS Kdm5b flox/flox Kdm5c flox male mice were subjected to gonadectomy or sham surgery. Mice were fed a Western diet and 20% alcohol in the drinking water for 18 weeks. To induce knockout, mice received 2 × 1011 genome copies of AAV8-CMV-Cre or AAV8-control. To test the role of Notch, mice were treated with 10 mg/kg of avagacestat for 4 weeks. RESULTS We found that Kdm5b/Kdm5c knockout promoted alcohol-induced liver disease, whereas gonadectomy abolished this effect, suggesting that male sex hormones promote liver disease in the absence of KDM5 demethylases. In contrast, in the thioacetamide-induced fibrosis model, male sex hormones showed a protective effect regardless of genotype. In human liver disease samples, we found that androgen receptor expression positively correlated with fibrosis levels when KDM5B levels were low and negatively when KDM5B was high, suggesting that a KDM5B-dependent epigenetic state defines the androgen receptor role in liver fibrosis. Using isolated cells, we found that this difference was due to the differential effect of testosterone on hepatic stellate cell activation in the absence or presence of KDM5B/KDM5C. Moreover, this effect was mediated by KDM5-dependent suppression of Notch signaling. In KDM5-deficient mice, Notch3 and Jag1 gene expression was induced, facilitating testosterone-mediated induction of Notch signaling and stellate cell activation. Inhibiting Notch with avagacestat greatly reduced liver fibrosis and abolished the effect of Kdm5b/Kdm5c loss. CONCLUSIONS Male sex hormone signaling can promote or prevent alcohol-associated liver fibrosis depending on the KDM5-dependent epigenetic state.
Collapse
Affiliation(s)
- Kruti Nataraj
- Department of Internal Medicine, Kansas City VA Medical Center, Kansas City, Missouri
| | - Michael Schonfeld
- Department of Internal Medicine, Kansas City VA Medical Center, Kansas City, Missouri
| | - Adriana Rodriguez
- Department of Internal Medicine, Kansas City VA Medical Center, Kansas City, Missouri
| | - Madhulika Sharma
- Department of Internal Medicine, Kansas City VA Medical Center, Kansas City, Missouri
| | - Steven Weinman
- Department of Internal Medicine, Kansas City VA Medical Center, Kansas City, Missouri; Kansas City VA Medical Center, Kansas City, Missouri
| | - Irina Tikhanovich
- Department of Internal Medicine, Kansas City VA Medical Center, Kansas City, Missouri.
| |
Collapse
|
2
|
Du K, Jun JH, Dutta RK, Diehl AM. Plasticity, heterogeneity, and multifunctionality of hepatic stellate cells in liver pathophysiology. Hepatol Commun 2024; 8:e0411. [PMID: 38619452 PMCID: PMC11019831 DOI: 10.1097/hc9.0000000000000411] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/29/2023] [Accepted: 01/26/2024] [Indexed: 04/16/2024] Open
Abstract
HSCs, the resident pericytes of the liver, have consistently been at the forefront of liver research due to their crucial roles in various hepatic pathological processes. Prior literature often depicted HSCs in a binary framework, categorizing them as either quiescent or activated. However, recent advances in HSC research, particularly the advent of single-cell RNA-sequencing, have revolutionized our understanding of these cells. This sophisticated technique offers an unparalleled, high-resolution insight into HSC populations, uncovering a spectrum of diversity and functional heterogeneity across various physiological states of the liver, ranging from liver development to the liver aging process. The single-cell RNA-sequencing revelations have also highlighted the intrinsic plasticity of HSCs and underscored their complex roles in a myriad of pathophysiological processes, including liver injury, repair, and carcinogenesis. This review aims to integrate and clarify these recent discoveries, focusing on how the inherent plasticity of HSCs is central to their dynamic roles both in maintaining liver homeostasis and orchestrating responses to liver injury. Future research will clarify whether findings from rodent models can be translated to human livers and guide how these insights are harnessed to develop targeted therapeutic interventions.
Collapse
|
3
|
Zhou Z, Zhang R, Li X, Zhang W, Zhan Y, Lang Z, Tao Q, Yu J, Yu S, Yu Z, Zheng J. Circular RNA cVIM promotes hepatic stellate cell activation in liver fibrosis via miR-122-5p/miR-9-5p-mediated TGF-β signaling cascade. Commun Biol 2024; 7:113. [PMID: 38243118 PMCID: PMC10798957 DOI: 10.1038/s42003-024-05797-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2023] [Accepted: 01/09/2024] [Indexed: 01/21/2024] Open
Abstract
Hepatic stellate cell (HSC) activation is considered as a central driver of liver fibrosis and effective suppression of HSC activation contributes to the treatment of liver fibrosis. Circular RNAs (circRNAs) have been reported to be important in tumor progression. However, the contributions of circRNAs in liver fibrosis remain largely unclear. The liver fibrosis-specific circRNA was explored by a circRNA microarray and cVIM (a circRNA derived from exons 4 to 8 of the vimentin gene mmu_circ_32994) was selected as the research object. Further studies revealed that cVIM, mainly expressed in the cytoplasm, may act as a sponge for miR-122-5p and miR-9-5p to enhance expression of type I TGF-β receptor (TGFBR1) and TGFBR2 and promotes activation of the TGF-β/Smad pathway, thereby accelerating the progression of liver fibrosis. Our results demonstrate a vital role for cVIM in promoting liver fibrosis progression and provide a fresh perspective on circRNAs in liver fibrosis.
Collapse
Affiliation(s)
- Zhenxu Zhou
- Department of Hernia and Abdominal Wall Surgery, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325000, China
| | - Rongrong Zhang
- Key Laboratory of Diagnosis and Treatment of Severe Hepato-Pancreatic Diseases of Zhejiang Province, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325000, China
| | - Xinmiao Li
- Key Laboratory of Diagnosis and Treatment of Severe Hepato-Pancreatic Diseases of Zhejiang Province, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325000, China
| | - Weizhi Zhang
- Key Laboratory of Diagnosis and Treatment of Severe Hepato-Pancreatic Diseases of Zhejiang Province, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325000, China
| | - Yating Zhan
- Key Laboratory of Diagnosis and Treatment of Severe Hepato-Pancreatic Diseases of Zhejiang Province, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325000, China
| | - Zhichao Lang
- Key Laboratory of Diagnosis and Treatment of Severe Hepato-Pancreatic Diseases of Zhejiang Province, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325000, China
| | - Qiqi Tao
- Key Laboratory of Diagnosis and Treatment of Severe Hepato-Pancreatic Diseases of Zhejiang Province, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325000, China
| | - Jinglu Yu
- Key Laboratory of Diagnosis and Treatment of Severe Hepato-Pancreatic Diseases of Zhejiang Province, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325000, China
| | - Suhui Yu
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325000, China
| | - Zhengping Yu
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325000, China
| | - Jianjian Zheng
- Key Laboratory of Clinical Laboratory Diagnosis and Translational Research of Zhejiang Province, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325000, China.
| |
Collapse
|
4
|
Bogomolova A, Balakrishnan A, Ott M, Sharma AD. "The Good, the Bad, and the Ugly" - About Diverse Phenotypes of Hepatic Stellate Cells in the Liver. Cell Mol Gastroenterol Hepatol 2024; 17:607-622. [PMID: 38216053 PMCID: PMC10900761 DOI: 10.1016/j.jcmgh.2024.01.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/07/2023] [Revised: 01/04/2024] [Accepted: 01/04/2024] [Indexed: 01/14/2024]
Abstract
Hepatic stellate cells (HSCs) and their activated derivatives, often referred to as myofibroblasts (MFs), play a key role in progression of chronic liver injuries leading to fibrosis, cirrhosis, and hepatocellular carcinoma. Until recently, MFs were considered a homogenous cell type majorly due to lack of techniques that allow complex molecular studies at a single-cell resolution. Recent technical advancements in genetic lineage-tracing models as well as the exponential growth of studies with single-cell transcriptome and proteome analyses have uncovered hidden heterogeneities among the HSC and MF populations in healthy states as well as chronic liver injuries at the various stages of tissue deformation. The identification of different phenotypes along the HSC/MF axis, which either maintain essential liver functions ("good" HSCs), emerge during fibrosis ("bad" HSCs), or even promote hepatocellular carcinoma ("ugly" HSCs), may lay the foundation for targeting a particular MF phenotype as potential treatment for chronic liver injuries.
Collapse
Affiliation(s)
- Alexandra Bogomolova
- Department of Gastroenterology, Hepatology, Infectious Diseases and Endocrinology, Hannover Medical School, Hannover, Germany; Research Group RNA Therapeutics & Liver Regeneration, REBIRTH-Research Center for Translational Regenerative Medicine, Hannover Medical School, Hannover, Germany
| | - Asha Balakrishnan
- Department of Gastroenterology, Hepatology, Infectious Diseases and Endocrinology, Hannover Medical School, Hannover, Germany
| | - Michael Ott
- Department of Gastroenterology, Hepatology, Infectious Diseases and Endocrinology, Hannover Medical School, Hannover, Germany.
| | - Amar Deep Sharma
- Department of Gastroenterology, Hepatology, Infectious Diseases and Endocrinology, Hannover Medical School, Hannover, Germany; Research Group RNA Therapeutics & Liver Regeneration, REBIRTH-Research Center for Translational Regenerative Medicine, Hannover Medical School, Hannover, Germany.
| |
Collapse
|
5
|
Chen N, Liu S, Qin D, Guan D, Chen Y, Hou C, Zheng S, Wang L, Chen X, Chen W, Zhang L. Fate tracking reveals differences between Reelin + hepatic stellate cells (HSCs) and Desmin + HSCs in activation, migration and proliferation. Cell Prolif 2023; 56:e13500. [PMID: 37246473 PMCID: PMC10693182 DOI: 10.1111/cpr.13500] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2023] [Revised: 04/20/2023] [Accepted: 05/02/2023] [Indexed: 05/30/2023] Open
Abstract
The activation of hepatic stellate cells (HSCs) is the main cause of liver fibrogenesis in response to different etiologies of chronic liver injuries. HSCs are heterogeneous, but the lack of specific markers to distinguish different HSC subset hinders the development of targeted therapy for liver fibrosis. In this study, we aim to reveal new HSC subsets by cell fate tracking. We constructed a novel ReelinCreERT2 transgenic mouse model to track the fate of cells expressing Reelin and their progeny (Reelin+ cells). And we investigated the property of Reelin+ cells, such as differentiation and proliferation, in hepatotoxic (carbon tetrachloride; CCl4 ) or cholestatic (bile duct ligation; BDL) liver injury models by immunohistochemistry. Our study revealed that Reelin+ cells were a new HSC subset. In terms of activation, migration, and proliferation, Reelin+ HSCs displayed different properties from Desmin+ HSCs (total HSCs) in cholestatic liver injury model but shared similar properties to total HSCs in hepatotoxic liver injury model. Besides, we did not find evidence that Reelin+ HSCs transdifferentiated into hepatocytes or cholangiocytes through mesenchymal-epithelial transition (MET). In this study, our genetic cell fate tracking data reveal that ReelinCreERT2-labelled cells are a new HSC subset, which provides new insights into targeted therapy for liver fibrosis.
Collapse
Affiliation(s)
- Ning Chen
- College of Veterinary Medicine/Bio‐medical Center/Huazhong Agricultural UniversityWuhanChina
| | - Shenghui Liu
- College of Veterinary Medicine/Bio‐medical Center/Huazhong Agricultural UniversityWuhanChina
| | - Dan Qin
- College of Veterinary Medicine/Bio‐medical Center/Huazhong Agricultural UniversityWuhanChina
| | - Dian Guan
- College of Veterinary Medicine/Bio‐medical Center/Huazhong Agricultural UniversityWuhanChina
| | - Yaqing Chen
- College of Veterinary Medicine/Bio‐medical Center/Huazhong Agricultural UniversityWuhanChina
| | - Chenjiao Hou
- College of Veterinary Medicine/Bio‐medical Center/Huazhong Agricultural UniversityWuhanChina
| | - Songyun Zheng
- College of Life Science and TechnologyHuazhong Agricultural UniversityWuhanChina
| | - Liqiang Wang
- Department of Nephrology, Chinese PLA General Hospital, Chinese PLA Institute of Nephrology, State Key Laboratory of Kidney DiseasesNational Clinical Research Center for Kidney DiseasesBeijingChina
| | - Xiangmei Chen
- Department of Nephrology, Chinese PLA General Hospital, Chinese PLA Institute of Nephrology, State Key Laboratory of Kidney DiseasesNational Clinical Research Center for Kidney DiseasesBeijingChina
| | - Wei Chen
- Department of Food Science and Nutrition, College of Biosystems Engineering and Food ScienceZhejiang UniversityHangzhouChina
| | - Lisheng Zhang
- College of Veterinary Medicine/Bio‐medical Center/Huazhong Agricultural UniversityWuhanChina
| |
Collapse
|
6
|
Kandhi R, Yeganeh M, Yoshimura A, Menendez A, Ramanathan S, Ilangumaran S. Hepatic stellate cell-intrinsic role of SOCS1 in controlling hepatic fibrogenic response and the pro-inflammatory macrophage compartment during liver fibrosis. Front Immunol 2023; 14:1259246. [PMID: 37860002 PMCID: PMC10582746 DOI: 10.3389/fimmu.2023.1259246] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2023] [Accepted: 09/18/2023] [Indexed: 10/21/2023] Open
Abstract
Introduction Hepatic stellate cells (HSC) become activated, differentiate to myofibroblasts and produce extracellular fibrillar matrix during liver fibrosis. The hepatic fibrogenic response is orchestrated by reciprocal interactions between HSCs and macrophages and their secreted products. SOCS1 can regulate several cytokines and growth factors implicated in liver fibrosis. Here we investigated the role of SOCS1 in regulating HSC activation. Methods Mice lacking SOCS1 in HSCs (Socs1ΔHSC) were generated by crossing Socs1fl/fl and LratCre mice. Liver fibrosis was induced by carbon tetrachloride and evaluated by Sirius red staining, hydroxyproline content and immunostaining of myofibroblasts. Gene expression of pro-fibrogenic factors, cytokines, growth factors and chemokines were quantified by RT-qPCR. The phenotype and the numbers of intrahepatic leukocyte subsets were studied by flow cytometry. The impact of fibrosis on the development of diethyl nitrosamine-induced hepatocellular carcinoma was evaluated. Results Socs1ΔHSC mice developed more severe liver fibrosis than control Socs1fl/fl mice that was characterized by increased collagen deposition and myofibroblast differentiation. Socs1ΔHSC mice showed a significant increase in the expression of smooth muscle actin, collagens, matrix metalloproteases, cytokines, growth factors and chemokines in the liver following fibrosis induction. The fibrotic livers of Socs1ΔHSC mice displayed heightened inflammatory cell infiltration with increased proportion and numbers of Ly6ChiCCR2+ pro-inflammatory macrophages. This macrophage population contained elevated numbers of CCR2+CX3CR1+ cells, suggesting impaired transition towards restorative macrophages. Fibrosis induction following exposure to diethyl nitrosamine resulted in more numerous and larger liver tumor nodules in Socs1ΔHSC mice than in Socs1fl/fl mice. Discussion Our findings indicate that (i) SOCS1 expression in HSCs is a critical to control liver fibrosis and development of hepatocaellular carcinoma, and (ii) attenuation of HSC activation by SOCS1 regulates pro-inflammatory macrophage recruitment and differentiation during liver fibrosis.
