1
|
Hall S, Parr BA, Hussey S, Anoopkumar-Dukie S, Arora D, Grant GD. The neurodegenerative hypothesis of depression and the influence of antidepressant medications. Eur J Pharmacol 2024; 983:176967. [PMID: 39222740 DOI: 10.1016/j.ejphar.2024.176967] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2024] [Revised: 08/27/2024] [Accepted: 08/28/2024] [Indexed: 09/04/2024]
Abstract
Depression is a complex neurological disease that holds many theories on its aetiology and pathophysiology. The monoamine strategy of treating depression with medications to increase levels of monoamines in the (extra)synapse, primarily through the inhibition of monoamine transporters, does not always work, as seen in patients that lack a response to multiple anti-depressant exposures, as well as a lack of depressive symptoms in healthy volunteers exposed to monoamine reduction. Depression is increasingly being understood not as a single condition, but as a complex interplay of adaptations in various systems, including inflammatory responses and neurotransmission pathways in the brain. This understanding has led to the development of the neurodegenerative hypothesis of depression. This hypothesis, which is gaining widespread acceptance posits that both oxidative stress and inflammation play significant roles in the pathophysiology of depression. This article is a review of the literature focused on neuroinflammation in depression, as well as summarised studies of anti-inflammatory and antioxidant effects of antidepressants.
Collapse
Affiliation(s)
- Susan Hall
- School of Pharmacy and Medical Sciences, Griffith University Gold Coast Campus, Southport, 4222, Australia.
| | - Brie-Anne Parr
- School of Pharmacy and Medical Sciences, Griffith University Gold Coast Campus, Southport, 4222, Australia
| | - Sarah Hussey
- School of Pharmacy and Medical Sciences, Griffith University Gold Coast Campus, Southport, 4222, Australia
| | | | - Devinder Arora
- School of Pharmacy and Medical Sciences, Griffith University Gold Coast Campus, Southport, 4222, Australia
| | - Gary D Grant
- School of Pharmacy and Medical Sciences, Griffith University Gold Coast Campus, Southport, 4222, Australia
| |
Collapse
|
2
|
Pan Y, Xiang L, Zhu T, Wang H, Xu Q, Liao F, He J, Wang Y. Prefrontal cortex astrocytes in major depressive disorder: exploring pathogenic mechanisms and potential therapeutic targets. J Mol Med (Berl) 2024; 102:1355-1369. [PMID: 39276178 DOI: 10.1007/s00109-024-02487-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2024] [Revised: 08/20/2024] [Accepted: 09/06/2024] [Indexed: 09/16/2024]
Abstract
Major depressive disorder (MDD) is a prevalent mental health condition characterized by persistent feelings of sadness and hopelessness, affecting millions globally. The precise molecular mechanisms underlying MDD remain elusive, necessitating comprehensive investigations. Our study integrates transcriptomic analysis, functional assays, and computational modeling to explore the molecular landscape of MDD, focusing on the DLPFC. We identify key genomic alterations and co-expression modules associated with MDD, highlighting potential therapeutic targets. Functional enrichment and protein-protein interaction analyses emphasize the role of astrocytes in MDD progression. Machine learning is employed to develop a predictive model for MDD risk assessment. Single-cell and spatial transcriptomic analyses provide insights into cell type-specific expression patterns, particularly regarding astrocytes. We have identified significant genomic alterations and co-expression modules associated with MDD in the DLPFC. Key genes involved in neuroactive ligand-receptor interaction pathways, notably in astrocytes, have been highlighted. Additionally, we developed a predictive model for MDD risk assessment based on selected key genes. Single-cell and spatial transcriptomic analyses underscored the role of astrocytes in MDD. Virtual screening of compounds targeting GPR37L1, KCNJ10, and PPP1R3C proteins has identified potential therapeutic candidates. In summary, our comprehensive approach enhances the understanding of MDD's molecular underpinnings and offers promising opportunities for advancing therapeutic interventions, ultimately aiming to alleviate the burden of this debilitating mental health condition. KEY MESSAGES: Our investigation furnishes insightful revelations concerning the dysregulation of astrocyte-associated processes in MDD. We have pinpointed specific genes, namely KCNJ10, PPP1R3C, and GPR37L1, as potential candidates warranting further exploration and therapeutic intervention. We incorporate a virtual screening of small molecule compounds targeting KCNJ10, PPP1R3C, and GPR37L1, presenting a promising trajectory for drug discovery in MDD.
Collapse
Affiliation(s)
- Yarui Pan
- Department of Pharmacology, School of Integrated Chinese and Western Medicine, Anhui University of Chinese Medicine, Hefei, 230012, China
| | - Lan Xiang
- Department of Gynecology, Anhui Maternal and Child Health Hospital, Hefei, 230012, China
| | - Tingting Zhu
- Department of Gynecology, Anhui Maternal and Child Health Hospital, Hefei, 230012, China
| | - Haiyan Wang
- Department of Gynecology, Anhui Maternal and Child Health Hospital, Hefei, 230012, China
| | - Qi Xu
- School of Basic Medical Sciences, Anhui Medical University, Hefei, 230032, China
| | - Faxue Liao
- Department of Orthopaedics, The First Affiliated Hospital of Anhui Medical University, Hefei, 230000, China.
- Anhui Public Health Clinical Center, The First Affiliated Hospital of Anhui Medical University, Xinzhan District, No. 100 Huaihai Avenue, Hefei, 230000, China.
| | - Juan He
- Department of Gynecology, Anhui Maternal and Child Health Hospital, Hefei, 230012, China.
| | - Yongquan Wang
- Anhui Public Health Clinical Center, The First Affiliated Hospital of Anhui Medical University, Xinzhan District, No. 100 Huaihai Avenue, Hefei, 230000, China.
| |
Collapse
|
3
|
Rahimian R, Perlman K, Fakhfouri G, Mpai R, Richard VR, Hercher C, Penney L, Davoli MA, Nagy C, Zahedi RP, Borchers CH, Giros B, Turecki G, Mechawar N. Proteomic evidence of depression-associated astrocytic dysfunction in the human male olfactory bulb. Brain Behav Immun 2024; 122:110-121. [PMID: 39128570 DOI: 10.1016/j.bbi.2024.08.016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/16/2024] [Revised: 07/24/2024] [Accepted: 08/08/2024] [Indexed: 08/13/2024] Open
Abstract
The olfactory bulb (OB), a major structure of the limbic system, has been understudied in human investigations of psychopathologies such as depression. To explore more directly the molecular features of the OB in depression, a global comparative proteome analysis was carried out with human post-mortem OB samples from 11 males having suffered from depression and 12 healthy controls. We identified 188 differentially abundant proteins (with adjusted p < 0.05) between depressed cases and controls. Gene ontology and gene enrichment analyses suggested that these proteins are involved in biological processes including the complement and coagulation cascades. Cell type enrichment analysis displayed a significant reduction in several canonical astrocytic proteins in OBs from depressed patients. Furthermore, using RNA-fluorescence in-situ hybridization, we observed a decrease in the percentage of ALDH1L1+ cells expressing canonical astrocytic markers including ALDOC, NFIA, GJA1 (connexin 43) and SLC1A3 (EAAT1). These results are consistent with previous reports of downregulated astrocytic marker expression in other brain regions in depressed patients. We also conducted a comparative phosphoproteomic analysis of OB samples and found a dysregulation of proteins involved in neuronal and astrocytic functions. To determine whether OB astrocytic abnormalities is specific to humans, we also performed proteomics on the OB of socially defeated male mice, a commonly used model of depression. Cell-type specific analysis revealed that in socially defeated animals, the most striking OB protein alterations were associated with oligodendrocyte-lineage cells rather than with astrocytes, highlighting an important species difference. Overall, this study further highlights cerebral astrocytic abnormalities as a consistent feature of depression in humans.
Collapse
Affiliation(s)
- Reza Rahimian
- McGill Group for Suicide Studies, Douglas Mental Health University Institute, Verdun, QC, Canada; Department of Psychiatry, McGill University, Montreal, QC, Canada
| | - Kelly Perlman
- McGill Group for Suicide Studies, Douglas Mental Health University Institute, Verdun, QC, Canada; Integrated Program in Neuroscience, McGill University, Montreal, QC, Canada
| | - Gohar Fakhfouri
- Department of Psychiatry, Douglas Hospital, McGill University, Montreal, QC, Canada
| | - Refilwe Mpai
- McGill Group for Suicide Studies, Douglas Mental Health University Institute, Verdun, QC, Canada; Integrated Program in Neuroscience, McGill University, Montreal, QC, Canada
| | - Vincent R Richard
- Segal Cancer Proteomics Centre, Lady Davis Institute for Medical Research, Jewish General Hospital, McGill University, Montréal, QC, Canada
| | - Christa Hercher
- McGill Group for Suicide Studies, Douglas Mental Health University Institute, Verdun, QC, Canada; Integrated Program in Neuroscience, McGill University, Montreal, QC, Canada
| | - Lucy Penney
- Department of Psychiatry, Douglas Hospital, McGill University, Montreal, QC, Canada
| | - Maria Antonietta Davoli
- McGill Group for Suicide Studies, Douglas Mental Health University Institute, Verdun, QC, Canada; Department of Psychiatry, McGill University, Montreal, QC, Canada
| | - Corina Nagy
- McGill Group for Suicide Studies, Douglas Mental Health University Institute, Verdun, QC, Canada; Department of Psychiatry, McGill University, Montreal, QC, Canada; Integrated Program in Neuroscience, McGill University, Montreal, QC, Canada
| | - René P Zahedi
- Department of Internal Medicine, University of Manitoba, Winnipeg, MB, Canada; Manitoba Centre for Proteomics and Systems Biology, University of Manitoba, Winnipeg, MB, Canada; Department of Biochemistry and Medical Genetics, University of Manitoba, Winnipeg, MB, Canada; CancerCare Manitoba Research Institute, Winnipeg, MB, Canada
| | - Christoph H Borchers
- Segal Cancer Proteomics Centre, Lady Davis Institute for Medical Research, Jewish General Hospital, McGill University, Montréal, QC, Canada; Gerald Bronfman Department of Oncology, McGill University, Montréal, Québec, Canada; Department of Pathology, McGill University, Montréal, QC, Canada; Department of Experimental Medicine, McGill University, Montreal, QC, Canada
| | - Bruno Giros
- Department of Psychiatry, Douglas Hospital, McGill University, Montreal, QC, Canada
| | - Gustavo Turecki
- McGill Group for Suicide Studies, Douglas Mental Health University Institute, Verdun, QC, Canada; Department of Psychiatry, McGill University, Montreal, QC, Canada; Integrated Program in Neuroscience, McGill University, Montreal, QC, Canada
| | - Naguib Mechawar
- McGill Group for Suicide Studies, Douglas Mental Health University Institute, Verdun, QC, Canada; Department of Psychiatry, McGill University, Montreal, QC, Canada; Integrated Program in Neuroscience, McGill University, Montreal, QC, Canada.
| |
Collapse
|
4
|
Kwon D, Kim Y, Cho SH. Antidepressant Effects of Ginsenoside Rc on L-Alpha-Aminoadipic Acid-Induced Astrocytic Ablation and Neuroinflammation in Mice. Int J Mol Sci 2024; 25:9673. [PMID: 39273621 PMCID: PMC11396248 DOI: 10.3390/ijms25179673] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2024] [Revised: 08/29/2024] [Accepted: 09/05/2024] [Indexed: 09/15/2024] Open
Abstract
Depression is a prevalent and debilitating mental disorder that affects millions worldwide. Current treatments, such as antidepressants targeting the serotonergic system, have limitations, including delayed onset of action and high rates of treatment resistance, necessitating novel therapeutic strategies. Ginsenoside Rc (G-Rc) has shown potential anti-inflammatory and neuroprotective effects, but its antidepressant properties remain unexplored. This study investigated the antidepressant effects of G-Rc in an L-alpha-aminoadipic acid (L-AAA)-induced mouse model of depression, which mimics the astrocytic pathology and neuroinflammation observed in major depressive disorder. Mice were administered G-Rc, vehicle, or imipramine orally after L-AAA injection into the prefrontal cortex. G-Rc significantly reduced the immobility time in forced swimming and tail suspension tests compared to vehicle treatment, with more pronounced effects than imipramine. It also attenuated the expression of pro-inflammatory cytokines (TNF-α, IL-6, TGF-β, lipocalin-2) and alleviated astrocytic degeneration, as indicated by increased GFAP and decreased IBA-1 levels. Additionally, G-Rc modulated apoptosis-related proteins, decreasing caspase-3 and increasing Bcl-2 levels compared to the L-AAA-treated group. These findings suggest that G-Rc exerts antidepressant effects by regulating neuroinflammation, astrocyte-microglia crosstalk, and apoptotic pathways in the prefrontal cortex, highlighting its potential as a novel therapeutic agent for depression.
Collapse
Affiliation(s)
- Dohyung Kwon
- Department of Clinical Korean Medicine, Graduate School, Kyung Hee University, Seoul 02447, Republic of Korea
| | - Yunna Kim
- College of Korean Medicine, Kyung Hee University, Seoul 02447, Republic of Korea
- Department of Neuropsychiatry of Korean Medicine, Kyung Hee University Medical Center, Kyung Hee University, Seoul 02447, Republic of Korea
- Research Group of Neuroscience, East-West Medical Research Institute, WHO Collaborating Center, Kyung Hee University, Seoul 02447, Republic of Korea
| | - Seung-Hun Cho
- Department of Clinical Korean Medicine, Graduate School, Kyung Hee University, Seoul 02447, Republic of Korea
- College of Korean Medicine, Kyung Hee University, Seoul 02447, Republic of Korea
- Department of Neuropsychiatry of Korean Medicine, Kyung Hee University Medical Center, Kyung Hee University, Seoul 02447, Republic of Korea
- Research Group of Neuroscience, East-West Medical Research Institute, WHO Collaborating Center, Kyung Hee University, Seoul 02447, Republic of Korea
| |
Collapse
|
5
|
Vivi E, Di Benedetto B. Brain stars take the lead during critical periods of early postnatal brain development: relevance of astrocytes in health and mental disorders. Mol Psychiatry 2024; 29:2821-2833. [PMID: 38553540 PMCID: PMC11420093 DOI: 10.1038/s41380-024-02534-4] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/11/2023] [Revised: 03/12/2024] [Accepted: 03/14/2024] [Indexed: 09/25/2024]
Abstract
In the brain, astrocytes regulate shape and functions of the synaptic and vascular compartments through a variety of released factors and membrane-bound proteins. An imbalanced astrocyte activity can therefore have drastic negative impacts on brain development, leading to the onset of severe pathologies. Clinical and pre-clinical studies show alterations in astrocyte cell number, morphology, molecular makeup and astrocyte-dependent processes in different affected brain regions in neurodevelopmental (ND) and neuropsychiatric (NP) disorders. Astrocytes proliferate, differentiate and mature during the critical period of early postnatal brain development, a time window of elevated glia-dependent regulation of a proper balance between synapse formation/elimination, which is pivotal in refining synaptic connectivity. Therefore, any intrinsic and/or extrinsic factors altering these processes during the critical period may result in an aberrant synaptic remodeling and onset of mental disorders. The peculiar bridging position of astrocytes between synaptic and vascular compartments further allows them to "compute" the brain state and consequently secrete factors in the bloodstream, which may serve as diagnostic biomarkers of distinct healthy or disease conditions. Here, we collect recent advancements regarding astrogenesis and astrocyte-mediated regulation of neuronal network remodeling during early postnatal critical periods of brain development, focusing on synapse elimination. We then propose alternative hypotheses for an involvement of aberrancies in these processes in the onset of ND and NP disorders. In light of the well-known differential prevalence of certain brain disorders between males and females, we also discuss putative sex-dependent influences on these neurodevelopmental events. From a translational perspective, understanding age- and sex-dependent astrocyte-specific molecular and functional changes may help to identify biomarkers of distinct cellular (dys)functions in health and disease, favouring the development of diagnostic tools or the selection of tailored treatment options for male/female patients.
Collapse
Affiliation(s)
- Eugenia Vivi
- Laboratory of Neuro-Glia Pharmacology, Department of Psychiatry and Psychotherapy, University of Regensburg, 93053, Regensburg, Germany
| | - Barbara Di Benedetto
- Laboratory of Neuro-Glia Pharmacology, Department of Psychiatry and Psychotherapy, University of Regensburg, 93053, Regensburg, Germany.
- Regensburg Center of Neuroscience, University of Regensburg, Regensburg, Germany.
| |
Collapse
|
6
|
Duarte-Silva E, Oriá AC, Mendonça IP, Paiva IHR, Leuthier Dos Santos K, Sales AJ, de Souza JRB, Maes M, Meuth SG, Peixoto CA. The Antidepressant- and Anxiolytic-Like Effects of the Phosphodiesterase Type-5 Inhibitor Tadalafil are Associated with the Modulation of the Gut-Brain Axis During CNS Autoimmunity. J Neuroimmune Pharmacol 2024; 19:45. [PMID: 39158758 DOI: 10.1007/s11481-024-10148-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2023] [Accepted: 08/07/2024] [Indexed: 08/20/2024]
Abstract
Multiple Sclerosis (MS) is a debilitating disease that severely affects the central nervous system (CNS). Apart from neurological symptoms, it is also characterized by neuropsychiatric comorbidities, such as anxiety and depression. Phosphodiesterase-5 inhibitors (PDE5Is) such as Sildenafil and Tadalafil have been shown to possess antidepressant-like effects, but the mechanisms underpinning such effects are not fully characterized. To address this question, we used the EAE model of MS, behavioral tests, immunofluorescence, immunohistochemistry, western blot, and 16 S rRNA sequencing. Here, we showed that depressive-like behavior in Experimental Autoimmune Encephalomyelitis (EAE) mice is due to neuroinflammation, reduced synaptic plasticity, dysfunction in glutamatergic neurotransmission, glucocorticoid receptor (GR) resistance, increased blood-brain barrier (BBB) permeability, and immune cell infiltration to the CNS, as well as inflammation, increased intestinal permeability, and immune cell infiltration in the distal colon. Furthermore, 16 S rRNA sequencing revealed that behavioral dysfunction in EAE mice is associated with changes in the gut microbiota, such as an increased abundance of Firmicutes and Saccharibacteria and a reduction in Proteobacteria, Parabacteroides, and Desulfovibrio. Moreover, we detected an increased abundance of Erysipelotrichaceae and Desulfovibrionaceae and a reduced abundance of Lactobacillus johnsonii. Surprisingly, we showed that Tadalafil likely exerts antidepressant-like effects by targeting all aforementioned disease aspects. In conclusion, our work demonstrated that anxiety- and depressive-like behavior in EAE is associated with a plethora of neuroimmune and gut microbiota-mediated mechanisms and that Tadalafil exerts antidepressant-like effects probably by targeting these mechanisms. Harnessing the knowledge of these mechanisms of action of Tadalafil is important to pave the way for future clinical trials with depressed patients.
