1
|
Saraswati S, Martínez P, Serrano R, Mejías D, Graña-Castro O, Álvarez Díaz R, Blasco MA. Renal fibroblasts are involved in fibrogenic changes in kidney fibrosis associated with dysfunctional telomeres. Exp Mol Med 2024; 56:2216-2230. [PMID: 39349834 PMCID: PMC11541748 DOI: 10.1038/s12276-024-01318-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2024] [Revised: 07/04/2024] [Accepted: 07/09/2024] [Indexed: 10/03/2024] Open
Abstract
Tubulointerstitial fibrosis associated with chronic kidney disease (CKD) represents a global health care problem. We previously reported that short and dysfunctional telomeres lead to interstitial renal fibrosis; however, the cell-of-origin of kidney fibrosis associated with telomere dysfunction is currently unknown. We induced telomere dysfunction by deleting the Trf1 gene encoding a telomere-binding factor specifically in renal fibroblasts in both short-term and long-term life-long experiments in mice to identify the role of fibroblasts in renal fibrosis. Short-term Trf1 deletion in renal fibroblasts was not sufficient to trigger kidney fibrosis but was sufficient to induce inflammatory responses, ECM deposition, cell cycle arrest, fibrogenesis, and vascular rarefaction. However, long-term persistent deletion of Trf1 in fibroblasts resulted in kidney fibrosis accompanied by an elevated urinary albumin-to-creatinine ratio (uACR) and a decrease in mouse survival. These cellular responses lead to the macrophage-to-myofibroblast transition (MMT), endothelial-to-mesenchymal transition (EndMT), and partial epithelial-to-mesenchymal transition (EMT), ultimately causing kidney fibrosis at the humane endpoint (HEP) when the deletion of Trf1 in fibroblasts is maintained throughout the lifespan of mice. Our findings contribute to a better understanding of the role of dysfunctional telomeres in the onset of the profibrotic alterations that lead to kidney fibrosis.
Collapse
Affiliation(s)
- Sarita Saraswati
- Telomeres and Telomerase Group-Fundacion Humanismo y Ciencia, Molecular Oncology Program, Spanish National Cancer Centre (CNIO), Melchor Fernández Almagro 3, Madrid, E-28029, Spain
| | - Paula Martínez
- Telomeres and Telomerase Group-Fundacion Humanismo y Ciencia, Molecular Oncology Program, Spanish National Cancer Centre (CNIO), Melchor Fernández Almagro 3, Madrid, E-28029, Spain
| | - Rosa Serrano
- Telomeres and Telomerase Group-Fundacion Humanismo y Ciencia, Molecular Oncology Program, Spanish National Cancer Centre (CNIO), Melchor Fernández Almagro 3, Madrid, E-28029, Spain
| | - Diego Mejías
- Confocal Microscopy Unit, Biotechnology Program, Spanish National Cancer Centre (CNIO), Melchor Fernández Almagro 3, Madrid, E-28029, Spain
- Advanced Optical Microscopy Unit, UCCTs, Instituto de Salud Carlos III (ISCIII), E-28220, Majadahonda, Madrid, Spain
| | - Osvaldo Graña-Castro
- Bioinformatics Unit, Structural Biology and Biocomputing Program, Spanish National Cancer Centre (CNIO), Melchor Fernández Almagro 3, Madrid, E-28029, Spain
- Department of Basic Medical Sciences, Institute of Applied Molecular Medicine (IMMA-Nemesio Díez), School of Medicine, San Pablo-CEU University, CEU Universities, Boadilla del Monte, Madrid, Spain
| | - Ruth Álvarez Díaz
- Bioinformatics Unit, Structural Biology and Biocomputing Program, Spanish National Cancer Centre (CNIO), Melchor Fernández Almagro 3, Madrid, E-28029, Spain
| | - Maria A Blasco
- Telomeres and Telomerase Group-Fundacion Humanismo y Ciencia, Molecular Oncology Program, Spanish National Cancer Centre (CNIO), Melchor Fernández Almagro 3, Madrid, E-28029, Spain.
| |
Collapse
|
2
|
Wan Q, Yang Z, Li L, Wu L. Central Angiotensin II type 1 receptor deficiency alleviates renal fibrosis by reducing sympathetic nerve discharge in nephrotoxic folic acid-induced chronic kidney disease. PeerJ 2024; 12:e18166. [PMID: 39346076 PMCID: PMC11439387 DOI: 10.7717/peerj.18166] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2024] [Accepted: 09/02/2024] [Indexed: 10/01/2024] Open
Abstract
Background Fibrosis after nephrotoxic injury is common. Activation of the paraventricular nucleus (PVN) renin-angiotensin system (RAS) and sympathetic nervous system (SNS) are common mechanism of renal fibrosis. However, there have limited knowledge about which brain regions are most affected by Angiotensin II (Ang II) after nephrotoxic injury, what role does Angiotensin II type 1a receptors (AT1R) signaling play and how this affects the outcomes of the kidneys. Methods In nephrotoxic folic acid-induced chronic kidney disease (FA-CKD) mouse models, we have integrated retrograde tracer techniques with studies on AT1afl/fl mice to pinpoint an excessively active central pathway that connects the paraventricular nucleus (PVN) to the rostral ventrolateral medulla (RVLM). This pathway plays a pivotal role in determining the kidney's fibrotic response following injury induced by folic acid. Results FA-CKD (vs sham) had increased in the kidney SNS activity and Ang II expression in the central PVN. The activation of Ang II in the PVN triggers the activation of the PVN-RVLM pathway, amplifies SNS output, thus facilitating fibrosis development in FA-CKD mouse. Blocking sympathetic traffic or deleting AT1a in the PVN alleviated renal fibrosis in FA-CKD mice. Conclusions The FA-CKD mice have increased the expression of Ang II in PVN, thereby activating AT1a-positive PVN neurons project to the RVLM, where SNS activity is engaged to initiate fibrotic processes. The Ang II in PVN may contribute to the development of kidney fibrosis after nephrotoxic folic acid-induced kidney injury.
Collapse
Affiliation(s)
- Qijun Wan
- Nephrology, Shenzhen Second People’s Hospital, Shenzhen, Guangdong, China
- Nephrology, The First Affiliated Hospital of Shenzhen University, Shenzhen, Guangdong, China
| | - Zhichen Yang
- Nephrology, The Third Affiliated Hospital of Southern Medical University, Guangzhou, Guangdong, China
| | - Lingzhi Li
- Nephrology, Shenzhen Second People’s Hospital, Shenzhen, Guangdong, China
- Nephrology, The First Affiliated Hospital of Shenzhen University, Shenzhen, Guangdong, China
| | - Liling Wu
- Nephrology, Shenzhen Second People’s Hospital, Shenzhen, Guangdong, China
- Nephrology, The First Affiliated Hospital of Shenzhen University, Shenzhen, Guangdong, China
| |
Collapse
|
3
|
Yang X, Wu J, Cai T, Shan J, Cui Y. Kindlin-2 mediates Peyronie's disease through activation of TGF-β/Smad signaling pathway under the presence of TGF-β1. Cell Signal 2024; 121:111286. [PMID: 38977232 DOI: 10.1016/j.cellsig.2024.111286] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2024] [Revised: 06/28/2024] [Accepted: 07/02/2024] [Indexed: 07/10/2024]
Abstract
BACKGROUND Peyronie's disease (PD) causes benign plaques or induration in tunica albuginea (TA). Kindlin-2 regulates the TGF-β1/Smad3 pathway, which accelerates kidney fibrosis. The study is aimed mainly to investigate the impact of Kindlin-2 on PD formation and its signaling pathways, notably the TGF-β/Smad pathway in the presence of TGF-β1. METHODS In this mouse investigation, adenovirus TGF-β1 was injected into TA to produce PD. The model was successfully induced 45 days later. Western Blot (WB) and immunohistochemistry (IHC) were utilized to measure Kindlin-2 in PD model tissue. WB and immunofluorescence assays were utilized to confirm the impact of TGF-β1 on Kindlin-2 levels in vitro. The interaction among Kindlin-2, TβRI, and Smad3 was detected using immunoprecipitation (IP) experiments. We examined how TGF-β1 affects Smad3 phosphorylation and downstream gene activation process. Finally, Kindlin-2 and the level of tissue fibrosis were examined in PD model. RESULTS Kindlin-2 levels were elevated in the TGF-β1-induced PD model, confirming that TGF-β1 can increase Kindlin-2 levels in primary PD cells. Moreover, Kindlin-2 mediates Smad3-TβRI interaction, activates p-Smad3, and enhances TGF-β1 target gene expression. In vivo investigations reveal that Kindlin-2 promotes PD development and tissue fibrosis. The regulatory effects of Kindlin-2 need the presence of TGF-β1. Tissue fibrosis can be reduced by downregulating Kindlin-2. CONCLUSION Kindlin-2 does not directly activate Smad3 to induce tissue fibrosis. Instead, it exerts its effect through the combined influence of TGF-β1. Inhibiting Kindlin-2 could potentially be a treatment for PD.
Collapse
Affiliation(s)
- Xiaobo Yang
- Department of Urology, General Hospital of Ningxia Medical University, Yinchuan 750000, China
| | - Jitao Wu
- Department of Urology, Yantai Yuhuangding Hospital, No. 20 East Yuhuangding Road, Yantai, Shandong 264000, China
| | - Tong Cai
- Department of Urology, Yantai Yuhuangding Hospital, No. 20 East Yuhuangding Road, Yantai, Shandong 264000, China
| | - Jiahao Shan
- Department of Urology, General Hospital of Ningxia Medical University, Yinchuan 750000, China
| | - Yuanshan Cui
- Department of Urology, Yantai Yuhuangding Hospital, No. 20 East Yuhuangding Road, Yantai, Shandong 264000, China.
| |
Collapse
|
4
|
Li J, Zou Y, Kantapan J, Su H, Wang L, Dechsupa N. TGF‑β/Smad signaling in chronic kidney disease: Exploring post‑translational regulatory perspectives (Review). Mol Med Rep 2024; 30:143. [PMID: 38904198 PMCID: PMC11208996 DOI: 10.3892/mmr.2024.13267] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2024] [Accepted: 05/21/2024] [Indexed: 06/22/2024] Open
Abstract
The TGF‑β/Smad signaling pathway plays a pivotal role in the onset of glomerular and tubulointerstitial fibrosis in chronic kidney disease (CKD). The present review delves into the intricate post‑translational modulation of this pathway and its implications in CKD. Specifically, the impact of the TGF‑β/Smad pathway on various biological processes was investigated, encompassing not only renal tubular epithelial cell apoptosis, inflammation, myofibroblast activation and cellular aging, but also its role in autophagy. Various post‑translational modifications (PTMs), including phosphorylation and ubiquitination, play a crucial role in modulating the intensity and persistence of the TGF‑β/Smad signaling pathway. They also dictate the functionality, stability and interactions of the TGF‑β/Smad components. The present review sheds light on recent findings regarding the impact of PTMs on TGF‑β receptors and Smads within the CKD landscape. In summary, a deeper insight into the post‑translational intricacies of TGF‑β/Smad signaling offers avenues for innovative therapeutic interventions to mitigate CKD progression. Ongoing research in this domain holds the potential to unveil powerful antifibrotic treatments, aiming to preserve renal integrity and function in patients with CKD.
Collapse
Affiliation(s)
- Jianchun Li
- Department of Radiologic Technology, Molecular Imaging and Therapy Research Unit, Faculty of Associated Medical Sciences, Chiang Mai University, Chiang Mai 50200, Thailand
- Research Center of Integrated Traditional Chinese and Western Medicine, The Affiliated Traditional Chinese Medicine Hospital, Southwest Medical University, Luzhou, Sichuan 646000, P.R. China
| | - Yuanxia Zou
- Department of Radiologic Technology, Molecular Imaging and Therapy Research Unit, Faculty of Associated Medical Sciences, Chiang Mai University, Chiang Mai 50200, Thailand
- Research Center of Integrated Traditional Chinese and Western Medicine, The Affiliated Traditional Chinese Medicine Hospital, Southwest Medical University, Luzhou, Sichuan 646000, P.R. China
| | - Jiraporn Kantapan
- Department of Radiologic Technology, Molecular Imaging and Therapy Research Unit, Faculty of Associated Medical Sciences, Chiang Mai University, Chiang Mai 50200, Thailand
| | - Hongwei Su
- Department of Urology, The Affiliated Traditional Chinese Medicine Hospital, Southwest Medical University, Luzhou, Sichuan 646000, P.R. China
| | - Li Wang
- Research Center of Integrated Traditional Chinese and Western Medicine, The Affiliated Traditional Chinese Medicine Hospital, Southwest Medical University, Luzhou, Sichuan 646000, P.R. China
| | - Nathupakorn Dechsupa
- Department of Radiologic Technology, Molecular Imaging and Therapy Research Unit, Faculty of Associated Medical Sciences, Chiang Mai University, Chiang Mai 50200, Thailand
| |
Collapse
|
5
|
Xu C, Chen J, Liang L, Chen S, Niu X, Sang R, Yang C, Rong R. Midkine promotes renal fibrosis by stabilizing C/EBPβ to facilitate endothelial-mesenchymal transition. Commun Biol 2024; 7:544. [PMID: 38714800 PMCID: PMC11076470 DOI: 10.1038/s42003-024-06154-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2023] [Accepted: 04/07/2024] [Indexed: 05/10/2024] Open
Abstract
Numerous myofibroblasts are arisen from endothelial cells (ECs) through endothelial to mesenchymal transition (EndMT) triggered by TGF-β. However, the mechanism of ECs transforms to a different subtype, or whether there exists an intermediate state of ECs remains unclear. In present study, we demonstrate Midkine (MDK) mainly expressed by CD31 + ACTA2+ECs going through partial EndMT contribute greatly to myofibroblasts by spatial and single-cell transcriptomics. MDK is induced in TGF-β treated ECs, which upregulates C/EBPβ and increases EndMT genes, and these effects could be reversed by siMDK. Mechanistically, MDK promotes the binding ability of C/EBPβ with ACTA2 promoter by stabilizing the C/EBPβ protein. In vivo, knockout of Mdk or conditional knockout of Mdk in ECs reduces EndMT markers and significantly reverses fibrogenesis. In conclusion, our study provides a mechanistic link between the induction of EndMT by TGF-β and MDK, which suggests that blocking MDK provides potential therapeutic strategies for renal fibrosis.
Collapse
Affiliation(s)
- Cuidi Xu
- Department of Urology, Zhongshan Hospital, Fudan University; Shanghai Key Laboratory of Organ Transplantation, Shanghai, 200032, China
| | - Juntao Chen
- Department of Urology, Zhongshan Hospital, Fudan University; Shanghai Key Laboratory of Organ Transplantation, Shanghai, 200032, China
| | - Lifei Liang
- Department of Urology, Zhongshan Hospital, Fudan University; Shanghai Key Laboratory of Organ Transplantation, Shanghai, 200032, China
| | - Siyue Chen
- Department of Urology, Zhongshan Hospital, Fudan University; Shanghai Key Laboratory of Organ Transplantation, Shanghai, 200032, China
| | - Xinhao Niu
- Department of Urology, Zhongshan Hospital, Fudan University; Shanghai Key Laboratory of Organ Transplantation, Shanghai, 200032, China
| | - Ruirui Sang
- Department of Transfusion, Zhongshan Hospital, Fudan University, Shanghai, 200032, China
| | - Cheng Yang
- Department of Urology, Zhongshan Hospital, Fudan University; Shanghai Key Laboratory of Organ Transplantation, Shanghai, 200032, China.
- Zhangjiang Institute of Fudan University, Shanghai, 201203, China.
| | - Ruiming Rong
- Department of Urology, Zhongshan Hospital, Fudan University; Shanghai Key Laboratory of Organ Transplantation, Shanghai, 200032, China.
- Department of Transfusion, Zhongshan Hospital, Fudan University, Shanghai, 200032, China.
| |
Collapse
|
6
|
Muñoz Forti K, Weisman GA, Jasmer KJ. Cell type-specific transforming growth factor-β (TGF-β) signaling in the regulation of salivary gland fibrosis and regeneration. J Oral Biol Craniofac Res 2024; 14:257-272. [PMID: 38559587 PMCID: PMC10979288 DOI: 10.1016/j.jobcr.2024.03.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2023] [Revised: 01/13/2024] [Accepted: 03/09/2024] [Indexed: 04/04/2024] Open
Abstract
Salivary gland damage and hypofunction result from various disorders, including autoimmune Sjögren's disease (SjD) and IgG4-related disease (IgG4-RD), as well as a side effect of radiotherapy for treating head and neck cancers. There are no therapeutic strategies to prevent the loss of salivary gland function in these disorders nor facilitate functional salivary gland regeneration. However, ongoing aquaporin-1 gene therapy trials to restore saliva flow show promise. To identify and develop novel therapeutic targets, we must better understand the cell-specific signaling processes involved in salivary gland regeneration. Transforming growth factor-β (TGF-β) signaling is essential to tissue fibrosis, a major endpoint in salivary gland degeneration, which develops in the salivary glands of patients with SjD, IgG4-RD, and radiation-induced damage. Though the deposition and remodeling of extracellular matrix proteins are essential to repair salivary gland damage, pathological fibrosis results in tissue hardening and chronic salivary gland dysfunction orchestrated by multiple cell types, including fibroblasts, myofibroblasts, endothelial cells, stromal cells, and lymphocytes, macrophages, and other immune cell populations. This review is focused on the role of TGF-β signaling in the development of salivary gland fibrosis and the potential for targeting TGF-β as a novel therapeutic approach to regenerate functional salivary glands. The studies presented highlight the divergent roles of TGF-β signaling in salivary gland development and dysfunction and illuminate specific cell populations in damaged or diseased salivary glands that mediate the effects of TGF-β. Overall, these studies strongly support the premise that blocking TGF-β signaling holds promise for the regeneration of functional salivary glands.