Collapse
Affiliation(s)
- Rajani Kandhi
- Department of Immunology and Cell Biology, Faculty of Medicine and Health Sciences, Université de Sherbrooke, Sherbrooke, QC, Canada
| | - Mehdi Yeganeh
- Department of Immunology and Cell Biology, Faculty of Medicine and Health Sciences, Université de Sherbrooke, Sherbrooke, QC, Canada
| | - Akihiko Yoshimura
- Department of Microbiology and Immunology, Keio University School of Medicine, Tokyo, Japan
| | - Alfredo Menendez
- Department of Microbiology and Infectious Diseases, Faculty of Medicine and Health Sciences, Université de Sherbrooke, Sherbrooke, QC, Canada
| | - Sheela Ramanathan
- Department of Immunology and Cell Biology, Faculty of Medicine and Health Sciences, Université de Sherbrooke, Sherbrooke, QC, Canada
| | - Subburaj Ilangumaran
- Department of Immunology and Cell Biology, Faculty of Medicine and Health Sciences, Université de Sherbrooke, Sherbrooke, QC, Canada
| |
Collapse
|
7
|
Marinović S, Lenartić M, Mladenić K, Šestan M, Kavazović I, Benić A, Krapić M, Rindlisbacher L, Brdovčak MC, Sparano C, Litscher G, Wensveen TT, Mikolašević I, Čupić DF, Bilić-Zulle L, Steinle A, Waisman A, Hayday A, Tugues S, Becher B, Polić B, Wensveen FM. NKG2D-mediated detection of metabolically stressed hepatocytes by innate-like T cells is essential for initiation of NASH and fibrosis. Sci Immunol 2023; 8:eadd1599. [PMID: 37774007 PMCID: PMC7615627 DOI: 10.1126/sciimmunol.add1599] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2022] [Accepted: 08/23/2023] [Indexed: 10/01/2023]
Abstract
Metabolic-associated fatty liver disease (MAFLD) is a spectrum of clinical manifestations ranging from benign steatosis to cirrhosis. A key event in the pathophysiology of MAFLD is the development of nonalcoholic steatohepatitis (NASH), which can potentially lead to fibrosis and hepatocellular carcinoma, but the triggers of MAFLD-associated inflammation are not well understood. We have observed that lipid accumulation in hepatocytes induces expression of ligands specific to the activating immune receptor NKG2D. Tissue-resident innate-like T cells, most notably γδ T cells, are activated through NKG2D and secrete IL-17A. IL-17A licenses hepatocytes to produce chemokines that recruit proinflammatory cells into the liver, which causes NASH and fibrosis. NKG2D-deficient mice did not develop fibrosis in dietary models of NASH and had a decreased incidence of hepatic tumors. The frequency of IL-17A+ γδ T cells in the blood of patients with MAFLD correlated directly with liver pathology. Our findings identify a key molecular mechanism through which stressed hepatocytes trigger inflammation in the context of MAFLD.
Collapse
Affiliation(s)
- Sonja Marinović
- Department of Histology and Embryology, Faculty of Medicine University of Rijeka, Croatia
| | - Maja Lenartić
- Department of Histology and Embryology, Faculty of Medicine University of Rijeka, Croatia
| | - Karlo Mladenić
- Department of Histology and Embryology, Faculty of Medicine University of Rijeka, Croatia
| | - Marko Šestan
- Department of Histology and Embryology, Faculty of Medicine University of Rijeka, Croatia
| | - Inga Kavazović
- Department of Histology and Embryology, Faculty of Medicine University of Rijeka, Croatia
| | - Ante Benić
- Department of Histology and Embryology, Faculty of Medicine University of Rijeka, Croatia
| | - Mia Krapić
- Department of Histology and Embryology, Faculty of Medicine University of Rijeka, Croatia
| | - Lukas Rindlisbacher
- Institute of Experimental Immunology, University of Zürich, Zürich, Switzerland
| | | | - Colin Sparano
- Institute of Experimental Immunology, University of Zürich, Zürich, Switzerland
| | - Gioana Litscher
- Institute of Experimental Immunology, University of Zürich, Zürich, Switzerland
| | - Tamara Turk Wensveen
- Department of Internal Medicine, Faculty of Medicine University of Rijeka, Croatia
- Center for Diabetes, Endocrinology and Cardiometabolism, Thallassotherapia, Opatija
| | - Ivana Mikolašević
- Department of Internal Medicine, Faculty of Medicine University of Rijeka, Croatia
| | - Dora Fučkar Čupić
- Dept. of General Pathology and Pathological Anatomy, Faculty of Medicine Univ. of Rijeka, Croatia
| | - Lidija Bilić-Zulle
- Clinical Department of Laboratory Diagnosis, Clinical Hospital Center Rijeka, Rijeka, Croatia
| | - Aleksander Steinle
- Institute for Molecular Medicine, Goethe-University, Frankfurt am Main, Germany
| | - Ari Waisman
- Institute for Molecular Biology, University Medical Center, Mainz, Germany
| | - Adrian Hayday
- Department of Immunobiology, King’s College London, UK
| | - Sonia Tugues
- Institute of Experimental Immunology, University of Zürich, Zürich, Switzerland
| | - Burkhard Becher
- Institute of Experimental Immunology, University of Zürich, Zürich, Switzerland
| | - Bojan Polić
- Department of Histology and Embryology, Faculty of Medicine University of Rijeka, Croatia
| | - Felix M. Wensveen
- Department of Histology and Embryology, Faculty of Medicine University of Rijeka, Croatia
| |
Collapse
|
8
|
Rani R, Gandhi CR. Stellate cell in hepatic inflammation and acute injury. J Cell Physiol 2023; 238:1226-1236. [PMID: 37120832 DOI: 10.1002/jcp.31029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2023] [Revised: 04/05/2023] [Accepted: 04/07/2023] [Indexed: 05/02/2023]
Abstract
The perisinusoidal hepatic stellate cells (HSCs) have been investigated extensively for their role as the major fibrogenic cells during chronic liver injury. HSCs also produce numerous cytokines, chemokines, and growth mediators, and express cell adhesion molecules constitutively and in response to stimulants such as endotoxin (lipopolysaccharide). With this property and by interacting with resident and recruited immune and inflammatory cells, HSCs regulate hepatic immune homeostasis, inflammation, and acute injury. Indeed, experiments with HSC-depleted animal models and cocultures have provided evidence for the prominent role of HSCs in the initiation and progression of inflammation and acute liver damage due to various toxic agents. Thus HSCs and/or mediators derived thereof during acute liver damage may be considered as potential therapeutic targets.
Collapse
Affiliation(s)
- Richa Rani
- Department of Pediatrics, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio, USA
- Research & Development, Cincinnati Veterans Administration Medical Center, Cincinnati, Ohio, USA
| | - Chandrashekhar R Gandhi
- Department of Pediatrics, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio, USA
- Research & Development, Cincinnati Veterans Administration Medical Center, Cincinnati, Ohio, USA
- Department of Surgery, University of Cincinnati, Cincinnati, Ohio, USA
| |
Collapse
|
9
|
Cook D, Manchel A, Ogunnaike BA, Vadigepalli R. Elucidating the Mechanisms of Dynamic and Robust Control of the Liver Homeostatic Renewal Process: Cell Network Modeling and Analysis. Ind Eng Chem Res 2023; 62:2275-2287. [PMID: 36787103 PMCID: PMC9912253 DOI: 10.1021/acs.iecr.2c03579] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2022] [Revised: 01/05/2023] [Accepted: 01/05/2023] [Indexed: 01/29/2023]
Abstract
Recent experimental investigations of liver homeostatic renewal have identified high replication capacity hepatocyte populations as the primary maintainers of liver mass. However, the molecular and cellular processes controlling liver homeostatic renewal remain unknown. To address this problem, we developed and analyzed a mathematical model describing cellular network interactions underlying liver homeostatic renewal. Model simulation results demonstrate that without feedback control, basic homeostatic renewal is not robust to disruptions, leading to tissue loss under persistent/repetitive insults. Consequently, we extended our basic model to incorporate putative regulatory interactions and investigated how such interactions may confer robustness on the homeostatic renewal process. We utilized a Design of Experiments approach to identify the combination of feedback interactions that yields a cell network model of homeostatic renewal capable of maintaining liver mass robustly during persistent/repetitive injury. Simulations of this robust model indicate that repeated injury destabilizes liver homeostasis within several months, which differs from epidemiological observations of a much slower decay of liver function occurring over several years. To address this discrepancy, we extended the model to include feedback control by liver nonparenchymal cells. Simulations and analysis of the final multicellular feedback control network suggest that achieving robust liver homeostatic renewal requires intrinsic stability in a hepatocellular network combined with feedback control by nonparenchymal cells.
Collapse
Affiliation(s)
- Daniel Cook
- Department
of Chemical and Biomolecular Engineering, University of Delaware, Newark, Delaware19716, United States,Daniel
Baugh Institute for Functional Genomics and Computational Biology,
Department of Pathology and Genomic Medicine, Thomas Jefferson University, Philadelphia, Pennsylvania19107, United States,SimBioSys,
Inc., Chicago, Illinois60601, United
States
| | - Alexandra Manchel
- Daniel
Baugh Institute for Functional Genomics and Computational Biology,
Department of Pathology and Genomic Medicine, Thomas Jefferson University, Philadelphia, Pennsylvania19107, United States
| | - Babatunde A. Ogunnaike
- Department
of Chemical and Biomolecular Engineering, University of Delaware, Newark, Delaware19716, United States
| | - Rajanikanth Vadigepalli
- Daniel
Baugh Institute for Functional Genomics and Computational Biology,
Department of Pathology and Genomic Medicine, Thomas Jefferson University, Philadelphia, Pennsylvania19107, United States,Rajanikanth
Vadigepalli E-mail:
| |
Collapse
|
10
|
Sun Q, Schwabe RF. Hepatic Stellate Cell Depletion and Genetic Manipulation. Methods Mol Biol 2023; 2669:207-220. [PMID: 37247062 DOI: 10.1007/978-1-0716-3207-9_12] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/30/2023]
Abstract
Hepatic stellate cells (HSCs) exert key roles in the development of liver disease. Cell-specific genetic labeling, gene knockout and depletion are important for the understanding of the HSC in homeostasis and a wide range of diseases ranging from acute liver injury and liver regeneration to nonalcoholic liver disease and cancer. Here, we will review and compare different Cre-dependent and Cre-independent methods for genetic labeling, gene knockout, HSC tracing and depletion, and their applications to different disease models. We provide detailed protocols for each method including methods to confirm successful and efficient targeting of HSCs.
Collapse
Affiliation(s)
- Qiuyan Sun
- Department of Medicine, Columbia University, New York, NY, USA
| | | |
Collapse
|
11
|
Peng J, Li F, Wang J, Wang C, Jiang Y, Liu B, He J, Yuan K, Pan C, Lin M, Zhou B, Chen L, Gao D, Zhao Y. Identification of a rare Gli1 + progenitor cell population contributing to liver regeneration during chronic injury. Cell Discov 2022; 8:118. [PMID: 36316325 PMCID: PMC9622734 DOI: 10.1038/s41421-022-00474-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2022] [Accepted: 09/21/2022] [Indexed: 11/06/2022] Open
Abstract
In adults, hepatocytes are mainly replenished from the existing progenitor pools of hepatocytes and cholangiocytes during chronic liver injury. However, it is unclear whether other cell types in addition to classical hepatocytes and cholangiocytes contribute to hepatocyte regeneration after chronic liver injuries. Here, we identified a new biphenotypic cell population that contributes to hepatocyte regeneration during chronic liver injuries. We found that a cell population expressed Gli1 and EpCAM (EpCAM+Gli1+), which was further characterized with both epithelial and mesenchymal identities by single-cell RNA sequencing. Genetic lineage tracing using dual recombinases revealed that Gli1+ nonhepatocyte cell population could generate hepatocytes after chronic liver injury. EpCAM+Gli1+ cells exhibited a greater capacity for organoid formation with functional hepatocytes in vitro and liver regeneration upon transplantation in vivo. Collectively, these findings demonstrate that EpCAM+Gli1+ cells can serve as a new source of liver progenitor cells and contribute to liver repair and regeneration.
Collapse
Affiliation(s)
- Jiayin Peng
- grid.9227.e0000000119573309State Key Laboratory of Molecular Biology, Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, Shanghai, China
| | - Fei Li
- grid.9227.e0000000119573309State Key Laboratory of Molecular Biology, Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, Shanghai, China
| | - Jia Wang
- grid.9227.e0000000119573309State Key Laboratory of Molecular Biology, Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, Shanghai, China ,grid.410726.60000 0004 1797 8419University of Chinese Academy of Sciences, Beijing, China
| | - Chaoxiong Wang
- grid.9227.e0000000119573309State Key Laboratory of Molecular Biology, Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, Shanghai, China ,grid.410726.60000 0004 1797 8419University of Chinese Academy of Sciences, Beijing, China
| | - Yiao Jiang
- grid.9227.e0000000119573309State Key Laboratory of Molecular Biology, Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, Shanghai, China ,grid.410726.60000 0004 1797 8419University of Chinese Academy of Sciences, Beijing, China
| | - Biao Liu
- grid.9227.e0000000119573309State Key Laboratory of Molecular Biology, Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, Shanghai, China ,grid.410726.60000 0004 1797 8419University of Chinese Academy of Sciences, Beijing, China
| | - Juan He
- grid.9227.e0000000119573309State Key Laboratory of Molecular Biology, Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, Shanghai, China ,grid.410726.60000 0004 1797 8419University of Chinese Academy of Sciences, Beijing, China
| | - Kai Yuan
- grid.9227.e0000000119573309State Key Laboratory of Molecular Biology, Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, Shanghai, China
| | - Chenyu Pan
- grid.24516.340000000123704535Department of General Surgery, Yangpu Hospital, Tongji University School of Medicine, Shanghai, China
| | - Moubin Lin
- grid.24516.340000000123704535Department of General Surgery, Yangpu Hospital, Tongji University School of Medicine, Shanghai, China
| | - Bin Zhou
- grid.9227.e0000000119573309State Key Laboratory of Molecular Biology, Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, Shanghai, China
| | - Luonan Chen
- grid.9227.e0000000119573309State Key Laboratory of Molecular Biology, Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, Shanghai, China
| | - Dong Gao
- grid.9227.e0000000119573309State Key Laboratory of Molecular Biology, Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, Shanghai, China ,grid.9227.e0000000119573309Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing, China
| | - Yun Zhao
- grid.9227.e0000000119573309State Key Laboratory of Molecular Biology, Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, Shanghai, China ,grid.440637.20000 0004 4657 8879School of Life Science and Technology, ShanghaiTech University, Shanghai, China ,grid.410726.60000 0004 1797 8419Key Laboratory of Systems Health Science of Zhejiang Province, School of Life Science, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou, Zhejiang China
| |
Collapse
|
12
|
Annunziato S, Sun T, Tchorz JS. The RSPO-LGR4/5-ZNRF3/RNF43 module in liver homeostasis, regeneration, and disease. Hepatology 2022; 76:888-899. [PMID: 35006616 DOI: 10.1002/hep.32328] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/03/2021] [Revised: 12/02/2021] [Accepted: 01/06/2022] [Indexed: 01/05/2023]
Abstract
WNT/β-catenin signaling plays pivotal roles during liver development, homeostasis, and regeneration. Likewise, its deregulation disturbs metabolic liver zonation and is responsible for the development of a large number of hepatic tumors. Liver fibrosis, which has become a major health burden for society and a hallmark of NASH, can also be promoted by WNT/β-catenin signaling. Upstream regulatory mechanisms controlling hepatic WNT/β-catenin activity may constitute targets for the development of novel therapies addressing these life-threatening conditions. The R-spondin (RSPO)-leucine-rich repeat-containing G protein-coupled receptor (LGR) 4/5-zinc and ring finger (ZNRF) 3/ring finger 43 (RNF43) module is fine-tuning WNT/β-catenin signaling in several tissues and is essential for hepatic WNT/β-catenin activity. In this review article, we recapitulate the role of the RSPO-LGR4/5-ZNRF3/RNF43 module during liver development, homeostasis, metabolic zonation, regeneration, and disease. We further discuss the controversy around LGR5 as a liver stem cell marker.