Collapse
Affiliation(s)
- Eduardo Duarte-Silva
- Laboratory of Ultrastructure, Aggeu Magalhães Institute (IAM), Recife, PE, Brazil.
- Postgraduate Program in Biosciences and Biotechnology for Health (PPGBBS), Oswaldo Cruz Foundation (FIOCRUZ-PE)/ Aggeu Magalhães Institute (IAM), Recife, PE, Brazil.
- Network of Immunity in Infection, Malignancy and Autoimmunity (NIIMA), Universal Scientific Education and Research Network (USERN), Recife, PE, Brazil.
- Department of Neurology, University Hospital Düsseldorf, 40255, Düsseldorf, Germany.
- Center for Research in Inflammatory Diseases (CRID), Department of Pharmacology, Ribeirão Preto Medical School, University of São Paulo, São Paulo, Brazil.
- Feinberg School of Medicine, Northwestern University, Chicago, IL, USA.
| | | | - Ingrid Prata Mendonça
- Laboratory of Ultrastructure, Aggeu Magalhães Institute (IAM), Recife, PE, Brazil
- Postgraduate Program in Biological Sciences (PPGCB), Federal University of Pernambuco (UFPE), Recife, PE, Brazil
| | - Igor Henrique Rodrigues Paiva
- Laboratory of Ultrastructure, Aggeu Magalhães Institute (IAM), Recife, PE, Brazil
- Postgraduate Program in Biological Sciences (PPGCB), Federal University of Pernambuco (UFPE), Recife, PE, Brazil
| | | | - Amanda Juliana Sales
- Department of Pharmacology, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, SP, Brazil
| | | | - Michael Maes
- Department of Psychiatry, Faculty of Medicine, Chulalongkorn University, Bangkok, 10330, Thailand
- Cognitive Impairment and Dementia Research Unit, Faculty of Medicine, Chulalongkorn University, Bangkok, 10330, Thailand
- Department of Psychiatry, Medical University of Plovdiv, Plovdiv, 4002, Bulgaria
- Research Institute, Medical University of Plovdiv, Plovdiv, 4002, Bulgaria
- IMPACT, the Institute for Mental and Physical Health and Clinical Translation, School of Medicine, Deakin University, Barwon Health, Geelong, VIC, Australia
- Mental Health Center, University of Electronic Science and Technology of China, Chengdu, 611731, China
| | - Sven Guenther Meuth
- Department of Neurology, University Hospital Düsseldorf, 40255, Düsseldorf, Germany
| | - Christina Alves Peixoto
- Laboratory of Ultrastructure, Aggeu Magalhães Institute (IAM), Recife, PE, Brazil.
- Institute of Science and Technology on Neuroimmunomodulation (INCT-NIM), Oswaldo Cruz Institute, Oswaldo Cruz Foundation, Rio de Janeiro, Brazil.
| |
Collapse
|
7
|
Tizabi Y, Getachew B, Hauser SR, Tsytsarev V, Manhães AC, da Silva VDA. Role of Glial Cells in Neuronal Function, Mood Disorders, and Drug Addiction. Brain Sci 2024; 14:558. [PMID: 38928557 PMCID: PMC11201416 DOI: 10.3390/brainsci14060558] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2024] [Revised: 05/19/2024] [Accepted: 05/28/2024] [Indexed: 06/28/2024] Open
Abstract
Mood disorders and substance use disorder (SUD) are of immense medical and social concern. Although significant progress on neuronal involvement in mood and reward circuitries has been achieved, it is only relatively recently that the role of glia in these disorders has attracted attention. Detailed understanding of the glial functions in these devastating diseases could offer novel interventions. Here, following a brief review of circuitries involved in mood regulation and reward perception, the specific contributions of neurotrophic factors, neuroinflammation, and gut microbiota to these diseases are highlighted. In this context, the role of specific glial cells (e.g., microglia, astroglia, oligodendrocytes, and synantocytes) on phenotypic manifestation of mood disorders or SUD are emphasized. In addition, use of this knowledge in the potential development of novel therapeutics is touched upon.
Collapse
Affiliation(s)
- Yousef Tizabi
- Department of Pharmacology, Howard University College of Medicine, 520 W Street NW, Washington, DC 20059, USA;
| | - Bruk Getachew
- Department of Pharmacology, Howard University College of Medicine, 520 W Street NW, Washington, DC 20059, USA;
| | - Sheketha R. Hauser
- Department of Psychiatry, Indiana University School of Medicine, Indianapolis, IN 46202, USA
| | - Vassiliy Tsytsarev
- Department of Neurobiology, University of Maryland School of Medicine, Baltimore, MD 21201, USA;
| | - Alex C. Manhães
- Laboratório de Neurofisiologia, Departamento de Ciências Fisiológicas, IBRAG, Universidade do Estado do Rio de Janeiro, Rio de Janeiro 20550-170, RJ, Brazil
| | - Victor Diogenes Amaral da Silva
- Laboratory of Neurochemistry and Cell Biology, Department of Biochemistry and Biophysics, Institute of Health Sciences, Federal University of Bahia, Salvador 40110-100, BA, Brazil;
| |
Collapse
|
8
|
Valenza M, Facchinetti R, Torazza C, Ciarla C, Bronzuoli MR, Balbi M, Bonanno G, Popoli M, Steardo L, Milanese M, Musazzi L, Bonifacino T, Scuderi C. Molecular signatures of astrocytes and microglia maladaptive responses to acute stress are rescued by a single administration of ketamine in a rodent model of PTSD. Transl Psychiatry 2024; 14:209. [PMID: 38796504 PMCID: PMC11127980 DOI: 10.1038/s41398-024-02928-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/27/2023] [Revised: 05/09/2024] [Accepted: 05/13/2024] [Indexed: 05/28/2024] Open
Abstract
Stress affects the brain and alters its neuroarchitecture and function; these changes can be severe and lead to psychiatric disorders. Recent evidence suggests that astrocytes and microglia play an essential role in the stress response by contributing to the maintenance of cerebral homeostasis. These cells respond rapidly to all stimuli that reach the brain, including stressors. Here, we used a recently validated rodent model of post-traumatic stress disorder in which rats can be categorized as resilient or vulnerable after acute inescapable footshock stress. We then investigated the functional, molecular, and morphological determinants of stress resilience and vulnerability in the prefrontal cortex, focusing on glial and neuronal cells. In addition, we examined the effects of a single subanesthetic dose of ketamine, a fast-acting antidepressant recently approved for the treatment of resistant depression and proposed for other stress-related psychiatric disorders. The present results suggest a prompt glial cell response and activation of the NF-κB pathway after acute stress, leading to an increase in specific cytokines such as IL-18 and TNF-α. This response persists in vulnerable individuals and is accompanied by a significant change in the levels of critical glial proteins such as S100B, CD11b, and CX43, brain trophic factors such as BDNF and FGF2, and proteins related to dendritic arborization and synaptic architecture such as MAP2 and PSD95. Administration of ketamine 24 h after the acute stress event rescued many of the changes observed in vulnerable rats, possibly contributing to support brain homeostasis. Overall, our results suggest that pivotal events, including reactive astrogliosis, changes in brain trophic factors, and neuronal damage are critical determinants of vulnerability to acute traumatic stress and confirm the therapeutic effect of acute ketamine against the development of stress-related psychiatric disorders.
Collapse
Affiliation(s)
- Marta Valenza
- Department of Physiology and Pharmacology "Vittorio Erspamer", SAPIENZA University of Rome, Rome, Italy
| | - Roberta Facchinetti
- Department of Physiology and Pharmacology "Vittorio Erspamer", SAPIENZA University of Rome, Rome, Italy
| | - Carola Torazza
- Department of Pharmacy, Unit of Pharmacology and Toxicology, University of Genoa, Genoa, Italy
| | - Claudia Ciarla
- Department of Physiology and Pharmacology "Vittorio Erspamer", SAPIENZA University of Rome, Rome, Italy
| | - Maria Rosanna Bronzuoli
- Department of Physiology and Pharmacology "Vittorio Erspamer", SAPIENZA University of Rome, Rome, Italy
| | - Matilde Balbi
- Department of Pharmacy, Unit of Pharmacology and Toxicology, University of Genoa, Genoa, Italy
| | - Giambattista Bonanno
- Department of Pharmacy, Unit of Pharmacology and Toxicology, University of Genoa, Genoa, Italy
| | - Maurizio Popoli
- Dipartimento di Scienze Farmaceutiche, Università Degli Studi di Milano, Milano, Italy
| | - Luca Steardo
- Department of Physiology and Pharmacology "Vittorio Erspamer", SAPIENZA University of Rome, Rome, Italy
| | - Marco Milanese
- Department of Pharmacy, Unit of Pharmacology and Toxicology, University of Genoa, Genoa, Italy
- IRCCS Ospedale Policlinico San Martino, Genoa, Italy
| | - Laura Musazzi
- School of Medicine and Surgery, University of Milano-Bicocca, Monza, Italy
| | - Tiziana Bonifacino
- Department of Pharmacy, Unit of Pharmacology and Toxicology, University of Genoa, Genoa, Italy
| | - Caterina Scuderi
- Department of Physiology and Pharmacology "Vittorio Erspamer", SAPIENZA University of Rome, Rome, Italy.
| |
Collapse
|
9
|
孙 一, 张 荣, 孟 莹, 朱 磊, 李 明, 刘 哲. [Coenzyme Q10 alleviates depression-like behaviors in mice with chronic restraint stress by down-regulating the pyroptosis signaling pathway]. NAN FANG YI KE DA XUE XUE BAO = JOURNAL OF SOUTHERN MEDICAL UNIVERSITY 2024; 44:810-817. [PMID: 38862438 PMCID: PMC11166719 DOI: 10.12122/j.issn.1673-4254.2024.05.02] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Subscribe] [Scholar Register] [Received: 01/10/2024] [Indexed: 06/13/2024]
Abstract
OBJECTIVE To explore the neuroprotective effect of coenzyme Q10 and its possible mechanism in mice with chronic restraint stress (CRS). METHODS Mouse models of CRS were treated with intraperitoneal injections of coenzyme Q10 at low, moderate and high doses (50, 100 and 200 mg/kg, respectively, n=8), VX765 (a caspase-1 specific inhibitor, 50 mg/kg, n=8), or fluoxetine (10 mg/kg, n=8) on a daily basis for 4 weeks, and the changes in depression-like behaviors of the mice were assessed by sugar water preference test, forced swimming test and tail suspension test. The expression of glial fibrillary acidic protein (GFAP) in the hippocampus of the mice was detected using immunohistochemistry, and the number of synaptic spines was determined with Golgi staining. Western blotting was performed to detect the changes in the expressions of GFAP and pyroptosis-related proteins in the hippocampus, and the colocalization of neurons and caspase-1 p10 was examined with immunofluorescence assay. RESULTS Compared with the normal control mice, the mouse models of CRS showed significantly reduced sugar water preference and increased immobility time in forced swimming and tail suspension tests (P < 0.05), and these depression-like behaviors were obviously improved by treatment with coenzyme Q10, VX765 or FLX. The mouse models showed a significantly decreased positive rate of GFAP and lowered GFAP protein expression in the hippocampus with obviously decreased synaptic spines, enhanced expressions of GSDMD-N, caspase-1 and IL-1β, and increased colocalization of neurons and caspase-1 p10 (all P < 0.05). All these changes were significantly ameliorated in the mouse models after treatment with Q10. CONCLUSION Coenzyme Q10 can alleviate depression-like behaviors in mice with CRS by down-regulating the pyroptosis signaling pathway.
Collapse
|
10
|
Liu L, Tian X, Li W. Mechanistic study of the anti-excitatory amino acid toxicity of Bushen Zhichan decoction for Parkinson's disease based on the transcriptional regulation of EAAT1 by YY1. JOURNAL OF ETHNOPHARMACOLOGY 2024; 325:117857. [PMID: 38350506 DOI: 10.1016/j.jep.2024.117857] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/08/2023] [Revised: 01/25/2024] [Accepted: 02/02/2024] [Indexed: 02/15/2024]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Bushen Zhichan decoction (BSZCF) is derived from Liuwei Dihuang Pill, a famous Chinese herbal formula recorded in the book Key to Therapeutics of Children's Diseases. It has been widely used as a basic prescription for nourishing and tonifying the liver and kidneys to treat Parkinson's disease (PD), but its mechanism remains to be explored. AIM OF THE STUDY BSZCF, a Chinese herbal formula comprising five herbs: Rehmannia glutinosa (Gaertn.) DC., Dioscorea oppositifolia L., Cornus officinalis Siebold & Zucc., Fallopia multiflora (Thunb.) Haraldson and Cistanche tubulosa (Schenk) Wight, is used clinically to treat PD. In vivo and in vitro experiments were designed to elucidate the mechanism of BSZCF in the protection of dopamine (DA) neurons and the treatment of PD. The toxicity of excitatory amino acids (EAA) may be attenuated by inhibiting the transcription factor Yin Yang 1 (YY1) and up-regulating the expression of excitatory amino acid transporter 1 (EAAT1). MATERIALS AND METHODS IN VIVO: After 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) was intraperitoneally injected into specific pathogen free (SPF) C57BL/6J mice, model mice were intragastrically given adamantane hydrochloride tablets (AHT) or different doses of BSZCF for 14 days. Both open field and pole-climbing tests were conducted to assess behavioral changes. In vitro: 1-Methyl-4-phe-nylpyridiniumiodide (MPP+)-injured human neuroblastoma cells (SH-SY5Y) were utilized to construct PD cell models. Primary astrocytes were transfected with EAAT1 and YY1 lentiviruses for EAAT1 gene knockout and YY1 gene knockout astrocytes, respectively. The high performance liquid chromatography-mass spectrometry (HPLC-MS) analysis of BSZCF was performed to control the quality of blood drugs. The optimal concentration and time of PD cell models treated by BSZCF were determined by the use of Cell Counting Kit-8 (CCK8). Enzyme-linked immunosorbent assay (ELISA) was used for measuring glutamate (Glu) in the peripheral blood and cells of each group. Western blotting (WB) and real-time quantitative polymerase chain reaction (qPCR) were used to detect tyrosine hydroxylase (TH), dopamine transporters (DAT), EAAT1 and YY1 protein and mRNA. After the blockade of EAAT1, immunofluorescence (IF) assay was used to detect the TH protein in each group. RESULTS In vivo research showed that BSZCF improved the behavioral symptoms of PD mice, and reduced the death of DA neurons and the level of Glu. The mechanism may be related to the decrease of YY1 expression and the increase of EAAT1 levels. In vitro experiments showed that the anti-excitatory amino acid toxicity of BSZCF was achieved by inhibiting YY1 expression and regulating EAAT1. CONCLUSIONS By inhibiting YY1 to increase the expression of EAAT1 and attenuating the toxicity of Glu, BSZCF exerts the effect of protecting DA neurons and treating PD-like symptoms in mice.
Collapse
Affiliation(s)
- Leilei Liu
- Shanghai Municipal Hospital of Traditional Chinese Medicine, Shanghai University of Traditional Chinese Medicine, China.
| | - Xinyun Tian
- Shanghai Municipal Hospital of Traditional Chinese Medicine, Shanghai University of Traditional Chinese Medicine, China.
| | - Wentao Li
- Shanghai Municipal Hospital of Traditional Chinese Medicine, Shanghai University of Traditional Chinese Medicine, China.
| |
Collapse
|
11
|
Wang W, Pan D, Liu Q, Chen X, Wang S. L-Carnitine in the Treatment of Psychiatric and Neurological Manifestations: A Systematic Review. Nutrients 2024; 16:1232. [PMID: 38674921 PMCID: PMC11055039 DOI: 10.3390/nu16081232] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2024] [Revised: 04/13/2024] [Accepted: 04/19/2024] [Indexed: 04/28/2024] Open
Abstract
OBJECTIVE L-carnitine (LC), a vital nutritional supplement, plays a crucial role in myocardial health and exhibits significant cardioprotective effects. LC, being the principal constituent of clinical-grade supplements, finds extensive application in the recovery and treatment of diverse cardiovascular and cerebrovascular disorders. However, controversies persist regarding the utilization of LC in nervous system diseases, with varying effects observed across numerous mental and neurological disorders. This article primarily aims to gather and analyze database information to comprehensively summarize the therapeutic potential of LC in patients suffering from nervous system diseases while providing valuable references for further research. METHODS A comprehensive search was conducted in PubMed, Web Of Science, Embase, Ovid Medline, Cochrane Library and Clinicaltrials.gov databases. The literature pertaining to the impact of LC supplementation on neurological or psychiatric disorders in patients was reviewed up until November 2023. No language or temporal restrictions were imposed on the search. RESULTS A total of 1479 articles were retrieved, and after the removal of duplicates through both automated and manual exclusion processes, 962 articles remained. Subsequently, a meticulous re-screening led to the identification of 60 relevant articles. Among these, there were 12 publications focusing on hepatic encephalopathy (HE), while neurodegenerative diseases (NDs) and peripheral nervous system diseases (PNSDs) were represented by 9 and 6 articles, respectively. Additionally, stroke was addressed in five publications, whereas Raynaud's syndrome (RS) and cognitive disorder (CD) each had three dedicated studies. Furthermore, migraine, depression, and amyotrophic lateral sclerosis (ALS) each accounted for two publications. Lastly, one article was found for other symptoms under investigation. CONCLUSION In summary, LC has demonstrated favorable therapeutic effects in the management of HE, Alzheimer's disease (AD), carpal tunnel syndrome (CTS), CD, migraine, neurofibromatosis (NF), PNSDs, RS, and stroke. However, its efficacy appears to be relatively limited in conditions such as ALS, ataxia, attention deficit hyperactivity disorder (ADHD), depression, chronic fatigue syndrome (CFS), Down syndrome (DS), and sciatica.