Collapse
Affiliation(s)
- Kevin Muñoz Forti
- Christopher S. Bond Life Sciences Center and Department of Biochemistry, University of Missouri, United States
| | - Gary A. Weisman
- Christopher S. Bond Life Sciences Center and Department of Biochemistry, University of Missouri, United States
| | - Kimberly J. Jasmer
- Christopher S. Bond Life Sciences Center and Department of Biochemistry, University of Missouri, United States
| |
Collapse
|
7
|
Miyazawa K, Itoh Y, Fu H, Miyazono K. Receptor-activated transcription factors and beyond: multiple modes of Smad2/3-dependent transmission of TGF-β signaling. J Biol Chem 2024; 300:107256. [PMID: 38569937 PMCID: PMC11063908 DOI: 10.1016/j.jbc.2024.107256] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2024] [Revised: 02/28/2024] [Accepted: 03/05/2024] [Indexed: 04/05/2024] Open
Abstract
Transforming growth factor β (TGF-β) is a pleiotropic cytokine that is widely distributed throughout the body. Its receptor proteins, TGF-β type I and type II receptors, are also ubiquitously expressed. Therefore, the regulation of various signaling outputs in a context-dependent manner is a critical issue in this field. Smad proteins were originally identified as signal-activated transcription factors similar to signal transducer and activator of transcription proteins. Smads are activated by serine phosphorylation mediated by intrinsic receptor dual specificity kinases of the TGF-β family, indicating that Smads are receptor-restricted effector molecules downstream of ligands of the TGF-β family. Smad proteins have other functions in addition to transcriptional regulation, including post-transcriptional regulation of micro-RNA processing, pre-mRNA splicing, and m6A methylation. Recent technical advances have identified a novel landscape of Smad-dependent signal transduction, including regulation of mitochondrial function without involving regulation of gene expression. Therefore, Smad proteins are receptor-activated transcription factors and also act as intracellular signaling modulators with multiple modes of function. In this review, we discuss the role of Smad proteins as receptor-activated transcription factors and beyond. We also describe the functional differences between Smad2 and Smad3, two receptor-activated Smad proteins downstream of TGF-β, activin, myostatin, growth and differentiation factor (GDF) 11, and Nodal.
Collapse
Affiliation(s)
- Keiji Miyazawa
- Department of Biochemistry, Graduate School of Medicine, University of Yamanashi, Yamanashi, Japan.
| | - Yuka Itoh
- Department of Biochemistry, Graduate School of Medicine, University of Yamanashi, Yamanashi, Japan
| | - Hao Fu
- Department of Biochemistry, Graduate School of Medicine, University of Yamanashi, Yamanashi, Japan
| | - Kohei Miyazono
- Department of Applied Pathology, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan; Laboratory for Cancer Invasion and Metastasis, RIKEN Center for Integrative Medical Sciences, Yokohama, Japan
| |
Collapse
|
8
|
Jacobs ME, de Vries DK, Engelse MA, Dumas SJ, Rabelink TJ. Endothelial to mesenchymal transition in kidney fibrosis. Nephrol Dial Transplant 2024; 39:752-760. [PMID: 37968135 DOI: 10.1093/ndt/gfad238] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2023] [Indexed: 11/17/2023] Open
Abstract
Fibrotic diseases are characterized by the uncontrolled accumulation of extracellular matrix (ECM) components leading to disruption of tissue homeostasis. Myofibroblasts as the main ECM-producing cells can originate from various differentiated cell types after injury. Particularly, the process of endothelial-to-mesenchymal transition (endMT), describing phenotypic shifts of endothelial cells to adopt a fully mesenchymal identity, may contribute to the pool of myofibroblasts in fibrosis, while leading to capillary rarefaction and exacerbation of tissue hypoxia. In renal disease, incomplete recovery from acute kidney injury (AKI) and the ensuing fibrotic reaction stand out as major contributors to chronic kidney disease (CKD) development. While the focus has largely been on impaired tubular epithelial repair as a potential fibrosis-driving mechanism, alterations in the renal microcirculation post-AKI, and in particular endMT as a maladaptive response, could hold equal significance. Dysfunctional interplays among various cell types in the kidney microenvironment can instigate endMT. Transforming growth factor beta (TGF-β) signaling, with its downstream activation of canonical/Smad-mediated and non-canonical pathways, has been identified as primary driver of this process. However, non-TGF-β-mediated pathways involving inflammatory agents and metabolic shifts in intercellular communication within the tissue microenvironment can also trigger endMT. These harmful, maladaptive cell-cell interactions and signaling pathways offer potential targets for therapeutic intervention to impede endMT and decelerate fibrogenesis such as in AKI-CKD progression. Presently, partial reduction of TGF-β signaling using anti-diabetic drugs or statins may hold therapeutic potential in renal context. Nevertheless, further investigation is warranted to validate underlying mechanisms and assess positive effects within a clinical framework.
Collapse
Affiliation(s)
- Marleen E Jacobs
- Department of Internal Medicine (Nephrology) & The Einthoven Laboratory for Vascular and Regenerative Medicine, Leiden University Medical Center, Leiden, The Netherlands
- The Novo Nordisk Foundation Center for Stem Cell Medicine (reNEW), Leiden University Medical Center, Leiden, The Netherlands
| | - Dorottya K de Vries
- Transplant Center, Leiden University Medical Center, Leiden, The Netherlands
- Department of Surgery, Leiden University Medical Center, Leiden, The Netherlands
| | - Marten A Engelse
- Department of Internal Medicine (Nephrology) & The Einthoven Laboratory for Vascular and Regenerative Medicine, Leiden University Medical Center, Leiden, The Netherlands
- The Novo Nordisk Foundation Center for Stem Cell Medicine (reNEW), Leiden University Medical Center, Leiden, The Netherlands
| | - Sébastien J Dumas
- Department of Internal Medicine (Nephrology) & The Einthoven Laboratory for Vascular and Regenerative Medicine, Leiden University Medical Center, Leiden, The Netherlands
- The Novo Nordisk Foundation Center for Stem Cell Medicine (reNEW), Leiden University Medical Center, Leiden, The Netherlands
| | - Ton J Rabelink
- Department of Internal Medicine (Nephrology) & The Einthoven Laboratory for Vascular and Regenerative Medicine, Leiden University Medical Center, Leiden, The Netherlands
- The Novo Nordisk Foundation Center for Stem Cell Medicine (reNEW), Leiden University Medical Center, Leiden, The Netherlands
| |
Collapse
|
9
|
Hall IF, Kishta F, Xu Y, Baker AH, Kovacic JC. Endothelial to mesenchymal transition: at the axis of cardiovascular health and disease. Cardiovasc Res 2024; 120:223-236. [PMID: 38385523 PMCID: PMC10939465 DOI: 10.1093/cvr/cvae021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/16/2023] [Revised: 08/01/2023] [Accepted: 08/25/2023] [Indexed: 02/23/2024] Open
Abstract
Endothelial cells (ECs) line the luminal surface of blood vessels and play a major role in vascular (patho)-physiology by acting as a barrier, sensing circulating factors and intrinsic/extrinsic signals. ECs have the capacity to undergo endothelial-to-mesenchymal transition (EndMT), a complex differentiation process with key roles both during embryonic development and in adulthood. EndMT can contribute to EC activation and dysfunctional alterations associated with maladaptive tissue responses in human disease. During EndMT, ECs progressively undergo changes leading to expression of mesenchymal markers while repressing EC lineage-specific traits. This phenotypic and functional switch is considered to largely exist in a continuum, being characterized by a gradation of transitioning stages. In this report, we discuss process plasticity and potential reversibility and the hypothesis that different EndMT-derived cell populations may play a different role in disease progression or resolution. In addition, we review advancements in the EndMT field, current technical challenges, as well as therapeutic options and opportunities in the context of cardiovascular biology.
Collapse
Affiliation(s)
- Ignacio Fernando Hall
- Centre for Cardiovascular Science, Queens Medical Research Institute, University of Edinburgh, Edinburgh EH16 4TJ, UK
| | - Franceska Kishta
- Centre for Cardiovascular Science, Queens Medical Research Institute, University of Edinburgh, Edinburgh EH16 4TJ, UK
| | - Yang Xu
- Cardiovascular Research Institute, Icahn School of Medicine at Mount Sinai, 1 Gustave L. Levy Place, New York, NY 10029, USA
| | - Andrew H Baker
- Centre for Cardiovascular Science, Queens Medical Research Institute, University of Edinburgh, Edinburgh EH16 4TJ, UK
- CARIM School for Cardiovascular Diseases, Maastricht University, Maastricht 6229ER, The Netherlands
| | - Jason C Kovacic
- Cardiovascular Research Institute, Icahn School of Medicine at Mount Sinai, 1 Gustave L. Levy Place, New York, NY 10029, USA
- Victor Chang Cardiac Research Institute, Lowy Packer Building, 405 Liverpool Street, Darlinghurst, NSW 2010, Australia
- St. Vincent’s Clinical School and University of New South Wales, 390 Victoria St, Darlinghurst, NSW 2010, Australia
| |
Collapse
|
10
|
Goligorsky MS. Permissive role of vascular endothelium in fibrosis: focus on the kidney. Am J Physiol Cell Physiol 2024; 326:C712-C723. [PMID: 38223932 PMCID: PMC11193458 DOI: 10.1152/ajpcell.00526.2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2023] [Revised: 01/09/2024] [Accepted: 01/09/2024] [Indexed: 01/16/2024]
Abstract
Fibrosis, the morphologic end-result of a plethora of chronic conditions and the scorch for organ function, has been thoroughly investigated. One aspect of its development and progression, namely the permissive role of vascular endothelium, has been overshadowed by studies into (myo)fibroblasts and TGF-β; thus, it is the subject of the present review. It has been established that tensile forces of the extracellular matrix acting on cells are a prerequisite for mechanochemical coupling, leading to liberation of TGF-β and formation of myofibroblasts. Increased tensile forces are prompted by elevated vascular permeability in response to diverse stressors, resulting in the exudation of fibronectin, fibrinogen/fibrin, and other proteins, all stiffening the extracellular matrix. These processes lead to the development of endothelial cells dysfunction, endothelial-to-mesenchymal transition, premature senescence of endothelial cells, perturbation of blood flow, and gradual obliteration of microvasculature, leaving behind "string" vessels. The resulting microvascular rarefaction is not only a constant companion of fibrosis but also an adjunct mechanism of its progression. The deepening knowledge of the above chain of pathogenetic events involving endothelial cells, namely increased permeability-stiffening of the matrix-endothelial dysfunction-microvascular rarefaction-tissue fibrosis, may provide a roadmap for therapeutic interventions deemed to curtail and reverse fibrosis.
Collapse
Affiliation(s)
- Michael S Goligorsky
- Department of Medicine, New York Medical College, Touro University, Valhalla, New York, United States
- Department of Pharmacology, New York Medical College, Touro University, Valhalla, New York, United States
- Department of Physiology, New York Medical College, Touro University, Valhalla, New York, United States
| |
Collapse
|
11
|
Yang S, Jiang K, Li L, Xiang J, Li Y, Kang L, Yang G, Liang Z. MircroRNA-92b as a negative regulator of the TGF-β signaling by targeting the type I receptor. iScience 2023; 26:108131. [PMID: 37867958 PMCID: PMC10587525 DOI: 10.1016/j.isci.2023.108131] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2023] [Revised: 09/06/2023] [Accepted: 09/30/2023] [Indexed: 10/24/2023] Open
Abstract
Transforming growth factor β1 (TGFβ1) has been identified as a major pathogenic factor underlying the development of chronic kidney disease (CKD). This study investigated the role of miR-92b-3p in the progression of renal fibrosis in unilateral ureteral occlusion (UUO) and unilateral ischemia-reperfusion injury (uIRI) mouse models, as well as explored its underlying mechanisms in human proximal tubular epithelial (HK2) cells. We found that renal fibrosis increased in UUO mice after miR-92b knockout, while it reduced in miR-92b overexpressing mice. MiR-92b knockout aggravated renal fibrosis in uIRI mice. RNA-sequencing analysis, the luciferase reporter assay, qPCR analysis, and western blotting confirmed that miR-92b-3p directly targeted TGF-β receptor 1, thereby ameliorating renal fibrosis by suppressing the TGF-β signaling pathway. Furthermore, we found that TGF-β suppressed miR-92b transcription through Snail family transcriptional repressors 1 and 2. Our results suggest that miR-92b-3p may serve as a novel therapeutic for mitigating fibrosis in CKD.
Collapse
Affiliation(s)
- Shu Yang
- Department of Geriatrics, Shenzhen People’s Hospital (The Second Clinical Medical College, Jinan University; The First Affiliated Hospital, Southern University of Science and Technology), Shenzhen 518000, China
- Guangdong Provincial Clinical Research Center for Geriatrics,Shenzhen Clinical Research Center for Geriatrics, Shenzhen People’s Hospital (The Second Clinical Medical College, Jinan University; The First Affiliated Hospital, Southern University of Science and Technology), Shenzhen, 518000 China
| | - Kewei Jiang
- Department of Geriatrics, Shenzhen People’s Hospital (The Second Clinical Medical College, Jinan University; The First Affiliated Hospital, Southern University of Science and Technology), Shenzhen 518000, China
- Guangdong Provincial Clinical Research Center for Geriatrics,Shenzhen Clinical Research Center for Geriatrics, Shenzhen People’s Hospital (The Second Clinical Medical College, Jinan University; The First Affiliated Hospital, Southern University of Science and Technology), Shenzhen, 518000 China
| | - Lixing Li
- Department of Geriatrics, Shenzhen People’s Hospital (The Second Clinical Medical College, Jinan University; The First Affiliated Hospital, Southern University of Science and Technology), Shenzhen 518000, China
- Guangdong Provincial Clinical Research Center for Geriatrics,Shenzhen Clinical Research Center for Geriatrics, Shenzhen People’s Hospital (The Second Clinical Medical College, Jinan University; The First Affiliated Hospital, Southern University of Science and Technology), Shenzhen, 518000 China
| | - Jiaqing Xiang
- Department of Geriatrics, Shenzhen People’s Hospital (The Second Clinical Medical College, Jinan University; The First Affiliated Hospital, Southern University of Science and Technology), Shenzhen 518000, China
- Guangdong Provincial Clinical Research Center for Geriatrics,Shenzhen Clinical Research Center for Geriatrics, Shenzhen People’s Hospital (The Second Clinical Medical College, Jinan University; The First Affiliated Hospital, Southern University of Science and Technology), Shenzhen, 518000 China
| | - Yanchun Li
- Department of Geriatrics, Shenzhen People’s Hospital (The Second Clinical Medical College, Jinan University; The First Affiliated Hospital, Southern University of Science and Technology), Shenzhen 518000, China
- Guangdong Provincial Clinical Research Center for Geriatrics,Shenzhen Clinical Research Center for Geriatrics, Shenzhen People’s Hospital (The Second Clinical Medical College, Jinan University; The First Affiliated Hospital, Southern University of Science and Technology), Shenzhen, 518000 China
| | - Lin Kang
- Department of Geriatrics, Shenzhen People’s Hospital (The Second Clinical Medical College, Jinan University; The First Affiliated Hospital, Southern University of Science and Technology), Shenzhen 518000, China
- Guangdong Provincial Clinical Research Center for Geriatrics,Shenzhen Clinical Research Center for Geriatrics, Shenzhen People’s Hospital (The Second Clinical Medical College, Jinan University; The First Affiliated Hospital, Southern University of Science and Technology), Shenzhen, 518000 China
- The Biobank of National Innovation Center for Advanced Medical Devices, Shenzhen People’s Hospital, Shenzhen 518000, China
| | - Guangyan Yang
- Department of Geriatrics, Shenzhen People’s Hospital (The Second Clinical Medical College, Jinan University; The First Affiliated Hospital, Southern University of Science and Technology), Shenzhen 518000, China
- Guangdong Provincial Clinical Research Center for Geriatrics,Shenzhen Clinical Research Center for Geriatrics, Shenzhen People’s Hospital (The Second Clinical Medical College, Jinan University; The First Affiliated Hospital, Southern University of Science and Technology), Shenzhen, 518000 China
| | - Zhen Liang
- Department of Geriatrics, Shenzhen People’s Hospital (The Second Clinical Medical College, Jinan University; The First Affiliated Hospital, Southern University of Science and Technology), Shenzhen 518000, China
- Guangdong Provincial Clinical Research Center for Geriatrics,Shenzhen Clinical Research Center for Geriatrics, Shenzhen People’s Hospital (The Second Clinical Medical College, Jinan University; The First Affiliated Hospital, Southern University of Science and Technology), Shenzhen, 518000 China
| |
Collapse
|
12
|
Pohl L, Schiessl IM. Endothelial cell plasticity in kidney fibrosis and disease. Acta Physiol (Oxf) 2023; 239:e14038. [PMID: 37661749 DOI: 10.1111/apha.14038] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2023] [Revised: 07/29/2023] [Accepted: 08/11/2023] [Indexed: 09/05/2023]
Abstract
Renal endothelial cells demonstrate an impressive remodeling potential during angiogenic sprouting, vessel repair or while transitioning into mesenchymal cells. These different processes may play important roles in both renal disease progression or regeneration while underlying signaling pathways of different endothelial cell plasticity routes partly overlap. Angiogenesis contributes to wound healing after kidney injury and pharmaceutical modulation of angiogenesis may home a great therapeutic potential. Yet, it is not clear whether any differentiated endothelial cell can proliferate or whether regenerative processes are largely controlled by resident or circulating endothelial progenitor cells. In the glomerular compartment for example, a distinct endothelial progenitor cell population may remodel the glomerular endothelium after injury. Endothelial-to-mesenchymal transition (EndoMT) in the kidney is vastly documented and often associated with endothelial dysfunction, fibrosis, and kidney disease progression. Especially the role of EndoMT in renal fibrosis is controversial. Studies on EndoMT in vivo determined possible conclusions on the pathophysiological role of EndoMT in the kidney, but whether endothelial cells really contribute to kidney fibrosis and if not what other cellular and functional outcomes derive from EndoMT in kidney disease is unclear. Sequencing data, however, suggest no participation of endothelial cells in extracellular matrix deposition. Thus, more in-depth classification of cellular markers and the fate of EndoMT cells in the kidney is needed. In this review, we describe different signaling pathways of endothelial plasticity, outline methodological approaches and evidence for functional and structural implications of angiogenesis and EndoMT in the kidney, and eventually discuss controversial aspects in the literature.