Collapse
Affiliation(s)
- Stefano Annunziato
- Novartis Institutes for BioMedical Research, Novartis Pharma AG, Basel, Switzerland
| | - Tianliang Sun
- Novartis Institutes for BioMedical Research, Novartis Pharma AG, Basel, Switzerland
| | - Jan S Tchorz
- Novartis Institutes for BioMedical Research, Novartis Pharma AG, Basel, Switzerland
| |
Collapse
|
13
|
Kamm DR, McCommis KS. Hepatic stellate cells in physiology and pathology. J Physiol 2022; 600:1825-1837. [PMID: 35307840 PMCID: PMC9012702 DOI: 10.1113/jp281061] [Citation(s) in RCA: 73] [Impact Index Per Article: 36.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Accepted: 02/04/2022] [Indexed: 11/08/2022] Open
Abstract
Hepatic stellate cells (HSCs) comprise a minor cell population in the liver but serve numerous critical functions in the normal liver and in response to injury. HSCs are primarily known for their activation upon liver injury and for producing the collagen-rich extracellular matrix in liver fibrosis. In the absence of liver injury, HSCs reside in a quiescent state, in which their main function appears to be the storage of retinoids or vitamin A-containing metabolites. Less appreciated functions of HSCs include amplifying the hepatic inflammatory response and expressing growth factors that are critical for liver development and both the initiation and termination of liver regeneration. Recent single-cell RNA sequencing studies have corroborated earlier studies indictaing that HSC activation involves a diverse array of phenotypic alterations and identified unique HSC populations. This review serves to highlight these many functions of HSCs, and to briefly describe the recent genetic tools that will help to thoroughly investigate the role of HSCs in hepatic physiology and pathology.
Collapse
Affiliation(s)
- Dakota R. Kamm
- Department of Biochemistry & Molecular Biology Saint Louis University School of Medicine St. Louis MO
| | - Kyle S. McCommis
- Department of Biochemistry & Molecular Biology Saint Louis University School of Medicine St. Louis MO
| |
Collapse
|
14
|
Wang FD, Zhou J, Chen EQ. Molecular Mechanisms and Potential New Therapeutic Drugs for Liver Fibrosis. Front Pharmacol 2022; 13:787748. [PMID: 35222022 PMCID: PMC8874120 DOI: 10.3389/fphar.2022.787748] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2021] [Accepted: 01/17/2022] [Indexed: 12/11/2022] Open
Abstract
Liver fibrosis is the pathological process of excessive extracellular matrix deposition after liver injury and is a precursor to cirrhosis, hepatocellular carcinoma (HCC). It is essentially a wound healing response to liver tissue damage. Numerous studies have shown that hepatic stellate cells play a critical role in this process, with various cells, cytokines, and signaling pathways engaged. Currently, the treatment targeting etiology is considered the most effective measure to prevent and treat liver fibrosis, but reversal fibrosis by elimination of the causative agent often occurs too slowly or too rarely to avoid life-threatening complications, especially in advanced fibrosis. Liver transplantation is the only treatment option in the end-stage, leaving us with an urgent need for new therapies. An in-depth understanding of the mechanisms of liver fibrosis could identify new targets for the treatment. Most of the drugs targeting critical cells and cytokines in the pathogenesis of liver fibrosis are still in pre-clinical trials and there are hardly any definitive anti-fibrotic chemical or biological drugs available for clinical use. In this review, we will summarize the pathogenesis of liver fibrosis, focusing on the role of key cells, associated mechanisms, and signaling pathways, and summarize various therapeutic measures or drugs that have been trialed in clinical practice or are in the research stage.
Collapse
|
15
|
Tao J, Chen Y, Zhuang Y, Wei R, Getachew A, Pan T, Yang F, Li Y. Inhibition of Hedgehog Delays Liver Regeneration through Disrupting the Cell Cycle. Curr Issues Mol Biol 2022; 44:470-482. [PMID: 35723318 PMCID: PMC8928988 DOI: 10.3390/cimb44020032] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2021] [Revised: 01/05/2022] [Accepted: 01/12/2022] [Indexed: 11/16/2022] Open
Abstract
Liver regeneration is a complicated biological process orchestrated by various liver resident cells. Hepatic cell proliferation and reconstruction of the hepatic architecture involve multiple signaling pathways. It has been reported that the Hh signal is involved in liver regeneration. However, the signal transduction pathways and cell types involved are ill studied. This study aimed to investigate hedgehog signal response cell types and the specific molecular mechanism involved in the process of liver regeneration. Partial hepatectomy (PH) of 70% was performed on ICR (Institute of Cancer Research) mice to study the process of liver regeneration. We found that the hedgehog signal was activated significantly after PH, including hedgehog ligands, receptors and intracellular signaling molecules. Ligand signals were mainly expressed in bile duct cells and non-parenchymal hepatic cells, while receptors were expressed in hepatocytes and some non-parenchymal cells. Inhibition of the hedgehog signal treated with vismodegib reduced the liver regeneration rate after partial hepatectomy, including inhibition of hepatic cell proliferation by decreasing Cyclin D expression and disturbing the cell cycle through the accumulation of Cyclin B. The current study reveals the important role of the hedgehog signal and its participation in the regulation of hepatic cell proliferation and the cell cycle during liver regeneration. It provides new insight into the recovery of the liver after liver resection.
Collapse
Affiliation(s)
- Jiawang Tao
- Institute of Public Health, Guangzhou Institutes of Biomedicine and Health (GIBH), Chinese Academy of Sciences (CAS), Guangzhou 510530, China; (J.T.); (Y.C.); (Y.Z.); (R.W.); (A.G.); (T.P.)
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yan Chen
- Institute of Public Health, Guangzhou Institutes of Biomedicine and Health (GIBH), Chinese Academy of Sciences (CAS), Guangzhou 510530, China; (J.T.); (Y.C.); (Y.Z.); (R.W.); (A.G.); (T.P.)
| | - Yuanqi Zhuang
- Institute of Public Health, Guangzhou Institutes of Biomedicine and Health (GIBH), Chinese Academy of Sciences (CAS), Guangzhou 510530, China; (J.T.); (Y.C.); (Y.Z.); (R.W.); (A.G.); (T.P.)
| | - Ruzhi Wei
- Institute of Public Health, Guangzhou Institutes of Biomedicine and Health (GIBH), Chinese Academy of Sciences (CAS), Guangzhou 510530, China; (J.T.); (Y.C.); (Y.Z.); (R.W.); (A.G.); (T.P.)
| | - Anteneh Getachew
- Institute of Public Health, Guangzhou Institutes of Biomedicine and Health (GIBH), Chinese Academy of Sciences (CAS), Guangzhou 510530, China; (J.T.); (Y.C.); (Y.Z.); (R.W.); (A.G.); (T.P.)
| | - Tingcai Pan
- Institute of Public Health, Guangzhou Institutes of Biomedicine and Health (GIBH), Chinese Academy of Sciences (CAS), Guangzhou 510530, China; (J.T.); (Y.C.); (Y.Z.); (R.W.); (A.G.); (T.P.)
| | - Fan Yang
- Ministry of Education CNS Regeneration Collaborative Joint Laboratory, Guangdong-Hongkong-Macau Institute of CNS Regeneration, Jinan University, Guangzhou 510632, China;
| | - Yinxiong Li
- Institute of Public Health, Guangzhou Institutes of Biomedicine and Health (GIBH), Chinese Academy of Sciences (CAS), Guangzhou 510530, China; (J.T.); (Y.C.); (Y.Z.); (R.W.); (A.G.); (T.P.)
- University of Chinese Academy of Sciences, Beijing 100049, China
- Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, Guangzhou 510530, China
- Bioland Laboratory (Guangzhou Regenerative Medicine and Health Guangdong Laboratory), Guangzhou 510005, China
- State Key Laboratory of Respiratory Disease, Guangzhou 510530, China
- Correspondence: ; Tel.: +86-(020)-3201-5207
| |
Collapse
|
16
|
Helms EJ, Berry MW, Chaw RC, DuFort CC, Sun D, Onate MK, Oon C, Bhattacharyya S, Sanford-Crane H, Horton W, Finan JM, Sattler A, Makar R, Dawson DW, Xia Z, Hingorani SR, Sherman MH. Mesenchymal Lineage Heterogeneity Underlies Non-Redundant Functions of Pancreatic Cancer-Associated Fibroblasts. Cancer Discov 2021; 12:484-501. [PMID: 34548310 DOI: 10.1158/2159-8290.cd-21-0601] [Citation(s) in RCA: 103] [Impact Index Per Article: 34.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2021] [Revised: 08/12/2021] [Accepted: 09/16/2021] [Indexed: 11/16/2022]
Abstract
Cancer-associated fibroblast (CAF) heterogeneity is increasingly appreciated, but the origins and functions of distinct CAF subtypes remain poorly understood. The abundant and transcriptionally diverse CAF population in pancreatic ductal adenocarcinoma (PDAC) is thought to arise from a common cell of origin, pancreatic stellate cells (PSCs), with diversification resulting from cytokine and growth factor gradients within the tumor microenvironment. Here we analyzed the differentiation and function of PSCs during tumor progression in vivo. Contrary to expectations, we found that PSCs give rise to a numerically minor subset of PDAC CAFs. Targeted ablation of PSC-derived CAFs within their host tissue revealed non-redundant functions for this defined CAF population in shaping the PDAC microenvironment, including production of specific extracellular matrix components and tissue stiffness regulation. Together, these findings link stromal evolution from distinct cells of origin to transcriptional heterogeneity among PDAC CAFs, and demonstrate unique functions for CAFs of a defined cellular origin.
Collapse
Affiliation(s)
| | - Mark W Berry
- Cell, Developmental & Cancer Biology, Oregon Health & Science University School of Medicine
| | | | | | - Duanchen Sun
- Computational biology, Oregon Health & Science University
| | | | - Chet Oon
- Cell, Developmental & Cancer Biology, Oregon Health & Science University School of Medicine
| | - Sohinee Bhattacharyya
- Cell, Developmental & Cancer Biology, Oregon Health & Science University School of Medicine
| | - Hannah Sanford-Crane
- Cell, Developmental & Cancer Biology, Oregon Health & Science University School of Medicine
| | - Wesley Horton
- Computational Biology, Oregon Health & Science University
| | - Jennifer M Finan
- Cell, Developmental and Cancer Biology, Oregon Health and Science University
| | - Ariana Sattler
- Department of Cell, Developmental & Cancer Biology, Oregon Health & Science University
| | - Rosemary Makar
- Knight BioLibrary, Oregon Health & Science University School of Medicine
| | - David W Dawson
- Pathology and Laboratory Medicine, David Geffen School of Medicine at University of California Los Angeles (UCLA)
| | - Zheng Xia
- Computational Biology Program; Knight Cancer Institute, Oregon Health & Science University
| | | | - Mara H Sherman
- Cell, Developmental & Cancer Biology, Oregon Health & Science University School of Medicine
| |
Collapse
|
17
|
Zhang W, Conway SJ, Liu Y, Snider P, Chen H, Gao H, Liu Y, Isidan K, Lopez KJ, Campana G, Li P, Ekser B, Francis H, Shou W, Kubal C. Heterogeneity of Hepatic Stellate Cells in Fibrogenesis of the Liver: Insights from Single-Cell Transcriptomic Analysis in Liver Injury. Cells 2021; 10:cells10082129. [PMID: 34440898 PMCID: PMC8391930 DOI: 10.3390/cells10082129] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2021] [Revised: 08/06/2021] [Accepted: 08/16/2021] [Indexed: 12/11/2022] Open
Abstract
Background & Aims: Liver fibrosis is a pathological healing process resulting from hepatic stellate cell (HSC) activation and the generation of myofibroblasts from activated HSCs. The precise underlying mechanisms of liver fibrogenesis are still largely vague due to lack of understanding the functional heterogeneity of activated HSCs during liver injury. Approach and Results: In this study, to define the mechanism of HSC activation, we performed the transcriptomic analysis at single-cell resolution (scRNA-seq) on HSCs in mice treated with carbon tetrachloride (CCl4). By employing LRAT-Cre:Rosa26mT/mG mice, we were able to isolate an activated GFP-positive HSC lineage derived cell population by fluorescence-activated cell sorter (FACS). A total of 8 HSC subpopulations were identified based on an unsupervised analysis. Each HSC cluster displayed a unique transcriptomic profile, despite all clusters expressing common mouse HSC marker genes. We demonstrated that one of the HSC subpopulations expressed high levels of mitosis regulatory genes, velocity, and monocle analysis indicated that these HSCs are at transitioning and proliferating phases at the beginning of HSCs activation and will eventually give rise to several other HSC subtypes. We also demonstrated cell clusters representing HSC-derived mature myofibroblast populations that express myofibroblasts hallmark genes with unique contractile properties. Most importantly, we found a novel HSC cluster that is likely to be critical in liver regeneration, immune reaction, and vascular remodeling, in which the unique profiles of genes such as Rgs5, Angptl6, and Meg3 are highly expressed. Lastly, we demonstrated that the heterogeneity of HSCs in the injured mouse livers is closely similar to that of cirrhotic human livers. Conclusions: Collectively, our scRNA-seq data provided insight into the landscape of activated HSC populations and the dynamic transitional pathway from HSC to myofibroblasts in response to liver injury.
Collapse
Affiliation(s)
- Wenjun Zhang
- Division of Transplant Surgery, Indiana University, Indianapolis, IN 46202, USA
| | - Simon J Conway
- Department of Pediatrics, Indiana University School of Medicine, Indianapolis, IN 46202, USA
| | - Ying Liu
- Department of Pediatrics, Indiana University School of Medicine, Indianapolis, IN 46202, USA
| | - Paige Snider
- Department of Pediatrics, Indiana University School of Medicine, Indianapolis, IN 46202, USA
| | - Hanying Chen
- Genome Editing Center, Indiana University School of Medicine, Indianapolis, IN 46202, USA
| | - Hongyu Gao
- The Center for Medical Genomics, Indiana University School of Medicine, Indianapolis, IN 46202, USA
| | - Yunlong Liu
- The Center for Medical Genomics, Indiana University School of Medicine, Indianapolis, IN 46202, USA
| | - Kadir Isidan
- Division of Transplant Surgery, Indiana University, Indianapolis, IN 46202, USA
| | - Kevin J Lopez
- Division of Transplant Surgery, Indiana University, Indianapolis, IN 46202, USA
| | - Gonzalo Campana
- Division of Transplant Surgery, Indiana University, Indianapolis, IN 46202, USA
| | - Ping Li
- Division of Transplant Surgery, Indiana University, Indianapolis, IN 46202, USA
| | - Burcin Ekser
- Division of Transplant Surgery, Indiana University, Indianapolis, IN 46202, USA
| | - Heather Francis
- Division of Gastroenterology, Department of Medicine, Indiana University School of Medicine, Indianapolis, IN 46202, USA
| | - Weinian Shou
- Department of Pediatrics, Indiana University School of Medicine, Indianapolis, IN 46202, USA
| | | |
Collapse
|
18
|
Weng T, Yan D, Shi D, Zhu M, Liu Y, Wu Z, Tang T, Zhu L, Zhang H, Yao H, Li L. The MSP-RON pathway regulates liver fibrosis through transforming growth factor beta-dependent epithelial-mesenchymal transition. Liver Int 2021; 41:1956-1968. [PMID: 33786995 DOI: 10.1111/liv.14892] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/22/2020] [Accepted: 03/28/2021] [Indexed: 12/13/2022]
Abstract
BACKGROUND Liver fibrosis is pathologically important in the liver cirrhosis progression. The epithelial-mesenchymal transition (EMT) is crucial for organ fibrosis. Macrophage-stimulating protein (MSP) and its receptor tyrosine kinase, RON, promote cellular EMT. However, their role in liver fibrosis is unclear. Here, we clarify the biological profile, potential mechanisms and therapeutic targets of the MSP-RON pathway in liver fibrosis. MATERIALS AND METHODS Macrophage-stimulating protein expression and its correlation with clinicopathological characteristics of cirrhosis were evaluated in 57 clinical cases and a control group. The effect of MSP-RON pathway in liver fibrosis was determined in vitro and in vivo. The therapeutic effects of MSP or RON inhibition on liver fibrosis were evaluated in a mouse liver fibrosis model. RESULTS Macrophage-stimulating protein is upregulated in liver cirrhosis, which was associated with poor patient prognosis. The MSP-RON pathway promoted hepatocytes EMT. MSP-RON-induced EMT depends on the transforming growth factor beta (TGF-β) pathway and is regulated by TGF-β inhibitors. In animal models, an MSP blocking antibody and a small molecule inhibitor of RON, BMS-777607, both inhibited liver fibrosis progression. CONCLUSION Our study revealed that MSP is an important biomarker in liver cirrhosis progression and can be used to prognose patients. The MSP-RON pathway promotes the EMT of hepatocytes and the progress of fibrosis via a TGF-β related pathway. Consequently, we identified a new treatment strategy for liver cirrhosis through targeted inhibition of MSP/RON. This research increases the understanding of EMT-modulated liver fibrosis and provides new insights into biomarkers and therapeutic targets of liver fibrosis.