Collapse
Affiliation(s)
- Wenbo Wang
- Key Laboratory of Environmental Medicine and Engineering of Ministry of Education, and Department of Nutrition and Food Hygiene, School of Public Health, Southeast University, Nanjing 210009, China; (W.W.); (D.P.); (X.C.)
| | - Da Pan
- Key Laboratory of Environmental Medicine and Engineering of Ministry of Education, and Department of Nutrition and Food Hygiene, School of Public Health, Southeast University, Nanjing 210009, China; (W.W.); (D.P.); (X.C.)
| | - Qi Liu
- Department of Public Health, School of Medicine, Xizang Minzu University, Xianyang 712082, China;
| | - Xiangjun Chen
- Key Laboratory of Environmental Medicine and Engineering of Ministry of Education, and Department of Nutrition and Food Hygiene, School of Public Health, Southeast University, Nanjing 210009, China; (W.W.); (D.P.); (X.C.)
- Department of Public Health, School of Medicine, Xizang Minzu University, Xianyang 712082, China;
| | - Shaokang Wang
- Key Laboratory of Environmental Medicine and Engineering of Ministry of Education, and Department of Nutrition and Food Hygiene, School of Public Health, Southeast University, Nanjing 210009, China; (W.W.); (D.P.); (X.C.)
- Department of Public Health, School of Medicine, Xizang Minzu University, Xianyang 712082, China;
| |
Collapse
|
12
|
Zhang Y, Lai S, Zhang J, Wang Y, Zhao H, He J, Huang D, Chen G, Qi Z, Chen P, Yan S, Huang X, Lu X, Zhong S, Jia Y. The effectiveness of vortioxetine on neurobiochemical metabolites and cognitive of major depressive disorders patients: A 8-week follow-up study. J Affect Disord 2024; 351:799-807. [PMID: 38311073 DOI: 10.1016/j.jad.2024.01.272] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/24/2023] [Revised: 01/22/2024] [Accepted: 01/31/2024] [Indexed: 02/06/2024]
Abstract
OBJECTIVE Vortioxetine has been shown to improve cognitive performance in people with depression. This study will look at the changes in neurobiochemical metabolites that occur when vortioxetine improves cognitive performance in MDD patients, with the goal of determining the neuroimaging mechanism through which vortioxetine improves cognitive function. METHODS 30 depressed patients and 30 demographically matched healthy controls (HC) underwent MCCB cognitive assessment and 1H-MRS. After 8 weeks of vortioxetine medication, MCCB and 1H-MRS tests were retested in the MDD group. Before and after therapy, changes in cognitive performance, NAA/Cr, and Cho/Cr were examined in the MDD group. RESULTS Compared with the HC group, the MDD group had significant reduced in verbal learning, social cognition, and total cognition (all p < 0.05). And the MDD group had lower NAA/Cr in Right thalamus and Left PFC; the Cho/Cr in Right thalamus was lower than HC; the Cho/Cr in Left ACC had significantly increase (all p < 0.05). The MDD group showed significant improvements in the areas of verbal learning, attention/alertness, and total cognitive function before and after Vortioxetine treatment (all p < 0.05). The NAA/Cr ratio of the right PFC before and after treatment (t = 2.338, p = 0.026) showed significant changes. CONCLUSIONS Vortioxetine can enhance not just the depression symptoms of MDD patients in the initial period, but also their verbal learning, social cognition, and general cognitive capacities after 8 weeks of treatment. Furthermore, vortioxetine has been shown to enhance cognitive function in MDD patients by altering NAA/Cr and Cho/Cr levels in the frontal-thalamic-ACC.
Collapse
Affiliation(s)
- Yiliang Zhang
- Department of Psychiatry, First Affiliated Hospital of Jinan University, Guangzhou 510630, China
| | - Shunkai Lai
- Department of Psychiatry, First Affiliated Hospital of Jinan University, Guangzhou 510630, China
| | - Jianzhao Zhang
- Department of Psychiatry, First Affiliated Hospital of Jinan University, Guangzhou 510630, China
| | - Ying Wang
- Medical Imaging Center, First Affiliated Hospital of Jinan University, Guangzhou 510630, China
| | - Hui Zhao
- Department of Psychiatry, First Affiliated Hospital of Jinan University, Guangzhou 510630, China
| | - Jiali He
- Department of Psychiatry, First Affiliated Hospital of Jinan University, Guangzhou 510630, China
| | - Dong Huang
- Department of Psychiatry, First Affiliated Hospital of Jinan University, Guangzhou 510630, China
| | - Guanmao Chen
- Medical Imaging Center, First Affiliated Hospital of Jinan University, Guangzhou 510630, China
| | - Zhangzhang Qi
- Medical Imaging Center, First Affiliated Hospital of Jinan University, Guangzhou 510630, China
| | - Pan Chen
- Medical Imaging Center, First Affiliated Hospital of Jinan University, Guangzhou 510630, China
| | - Shuya Yan
- Department of Psychiatry, First Affiliated Hospital of Jinan University, Guangzhou 510630, China
| | - Xiaosi Huang
- Department of Psychiatry, First Affiliated Hospital of Jinan University, Guangzhou 510630, China
| | - Xiaodan Lu
- Department of Psychiatry, First Affiliated Hospital of Jinan University, Guangzhou 510630, China
| | - Shuming Zhong
- Department of Psychiatry, First Affiliated Hospital of Jinan University, Guangzhou 510630, China.
| | - Yanbin Jia
- Department of Psychiatry, First Affiliated Hospital of Jinan University, Guangzhou 510630, China.
| |
Collapse
|
13
|
Lin CL, Lane HY, Sun CK, Chen MH, Lee CY, Li L, Lee JJ, Yeh PY. Effects of chronic daily headache with subclinical depression on brain volume: A systematic review and meta-analysis. Eur J Pain 2024. [PMID: 38563383 DOI: 10.1002/ejp.2270] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2023] [Revised: 03/13/2024] [Accepted: 03/18/2024] [Indexed: 04/04/2024]
Abstract
BACKGROUND AND OBJECTIVE The relationship between chronic daily headache (CDH), depression symptoms, and brain volume remains unclear. METHODS To investigate the effects of CDH on brain volume and the impact of depressive symptoms (DSs) as well as the effects of demography and medication overuse, PubMed, Embase, and Web of Science databases were systematically searched using appropriate keyword strings to retrieve observational studies from inception to May 2023. RESULTS Two distinct comparisons were made in CDH patients: (1) those with DSs versus their pain-free counterparts and (2) those without DSs versus pain-free controls. The first comprised nine studies enrolling 225 CDH patients with DSs and 234 controls. Beck depression inventory, Hamilton depression scale, and Hospital anxiety/depression scale were used to assess DSs, revealing significantly more DSs in CDH patients with DSs compared to their controls (all p < 0.05). Besides, the second analysed four studies involving 117 CDH patients without DSs and 155 comparators. Compared to CDH patients without DSs, those with DSs had a smaller brain volume than controls (p = 0.03). Furthermore, CDH patients with DSs who did not overuse medications showed a smaller right cerebral cortical volume than overusers (p = 0.003). A significant inverse correlation between female prevalence and brain volume (p = 0.02) was revealed using regression analysis. CONCLUSIONS Pain-induced persistent depressive symptoms not only incur structural alterations but also encompass affective-motivational changes, involving medication use and gender-specific health concerns. SIGNIFICANCE This study highlighted the importance of an integrated CDH treatment, emphasizing psychological interventions for the affective-motivational component alongside pain management.
Collapse
Affiliation(s)
- Chih-Lung Lin
- Department of Neurosurgery, Asia University Hospital, Taichung, Taiwan
- Department of Occupational Therapy, College of Medical and Health Science, Asia University, Taichung, Taiwan
| | - Hsien-Yuan Lane
- Graduate Institute of Biomedical Sciences, China Medical University, Taichung, Taiwan
- Department of Psychiatry and Brain Disease Research Center, China Medical University Hospital, Taichung, Taiwan
- Department of Psychology, College of Medical and Health Science, Asia University, Taichung, Taiwan
| | - Cheuk-Kwan Sun
- Department of Emergency Medicine, E-Da Dachang Hospital, I-Shou University, Kaohsiung City, Taiwan
- School of Medicine for International Students, College of Medicine, I-Shou University, Kaohsiung City, Taiwan
| | - Meng-Hsiang Chen
- Department of Diagnostic Radiology, Kaohsiung Chang Gung Memorial Hospital, Kaohsiung, Taiwan
- Chang Gung University College of Medicine, Kaohsiung, Taiwan
| | - Chiao-Yu Lee
- Department of Psychology, College of Medical and Health Science, Asia University, Taichung, Taiwan
| | - Lin Li
- Department of Psychology, College of Medical and Health Science, Asia University, Taichung, Taiwan
| | - Jia-Jie Lee
- Department of Psychology, College of Medical and Health Science, Asia University, Taichung, Taiwan
| | - Pin-Yang Yeh
- Department of Psychology, College of Medical and Health Science, Asia University, Taichung, Taiwan
- Clinical Psychology Center, Asia University Hospital, Taichung, Taiwan
| |
Collapse
|
14
|
Filipović D, Novak B, Xiao J, Tadić P, Turck CW. Prefrontal Cortex Cytosolic Proteome and Machine Learning-Based Predictors of Resilience toward Chronic Social Isolation in Rats. Int J Mol Sci 2024; 25:3026. [PMID: 38474271 DOI: 10.3390/ijms25053026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2024] [Revised: 02/15/2024] [Accepted: 02/28/2024] [Indexed: 03/14/2024] Open
Abstract
Chronic social isolation (CSIS) generates two stress-related phenotypes: resilience and susceptibility. However, the molecular mechanisms underlying CSIS resilience remain unclear. We identified altered proteome components and biochemical pathways and processes in the prefrontal cortex cytosolic fraction in CSIS-resilient rats compared to CSIS-susceptible and control rats using liquid chromatography coupled with tandem mass spectrometry followed by label-free quantification and STRING bioinformatics. A sucrose preference test was performed to distinguish rat phenotypes. Potential predictive proteins discriminating between the CSIS-resilient and CSIS-susceptible groups were identified using machine learning (ML) algorithms: support vector machine-based sequential feature selection and random forest-based feature importance scores. Predominantly, decreased levels of some glycolytic enzymes, G protein-coupled receptor proteins, the Ras subfamily of GTPases proteins, and antioxidant proteins were found in the CSIS-resilient vs. CSIS-susceptible groups. Altered levels of Gapdh, microtubular, cytoskeletal, and calcium-binding proteins were identified between the two phenotypes. Increased levels of proteins involved in GABA synthesis, the proteasome system, nitrogen metabolism, and chaperone-mediated protein folding were identified. Predictive proteins make CSIS-resilient vs. CSIS-susceptible groups linearly separable, whereby a 100% validation accuracy was achieved by ML models. The overall ratio of significantly up- and downregulated cytosolic proteins suggests adaptive cellular alterations as part of the stress-coping process specific for the CSIS-resilient phenotype.
Collapse
Affiliation(s)
- Dragana Filipović
- Department of Molecular Biology and Endocrinology, "VINČA" Institute of Nuclear Sciences, National Institute of the Republic of Serbia, University of Belgrade, 11000 Belgrade, Serbia
| | - Božidar Novak
- Proteomics and Biomarkers, Max Planck Institute for Psychiatry, 80804 Munich, Germany
| | - Jinqiu Xiao
- Max Planck Institute of Biochemistry, 82152 Martinsried, Germany
| | - Predrag Tadić
- School of Electrical Engineering, University of Belgrade, 11000 Belgrade, Serbia
| | - Christoph W Turck
- Proteomics and Biomarkers, Max Planck Institute for Psychiatry, 80804 Munich, Germany
- Key Laboratory of Animal Models and Human Disease Mechanisms of Yunnan Province, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming 650223, China
- KIZ/CUHK Joint Laboratory of Bioresources and Molecular Research in Common Diseases, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming 650223, China
- National Resource Center for Non-Human Primates, National Research Facility for Phenotypic & Genetic Analysis of Model Animals (Primate Facility), Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming 650107, China
| |
Collapse
|
15
|
Wang X, Zhang F, Niu L, Yan J, Liu H, Wang D, Hui J, Dai H, Song J, Zhang Z. High-frequency repetitive transcranial magnetic stimulation improves depressive-like behaviors in CUMS-induced rats by modulating astrocyte GLT-1 to reduce glutamate toxicity. J Affect Disord 2024; 348:265-274. [PMID: 38159655 DOI: 10.1016/j.jad.2023.12.068] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/17/2023] [Revised: 11/20/2023] [Accepted: 12/24/2023] [Indexed: 01/03/2024]
Abstract
Impaired glutamate recycling plays an important role in the pathophysiology of depression, and it has been demonstrated that glutamate transporter-1 (GLT-1) on astrocytes is involved in glutamate uptake. Studies have shown that repetitive transcranial magnetic stimulation (rTMS) is effective in treating depression, however, the exact mechanism of rTMS treatment remains unclear. Here, we used a chronic unpredictable mild stress (CUMS) protocol to induce depression-like behaviors in rats followed by rTMS treatment. Behavioral assessment was primarily through SPT, FST, OFT and body weight. Histological analysis focused on GFAP and GLT-1 expression, synaptic plasticity, apoptosis and PI3K/Akt/CREB pathway-related proteins. The results showed that rTMS treatment increased sucrose preference, improved locomotor activity, shortened immobility time as well as increased body weight. And rTMS intervention reversed the elevated glutamate concentration in the hippocampus of CUMS rats using an ELISA kit. Moreover, rTMS ameliorated the reduction in GFAP and GLT-1 expression, alleviated the decrease in BDNF, PSD95 and synapsin-1 expression, also reversed the expression levels of BAX and Bcl2 in the hippocampus of CUMS-induced rats. Moreover, rTMS also increased the protein phosphorylation level of PI3K/Akt/CREB pathway. These results suggest that rTMS treatment ameliorates depression-like behaviors in the rat model by reversing the reduction of GLT-1 on astrocytes and reducing glutamate accumulation in the synaptic cleft, which in turn ameliorates synaptic plasticity damage and neuronal apoptosis. The regulation of GLT-1 by rTMS may be through the PI3K/Akt/CREB pathway.