Collapse
Affiliation(s)
- Layla Pohl
- Department of Biomedicine, Aarhus University, Aarhus, Denmark
| | | |
Collapse
|
13
|
Lurje I, Gaisa NT, Weiskirchen R, Tacke F. Mechanisms of organ fibrosis: Emerging concepts and implications for novel treatment strategies. Mol Aspects Med 2023; 92:101191. [PMID: 37236017 DOI: 10.1016/j.mam.2023.101191] [Citation(s) in RCA: 32] [Impact Index Per Article: 32.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2023] [Accepted: 05/15/2023] [Indexed: 05/28/2023]
Abstract
Fibrosis, or tissue scarring, develops as a pathological deviation from the physiological wound healing response and can occur in various organs such as the heart, lung, liver, kidney, skin, and bone marrow. Organ fibrosis significantly contributes to global morbidity and mortality. A broad spectrum of etiologies can cause fibrosis, including acute and chronic ischemia, hypertension, chronic viral infection (e.g., viral hepatitis), environmental exposure (e.g., pneumoconiosis, alcohol, nutrition, smoking) and genetic diseases (e.g., cystic fibrosis, alpha-1-antitrypsin deficiency). Common mechanisms across organs and disease etiologies involve a sustained injury to parenchymal cells that triggers a wound healing response, which becomes deregulated in the disease process. A transformation of resting fibroblasts into myofibroblasts with excessive extracellular matrix production constitutes the hallmark of disease, however, multiple other cell types such as immune cells, predominantly monocytes/macrophages, endothelial cells, and parenchymal cells form a complex network of profibrotic cellular crosstalk. Across organs, leading mediators include growth factors like transforming growth factor-β and platelet-derived growth factor, cytokines like interleukin-10, interleukin-13, interleukin-17, and danger-associated molecular patterns. More recently, insights into fibrosis regression and resolution of chronic conditions have deepened our understanding of beneficial, protective effects of immune cells, soluble mediators and intracellular signaling. Further in-depth insights into the mechanisms of fibrogenesis can provide the rationale for therapeutic interventions and the development of targeted antifibrotic agents. This review gives insight into shared responses and cellular mechanisms across organs and etiologies, aiming to paint a comprehensive picture of fibrotic diseases in both experimental settings and in human pathology.
Collapse
Affiliation(s)
- Isabella Lurje
- Department of Hepatology and Gastroenterology, Campus Charité Mitte and Campus Virchow-Klinikum, Charité-Universitätsmedizin Berlin, Berlin, Germany
| | - Nadine T Gaisa
- Institute of Pathology, University Hospital RWTH Aachen, Aachen, Germany
| | - Ralf Weiskirchen
- Institute of Molecular Pathobiochemistry, Experimental Gene Therapy and Clinical Chemistry (IFMPEGKC), RWTH Aachen University Hospital, Aachen, Germany
| | - Frank Tacke
- Department of Hepatology and Gastroenterology, Campus Charité Mitte and Campus Virchow-Klinikum, Charité-Universitätsmedizin Berlin, Berlin, Germany.
| |
Collapse
|
14
|
Douté M, Sannier A, Even G, Tran TT, Gaston AT, Delbosc S, Loyau S, Bruneval P, Witko-Sarsat V, Mouthon L, Nicoletti A, Caligiuri G, Clement M. Thrombopoietin-Dependent Myelo-Megakaryopoiesis Fuels Thromboinflammation and Worsens Antibody-Mediated Chronic Renal Microvascular Injury. J Am Soc Nephrol 2023; 34:1207-1221. [PMID: 37022108 PMCID: PMC10356147 DOI: 10.1681/asn.0000000000000127] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2022] [Accepted: 03/07/2023] [Indexed: 04/07/2023] Open
Abstract
SIGNIFICANCE STATEMENT Kidney-derived thrombopoietin (TPO) increases myeloid cell and platelet production during antibody-mediated chronic kidney disease (AMCKD) in a mouse model, exacerbating chronic thromobinflammation in microvessels. The effect is mirrored in patients with extracapillary glomerulonephritis associated with thromboinflammation, TGF β -dependent glomerulosclerosis, and increased bioavailability of TPO. Neutralization of TPO in mice normalized hematopoiesis, reduced chronic thromboinflammation, and ameliorated renal disease. The findings suggest that TPO is a relevant biomarker and a promising therapeutic target for patients with CKD and other chronic thromboinflammatory diseases.Neutralization of TPO in mice normalized hematopoiesis, reduced chronic thromboinflammation, and ameliorated renal disease. The findings suggest that TPO is a relevant biomarker and a promising therapeutic target for patients with CKD and other chronic thromboinflammatory diseases. BACKGROUND Chronic thromboinflammation provokes microvascular alterations and rarefaction, promoting organ dysfunction in individuals with various life-threatening diseases. Hematopoietic growth factors (HGFs) released by the affected organ may sustain emergency hematopoiesis and fuel the thromboinflammatory process. METHODS Using a murine model of antibody-mediated chronic kidney disease (AMCKD) and pharmacological interventions, we comprehensively monitored the response to injury in the circulating blood, urine, bone marrow, and kidney. RESULTS Experimental AMCKD was associated with chronic thromboinflammation and the production of HGFs, especially thrombopoietin (TPO), by the injured kidney, which stimulated and skewed hematopoiesis toward myelo-megakaryopoiesis. AMCKD was characterized by vascular and kidney dysfunction, TGF β -dependent glomerulosclerosis, and microvascular rarefaction. In humans, extracapillary glomerulonephritis is associated with thromboinflammation, TGF β -dependent glomerulosclerosis, and increased bioavailability of TPO. Analysis of albumin, HGF, and inflammatory cytokine levels in sera from patients with extracapillary glomerulonephritis allowed us to identify treatment responders. Strikingly, TPO neutralization in the experimental AMCKD model normalized hematopoiesis, reduced chronic thromboinflammation, and ameliorated renal disease. CONCLUSION TPO-skewed hematopoiesis exacerbates chronic thromboinflammation in microvessels and worsens AMCKD. TPO is both a relevant biomarker and a promising therapeutic target in humans with CKD and other chronic thromboinflammatory diseases.
Collapse
Affiliation(s)
- Mélodie Douté
- Université Paris Cité and Université Sorbonne Paris Nord, INSERM U1148, Laboratory for vascular science (LVTS), Paris, France
- Laboratoire d'Excellence INFLAMEX, Paris, France
| | - Aurélie Sannier
- Université Paris Cité and Université Sorbonne Paris Nord, INSERM U1148, Laboratory for vascular science (LVTS), Paris, France
- Université de Paris, Assistance Publique-Hôpitaux de Paris (AP-HP), Service d'Anatomie et Cytologie Pathologiques, Hôpital Bichat, Paris, France
| | - Guillaume Even
- Université Paris Cité and Université Sorbonne Paris Nord, INSERM U1148, Laboratory for vascular science (LVTS), Paris, France
| | - Thi-Thu Tran
- Université Paris Cité and Université Sorbonne Paris Nord, INSERM U1148, Laboratory for vascular science (LVTS), Paris, France
| | - Ahn-Tu Gaston
- Université Paris Cité and Université Sorbonne Paris Nord, INSERM U1148, Laboratory for vascular science (LVTS), Paris, France
| | - Sandrine Delbosc
- Université Paris Cité and Université Sorbonne Paris Nord, INSERM U1148, Laboratory for vascular science (LVTS), Paris, France
| | - Stéphane Loyau
- Université Paris Cité and Université Sorbonne Paris Nord, INSERM U1148, Laboratory for vascular science (LVTS), Paris, France
| | - Patrick Bruneval
- Departments of Nephrology Pathology, Hôpital Européen Georges Pompidou, Assistance Publique-Hôpitaux de Paris, Paris, France
| | - Véronique Witko-Sarsat
- Laboratoire d'Excellence INFLAMEX, Paris, France
- Université de Paris, INSERM U1016, CNRS UMR 8104, Institut Cochin, Paris, France
| | - Luc Mouthon
- Laboratoire d'Excellence INFLAMEX, Paris, France
- Université de Paris, INSERM U1016, CNRS UMR 8104, Institut Cochin, Paris, France
- Service de Médecine Interne, Centre de Référence Maladies Autoimmunes Systémiques Rares d'Ile de France, Hôpital Cochin, Assistance Publique-Hôpitaux de Paris (AP-HP), Paris, France
- Assistance Publique-Hôpitaux de Paris (AP-HP)-CUP-CUP, Hôpital Cochin, Université Paris Cité, Paris, France
| | - Antonino Nicoletti
- Université Paris Cité and Université Sorbonne Paris Nord, INSERM U1148, Laboratory for vascular science (LVTS), Paris, France
- Laboratoire d'Excellence INFLAMEX, Paris, France
| | - Giuseppina Caligiuri
- Université Paris Cité and Université Sorbonne Paris Nord, INSERM U1148, Laboratory for vascular science (LVTS), Paris, France
- Laboratoire d'Excellence INFLAMEX, Paris, France
- Department of Cardiology, Assistance Publique-Hôpitaux de Paris, Hôpitaux Universitaires Paris Nord Val-de-Seine, Site Bichat, Paris, France
| | - Marc Clement
- Université Paris Cité and Université Sorbonne Paris Nord, INSERM U1148, Laboratory for vascular science (LVTS), Paris, France
- Laboratoire d'Excellence INFLAMEX, Paris, France
| |
Collapse
|
15
|
Wang E, Feng B, Chakrabarti S. MicroRNA 9 Is a Regulator of Endothelial to Mesenchymal Transition in Diabetic Retinopathy. Invest Ophthalmol Vis Sci 2023; 64:13. [PMID: 37279396 PMCID: PMC10249683 DOI: 10.1167/iovs.64.7.13] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2022] [Accepted: 05/23/2023] [Indexed: 06/08/2023] Open
Abstract
Purpose Diabetic retinopathy (DR) is a significant cause of blindness. Most research around DR focus on late-stage developments rather than early changes such as early endothelial dysfunction. Endothelial-to-mesenchymal transition (EndMT), an epigenetically regulated process whereby endothelial cells lose endothelial characteristics and adopt mesenchymal-like phenotypes, contributes to early endothelial changes in DR. The epigenetic regulator microRNA 9 (miR-9) is suppressed in the eyes during DR. MiR-9 plays a role in various diseases and regulates EndMT-related processes in other organs. We investigated the role miR-9 plays in glucose-induced EndMT in DR. Methods We examined the effects of glucose on miR-9 and EndMT using human retinal endothelial cells (HRECs). We then used HRECs and an endothelial-specific miR-9 transgenic mouse line to investigate the effect of miR-9 on glucose-induced EndMT. Finally, we used HRECs to probe the mechanisms through which miR-9 may regulate EndMT. Results We found that miR-9 inhibition was both necessary and sufficient for glucose-induced EndMT. Overexpression of miR-9 prevented glucose-induced EndMT, whereas suppressing miR-9 caused glucose-like EndMT changes. We also found that preventing EndMT with miR-9 overexpression improved retinal vascular leakage in DR. Finally, we showed that miR-9 regulates EndMT at an early stage by regulating EndMT-inducing signals such as proinflammatory and TGF-β pathways. Conclusions We have shown that miR-9 is an important regulator of EndMT in DR, potentially making it a good target for RNA-based therapy in early DR.
Collapse
Affiliation(s)
- Eric Wang
- Department of Pathology and Laboratory Medicine, Western University, London, Ontario, Canada
| | - Biao Feng
- Department of Pathology and Laboratory Medicine, Western University, London, Ontario, Canada
| | - Subrata Chakrabarti
- Department of Pathology and Laboratory Medicine, Western University, London, Ontario, Canada
| |
Collapse
|
16
|
Xu X, Zhang B, Wang Y, Shi S, Lv J, Fu Z, Gao X, Li Y, Wu H, Song Q. Renal fibrosis in type 2 cardiorenal syndrome: An update on mechanisms and therapeutic opportunities. Biomed Pharmacother 2023; 164:114901. [PMID: 37224755 DOI: 10.1016/j.biopha.2023.114901] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2023] [Revised: 05/13/2023] [Accepted: 05/16/2023] [Indexed: 05/26/2023] Open
Abstract
Cardiorenal syndrome (CRS) is a state of coexisting heart failure and renal insufficiency in which acute or chronic dysfunction of the heart or kidney lead to acute or chronic dysfunction of the other organ.It was found that renal fibrosis is an important pathological process in the progression of type 2 CRS to end-stage renal disease, and progressive renal impairment accelerates the deterioration of cardiac function and significantly increases the hospitalization and mortality rates of patients. Previous studies have found that Hemodynamic Aiteration, RAAS Overactivation, SNS Dysfunction, Endothelial Dysfunction and Imbalance of natriuretic peptide system contribute to the development of renal disease in the decompensated phase of heart failure, but the exact mechanisms is not clear. Therefore, in this review, we focus on the molecular pathways involved in the development of renal fibrosis due to heart failure and identify the canonical and non-canonical TGF-β signaling pathways and hypoxia-sensing pathways, oxidative stress, endoplasmic reticulum stress, pro-inflammatory cytokines and chemokines as important triggers and regulators of fibrosis development, and summarize the therapeutic approaches for the above signaling pathways, including SB-525334 Sfrp1, DKK1, IMC, rosarostat, 4-PBA, etc. In addition, some potential natural drugs for this disease are also summarized, including SQD4S2, Wogonin, Astragaloside, etc.
Collapse
Affiliation(s)
- Xia Xu
- Department of General Internal Medicine, Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Bingxuan Zhang
- Department of General Internal Medicine, Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Yajiao Wang
- College of Traditional Chinese Medicine, China Academy of Chinese Medical Science, Beijing, China
| | - Shuqing Shi
- Department of General Internal Medicine, Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Jiayu Lv
- Department of General Internal Medicine, Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Zhenyue Fu
- College of Traditional Chinese Medicine, Beijing University of Traditional Chinese Medicine, Beijing, China
| | - Xiya Gao
- College of Traditional Chinese Medicine, Beijing University of Traditional Chinese Medicine, Beijing, China
| | - Yumeng Li
- Department of General Internal Medicine, Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China.
| | - Huaqin Wu
- Department of Cardiology, Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China.
| | - Qingqiao Song
- Department of General Internal Medicine, Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China.
| |
Collapse
|
17
|
Verma N, Despa F. The association between renal accumulation of pancreatic amyloid-forming amylin and renal hypoxia. Front Endocrinol (Lausanne) 2023; 14:1104662. [PMID: 36875454 PMCID: PMC9978768 DOI: 10.3389/fendo.2023.1104662] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/21/2022] [Accepted: 02/06/2023] [Indexed: 02/18/2023] Open
Abstract
Chronic kidney disease (CKD) is increasing worldwide and is associated with diabetic states (obesity, prediabetes and type-2 diabetes mellitus). The kidney is intrinsically susceptible to low oxygen (hypoxia) and renal hypoxia plays a vital role in the progression of CKD. Recent studies suggest an association between CKD and renal deposition of amyloid-forming amylin secreted from the pancreas. Renal accumulation of amyloid-forming amylin is associated with hypertension, mitochondrial dysfunction, increased production of reactive oxygen species (ROS) and activation of hypoxia signaling in the kidney. In this review we will discuss potential associations between renal amylin amyloid accumulation, hypertension, and mechanism of hypoxia-induced kidney dysfunction, including activation of hypoxia-inducible factors (HIFs) and mitochondrial dysfunction.
Collapse
Affiliation(s)
- Nirmal Verma
- Department of Pharmacology and Nutritional Sciences, University of Kentucky, Lexington, KY, United States
| | | |
Collapse
|
18
|
Stasi A, Franzin R, Caggiano G, Losapio R, Fiorentino M, Alfieri C, Gesualdo L, Stallone G, Castellano G. New Frontiers in Sepsis-Induced Acute Kidney Injury and Blood Purification Therapies: The Role of Polymethylmethacrylate Membrane Hemofilter. Blood Purif 2023; 52 Suppl 1:71-84. [PMID: 36693337 PMCID: PMC10210082 DOI: 10.1159/000528685] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2022] [Accepted: 11/17/2022] [Indexed: 01/25/2023]
Abstract
Acute kidney injury (AKI) is a common consequence of sepsis with a mortality rate of up to 40%. The pathogenesis of septic AKI is complex and involves several mechanisms leading to exacerbated inflammatory response associated with renal injury. A large body of evidence suggests that inflammation is tightly linked to AKI through bidirectional interaction between renal and immune cells. Preclinical data from our and other laboratories have identified in complement system activation a crucial mediator of AKI. Partial recovery following AKI could lead to long-term consequences that predispose to chronic dysfunction and may also accelerate the progression of preexisting chronic kidney disease. Recent findings have revealed striking morphological and functional changes in renal parenchymal cells induced by mitochondrial dysfunction, cell cycle arrest via the activation of signaling pathways involved in aging process, microvascular rarefaction, and early fibrosis. Although major advances have been made in our understanding of the pathophysiology of AKI, there are no available preventive and therapeutic strategies in this field. The identification of ideal clinical biomarkers for AKI enables prompt and effective therapeutic strategy that could prevent the progression of renal injury and promote repair process. Therefore, the use of novel biomarkers associated with clinical and functional criteria could provide early interventions and better outcome. Several new drugs for AKI are currently being investigated; however, the complexity of this disease might explain the failure of pharmacological intervention targeting just one of the many systems involved. The hypothesis that blood purification could improve the outcome of septic AKI has attracted much attention. New relevant findings on the role of polymethylmethacrylate-based continuous veno-venous hemofiltration in septic AKI have been reported. Herein, we provide a comprehensive literature review on advances in the pathophysiology of septic AKI and potential therapeutic approaches in this field.