Collapse
Affiliation(s)
- Tianhao Weng
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Dong Yan
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Danrong Shi
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Miaojin Zhu
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Yizhi Liu
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Zhigang Wu
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Taoming Tang
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Linwei Zhu
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Hong Zhang
- Department of Gastroenterology, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Hangping Yao
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Lanjuan Li
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| |
Collapse
|
19
|
Yan J, Hu B, Shi W, Wang X, Shen J, Chen Y, Huang H, Jin L. Gli2-regulated activation of hepatic stellate cells and liver fibrosis by TGF-β signaling. Am J Physiol Gastrointest Liver Physiol 2021; 320:G720-G728. [PMID: 33728992 DOI: 10.1152/ajpgi.00310.2020] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
The Hedgehog (Hh) signaling pathway is correlated with hepatic stellate cells (HSCs) activation and liver fibrosis. Gli2 is a key transcription effector of Hh signaling. However, the role of Gli2 in HSC-mediated liver fibrosis progression is largely unknown. In the present study, we investigated the effect of Gli2 on liver fibrogenesis and its possible mechanism using conditional knockout (cKO) Gli2 mice and HSC models. Wild-type (WT) and GFAP-CreERT;Gli2flox/flox male mice were exposed to CCl4 for 1 mo to induce liver fibrosis. Primary HSCs were isolated from mice and the transition of HSCs into a myofibroblastic phenotype was evaluated. Livers from mice underwent histological, immunohistochemical, and immunofluorescence analyses. The expression levels of proteins and genes were evaluated by Western blot (WB) analysis and quantitative real-time polymerase chain reaction (qRT-PCR), respectively. RNA-seq was used to screen differentially expressed genes. Results showed that CCl4 treatment induced liver fibrosis, promoted HSCs activation and proliferation, and upregulated Hh signaling activity. The cKO of Gli2 in GFAP-CreERT;Gli2flox/flox mice decreased liver fibrosis as well as HSC activation and proliferation. In vitro studies showed that KO of Gli2 in HSCs blocked cell proliferation and activation by decrease of cyclin D1/D2 expression. The RNA-seq results revealed that the expression levels TGF-β1 ligands were downregulated in Gli2 KO HSCs. Furthermore, overexpression of Gli2 rescued proliferation and activation of HSCs by upregulation of TGF-β signaling activity. Our data demonstrated that Gli2 regulated HSC activation and liver fibrosis by TGF-β signaling, thus providing support for future Gli2-based investigations of liver fibrosis therapy.NEW & NOTEWORTHYGli2 is a key transcription effector of Hh signaling. We found that Hh/Gli2 signaling activity was upregulated in CCl4-induced liver fibrosis. Conditional deletion of the Gli2 gene in HSCs ameliorated CCl4-induced liver fibrosis and HSCs activation. Moreover, Gli2 promoted activation of HSCs through upregulation of cyclin expression and TGF-β signaling activity. Thus, our data provide strong support for future investigations on Gli2 inhibition to slow liver fibrosis progression in humans.
Collapse
Affiliation(s)
- Junyan Yan
- School of Life Science, Shaoxing University, Shaoxing, China
| | - Baowei Hu
- School of Life Science, Shaoxing University, Shaoxing, China
| | - Wenjie Shi
- School of Life Science, Shaoxing University, Shaoxing, China
| | - Xiaoyi Wang
- School of Life Science, Shaoxing University, Shaoxing, China
| | - Jiayuan Shen
- School of Life Science, Shaoxing University, Shaoxing, China.,Department of Pathology, Affliliated Hospital of Shaoxing University, Shaoxing, China
| | - Yaping Chen
- School of Life Science, Shaoxing University, Shaoxing, China
| | - Huarong Huang
- College of Life and Environmental Science, Hangzhou Normal University, Hangzhou, China
| | - Lifang Jin
- School of Life Science, Shaoxing University, Shaoxing, China
| |
Collapse
|
20
|
Sufleţel RT, Melincovici CS, Gheban BA, Toader Z, Mihu CM. Hepatic stellate cells - from past till present: morphology, human markers, human cell lines, behavior in normal and liver pathology. ROMANIAN JOURNAL OF MORPHOLOGY AND EMBRYOLOGY 2021; 61:615-642. [PMID: 33817704 PMCID: PMC8112759 DOI: 10.47162/rjme.61.3.01] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
Hepatic stellate cell (HSC), initially analyzed by von Kupffer, in 1876, revealed to be an extraordinary mesenchymal cell, essential for both hepatocellular function and lesions, being the hallmark of hepatic fibrogenesis and carcinogenesis. Apart from their implications in hepatic injury, HSCs play a vital role in liver development and regeneration, xenobiotic response, intermediate metabolism, and regulation of immune response. In this review, we discuss the current state of knowledge regarding HSCs morphology, human HSCs markers and human HSC cell lines. We also summarize the latest findings concerning their roles in normal and liver pathology, focusing on their impact in fibrogenesis, chronic viral hepatitis and liver tumors.
Collapse
Affiliation(s)
- Rada Teodora Sufleţel
- Discipline of Histology, Department of Morphological Sciences, Iuliu Haţieganu University of Medicine and Pharmacy, Cluj-Napoca, Romania;
| | | | | | | | | |
Collapse
|
21
|
Myojin Y, Hikita H, Sugiyama M, Sasaki Y, Fukumoto K, Sakane S, Makino Y, Takemura N, Yamada R, Shigekawa M, Kodama T, Sakamori R, Kobayashi S, Tatsumi T, Suemizu H, Eguchi H, Kokudo N, Mizokami M, Takehara T. Hepatic Stellate Cells in Hepatocellular Carcinoma Promote Tumor Growth Via Growth Differentiation Factor 15 Production. Gastroenterology 2021; 160:1741-1754.e16. [PMID: 33346004 DOI: 10.1053/j.gastro.2020.12.015] [Citation(s) in RCA: 88] [Impact Index Per Article: 29.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/25/2020] [Revised: 12/02/2020] [Accepted: 12/03/2020] [Indexed: 02/06/2023]
Abstract
BACKGROUND & AIMS Although the tumor microenvironment plays an important role in tumor growth, it is not fully understood what role hepatic stellate cells (HSCs) play in the hepatocellular carcinoma (HCC) microenvironment. METHODS A high-fat diet after streptozotocin was administered to HSC-specific Atg7-deficient (GFAP-Atg7 knockout [KO]) or growth differentiation factor 15 (GDF15)-deficient (GFAP-GDF15KO) mice. LX-2 cells, a human HSC cell line, were cultured with human hepatoma cells. RESULTS In the steatohepatitis-based tumorigenesis model, GFAP-Atg7KO mice formed fewer and smaller liver tumors than their wild-type littermates. Mixed culture of LX-2 cells and hepatoma cells promoted LX-2 cell autophagy and hepatoma cell proliferation, which were attenuated by Atg7 KO in LX-2 cells. Hepatoma cell xenograft tumors grew rapidly in the presence of LX-2 cells, but Atg7 KO in LX-2 cells abolished this growth. RNA-sequencing revealed that LX-2 cells cultured with HepG2 cells highly expressed GDF15, which was abolished by Atg7 KO in LX-2 cells. GDF15 KO LX-2 cells did not show a growth-promoting effect on hepatoma cells either in vitro or in the xenograft model. GDF15 deficiency in HSCs reduced liver tumor size caused by the steatohepatitis-based tumorigenesis model. GDF15 was highly expressed and GDF15-positive nonparenchymal cells were more abundant in human HCC compared with noncancerous parts. Single-cell RNA sequencing showed that GDF15-positive rates in HSCs were higher in HCC than in background liver. Serum GDF15 levels were high in HCC patients and increased with tumor progression. CONCLUSIONS In the HCC microenvironment, an increase of HSCs that produces GDF15 in an autophagy-dependent manner may be involved in tumor progression.
Collapse
Affiliation(s)
- Yuta Myojin
- Department of Gastroenterology and Hepatology, Osaka University Graduate School of Medicine, Suita, Japan
| | - Hayato Hikita
- Department of Gastroenterology and Hepatology, Osaka University Graduate School of Medicine, Suita, Japan
| | - Masaya Sugiyama
- Genome Medical Sciences Project, National Center for Global Health and Medicine, Ichikawa, Japan
| | - Yoichi Sasaki
- Department of Gastroenterology and Hepatology, Osaka University Graduate School of Medicine, Suita, Japan
| | - Kenji Fukumoto
- Department of Gastroenterology and Hepatology, Osaka University Graduate School of Medicine, Suita, Japan
| | - Sadatsugu Sakane
- Department of Gastroenterology and Hepatology, Osaka University Graduate School of Medicine, Suita, Japan
| | - Yuki Makino
- Department of Gastroenterology and Hepatology, Osaka University Graduate School of Medicine, Suita, Japan
| | - Nobuyuki Takemura
- Department of Surgery, National Center for Global Health and Medicine, Tokyo, Japan
| | - Ryoko Yamada
- Department of Gastroenterology and Hepatology, Osaka University Graduate School of Medicine, Suita, Japan
| | - Minoru Shigekawa
- Department of Gastroenterology and Hepatology, Osaka University Graduate School of Medicine, Suita, Japan
| | - Takahiro Kodama
- Department of Gastroenterology and Hepatology, Osaka University Graduate School of Medicine, Suita, Japan
| | - Ryotaro Sakamori
- Department of Gastroenterology and Hepatology, Osaka University Graduate School of Medicine, Suita, Japan
| | - Shogo Kobayashi
- Department of Gastroenterological Surgery, Osaka University Graduate School of Medicine, Suita, Japan
| | - Tomohide Tatsumi
- Department of Gastroenterology and Hepatology, Osaka University Graduate School of Medicine, Suita, Japan
| | - Hiroshi Suemizu
- Department of Laboratory Animal Research, Central Institute for Experimental Animals
| | - Hidetoshi Eguchi
- Department of Gastroenterological Surgery, Osaka University Graduate School of Medicine, Suita, Japan
| | - Norihiro Kokudo
- Department of Surgery, National Center for Global Health and Medicine, Tokyo, Japan
| | - Masashi Mizokami
- Genome Medical Sciences Project, National Center for Global Health and Medicine, Ichikawa, Japan
| | - Tetsuo Takehara
- Department of Gastroenterology and Hepatology, Osaka University Graduate School of Medicine, Suita, Japan.
| |
Collapse
|
22
|
So J, Kim A, Lee SH, Shin D. Liver progenitor cell-driven liver regeneration. Exp Mol Med 2020; 52:1230-1238. [PMID: 32796957 PMCID: PMC8080804 DOI: 10.1038/s12276-020-0483-0] [Citation(s) in RCA: 45] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2020] [Revised: 06/08/2020] [Accepted: 06/17/2020] [Indexed: 12/28/2022] Open
Abstract
The liver is a highly regenerative organ, but its regenerative capacity is compromised in severe liver diseases. Hepatocyte-driven liver regeneration that involves the proliferation of preexisting hepatocytes is a primary regeneration mode. On the other hand, liver progenitor cell (LPC)-driven liver regeneration that involves dedifferentiation of biliary epithelial cells or hepatocytes into LPCs, LPC proliferation, and subsequent differentiation of LPCs into hepatocytes is a secondary mode. This secondary mode plays a significant role in liver regeneration when the primary mode does not effectively work, as observed in severe liver injury settings. Thus, promoting LPC-driven liver regeneration may be clinically beneficial to patients with severe liver diseases. In this review, we describe the current understanding of LPC-driven liver regeneration by exploring current knowledge on the activation, origin, and roles of LPCs during regeneration. We also describe animal models used to study LPC-driven liver regeneration, given their potential to further deepen our understanding of the regeneration process. This understanding will eventually contribute to developing strategies to promote LPC-driven liver regeneration in patients with severe liver diseases.
Collapse
Affiliation(s)
- Juhoon So
- Department of Developmental Biology, McGowan Institute for Regenerative Medicine, Pittsburgh Liver Research Center, University of Pittsburgh, Pittsburgh, PA, 15260, USA.
| | - Angie Kim
- Department of Developmental Biology, McGowan Institute for Regenerative Medicine, Pittsburgh Liver Research Center, University of Pittsburgh, Pittsburgh, PA, 15260, USA
| | - Seung-Hoon Lee
- Department of Developmental Biology, McGowan Institute for Regenerative Medicine, Pittsburgh Liver Research Center, University of Pittsburgh, Pittsburgh, PA, 15260, USA
| | - Donghun Shin
- Department of Developmental Biology, McGowan Institute for Regenerative Medicine, Pittsburgh Liver Research Center, University of Pittsburgh, Pittsburgh, PA, 15260, USA.
| |
Collapse
|
23
|
Wei S, Tang J, Cai X. Founder cells for hepatocytes during liver regeneration: from identification to application. Cell Mol Life Sci 2020; 77:2887-2898. [PMID: 32060582 PMCID: PMC11105049 DOI: 10.1007/s00018-020-03457-3] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2019] [Revised: 01/02/2020] [Accepted: 01/10/2020] [Indexed: 12/12/2022]
Abstract
Liver regeneration (LR) capacity in vertebrates developed through natural selection over a hundred million years of evolution. To maintain homeostasis or recover from various injuries, liver cells must regenerate; this process includes the renewal of parenchymal and nonparenchymal cells as well as the formation of liver structures. The cellular origin of newly grown tissue is one of the critical questions in this area and has been a subject of prolonged debate. The regenerative tissue may derive from either hepatocyte self-duplication or liver stem/progenitor cells (LSPCs). Recently, hepatocyte subpopulations and cholangiocytes were also described as important founder cells. The niche that triggers the proliferation of hepatocytes and the differentiation of LSPCs has been extensively studied. Meanwhile, in vitro culture systems for liver founder cells and organoids have been developed rapidly for mechanistic studies and potential therapeutic purposes. This review summarizes the cellular sources and niches that give rise to renewed hepatocytes during LR, and it also describes in vitro culture studies of those founder cells for future applications, as well as current reports for stem cell-based therapies for liver diseases.