Collapse
Affiliation(s)
- Xiaonan Wang
- The Second Affiliated Hospital of Xinxiang Medical University (Henan Mental Hospital), Henan Key Lab of Biological Psychiatry, Xinxiang, Henan 453002, China; Henan Engineering Research Center of Physical Diagnostics and Treatment Technology for the Mental and Neurological Diseases, Xinxiang, Henan 453002, China
| | - Fuping Zhang
- The Second Affiliated Hospital of Xinxiang Medical University (Henan Mental Hospital), Henan Key Lab of Biological Psychiatry, Xinxiang, Henan 453002, China; Henan Engineering Research Center of Physical Diagnostics and Treatment Technology for the Mental and Neurological Diseases, Xinxiang, Henan 453002, China
| | - Le Niu
- The First Affiliated Hospital of Xinxiang Medical University, Henan Key Laboratory of Neurorestoratology, Weihui, Henan 453100, China; The Second Affiliated Hospital of Xinxiang Medical University (Henan Mental Hospital), Henan Key Lab of Biological Psychiatry, Xinxiang, Henan 453002, China
| | - Junni Yan
- Nanjing Brain Hospital, Nanjing, 210029, China
| | - Huanhuan Liu
- The Second Affiliated Hospital of Xinxiang Medical University (Henan Mental Hospital), Henan Key Lab of Biological Psychiatry, Xinxiang, Henan 453002, China; Henan Engineering Research Center of Physical Diagnostics and Treatment Technology for the Mental and Neurological Diseases, Xinxiang, Henan 453002, China
| | - Di Wang
- The Second Affiliated Hospital of Xinxiang Medical University (Henan Mental Hospital), Henan Key Lab of Biological Psychiatry, Xinxiang, Henan 453002, China; Henan Engineering Research Center of Physical Diagnostics and Treatment Technology for the Mental and Neurological Diseases, Xinxiang, Henan 453002, China
| | - Juan Hui
- The Second Affiliated Hospital of Xinxiang Medical University (Henan Mental Hospital), Henan Key Lab of Biological Psychiatry, Xinxiang, Henan 453002, China
| | - Haiyue Dai
- The Second Affiliated Hospital of Xinxiang Medical University (Henan Mental Hospital), Henan Key Lab of Biological Psychiatry, Xinxiang, Henan 453002, China
| | - Jinggui Song
- The Second Affiliated Hospital of Xinxiang Medical University (Henan Mental Hospital), Henan Key Lab of Biological Psychiatry, Xinxiang, Henan 453002, China; Henan Engineering Research Center of Physical Diagnostics and Treatment Technology for the Mental and Neurological Diseases, Xinxiang, Henan 453002, China.
| | - Zhaohui Zhang
- The First Affiliated Hospital of Xinxiang Medical University, Henan Key Laboratory of Neurorestoratology, Weihui, Henan 453100, China.
| |
Collapse
|
16
|
Baek JH, Park H, Kang H, Kim R, Kang JS, Kim HJ. The Role of Glutamine Homeostasis in Emotional and Cognitive Functions. Int J Mol Sci 2024; 25:1302. [PMID: 38279303 PMCID: PMC10816396 DOI: 10.3390/ijms25021302] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2023] [Revised: 01/17/2024] [Accepted: 01/18/2024] [Indexed: 01/28/2024] Open
Abstract
Glutamine (Gln), a non-essential amino acid, is synthesized de novo by glutamine synthetase (GS) in various organs. In the brain, GS is exclusively expressed in astrocytes under normal physiological conditions, producing Gln that takes part in glutamatergic neurotransmission through the glutamate (Glu)-Gln cycle. Because the Glu-Gln cycle and glutamatergic neurotransmission play a pivotal role in normal brain activity, maintaining Gln homeostasis in the brain is crucial. Recent findings indicated that a neuronal Gln deficiency in the medial prefrontal cortex in rodents led to depressive behaviors and mild cognitive impairment along with lower glutamatergic neurotransmission. In addition, exogenous Gln supplementation has been tested for its ability to overcome neuronal Gln deficiency and reverse abnormal behaviors induced by chronic immobilization stress (CIS). Although evidence is accumulating as to how Gln supplementation contributes to normalizing glutamatergic neurotransmission and the Glu-Gln cycle, there are few reviews on this. In this review, we summarize recent evidence demonstrating that Gln supplementation ameliorates CIS-induced deleterious changes, including an imbalance of the Glu-Gln cycle, suggesting that Gln homeostasis is important for emotional and cognitive functions. This is the first review of detailed mechanistic studies on the effects of Gln supplementation on emotional and cognitive functions.
Collapse
Affiliation(s)
| | | | | | | | | | - Hyun Joon Kim
- Department of Anatomy and Convergence Medical Sciences, College of Medicine, Institute of Medical Science, Tyrosine Peptide Multiuse Research Group, Anti-Aging Bio Cell Factory Regional Leading Research Center, Gyeongsang National University, 15 Jinju-daero 816 Beongil, Jinju 52727, Gyeongnam, Republic of Korea; (J.H.B.); (H.P.); (H.K.); (R.K.); (J.S.K.)
| |
Collapse
|
17
|
Fu CHY, Antoniades M, Erus G, Garcia JA, Fan Y, Arnone D, Arnott SR, Chen T, Choi KS, Fatt CC, Frey BN, Frokjaer VG, Ganz M, Godlewska BR, Hassel S, Ho K, McIntosh AM, Qin K, Rotzinger S, Sacchet MD, Savitz J, Shou H, Singh A, Stolicyn A, Strigo I, Strother SC, Tosun D, Victor TA, Wei D, Wise T, Zahn R, Anderson IM, Craighead WE, Deakin JFW, Dunlop BW, Elliott R, Gong Q, Gotlib IH, Harmer CJ, Kennedy SH, Knudsen GM, Mayberg HS, Paulus MP, Qiu J, Trivedi MH, Whalley HC, Yan CG, Young AH, Davatzikos C. Neuroanatomical dimensions in medication-free individuals with major depressive disorder and treatment response to SSRI antidepressant medications or placebo. NATURE. MENTAL HEALTH 2024; 2:164-176. [PMID: 38948238 PMCID: PMC11211072 DOI: 10.1038/s44220-023-00187-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/18/2022] [Accepted: 11/17/2023] [Indexed: 07/02/2024]
Abstract
Major depressive disorder (MDD) is a heterogeneous clinical syndrome with widespread subtle neuroanatomical correlates. Our objective was to identify the neuroanatomical dimensions that characterize MDD and predict treatment response to selective serotonin reuptake inhibitor (SSRI) antidepressants or placebo. In the COORDINATE-MDD consortium, raw MRI data were shared from international samples (N = 1,384) of medication-free individuals with first-episode and recurrent MDD (N = 685) in a current depressive episode of at least moderate severity, but not treatment-resistant depression, as well as healthy controls (N = 699). Prospective longitudinal data on treatment response were available for a subset of MDD individuals (N = 359). Treatments were either SSRI antidepressant medication (escitalopram, citalopram, sertraline) or placebo. Multi-center MRI data were harmonized, and HYDRA, a semi-supervised machine-learning clustering algorithm, was utilized to identify patterns in regional brain volumes that are associated with disease. MDD was optimally characterized by two neuroanatomical dimensions that exhibited distinct treatment responses to placebo and SSRI antidepressant medications. Dimension 1 was characterized by preserved gray and white matter (N = 290 MDD), whereas Dimension 2 was characterized by widespread subtle reductions in gray and white matter (N = 395 MDD) relative to healthy controls. Although there were no significant differences in age of onset, years of illness, number of episodes, or duration of current episode between dimensions, there was a significant interaction effect between dimensions and treatment response. Dimension 1 showed a significant improvement in depressive symptoms following treatment with SSRI medication (51.1%) but limited changes following placebo (28.6%). By contrast, Dimension 2 showed comparable improvements to either SSRI (46.9%) or placebo (42.2%) (β = -18.3, 95% CI (-34.3 to -2.3), P = 0.03). Findings from this case-control study indicate that neuroimaging-based markers can help identify the disease-based dimensions that constitute MDD and predict treatment response.
Collapse
Affiliation(s)
- Cynthia H. Y. Fu
- School of Psychology, University of East London, London, UK
- Centre for Affective Disorders, Department of Psychological Medicine, Institute of Psychiatry, Psychology, and Neuroscience, King’s College London, London, UK
| | - Mathilde Antoniades
- Center for Biomedical Image Computing and Analytics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA USA
| | - Guray Erus
- Center for Biomedical Image Computing and Analytics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA USA
| | - Jose A. Garcia
- Center for Biomedical Image Computing and Analytics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA USA
| | - Yong Fan
- Center for Biomedical Image Computing and Analytics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA USA
| | - Danilo Arnone
- Centre for Affective Disorders, Department of Psychological Medicine, Institute of Psychiatry, Psychology, and Neuroscience, King’s College London, London, UK
| | | | - Taolin Chen
- Huaxi MR Research Center, Department of Radiology, West China Hospital, Sichuan University, Chengdu, China
- Research Unit of Psychoradiology, Chinese Academy of Medical Sciences, Chengdu, China
| | - Ki Sueng Choi
- Nash Family Center for Advanced Circuit Therapeutics, Icahn School of Medicine at Mount Sinai, New York, NY USA
| | - Cherise Chin Fatt
- Department of Psychiatry, Center for Depression Research and Clinical Care, University of Texas Southwestern Medical Center, Dallas, TX USA
| | - Benicio N. Frey
- Department of Psychiatry and Behavioural Neurosciences, McMaster University, Hamilton, Ontario Canada
- Mood Disorders Treatment and Research Centre and Women’s Health Concerns Clinic, St Joseph’s Healthcare Hamilton, Hamilton, Ontario Canada
| | - Vibe G. Frokjaer
- Neurobiology Research Unit, University Hospital Rigshospitalet, Copenhagen, Denmark
- Department of Clinical Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
- Department of Psychiatry, Psychiatric Centre Copenhagen, Copenhagen, Denmark
| | - Melanie Ganz
- Neurobiology Research Unit, University Hospital Rigshospitalet, Copenhagen, Denmark
- Department of Computer Science, University of Copenhagen, Copenhagen, Denmark
| | - Beata R. Godlewska
- Department of Psychiatry, University of Oxford, Oxford, UK
- Oxford Health NHS Foundation Trust, Warneford Hospital, Oxford, UK
| | - Stefanie Hassel
- Mathison Centre for Mental Health Research and Education, University of Calgary, Calgary, Alberta Canada
- Department of Psychiatry, Cumming School of Medicine, University of Calgary, Calgary, Alberta Canada
| | - Keith Ho
- Department of Psychiatry, University Health Network, Toronto, Ontario Canada
| | - Andrew M. McIntosh
- Division of Psychiatry, Royal Edinburgh Hospital, University of Edinburgh, Edinburgh, UK
| | - Kun Qin
- Huaxi MR Research Center, Department of Radiology, West China Hospital, Sichuan University, Chengdu, China
- Research Unit of Psychoradiology, Chinese Academy of Medical Sciences, Chengdu, China
- Department of Radiology, Taihe Hospital, Hubei University of Medicine, Shiyan, China
| | - Susan Rotzinger
- Department of Psychiatry, University Health Network, Toronto, Ontario Canada
- Centre for Depression and Suicide Studies, Unity Health Toronto, Toronto, Ontario Canada
| | - Matthew D. Sacchet
- Meditation Research Program, Department of Psychiatry, Massachusetts General Hospital, Harvard Medical School, Boston, MA USA
| | | | - Haochang Shou
- Center for Biomedical Image Computing and Analytics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA USA
- Penn Statistics in Imaging and Visualization Endeavor (PennSIVE) Center, Department of Biostatistics, Epidemiology and Informatics, University of Pennsylvania, Philadelphia, PA USA
| | - Ashish Singh
- Center for Biomedical Image Computing and Analytics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA USA
| | - Aleks Stolicyn
- Division of Psychiatry, Royal Edinburgh Hospital, University of Edinburgh, Edinburgh, UK
| | - Irina Strigo
- Department of Psychiatry, University of California San Francisco, San Francisco, USA
| | - Stephen C. Strother
- Rotman Research Institute, Baycrest Centre, Toronto, Ontario Canada
- Department of Medical Biophysics, University of Toronto, Toronto, Ontario Canada
| | - Duygu Tosun
- Department of Radiology and Biomedical Imaging, University of California San Francisco, San Francisco, CA USA
| | | | - Dongtao Wei
- School of Psychology, Southwest University, Chongqing, China
| | - Toby Wise
- Department of Neuroimaging, Institute of Psychiatry, Psychology and Neuroscience, King’s College London, London, United Kingdom
| | - Roland Zahn
- Centre for Affective Disorders, Department of Psychological Medicine, Institute of Psychiatry, Psychology, and Neuroscience, King’s College London, London, UK
| | - Ian M. Anderson
- Division of Neuroscience and Experimental Psychology, University of Manchester, Manchester, UK
| | - W. Edward Craighead
- Department of Psychiatry and Behavioral Sciences, Emory University School of Medicine, Atlanta, GA USA
- Department of Psychology, Emory University, Atlanta, GA USA
| | - J. F. William Deakin
- Division of Neuroscience and Experimental Psychology, University of Manchester, Manchester, UK
| | - Boadie W. Dunlop
- Department of Psychiatry and Behavioral Sciences, Emory University School of Medicine, Atlanta, GA USA
| | - Rebecca Elliott
- Division of Neuroscience and Experimental Psychology, University of Manchester, Manchester, UK
| | - Qiyong Gong
- Huaxi MR Research Center, Department of Radiology, West China Hospital, Sichuan University, Chengdu, China
- Research Unit of Psychoradiology, Chinese Academy of Medical Sciences, Chengdu, China
| | - Ian H. Gotlib
- Department of Psychology, Stanford University, Stanford, CA USA
| | | | - Sidney H. Kennedy
- Department of Psychiatry, University Health Network, Toronto, Ontario Canada
- Centre for Depression and Suicide Studies, Unity Health Toronto, Toronto, Ontario Canada
| | - Gitte M. Knudsen
- Neurobiology Research Unit, University Hospital Rigshospitalet, Copenhagen, Denmark
- Department of Clinical Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Helen S. Mayberg
- Nash Family Center for Advanced Circuit Therapeutics, Icahn School of Medicine at Mount Sinai, New York, NY USA
| | | | - Jiang Qiu
- School of Psychology, Southwest University, Chongqing, China
| | - Madhukar H. Trivedi
- Department of Psychiatry, Center for Depression Research and Clinical Care, University of Texas Southwestern Medical Center, Dallas, TX USA
| | - Heather C. Whalley
- Division of Psychiatry, Royal Edinburgh Hospital, University of Edinburgh, Edinburgh, UK
| | - Chao-Gan Yan
- Key Laboratory of Behavioral Science, Institute of Psychology, Chinese Academy of Sciences, Beijing, China
| | - Allan H. Young
- Centre for Affective Disorders, Department of Psychological Medicine, Institute of Psychiatry, Psychology, and Neuroscience, King’s College London, London, UK
- South London and Maudsley NHS Foundation Trust, Bethlem Royal Hospital, London, UK
| | - Christos Davatzikos
- Center for Biomedical Image Computing and Analytics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA USA
| |
Collapse
|
18
|
Vivi E, Seeholzer LR, Nagumanova A, Di Benedetto B. Early Age- and Sex-Dependent Regulation of Astrocyte-Mediated Glutamatergic Synapse Elimination in the Rat Prefrontal Cortex: Establishing an Organotypic Brain Slice Culture Investigating Tool. Cells 2023; 12:2761. [PMID: 38067189 PMCID: PMC10705965 DOI: 10.3390/cells12232761] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2023] [Revised: 11/27/2023] [Accepted: 12/01/2023] [Indexed: 12/18/2023] Open
Abstract
Clinical and pre-clinical studies of neuropsychiatric (NP) disorders show altered astrocyte properties and synaptic networks. These are refined during early postnatal developmental (PND) stages. Thus, investigating early brain maturational trajectories is essential to understand NP disorders. However, animal experiments are highly time-/resource-consuming, thereby calling for alternative methodological approaches. The function of MEGF10 in astrocyte-mediated synapse elimination (pruning) is crucial to refine neuronal networks during development and adulthood. To investigate the impact of MEGF10 during PND in the rat prefrontal cortex (PFC) and its putative role in brain disorders, we established and validated an organotypic brain slice culture (OBSC) system. Using Western blot, we characterized the expression of MEGF10 and the synaptic markers synaptophysin and PSD95 in the cortex of developing pups. We then combined immunofluorescent-immunohistochemistry with Imaris-supported 3D analysis to compare age- and sex-dependent astrocyte-mediated pruning within the PFC in pups and OBSCs. We thereby validated this system to investigate age-dependent astrocyte-mediated changes in pruning during PND. However, further optimizations are required to use OBSCs for revealing sex-dependent differences. In conclusion, OBSCs offer a valid alternative to study physiological astrocyte-mediated synaptic remodeling during PND and might be exploited to investigate the pathomechanisms of brain disorders with aberrant synaptic development.
Collapse
Affiliation(s)
- Eugenia Vivi
- Laboratory of Neuro-Glia Pharmacology, Department of Psychiatry and Psychotherapy, University of Regensburg, 93053 Regensburg, Germany; (E.V.); (L.R.S.); (A.N.)
| | - Lea R. Seeholzer
- Laboratory of Neuro-Glia Pharmacology, Department of Psychiatry and Psychotherapy, University of Regensburg, 93053 Regensburg, Germany; (E.V.); (L.R.S.); (A.N.)
| | - Anastasiia Nagumanova
- Laboratory of Neuro-Glia Pharmacology, Department of Psychiatry and Psychotherapy, University of Regensburg, 93053 Regensburg, Germany; (E.V.); (L.R.S.); (A.N.)
| | - Barbara Di Benedetto
- Laboratory of Neuro-Glia Pharmacology, Department of Psychiatry and Psychotherapy, University of Regensburg, 93053 Regensburg, Germany; (E.V.); (L.R.S.); (A.N.)
- Regensburg Center of Neuroscience, University of Regensburg, 93053 Regensburg, Germany
| |
Collapse
|
19
|
Guimarães DM, Valério-Gomes B, Vianna-Barbosa RJ, Oliveira W, Neves GÂ, Tovar-Moll F, Lent R. Social isolation leads to mild social recognition impairment and losses in brain cellularity. Brain Struct Funct 2023; 228:2051-2066. [PMID: 37690044 DOI: 10.1007/s00429-023-02705-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2023] [Accepted: 08/29/2023] [Indexed: 09/12/2023]
Abstract
Chronic social stress is a significant risk factor for several neuropsychiatric disorders, mainly major depressive disorder (MDD). In this way, patients with clinical depression may display many symptoms, including disrupted social behavior and anxiety. However, like many other psychiatric diseases, MDD has a very complex etiology and pathophysiology. Because social isolation is one of the multiple depression-inducing factors in humans, this study aims to understand better the link between social stress and MDD using an animal model based on social isolation after weaning, which is known to produce social stress in mice. We focused on cellular composition and white matter integrity to establish possible links with the abnormal social behavior that rodents isolated after weaning displayed in the three-chamber social approach and recognition tests. We used the isotropic fractionator method to assess brain cellularity, which allows us to robustly estimate the number of oligodendrocytes and neurons in dissected brain regions. In addition, diffusion tensor imaging (DTI) was employed to analyze white matter microstructure. Results have shown that post-weaning social isolation impairs social recognition and reduces the number of neurons and oligodendrocytes in important brain regions involved in social behavior, such as the anterior neocortex and the olfactory bulb. Despite the limitations of animal models of psychological traits, evidence suggests that behavioral impairments observed in patients might have similar biological underpinnings.
Collapse
Affiliation(s)
- Daniel Menezes Guimarães
- Institute of Biomedical Sciences, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil.