Collapse
Affiliation(s)
- Alessandra Stasi
- Renal, Dialysis and Transplantation Unit, Department of Precision and Regenerative Medicine and Ionian Area (DIMEPRE-J), University of Bari, Bari, Italy
| | - Rossana Franzin
- Renal, Dialysis and Transplantation Unit, Department of Precision and Regenerative Medicine and Ionian Area (DIMEPRE-J), University of Bari, Bari, Italy
| | - Gianvito Caggiano
- Renal, Dialysis and Transplantation Unit, Department of Precision and Regenerative Medicine and Ionian Area (DIMEPRE-J), University of Bari, Bari, Italy
| | - Rosa Losapio
- Renal, Dialysis and Transplantation Unit, Department of Precision and Regenerative Medicine and Ionian Area (DIMEPRE-J), University of Bari, Bari, Italy
| | - Marco Fiorentino
- Renal, Dialysis and Transplantation Unit, Department of Precision and Regenerative Medicine and Ionian Area (DIMEPRE-J), University of Bari, Bari, Italy
| | - Carlo Alfieri
- Nephrology, Dialysis and Renal Transplant Unit, Department of Clinical Sciences and Community Health, University of Milan, Milan, Italy
| | - Loreto Gesualdo
- Renal, Dialysis and Transplantation Unit, Department of Precision and Regenerative Medicine and Ionian Area (DIMEPRE-J), University of Bari, Bari, Italy
| | - Giovanni Stallone
- Nephrology Dialysis and Transplantation Unit, Department of Medical and Surgical Sciences, Advanced Research Center on Kidney Aging (A.R.K.A.), University of Foggia, Foggia, Italy
| | - Giuseppe Castellano
- Nephrology, Dialysis and Renal Transplant Unit, Department of Clinical Sciences and Community Health, University of Milan, Milan, Italy
| |
Collapse
|
19
|
Jiang Z, Wang J, Meng W, Zhou Y, Ma L, Guan Y. Inhibition of Ureteral Stricture by Pirfenidone-Loaded Nanoparticle-Coated Ureteral Stents with Slow-Release Pirfenidone. Int J Nanomedicine 2022; 17:6579-6591. [PMID: 36575699 PMCID: PMC9790172 DOI: 10.2147/ijn.s390513] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2022] [Accepted: 12/09/2022] [Indexed: 12/24/2022] Open
Abstract
Introduction Ureteral stricture caused by iatrogenic ureteral injury induced ureteral injury is more common and challenging to recover quickly. The effective prevention of ureteral stricture due to iatrogenic ureteral injury-induced ureteral damage is a current challenge for urologists. The purpose of this study was to evaluate the effectiveness of nanoparticle/pirfenidone complex-coated ureteral stents with slow-release pirfenidone for the prevention of ureteral stricture in rabbits. In this study, we developed a nanoparticle/pirfenidone complex-coated ureteral stent to deliver pirfenidone into the injured ureter to inhibit ureteral stricture. Methods Twelve New Zealand rabbits were divided into four groups: Sham, US, US+ Unmodified ureteral stent, and US+NP/PFD ureteral stent; we constructed an irreversible electroporation model of ureteral injury in rabbits and placed unmodified ureteral stents and nanoparticle/pirfenidone complex-coated ureteral stents into the ureter. Two weeks later, we euthanized the rabbits and removed their bilateral kidneys and ureters. We evaluated the effect of ureteral stent prophylaxis by gross specimen observation, section staining, and Western Blot. Results We found that the nanoparticle/pirfenidone complexes could adhere uniformly to the surface of the ureteral stent. After placement into the ureter, the nanoparticle/pirfenidone complexes were able to remain on the surface of the ureteral stent. We found nanoparticle/pirfenidone complexes could diffuse in the ureteral epithelial tissue two weeks after the order. The study showed that nanoparticle/pirfenidone complex-coated ureteral stents placed into the ureter showed significantly less stenosis due to fibrosis than in US control rabbits and rabbits treated with unmodified ureteral stents. Conclusion We used a novel platform based on nanoparticle/pirfenidone complex-coated ureteral stents for local and sustained delivery of pirfenidone, which can effectively deliver pirfenidone to the tissue and can slowly control the release of pirfenidone. Therefore, combining ureteral stents with nanoparticle/pirfenidone complexes was an effective measure to prevent ureteral stricture.
Collapse
Affiliation(s)
- Zhaosheng Jiang
- Department of Urology, Affiliated Hospital of Nantong University, Medical School of Nantong University, Nantong, People’s Republic of China
| | - Jiahao Wang
- Department of Urology, Wuxi Hospital Affiliated to the Nanjing University of Chinese Medicine, Wuxi, People’s Republic of China
| | - Wei Meng
- Department of Urology, Affiliated Hospital of Nantong University, Medical School of Nantong University, Nantong, People’s Republic of China
| | - Youlang Zhou
- Research Central of Clinical Medicine, Affiliated Hospital of Nantong University, Nantong, People’s Republic of China
| | - Limin Ma
- Department of Urology, Affiliated Hospital of Nantong University, Medical School of Nantong University, Nantong, People’s Republic of China
| | - Yangbo Guan
- Department of Urology, Affiliated Hospital of Nantong University, Medical School of Nantong University, Nantong, People’s Republic of China,Correspondence: Yangbo Guan; Limin Ma, Tel +86 18912888908; Tel +86 13404292020, Email ;
| |
Collapse
|
20
|
Tie Y, Tang F, Peng D, Zhang Y, Shi H. TGF-beta signal transduction: biology, function and therapy for diseases. MOLECULAR BIOMEDICINE 2022; 3:45. [PMID: 36534225 PMCID: PMC9761655 DOI: 10.1186/s43556-022-00109-9] [Citation(s) in RCA: 29] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2022] [Accepted: 11/15/2022] [Indexed: 12/23/2022] Open
Abstract
The transforming growth factor beta (TGF-β) is a crucial cytokine that get increasing concern in recent years to treat human diseases. This signal controls multiple cellular responses during embryonic development and tissue homeostasis through canonical and/or noncanonical signaling pathways. Dysregulated TGF-β signal plays an essential role in contributing to fibrosis via promoting the extracellular matrix deposition, and tumor progression via inducing the epithelial-to-mesenchymal transition, immunosuppression, and neovascularization at the advanced stage of cancer. Besides, the dysregulation of TGF-beta signal also involves in other human diseases including anemia, inflammatory disease, wound healing and cardiovascular disease et al. Therefore, this signal is proposed to be a promising therapeutic target in these diseases. Recently, multiple strategies targeting TGF-β signals including neutralizing antibodies, ligand traps, small-molecule receptor kinase inhibitors targeting ligand-receptor signaling pathways, antisense oligonucleotides to disrupt the production of TGF-β at the transcriptional level, and vaccine are under evaluation of safety and efficacy for the forementioned diseases in clinical trials. Here, in this review, we firstly summarized the biology and function of TGF-β in physiological and pathological conditions, elaborated TGF-β associated signal transduction. And then, we analyzed the current advances in preclinical studies and clinical strategies targeting TGF-β signal transduction to treat diseases.
Collapse
Affiliation(s)
- Yan Tie
- grid.13291.380000 0001 0807 1581Department of Biotherapy, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, No.37 Guo Xue Xiang, Chengdu, 610041 China
| | - Fan Tang
- grid.13291.380000 0001 0807 1581Department of Biotherapy, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, No.37 Guo Xue Xiang, Chengdu, 610041 China ,grid.13291.380000 0001 0807 1581Orthopaedic Research Institute, Department of Orthopaedics, West China Hospital, Sichuan University, Chengdu, China
| | - Dandan Peng
- grid.13291.380000 0001 0807 1581Department of Biotherapy, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, No.37 Guo Xue Xiang, Chengdu, 610041 China
| | - Ye Zhang
- grid.506261.60000 0001 0706 7839Department of Radiation Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021 China
| | - Huashan Shi
- grid.13291.380000 0001 0807 1581Department of Biotherapy, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, No.37 Guo Xue Xiang, Chengdu, 610041 China
| |
Collapse
|
21
|
Ciarambino T, Crispino P, Giordano M. Gender and Renal Insufficiency: Opportunities for Their Therapeutic Management? Cells 2022; 11:cells11233820. [PMID: 36497080 PMCID: PMC9740491 DOI: 10.3390/cells11233820] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2022] [Revised: 11/18/2022] [Accepted: 11/24/2022] [Indexed: 11/30/2022] Open
Abstract
Acute kidney injury (AKI) is a major clinical problem associated with increased morbidity and mortality. Despite intensive research, the clinical outcome remains poor, and apart from supportive therapy, no other specific therapy exists. Furthermore, acute kidney injury increases the risk of developing chronic kidney disease (CKD) and end-stage renal disease. Acute tubular injury accounts for the most common intrinsic cause of AKI. The main site of injury is the proximal tubule due to its high workload and energy demand. Upon injury, an intratubular subpopulation of proximal epithelial cells proliferates and restores the tubular integrity. Nevertheless, despite its strong regenerative capacity, the kidney does not always achieve its former integrity and function and incomplete recovery leads to persistent and progressive CKD. Clinical and experimental data demonstrate sexual differences in renal anatomy, physiology, and susceptibility to renal diseases including but not limited to ischemia-reperfusion injury. Some data suggest the protective role of female sex hormones, whereas others highlight the detrimental effect of male hormones in renal ischemia-reperfusion injury. Although the important role of sex hormones is evident, the exact underlying mechanisms remain to be elucidated. This review focuses on collecting the current knowledge about sexual dimorphism in renal injury and opportunities for therapeutic manipulation, with a focus on resident renal progenitor stem cells as potential novel therapeutic strategies.
Collapse
Affiliation(s)
- Tiziana Ciarambino
- Internal Medicine Department, Hospital of Marcianise, ASL Caserta, 81031 Caserta, Italy
- Correspondence: (T.C.); (M.G.)
| | - Pietro Crispino
- Emergency Department, Hospital of Latina, ASL Latina, 04100 Latina, Italy
| | - Mauro Giordano
- Department of Advanced Medical and Surgical Science, University of Campania, Luigi Vanvitelli, 80138 Naples, Italy
- Correspondence: (T.C.); (M.G.)
| |
Collapse
|
22
|
Jo H, Choi BY, Jang G, Lee JP, Cho A, Kim B, Park JH, Lee J, Kim YH, Ryu J. Three-dimensional Bio-Printed Autologous Omentum Patch Ameliorates UUO-Induced Renal Fibrosis
. Tissue Eng Part C Methods 2022; 28:672-682. [DOI: 10.1089/ten.tec.2022.0165] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Affiliation(s)
- Hyunwoo Jo
- ROKIT Healthcare, Inc., R&D, Seoul, Korea (the Republic of),
- Korea University, 34973, Department of Biomicrosystem Technology, Seoul, Korea (the Republic of),
| | - Bo Young Choi
- ROKIT Healthcare, Inc., R&D, Seoul, Korea (the Republic of),
| | - Giup Jang
- ROKIT Genomics, Inc., R&D, Seoul, Korea (the Republic of),
| | - Jung Pyo Lee
- Seoul National University Seoul Metropolitan Government Boramae Medical Center, 65633, Department of Internal Medicine, Dongjak-gu, Seoul, Korea (the Republic of),
- Seoul National University College of Medicine, 37990, Department of Internal Medicine, Seoul, Korea (the Republic of),
- Seoul National University College of Medicine, 37990, Translational Medicine Major, Seoul, Korea (the Republic of),
| | - Ara Cho
- Seoul National University College of Medicine, 37990, Translational Medicine Major, Seoul, Korea (the Republic of),
| | - Boyun Kim
- ROKIT Healthcare, Inc., R&D, Seoul, Korea (the Republic of),
| | - Jeong Hwan Park
- Seoul National University Seoul Metropolitan Government Boramae Medical Center, 65633, Department of Pathology, Dongjak-gu, Seoul, Korea (the Republic of),
- Seoul National University College of Medicine, 37990, Department of Pathology, Seoul, Korea (the Republic of),
| | - Jeonghwan Lee
- Seoul National University Seoul Metropolitan Government Boramae Medical Center, 65633, Department of Internal Medicine, Dongjak-gu, Seoul, Korea (the Republic of),
- Seoul National University College of Medicine, 37990, Department of Internal Medicine, Seoul, Korea (the Republic of),
| | - Young Hoon Kim
- Asan Medical Center, 65526, Department of Surgery, Songpa-gu, Seoul, Korea (the Republic of),
| | - Jina Ryu
- ROKIT Healthcare, Inc., R&D, Seoul, Korea (the Republic of),
| |
Collapse
|
23
|
Li X, Li W, Zhang Z, Wang W, Huang H. SIRT6 overexpression retards renal interstitial fibrosis through targeting HIPK2 in chronic kidney disease. Front Pharmacol 2022; 13:1007168. [PMID: 36172184 PMCID: PMC9510922 DOI: 10.3389/fphar.2022.1007168] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2022] [Accepted: 08/22/2022] [Indexed: 11/27/2022] Open
Abstract
Introduction: Renal interstitial fibrosis is a common pathophysiological change in the chronic kidney disease (CKD). Nicotinamide adenine dinucleotide (NAD)-dependent deacetylase sirtuin 6 (SIRT6) is demonstrated to protect against kidney injury. Vitamin B3 is the mostly used form of NAD precursors. However, the role of SIRT6 overexpression in renal interstitial fibrosis of CKD and the association between dietary vitamin B3 intake and renal function remain to be elucidated. Methods: Wild-type (WT) and SIRT6-transgene (SIRT6-Tg) mice were given with high-adenine diets to establish CKD model. HK2 cells were exposed to transforming growth factor β1 (TGF-β1) in vitro to explore related mechanism. Population data from Multi-Ethnic Study of Atherosclerosis (MESA) was used to examine the association between dietary vitamin B3 intake and renal function decline. Results: Compared to WT mice, SIRT6-Tg mice exhibited alleviated renal interstitial fibrosis as evidenced by reduced collagen deposit, collagen I and α-smooth muscle actin expression. Renal function was also improved in SIRT6-Tg mice. Homeodomain interacting protein kinase 2 (HIPK2) was induced during the fibrogenesis in CKD, while HIPK2 was downregulated after SIRT6 overexpression. Further assay in vitro confirmed that SIRT6 depletion exacerbated epithelial-to-mesenchymal transition of HK2 cells, which might be linked with HIPK2 upregulation. HIPK2 was inhibited by SIRT6 in the post-transcriptional level. Population study indicated that higher dietary vitamin B3 intake was independently correlated with a lower risk of estimate glomerular filtration rate decline in those ≥65 years old during follow-up. Conclusion: SIRT6/HIPK2 axis serves as a promising target of renal interstitial fibrosis in CKD. Dietary vitamin B3 intake is beneficial for renal function in the old people.
Collapse
Affiliation(s)
- Xiaoxue Li
- Department of Cardiology, The Eighth Affiliated Hospital, Sun Yat-sen University, Shenzhen, China
| | - Wenxin Li
- Department of Cardiology, The Eighth Affiliated Hospital, Sun Yat-sen University, Shenzhen, China
| | - Zhengzhipeng Zhang
- Department of Cardiology, The Eighth Affiliated Hospital, Sun Yat-sen University, Shenzhen, China
| | - Weidong Wang
- Department of Pathophysiology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China
| | - Hui Huang
- Department of Cardiology, The Eighth Affiliated Hospital, Sun Yat-sen University, Shenzhen, China
- *Correspondence: Hui Huang,
| |
Collapse
|
24
|
Zhao B, Xu Y, Chen Y, Cai Y, Gong Z, Li D, Kuang H, Liu X, Zhou H, Liu G, Yin Y. Activation of TRPV4 by lactate as a critical mediator of renal fibrosis in spontaneously hypertensive rats after moderate- and high-intensity exercise. Front Physiol 2022; 13:927078. [PMID: 36160854 PMCID: PMC9493464 DOI: 10.3389/fphys.2022.927078] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2022] [Accepted: 08/12/2022] [Indexed: 11/13/2022] Open
Abstract
Moderate-intensity exercise training has been regarded a healthy way to alleviate kidney fibrosis by the transforming growth factor-beta (TGFβ) signaling pathway. However, the impact of different intensity exercise training on renal function is unknown, and the underlying mechanism is also unclear. The purpose of this study is to explore the effect of lactic acid in different intensity exercise training on renal fibrosis in spontaneous hypertension. Masson’s trichrome staining, immunohistochemistry, lactic acid kit, and Western blotting were applied on the excised renal tissue from six male Wistar–Kyoto rats (WKY) and 18 male spontaneously hypertensive rats (SHR), which were randomly divided into a sedentary hypertensive group (SHR), moderate-intensity exercise hypertensive group (SHR-M), and high-intensity exercise hypertensive group (SHR-H). The results revealed that renal and blood lactic acid, as well as the key fibrotic protein levels of transient receptor potential vanilloid 4 (TRPV4), TGFβ-1, phospho-Smad2/3 (p-Smad2/3), and connective tissue growth factor (CTGF), were significantly decreased in the SHR-M group when compared with the SHR and SHR-H groups. In further in vitro experiments, we selected normal rat kidney interstitial fibroblast (NRK-49F) cells. By immunofluorescence and Western blotting techniques, we found that TRPV4 antagonists (RN-1734) markedly inhibited lactate-induced fibrosis. In conclusion, compared with previous studies, high-intensity exercise training (HIET) can cause adverse effects (renal damage and fibrosis). High concentrations of lactic acid can aggravate renal fibrosis conditions via activating TRPV4-TGFβ1-SMAD2/3-CTGF-mediated renal fibrotic pathways in spontaneous hypertension. This finding might provide new ideas for treating hypertensive nephropathy with different intensity exercise in the future.
Collapse
Affiliation(s)
- Binyi Zhao
- Department of Cardiology, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Yanping Xu
- Department of Cardiology, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Yunlin Chen
- Department of Cardiology, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Ying Cai
- Department of Infectious Diseases, Institute for Viral Hepatitis, The Second Affiliated Hospital, Chongqing Medical University, Chongqing, China
| | - Zhiyan Gong
- Department of Ultrasonography, The First Affiliated Hospital, Chongqing Medical University, Chongqing, China
| | - Dan Li
- Department of Cardiology, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Hongyu Kuang
- Department of Cardiology, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Xiaozhu Liu
- Department of Cardiology, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Hao Zhou
- Department of Cardiology, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Guochun Liu
- The College of Exercise Medicine, Chongqing Medical University, Chongqing, China
- *Correspondence: Guochun Liu, ; Yuehui Yin, ,
| | - Yuehui Yin
- Department of Cardiology, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, China
- *Correspondence: Guochun Liu, ; Yuehui Yin, ,
| |
Collapse
|
25
|
Goligorsky MS. Emerging Insights into Glomerular Vascular Pole and Microcirculation. J Am Soc Nephrol 2022; 33:1641-1648. [PMID: 35853715 PMCID: PMC9529196 DOI: 10.1681/asn.2022030354] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2022] [Revised: 06/16/2022] [Accepted: 07/06/2022] [Indexed: 01/14/2023] Open
Abstract
The glomerular vascular pole is the gate for the afferent and efferent arterioles and mesangial cells and a frequent location of peripolar cells with an unclear function. It has been studied in definitive detail for >30 years, and functionally interrogated in the context of signal transduction from the macula densa to the mesangial cells and afferent arteriolar smooth muscle cells from 10 to 20 years ago. Two recent discoveries shed additional light on the vascular pole, with possibly far-reaching implications. One, which uses novel serial section electron microscopy, reveals a shorter capillary pathway between the basins of the afferent and efferent arterioles. Such a pathway, when patent, may short-circuit the multitude of capillaries in the glomerular tuft. Notably, this shorter capillary route is enclosed within the glomerular mesangium. The second study used anti-Thy1.1-induced mesangiolysis and intravital microscopy to unequivocally establish in vivo the long-suspected contractile function of mesangial cells, which have the ability to change the geometry and curvature of glomerular capillaries. These studies led me to hypothesize the existence of a glomerular perfusion rheostat, in which the shorter path periodically fluctuates between being more and less patent. This action reduces or increases blood flow through the entire glomerular capillary tuft. A corollary is that the GFR is a net product of balance between the states of capillary perfusion, and that deviations from the balanced state would increase or decrease GFR. Taken together, these studies may pave the way to a more profound understanding of glomerular microcirculation under basal conditions and in progression of glomerulopathies.