Collapse
Affiliation(s)
- Saisai Wei
- Key Laboratory of Endoscopic Technique Research of Zhejiang Province, Sir Run-Run Shaw Hospital, Zhejiang University, Hangzhou, 310016, China
| | - Jiacheng Tang
- Key Laboratory of Endoscopic Technique Research of Zhejiang Province, Sir Run-Run Shaw Hospital, Zhejiang University, Hangzhou, 310016, China
| | - Xiujun Cai
- Key Laboratory of Endoscopic Technique Research of Zhejiang Province, Sir Run-Run Shaw Hospital, Zhejiang University, Hangzhou, 310016, China.
- Department of General Surgery, Sir Run-Run Shaw Hospital, Zhejiang University, Hangzhou, 310016, China.
| |
Collapse
|
24
|
Ortega‐Ribera M, Hunt NJ, Gracia‐Sancho J, Cogger VC. The Hepatic Sinusoid in Aging and Disease: Update and Advances From the 20th Liver Sinusoid Meeting. Hepatol Commun 2020; 4:1087-1098. [PMID: 32626839 PMCID: PMC7327202 DOI: 10.1002/hep4.1517] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/09/2019] [Revised: 03/17/2020] [Accepted: 03/18/2020] [Indexed: 12/13/2022] Open
Abstract
This is a meeting report of the 2019 Liver Sinusoid Meeting, 20th International Symposium on Cells of the Hepatic Sinusoid, held in Sydney, Australia, in September 2019. The meeting, which was organized by the International Society for Hepatic Sinusoidal Research, provided an update on the recent advances in the field of hepatic sinusoid cells in relation to cell biology, aging, and liver disease, with particular focus on the molecular and cellular targets involved in hepatic fibrosis, nonalcoholic hepatic steatohepatitis, alcoholic liver disease, hepatocellular carcinoma, and cirrhosis. In addition, the meeting highlighted the recent advances in regenerative medicine, targeted nanotechnologies, therapeutics, and novel methodologies.
Collapse
Affiliation(s)
- Martí Ortega‐Ribera
- Liver Vascular Biology Research GroupBarcelona Hepatic Hemodynamic UnitInstitut d’Investigacions Biomèdiques August Pi i SunyerCentro de Investigación Biomédica en Red de Enfermedades Hepáticas y DigestivasBarcelonaSpain
| | - Nicholas J. Hunt
- Centre for Education and Research on AgeingConcord Repatriation General HospitalANZAC Research InstituteAustralian Ageing and Alzheimers InstituteConcordSydneyNSWAustralia
- Faculty of Medicine and HealthUniversity of SydneySydneyNSWAustralia
| | - Jordi Gracia‐Sancho
- Liver Vascular Biology Research GroupBarcelona Hepatic Hemodynamic UnitInstitut d’Investigacions Biomèdiques August Pi i SunyerCentro de Investigación Biomédica en Red de Enfermedades Hepáticas y DigestivasBarcelonaSpain
- HepatologyDepartment of Biomedical ResearchUniversity of BernInselspitalBernSwitzerland
| | - Victoria C. Cogger
- Centre for Education and Research on AgeingConcord Repatriation General HospitalANZAC Research InstituteAustralian Ageing and Alzheimers InstituteConcordSydneyNSWAustralia
- Faculty of Medicine and HealthUniversity of SydneySydneyNSWAustralia
| |
Collapse
|
25
|
Osman I, Wang L, Hu G, Zeqi Z, Jiliang Z. GFAP (Glial Fibrillary Acidic Protein)-Positive Progenitor Cells Contribute to the Development of Vascular Smooth Muscle Cells and Endothelial Cells-Brief Report. Arterioscler Thromb Vasc Biol 2020; 40:1231-1238. [PMID: 32160776 PMCID: PMC7180117 DOI: 10.1161/atvbaha.120.314078] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
OBJECTIVE While GFAP (glial fibrillary acidic protein) is commonly used as a classical marker for astrocytes in the central nervous system, GFAP-expressing progenitor cells give rise to other cell types during development. The goal of this study was to investigate whether GFAP-expressing progenitor cells contribute to the development of vascular cells in major arteries. Approach and Results: To label GFAP-expressing progenitor cells and their progeny, we crossed GFAP promoter-driven Cre recombinase mice (GFAP-Cre) with transgenic mice expressing the Cre-dependent mTmG dual fluorescent reporter gene. Using this genetic fate-mapping approach, here we demonstrate that GFAP-positive progenitor cells contribute to the development of vascular smooth muscle cells in both neural crest- and non-neural crest-derived vascular beds. In addition, GFAP-positive progenitor cells contribute to a subset of endothelial cells in some vasculature. Furthermore, fate-mapping analyses at multiple time points of mouse development demonstrate a time-dependent increase in the contribution of GFAP-positive progenitors to vascular smooth muscle cells, which mostly occurs in the postnatal period. CONCLUSIONS Our study demonstrates that vascular smooth muscle cells and endothelial cells within the same vascular segment are developmentally heterogeneous, where varying proportions of vascular smooth muscle cells and endothelial cells are contributed by GFAP-positive progenitor cells.
Collapse
Affiliation(s)
- Islam Osman
- Department of Pharmacology and Toxicology, Medical College of Georgia, Augusta University, Augusta, GA 30912
| | - Liang Wang
- Department of Pharmacology and Toxicology, Medical College of Georgia, Augusta University, Augusta, GA 30912
- Department of Cardiology, The First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, 330006, China
| | - Guoqing Hu
- Department of Pharmacology and Toxicology, Medical College of Georgia, Augusta University, Augusta, GA 30912
| | - Zheng Zeqi
- Department of Cardiology, The First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, 330006, China
| | - Zhou Jiliang
- Department of Pharmacology and Toxicology, Medical College of Georgia, Augusta University, Augusta, GA 30912
| |
Collapse
|
26
|
DeRossi C, Bambino K, Morrison J, Sakarin I, Villacorta-Martin C, Zhang C, Ellis JL, Fiel MI, Ybanez M, Lee YA, Huang KL, Yin C, Sakaguchi TF, Friedman SL, Villanueva A, Chu J. Mannose Phosphate Isomerase and Mannose Regulate Hepatic Stellate Cell Activation and Fibrosis in Zebrafish and Humans. Hepatology 2019; 70:2107-2122. [PMID: 31016744 PMCID: PMC6812593 DOI: 10.1002/hep.30677] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/09/2018] [Accepted: 04/18/2019] [Indexed: 12/13/2022]
Abstract
The growing burden of liver fibrosis and lack of effective antifibrotic therapies highlight the need for identification of pathways and complementary model systems of hepatic fibrosis. A rare, monogenic disorder in which children with mutations in mannose phosphate isomerase (MPI) develop liver fibrosis led us to explore the function of MPI and mannose metabolism in liver development and adult liver diseases. Herein, analyses of transcriptomic data from three human liver cohorts demonstrate that MPI gene expression is down-regulated proportionate to fibrosis in chronic liver diseases, including nonalcoholic fatty liver disease and hepatitis B virus. Depletion of MPI in zebrafish liver in vivo and in human hepatic stellate cell (HSC) lines in culture activates fibrotic responses, indicating that loss of MPI promotes HSC activation. We further demonstrate that mannose supplementation can attenuate HSC activation, leading to reduced fibrogenic activation in zebrafish, culture-activated HSCs, and in ethanol-activated HSCs. Conclusion: These data indicate the prospect that modulation of mannose metabolism pathways could reduce HSC activation and improve hepatic fibrosis.
Collapse
Affiliation(s)
- Charles DeRossi
- Department of Pediatrics, Icahn School of Medicine at Mount Sinai, New York, NY
| | - Kathryn Bambino
- Department of Environmental Medicine and Public Health, Icahn School of Medicine at Mount Sinai, New York, NY
| | - Joshua Morrison
- Department of Pediatrics, Icahn School of Medicine at Mount Sinai, New York, NY
| | - Isabel Sakarin
- Department of Pediatrics, Icahn School of Medicine at Mount Sinai, New York, NY
| | | | - Changwen Zhang
- Division of Gastroenterology, Hepatology and Nutrition, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH
| | - Jillian L. Ellis
- Division of Gastroenterology, Hepatology and Nutrition, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH
| | - M. Isabel Fiel
- Department of Pathology, Icahn School of Medicine at Mount Sinai, New York, NY
| | - Maria Ybanez
- Laboratory of RNA Molecular Biology, Rockefeller University, New York, NY,Division of Liver Diseases, Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, NY
| | - Youngmin A. Lee
- Laboratory of RNA Molecular Biology, Rockefeller University, New York, NY
| | - Kuan-lin Huang
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY
| | - Chunyue Yin
- Division of Gastroenterology, Hepatology and Nutrition, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH
| | - Takuya F. Sakaguchi
- Department of Stem Cell Biology and Regenerative Medicine, Lerner Research Institute, Cleveland Clinic Foundation, Cleveland, OH
| | - Scott L. Friedman
- Division of Liver Diseases, Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, NY
| | - Augusto Villanueva
- Division of Liver Diseases, Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, NY
| | - Jaime Chu
- Department of Pediatrics, Icahn School of Medicine at Mount Sinai, New York, NY
| |
Collapse
|
27
|
Weber-Adrian D, Kofoed RH, Chan JWY, Silburt J, Noroozian Z, Kügler S, Hynynen K, Aubert I. Strategy to enhance transgene expression in proximity of amyloid plaques in a mouse model of Alzheimer's disease. Theranostics 2019; 9:8127-8137. [PMID: 31754385 PMCID: PMC6857057 DOI: 10.7150/thno.36718] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2019] [Accepted: 08/29/2019] [Indexed: 12/26/2022] Open
Abstract
Gene therapy can be designed to efficiently counter pathological features characteristic of neurodegenerative disorders. Here, we took advantage of the glial fibrillary acidic protein (GFAP) promoter to preferentially enhance transgene expression near plaques composed of amyloid-beta peptides (Aβ), a hallmark of Alzheimer's disease (AD), in the TgCRND8 mouse model of amyloidosis. Methods: The delivery of intravenously injected recombinant adeno-associated virus mosaic serotype 1/2 (rAAV1/2) to the cortex and hippocampus of TgCRND8 mice was facilitated using transcranial MRI-guided focused ultrasound in combination with microbubbles (MRIgFUS), which transiently and locally increases the permeability of the blood-brain barrier (BBB). rAAV1/2 expression of the reporter green fluorescent protein (GFP) under a GFAP promoter was compared to GFP expression driven by the constitutive human beta actin (HBA) promoter. Results: MRIgFUS targeting the cortex and hippocampus facilitated the entry of rAAV1/2 and GFP expression under the GFAP promoter was localized to GFAP-positive astrocytes. Adjacent to Aβ plaques where GFAP is upregulated, the volume, surface area, and fluorescence intensity of the transgene GFP were greater in rAAV1/2-GFAP-GFP compared to rAAV1/2-HBA-GFP treated animals. In peripheral organs, GFP expression was particularly strong in the liver, irrespective of the promoter. Conclusion: The GFAP promoter enhanced transgene expression in proximity of Aβ plaques in the brain of TgCRND8 mice, and it also resulted in significant expression in the liver. Future gene therapies for neurological disorders could benefit from using a GFAP promoter to regulate transgene expression in response to disease-induced astrocytic reactivity.
Collapse
Affiliation(s)
- Danielle Weber-Adrian
- Biological Sciences, Hurvitz Brain Sciences Research Program, Sunnybrook Research Institute, Toronto, ON, Canada
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, ON Canada
| | - Rikke Hahn Kofoed
- Biological Sciences, Hurvitz Brain Sciences Research Program, Sunnybrook Research Institute, Toronto, ON, Canada
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, ON Canada
| | - Josephine Wing Yee Chan
- Biological Sciences, Hurvitz Brain Sciences Research Program, Sunnybrook Research Institute, Toronto, ON, Canada
| | - Joseph Silburt
- Biological Sciences, Hurvitz Brain Sciences Research Program, Sunnybrook Research Institute, Toronto, ON, Canada
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, ON Canada
| | - Zeinab Noroozian
- Biological Sciences, Hurvitz Brain Sciences Research Program, Sunnybrook Research Institute, Toronto, ON, Canada
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, ON Canada
| | - Sebastian Kügler
- Department of Neurology, Georg-August-Universität Göttingen, Göttingen, Germany
| | - Kullervo Hynynen
- Physical Sciences, Sunnybrook Research Institute, Toronto, ON, Canada
- Department of Medical Biophysics, University of Toronto, Toronto, ON, Canada
| | - Isabelle Aubert
- Biological Sciences, Hurvitz Brain Sciences Research Program, Sunnybrook Research Institute, Toronto, ON, Canada
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, ON Canada
| |
Collapse
|
28
|
Kendall TJ, Duff CM, Boulter L, Wilson DH, Freyer E, Aitken S, Forbes SJ, Iredale JP, Hastie ND. Embryonic mesothelial-derived hepatic lineage of quiescent and heterogenous scar-orchestrating cells defined but suppressed by WT1. Nat Commun 2019; 10:4688. [PMID: 31615982 PMCID: PMC6794268 DOI: 10.1038/s41467-019-12701-9] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2017] [Accepted: 09/11/2019] [Indexed: 12/24/2022] Open
Abstract
Activated hepatic stellate cells (aHSCs) orchestrate scarring during liver injury, with putative quiescent precursor mesodermal derivation. Here we use lineage-tracing from development, through adult homoeostasis, to fibrosis, to define morphologically and transcriptionally discreet subpopulations of aHSCs by expression of WT1, a transcription factor controlling morphological transitions in organogenesis and adult homoeostasis. Two distinct populations of aHSCs express WT1 after injury, and both re-engage a transcriptional signature reflecting embryonic mesothelial origin of their discreet quiescent adult precursor. WT1-deletion enhances fibrogenesis after injury, through upregulated Wnt-signalling and modulation of genes central to matrix persistence in aHSCs, and augmentation of myofibroblastic transition. The mesothelial-derived lineage demonstrates punctuated phenotypic plasticity through bidirectional mesothelial-mesenchymal transitions. Our findings demonstrate functional heterogeneity of adult scar-orchestrating cells that can be whole-life traced back through specific quiescent adult precursors to differential origin in development, and define WT1 as a paradoxical regulator of aHSCs induced by injury but suppressing scarring.
Collapse
Affiliation(s)
- Timothy James Kendall
- MRC Human Genetics Unit, MRC Institute of Genetics & Molecular Medicine, The University of Edinburgh, Edinburgh, EH4 2XU, UK.