- Robarts Research Institute, University of Western Ontario, London, Canada.
| | - Bruna Valério-Gomes
- Institute of Biomedical Sciences, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
- Institute of Medical Biochemistry Leopoldo de Meis, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| | | | - Washington Oliveira
- Institute of Biomedical Sciences, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| | - Gilda Ângela Neves
- Institute of Biomedical Sciences, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| | | | - Roberto Lent
- Institute of Biomedical Sciences, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil.
- D'Or Institute of Research and Education, Rio de Janeiro, Brazil.
| |
Collapse
|
20
|
Okeowo OM, Oke OO, David GO, Ijomone OM. Caffeine Administration Mitigates Chronic Stress-Induced Behavioral Deficits, Neurochemical Alterations, and Glial Disruptions in Rats. Brain Sci 2023; 13:1663. [PMID: 38137111 PMCID: PMC10741929 DOI: 10.3390/brainsci13121663] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2023] [Revised: 11/11/2023] [Accepted: 11/27/2023] [Indexed: 12/24/2023] Open
Abstract
Prolonged exposure to stress has detrimental effects on health, and the consumption of caffeine, mostly contained in energy drinks, has become a widely adopted stress coping strategy. Currently, there is limited information regarding the effects of caffeine intake on chronic stress exposure. Thus, this study investigated the effects of caffeine administration on chronic stress-induced behavioral deficits, neurochemical alterations, and glial disruptions in experimental rats. Thirty male Wistar rats were randomly assigned to five groups (n = 6): non-stress control, stress control, and caffeine groups of doses 12.5, 25, and 50 mg/kg. The stress control and caffeine groups were subjected to an unpredictable chronic mild stress (UCMS) protocol daily for 14 days. The rats were evaluated for phenotypic and neurobehavioral assessments. Thereafter, the rat brains were processed for biochemical and immunohistochemical assays. Caffeine administration was found to ameliorate behavioral dysfunctions in rats exposed to UCMS. The UCMS-induced changes in brain levels of monoamines, cholinesterases, and some oxidative stress biomarkers were reversed by caffeine. Caffeine administration also produced mild protective effects against UCMS-induced changes in GFAP and Iba-1 expression in stress-specific brain regions. These results showed that low and moderate doses of caffeine reversed most of the stress-induced changes, suggesting its ameliorative potential against chronic stress-induced alterations.
Collapse
Affiliation(s)
- Oritoke M. Okeowo
- Department of Physiology, School of Basic Medical Sciences, Federal University of Technology, Akure 340252, Ondo State, Nigeria; (O.M.O.); (O.O.O.)
- Laboratory for Experimental and Translational Neurobiology, University of Medical Sciences, Ondo 351101, Ondo State, Nigeria
| | - Olanrewaju O. Oke
- Department of Physiology, School of Basic Medical Sciences, Federal University of Technology, Akure 340252, Ondo State, Nigeria; (O.M.O.); (O.O.O.)
| | - Gloria O. David
- Department of Anatomy, School of Basic Medical Sciences, Federal University of Technology, Akure 340252, Ondo State, Nigeria;
| | - Omamuyovwi M. Ijomone
- Laboratory for Experimental and Translational Neurobiology, University of Medical Sciences, Ondo 351101, Ondo State, Nigeria
- Department of Anatomy, School of Basic Medical Sciences, Federal University of Technology, Akure 340252, Ondo State, Nigeria;
- Department of Anatomy, Faculty of Basic Medical Sciences, University of Medical Sciences, Ondo 351101, Ondo State, Nigeria
| |
Collapse
|
21
|
Lao Y, Li Z, Bai Y, Li W, Wang J, Wang Y, Li Q, Dong Z. Glial Cells of the Central Nervous System: A Potential Target in Chronic Prostatitis/Chronic Pelvic Pain Syndrome. Pain Res Manag 2023; 2023:2061632. [PMID: 38023826 PMCID: PMC10661872 DOI: 10.1155/2023/2061632] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Revised: 05/24/2023] [Accepted: 11/07/2023] [Indexed: 12/01/2023]
Abstract
Chronic prostatitis/chronic pelvic pain syndrome (CP/CPPS) is one of the most common diseases of the male urological system while the etiology and treatment of CP/CPPS remain a thorny issue. Cumulative research suggested a potentially important role of glial cells in CP/CPPS. This narrative review retrospected literature and grasped the research process about glial cells and CP/CPPS. Three types of glial cells showed a crucial connection with general pain and psychosocial symptoms. Microglia might also be involved in lower urinary tract symptoms. Only microglia and astrocytes have been studied in the animal model of CP/CPPS. Activated microglia and reactive astrocytes were found to be involved in both pain and psychosocial symptoms of CP/CPPS. The possible mechanism might be to mediate the production of some inflammatory mediators and their interaction with neurons. Glial cells provide a new insight to understand the cause of complex symptoms of CP/CPPS and might become a novel target to develop new treatment options. However, the activation and action mechanism of glial cells in CP/CPPS needs to be further explored.
Collapse
Affiliation(s)
- Yongfeng Lao
- Second Clinical Medical College, Lanzhou University, Lanzhou, China
- Department of Urology, Lanzhou University Second Hospital, Lanzhou, China
| | - Zewen Li
- Second Clinical Medical College, Lanzhou University, Lanzhou, China
- Department of Urology, Lanzhou University Second Hospital, Lanzhou, China
| | - Yanan Bai
- Second Clinical Medical College, Lanzhou University, Lanzhou, China
- Laboratory Medicine Center, Lanzhou University Second Hospital, Lanzhou, China
| | - Weijia Li
- Second Clinical Medical College, Lanzhou University, Lanzhou, China
| | - Jian Wang
- Second Clinical Medical College, Lanzhou University, Lanzhou, China
- Department of Urology, Lanzhou University Second Hospital, Lanzhou, China
| | - Yanan Wang
- Second Clinical Medical College, Lanzhou University, Lanzhou, China
- Department of Urology, Lanzhou University Second Hospital, Lanzhou, China
| | - Qingchao Li
- Second Clinical Medical College, Lanzhou University, Lanzhou, China
- Department of Urology, Lanzhou University Second Hospital, Lanzhou, China
| | - Zhilong Dong
- Second Clinical Medical College, Lanzhou University, Lanzhou, China
- Department of Urology, Lanzhou University Second Hospital, Lanzhou, China
| |
Collapse
|
22
|
Codeluppi SA, Xu M, Bansal Y, Lepack AE, Duric V, Chow M, Muir J, Bagot RC, Licznerski P, Wilber SL, Sanacora G, Sibille E, Duman RS, Pittenger C, Banasr M. Prefrontal cortex astroglia modulate anhedonia-like behavior. Mol Psychiatry 2023; 28:4632-4641. [PMID: 37696873 PMCID: PMC10914619 DOI: 10.1038/s41380-023-02246-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/21/2023] [Revised: 08/17/2023] [Accepted: 08/29/2023] [Indexed: 09/13/2023]
Abstract
Reductions of astroglia expressing glial fibrillary acidic protein (GFAP) are consistently found in the prefrontal cortex (PFC) of patients with depression and in rodent chronic stress models. Here, we examine the consequences of PFC GFAP+ cell depletion and cell activity enhancement on depressive-like behaviors in rodents. Using viral expression of diphtheria toxin receptor in PFC GFAP+ cells, which allows experimental depletion of these cells following diphtheria toxin administration, we demonstrated that PFC GFAP+ cell depletion induced anhedonia-like behavior within 2 days and lasting up to 8 days, but no anxiety-like deficits. Conversely, activating PFC GFAP+ cell activity for 3 weeks using designer receptor exclusively activated by designer drugs (DREADDs) reversed chronic restraint stress-induced anhedonia-like deficits, but not anxiety-like deficits. Our results highlight a critical role of cortical astroglia in the development of anhedonia and further support the idea of targeting astroglia for the treatment of depression.
Collapse
Affiliation(s)
- S A Codeluppi
- Campbell Family Mental Health Research Institute, Centre for Addiction and Mental Health (CAMH), Toronto, ON, Canada
- Department of Pharmacology and Toxicology, University of Toronto, Toronto, ON, Canada
| | - M Xu
- Department of Psychiatry, Yale University, New Haven, CT, USA
| | - Y Bansal
- Campbell Family Mental Health Research Institute, Centre for Addiction and Mental Health (CAMH), Toronto, ON, Canada
| | - A E Lepack
- Department of Psychiatry, Yale University, New Haven, CT, USA
| | - V Duric
- Department of Psychiatry, Yale University, New Haven, CT, USA
- Department of Physiology and Pharmacology, Des Moines University, West Des Moines, IA, USA
| | - M Chow
- Campbell Family Mental Health Research Institute, Centre for Addiction and Mental Health (CAMH), Toronto, ON, Canada
- Department of Pharmacology and Toxicology, University of Toronto, Toronto, ON, Canada
| | - J Muir
- Integrated Program in Neuroscience, McGill University, Montréal, QC, Canada
| | - R C Bagot
- Department of Psychology, McGill University, Montreal, QC, Canada
- Ludmer Centre for Neuroinformatics and Mental Health, Montreal, QC, Canada
| | - P Licznerski
- Department of Psychiatry, Yale University, New Haven, CT, USA
- Department of Internal Medicine, Section of Endocrinology, Yale University, New Haven, CT, USA
| | - S L Wilber
- Department of Psychiatry, Yale University, New Haven, CT, USA
| | - G Sanacora
- Department of Psychiatry, Yale University, New Haven, CT, USA
| | - E Sibille
- Campbell Family Mental Health Research Institute, Centre for Addiction and Mental Health (CAMH), Toronto, ON, Canada
- Department of Pharmacology and Toxicology, University of Toronto, Toronto, ON, Canada
- Department of Psychiatry, University of Toronto, Toronto, ON, Canada
| | - R S Duman
- Department of Psychiatry, Yale University, New Haven, CT, USA
| | - C Pittenger
- Department of Psychiatry, Yale University, New Haven, CT, USA
| | - M Banasr
- Campbell Family Mental Health Research Institute, Centre for Addiction and Mental Health (CAMH), Toronto, ON, Canada.
- Department of Pharmacology and Toxicology, University of Toronto, Toronto, ON, Canada.
- Department of Psychiatry, Yale University, New Haven, CT, USA.
- Department of Psychiatry, University of Toronto, Toronto, ON, Canada.
| |
Collapse
|
23
|
Miguel-Hidalgo JJ. Neuroprotective astroglial response to neural damage and its relevance to affective disorders. EXPLORATION OF NEUROPROTECTIVE THERAPY 2023; 3:328-345. [PMID: 37920189 PMCID: PMC10622120 DOI: 10.37349/ent.2023.00054] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/11/2023] [Accepted: 08/03/2023] [Indexed: 11/04/2023]
Abstract
Astrocytes not only support neuronal function with essential roles in synaptic neurotransmission, action potential propagation, metabolic support, or neuroplastic and developmental adaptations. They also respond to damage or dysfunction in surrounding neurons and oligodendrocytes by releasing neurotrophic factors and other molecules that increase the survival of the supported cells or contribute to mechanisms of structural and molecular restoration. The neuroprotective responsiveness of astrocytes is based on their ability to sense signals of degeneration, metabolic jeopardy and structural damage, and on their aptitude to locally deliver specific molecules to remedy threats to the molecular and structural features of their cellular partners. To the extent that neuronal and other glial cell disturbances are known to occur in affective disorders, astrocyte responsiveness to those disturbances may help to better understand the roles astrocytes play in affective disorders. The astrocytic sensing apparatus supporting those responses involves receptors for neurotransmitters, purines, cell adhesion molecules and growth factors. Astrocytes also share with the immune system the capacity of responding to cytokines released upon neuronal damage. In addition, in responses to specific signals astrocytes release unique factors such as clusterin or humanin that have been shown to exert potent neuroprotective effects. Astrocytes integrate the signals above to further deliver structural lipids, removing toxic metabolites, stabilizing the osmotic environment, normalizing neurotransmitters, providing anti-oxidant protection, facilitating synaptogenesis and acting as barriers to contain varied deleterious signals, some of which have been described in brain regions relevant to affective disorders and related animal models. Since various of the injurious signals that activate astrocytes have been implicated in different aspects of the etiopathology of affective disorders, particularly in relation to the diagnosis of depression, potentiating the corresponding astrocyte neuroprotective responses may provide additional opportunities to improve or complement available pharmacological and behavioral therapies for affective disorders.
Collapse
|
24
|
Hviid CVB, Benros ME, Krogh J, Nordentoft M, Christensen SH. Serum glial fibrillary acidic protein and neurofilament light chain in treatment-naïve patients with unipolar depression. J Affect Disord 2023; 338:341-348. [PMID: 37336248 DOI: 10.1016/j.jad.2023.06.028] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/30/2023] [Revised: 05/22/2023] [Accepted: 06/15/2023] [Indexed: 06/21/2023]
Abstract
BACKGROUND Unipolar depression has been associated with increased levels of glial dysfunction and neurodegeneration biomarkers, such as Glial Fibrillary Acidic Protein (GFAP) and Neurofilament light chain (NfL). However, previous studies were conducted on patients taking psychotropic medication and did not monitor longitudinal associations between disease status and GFAP/NfL. METHODS Treatment-naïve patients with unipolar depression (n = 110) and healthy controls (n = 33) were included. GFAP/NfL serum levels were analyzed by Single Molecule Array at baseline and 3-month follow-up. The primary endpoint was GFAP/NfL levels in patients with depression compared with healthy controls. The secondary endpoint was the associations between GFAP/NfL with depression severity and cognitive function. RESULTS The patients' mean HAM-D17 score was 18.9 (SD 3.9) at baseline and improved by 7.9 (SD 6.8) points during follow-up. GFAP/NfL was quantified in all individuals. At baseline, the adjusted GFAP levels were -16.8 % (95 % CI: -28.8 to -1.9, p = 0.03) lower among patients with depression compared to healthy controls, while NfL levels were comparable between the groups (p = 0.57). In patients with depression, mean NfL levels increased from baseline to follow-up (0.68 pg/ml, p = 0.03), while GFAP levels were unchanged (p = 0.24). We did not find consistent associations between NfL/GFAP with depression scores or cognitive function. CONCLUSION This largest study of serum NfL/GFAP levels in patients with depression did not support previous findings of elevated GFAP/NfL in patients with depression or positive associations with depression severity. Although limited by a small control group, our study may support the presence of glial dysfunction but not damage to neurons in depression.
Collapse
Affiliation(s)
- Claus V B Hviid
- Department of Clinical Biochemistry, Aalborg University Hospital, Aalborg, Denmark; Department of Clinical Biochemistry, Aarhus University Hospital, Aarhus, Denmark; Department of Clinical Medicine, Aalborg University, Aalborg, Denmark; Department of Clinical Medicine, Aarhus University, Aarhus, Denmark.
| | - Michael E Benros
- Copenhagen Research Centre for Mental Health, Mental Health Centre Copenhagen, Copenhagen University Hospital, Denmark; Department of Clinical Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, Denmark
| | - Jesper Krogh
- Department of Endocrinology and Metabolism, Copenhagen University Hospital, Rigshospitalet, Copenhagen, Denmark
| | - Merete Nordentoft
- Copenhagen Research Centre for Mental Health, Mental Health Centre Copenhagen, Copenhagen University Hospital, Denmark
| | - Silje H Christensen
- Department of Clinical Biochemistry, Aarhus University Hospital, Aarhus, Denmark
| |
Collapse
|
25
|
Miguel-Hidalgo JJ, Hearn E, Moulana M, Saleem K, Clark A, Holmes M, Wadhwa K, Kelly I, Stockmeier CA, Rajkowska G. Reduced length of nodes of Ranvier and altered proteoglycan immunoreactivity in prefrontal white matter in major depressive disorder and chronically stressed rats. Sci Rep 2023; 13:16419. [PMID: 37775676 PMCID: PMC10541441 DOI: 10.1038/s41598-023-43627-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2023] [Accepted: 09/26/2023] [Indexed: 10/01/2023] Open
Abstract
Major depressive disorder (MDD) and chronic unpredictable stress (CUS) in animals feature comparable cellular and molecular disturbances that involve neurons and glial cells in gray and white matter (WM) in prefrontal brain areas. These same areas demonstrate disturbed connectivity with other brain regions in MDD and stress-related disorders. Functional connectivity ultimately depends on signal propagation along WM myelinated axons, and thus on the integrity of nodes of Ranvier (NRs) and their environment. Various glia-derived proteoglycans interact with NR axonal proteins to sustain NR function. It is unclear whether NR length and the content of associated proteoglycans is altered in prefrontal cortex (PFC) WM of human subjects with MDD and in experimentally stressed animals. The length of WM NRs in histological sections from the PFC of 10 controls and 10 MDD subjects, and from the PFC of control and CUS rats was measured. In addition, in WM of the same brain region, five proteoglycans, tenascin-R and NR protein neurofascin were immunostained or their levels measured with western blots. Analysis of covariance and t-tests were used for group comparisons. There was dramatic reduction of NR length in PFC WM in both MDD and CUS rats. Proteoglycan BRAL1 immunostaining was reduced at NRs and in overall WM of MDD subjects, as was versican in overall WM. Phosphacan immunostaining and levels were increased in both in MDD and CUS. Neurofascin immunostaining at NRs and in overall WM was significantly increased in MDD. Reduced length of NRs and increased phosphacan and neurocan in MDD and stressed animals suggest that morphological and proteoglycan changes at NRs in depression may be related to stress exposure and contribute to connectivity alterations. However, differences between MDD and CUS for some NR related markers may point to other mechanisms affecting the structure and function of NRs in MDD.