Collapse
Affiliation(s)
- Michael S. Goligorsky
- Renal Research Institute, New York Medical College at the Touro University, Valhalla, New York
| |
Collapse
|
26
|
Wang L, Zhang Y, Ren Y, Yang X, Ben H, Zhao F, Yang S, Wang L, Qing J. Pharmacological targeting of cGAS/STING-YAP axis suppresses pathological angiogenesis and ameliorates organ fibrosis. Eur J Pharmacol 2022; 932:175241. [PMID: 36058291 DOI: 10.1016/j.ejphar.2022.175241] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2022] [Revised: 08/24/2022] [Accepted: 08/26/2022] [Indexed: 11/18/2022]
Abstract
Organ fibrosis is accompanied by pathological angiogenesis. Discovering new ways to ameliorate pathological angiogenesis may bypass organ fibrosis. The cyclic guanosine monophosphate (GMP)-adenosine monophosphate (AMP) synthase (cGAS)-stimulator of interferon genes (STING) signaling pathway has been implicated in organ injuries and its activation inhibits endothelial proliferation. Currently, a controversy exists as to whether cGAS/STING activation exacerbates inflammation and tissue injury or mitigates damage, and whether one of these effects predominates under specific context. This study unveiled a new antifibrotic cGAS/STING signaling pathway that suppresses pathological angiogenesis in liver and kidney fibrosis. We showed that cGAS expression was induced in fibrotic liver and kidney, but suppressed in endothelial cells. cGAS genetic deletion promoted liver and kidney fibrosis and pathological angiogenesis, including occurrence of endothelial-to-mesenchymal transition. Meanwhile, cGAS deletion upregulated profibrotic Yes-associated protein (YAP) signaling in endothelial cells, which was evidenced by the attenuation of organ fibrosis in mice specifically lacking endothelial YAP. Pharmacological targeting of cGAS/STING-YAP signaling by both a small-molecule STING agonist, SR-717, and a G protein-coupled receptor (GPCR)-based antagonist that blocks the profibrotic activity of endothelial YAP, attenuated liver and kidney fibrosis. Together, our data support that activation of cGAS/STING signaling mitigates organ fibrosis and suppresses pathological angiogenesis. Further, pharmacological targeting of cGAS/STING-YAP axis exhibits the potential to alleviate liver and kidney fibrosis.
Collapse
Affiliation(s)
- Lu Wang
- National Traditional Chinese Medicine Clinical Research Base and Research Center of Integrated Traditional Chinese and Western Medicine, The Affiliated Traditional Chinese Medicine Hospital of Southwest Medical University, Luzhou, 646000, China
| | - Yuwei Zhang
- National Traditional Chinese Medicine Clinical Research Base and Research Center of Integrated Traditional Chinese and Western Medicine, The Affiliated Traditional Chinese Medicine Hospital of Southwest Medical University, Luzhou, 646000, China
| | - Yafeng Ren
- Key Laboratory of Birth Defects and Related Diseases of Women and Children of MOE, State Key Laboratory of Biotherapy, West China Second University Hospital, Sichuan University, Chengdu, 610064, China
| | - Xue Yang
- Department of Pharmacy, The Affiliated Traditional Chinese Medicine Hospital of Southwest Medical University, Luzhou, 646000, Sichuan, China
| | - Haijing Ben
- Beijing Institute of Hepatology, Beijing YouAn Hospital, Capital Medical University, Beijing, 100069, China
| | - Fulan Zhao
- Department of Pharmacy, The Affiliated Traditional Chinese Medicine Hospital of Southwest Medical University, Luzhou, 646000, Sichuan, China
| | - Sijin Yang
- National Traditional Chinese Medicine Clinical Research Base and Research Center of Integrated Traditional Chinese and Western Medicine, The Affiliated Traditional Chinese Medicine Hospital of Southwest Medical University, Luzhou, 646000, China; Institute of Integrated Chinese and Western Medicine, Southwest Medical University, Luzhou, 646000, China
| | - Li Wang
- National Traditional Chinese Medicine Clinical Research Base and Research Center of Integrated Traditional Chinese and Western Medicine, The Affiliated Traditional Chinese Medicine Hospital of Southwest Medical University, Luzhou, 646000, China.
| | - Jie Qing
- National Traditional Chinese Medicine Clinical Research Base and Research Center of Integrated Traditional Chinese and Western Medicine, The Affiliated Traditional Chinese Medicine Hospital of Southwest Medical University, Luzhou, 646000, China; Institute of Integrated Chinese and Western Medicine, Southwest Medical University, Luzhou, 646000, China; MOE Key Laboratory of Bioorganic Phosphorus Chemistry & Chemical Biology, Department of Chemistry, Tsinghua University, Beijing, 100084, China.
| |
Collapse
|
27
|
Wang B, Li ZL, Zhang YL, Wen Y, Gao YM, Liu BC. Hypoxia and chronic kidney disease. EBioMedicine 2022; 77:103942. [PMID: 35290825 PMCID: PMC8921539 DOI: 10.1016/j.ebiom.2022.103942] [Citation(s) in RCA: 44] [Impact Index Per Article: 22.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2021] [Revised: 02/22/2022] [Accepted: 03/01/2022] [Indexed: 12/12/2022] Open
Abstract
Hypoxia is an inherent pathophysiological characteristic of chronic kidney disease (CKD), which is closely associated with the development of renal inflammation and fibrosis, as well as CKD-related complications such as anaemia, cardiovascular events, and sarcopenia. This review outlined the characteristics of oxygen supply in the kidney, changes in oxygen metabolism and factors leading to hypoxia in CKD. Mechanistically, we discussed how hypoxia contributes to renal injury as well as complications associated with CKD. Furthermore, we also discussed the potential therapeutic approaches that target chronic hypoxia, as well as the challenges in the study of oxygen homeostasis imbalance in CKD.
Collapse
Affiliation(s)
- Bin Wang
- Institute of Nephrology, Zhong Da Hospital, Southeast University School of Medicine, Nanjing, Jiangsu, China
| | - Zuo-Lin Li
- Institute of Nephrology, Zhong Da Hospital, Southeast University School of Medicine, Nanjing, Jiangsu, China
| | - Yi-Lin Zhang
- Institute of Nephrology, Zhong Da Hospital, Southeast University School of Medicine, Nanjing, Jiangsu, China
| | - Yi Wen
- Institute of Nephrology, Zhong Da Hospital, Southeast University School of Medicine, Nanjing, Jiangsu, China
| | - Yue-Ming Gao
- Institute of Nephrology, Zhong Da Hospital, Southeast University School of Medicine, Nanjing, Jiangsu, China
| | - Bi-Cheng Liu
- Institute of Nephrology, Zhong Da Hospital, Southeast University School of Medicine, Nanjing, Jiangsu, China.
| |
Collapse
|
28
|
Xu C, Bao M, Fan X, Huang J, Zhu C, Xia W. EndMT: New findings on the origin of myofibroblasts in endometrial fibrosis of intrauterine adhesions. Reprod Biol Endocrinol 2022; 20:9. [PMID: 34996477 PMCID: PMC8739974 DOI: 10.1186/s12958-022-00887-5] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/29/2021] [Accepted: 12/29/2021] [Indexed: 12/30/2022] Open
Abstract
BACKGROUND Intrauterine adhesion (IUA) is one of the leading causes of infertility and the main clinical challenge is the high recurrence rate. The key to solving this dilemma lies in elucidating the mechanisms of endometrial fibrosis. The aim of our team is to study the mechanism underlying intrauterine adhesion fibrosis and the origin of fibroblasts in the repair of endometrial fibrosis. METHODS Our experimental study involving an animal model of intrauterine adhesion and detection of fibrosis-related molecules. The levels of molecular factors related to the endothelial-to-mesenchymal transition (EndMT) were examined in a rat model of intrauterine adhesion using immunofluorescence, immunohistochemistry, qPCR and Western blot analyses. Main outcome measures are levels of the endothelial marker CD31 and the mesenchymal markers alpha-smooth muscle actin (α-SMA) and vimentin. RESULTS Immunofluorescence co-localization of CD31 and a-SMA showed that 14 days after moulding, double positive cells for CD31 and a-SMA could be clearly observed in the endometrium. Decreased CD31 levels and increased α-SMA and vimentin levels indicate that EndMT is involved in intrauterine adhesion fibrosis. CONCLUSIONS Endothelial cells promote the emergence of fibroblasts via the EndMT during the endometrial fibrosis of intrauterine adhesions.
Collapse
Affiliation(s)
- Chengcheng Xu
- Institute of Reproductive Health, Tongji Medical College, Huazhong University of Science and Technology, 430030, Wuhan, China
| | - Meng Bao
- Institute of Reproductive Health, Tongji Medical College, Huazhong University of Science and Technology, 430030, Wuhan, China
| | - Xiaorong Fan
- Institute of Reproductive Health, Tongji Medical College, Huazhong University of Science and Technology, 430030, Wuhan, China
| | - Jin Huang
- Institute of Reproductive Health, Tongji Medical College, Huazhong University of Science and Technology, 430030, Wuhan, China
| | - Changhong Zhu
- Institute of Reproductive Health, Tongji Medical College, Huazhong University of Science and Technology, 430030, Wuhan, China.
| | - Wei Xia
- Institute of Reproductive Health, Tongji Medical College, Huazhong University of Science and Technology, 430030, Wuhan, China.
| |
Collapse
|
29
|
Li L, He D, Cai Q, Wang DY. Blockage of TGF-β1-induced epithelial-to- mesenchymal transition by oxymatrine prevents renal interstitial fibrosis. BRAZ J PHARM SCI 2022. [DOI: 10.1590/s2175-97902020000118738] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Affiliation(s)
- Li Li
- University of Chinese Medicine, China
| | | | - Qin Cai
- University of Chinese Medicine, China
| | | |
Collapse
|
30
|
Urabe A, Doi S, Nakashima A, Ike T, Morii K, Sasaki K, Doi T, Arihiro K, Masaki T. Klotho deficiency intensifies hypoxia-induced expression of IFN-α/β through upregulation of RIG-I in kidneys. PLoS One 2021; 16:e0258856. [PMID: 34673800 PMCID: PMC8530307 DOI: 10.1371/journal.pone.0258856] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2021] [Accepted: 10/06/2021] [Indexed: 12/29/2022] Open
Abstract
Hypoxia is a common pathway to the progression of end-stage kidney disease. Retinoic acid-inducible gene I (RIG-I) encodes an RNA helicase that recognizes viruses including SARS-CoV2, which is responsible for the production of interferon (IFN)-α/β to prevent the spread of viral infection. Recently, RIG-I activation was found under hypoxic conditions, and klotho deficiency was shown to intensify the activation of RIG-I in mouse brains. However, the roles of these functions in renal inflammation remain elusive. Here, for in vitro study, the expression of RIG-I and IFN-α/β was examined in normal rat kidney (NRK)-52E cells incubated under hypoxic conditions (1% O2). Next, siRNA targeting RIG-I or scramble siRNA was transfected into NRK52E cells to examine the expression of RIG-I and IFN-α/β under hypoxic conditions. We also investigated the expression levels of RIG-I and IFN-α/β in 33 human kidney biopsy samples diagnosed with IgA nephropathy. For in vivo study, we induced renal hypoxia by clamping the renal artery for 10 min in wild-type mice (WT mice) and Klotho-knockout mice (Kl−/− mice). Incubation under hypoxic conditions increased the expression of RIG-I and IFN-α/β in NRK52E cells. Their upregulation was inhibited in NRK52E cells transfected with siRNA targeting RIG-I. In patients with IgA nephropathy, immunohistochemical staining of renal biopsy samples revealed that the expression of RIG-I was correlated with that of IFN-α/β (r = 0.57, P<0.001, and r = 0.81, P<0.001, respectively). The expression levels of RIG-I and IFN-α/β were upregulated in kidneys of hypoxic WT mice and further upregulation was observed in hypoxic Kl−/− mice. These findings suggest that hypoxia induces the expression of IFN-α/β through the upregulation of RIG-I, and that klotho deficiency intensifies this hypoxia-induced expression in kidneys.
Collapse
Affiliation(s)
- Asako Urabe
- Department of Nephrology, Hiroshima University Hospital, Hiroshima, Japan
| | - Shigehiro Doi
- Department of Nephrology, Hiroshima University Hospital, Hiroshima, Japan
- * E-mail: (SD); (TM)
| | - Ayumu Nakashima
- Department of Nephrology, Hiroshima University Hospital, Hiroshima, Japan
- Department of Stem Cell Biology and Medicine, Graduate School of Biomedical & Health Sciences, Hiroshima University, Hiroshima, Japan
| | - Takeshi Ike
- Department of Nephrology, Hiroshima University Hospital, Hiroshima, Japan
| | - Kenichi Morii
- Department of Nephrology, Hiroshima University Hospital, Hiroshima, Japan
| | - Kensuke Sasaki
- Department of Nephrology, Hiroshima University Hospital, Hiroshima, Japan
| | - Toshiki Doi
- Department of Nephrology, Hiroshima University Hospital, Hiroshima, Japan
| | - Koji Arihiro
- Department of Anatomical Pathology, Hiroshima University Hospital, Hiroshima, Japan
| | - Takao Masaki
- Department of Nephrology, Hiroshima University Hospital, Hiroshima, Japan
- * E-mail: (SD); (TM)
| |
Collapse
|
31
|
Huang Q, Gan Y, Yu Z, Wu H, Zhong Z. Endothelial to Mesenchymal Transition: An Insight in Atherosclerosis. Front Cardiovasc Med 2021; 8:734550. [PMID: 34604359 PMCID: PMC8484517 DOI: 10.3389/fcvm.2021.734550] [Citation(s) in RCA: 31] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2021] [Accepted: 08/13/2021] [Indexed: 12/28/2022] Open
Abstract
Atherosclerosis is a fundamental disease of the cardiovascular system that leads to high morbidity and mortality worldwide. The endothelium is the first protective barrier in atherosclerosis. Endothelial cells have the potential to be transformed into mesenchymal cells, in a process termed endothelial to mesenchymal transition (EndMT). On the one hand, EndMT is known to contribute to atherosclerosis by inducing a number of phenotypes ranging from endothelial cell dysfunction to plaque formation. On the other hand, risk factors for atherosclerosis can lead to EndMT. A substantial body of evidence has suggested that EndMT induces the development of atherosclerosis; therefore, a deeper understanding of the molecular mechanisms underlying EndMT in atherosclerosis might provide insights to reverse this condition.
Collapse
Affiliation(s)
- Qingyan Huang
- Center for Precision Medicine, Meizhou People's Hospital, Meizhou Academy of Medical Sciences, Meizhou, China.,Guangdong Provincial Key Laboratory of Precision Medicine and Clinical Translational Research of Hakka Population, Meizhou People's Hospital, Meizhou Academy of Medical Sciences, Meizhou, China.,Guangdong Provincial Engineering and Technology Research Center for Clinical Molecular Diagnostics and Antibody Therapeutics, Meizhou People's Hospital, Meizhou Academy of Medical Sciences, Meizhou, China
| | - Yuhong Gan
- Guangdong Provincial Key Laboratory of Precision Medicine and Clinical Translational Research of Hakka Population, Meizhou People's Hospital, Meizhou Academy of Medical Sciences, Meizhou, China.,Guangdong Provincial Engineering and Technology Research Center for Clinical Molecular Diagnostics and Antibody Therapeutics, Meizhou People's Hospital, Meizhou Academy of Medical Sciences, Meizhou, China
| | - Zhikang Yu
- Center for Precision Medicine, Meizhou People's Hospital, Meizhou Academy of Medical Sciences, Meizhou, China.,Guangdong Provincial Key Laboratory of Precision Medicine and Clinical Translational Research of Hakka Population, Meizhou People's Hospital, Meizhou Academy of Medical Sciences, Meizhou, China.,Guangdong Provincial Engineering and Technology Research Center for Clinical Molecular Diagnostics and Antibody Therapeutics, Meizhou People's Hospital, Meizhou Academy of Medical Sciences, Meizhou, China
| | - Heming Wu
- Center for Precision Medicine, Meizhou People's Hospital, Meizhou Academy of Medical Sciences, Meizhou, China.,Guangdong Provincial Key Laboratory of Precision Medicine and Clinical Translational Research of Hakka Population, Meizhou People's Hospital, Meizhou Academy of Medical Sciences, Meizhou, China.,Guangdong Provincial Engineering and Technology Research Center for Clinical Molecular Diagnostics and Antibody Therapeutics, Meizhou People's Hospital, Meizhou Academy of Medical Sciences, Meizhou, China
| | - Zhixiong Zhong
- Center for Precision Medicine, Meizhou People's Hospital, Meizhou Academy of Medical Sciences, Meizhou, China.,Guangdong Provincial Key Laboratory of Precision Medicine and Clinical Translational Research of Hakka Population, Meizhou People's Hospital, Meizhou Academy of Medical Sciences, Meizhou, China.,Guangdong Provincial Engineering and Technology Research Center for Clinical Molecular Diagnostics and Antibody Therapeutics, Meizhou People's Hospital, Meizhou Academy of Medical Sciences, Meizhou, China
| |
Collapse
|
32
|
Shao L, Ma Y, Fang Q, Huang Z, Wan S, Wang J, Yang L. Role of protein phosphatase 2A in kidney disease (Review). Exp Ther Med 2021; 22:1236. [PMID: 34539832 PMCID: PMC8438693 DOI: 10.3892/etm.2021.10671] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2020] [Accepted: 01/06/2021] [Indexed: 12/12/2022] Open
Abstract
Kidney disease affects millions of people worldwide and is a financial burden on the healthcare system. Protein phosphatase 2A (PP2A), which is involved in renal development and the function of ion-transport proteins, aquaporin-2 and podocytes, is likely to serve an important role in renal processes. PP2A is associated with the pathogenesis of a variety of different kidney diseases including podocyte injury, inflammation, tumors and chronic kidney disease. The current review aimed to discuss the structure and function of PP2A subunits in the context of kidney diseases. How dysregulation of PP2A in the kidneys causes podocyte death and the inactivation of PP2A in renal carcinoma tissues is discussed. Inhibition of PP2A activity prevents epithelial-mesenchymal transition and attenuates renal fibrosis, creating a favorable inflammatory microenvironment and promoting the initiation and progression of tumor pathogenesis. The current review also indicates that PP2A serves an important role in protection against renal inflammation. Understanding the detailed mechanisms of PP2A provides information that can be utilized in the design and application of novel therapeutics for the treatment and prevention of renal diseases.