- University of Edinburgh Centre for Inflammation Research, The University of Edinburgh, Edinburgh, EH4 2XU, UK.
| | - Catherine Mary Duff
- MRC Human Genetics Unit, MRC Institute of Genetics & Molecular Medicine, The University of Edinburgh, Edinburgh, EH4 2XU, UK
- University of Edinburgh Centre for Inflammation Research, The University of Edinburgh, Edinburgh, EH4 2XU, UK
| | - Luke Boulter
- MRC Human Genetics Unit, MRC Institute of Genetics & Molecular Medicine, The University of Edinburgh, Edinburgh, EH4 2XU, UK
| | - David H Wilson
- MRC Human Genetics Unit, MRC Institute of Genetics & Molecular Medicine, The University of Edinburgh, Edinburgh, EH4 2XU, UK
| | - Elisabeth Freyer
- MRC Human Genetics Unit, MRC Institute of Genetics & Molecular Medicine, The University of Edinburgh, Edinburgh, EH4 2XU, UK
| | - Stuart Aitken
- MRC Human Genetics Unit, MRC Institute of Genetics & Molecular Medicine, The University of Edinburgh, Edinburgh, EH4 2XU, UK
| | - Stuart John Forbes
- MRC Centre for Regenerative Medicine, The University of Edinburgh, Edinburgh, EH4 2XU, UK
| | - John Peter Iredale
- University of Edinburgh Centre for Inflammation Research, The University of Edinburgh, Edinburgh, EH4 2XU, UK
- Senate House, University of Bristol, Bristol, BS8 1TH, UK
| | - Nicholas Dixon Hastie
- MRC Human Genetics Unit, MRC Institute of Genetics & Molecular Medicine, The University of Edinburgh, Edinburgh, EH4 2XU, UK
| |
Collapse
|
29
|
Mesenchymal Stem Cells in the Adult Human Liver: Hype or Hope? Cells 2019; 8:cells8101127. [PMID: 31546729 PMCID: PMC6830330 DOI: 10.3390/cells8101127] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2019] [Revised: 09/18/2019] [Accepted: 09/21/2019] [Indexed: 02/06/2023] Open
Abstract
Chronic liver diseases constitute a significant economic, social, and biomedical burden. Among commonly adopted approaches, only organ transplantation can radically help patients with end-stage liver pathologies. Cell therapy with hepatocytes as a treatment for chronic liver disease has demonstrated promising results. However, quality human hepatocytes are in short supply. Stem/progenitor cells capable of differentiating into functionally active hepatocytes provide an attractive alternative approach to cell therapy for liver diseases, as well as to liver-tissue engineering, drug screening, and basic research. The application of methods generally used to isolate mesenchymal stem cells (MSCs) and maintain them in culture to human liver tissue provides cells, designated here as liver MSCs. They have much in common with MSCs from other tissues, but differ in two aspects-expression of a range of hepatocyte-specific genes and, possibly, inherent commitment to hepatogenic differentiation. The aim of this review is to analyze data regarding liver MSCs, probably another type of liver stem/progenitor cells different from hepatic stellate cells or so-called hepatic progenitor cells. The review presents an analysis of the phenotypic characteristics of liver MSCs, their differentiation and therapeutic potential, methods for isolating these cells from human liver, and discusses issues of their origin and heterogeneity. Human liver MSCs are a fascinating object of fundamental research with a potential for important practical applications.
Collapse
|
30
|
Kostallari E, Shah VH. Pericytes in the Liver. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2019; 1122:153-167. [PMID: 30937868 DOI: 10.1007/978-3-030-11093-2_9] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Liver pericytes, commonly named hepatic stellate cells (HSCs), reside in the space between liver sinusoidal endothelial cells (LSECs) and hepatocytes. They display important roles in health and disease. HSCs ensure the storage of the majority of vitamin A in a healthy body, and they represent the major source of fibrotic tissue in liver disease. Surrounding cells, such as LSECs, hepatocytes, and Kupffer cells, present a significant role in modulating HSC behavior. Therapeutic strategies against liver disease are being currently developed, where HSCs represent an ideal target. In this chapter, we will discuss HSC quiescence and activation in the context of healthy liver and diseases, such as fibrosis, steatohepatitis, and hepatocellular carcinoma.
Collapse
Affiliation(s)
- Enis Kostallari
- Division of Gastroenterology and Hepatology, Mayo Clinic, Rochester, MN, USA
| | - Vijay H Shah
- Division of Gastroenterology and Hepatology, Mayo Clinic, Rochester, MN, USA.
| |
Collapse
|
31
|
Retinoids in Stellate Cells: Development, Repair, and Regeneration. J Dev Biol 2019; 7:jdb7020010. [PMID: 31137700 PMCID: PMC6630434 DOI: 10.3390/jdb7020010] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2019] [Revised: 05/15/2019] [Accepted: 05/17/2019] [Indexed: 01/17/2023] Open
Abstract
Stellate cells, either hepatic (HSCs) or pancreatic (PSCs), are a type of interstitial cells characterized by their ability to store retinoids in lipid vesicles. In pathological conditions both HSCs and PSCs lose their retinoid content and transform into fibroblast-like cells, contributing to the fibrogenic response. HSCs also participate in other functions including vasoregulation, drug detoxification, immunotolerance, and maintenance of the hepatocyte population. PSCs maintain pancreatic tissue architecture and regulate pancreatic exocrine function. Recently, PSCs have attracted the attention of researchers due to their interactions with pancreatic ductal adenocarcinoma cells. PSCs promote tumour growth and angiogenesis, and their fibrotic activity increases the resistance of pancreatic cancer to chemotherapy and radiation. We are reviewing the current literature concerning the role played by retinoids in the physiology and pathophysiology of the stellate cells, paying attention to their developmental aspects as well as the function of stellate cells in tissue repair and organ regeneration.
Collapse
|
32
|
Newberry EP, Xie Y, Lodeiro C, Solis R, Moritz W, Kennedy S, Barron L, Onufer E, Alpini G, Zhou T, Blaner WS, Chen A, Davidson NO. Hepatocyte and stellate cell deletion of liver fatty acid binding protein reveals distinct roles in fibrogenic injury. FASEB J 2019; 33:4610-4625. [PMID: 30576225 PMCID: PMC6404585 DOI: 10.1096/fj.201801976r] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2018] [Accepted: 11/26/2018] [Indexed: 12/13/2022]
Abstract
Liver fatty acid binding protein (L-Fabp) modulates lipid trafficking in enterocytes, hepatocytes, and hepatic stellate cells (HSCs). We examined hepatocyte vs. HSC L-Fabp deletion in hepatic metabolic adaptation and fibrotic injury. Floxed L-Fabp mice were bred to different transgenic Cre mice or injected with adeno-associated virus type 8 (AAV8) Cre and fed diets to promote steatosis and fibrosis or were subjected to either bile duct ligation or CCl4 injury. Albumin-Cre-mediated L-Fabp deletion revealed recombination in hepatocytes and HSCs; these findings were confirmed with 2 other floxed alleles. Glial fibrillary acid protein-Cre and platelet-derived growth factor receptor β-Cre-mediated L-Fabp deletion demonstrated recombination only in HSCs. Mice with albumin promoter-driven Cre recombinase (Alb-Cre)-mediated or AAV8-mediated L-Fabp deletion were protected against food withdrawal-induced steatosis. Mice with Alb-Cre-mediated L-Fabp deletion were protected against high saturated fat-induced steatosis and fibrosis, phenocopying germline L-Fabp-/- mice. Mice with HSC-specific L-Fabp deletion exhibited retinyl ester depletion yet demonstrated no alterations in fibrosis. On the other hand, fibrogenic resolution after CCl4 administration was impaired in mice with Alb-Cre-mediated L-Fabp deletion. These findings suggest cell type-specific roles for L-Fabp in mitigating hepatic steatosis and in modulating fibrogenic injury and reversal.-Newberry, E. P., Xie, Y., Lodeiro, C., Solis, R., Moritz, W., Kennedy, S., Barron, L., Onufer, E., Alpini, G., Zhou, T., Blaner, W. S., Chen, A., Davidson, N. O. Hepatocyte and stellate cell deletion of liver fatty acid binding protein reveal distinct roles in fibrogenic injury.
Collapse
Affiliation(s)
- Elizabeth P. Newberry
- Gastroenterology Division, Department of Medicine, Washington University School of Medicine, St. Louis, Missouri, USA
| | - Yan Xie
- Gastroenterology Division, Department of Medicine, Washington University School of Medicine, St. Louis, Missouri, USA
| | - Carlos Lodeiro
- Gastroenterology Division, Department of Medicine, Washington University School of Medicine, St. Louis, Missouri, USA
| | - Roberto Solis
- Gastroenterology Division, Department of Medicine, Washington University School of Medicine, St. Louis, Missouri, USA
| | - William Moritz
- Gastroenterology Division, Department of Medicine, Washington University School of Medicine, St. Louis, Missouri, USA
| | - Susan Kennedy
- Gastroenterology Division, Department of Medicine, Washington University School of Medicine, St. Louis, Missouri, USA
| | - Lauren Barron
- Pediatric Surgery Division, Department of Surgery, Washington University School of Medicine, St. Louis, Missouri, USA
| | - Emily Onufer
- Pediatric Surgery Division, Department of Surgery, Washington University School of Medicine, St. Louis, Missouri, USA
| | - Gianfranco Alpini
- Department of Medical Physiology and Internal Medicine, Texas A&M University, Temple, Texas, USA
- Department of Internal Medicine, Texas A&M University, Temple, Texas, USA
| | - Tianhao Zhou
- Department of Medical Physiology and Internal Medicine, Texas A&M University, Temple, Texas, USA
- Department of Internal Medicine, Texas A&M University, Temple, Texas, USA
| | - William S. Blaner
- Department of Medicine, Columbia University, New York, New York, USA; and
| | - Anping Chen
- Department of Pathology, Saint Louis University School of Medicine, St. Louis, Missouri, USA
| | - Nicholas O. Davidson
- Gastroenterology Division, Department of Medicine, Washington University School of Medicine, St. Louis, Missouri, USA
| |
Collapse
|
33
|
Liu W, Wang Y, Sun Y, Wu Y, Ma Q, Shi Y, He R, Zhang T, Ma Y, Zuo W, Wu Z. Clonal expansion of hepatic progenitor cells and differentiation into hepatocyte-like cells. Dev Growth Differ 2019; 61:203-211. [PMID: 30786319 DOI: 10.1111/dgd.12596] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2018] [Revised: 12/14/2018] [Accepted: 12/28/2018] [Indexed: 12/13/2022]
Abstract
Hepatic progenitor cells (HPCs) in adult liver are promising for treatment of liver diseases. A biliary-derived HPC population in adult mice has been characterized by co-expression of stem cell marker Sry (sex determining region Y)-box 9 (SOX9) and biliary marker cytokeratin 7 (CK7). However, isolation of these HPCs in adult healthy liver without any selection procedures remains a big challenge in this field. Here, by establishing a simple and efficient method to isolate and expand the CK7+ SOX9+ HPCs in vitro as clones, we acquired a stable and largely scalable cell source. The CK7+ SOX9+ progenitor cells were then further induced to differentiate into hepatocyte-like cells with expression of mature hepatocyte markers albumin (Alb) and hepatocyte nuclear factor 4 alpha (HNF4α), both in vitro and in vivo in the presence of hepatocyte growth factor (HGF) and fibroblast growth factor 9 (FGF9). Furthermore, we found that the HPCs are highly responsive to transforming growth factor-beta (TGF-β) signals. Collectively, we identified and harvested a CK7+ SOX9+ progenitor cell population from adult mouse liver by a simple and efficient approach. The exploration of this HPC population offers an alternative strategy of generating hepatocyte-like cells for cell-based therapies of acute and chronic liver disorders.
Collapse
Affiliation(s)
- Wenbin Liu
- Department of Hepatobiliary Surgery, the First Affiliated Hospital of Chongqing Medical University, Chongqing, China.,Kiangnan Stem Cell Institute, Hangzhou, China
| | - Yujia Wang
- Kiangnan Stem Cell Institute, Hangzhou, China.,Shanghai Pulmonary Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Yufen Sun
- Kiangnan Stem Cell Institute, Hangzhou, China.,Shanghai Pulmonary Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Yingchuan Wu
- Shanghai Pulmonary Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Qiwang Ma
- Shanghai Pulmonary Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Yun Shi
- Shanghai Pulmonary Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Ruoxu He
- Kiangnan Stem Cell Institute, Hangzhou, China
| | - Ting Zhang
- Kiangnan Stem Cell Institute, Hangzhou, China
| | - Yu Ma
- Kiangnan Stem Cell Institute, Hangzhou, China.,Shanghai Pulmonary Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Wei Zuo
- Kiangnan Stem Cell Institute, Hangzhou, China.,Shanghai Pulmonary Hospital, School of Medicine, Tongji University, Shanghai, China.,Guangzhou Institute of Respiratory Disease, the First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Zhongjun Wu
- Department of Hepatobiliary Surgery, the First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| |
Collapse
|
34
|
Hammad S, Othman A, Meyer C, Telfah A, Lambert J, Dewidar B, Werle J, Nwosu ZC, Mahli A, Dormann C, Gao Y, Gould K, Han M, Yuan X, Gogiashvili M, Hergenröder R, Hellerbrand C, Thomas M, Ebert MP, Amasheh S, Hengstler JG, Dooley S. Confounding influence of tamoxifen in mouse models of Cre recombinase-induced gene activity or modulation. Arch Toxicol 2018; 92:2549-2561. [PMID: 29974145 DOI: 10.1007/s00204-018-2254-4] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2018] [Accepted: 06/26/2018] [Indexed: 12/11/2022]
Abstract
Tamoxifen (TAM) is commonly used for cell type specific Cre recombinase-induced gene inactivation and in cell fate tracing studies. Inducing a gene knockout by TAM and using non-TAM exposed mice as controls lead to a situation where differences are interpreted as consequences of the gene knockout but in reality result from TAM-induced changes in hepatic metabolism. The degree to which TAM may compromise the interpretation of animal experiments with inducible gene expression still has to be elucidated. Here, we report that TAM strongly attenuates CCl4-induced hepatotoxicity in male C57Bl/6N mice, even after a 10 days TAM exposure-free period. TAM decreased (p < 0.0001) the necrosis index and the level of aspartate- and alanine transaminases in CCl4-treated compared to vehicle-exposed mice. TAM pretreatment also led to the downregulation of CYP2E1 (p = 0.0045) in mouse liver tissue, and lowered its activity in CYP2E1 expressing HepG2 cell line. Furthermore, TAM increased the level of the antioxidant ascorbate, catalase, SOD2, and methionine, as well as phase II metabolizing enzymes GSTM1 and UGT1A1 in CCl4-treated livers. Finally, we found that TAM increased the presence of resident macrophages and recruitment of immune cells in necrotic areas of the livers as indicated by F4/80 and CD45 staining. In conclusion, we reveal that TAM increases liver resistance to CCl4-induced toxicity. This finding is of high relevance for studies using the tamoxifen-inducible expression system particularly if this system is used in combination with hepatotoxic compounds such as CCl4.
Collapse
Affiliation(s)
- Seddik Hammad
- Molecular Hepatology Section, Department of Medicine II, Medical Faculty Mannheim, Heidelberg University, 68167, Mannheim, Germany.