Collapse
Affiliation(s)
- José Javier Miguel-Hidalgo
- Department of Psychiatry and Human Behavior, University of Mississippi Medical Center, 2500 N. State Street, Jackson, MS, 39216, USA.
| | - Erik Hearn
- Department of Psychiatry and Human Behavior, University of Mississippi Medical Center, 2500 N. State Street, Jackson, MS, 39216, USA
| | - Mohadetheh Moulana
- Department of Psychiatry and Human Behavior, University of Mississippi Medical Center, 2500 N. State Street, Jackson, MS, 39216, USA
| | - Khunsa Saleem
- Department of Psychiatry and Human Behavior, University of Mississippi Medical Center, 2500 N. State Street, Jackson, MS, 39216, USA
| | - Austin Clark
- Department of Psychiatry and Human Behavior, University of Mississippi Medical Center, 2500 N. State Street, Jackson, MS, 39216, USA
| | - Maggie Holmes
- Department of Psychiatry and Human Behavior, University of Mississippi Medical Center, 2500 N. State Street, Jackson, MS, 39216, USA
| | - Kashish Wadhwa
- Department of Psychiatry and Human Behavior, University of Mississippi Medical Center, 2500 N. State Street, Jackson, MS, 39216, USA
| | - Isabella Kelly
- Department of Psychiatry and Human Behavior, University of Mississippi Medical Center, 2500 N. State Street, Jackson, MS, 39216, USA
| | - Craig Allen Stockmeier
- Department of Psychiatry and Human Behavior, University of Mississippi Medical Center, 2500 N. State Street, Jackson, MS, 39216, USA
| | - Grazyna Rajkowska
- Department of Psychiatry and Human Behavior, University of Mississippi Medical Center, 2500 N. State Street, Jackson, MS, 39216, USA
| |
Collapse
|
26
|
Zhang YM, Qi YB, Gao YN, Chen WG, Zhou T, Zang Y, Li J. Astrocyte metabolism and signaling pathways in the CNS. Front Neurosci 2023; 17:1217451. [PMID: 37732313 PMCID: PMC10507181 DOI: 10.3389/fnins.2023.1217451] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2023] [Accepted: 08/18/2023] [Indexed: 09/22/2023] Open
Abstract
Astrocytes comprise half of the cells in the central nervous system and play a critical role in maintaining metabolic homeostasis. Metabolic dysfunction in astrocytes has been indicated as the primary cause of neurological diseases, such as depression, Alzheimer's disease, and epilepsy. Although the metabolic functionalities of astrocytes are well known, their relationship to neurological disorders is poorly understood. The ways in which astrocytes regulate the metabolism of glucose, amino acids, and lipids have all been implicated in neurological diseases. Metabolism in astrocytes has also exhibited a significant influence on neuron functionality and the brain's neuro-network. In this review, we focused on metabolic processes present in astrocytes, most notably the glucose metabolic pathway, the fatty acid metabolic pathway, and the amino-acid metabolic pathway. For glucose metabolism, we focused on the glycolysis pathway, pentose-phosphate pathway, and oxidative phosphorylation pathway. In fatty acid metabolism, we followed fatty acid oxidation, ketone body metabolism, and sphingolipid metabolism. For amino acid metabolism, we summarized neurotransmitter metabolism and the serine and kynurenine metabolic pathways. This review will provide an overview of functional changes in astrocyte metabolism and provide an overall perspective of current treatment and therapy for neurological disorders.
Collapse
Affiliation(s)
- Yong-mei Zhang
- School of Pharmaceutical Science and Technology, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou, Zhejiang, China
- National Center for Drug Screening, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Ying-bei Qi
- School of Pharmaceutical Science and Technology, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou, Zhejiang, China
- National Center for Drug Screening, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Ya-nan Gao
- National Center for Drug Screening, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China
- Institute of Pharmaceutical Sciences, China Pharmaceutical University, Nanjing, Jiangsu, China
| | - Wen-gang Chen
- National Center for Drug Screening, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China
- Institute of Pharmaceutical Sciences, China Pharmaceutical University, Nanjing, Jiangsu, China
| | - Ting Zhou
- National Center for Drug Screening, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Yi Zang
- National Center for Drug Screening, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Jia Li
- School of Pharmaceutical Science and Technology, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou, Zhejiang, China
- National Center for Drug Screening, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China
- University of Chinese Academy of Sciences, Beijing, China
- Institute of Pharmaceutical Sciences, China Pharmaceutical University, Nanjing, Jiangsu, China
| |
Collapse
|
27
|
An L, Shen J. In vivo magnetic resonance spectroscopy by transverse relaxation encoding with narrowband decoupling. Sci Rep 2023; 13:12211. [PMID: 37500714 PMCID: PMC10374641 DOI: 10.1038/s41598-023-39375-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2023] [Accepted: 07/25/2023] [Indexed: 07/29/2023] Open
Abstract
Cell pathology in neuropsychiatric disorders has mainly been accessible by analyzing postmortem tissue samples. Although molecular transverse relaxation informs local cellular microenvironment via molecule-environment interactions, precise determination of the transverse relaxation times of molecules with scalar couplings (J), such as glutamate and glutamine, has been difficult using in vivo magnetic resonance spectroscopy (MRS) technologies, whose approach to measuring transverse relaxation has not changed for decades. We introduce an in vivo MRS technique that utilizes frequency-selective editing pulses to achieve homonuclear decoupled chemical shift encoding in each column of the acquired two-dimensional dataset, freeing up the entire row dimension for transverse relaxation encoding with J-refocusing. This results in increased spectral resolution, minimized background signals, and markedly broadened dynamic range for transverse relaxation encoding. The in vivo within-subject coefficients of variation for the transverse relaxation times of glutamate and glutamine, measured using the proposed method in the human brain at 7 T, were found to be approximately 4%. Since glutamate predominantly resides in glutamatergic neurons and glutamine in glia in the brain, this noninvasive technique provides a way to probe cellular pathophysiology in neuropsychiatric disorders for characterizing disease progression and monitoring treatment response in a cell type-specific manner in vivo.
Collapse
Affiliation(s)
- Li An
- Molecular Imaging Branch, National Institute of Mental Health, National Institutes of Health, Bethesda, MD, USA.
- Molecular Imaging Branch, National Institute of Mental Health, National Institutes of Health, Building 10, Room 3D46, 10 Center Drive, MSC 1216, Bethesda, MD, 20892-1216, USA.
| | - Jun Shen
- Molecular Imaging Branch, National Institute of Mental Health, National Institutes of Health, Bethesda, MD, USA
| |
Collapse
|
28
|
Codeluppi S, Xu M, Bansal Y, Lepack A, Duric V, Chow M, Muir. J, Bagot R, Licznerski P, Wilber S, Sanacora G, Sibille E, Duman R, Pittenger C, Banasr M. Prefrontal Cortex Astroglia Modulate Anhedonia-like Behavior. RESEARCH SQUARE 2023:rs.3.rs-3093428. [PMID: 37461693 PMCID: PMC10350119 DOI: 10.21203/rs.3.rs-3093428/v1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/26/2023]
Abstract
Reductions of astroglia expressing glial fibrillary acidic protein (GFAP) are consistently found in the prefrontal cortex (PFC) of patients with depression and in rodent chronic stress models. Here, we examine the consequences of PFC GFAP+ cell depletion and cell activity enhancement on depressive-like behaviors in rodents. Using viral expression of diphtheria toxin receptor in PFC GFAP+ cells, which allows experimental depletion of these cells following diphtheria toxin administration, we demonstrated that PFC GFAP+ cell depletion induced anhedonia-like behavior within 2 days and lasting up to 8 days, but no anxiety-like deficits. Conversely, activating PFC GFAP+ cell activity for 3 weeks using designer receptor exclusively activated by designer drugs (DREADDs) reversed chronic restraint stress-induced anhedonia-like deficits, but not anxiety-like deficits. Our results highlight a critical role of cortical astroglia in the development of anhedonia and further support the idea of targeting astroglia for the treatment of depression.
Collapse
Affiliation(s)
- S.A. Codeluppi
- Campbell Family Mental Health Research Institute, Centre for Addiction and Mental Health (CAMH), Toronto, Canada
- Department of Pharmacology and Toxicology, University of Toronto, Toronto, Canada
| | - M. Xu
- Department of Psychiatry, Yale University, New Haven, USA
| | - Y. Bansal
- Campbell Family Mental Health Research Institute, Centre for Addiction and Mental Health (CAMH), Toronto, Canada
- Department of Pharmacology and Toxicology, University of Toronto, Toronto, Canada
| | - A.E. Lepack
- Department of Psychiatry, Yale University, New Haven, USA
| | - V. Duric
- Department of Psychiatry, Yale University, New Haven, USA
- Department of Physiology and Pharmacology, Des Moines University, Iowa, USA
| | - M. Chow
- Campbell Family Mental Health Research Institute, Centre for Addiction and Mental Health (CAMH), Toronto, Canada
- Department of Pharmacology and Toxicology, University of Toronto, Toronto, Canada
| | - J. Muir.
- Integrated Program in Neuroscience, McGill University, Montréal, Canada
| | - R.C. Bagot
- Department of Psychology, McGill University, Montreal, Canada
- Ludmer Centre for Neuroinformatics and Mental Health, Montreal, QC, Canada
| | - P. Licznerski
- Department of Psychiatry, Yale University, New Haven, USA
- Department of Internal Medicine, Section of Endocrinology, Yale University, New Haven, USA
| | - S.L. Wilber
- Department of Psychiatry, Yale University, New Haven, USA
| | - G. Sanacora
- Department of Psychiatry, Yale University, New Haven, USA
| | - E. Sibille
- Campbell Family Mental Health Research Institute, Centre for Addiction and Mental Health (CAMH), Toronto, Canada
- Department of Pharmacology and Toxicology, University of Toronto, Toronto, Canada
- Department of Psychiatry, University of Toronto, Toronto, Canada
| | - R.S. Duman
- Department of Psychiatry, Yale University, New Haven, USA
| | - C. Pittenger
- Department of Psychiatry, Yale University, New Haven, USA
| | - M. Banasr
- Campbell Family Mental Health Research Institute, Centre for Addiction and Mental Health (CAMH), Toronto, Canada
- Department of Pharmacology and Toxicology, University of Toronto, Toronto, Canada
- Department of Psychiatry, Yale University, New Haven, USA
- Department of Psychiatry, University of Toronto, Toronto, Canada
| |
Collapse
|
29
|
Kim HJ, You MJ, Sung S, Rim C, Kwon MS. Possible involvement of microglial P2RY12 and peripheral IL-10 in postpartum depression. Front Cell Neurosci 2023; 17:1162966. [PMID: 37396924 PMCID: PMC10309556 DOI: 10.3389/fncel.2023.1162966] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2023] [Accepted: 05/19/2023] [Indexed: 07/04/2023] Open
Abstract
Postpartum depression (PPD) is another type of depression, including emotional fluctuation, fatigue, and anxiety. Based on the specific event like giving birth, it can be speculated that PPD might have its specific mechanism. Here, we confirmed that dexamethasone (DEX) administration during pregnancy (gestational days 16-18) induced depressive- and anxiety-like behaviors in dam (DEX-dam) after weaning period (3 weeks). DEX-dam showed anxiety-like behaviors in open-field test (OFT) and light-dark test (LD). In addition, DEX-dam exhibited depressive-like behaviors with the increased immobility time in forced swimming test (TST). Molecular analysis confirmed that microglia, rather than neurons, astrocytes, and oligodendrocytes, are involved in anxiety-/depressive-like behaviors. Notably, P2ry12, homeostatic gene, and purinoceptor, along with hyper-ramified form, were reduced in the hippocampus of DEX-dam. In addition, we found that IL-10 mRNA was reduced in lymph nodes without alteration of pro-inflammatory cytokines, such as TNF-α, IL-1β, and IL-6. Interestingly, anxiety-/depressive-like behaviors of DEX-dam were restored with the normalization of P2ry12 and IL-10 after 10 weeks postpartum without antidepressants. Our results propose that stress hormone elevation during pregnancy might be associated with PPD via microglial P2RY12 and peripheral IL-10.
Collapse
|
30
|
Chen LQ, Lv XJ, Guo QH, Lv SS, Lv N, Xu WD, Yu J, Zhang YQ. Asymmetric activation of microglia in the hippocampus drives anxiodepressive consequences of trigeminal neuralgia in rodents. Br J Pharmacol 2023; 180:1090-1113. [PMID: 36443951 DOI: 10.1111/bph.15994] [Citation(s) in RCA: 17] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2022] [Revised: 09/26/2022] [Accepted: 11/14/2022] [Indexed: 11/30/2022] Open
Abstract
BACKGROUND AND PURPOSE Patients suffering from trigeminal neuralgia are often accompanied by anxiety and depression. Microglia-mediated neuroinflammation is involved in the development of neuropathic pain and anxiodepression pathogenesis. Whether and how microglia are involved in trigeminal neuralgia-induced anxiodepression remains unclear. EXPERIMENTAL APPROACH Unilateral constriction of the infraorbital nerve (CION) was performed to establish trigeminal neuralgia in rat and mouse models. Mechanical allodynia and anxiodepressive-like behaviours were measured. Optogenetic and pharmacological manipulations were employed to investigate the role of hippocampal microglia in anxiety and depression caused by trigeminal neuralgia. KEY RESULTS Trigeminal neuralgia activated ipsilateral but not contralateral hippocampal microglia, up-regulated ipsilateral hippocampal ATP and interleukin-1β (IL-1β) levels, impaired ipsilateral hippocampal long-term potentiation (LTP) and induced anxiodepressive-like behaviours in a time-dependent manner in rodents. Pharmacological or optogenetic inhibition of ipsilateral hippocampal microglia completely blocked trigeminal neuralgia-induced anxiodepressive-like behaviours. Activation of unilateral hippocampal microglia directly elicited an anxiodepressive state and impaired hippocampal LTP. Knockdown of ipsilateral hippocampal P2X7 receptors prevented trigeminal neuralgia-induced microglial activation and anxiodepressive-like behaviours. Furthermore, we demonstrated that microglia-derived IL-1β mediated microglial activation-induced anxiodepressive-like behaviours and LTP impairment. CONCLUSION AND IMPLICATIONS These findings suggest that priming of microglia with ATP/P2X7 receptors in the ipsilateral hippocampus drives pain-related anxiodepressive-like behaviours via IL-1β. An asymmetric role of the bilateral hippocampus in trigeminal neuralgia-induced anxiety and depression was uncovered. The approaches targeting microglia and P2X7 signalling might offer novel therapies for trigeminal neuralgia-related anxiety and depressive disorder.
Collapse
Affiliation(s)
- Li-Qiang Chen
- State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Department of Translational Neuroscience, Jing'an District Centre Hospital of Shanghai, Institutes of Brain Science, Fudan University, Shanghai, China
| | - Xue-Jing Lv
- State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Department of Translational Neuroscience, Jing'an District Centre Hospital of Shanghai, Institutes of Brain Science, Fudan University, Shanghai, China
| | - Qing-Huan Guo
- State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Department of Translational Neuroscience, Jing'an District Centre Hospital of Shanghai, Institutes of Brain Science, Fudan University, Shanghai, China
| | - Su-Su Lv
- State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Department of Translational Neuroscience, Jing'an District Centre Hospital of Shanghai, Institutes of Brain Science, Fudan University, Shanghai, China
| | - Ning Lv
- State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Department of Translational Neuroscience, Jing'an District Centre Hospital of Shanghai, Institutes of Brain Science, Fudan University, Shanghai, China
| | - Wen-Dong Xu
- State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Department of Translational Neuroscience, Jing'an District Centre Hospital of Shanghai, Institutes of Brain Science, Fudan University, Shanghai, China.,Department of Hand Surgery, Huashan Hospital, Fudan University, Shanghai, China
| | - Jin Yu
- Department of Integrative Medicine and Neurobiology, State Key Laboratory of Medical Neurobiology, School of Basic Medical Sciences, Shanghai Medical College, Fudan University, Shanghai, China
| | - Yu-Qiu Zhang
- State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Department of Translational Neuroscience, Jing'an District Centre Hospital of Shanghai, Institutes of Brain Science, Fudan University, Shanghai, China
| |
Collapse
|
31
|
Truter N, Malan L, Essop MF. Glial cell activity in cardiovascular diseases and risk of acute myocardial infarction. Am J Physiol Heart Circ Physiol 2023; 324:H373-H390. [PMID: 36662577 DOI: 10.1152/ajpheart.00332.2022] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
Growing evidence indicates that the pathophysiological link between the brain and heart underlies cardiovascular diseases, specifically acute myocardial infarction (AMI). Astrocytes are the most abundant glial cells in the central nervous system and provide support/protection for neurons. Astrocytes and peripheral glial cells are emerging as key modulators of the brain-heart axis in AMI, by affecting sympathetic nervous system activity (centrally and peripherally). This review, therefore, aimed to gain an improved understanding of glial cell activity and AMI risk. This includes discussions on the potential role of contributing factors in AMI risk, i.e., autonomic nervous system dysfunction, glial-neurotrophic and ischemic risk markers [glial cell line-derived neurotrophic factor (GDNF), astrocytic S100 calcium-binding protein B (S100B), silent myocardial ischemia, and cardiac troponin T (cTnT)]. Consideration of glial cell activity and related contributing factors in certain brain-heart disorders, namely, blood-brain barrier dysfunction, myocardial ischemia, and chronic psychological stress, may improve our understanding regarding the pathological role that glial dysfunction can play in the development/onset of AMI. Here, findings demonstrated perturbations in glial cell activity and contributing factors (especially sympathetic activity). Moreover, emerging AMI risk included sympathovagal imbalance, low GDNF levels reflecting prothrombic risk, hypertension, and increased ischemia due to perfusion deficits (indicated by S100B and cTnT levels). Such perturbations impacted blood-barrier function and perfusion that were exacerbated during psychological stress. Thus, greater insights and consideration regarding such biomarkers may help drive future studies investigating brain-heart axis pathologies to gain a deeper understanding of astrocytic glial cell contributions and unlock potential novel therapies for AMI.