Collapse
Affiliation(s)
- Lishi Shao
- Department of Radiology, Kunming Medical University and The Second Affiliated Hospital, Kunming, Yunnan 650500, P.R. China
| | - Yiqun Ma
- Department of Radiology, Kunming Medical University and The Second Affiliated Hospital, Kunming, Yunnan 650500, P.R. China
| | - Qixiang Fang
- Department of Urology, The First Affiliated Hospital of the Medical College of Xi'an Jiaotong University, Xi'an, Shaanxi 710049, P.R. China
| | - Ziye Huang
- Department of Urology, Kunming Medical University and The Second Affiliated Hospital, Kunming, Yunnan 650500, P.R. China
| | - Shanshan Wan
- Department of Radiology, Yunnan Kun-Gang Hospital, Anning, Yunnan 650300, P.R. China
| | - Jiaping Wang
- Department of Radiology, Kunming Medical University and The Second Affiliated Hospital, Kunming, Yunnan 650500, P.R. China
| | - Li Yang
- Department of Anatomy, Histology and Embryology, Kunming Medical University, Kunming, Yunnan 650500, P.R. China
| |
Collapse
|
33
|
Gao M, Wang J, Zang J, An Y, Dong Y. The Mechanism of CD8 + T Cells for Reducing Myofibroblasts Accumulation during Renal Fibrosis. Biomolecules 2021; 11:biom11070990. [PMID: 34356613 PMCID: PMC8301885 DOI: 10.3390/biom11070990] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2021] [Revised: 07/02/2021] [Accepted: 07/03/2021] [Indexed: 02/07/2023] Open
Abstract
Renal fibrosis is a hallmark of chronic kidney disease (CKD) and a common manifestation of end-stage renal disease that is associated with multiple types of renal insults and functional loss of the kidney. Unresolved renal inflammation triggers fibrotic processes by promoting the activation and expansion of extracellular matrix-producing fibroblasts and myofibroblasts. Growing evidence now indicates that diverse T cells and macrophage subpopulations play central roles in the inflammatory microenvironment and fibrotic process. The present review aims to elucidate the role of CD8+ T cells in renal fibrosis, and identify its possible mechanisms in the inflammatory microenvironment.
Collapse
|
34
|
Hickson LJ, Abedalqader T, Ben-Bernard G, Mondy JM, Bian X, Conley SM, Zhu X, Herrmann SM, Kukla A, Lorenz EC, Kim SR, Thorsteinsdottir B, Lerman LO, Murad MH. A systematic review and meta-analysis of cell-based interventions in experimental diabetic kidney disease. Stem Cells Transl Med 2021; 10:1304-1319. [PMID: 34106528 PMCID: PMC8380442 DOI: 10.1002/sctm.19-0419] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2019] [Revised: 02/24/2021] [Accepted: 03/04/2021] [Indexed: 02/06/2023] Open
Abstract
Regenerative, cell‐based therapy is a promising treatment option for diabetic kidney disease (DKD), which has no cure. To prepare for clinical translation, this systematic review and meta‐analysis summarized the effect of cell‐based interventions in DKD animal models and treatment‐related factors modifying outcomes. Electronic databases were searched for original investigations applying cell‐based therapy in diabetic animals with kidney endpoints (January 1998‐May 2019). Weighted or standardized mean differences were estimated for kidney outcomes and pooled using random‐effects models. Subgroup analyses tested treatment‐related factor effects for outcomes (creatinine, urea, urine protein, fibrosis, and inflammation). In 40 studies (992 diabetic rodents), therapy included mesenchymal stem/stromal cells (MSC; 61%), umbilical cord/amniotic fluid cells (UC/AF; 15%), non‐MSC (15%), and cell‐derived products (13%). Tissue sources included bone marrow (BM; 65%), UC/AF (15%), adipose (9%), and others (11%). Cell‐based therapy significantly improved kidney function while reducing injury markers (proteinuria, histology, fibrosis, inflammation, apoptosis, epithelial‐mesenchymal‐transition, oxidative stress). Preconditioning, xenotransplantation, and disease‐source approaches were effective. MSC and UC/AF cells had greater effect on kidney function while cell products improved fibrosis. BM and UC/AF tissue sources more effectively improved kidney function and proteinuria vs adipose or other tissues. Cell dose, frequency, and administration route also imparted different benefits. In conclusion, cell‐based interventions in diabetic animals improved kidney function and reduced injury with treatment‐related factors modifying these effects. These findings may aid in development of optimal repair strategies through selective use of cells/products, tissue sources, and dose administrations to allow for successful adaptation of this novel therapeutic in human DKD.
Collapse
Affiliation(s)
- LaTonya J Hickson
- Division of Nephrology and Hypertension, Department of Medicine, Mayo Clinic, Jacksonville, Florida, USA.,Division of Nephrology and Hypertension, Department of Medicine, Mayo Clinic, Rochester, Minnesota, USA.,Kern Center Affiliate, Mayo Clinic, Rochester, Minnesota, USA
| | - Tala Abedalqader
- Division of Nephrology and Hypertension, Department of Medicine, Mayo Clinic, Rochester, Minnesota, USA
| | - Gift Ben-Bernard
- Division of Nephrology and Hypertension, Department of Medicine, Mayo Clinic, Rochester, Minnesota, USA
| | - Jayla M Mondy
- Division of Nephrology and Hypertension, Department of Medicine, Mayo Clinic, Rochester, Minnesota, USA
| | - Xiaohui Bian
- Division of Nephrology and Hypertension, Department of Medicine, Mayo Clinic, Jacksonville, Florida, USA
| | - Sabena M Conley
- Division of Nephrology and Hypertension, Department of Medicine, Mayo Clinic, Jacksonville, Florida, USA
| | - Xiangyang Zhu
- Division of Nephrology and Hypertension, Department of Medicine, Mayo Clinic, Rochester, Minnesota, USA
| | - Sandra M Herrmann
- Division of Nephrology and Hypertension, Department of Medicine, Mayo Clinic, Rochester, Minnesota, USA
| | - Aleksandra Kukla
- Division of Nephrology and Hypertension, Department of Medicine, Mayo Clinic, Rochester, Minnesota, USA
| | - Elizabeth C Lorenz
- Division of Nephrology and Hypertension, Department of Medicine, Mayo Clinic, Rochester, Minnesota, USA.,Kern Center Affiliate, Mayo Clinic, Rochester, Minnesota, USA
| | - Seo Rin Kim
- Division of Nephrology and Hypertension, Department of Medicine, Mayo Clinic, Rochester, Minnesota, USA
| | - Bjorg Thorsteinsdottir
- Kern Center Affiliate, Mayo Clinic, Rochester, Minnesota, USA.,Division of Preventative Medicine, Department of Medicine, Mayo Clinic, Rochester, Minnesota, USA
| | - Lilach O Lerman
- Division of Nephrology and Hypertension, Department of Medicine, Mayo Clinic, Rochester, Minnesota, USA
| | - M Hassan Murad
- Kern Center Affiliate, Mayo Clinic, Rochester, Minnesota, USA.,Division of Preventative Medicine, Department of Medicine, Mayo Clinic, Rochester, Minnesota, USA
| |
Collapse
|
35
|
Li S, Wang F, Sun D. The renal microcirculation in chronic kidney disease: novel diagnostic methods and therapeutic perspectives. Cell Biosci 2021; 11:90. [PMID: 34001267 PMCID: PMC8130426 DOI: 10.1186/s13578-021-00606-4] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2020] [Accepted: 05/06/2021] [Indexed: 12/14/2022] Open
Abstract
Chronic kidney disease (CKD) affects 8–16% of the population worldwide and is characterized by fibrotic processes. Understanding the cellular and molecular mechanisms underpinning renal fibrosis is critical to the development of new therapeutics. Microvascular injury is considered an important contributor to renal progressive diseases. Vascular endothelium plays a significant role in responding to physical and chemical signals by generating factors that help maintain normal vascular tone, inhibit leukocyte adhesion and platelet aggregation, and suppress smooth muscle cell proliferation. Loss of the rich capillary network results in endothelial dysfunction, hypoxia, and inflammatory and oxidative effects and further leads to the imbalance of pro- and antiangiogenic factors, endothelial cell apoptosis and endothelial-mesenchymal transition. New techniques, including both invasive and noninvasive techniques, offer multiple methods to observe and monitor renal microcirculation and guide targeted therapeutic strategies. A better understanding of the role of endothelium in CKD will help in the development of effective interventions for renal microcirculation improvement. This review focuses on the role of microvascular injury in CKD, the methods to detect microvessels and the novel treatments to ameliorate renal fibrosis.
Collapse
Affiliation(s)
- Shulin Li
- Department of Nephrology, Affiliated Hospital of Xuzhou Medical University, 99 West Huai-hai Road, Xuzhou, 221002, Jiangsu, China
| | - Fei Wang
- Department of Nephrology, Affiliated Hospital of Xuzhou Medical University, 99 West Huai-hai Road, Xuzhou, 221002, Jiangsu, China
| | - Dong Sun
- Department of Nephrology, Affiliated Hospital of Xuzhou Medical University, 99 West Huai-hai Road, Xuzhou, 221002, Jiangsu, China. .,Department of Internal Medicine and Diagnostics, Xuzhou Medical University, Xuzhou, 221002, China.
| |
Collapse
|
36
|
Di Benedetto P, Ruscitti P, Berardicurti O, Vomero M, Navarini L, Dolo V, Cipriani P, Giacomelli R. Endothelial-to-mesenchymal transition in systemic sclerosis. Clin Exp Immunol 2021; 205:12-27. [PMID: 33772754 DOI: 10.1111/cei.13599] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2021] [Revised: 02/19/2021] [Indexed: 12/14/2022] Open
Abstract
Systemic sclerosis (SSc) is an autoimmune disease characterized by significant vascular alterations and multi-organ fibrosis. Microvascular alterations are the first event of SSc and injured endothelial cells (ECs) may transdifferentiate towards myofibroblasts, the cells responsible for fibrosis and collagen deposition. This process is identified as endothelial-to-mesenchymal transition (EndMT), and understanding of its development is pivotal to identify early pathogenetic events and new therapeutic targets for SSc. In this review, we have highlighted the molecular mechanisms of EndMT and summarize the evidence of the role played by EndMT during the development of progressive fibrosis in SSc, also exploring the possible therapeutic role of its inhibition.
Collapse
Affiliation(s)
- P Di Benedetto
- Clinical Pathology Unit, Department of Biotechnological and Applied Clinical Sciences, University of L'Aquila, L'Aquila, Italy
| | - P Ruscitti
- Division of Rheumatology, Department of Biotechnological and Applied Clinical Sciences, University of L'Aquila, L'Aquila, Italy
| | - O Berardicurti
- Division of Rheumatology, Department of Biotechnological and Applied Clinical Sciences, University of L'Aquila, L'Aquila, Italy
| | - M Vomero
- Unit of Rheumatology and Clinical Immunology, University of Rome 'Campus Biomedico', Rome, Italy
| | - L Navarini
- Unit of Rheumatology and Clinical Immunology, University of Rome 'Campus Biomedico', Rome, Italy
| | - V Dolo
- Clinical Pathology Unit, Department of Life, Health and Environmental Sciences, University of L'Aquila, L'Aquila, Italy
| | - P Cipriani
- Division of Rheumatology, Department of Biotechnological and Applied Clinical Sciences, University of L'Aquila, L'Aquila, Italy
| | - R Giacomelli
- Unit of Rheumatology and Clinical Immunology, University of Rome 'Campus Biomedico', Rome, Italy
| |
Collapse
|
37
|
Ren Y, Zhang Y, Wang L, He F, Yan M, Liu X, Ou Y, Wu Q, Bi T, Wang S, Liu J, Ding BS, Wang L, Qing J. Selective Targeting of Vascular Endothelial YAP Activity Blocks EndMT and Ameliorates Unilateral Ureteral Obstruction-Induced Kidney Fibrosis. ACS Pharmacol Transl Sci 2021; 4:1066-1074. [PMID: 34151201 DOI: 10.1021/acsptsci.1c00010] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2021] [Indexed: 02/08/2023]
Abstract
Kidney fibrosis is accompanied by vascular dysfunction. Discovering new ways to ameliorate dysfunctional angiogenesis may bypass kidney fibrosis. YAP (Yes-associated protein) plays a multifaceted role during angiogenesis. Here, we found that selectively targeting YAP signaling in the endothelium ameliorates unilateral ureteral obstruction (UUO)-induced kidney fibrosis. Genetic deletion of Yap1, encoding YAP protein, in VE-cadherin+ endothelial cells inhibited endothelial-to-mesenchymal transition (EndMT) and dysfunctional angiogenesis and improved obstructive nephropathy and kidney fibrosis. Treatment with the systemic YAP inhibitor verteporfin worsened kidney fibrosis symptoms because of its lack of cell specificity. In an attempt to identify endothelial-specific YAP modulators, we found that G-protein-coupled receptor coagulation factor II receptor-like 1 (F2RL1) was highly expressed in vessels after UUO-induced kidney fibrosis. The F2RL1 peptide antagonist FSLLRY-NH2 selectively blocked YAP activity in endothelial cells and ameliorated kidney fibrosis. Thus, selective antagonization of endothelial YAP activity might bypass kidney fibrosis and provide new avenues for the design of antifibrotic therapies.
Collapse
Affiliation(s)
- Yafeng Ren
- Key Laboratory of Birth Defects and Related Diseases of Women and Children of MOE, State Key Laboratory of Biotherapy, West China Second University Hospital, Sichuan University, Chengdu 610064, China
| | - Yuwei Zhang
- National Traditional Chinese Medicine Clinical Research Base, Affiliated Traditional Chinese Medicine Hospital, Southwest Medical University, Luzhou 646000, China.,Research Center of Integrated Traditional Chinese and Western Medicine, Affiliated Traditional Medicine Hospital, Southwest Medical University, Luzhou 646000, China
| | - Lu Wang
- National Traditional Chinese Medicine Clinical Research Base, Affiliated Traditional Chinese Medicine Hospital, Southwest Medical University, Luzhou 646000, China.,Research Center of Integrated Traditional Chinese and Western Medicine, Affiliated Traditional Medicine Hospital, Southwest Medical University, Luzhou 646000, China
| | - Fuqian He
- The Center of Gerontology and Geriatrics and National Clinical Research Center for Geriatrics, West China Hospital of Sichuan University, Chengdu 610041, China
| | - Mengli Yan
- Key Laboratory of Birth Defects and Related Diseases of Women and Children of MOE, State Key Laboratory of Biotherapy, West China Second University Hospital, Sichuan University, Chengdu 610064, China
| | - Xiaoheng Liu
- National Traditional Chinese Medicine Clinical Research Base, Affiliated Traditional Chinese Medicine Hospital, Southwest Medical University, Luzhou 646000, China.,Research Center of Integrated Traditional Chinese and Western Medicine, Affiliated Traditional Medicine Hospital, Southwest Medical University, Luzhou 646000, China
| | - Yangying Ou
- National Traditional Chinese Medicine Clinical Research Base, Affiliated Traditional Chinese Medicine Hospital, Southwest Medical University, Luzhou 646000, China.,Research Center of Integrated Traditional Chinese and Western Medicine, Affiliated Traditional Medicine Hospital, Southwest Medical University, Luzhou 646000, China
| | - Qinkai Wu
- Michael Smith Laboratories, University of British Columbia, Vancouver V6T1Z4, Canada
| | - Tao Bi
- National Traditional Chinese Medicine Clinical Research Base, Affiliated Traditional Chinese Medicine Hospital, Southwest Medical University, Luzhou 646000, China.,Research Center of Integrated Traditional Chinese and Western Medicine, Affiliated Traditional Medicine Hospital, Southwest Medical University, Luzhou 646000, China
| | - Shiyuan Wang
- National Traditional Chinese Medicine Clinical Research Base, Affiliated Traditional Chinese Medicine Hospital, Southwest Medical University, Luzhou 646000, China.,Research Center of Integrated Traditional Chinese and Western Medicine, Affiliated Traditional Medicine Hospital, Southwest Medical University, Luzhou 646000, China
| | - Jian Liu
- National Traditional Chinese Medicine Clinical Research Base, Affiliated Traditional Chinese Medicine Hospital, Southwest Medical University, Luzhou 646000, China.,Research Center of Integrated Traditional Chinese and Western Medicine, Affiliated Traditional Medicine Hospital, Southwest Medical University, Luzhou 646000, China
| | - Bi-Sen Ding
- Key Laboratory of Birth Defects and Related Diseases of Women and Children of MOE, State Key Laboratory of Biotherapy, West China Second University Hospital, Sichuan University, Chengdu 610064, China.,Fibrosis Research Center, Icahn School of Medicine at Mount Sinai, New York, New York 10128, United States.,Ansary Stem Cell Institute, Weill Cornell Medicine, New York, New York 10065, United States
| | - Li Wang
- Research Center of Integrated Traditional Chinese and Western Medicine, Affiliated Traditional Medicine Hospital, Southwest Medical University, Luzhou 646000, China
| | - Jie Qing
- National Traditional Chinese Medicine Clinical Research Base, Affiliated Traditional Chinese Medicine Hospital, Southwest Medical University, Luzhou 646000, China.,Research Center of Integrated Traditional Chinese and Western Medicine, Affiliated Traditional Medicine Hospital, Southwest Medical University, Luzhou 646000, China.,Key Laboratory of Birth Defects and Related Diseases of Women and Children of MOE, State Key Laboratory of Biotherapy, West China Second University Hospital, Sichuan University, Chengdu 610064, China
| |
Collapse
|
38
|
Endothelial Glycocalyx as a Regulator of Fibrotic Processes. Int J Mol Sci 2021; 22:ijms22062996. [PMID: 33804258 PMCID: PMC7999025 DOI: 10.3390/ijms22062996] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2021] [Revised: 03/02/2021] [Accepted: 03/11/2021] [Indexed: 12/31/2022] Open
Abstract
The endothelial glycocalyx, the gel layer covering the endothelium, is composed of glycosaminoglycans, proteoglycans, and adsorbed plasma proteins. This structure modulates vessels’ mechanotransduction, vascular permeability, and leukocyte adhesion. Thus, it regulates several physiological and pathological events. In the present review, we described the mechanisms that disturb glycocalyx stability such as reactive oxygen species, matrix metalloproteinases, and heparanase. We then focused our attention on the role of glycocalyx degradation in the induction of profibrotic events and on the possible pharmacological strategies to preserve this delicate structure.