- Department of Forensic Medicine and Veterinary Toxicology, Faculty of Veterinary Medicine, South Valley University, 83523, Qena, Egypt.
| | - Amnah Othman
- Leibniz Institut für analytische Wissenschaften, ISAS e.V., 44139 Dortmund, Germany
| | - Christoph Meyer
- Molecular Hepatology Section, Department of Medicine II, Medical Faculty Mannheim, Heidelberg University, 68167, Mannheim, Germany
| | - Ahmad Telfah
- Leibniz Institut für analytische Wissenschaften, ISAS e.V., 44139 Dortmund, Germany
| | - Joerg Lambert
- Leibniz Institut für analytische Wissenschaften, ISAS e.V., 44139 Dortmund, Germany
| | - Bedair Dewidar
- Molecular Hepatology Section, Department of Medicine II, Medical Faculty Mannheim, Heidelberg University, 68167, Mannheim, Germany
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Tanta University, 31527, Tanta, Egypt
| | - Julia Werle
- Molecular Hepatology Section, Department of Medicine II, Medical Faculty Mannheim, Heidelberg University, 68167, Mannheim, Germany
| | - Zeribe Chike Nwosu
- Molecular Hepatology Section, Department of Medicine II, Medical Faculty Mannheim, Heidelberg University, 68167, Mannheim, Germany
| | - Abdo Mahli
- Institute of Biochemistry (Emil-Fischer Zentrum), Friedrich-Alexander University Erlangen-Nürnberg, 91054, Erlangen, Germany
| | - Christof Dormann
- Molecular Hepatology Section, Department of Medicine II, Medical Faculty Mannheim, Heidelberg University, 68167, Mannheim, Germany
| | - Yan Gao
- Molecular Hepatology Section, Department of Medicine II, Medical Faculty Mannheim, Heidelberg University, 68167, Mannheim, Germany
| | - Kerry Gould
- Molecular Hepatology Section, Department of Medicine II, Medical Faculty Mannheim, Heidelberg University, 68167, Mannheim, Germany
| | - Mei Han
- Molecular Hepatology Section, Department of Medicine II, Medical Faculty Mannheim, Heidelberg University, 68167, Mannheim, Germany
| | - Xiaodong Yuan
- Molecular Hepatology Section, Department of Medicine II, Medical Faculty Mannheim, Heidelberg University, 68167, Mannheim, Germany
| | - Mikheil Gogiashvili
- Leibniz Institut für analytische Wissenschaften, ISAS e.V., 44139 Dortmund, Germany
| | - Roland Hergenröder
- Leibniz Institut für analytische Wissenschaften, ISAS e.V., 44139 Dortmund, Germany
| | - Claus Hellerbrand
- Institute of Biochemistry (Emil-Fischer Zentrum), Friedrich-Alexander University Erlangen-Nürnberg, 91054, Erlangen, Germany
| | - Maria Thomas
- Dr. Margarete Fischer-Bosch Institute of Clinical Pharmacology and University of Tuebingen, Stuttgart, Germany
| | - Matthias Philip Ebert
- Department of Medicine II, Medical Faculty Mannheim, Heidelberg University, 68167, Mannheim, Germany
| | - Salah Amasheh
- Department of Veterinary Medicine, Institute of Veterinary Physiology, Free University of Berlin, 14163, Berlin, Germany
| | - Jan G Hengstler
- Leibniz Research Centre for Working Environment and Human Factors at TU Dortmund (IfADo), 44139, Dortmund, Germany
| | - Steven Dooley
- Molecular Hepatology Section, Department of Medicine II, Medical Faculty Mannheim, Heidelberg University, 68167, Mannheim, Germany.
| |
Collapse
|
35
|
Ilic Z, Mondal TK, Guest I, Crawford DR, Sell S. Participation of liver stem cells in cholangiocarcinogenesis after aflatoxin B1 exposure of glutathione S-transferase A3 knockout mice. Tumour Biol 2018; 40:1010428318777344. [DOI: 10.1177/1010428318777344] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Aflatoxin B1, arguably the most potent human carcinogen, induces liver cancer in humans, rats, trout, ducks, and so on, but adult mice are totally resistant. This resistance is because of a detoxifying enzyme, mouse glutathione S-transferase A3, which binds to and inactivates aflatoxin B1 epoxide, preventing the epoxide from binding to DNA and causing mutations. Glutathione S-transferase A3 or its analog has not been detected in any of the sensitive species, including humans. The generation of a glutathione S-transferase A3 knockout (represented as KO or -/-) mice has allowed us to study the induction of liver cancer in mice by aflatoxin B1. In contrast to the induction of hepatocellular carcinomas in other species, aflatoxin B1 induces cholangiocarcinomas in GSTA3-/- mice. In other species and in knockout mice, the induction of liver cancer is preceded by extensive proliferation of small oval cells, providing additional evidence that oval cells are bipolar stem cells and may give rise to either hepatocellular carcinoma or cholangiocarcinoma depending on the nature of the hepatocarcinogen and the species of animal. The recent development of mouse oval cell lines in our laboratory from aflatoxin B1-treated GSTA3-/- mice should provide a new venue for study of the properties and potential of putative mouse liver stem cells.
Collapse
Affiliation(s)
- Zoran Ilic
- Wadsworth Center, New York State Department of Health, Albany, NY, USA
| | - Tapan K Mondal
- Wadsworth Center, New York State Department of Health, Albany, NY, USA
| | - Ian Guest
- Wadsworth Center, New York State Department of Health, Albany, NY, USA
| | | | - Stewart Sell
- Wadsworth Center, New York State Department of Health, Albany, NY, USA
| |
Collapse
|
36
|
Yuan X, Caron A, Wu H, Gautron L. Leptin Receptor Expression in Mouse Intracranial Perivascular Cells. Front Neuroanat 2018; 12:4. [PMID: 29410615 PMCID: PMC5787097 DOI: 10.3389/fnana.2018.00004] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2017] [Accepted: 01/08/2018] [Indexed: 12/28/2022] Open
Abstract
Past studies have suggested that non-neuronal brain cells express the leptin receptor. However, the identity and distribution of these leptin receptor-expressing non-neuronal brain cells remain debated. This study assessed the distribution of the long form of the leptin receptor (LepRb) in non-neuronal brain cells using a reporter mouse model in which LepRb-expressing cells are permanently marked by tdTomato fluorescent protein (LepRb-CretdTomato). Double immunohistochemistry revealed that, in agreement with the literature, the vast majority of tdTomato-tagged cells across the mouse brain were neurons (i.e., based on immunoreactivity for NeuN). Non-neuronal structures also contained tdTomato-positive cells, including the choroid plexus and the perivascular space of the meninges and, to a lesser extent, the brain. Based on morphological criteria and immunohistochemistry, perivascular cells were deduced to be mainly pericytes. Notably, tdTomato-positive cells were immunoreactive for vitronectin and platelet derived growth factor receptor beta (PDGFBR). In situ hybridization studies confirmed that most tdTomato-tagged perivascular cells were enriched in leptin receptor mRNA (all isoforms). Using qPCR studies, we confirmed that the mouse meninges were enriched in Leprb and, to a greater extent, the short isoforms of the leptin receptor. Interestingly, qPCR studies further demonstrated significantly altered expression for Vtn and Pdgfrb in the meninges and hypothalamus of LepRb-deficient mice. Collectively, our data demonstrate that the only intracranial non-neuronal cells that express LepRb in the adult mouse are cells that form the blood-brain barrier, including, most notably, meningeal perivascular cells. Our data suggest that pericytic leptin signaling plays a role in the integrity of the intracranial perivascular space and, consequently, may provide a link between obesity and numerous brain diseases.
Collapse
Affiliation(s)
- Xuefeng Yuan
- Division of Hypothalamic Research and Department of Internal Medicine, The University of Texas Southwestern Medical Center, Dallas, TX, United States.,Department of Orthopedics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Alexandre Caron
- Division of Hypothalamic Research and Department of Internal Medicine, The University of Texas Southwestern Medical Center, Dallas, TX, United States
| | - Hua Wu
- Department of Orthopedics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Laurent Gautron
- Division of Hypothalamic Research and Department of Internal Medicine, The University of Texas Southwestern Medical Center, Dallas, TX, United States
| |
Collapse
|
37
|
Cordero-Espinoza L, Huch M. The balancing act of the liver: tissue regeneration versus fibrosis. J Clin Invest 2018; 128:85-96. [PMID: 29293095 DOI: 10.1172/jci93562] [Citation(s) in RCA: 125] [Impact Index Per Article: 20.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Epithelial cell loss alters a tissue's optimal function and awakens evolutionarily adapted healing mechanisms to reestablish homeostasis. Although adult mammalian organs have a limited regeneration potential, the liver stands out as one remarkable exception. Following injury, the liver mounts a dynamic multicellular response wherein stromal cells are activated in situ and/or recruited from the bloodstream, the extracellular matrix (ECM) is remodeled, and epithelial cells expand to replenish their lost numbers. Chronic damage makes this response persistent instead of transient, tipping the system into an abnormal steady state known as fibrosis, in which ECM accumulates excessively and tissue function degenerates. Here we explore the cellular and molecular switches that balance hepatic regeneration and fibrosis, with a focus on uncovering avenues of disease modeling and therapeutic intervention.
Collapse
|
38
|
Di Carlo SE, Peduto L. The perivascular origin of pathological fibroblasts. J Clin Invest 2018; 128:54-63. [PMID: 29293094 DOI: 10.1172/jci93558] [Citation(s) in RCA: 115] [Impact Index Per Article: 19.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
The ability to repair tissues is essential for the survival of organisms. In chronic settings, the failure of the repair process to terminate results in overproduction of collagen, a pathology known as fibrosis, which compromises organ recovery and impairs function. The origin of the collagen-overproducing cell has been debated for years. Here we review recent insights gained from the use of lineage tracing approaches in several organs. The resulting evidence points toward specific subsets of tissue-resident mesenchymal cells, mainly localized in a perivascular position, as the major source for collagen-producing cells after injury. We discuss these findings in view of the functional heterogeneity of mesenchymal cells of the perivascular niche, which have essential vascular, immune, and regenerative functions that need to be preserved for efficient repair.
Collapse
|
39
|
Schumacher EC, Götze S, Kordes C, Benes V, Häussinger D. Combined Methylome and Transcriptome Analysis During Rat Hepatic Stellate Cell Activation. Stem Cells Dev 2017; 26:1759-1770. [DOI: 10.1089/scd.2017.0128] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Affiliation(s)
- Eva Christine Schumacher
- Clinic of Gastroenterology, Hepatology and Infectious Diseases, Heinrich Heine University Düsseldorf, Düsseldorf, Germany
| | - Silke Götze
- Clinic of Gastroenterology, Hepatology and Infectious Diseases, Heinrich Heine University Düsseldorf, Düsseldorf, Germany
| | - Claus Kordes
- Clinic of Gastroenterology, Hepatology and Infectious Diseases, Heinrich Heine University Düsseldorf, Düsseldorf, Germany
| | - Vladimir Benes
- Genomic Core Facility, EMBL Heidelberg, Heidelberg, Germany
| | - Dieter Häussinger
- Clinic of Gastroenterology, Hepatology and Infectious Diseases, Heinrich Heine University Düsseldorf, Düsseldorf, Germany
| |
Collapse
|
40
|
Abstract
Hepatocytes perform most of the functions of the liver and are considered terminally differentiated cells. Recently, it has been suggested that hepatocytes might have the potential to transdifferentiate or dedifferentiate under physiological or pathological conditions in vivo. Epithelial-mesenchymal transition of hepatocytes in liver fibrosis has also been proposed. However, these findings have not been fully confirmed. In this study, hepatocytes were genetically labelled for cell fate tracing using lacZ via the tamoxifen-induced CreERT/loxP system. After induction with tamoxifen, alb + cells were permanently marked by lacZ expression, and all progeny lacZ + cells were derived from a single source with no interference. We did not observe transdifferentiation or dedifferentiation of hepatocytes into cholangiocytes or hepatic progenitor cells under conditions of liver homeostasis or following a 2/3 partial hepatectomy. Meanwhile, lacZ/OPN-positive cells were observed in livers of 3,5-diethoxycarbonyl-1,4-dihydrocollidine-fed mice, and lacZ/alpha-smooth muscle actin-positive cells were detected in carbon tetrachloride-induced chronic liver injury models. These results suggested that some existing differentiated alb + cells might have the potential of transdifferentiation/dedifferentiation or epithelial-to-mesenchymal transition in vivo in some liver injury models, but the proportion of these alb + cells in liver was very low, and their significance and actual function during the pathological process remains to be elucidated.
Collapse
|
41
|
Helal TESA, Ehsan NA, Radwan NA, Abdelsameea E. Relationship between hepatic progenitor cells and stellate cells in chronic hepatitis C genotype 4. APMIS 2017; 126:14-20. [PMID: 29155473 DOI: 10.1111/apm.12787] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2017] [Accepted: 09/24/2017] [Indexed: 02/06/2023]
Abstract
Hepatitis C virus (HCV) infection represents a major health problem in many areas of the world, especially Egypt. Hepatic progenitor cells (HPCs) and hepatic stellate cells (HSCs) have been implicated in fibrosis progression in chronic HCV. The aim of this study was to investigate the role of HPCs and HSCs in chronic HCV infection and the relationship between both cell types. This retrospective study was conducted on 100 chronic HCV patients. Immunohistochemistry was performed on liver tissue sections for cytokeratin 19 (progenitor cell markers), smooth muscle actin (stellate cell markers), matrix metalloproteinase-9 (MMP-9), and transforming growth factor beta (TGF-ß). The necroinflammatory activity was significantly related to the number of isolated HPCs and TGF-ß expression (p = 0.003 and p = 0.001 respectively). Advanced stages of fibrosis showed significantly increase number of HPCs (p = 0.001), higher ratio of HSCs (p = 0.004), more expression of TGF-ß (p = 0.001) and MMP-9 (p = 0.001). There was a significant direct correlation between immunoexpression of HPCs and HSCs for isolated cells (r = 0.569, p = 0.001) and ductular reaction (r = 0.519, p = 0.001). Hepatic progenitor cells and stellate cells play a significant role in the development and progression of fibrosis in chronic HCV. More interestingly, the significant direct correlation between HPCs and HSCs suggests a synergistic interrelation.
Collapse
Affiliation(s)
| | - Nermine Ahmed Ehsan
- Department of Pathology, National Liver Institute, Menoufia University, Menoufia, Egypt
| | - Nehal Ahmed Radwan
- Department of Pathology, Faculty of Medicine, Ain Shams University, Cairo, Egypt
| | - Eman Abdelsameea
- Department of Hepatology, National Liver Institute, Menoufia University, Menoufia, Egypt
| |
Collapse
|
42
|
Flores-Téllez TNJ, Villa-Treviño S, Piña-Vázquez C. Road to stemness in hepatocellular carcinoma. World J Gastroenterol 2017; 23:6750-6776. [PMID: 29085221 PMCID: PMC5645611 DOI: 10.3748/wjg.v23.i37.6750] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/01/2017] [Revised: 05/27/2017] [Accepted: 07/24/2017] [Indexed: 02/06/2023] Open
Abstract
Carcinogenic process has been proposed to relay on the capacity to induce local tissue damage and proliferative repair. Liver has a great regeneration capacity and currently, most studies point towards the dominant role of hepatocytes in regeneration at all levels of liver damage. The most frequent liver cancer is hepatocellular carcinoma (HCC). Historical findings originally led to the idea that the cell of origin of HCC might be a progenitor cell. However, current linage tracing studies put the progenitor hypothesis of HCC origin into question. In agreement with their dominant role in liver regeneration, mature hepatocytes are emerging as the cell of origin of HCC, although, the specific hepatocyte subpopulation of origin is yet to be determined. The relationship between the cancer cell of origin (CCO) and cancer-propagating cells, known as hepatic cancer stem cell (HCSC) is unknown. It has been challenging to identify the definitive phenotypic marker of HCSC, probably due to the existence of different cancer stem cells (CSC) subpopulations with different functions within HCC. There is a dynamic interconversion among different CSCs, and between CSC and non-CSCs. Because of that, CSC-state is currently defined as a description of a highly adaptable and dynamic intrinsic property of tumor cells, instead of a static subpopulation of a tumor. Altered conditions could trigger the gain of stemness, some of them include: EMT-MET, epigenetics, microenvironment and selective stimulus such as chemotherapy. This CSC heterogeneity and dynamism makes them out reach from therapeutic protocols directed to a single target. A further avenue of research in this line will be to uncover mechanisms that trigger this interconversion of cell populations within tumors and target it.