Collapse
Affiliation(s)
- Nina Truter
- Centre for Cardio-metabolic Research in Africa, Department of Physiological Sciences, Stellenbosch University, Cape Town, South Africa
| | - Leoné Malan
- Technology Transfer and Innovation-Support Office, North-West University, Potchefstroom, South Africa
| | - M Faadiel Essop
- Centre for Cardio-metabolic Research in Africa, Division of Medical Physiology, Faculty of Medicine and Health Sciences, Stellenbosch University, Cape Town, South Africa
| |
Collapse
|
32
|
An L, Shen J. In Vivo Magnetic Resonance Spectroscopy by J-Locked Chemical Shift Encoding for Determination of Neurochemical Concentration and Transverse Relaxation Time. ARXIV 2023:arXiv:2303.14230v1. [PMID: 37064530 PMCID: PMC10104196] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 04/18/2023]
Abstract
Cell pathology in neuropsychiatric disorders has mainly been accessible by analyzing postmortem tissue samples. Although molecular transverse relaxation informs local cellular microenvironment via molecule-environment interactions, precise determination of the transverse relaxation times of molecules with scalar couplings (J), such as glutamate and glutamine, is difficult using current in vivo magnetic resonance spectroscopy (MRS) technologies, whose approach to measuring transverse relaxation has not changed for decades. We introduce an in vivo MRS technique that achieves chemical shift encoding with selectively locked J-couplings in each column of the acquired two-dimensional dataset, freeing up the entire row dimension for transverse relaxation encoding. This results in increased spectral resolution, minimized background signals, and markedly broadened dynamic range for transverse relaxation encoding. This technique enables determination of the transverse relaxation times of glutamate and glutamine in vivo with unprecedented high precision. Since glutamate predominantly resides in glutamatergic neurons and glutamine in glia in the brain, this noninvasive technique provides a way to probe cellular pathophysiology in neuropsychiatric disorders for characterizing disease progression and monitoring treatment response in a cell type-specific manner in vivo.
Collapse
Affiliation(s)
- Li An
- National Institute of Mental Health, National Institutes of Health, Bethesda, MD, USA
| | - Jun Shen
- National Institute of Mental Health, National Institutes of Health, Bethesda, MD, USA
| |
Collapse
|
33
|
Jiang H, Zhang Y, Wang ZZ, Chen NH. Connexin 43: An Interface Connecting Neuroinflammation to Depression. Molecules 2023; 28:molecules28041820. [PMID: 36838809 PMCID: PMC9961786 DOI: 10.3390/molecules28041820] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2022] [Revised: 02/08/2023] [Accepted: 02/09/2023] [Indexed: 02/17/2023] Open
Abstract
Major depressive disorder (MDD) is a leading chronic mental illness worldwide, characterized by anhedonia, pessimism and even suicidal thoughts. Connexin 43 (Cx43), mainly distributed in astrocytes of the brain, is by far the most widely and ubiquitously expressed connexin in almost all vital organs. Cx43 forms gap junction channels in the brain, which mediate energy exchange and effectively maintain physiological homeostasis. Increasing evidence suggests the crucial role of Cx43 in the pathogenesis of MDD. Neuroinflammation is one of the most common pathological features of the central nervous system dysfunctions. Inflammatory factors are abnormally elevated in patients with depression and are closely related to nearly all links of depression. After activating the inflammatory pathway in the brain, the release and uptake of glutamate and adenosine triphosphate, through Cx43 in the synaptic cleft, would be affected. In this review, we have summarized the association between Cx43 and neuroinflammation, the cornerstones linking inflammation and depression, and Cx43 abnormalities in depression. We also discuss the significant association of Cx43 in inflammation and depression, which will help to explore new antidepressant drug targets.
Collapse
Affiliation(s)
- Hong Jiang
- State Key Laboratory of Bioactive Substances and Functions of Natural Medicines, Institute of Materia Medica & Neuroscience Center, Chinese Academy of Medical, Science and Peking Union Medical College, Beijing 100050, China
| | - Yi Zhang
- Department of Anatomy, School of Chinese Medicine, Beijing University of Chinese Medicine, Beijing 102488, China
| | - Zhen-Zhen Wang
- State Key Laboratory of Bioactive Substances and Functions of Natural Medicines, Institute of Materia Medica & Neuroscience Center, Chinese Academy of Medical, Science and Peking Union Medical College, Beijing 100050, China
- Correspondence: (Z.-Z.W.); (N.-H.C.); Tel.: +86-10-6316-5182 (Z.-Z.W.); +86-10-63165177 (N.-H.C.)
| | - Nai-Hong Chen
- State Key Laboratory of Bioactive Substances and Functions of Natural Medicines, Institute of Materia Medica & Neuroscience Center, Chinese Academy of Medical, Science and Peking Union Medical College, Beijing 100050, China
- Correspondence: (Z.-Z.W.); (N.-H.C.); Tel.: +86-10-6316-5182 (Z.-Z.W.); +86-10-63165177 (N.-H.C.)
| |
Collapse
|
34
|
Schuurmans IK, Lamballais S, Zou R, Muetzel RL, Hillegers MHJ, Cecil CAM, Luik AI. 10-Year trajectories of depressive symptoms and subsequent brain health in middle-aged adults. J Psychiatr Res 2023; 158:126-133. [PMID: 36584490 DOI: 10.1016/j.jpsychires.2022.12.018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/07/2022] [Revised: 12/09/2022] [Accepted: 12/19/2022] [Indexed: 12/24/2022]
Abstract
Depressive symptoms differ in severity and stability over time. Trajectories depicting these changes, particularly those with high late-life depressive symptoms, have been associated with poor brain health at old age. To better understand these associations across the lifespan, we examined depressive symptoms trajectories in relation to brain health in middle age. We included 1676 participants from the ORACLE Study, all were expecting a child at baseline (mean age 32.8, 66.6% women). Depressive symptoms were assessed at baseline, 3 years and 10 years after baseline. Brain health (global brain volume, subcortical structures volume, white matter lesions, cerebral microbleeds, cortical thickness, cortical surface area) was assessed 15 years after baseline. Using k-means clustering, four depressive symptoms trajectories were identified: low, low increasing, decreasing, and high increasing symptoms. The high increasing trajectory was associated with smaller brain volume compared to low symptoms, not surviving multiple testing correction. The low increasing trajectory was associated with more cortical thickness in a small region encompassing the right lateral occipital cortex compared to low symptoms. These findings show that longitudinal depressive symptoms trajectories are only minimally associated with brain health in middle age, suggesting that associations may only emerge later in life.
Collapse
Affiliation(s)
- Isabel K Schuurmans
- Department of Epidemiology, Erasmus MC University Medical Center Rotterdam, Rotterdam, the Netherlands; The Generation R Study Group, Erasmus MC University Medical Center Rotterdam, Rotterdam, the Netherlands
| | - Sander Lamballais
- Department of Clinical Genetics, Erasmus MC University Medical Center Rotterdam, Rotterdam, the Netherlands
| | - Runyu Zou
- Department of Child and Adolescent Psychiatry and Psychology, Erasmus MC University Medical Center Rotterdam, Rotterdam, the Netherlands; Julius Center for Health Sciences and Primary Care, University Medical Center Utrecht, Utrecht University, Utrecht, the Netherlands
| | - Ryan L Muetzel
- Department of Child and Adolescent Psychiatry and Psychology, Erasmus MC University Medical Center Rotterdam, Rotterdam, the Netherlands
| | - Manon H J Hillegers
- Department of Child and Adolescent Psychiatry and Psychology, Erasmus MC University Medical Center Rotterdam, Rotterdam, the Netherlands
| | - Charlotte A M Cecil
- Department of Epidemiology, Erasmus MC University Medical Center Rotterdam, Rotterdam, the Netherlands; Department of Child and Adolescent Psychiatry and Psychology, Erasmus MC University Medical Center Rotterdam, Rotterdam, the Netherlands; Molecular Epidemiology, Department of Biomedical Data Sciences, Leiden University Medical Center, Leiden, the Netherlands
| | - Annemarie I Luik
- Department of Epidemiology, Erasmus MC University Medical Center Rotterdam, Rotterdam, the Netherlands; Department of Child and Adolescent Psychiatry and Psychology, Erasmus MC University Medical Center Rotterdam, Rotterdam, the Netherlands.
| |
Collapse
|
35
|
Nowak M, Schindler S, Storch M, Geyer S, Schönknecht P. Mammillary body and hypothalamic volumes in mood disorders. J Psychiatr Res 2023; 158:216-225. [PMID: 36603316 DOI: 10.1016/j.jpsychires.2022.12.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/04/2022] [Revised: 10/20/2022] [Accepted: 12/10/2022] [Indexed: 12/15/2022]
Abstract
We have previously reported an in vivo enlargement of the left hypothalamus in mood disorders using 7 T magnetic resonance imaging. The aim of this follow-up study was to find out whether the hypothalamic volume difference may be located in the mammillary bodies (MB) rather than being widespread across the hypothalamus. We developed and evaluated a detailed segmentation algorithm that allowed a reliable segmentation of the MBs, and applied it to 20 unmedicated (MDDu) and 20 medicated patients with major depressive disorder, 21 medicated patients with bipolar disorder, and 23 controls. 20 out of 23 healthy controls were matched to the MDDu. We tested for group differences in MB and hypothalamus without MB (HTh) volumes using analyses of covariance. Associations between both volumes of interest were analysed using bivariate and partial correlations. In contrast to postmortem findings, we found no statistically significant differences of the MB volumes between the study groups. Left HTh volumes differed significantly across the study groups after correction for intracranial volume (ICV) and for ICV and sex. Our result of an HTh enlargement in mood disorders was confirmed by a paired t-test between the matched pairs of MDDu and healthy controls using the native MB and HTh volumes. In the whole sample, MB volumes correlated significantly with the ipsilateral HTh volumes. Our results indicate a structural relationship between both volumes, and that our previous in vivo finding of a hypothalamus enlargement does not extend to the MB, but is limited to the HTh. The enlargement is more likely related to the dysregulation of the HPA axis than to cognitive dysfunctions accompanying mood disorders.
Collapse
Affiliation(s)
- Markus Nowak
- University Hospital Leipzig, Department of Psychiatry and Psychotherapy, Semmelweisstraße 10, 04103, Leipzig, Germany; Charité University of Medicine, Department of Psychiatry and Psychotherapy and St. Hedwig Hospital Berlin, Große Hamburger Straße 5-11, 10115, Berlin, Germany.
| | - Stephanie Schindler
- University Hospital Leipzig, Department of Psychiatry and Psychotherapy, Semmelweisstraße 10, 04103, Leipzig, Germany
| | - Melanie Storch
- University Hospital Leipzig, Department of Psychiatry and Psychotherapy, Semmelweisstraße 10, 04103, Leipzig, Germany
| | - Stefan Geyer
- Max Planck Institute for Human Cognitive and Brain Sciences, Department of Neurophysics, Stephanstraße 1a, 04103, Leipzig, Germany
| | - Peter Schönknecht
- University Hospital Leipzig, Department of Psychiatry and Psychotherapy, Semmelweisstraße 10, 04103, Leipzig, Germany; University Hospital Leipzig, Out-patient Department for Sexual-therapeutic Prevention and Forensic Psychiatry, Semmelweisstraße 10, 04103, Leipzig, Germany; Academic State Hospital Arnsdorf, Hufelandstraße 15, 01477, Arnsdorf, Germany
| |
Collapse
|
36
|
Gabryelska A, Turkiewicz S, Ditmer M, Sochal M. Neurotrophins in the Neuropathophysiology, Course, and Complications of Obstructive Sleep Apnea-A Narrative Review. Int J Mol Sci 2023; 24:1808. [PMID: 36768132 PMCID: PMC9916304 DOI: 10.3390/ijms24031808] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2022] [Revised: 12/04/2022] [Accepted: 01/11/2023] [Indexed: 01/18/2023] Open
Abstract
Obstructive sleep apnea (OSA) is a disorder characterized by chronic intermittent hypoxia and sleep fragmentation due to recurring airway collapse during sleep. It is highly prevalent in modern societies, and due to its pleiotropic influence on the organism and numerous sequelae, it burdens patients and physicians. Neurotrophins (NTs), proteins that modulate the functioning and development of the central nervous system, such as brain-derived neurotrophic factor (BDNF), have been associated with OSA, primarily due to their probable involvement in offsetting the decline in cognitive functions which accompanies OSA. However, NTs influence multiple aspects of biological functioning, such as immunity. Thus, extensive evaluation of their role in OSA might enlighten the mechanism behind some of its elusive features, such as the increased risk of developing an immune-mediated disease or the association of OSA with cardiovascular diseases. In this review, we examine the interactions between NTs and OSA and discuss their contribution to OSA pathophysiology, complications, as well as comorbidities.
Collapse
Affiliation(s)
- Agata Gabryelska
- Department of Sleep Medicine and Metabolic Disorders, Medical University of Lodz, 90-419 Lodz, Poland
| | | | | | - Marcin Sochal
- Department of Sleep Medicine and Metabolic Disorders, Medical University of Lodz, 90-419 Lodz, Poland
| |
Collapse
|
37
|
Zeb S, Ye H, Liu Y, Du HP, Guo Y, Zhu YM, Ni Y, Zhang HL, Xu Y. Necroptotic kinases are involved in the reduction of depression-induced astrocytes and fluoxetine's inhibitory effects on necroptotic kinases. Front Pharmacol 2023; 13:1060954. [PMID: 36686688 PMCID: PMC9847570 DOI: 10.3389/fphar.2022.1060954] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2022] [Accepted: 11/29/2022] [Indexed: 01/06/2023] Open
Abstract
The role of astrocytes in major depressive disorder has received great attention. Increasing evidence indicates that decreased astrocyte numbers in the hippocampus may be associated with depression, but the role of necroptosis in depression is unknown. Here, in a chronic unpredictable mild stress (CUMS) mouse model and a corticosterone (Cort)-induced human astrocyte injury model in vitro, we found that mice treated with chronic unpredictable mild stress for 3-5 weeks presented depressive-like behaviors and reduced body weight gain, accompanied by a reduction in astrocytes and a decrease in astrocytic brain-derived neurotropic factors (BDNF), by activation of necroptotic kinases, including RIPK1 (receptor-interacting protein kinase 1)/p-RIPK1, RIPK3 (receptor-interacting protein kinase 3)/p-RIPK3 and MLKL (mixed lineage kinase domain-like protein)/p-MLKL, and by upregulation of inflammatory cytokines in astrocytes of the mouse hippocampus. In contrast, necroptotic kinase inhibitors suppressed Cort-induced necroptotic kinase activation, reduced astrocytes, astrocytic necroptosis and dysfunction, and decreased Cort-mediated inflammatory cytokines in astrocytes. Treatment with fluoxetine (FLX) for 5 weeks improved chronic unpredictable mild stress-induced mouse depressive-like behaviors; simultaneously, fluoxetine inhibited depression-induced necroptotic kinase activation, reversed the reduction in astrocytes and astrocytic necroptosis and dysfunction, decreased inflammatory cytokines and upregulated brain-derived neurotropic factors and 5-HT1A levels. Furthermore, fluoxetine had no direct inhibitory effect on receptor-interacting protein kinase 1 phosphorylation. The combined administration of fluoxetine and necroptotic kinase inhibitors further reduced corticosterone-induced astrocyte injury. In conclusion, the reduction in astrocytes caused by depressive-like models in vivo and in vitro may be associated with the activation of necroptotic kinases and astrocytic necroptosis, and fluoxetine exerts an antidepressive effect by indirectly inhibiting receptor-interacting protein kinase 1-mediated astrocytic necroptosis.