Collapse
|
39
|
Geng H, Lan R, Liu Y, Chen W, Wu M, Saikumar P, Weinberg JM, Venkatachalam MA. Proximal tubule LPA1 and LPA2 receptors use divergent signaling pathways to additively increase profibrotic cytokine secretion. Am J Physiol Renal Physiol 2021; 320:F359-F374. [PMID: 33427061 PMCID: PMC7988817 DOI: 10.1152/ajprenal.00494.2020] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2020] [Revised: 12/17/2020] [Accepted: 12/30/2020] [Indexed: 01/01/2023] Open
Abstract
Lysophosphatidic acid (LPA) increases platelet-derived growth factor-B (PDGFB) and connective tissue growth factor (CTGF) production and secretion by proximal tubule (PT) cells through LPA2 receptor-Gqα-αvβ6-integrin-mediated activation of transforming growth factor-β1 (TGFB1). LPA2, β6-integrin, PDGFB, and CTGF increase in kidneys after ischemia-reperfusion injury (IRI), coinciding with fibrosis. The TGFB1 receptor antagonist SD-208 prevents increases of β6-integrin, TGFB1-SMAD signaling, and PDGFB/CTGF expression after IRI and ameliorates fibrosis (Geng H, Lan R, Singha PK, Gilchrist A, Weinreb PH, Violette SM, Weinberg JM, Saikumar P, Venkatachalam MA. Am J Pathol 181: 1236-1249, 2012; Geng H, Lan R, Wang G, Siddiqi AR, Naski MC, Brooks AI, Barnes JL, Saikumar P, Weinberg JM, Venkatachalam MA. Am J Pathol 174: 1291-1308, 2009). We report now that LPA1 receptor signaling through epidermal growth factor receptor (EGFR)-ERK1/2-activator protein-1 cooperates with LPA2-dependent TGFB1 signaling to additively increase PDGFB/CTGF production and secretion by PT cells. Conversely, inhibition of both pathways results in greater suppression of PDGFB/CTGF production and secretion and promotes greater PT cellular differentiation than inhibiting one pathway alone. Antagonism of the LPA-generating enzyme autotaxin suppressed signaling through both pathways. After IRI, kidneys showed not only more LPA2, nuclear SMAD2/3, and PDGFB/CTGF but also increased LPA1 and autotaxin proteins, together with enhanced EGFR/ERK1/2 activation. Remarkably, the TGFB1 receptor antagonist SD-208 prevented all of these abnormalities excepting increased LPA2. SD-208 inhibits only one arm of LPA signaling: LPA2-Gqα-αvβ6-integrin-dependent production of active TGFB1 and its receptor-bound downstream effects. Consequently, far-reaching protection by SD-208 against IRI-induced signaling alterations and tubule-interstitial pathology is not fully explained by our data. TGFB1-dependent feedforward modulation of LPA1 signaling is one possibility. SD-208 effects may also involve mitigation of injury caused by IRI-induced TGFB1 signaling in endothelial cells and monocytes. Our results have translational implications for using TGFB1 receptor antagonists, LPA1 and LPA2 inhibitors concurrently, and autotaxin inhibitors in acute kidney injury to prevent the development of chronic kidney disease.
Collapse
Affiliation(s)
- Hui Geng
- Department of Pathology, University of Texas Health Science Center, San Antonio, Texas
| | - Rongpei Lan
- Department of Pathology, University of Texas Health Science Center, San Antonio, Texas
| | - Yaguang Liu
- Department of Pathology, University of Texas Health Science Center, San Antonio, Texas
| | - Wei Chen
- Department of Pathology, University of Texas Health Science Center, San Antonio, Texas
| | - Meng Wu
- Department of Pathology, University of Texas Health Science Center, San Antonio, Texas
| | - Pothana Saikumar
- Department of Pathology, University of Texas Health Science Center, San Antonio, Texas
| | - Joel M Weinberg
- Department of Medicine, University of Michigan Medical Center, Ann Arbor, Michigan
| | | |
Collapse
|
40
|
Tang PCT, Chan ASW, Zhang CB, García Córdoba CA, Zhang YY, To KF, Leung KT, Lan HY, Tang PMK. TGF-β1 Signaling: Immune Dynamics of Chronic Kidney Diseases. Front Med (Lausanne) 2021; 8:628519. [PMID: 33718407 PMCID: PMC7948440 DOI: 10.3389/fmed.2021.628519] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2020] [Accepted: 01/21/2021] [Indexed: 12/13/2022] Open
Abstract
Chronic kidney disease (CKD) is a major cause of morbidity and mortality worldwide, imposing a great burden on the healthcare system. Regrettably, effective CKD therapeutic strategies are yet available due to their elusive pathogenic mechanisms. CKD is featured by progressive inflammation and fibrosis associated with immune cell dysfunction, leading to the formation of an inflammatory microenvironment, which ultimately exacerbating renal fibrosis. Transforming growth factor β1 (TGF-β1) is an indispensable immunoregulator promoting CKD progression by controlling the activation, proliferation, and apoptosis of immunocytes via both canonical and non-canonical pathways. More importantly, recent studies have uncovered a new mechanism of TGF-β1 for de novo generation of myofibroblast via macrophage-myofibroblast transition (MMT). This review will update the versatile roles of TGF-β signaling in the dynamics of renal immunity, a better understanding may facilitate the discovery of novel therapeutic strategies against CKD.
Collapse
Affiliation(s)
- Philip Chiu-Tsun Tang
- State Key Laboratory of Translational Oncology, Department of Anatomical and Cellular Pathology, The Chinese University of Hong Kong, Shatin, Hong Kong
| | - Alex Siu-Wing Chan
- Department of Applied Social Sciences, The Hong Kong Polytechnic University, Hung Hom, Hong Kong
| | - Cai-Bin Zhang
- State Key Laboratory of Translational Oncology, Department of Anatomical and Cellular Pathology, The Chinese University of Hong Kong, Shatin, Hong Kong
| | - Cristina Alexandra García Córdoba
- State Key Laboratory of Translational Oncology, Department of Anatomical and Cellular Pathology, The Chinese University of Hong Kong, Shatin, Hong Kong
| | - Ying-Ying Zhang
- Department of Nephrology, Tongji Hospital, Tongji University School of Medicine, Shanghai, China
| | - Ka-Fai To
- State Key Laboratory of Translational Oncology, Department of Anatomical and Cellular Pathology, The Chinese University of Hong Kong, Shatin, Hong Kong
| | - Kam-Tong Leung
- Department of Paediatrics, The Chinese University of Hong Kong, Shatin, Hong Kong
| | - Hui-Yao Lan
- Department of Medicine and Therapeutics, Li Ka Shing Institute of Health Sciences, The Chinese University of Hong Kong, Shatin, Hong Kong.,Guangdong-Hong Kong Joint Laboratory on Immunological and Genetic Kidney Diseases, The Chinese University of Hong Kong, Shatin, Hong Kong
| | - Patrick Ming-Kuen Tang
- State Key Laboratory of Translational Oncology, Department of Anatomical and Cellular Pathology, The Chinese University of Hong Kong, Shatin, Hong Kong
| |
Collapse
|
41
|
Sisto M, Ribatti D, Lisi S. Organ Fibrosis and Autoimmunity: The Role of Inflammation in TGFβ-Dependent EMT. Biomolecules 2021; 11:biom11020310. [PMID: 33670735 PMCID: PMC7922523 DOI: 10.3390/biom11020310] [Citation(s) in RCA: 62] [Impact Index Per Article: 20.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2020] [Revised: 02/09/2021] [Accepted: 02/16/2021] [Indexed: 02/07/2023] Open
Abstract
Recent advances in our understanding of the molecular pathways that control the link of inflammation with organ fibrosis and autoimmune diseases point to the epithelial to mesenchymal transition (EMT) as the common association in the progression of these diseases characterized by an intense inflammatory response. EMT, a process in which epithelial cells are gradually transformed to mesenchymal cells, is a major contributor to the pathogenesis of fibrosis. Importantly, the chronic inflammatory microenvironment has emerged as a decisive factor in the induction of pathological EMT. Transforming growth factor-β (TGF-β), a multifunctional cytokine, plays a crucial role in the induction of fibrosis, often associated with chronic phases of inflammatory diseases, contributing to marked fibrotic changes that severely impair normal tissue architecture and function. The understanding of molecular mechanisms underlying EMT-dependent fibrosis has both a basic and a translational relevance, since it may be useful to design therapies aimed at counteracting organ deterioration and failure. To this end, we reviewed the recent literature to better elucidate the molecular response to inflammatory/fibrogenic signals in autoimmune diseases in order to further the specific regulation of EMT-dependent fibrosis in more targeted therapies.
Collapse
|
42
|
Alkebsi L, Wang X, Ohkawara H, Fukatsu M, Mori H, Ikezoe T. Dasatinib induces endothelial-to-mesenchymal transition in human vascular-endothelial cells: counteracted by cotreatment with bosutinib. Int J Hematol 2021; 113:441-455. [PMID: 33392972 DOI: 10.1007/s12185-020-03034-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2020] [Revised: 10/29/2020] [Accepted: 10/29/2020] [Indexed: 11/24/2022]
Abstract
Adverse vascular events have become a serious clinical problem in chronic myeloid leukemia (CML) patients who receive certain BCR/ABL1 tyrosine kinase inhibitors (TKIs). Studies have shown that endothelial-to-mesenchymal transition (EndMT) can contribute to various vascular diseases. We investigated the effects of TKIs on the development of EndMT in human vascular-endothelial cells (VECs). Exposure of VECs to dasatinib, but not to other TKIs, produced a significant increase in the formation of spindle-shaped cells. This effect was accompanied by a significant increase in expression of the EndMT inducer transforming growth factor-β (TGF-β) and mesenchymal markers vimentin, smooth muscle alpha-actin, and fibronectin, as well as a significant decrease in expression of vascular-endothelial markers CD31 and VE-cadherin attributable at least in part to activation of ERK signaling. Inhibitors of TGF-β and ERK partially attenuated dasatinib-induced EndMT. Interestingly, bosutinib efficiently counteracted dasatinib-induced EndMT and attenuated dasatinib-induced phosphorylation of ERK. Taken together, these results show that dasatinib induces EndMT, which might contribute to the development of vascular toxicity, such as the pulmonary hypertension observed in CML patients receiving dasatinib. Bosutinib could play a distinct role in protecting VECs from EndMT.
Collapse
Affiliation(s)
- Lobna Alkebsi
- Department of Hematology, Fukushima Medical University, Hikariga-oka 1, Fukushima, 960-1295, Japan.
| | - Xintao Wang
- Department of Hematology, Fukushima Medical University, Hikariga-oka 1, Fukushima, 960-1295, Japan
| | - Hiroshi Ohkawara
- Department of Hematology, Fukushima Medical University, Hikariga-oka 1, Fukushima, 960-1295, Japan
| | - Masahiko Fukatsu
- Department of Hematology, Fukushima Medical University, Hikariga-oka 1, Fukushima, 960-1295, Japan
| | - Hirotaka Mori
- Department of Hematology, Fukushima Medical University, Hikariga-oka 1, Fukushima, 960-1295, Japan
| | - Takayuki Ikezoe
- Department of Hematology, Fukushima Medical University, Hikariga-oka 1, Fukushima, 960-1295, Japan
| |
Collapse
|
43
|
Gil CL, Hooker E, Larrivée B. Diabetic Kidney Disease, Endothelial Damage, and Podocyte-Endothelial Crosstalk. Kidney Med 2021; 3:105-115. [PMID: 33604542 PMCID: PMC7873832 DOI: 10.1016/j.xkme.2020.10.005] [Citation(s) in RCA: 36] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Diabetes-related complications are a significant source of morbidity and mortality worldwide. Diabetic kidney disease is a frequent microvascular complication and a primary cause of kidney failure in patients with diabetes. The glomerular filtration barrier is composed of 3 layers: the endothelium, glomerular basement membrane, and podocytes. Podocytes and the endothelium communicate through molecular crosstalk to maintain filtration at the glomerular filtration barrier. Chronic hyperglycemia affects all 3 layers of the glomerular filtration barrier, as well as the molecular crosstalk that occurs between the 2 cellular layers. One of the earliest events following chronic hyperglycemia is endothelial cell dysfunction. Early endothelial damage is associated with progression of diabetic kidney disease. However, current therapies are based in controlling glycemia and arterial blood pressure without targeting endothelial dysfunction. Disruption of the endothelial cell layer also alters the molecular crosstalk that occurs between the endothelium and podocytes. This review discusses both the physiologic and pathologic communication that occurs at the glomerular filtration barrier. It examines how these signaling components contribute to podocyte foot effacement, podocyte detachment, and the progression of diabetic kidney disease.
Collapse
Affiliation(s)
- Cindy Lora Gil
- Department of Biomedical Sciences, University of Montreal, Montréal, QC, Canada
- Maisonneuve-Rosemont Hospital Research Centre, University of Montreal, Montréal, QC, Canada
| | - Erika Hooker
- Maisonneuve-Rosemont Hospital Research Centre, University of Montreal, Montréal, QC, Canada
| | - Bruno Larrivée
- Department of Ophtalmology, University of Montreal, Montréal, QC, Canada
| |
Collapse
|
44
|
Engel JE, Williams ML, Williams E, Azar C, Taylor EB, Bidwell GL, Chade AR. Recovery of Renal Function following Kidney-Specific VEGF Therapy in Experimental Renovascular Disease. Am J Nephrol 2020; 51:891-902. [PMID: 33130676 DOI: 10.1159/000511260] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2020] [Accepted: 08/31/2020] [Indexed: 12/23/2022]
Abstract
BACKGROUND Chronic renovascular disease (RVD) can lead to a progressive loss of renal function, and current treatments are inefficient. We designed a fusion of vascular endothelial growth factor (VEGF) conjugated to an elastin-like polypeptide (ELP) carrier protein with an N-terminal kidney-targeting peptide (KTP). We tested the hypothesis that KTP-ELP-VEGF therapy will effectively recover renal function with an improved targeting profile. Further, we aimed to elucidate potential mechanisms driving renal recovery. METHODS Unilateral RVD was induced in 14 pigs. Six weeks later, renal blood flow (RBF) and glomerular filtration rate (GFR) were quantified by multidetector CT imaging. Pigs then received a single intrarenal injection of KTP-ELP-VEGF or vehicle. CT quantification of renal hemodynamics was repeated 4 weeks later, and then pigs were euthanized. Ex vivo renal microvascular (MV) density and media-to-lumen ratio, macrophage infiltration, and fibrosis were quantified. In parallel, THP-1 human monocytes were differentiated into naïve macrophages (M0) or inflammatory macrophages (M1) and incubated with VEGF, KTP-ELP, KTP-ELP-VEGF, or control media. The mRNA expression of macrophage polarization and angiogenic markers was quantified (qPCR). RESULTS Intrarenal KTP-ELP-VEGF improved RBF, GFR, and MV density and attenuated MV media-to-lumen ratio and renal fibrosis compared to placebo, accompanied by augmented renal M2 macrophages. In vitro, exposure to VEGF/KTP-ELP-VEGF shifted M0 macrophages to a proangiogenic M2 phenotype while M1s were nonresponsive to VEGF treatment. CONCLUSIONS Our results support the efficacy of a new renal-specific biologic construct in recovering renal function and suggest that VEGF may directly influence macrophage phenotype as a possible mechanism to improve MV integrity and function in the stenotic kidney.
Collapse
Affiliation(s)
- Jason E Engel
- Department of Physiology and Biophysics, University of Mississippi Medical Center, Jackson, Mississippi, USA
| | - Maxx L Williams
- Department of Physiology and Biophysics, University of Mississippi Medical Center, Jackson, Mississippi, USA
| | - Erika Williams
- Department of Physiology and Biophysics, University of Mississippi Medical Center, Jackson, Mississippi, USA
| | - Camille Azar
- Department of Physiology and Biophysics, University of Mississippi Medical Center, Jackson, Mississippi, USA
| | - Erin B Taylor
- Department of Physiology and Biophysics, University of Mississippi Medical Center, Jackson, Mississippi, USA
| | - Gene L Bidwell
- Department of Neurology, University of Mississippi Medical Center, Jackson, Mississippi, USA
- Department of Cell and Molecular Biology, University of Mississippi Medical Center, Jackson, Mississippi, USA
- Department of Pharmacology and Toxicology, University of Mississippi Medical Center, Jackson, Mississippi, USA
| | - Alejandro R Chade
- Department of Physiology and Biophysics, University of Mississippi Medical Center, Jackson, Mississippi, USA,
- Department of Medicine, University of Mississippi Medical Center, Jackson, Mississippi, USA,
- Department of Radiology, University of Mississippi Medical Center, Jackson, Mississippi, USA,
| |
Collapse
|
45
|
Takeshita A, Yasuma T, Nishihama K, D'Alessandro-Gabazza CN, Toda M, Totoki T, Okano Y, Uchida A, Inoue R, Qin L, Wang S, D'Alessandro VF, Kobayashi T, Takei Y, Mizoguchi A, Yano Y, Gabazza EC. Thrombomodulin ameliorates transforming growth factor-β1-mediated chronic kidney disease via the G-protein coupled receptor 15/Akt signal pathway. Kidney Int 2020; 98:1179-1192. [PMID: 33069430 DOI: 10.1016/j.kint.2020.05.041] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2019] [Revised: 04/24/2020] [Accepted: 05/07/2020] [Indexed: 12/19/2022]
Abstract
Kidney fibrosis is the common consequence of chronic kidney diseases that inexorably progresses to end-stage kidney disease with organ failure treatable only with replacement therapy. Since transforming growth factor-β1 is the main player in the pathogenesis of kidney fibrosis, we posed the hypothesis that recombinant thrombomodulin can ameliorate transforming growth factor-β1-mediated progressive kidney fibrosis and failure. To interrogate our hypothesis, we generated a novel glomerulus-specific human transforming growth factor-β1 transgenic mouse to evaluate the therapeutic effect of recombinant thrombomodulin. This transgenic mouse developed progressive glomerular sclerosis and tubulointerstitial fibrosis with kidney failure. Therapy with recombinant thrombomodulin for four weeks significantly inhibited kidney fibrosis and improved organ function compared to untreated transgenic mice. Treatment with recombinant thrombomodulin significantly inhibited apoptosis and mesenchymal differentiation of podocytes by interacting with the G-protein coupled receptor 15 to activate the Akt signaling pathway and to upregulate the expression of anti-apoptotic proteins including survivin. Thus, our study strongly suggests the potential therapeutic efficacy of recombinant thrombomodulin for the treatment of chronic kidney disease and subsequent organ failure.