Collapse
Affiliation(s)
- Teresita NJ Flores-Téllez
- Departamento de Biología Celular, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional (CINVESTAV-IPN), Av. IPN No. 2508 Col. San Pedro Zacatenco CP 07360, Ciudad de México, México
| | - Saúl Villa-Treviño
- Departamento de Biología Celular, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional (CINVESTAV-IPN), Av. IPN No. 2508 Col. San Pedro Zacatenco CP 07360, Ciudad de México, México
| | - Carolina Piña-Vázquez
- Departamento de Biología Celular, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional (CINVESTAV-IPN), Av. IPN No. 2508 Col. San Pedro Zacatenco CP 07360, Ciudad de México, México
| |
Collapse
|
43
|
de Oliveira da Silva B, Ramos LF, Moraes KCM. Molecular interplays in hepatic stellate cells: apoptosis, senescence, and phenotype reversion as cellular connections that modulate liver fibrosis. Cell Biol Int 2017; 41:946-959. [PMID: 28498509 DOI: 10.1002/cbin.10790] [Citation(s) in RCA: 36] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2016] [Accepted: 05/08/2017] [Indexed: 12/18/2022]
Abstract
Liver fibrosis is a pathophysiological process correlated with intense repair and cicatrization mechanisms in injured liver, and over the past few years, the characterization of the fine-tuning of molecular interconnections that support the development of liver fibrosis has been investigated. In this cellular process, the hepatic stellate cells (HSCs) support the organ fibrogenesis. The HSCs are found in two distinct morpho-physiological states: quiescent and activated. In normal liver, most HSCs are found in quiescent state, presenting a considerable amount of lipid droplets in the cytoplasm, while in injured liver, the activated phenotype of HSCs is a myofibroblast, that secrete extracellular matrix elements and contribute to the establishment of the fibrotic process. Studies on the molecular mechanisms by which HSCs try to restore their quiescent state have been performed; however, no effective treatment to reverse fibrosis has been so far prescribed. Therefore, the elucidation of the cellular and molecular mechanisms of apoptosis, senescence, and the cell reversion phenotype process from activate to quiescent state will certainly contribute to the development of effective therapies to treat hepatic fibrosis. In this context, this review aimed to address central elements of apoptosis, senescence, and reversal of HSC phenotype in the control of hepatic fibrogenesis, as a guide to future development of therapeutic strategies.
Collapse
Affiliation(s)
- Brenda de Oliveira da Silva
- Universidade Federal de Ouro Preto, Núcleo de Pesquisa em Ciências Biológicas, Programa de Pós-Graduação em Biotecnologia, Ouro Preto, Minas Gerais, Brazil.,Molecular Biology Laboratory, Departamento de Biologia, Instituto de Biociências, Universidade Estadual Paulista "Júlio de Mesquita Filho"-Campus Rio Claro, Rio Claro, São Paulo, Brazil
| | - Letícia Ferrreira Ramos
- Molecular Biology Laboratory, Departamento de Biologia, Instituto de Biociências, Universidade Estadual Paulista "Júlio de Mesquita Filho"-Campus Rio Claro, Rio Claro, São Paulo, Brazil
| | - Karen C M Moraes
- Molecular Biology Laboratory, Departamento de Biologia, Instituto de Biociências, Universidade Estadual Paulista "Júlio de Mesquita Filho"-Campus Rio Claro, Rio Claro, São Paulo, Brazil
| |
Collapse
|
44
|
Rani R, Tandon A, Wang J, Kumar S, Gandhi CR. Stellate Cells Orchestrate Concanavalin A-Induced Acute Liver Damage. THE AMERICAN JOURNAL OF PATHOLOGY 2017; 187:2008-2019. [PMID: 28710903 DOI: 10.1016/j.ajpath.2017.05.015] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/05/2017] [Revised: 05/13/2017] [Accepted: 05/22/2017] [Indexed: 12/12/2022]
Abstract
Concanavalin A (ConA) causes immune cell-mediated liver damage, but the contribution of resident nonparenchymal cells (NPCs) is also evident. Hepatic stellate cells (HSCs) induce hepatic inflammation and immunological reactions; we therefore investigated their role in ConA-induced liver injury. ConA was administered i.v. to control or HSC-depleted mice; hepatic histopathology and cytokines/chemokines were determined after 6 hours. In vitro, effects of ConA-conditioned HSC medium on hepatocytes were determined. ConA induced inflammation, sinusoidal congestion, and extensive midzonal hepatocyte death in control mice, which were strongly minimized in HSC-depleted mice. CD4 and natural killer T cells and neutrophils were markedly reduced in ConA-treated HSC-depleted mice compared with control mice. The increase in cytokines/chemokines of hepatic injury was much higher in ConA-treated control mice than in HSC-depleted mice. ConA-treated HSCs showed increased expression of interferon-β, tumor necrosis factor-α, and CXCL1, induced oxidative stress in hepatocytes, and caused hepatocyte apoptosis. ConA induced nuclear translocation of interferon-regulatory factor-1 (IRF1) in hepatocytes in vivo, and ConA/HSC induced a similar effect in cultured hepatocytes. IRF1-knockout mice were resistant to ConA-induced liver damage, and anti-interferon β antibody mitigated ConA/HSC-induced injury. In HSC-NPC co-culture, ConA-induced expression of inflammatory cytokines/chemokines was significantly augmented compared with NPCs alone. HSCs play an essential role in ConA-induced liver injury directly via the interferon-β/IRF1 axis, and by modulating properties of NPCs.
Collapse
Affiliation(s)
- Richa Rani
- Department of Surgery, University of Cincinnati, Cincinnati, Ohio; Cincinnati Veterans Administration Medical Center, Cincinnati, Ohio; Department of Pediatrics, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio
| | - Ashish Tandon
- Department of Surgery, University of Cincinnati, Cincinnati, Ohio
| | - Jiang Wang
- Department of Pathology, University of Cincinnati, Cincinnati, Ohio
| | - Sudhir Kumar
- Department of Surgery, University of Cincinnati, Cincinnati, Ohio; Cincinnati Veterans Administration Medical Center, Cincinnati, Ohio; Department of Pediatrics, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio
| | - Chandrashekhar R Gandhi
- Department of Surgery, University of Cincinnati, Cincinnati, Ohio; Cincinnati Veterans Administration Medical Center, Cincinnati, Ohio; Department of Pediatrics, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio.
| |
Collapse
|
45
|
Saito Y, Morine Y, Shimada M. Mechanism of impairment on liver regeneration in elderly patients: Role of hepatic stellate cell function. Hepatol Res 2017; 47:505-513. [PMID: 28186674 DOI: 10.1111/hepr.12872] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/08/2016] [Revised: 02/08/2017] [Accepted: 02/08/2017] [Indexed: 12/13/2022]
Abstract
Japan, along with most other countries in the world, is facing an increasingly aging population with a prolonged life expectancy. Concurrently, the need for medical intervention, including hepatectomy, has also increased for the elderly. Although surgical outcomes for older patients are reported to be comparable with those for younger patients, additional care in the selection of older patients for hepatectomy is considered necessary. Although the effect of aging on human liver regeneration is not fully understood, the regeneration of liver tissue after hepatectomy in elderly patients is shown to be generally worse than in younger patients and, to date, the mechanisms involved in the impairment of liver regeneration have not been fully clarified. Hepatic stellate cells (HSCs) are liver-specific mesenchymal cells that play critical roles in liver physiology and fibrogenesis. Recent studies in liver regeneration have increasingly focused on HSCs rather than on hepatocytes, Kupffer cells, endothelial cells, or infiltrating immune cells and suggest that HSCs might play a critical role in liver regeneration. In this review, we summarize the mechanisms involved in the impairment of liver regeneration in elderly patients, especially focusing on HSCs. We also discuss how HSCs contribute to the impairment of liver regeneration.
Collapse
Affiliation(s)
- Yu Saito
- Department of Surgery, Tokushima University, Tokushima, Japan
| | - Yuji Morine
- Department of Surgery, Tokushima University, Tokushima, Japan
| | - Mitsuo Shimada
- Department of Surgery, Tokushima University, Tokushima, Japan
| |
Collapse
|
46
|
Ji H, Lu Y, Shi Y. Seeds in the liver. Acta Histochem 2017; 119:349-356. [PMID: 28389020 DOI: 10.1016/j.acthis.2017.03.006] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2017] [Revised: 02/28/2017] [Accepted: 03/21/2017] [Indexed: 02/05/2023]
Abstract
The liver is a crucial organ for homeostasis and has a tremendous self-renewal and regenerative capacity. It has long been believed that the self-renewal and repair of the liver within a given physiological condition or its repopulation in chronic liver diseases, when hepatocyte proliferation is impaired, will primarily be conducted by the proliferating duct cells, termed "oval cells" or hepatic progenitor cells (HPCs). In addition, numerous studies have revealed that HPCs are the initial tumor cells of liver cancer under certain micro-environments. However, benefit from the extensive application of lineage tracing strategies using the Cre/LoxP system, researchers have redefined the fate of these bipotential cells, raising obvious controversies regarding the capacity of liver cells to control their own biology and differentiation. Here, we review the relevant articles, focusing on cell-lineage tracing to better understanding seed cells and their distinct fate in the liver.
Collapse
|
47
|
The stellate cell system (vitamin A-storing cell system). Anat Sci Int 2017; 92:387-455. [PMID: 28299597 DOI: 10.1007/s12565-017-0395-9] [Citation(s) in RCA: 67] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2016] [Accepted: 02/15/2017] [Indexed: 01/18/2023]
Abstract
Past, present, and future research into hepatic stellate cells (HSCs, also called vitamin A-storing cells, lipocytes, interstitial cells, fat-storing cells, or Ito cells) are summarized and discussed in this review. Kupffer discovered black-stained cells in the liver using the gold chloride method and named them stellate cells (Sternzellen in German) in 1876. Wake rediscovered the cells in 1971 using the same gold chloride method and various modern histological techniques including electron microscopy. Between their discovery and rediscovery, HSCs disappeared from the research history. Their identification, the establishment of cell isolation and culture methods, and the development of cellular and molecular biological techniques promoted HSC research after their rediscovery. In mammals, HSCs exist in the space between liver parenchymal cells (PCs) or hepatocytes and liver sinusoidal endothelial cells (LSECs) of the hepatic lobule, and store 50-80% of all vitamin A in the body as retinyl ester in lipid droplets in the cytoplasm. SCs also exist in extrahepatic organs such as pancreas, lung, and kidney. Hepatic (HSCs) and extrahepatic stellate cells (EHSCs) form the stellate cell (SC) system or SC family; the main storage site of vitamin A in the body is HSCs in the liver. In pathological conditions such as liver fibrosis, HSCs lose vitamin A, and synthesize a large amount of extracellular matrix (ECM) components including collagen, proteoglycan, glycosaminoglycan, and adhesive glycoproteins. The morphology of these cells also changes from the star-shaped HSCs to that of fibroblasts or myofibroblasts.
Collapse
|
48
|
Cellular Mechanisms of Liver Regeneration and Cell-Based Therapies of Liver Diseases. BIOMED RESEARCH INTERNATIONAL 2017; 2017:8910821. [PMID: 28210629 PMCID: PMC5292184 DOI: 10.1155/2017/8910821] [Citation(s) in RCA: 69] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/13/2016] [Revised: 11/29/2016] [Accepted: 12/27/2016] [Indexed: 12/14/2022]
Abstract
The emerging field of regenerative medicine offers innovative methods of cell therapy and tissue/organ engineering as a novel approach to liver disease treatment. The ultimate scientific foundation of both cell therapy of liver diseases and liver tissue and organ engineering is delivered by the in-depth studies of the cellular and molecular mechanisms of liver regeneration. The cellular mechanisms of the homeostatic and injury-induced liver regeneration are unique. Restoration of the mass of liver parenchyma is achieved by compensatory hypertrophy and hyperplasia of the differentiated parenchymal cells, hepatocytes, while expansion and differentiation of the resident stem/progenitor cells play a minor or negligible role. Participation of blood-borne cells of the bone marrow origin in liver parenchyma regeneration has been proven but does not exceed 1-2% of newly formed hepatocytes. Liver regeneration is activated spontaneously after injury and can be further stimulated by cell therapy with hepatocytes, hematopoietic stem cells, or mesenchymal stem cells. Further studies aimed at improving the outcomes of cell therapy of liver diseases are underway. In case of liver failure, transplantation of engineered liver can become the best option in the foreseeable future. Engineering of a transplantable liver or its major part is an enormous challenge, but rapid progress in induced pluripotency, tissue engineering, and bioprinting research shows that it may be doable.
Collapse
|
49
|
Arabpour M, Cool RH, Faber KN, Quax WJ, Haisma HJ. Receptor-specific TRAIL as a means to achieve targeted elimination of activated hepatic stellate cells. J Drug Target 2016; 25:360-369. [PMID: 27885847 DOI: 10.1080/1061186x.2016.1262867] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Activated hepatic stellate cells (HSCs) are known to play a central role in liver fibrosis and their elimination is a crucial step toward the resolution and reversion of liver fibrosis. Tumor necrosis factor-related apoptosis-inducing ligand (TRAIL) is a molecule that may contribute to the apoptotic removal of activated HSC through binding to its dedicated receptors. In the present study, we investigated the potential application of recombinant receptor-specific TRAIL proteins in the efficient elimination of activated HSCs. Our finding revealed differential contribution of TRAIL receptors among HSCs populations with activated hepatic stellate cells expresses more TRAIL receptors DR5. In vitro treatment of activated HSCs with DR5-specific or wild-type TRAIL variants induced a significant reduction in viability and extracellular matrix production, whereas no significant decrease in viability was associated with the treatment of cells by DR4-specific TRAIL. Our analysis indicate the successful application of the DR5 receptor-specific TRAIL variant in the targeted elimination of activated HSCs via interference with collagen production and simultaneous induction of apoptosis via activation of the caspase pathway. DR5 receptor-specific TRAIL may thus represent a new therapeutic compound for the treatment of liver fibrosis.
Collapse
Affiliation(s)
- Mohammad Arabpour
- a Mivac Development , Arvid Wallgrens backe 20 , Gothenburg , Sweden.,b Department of Chemical and Pharmaceutical Biology , University of Groningen , Groningen , the Netherlands
| | - Robbert H Cool
- b Department of Chemical and Pharmaceutical Biology , University of Groningen , Groningen , the Netherlands
| | - Klaas Nico Faber
- c Department of Gastrointestinal and Liver Diseases , University Medical Center Groningen , Groningen , the Netherlands
| | - Wim J Quax
- b Department of Chemical and Pharmaceutical Biology , University of Groningen , Groningen , the Netherlands
| | - Hidde J Haisma
- b Department of Chemical and Pharmaceutical Biology , University of Groningen , Groningen , the Netherlands
| |
Collapse
|
50
|
Abstract
Mesothelial cells (MCs) cover the surface of visceral organs and the parietal walls of cavities, and they synthesize lubricating fluids to create a slippery surface that facilitates movement between organs without friction. Recent studies have indicated that MCs play active roles in liver development, fibrosis, and regeneration. During liver development, the mesoderm produces MCs that form a single epithelial layer of the mesothelium. MCs exhibit an intermediate phenotype between epithelial cells and mesenchymal cells. Lineage tracing studies have indicated that during liver development, MCs act as mesenchymal progenitor cells that produce hepatic stellate cells, fibroblasts around blood vessels, and smooth muscle cells. Upon liver injury, MCs migrate inward from the liver surface and produce hepatic stellate cells or myofibroblast depending on the etiology, suggesting that MCs are the source of myofibroblasts in capsular fibrosis. Similar to the activation of hepatic stellate cells, transforming growth factor β induces the conversion of MCs into myofibroblasts. Further elucidation of the biological and molecular changes involved in MC activation and fibrogenesis will contribute to the development of novel approaches for the prevention and therapy of liver fibrosis.
Collapse
Affiliation(s)
- Ingrid Lua
- Southern California Research Center for ALPD and Cirrhosis, Department of Pathology, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - Kinji Asahina
- Southern California Research Center for ALPD and Cirrhosis, Department of Pathology, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| |
Collapse
|