Collapse
Affiliation(s)
- Atsuro Takeshita
- Department of Diabetes, Metabolism, and Endocrinology, Mie University Graduate School of Medicine, Tsu-city, Mie, Japan; Department of Immunology, Mie University Graduate School of Medicine, Tsu-city, Mie, Japan
| | - Taro Yasuma
- Department of Diabetes, Metabolism, and Endocrinology, Mie University Graduate School of Medicine, Tsu-city, Mie, Japan; Department of Immunology, Mie University Graduate School of Medicine, Tsu-city, Mie, Japan
| | - Kota Nishihama
- Department of Diabetes, Metabolism, and Endocrinology, Mie University Graduate School of Medicine, Tsu-city, Mie, Japan
| | | | - Masaaki Toda
- Department of Immunology, Mie University Graduate School of Medicine, Tsu-city, Mie, Japan
| | - Toshiaki Totoki
- Department of Gastroenterology and Hepatology, Mie University Graduate School of Medicine, Tsu-city, Mie, Japan
| | - Yuko Okano
- Department of Diabetes, Metabolism, and Endocrinology, Mie University Graduate School of Medicine, Tsu-city, Mie, Japan; Department of Immunology, Mie University Graduate School of Medicine, Tsu-city, Mie, Japan
| | - Akihiro Uchida
- Department of Diabetes, Metabolism, and Endocrinology, Mie University Graduate School of Medicine, Tsu-city, Mie, Japan
| | - Ryo Inoue
- Central Institute for Experimental Animals, Kawasaki-ku, Kawasaki, Kanawaga, Japan
| | - Liqiang Qin
- Department of Nephrology, Taizhou Hospital, Wenzhou Medical University, Lihai, Zhejiang Province, People's Republic of China
| | - Shujie Wang
- Department of Neural Regeneration and Cell Communication, Mie University Graduate School of Medicine, Tsu-city, Mie, Japan
| | | | - Tetsu Kobayashi
- Department of Pulmonary and Critical Care Medicine, Mie University Graduate School of Medicine, Tsu-city, Mie, Japan
| | - Yoshiyuki Takei
- Department of Gastroenterology and Hepatology, Mie University Graduate School of Medicine, Tsu-city, Mie, Japan
| | - Akira Mizoguchi
- Department of Neural Regeneration and Cell Communication, Mie University Graduate School of Medicine, Tsu-city, Mie, Japan
| | - Yutaka Yano
- Department of Diabetes, Metabolism, and Endocrinology, Mie University Graduate School of Medicine, Tsu-city, Mie, Japan.
| | - Esteban C Gabazza
- Department of Immunology, Mie University Graduate School of Medicine, Tsu-city, Mie, Japan.
| |
Collapse
|
46
|
Research Advances in the Mechanisms of Hyperuricemia-Induced Renal Injury. BIOMED RESEARCH INTERNATIONAL 2020; 2020:5817348. [PMID: 32685502 PMCID: PMC7336201 DOI: 10.1155/2020/5817348] [Citation(s) in RCA: 91] [Impact Index Per Article: 22.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/12/2020] [Revised: 06/03/2020] [Accepted: 06/15/2020] [Indexed: 12/11/2022]
Abstract
Uric acid is the end product of purine metabolism in humans, and its excessive accumulation leads to hyperuricemia and urate crystal deposition in tissues including joints and kidneys. Hyperuricemia is considered an independent risk factor for cardiovascular and renal diseases. Although the symptoms of hyperuricemia-induced renal injury have long been known, the pathophysiological molecular mechanisms are not completely understood. In this review, we focus on the research advances in the mechanisms of hyperuricemia-caused renal injury, primarily on oxidative stress, endothelial dysfunction, renal fibrosis, and inflammation. Furthermore, we discuss the progress in hyperuricemia management.
Collapse
|
47
|
Guan GY, Wei N, Song T, Zhao C, Sun Y, Pan RX, Zhang LL, Xu YY, Dai YM, Han H. miR-448-3p alleviates diabetic vascular dysfunction by inhibiting endothelial-mesenchymal transition through DPP-4 dysregulation. J Cell Physiol 2020; 235:10024-10036. [PMID: 32542696 DOI: 10.1002/jcp.29817] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2020] [Accepted: 05/17/2020] [Indexed: 12/26/2022]
Abstract
Diabetes mellitus (DM) often causes vascular endothelial damage and alters vascular microRNA (miR) expression. miR-448-3p has been reported to be involved in the development of DM, but whether miR-448-3p regulates diabetic vascular endothelial dysfunction remains unclear. To investigate the molecular mechanism of diabetic vascular endothelial dysfunction and the role of miR-448-3p therein, Sprague-Dawley rats were injected with streptozotocin (STZ) to establish diabetic animal model and the rat aortic endothelial cells were treated with high glucose to establish diabetic cell model. For the treatment group, after the induction of diabetes, the miR-448-3p levels in vivo and in vitro were upregulated by adeno-associated virus serotype 2 (AAV2)-miR-448-3p injection and miR-448-3p mimic transfection, respectively. Our results showed that AAV2-miR-448-3p injection alleviated the body weight loss and blood glucose level elevation induced by STZ injection. The miR-448-3p level was significantly decreased and the dipeptidyl peptidase-4 (DPP-4) messenger RNA level was increased in diabetic animal and cell models, which was reversed by miR-448-3p treatment. Moreover, the diabetic rats exhibited endothelial damage and endothelial-mesenchymal transition (EndMT), while AAV2-miR-448-3p injection relieved those situations. In vitro experiments demonstrated that miR-448-3p overexpression in endothelial cells alleviated endothelial damage by inhibiting EndMT through blocking the transforming growth factor-β/Smad pathway. We further proved that miR-448-3p negatively regulated DPP-4 by binding to its 3'-untranslated region, and DPP-4 overexpression reversed the effect of miR-448-3p overexpression on EndMT. Overall, we conclude that miR-448-3p overexpression inhibits EndMT via targeting DPP-4 and further ameliorates diabetic vascular endothelial dysfunction, indicating that miR-448-3p may serve as a promising therapeutic target for diabetic endothelial dysfunction.
Collapse
Affiliation(s)
- Guo-Ying Guan
- Department of Geriatrics, The First Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Nan Wei
- Department of Geriatrics, The First Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Tao Song
- Department of Geriatrics, The First Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Chao Zhao
- Department of Geriatrics, The First Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Yang Sun
- Department of Geriatrics, The First Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Ru-Xin Pan
- Department of Geriatrics, The First Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Lu-Lu Zhang
- Department of Geriatrics, The First Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Ying-Ying Xu
- Department of Geriatrics, The First Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Ya-Mei Dai
- Physical Examination Center, The First Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Hui Han
- Department of Geriatrics, The First Affiliated Hospital of Harbin Medical University, Harbin, China
| |
Collapse
|
48
|
Lovisa S, Fletcher-Sananikone E, Sugimoto H, Hensel J, Lahiri S, Hertig A, Taduri G, Lawson E, Dewar R, Revuelta I, Kato N, Wu CJ, Bassett RL, Putluri N, Zeisberg M, Zeisberg EM, LeBleu VS, Kalluri R. Endothelial-to-mesenchymal transition compromises vascular integrity to induce Myc-mediated metabolic reprogramming in kidney fibrosis. Sci Signal 2020; 13:13/635/eaaz2597. [PMID: 32518142 DOI: 10.1126/scisignal.aaz2597] [Citation(s) in RCA: 65] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Endothelial-to-mesenchymal transition (EndMT) is a cellular transdifferentiation program in which endothelial cells partially lose their endothelial identity and acquire mesenchymal-like features. Renal capillary endothelial cells can undergo EndMT in association with persistent damage of the renal parenchyma. The functional consequence(s) of EndMT in kidney fibrosis remains unexplored. Here, we studied the effect of Twist or Snail deficiency in endothelial cells on EndMT in kidney fibrosis. Conditional deletion of Twist1 (which encodes Twist) or Snai1 (which encodes Snail) in VE-cadherin+ or Tie1+ endothelial cells inhibited the emergence of EndMT and improved kidney fibrosis in two different kidney injury/fibrosis mouse models. Suppression of EndMT limited peritubular vascular leakage, reduced tissue hypoxia, and preserved tubular epithelial health and function. Hypoxia, which was exacerbated by EndMT, resulted in increased Myc abundance in tubular epithelial cells, enhanced glycolysis, and suppression of fatty acid oxidation. Pharmacological suppression or epithelial-specific genetic ablation of Myc in tubular epithelial cells ameliorated fibrosis and restored renal parenchymal function and metabolic homeostasis. Together, these findings demonstrate a functional role for EndMT in the response to kidney capillary endothelial injury and highlight the contribution of endothelial-epithelial cross-talk in the development of kidney fibrosis with a potential for therapeutic intervention.
Collapse
Affiliation(s)
- Sara Lovisa
- Department of Cancer Biology, Metastasis Research Center, University of Texas MD Anderson Cancer Center, Houston, TX 77054, USA
| | - Eliot Fletcher-Sananikone
- Department of Cancer Biology, Metastasis Research Center, University of Texas MD Anderson Cancer Center, Houston, TX 77054, USA
| | - Hikaru Sugimoto
- Department of Cancer Biology, Metastasis Research Center, University of Texas MD Anderson Cancer Center, Houston, TX 77054, USA.,Division of Matrix Biology, Department of Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02115, USA
| | - Janine Hensel
- Department of Cancer Biology, Metastasis Research Center, University of Texas MD Anderson Cancer Center, Houston, TX 77054, USA
| | - Sharmistha Lahiri
- Department of Cancer Biology, Metastasis Research Center, University of Texas MD Anderson Cancer Center, Houston, TX 77054, USA
| | - Alexandre Hertig
- Division of Matrix Biology, Department of Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02115, USA
| | - Gangadhar Taduri
- Division of Matrix Biology, Department of Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02115, USA
| | - Erica Lawson
- Department of Cancer Biology, Metastasis Research Center, University of Texas MD Anderson Cancer Center, Houston, TX 77054, USA
| | - Rajan Dewar
- Division of Matrix Biology, Department of Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02115, USA
| | - Ignacio Revuelta
- Division of Matrix Biology, Department of Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02115, USA
| | - Noritoshi Kato
- Division of Matrix Biology, Department of Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02115, USA
| | - Chang-Jiun Wu
- Department of Genomic Medicine, University of Texas MD Anderson Cancer Center, Houston, TX 77054, USA
| | - Roland L Bassett
- Department of Biostatistics, University of Texas MD Anderson Cancer Center, Houston, TX 77054, USA
| | - Nagireddy Putluri
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX 77030, USA
| | - Michael Zeisberg
- Department of Nephrology and Rheumatology, University Medical Center Göttingen, Robert-Koch-Str. 40, 37075 Göttingen, Germany
| | - Elisabeth M Zeisberg
- Department of Cardiology and Pneumology, University Medical Center Göttingen, German Center for Cardiovascular Research (DZHK), Partner Site, Göttingen 37075, Germany
| | - Valerie S LeBleu
- Department of Cancer Biology, Metastasis Research Center, University of Texas MD Anderson Cancer Center, Houston, TX 77054, USA.,Division of Matrix Biology, Department of Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02115, USA.,Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA
| | - Raghu Kalluri
- Department of Cancer Biology, Metastasis Research Center, University of Texas MD Anderson Cancer Center, Houston, TX 77054, USA. .,Division of Matrix Biology, Department of Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02115, USA.,Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX 77030, USA.,Department of Bioengineering, Rice University, Houston, TX 77030, USA
| |
Collapse
|
49
|
储 全, 蔡 正, 储 俊, 轩 云, 程 婕, 王 盼. [Intervention of phlegm and blood stasis inhibits TGF-β1/Smad3 signaling pathway in the kidney of diabetic rats]. NAN FANG YI KE DA XUE XUE BAO = JOURNAL OF SOUTHERN MEDICAL UNIVERSITY 2020; 40:708-712. [PMID: 32897204 PMCID: PMC7277316 DOI: 10.12122/j.issn.1673-4254.2020.05.15] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Subscribe] [Scholar Register] [Received: 02/12/2020] [Indexed: 06/11/2023]
Abstract
OBJECTIVE To observe the effect of traditional Chinese medicine for intervention of phlegm and blood stasis in regulating TGF-β1/Smad3 signaling and relieving nephropathy in diabetic rats. METHODS SD rats were divided into blank group (NC), diabetic model group (MC group), intervention of phlegm and blood stasis (RPDBS) group, phlegm-removing (RP) group and blood-removing (DBS) group. Diabetic models were established in all the rats except for those in the blank group. After 4 weeks of feeding, the rats in RPDBS group, RP group and DBS group were given corresponding drug intervention for 8 weeks. HE staining was used to observe the changes in renal histopathology. Western blotting and real-time fluorescence quantitative PCR were used to detect the expression levels of transforming growth factor-β1 (TGF-β1) and Smad3. RESULTS The structure and arrangement of the glomeruli and renal tubules improved significantly in the treatment groups in comparison with those in the MC group. The expression levels of TGF-β1, Smad3 and p-Smad3 were significantly downregulated at both the protein and mRNA levels in the treatment groups (P < 0.05), and the down-regulation was more obvious in RPDBS group than in RP group and DBS group (P < 0.05). CONCLUSIONS Intervention of phlegm and blood stasis may inhibit the activation of TGF-β1/Smad3 signaling pathway and delay diabetic nephropathy and fibrosis to protect the renal function in diabetic rats.
Collapse
Affiliation(s)
- 全根 储
- 安徽中医药大学 中医学院, 安徽 合肥 230012College of Traditional Chinese Medicine, Anhui University of Chinese Medicine, Hefei 230012, China
| | - 正银 蔡
- 安徽中医药大学 中医学院, 安徽 合肥 230012College of Traditional Chinese Medicine, Anhui University of Chinese Medicine, Hefei 230012, China
| | - 俊 储
- 安徽中医药大学 中医学院, 安徽 合肥 230012College of Traditional Chinese Medicine, Anhui University of Chinese Medicine, Hefei 230012, China
- 安徽中医药大学 新安医学教育部重点实验室, 安徽 合肥 230012Key Laboratory of Xin'an Medicine of Ministry of Education, Hefei 230012, China
| | - 云 轩
- 安徽中医药大学 中医学院, 安徽 合肥 230012College of Traditional Chinese Medicine, Anhui University of Chinese Medicine, Hefei 230012, China
| | - 婕 程
- 安徽中医药大学 中医学院, 安徽 合肥 230012College of Traditional Chinese Medicine, Anhui University of Chinese Medicine, Hefei 230012, China
| | - 盼 王
- 安徽中医药大学 中医学院, 安徽 合肥 230012College of Traditional Chinese Medicine, Anhui University of Chinese Medicine, Hefei 230012, China
| |
Collapse
|
50
|
Pan Q, Lu X, Zhao C, Liao S, Chen X, Guo F, Yang C, Liu HF. Metformin: the updated protective property in kidney disease. Aging (Albany NY) 2020; 12:8742-8759. [PMID: 32364526 PMCID: PMC7244070 DOI: 10.18632/aging.103095] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2019] [Accepted: 03/30/2020] [Indexed: 12/16/2022]
Abstract
Metformin is a frontline hypoglycemic agent, which is mainly prescribed to manage type 2 diabetes mellitus with obesity. Emerging evidence suggests that metformin also exerts protective effects against various kidney diseases. Some postulate that kidney disease is actually a metabolic disease, accompanied by nonresolving pathophysiologic pathways controlling oxidative stress, endoplasmic reticulum stress, inflammation, lipotoxicity, fibrosis, and senescence, as well as insufficient host defense mechanisms such as AMP-activated protein kinase (AMPK) signaling and autophagy. Metformin may interfere with these pathways by orchestrating AMPK signaling and AMPK-independent pathways to protect the kidneys from injury. Furthermore, the United States Food and Drug Administration declared metformin is safe for patients with mild or moderate kidney impairment in 2016, assuaging some conservative attitudes about metformin management in patients with renal insufficiency and broadening the scope of research on the renal protective effects of metformin. This review focuses on the molecular mechanisms by which metformin imparts renal protection and its potential in the treatment of various kidney diseases.
Collapse
Affiliation(s)
- Qingjun Pan
- Key Laboratory of Prevention and Management of Chronic Kidney Disease of Zhanjiang, Institute of Nephrology, Affiliated Hospital of Guangdong Medical University, Zhanjiang 524001, Guangdong, China
| | - Xing Lu
- Key Laboratory of Prevention and Management of Chronic Kidney Disease of Zhanjiang, Institute of Nephrology, Affiliated Hospital of Guangdong Medical University, Zhanjiang 524001, Guangdong, China
| | - Chunfei Zhao
- Key Laboratory of Prevention and Management of Chronic Kidney Disease of Zhanjiang, Institute of Nephrology, Affiliated Hospital of Guangdong Medical University, Zhanjiang 524001, Guangdong, China
| | - Shuzhen Liao
- Key Laboratory of Prevention and Management of Chronic Kidney Disease of Zhanjiang, Institute of Nephrology, Affiliated Hospital of Guangdong Medical University, Zhanjiang 524001, Guangdong, China
| | - Xiaoqun Chen
- Key Laboratory of Prevention and Management of Chronic Kidney Disease of Zhanjiang, Institute of Nephrology, Affiliated Hospital of Guangdong Medical University, Zhanjiang 524001, Guangdong, China
| | - Fengbiao Guo
- Key Laboratory of Prevention and Management of Chronic Kidney Disease of Zhanjiang, Institute of Nephrology, Affiliated Hospital of Guangdong Medical University, Zhanjiang 524001, Guangdong, China
| | - Chen Yang
- Key Laboratory of Prevention and Management of Chronic Kidney Disease of Zhanjiang, Institute of Nephrology, Affiliated Hospital of Guangdong Medical University, Zhanjiang 524001, Guangdong, China
| | - Hua-Feng Liu
- Key Laboratory of Prevention and Management of Chronic Kidney Disease of Zhanjiang, Institute of Nephrology, Affiliated Hospital of Guangdong Medical University, Zhanjiang 524001, Guangdong, China
| |
Collapse
|