Collapse
Affiliation(s)
- Salman Zeb
- Jiangsu Key Laboratory of Neuropsychiatric Diseases and College of Pharmaceutical Sciences, Soochow University, Suzhou, China,Laboratory of Cerebrovascular Pharmacology, College of Pharmaceutical Science, Soochow University, Suzhou, China,Jiangsu Key Laboratory of Preventive and Translational Medicine for Geriatric Diseases, School of Public Health, Soochow University, Suzhou, China
| | - Huan Ye
- Department of Neurology, Suzhou Ninth Hospital Affiliated to Soochow University, Suzhou, China
| | - Yuan Liu
- Department of Neurology, Suzhou Ninth Hospital Affiliated to Soochow University, Suzhou, China
| | - Hua-Ping Du
- Department of Neurology, Suzhou Ninth Hospital Affiliated to Soochow University, Suzhou, China
| | - Yi Guo
- Jiangsu Key Laboratory of Neuropsychiatric Diseases and College of Pharmaceutical Sciences, Soochow University, Suzhou, China,Laboratory of Cerebrovascular Pharmacology, College of Pharmaceutical Science, Soochow University, Suzhou, China,Jiangsu Key Laboratory of Preventive and Translational Medicine for Geriatric Diseases, School of Public Health, Soochow University, Suzhou, China
| | - Yong-Ming Zhu
- Jiangsu Key Laboratory of Neuropsychiatric Diseases and College of Pharmaceutical Sciences, Soochow University, Suzhou, China,Laboratory of Cerebrovascular Pharmacology, College of Pharmaceutical Science, Soochow University, Suzhou, China,Jiangsu Key Laboratory of Preventive and Translational Medicine for Geriatric Diseases, School of Public Health, Soochow University, Suzhou, China
| | - Yong Ni
- Jiangsu Key Laboratory of Neuropsychiatric Diseases and College of Pharmaceutical Sciences, Soochow University, Suzhou, China,Laboratory of Cerebrovascular Pharmacology, College of Pharmaceutical Science, Soochow University, Suzhou, China,Jiangsu Key Laboratory of Preventive and Translational Medicine for Geriatric Diseases, School of Public Health, Soochow University, Suzhou, China,Pain Department, The Second Affiliated Hospital of Soochow University, Suzhou, China
| | - Hui-Ling Zhang
- Jiangsu Key Laboratory of Neuropsychiatric Diseases and College of Pharmaceutical Sciences, Soochow University, Suzhou, China,Laboratory of Cerebrovascular Pharmacology, College of Pharmaceutical Science, Soochow University, Suzhou, China,Jiangsu Key Laboratory of Preventive and Translational Medicine for Geriatric Diseases, School of Public Health, Soochow University, Suzhou, China,*Correspondence: Hui-Ling Zhang, ; Yuan Xu,
| | - Yuan Xu
- Department of Neurology, Suzhou Ninth Hospital Affiliated to Soochow University, Suzhou, China,*Correspondence: Hui-Ling Zhang, ; Yuan Xu,
| |
Collapse
|
38
|
Kruyer A, Kalivas PW, Scofield MD. Astrocyte regulation of synaptic signaling in psychiatric disorders. Neuropsychopharmacology 2023; 48:21-36. [PMID: 35577914 PMCID: PMC9700696 DOI: 10.1038/s41386-022-01338-w] [Citation(s) in RCA: 28] [Impact Index Per Article: 28.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/05/2022] [Revised: 04/27/2022] [Accepted: 05/01/2022] [Indexed: 02/07/2023]
Abstract
Over the last 15 years, the field of neuroscience has evolved toward recognizing the critical role of astroglia in shaping neuronal synaptic activity and along with the pre- and postsynapse is now considered an equal partner in tripartite synaptic transmission and plasticity. The relative youth of this recognition and a corresponding deficit in reagents and technologies for quantifying and manipulating astroglia relative to neurons continues to hamper advances in understanding tripartite synaptic physiology. Nonetheless, substantial advances have been made and are reviewed herein. We review the role of astroglia in synaptic function and regulation of behavior with an eye on how tripartite synapses figure into brain pathologies underlying behavioral impairments in psychiatric disorders, both from the perspective of measures in postmortem human brains and more subtle influences on tripartite synaptic regulation of behavior in animal models of psychiatric symptoms. Our goal is to provide the reader a well-referenced state-of-the-art understanding of current knowledge and predict what we may discover with deeper investigation of tripartite synapses using reagents and technologies not yet available.
Collapse
Affiliation(s)
- Anna Kruyer
- Department of Neuroscience, Medical University of South Carolina, Charleston, SC, USA
| | - Peter W Kalivas
- Department of Neuroscience, Medical University of South Carolina, Charleston, SC, USA.
- Ralph H. Johnson Veterans Affairs Medical Center, Charleston, SC, USA.
| | - Michael D Scofield
- Department of Neuroscience, Medical University of South Carolina, Charleston, SC, USA.
- Department of Anesthesia & Perioperative Medicine, Medical University of South Carolina, Charleston, SC, USA.
| |
Collapse
|
39
|
Astrocytes as Context for the Involvement of Myelin and Nodes of Ranvier in the Pathophysiology of Depression and Stress-Related Disorders. JOURNAL OF PSYCHIATRY AND BRAIN SCIENCE 2023; 8:e230001. [PMID: 36866235 PMCID: PMC9976698 DOI: 10.20900/jpbs.20230001] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 03/04/2023]
Abstract
Astrocytes, despite some shared features as glial cells supporting neuronal function in gray and white matter, participate and adapt their morphology and neurochemistry in a plethora of distinct regulatory tasks in specific neural environments. In the white matter, a large proportion of the processes branching from the astrocytes' cell bodies establish contacts with oligodendrocytes and the myelin they form, while the tips of many astrocyte branches closely associate with nodes of Ranvier. Stability of myelin has been shown to greatly depend on astrocyte-to-oligodendrocyte communication, while the integrity of action potentials that regenerate at nodes of Ranvier has been shown to depend on extracellular matrix components heavily contributed by astrocytes. Several lines of evidence are starting to show that in human subjects with affective disorders and in animal models of chronic stress there are significant changes in myelin components, white matter astrocytes and nodes of Ranvier that have direct relevance to connectivity alterations in those disorders. Some of these changes involve the expression of connexins supporting astrocyte-to-oligodendrocyte gap junctions, extracellular matrix components produced by astrocytes around nodes of Ranvier, specific types of astrocyte glutamate transporters, and neurotrophic factors secreted by astrocytes that are involved in the development and plasticity of myelin. Future studies should further examine the mechanisms responsible for those changes in white matter astrocytes, their putative contribution to pathological connectivity in affective disorders, and the possibility of leveraging that knowledge to design new therapies for psychiatric disorders.
Collapse
|
40
|
Klyushnik TP, Golimbet VE, Ivanov SV. [Immune mechanisms of complicity of somatic pathology in the pathogenesis of mental disorders]. Zh Nevrol Psikhiatr Im S S Korsakova 2023; 123:20-27. [PMID: 37141125 DOI: 10.17116/jnevro202312304220] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/05/2023]
Abstract
Understanding the mechanisms of the relationship between the nervous and immune systems within the framework of the concept of the key role of inflammation, taking into account the involved genetic factors in the development of a wide range of combined forms of somatic and mental diseases, is of interest for research as well as for the development of new approaches to early diagnosis and more effective treatment of these diseases. This review analyzes the immune mechanisms of the development of mental disorders in patients with somatic diseases, in particular, the transmission of an inflammatory signal from the periphery to the CNS and the implementation of the influence of inflammatory factors on neurochemical systems that determine the characteristics of mental functioning. Particular attention is paid to the processes underlying the disruption of the blood-brain barrier caused by peripheral inflammation. Modulation of neurotransmission, changes in neuroplasticity, changes in regional activity of the brain in areas associated with the functions of threat recognition, cognitive processes and memory function, the effect of cytokines on the hypothalamic-pituitary-adrenal system are considered as mechanisms of action of inflammatory factors in the brain. The need to take into account variations in the genes of pro-inflammatory cytokines, which may be the cause of increased genetic vulnerability associated with the risk mental disorders in patients suffering from a certain somatic disease, is emphasized.
Collapse
Affiliation(s)
| | | | - S V Ivanov
- Mental Health Research Center, Moscow, Russia
- Sechenov First Moscow State Medical University (Sechenov University), Moscow, Russia
| |
Collapse
|
41
|
Mendes-Silva AP, Prevot TD, Banasr M, Sibille E, Diniz BS. Abnormal expression of cortical cell cycle regulators underlying anxiety and depressive-like behavior in mice exposed to chronic stress. Front Cell Neurosci 2022; 16:999303. [PMID: 36568887 PMCID: PMC9772437 DOI: 10.3389/fncel.2022.999303] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2022] [Accepted: 11/22/2022] [Indexed: 12/12/2022] Open
Abstract
Background The cell cycle is a critical mechanism for proper cellular growth, development and viability. The p16INK4a and p21Waf1/Cip1 are important regulators of the cell cycle progression in response to internal and external stimuli (e.g., stress). Accumulating evidence indicates that the prefrontal cortex (PFC) is particularly vulnerable to stress, where stress induces, among others, molecular and morphological alterations, reflecting behavioral changes. Here, we investigated if the p16INK4a and p21Waf1/Cip1 expression are associated with behavioral outcomes. Methods Prefrontal cortex mRNA and protein levels of p16INK4A and p21Waf1/Cip1 of mice (six independent groups of C57BL/6J, eight mice/group, 50% female) exposed from 0 to 35 days of chronic restraint stress (CRS) were quantified by qPCR and Western Blot, respectively. Correlation analyses were used to investigate the associations between cyclin-dependent kinase inhibitors (CKIs) expression and anxiety- and depression-like behaviors. Results Our results showed that the PFC activated the cell cycle regulation pathways mediated by both CKIs p16INK4A and p21Waf1/Cip1 in mice exposed to CRS, with overall decreased mRNA expression and increased protein expression. Moreover, correlation analysis revealed that mRNA and protein levels are statistically significant correlated with anxiety and depressive-like behavior showing a greater effect in males than females. Conclusion Our present study extends the existing literature providing evidence that PFC cells respond to chronic stress exposure by overexpressing CKIs. Furthermore, our findings indicated that abnormal expression of p16INK4A and p21Waf1/Cip1 may significantly contribute to non-adaptive behavioral responses.
Collapse
Affiliation(s)
- Ana Paula Mendes-Silva
- Centre for Addiction and Mental Health (CAMH), Toronto, ON, Canada,*Correspondence: Ana Paula Mendes-Silva,
| | - Thomas Damien Prevot
- Centre for Addiction and Mental Health (CAMH), Toronto, ON, Canada,Department of Psychiatry, Faculty of Medicine, University of Toronto, Toronto, ON, Canada
| | - Mounira Banasr
- Centre for Addiction and Mental Health (CAMH), Toronto, ON, Canada,Department of Psychiatry, Faculty of Medicine, University of Toronto, Toronto, ON, Canada,Department of Pharmacology and Toxicology, University of Toronto, Toronto, ON, Canada
| | - Etienne Sibille
- Centre for Addiction and Mental Health (CAMH), Toronto, ON, Canada,Department of Psychiatry, Faculty of Medicine, University of Toronto, Toronto, ON, Canada,Department of Pharmacology and Toxicology, University of Toronto, Toronto, ON, Canada
| | - Breno Satler Diniz
- School of Medicine, Center on Aging, University of Connecticut Health Center, Farmington, CT, United States,Department of Psychiatry, School of Medicine, University of Connecticut, Farmington, CT, United States
| |
Collapse
|
42
|
Anderson DJ, Vazirnia P, Loehr C, Sternfels W, Hasoon J, Viswanath O, Kaye AD, Urits I. Testosterone Replacement Therapy in the Treatment of Depression. Health Psychol Res 2022; 10:38956. [PMID: 36452903 PMCID: PMC9704723 DOI: 10.52965/001c.38956] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/12/2024] Open
Abstract
BACKGROUND Depression is a common disorder that affects millions globally and is linked to reduced quality of life and mortality. Its pathophysiology is complex and there are several forms of treatment proposed in the literature with differing side effect profiles. Many patients do not respond to treatment which warrants augmentation with other treatments and the investigation of novel treatments. One of these treatments includes testosterone therapy which evidence suggests might improve depressed mood in older patients with low levels of testosterone and helps restore physical impairments caused by age-related hormonal changes. OBJECTIVE The objective of this review is to synthesize information regarding clinical depression, its treatment options, and the efficacy and safety of testosterone treatment for the treatment of depression. METHODS This review utilized comprehensive secondary and tertiary data analysis across many academic databases and published work pertaining to the topic of interest. RESULTS Within some subpopulations such as men with dysthymic disorder, treatment resistant depression, or low testosterone levels, testosterone administration yielded positive results in the treatment of depression. Additionally, rodent models have shown that administering testosterone to gonadectomized male animals reduces symptoms of depression. Conversely, some studies have found no difference in depressive symptoms after treatment with testosterone when compared with placebo. It was also noted that over administration of testosterone is associated with multiple adverse effects and complications. CONCLUSION The current evidence provides mixed conclusions on the effectiveness of testosterone therapy for treating depression. More research is needed in adult men to see if declining testosterone levels directly influence the development of depression.
Collapse
Affiliation(s)
| | | | - Catherine Loehr
- School of Medicine, Louisiana State University Health Sciences Center
| | - Whitney Sternfels
- School of Medicine, Louisiana State University Health Sciences Center
| | - Jamal Hasoon
- Department of Anesthesia, Critical Care, and Pain Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School
| | - Omar Viswanath
- Department of Anesthesia, Critical Care, and Pain Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School; Valley Anesthesiology and Pain Consultants, Envision Physician Services; Department of Anesthesiology, University of Arizona College of Medicine Phoenix; Department of Anesthesiology, Creighton University School of Medicine
| | - Alan D Kaye
- Department of Anesthesiology, Louisiana State University Health Sciences Center
| | - Ivan Urits
- Department of Anesthesia, Critical Care, and Pain Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School; Department of Anesthesiology, Louisiana State University Health Shreveport
| |
Collapse
|
43
|
Terayama R, Ishikawa T, Ishiwata K, Sato A, Minamizuka T, Ohno T, Kono S, Yamamoto M, Yokoh H, Nagano H, Koshizaka M, Suzuki S, Koide H, Maezawa Y, Yokote K. Correction of Hypercortisolemia with an Improved Cognitive Function and Muscle Mass after Transsphenoidal Surgery in an Older Patient with Cushing's Disease. Intern Med 2022; 61:3391-3399. [PMID: 35491128 PMCID: PMC9751722 DOI: 10.2169/internalmedicine.8326-21] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Cushing's disease causes numerous metabolic disorders, cognitive decline, and sarcopenia, leading to deterioration of the general health in older individuals. Cushing's disease can be treated with transsphenoidal surgery, but thus far, surgery has often been avoided in older patients. We herein report an older woman with Cushing's disease whose cognitive impairment and sarcopenia improved after transsphenoidal surgery. Although cognitive impairment and sarcopenia in most older patients show resistance to treatment, our case indicates that normalization of the cortisol level by transsphenoidal surgery can be effective in improving the cognitive impairment and muscle mass loss caused by Cushing's disease.
Collapse
Affiliation(s)
- Ryo Terayama
- Department of Endocrinology, Hematology, and Gerontology, Chiba University Graduate School of Medicine, Japan
| | - Takahiro Ishikawa
- Department of Endocrinology, Hematology, and Gerontology, Chiba University Graduate School of Medicine, Japan
- Department of General Medical Science, Chiba University Graduate School of Medicine, Japan
- Geriatric Medical Center, Chiba University Hospital, Japan
| | - Kazuki Ishiwata
- Department of Endocrinology, Hematology, and Gerontology, Chiba University Graduate School of Medicine, Japan
| | - Ai Sato
- Department of Endocrinology, Hematology, and Gerontology, Chiba University Graduate School of Medicine, Japan
| | - Takuya Minamizuka
- Department of Endocrinology, Hematology, and Gerontology, Chiba University Graduate School of Medicine, Japan
| | - Tomohiro Ohno
- Department of Endocrinology, Hematology, and Gerontology, Chiba University Graduate School of Medicine, Japan
| | - Satomi Kono
- Department of Endocrinology, Hematology, and Gerontology, Chiba University Graduate School of Medicine, Japan
| | - Masashi Yamamoto
- Department of Endocrinology, Hematology, and Gerontology, Chiba University Graduate School of Medicine, Japan
| | - Hidetaka Yokoh
- Department of Endocrinology, Hematology, and Gerontology, Chiba University Graduate School of Medicine, Japan
| | - Hidekazu Nagano
- Department of Molecular Diagnosis, Graduate School of Medicine, Chiba University, Japan
| | - Masaya Koshizaka
- Department of Endocrinology, Hematology, and Gerontology, Chiba University Graduate School of Medicine, Japan
| | - Sawako Suzuki
- Department of Endocrinology, Hematology, and Gerontology, Chiba University Graduate School of Medicine, Japan
| | - Hisashi Koide
- Department of Endocrinology, Hematology, and Gerontology, Chiba University Graduate School of Medicine, Japan
| | - Yoshiro Maezawa
- Department of Endocrinology, Hematology, and Gerontology, Chiba University Graduate School of Medicine, Japan
| | - Koutaro Yokote
- Department of Endocrinology, Hematology, and Gerontology, Chiba University Graduate School of Medicine, Japan
| |
Collapse
|
44
|
Stapelberg NJC, Branjerdporn G, Adhikary S, Johnson S, Ashton K, Headrick J. Environmental Stressors and the PINE Network: Can Physical Environmental Stressors Drive Long-Term Physical and Mental Health Risks? INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2022; 19:13226. [PMID: 36293807 PMCID: PMC9603079 DOI: 10.3390/ijerph192013226] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/09/2022] [Revised: 10/10/2022] [Accepted: 10/13/2022] [Indexed: 06/16/2023]
Abstract
Both psychosocial and physical environmental stressors have been linked to chronic mental health and chronic medical conditions. The psycho-immune-neuroendocrine (PINE) network details metabolomic pathways which are responsive to varied stressors and link chronic medical conditions with mental disorders, such as major depressive disorder via a network of pathophysiological pathways. The primary objective of this review is to explore evidence of relationships between airborne particulate matter (PM, as a concrete example of a physical environmental stressor), the PINE network and chronic non-communicable diseases (NCDs), including mental health sequelae, with a view to supporting the assertion that physical environmental stressors (not only psychosocial stressors) disrupt the PINE network, leading to NCDs. Biological links have been established between PM exposure, key sub-networks of the PINE model and mental health sequelae, suggesting that in theory, long-term mental health impacts of PM exposure may exist, driven by the disruption of these biological networks. This disruption could trans-generationally influence health; however, long-term studies and information on chronic outcomes following acute exposure event are still lacking, limiting what is currently known beyond the acute exposure and all-cause mortality. More empirical evidence is needed, especially to link long-term mental health sequelae to PM exposure, arising from PINE pathophysiology. Relationships between physical and psychosocial stressors, and especially the concept of such stressors acting together to impact on PINE network function, leading to linked NCDs, evokes the concept of syndemics, and these are discussed in the context of the PINE network.
Collapse
Affiliation(s)
- Nicolas J. C. Stapelberg
- Gold Coast Hospital and Health Service, Gold Coast, QLD 4215, Australia
- Faculty of Health Sciences and Medicine, Bond University, Gold Coast, QLD 4226, Australia
| | - Grace Branjerdporn
- Gold Coast Hospital and Health Service, Gold Coast, QLD 4215, Australia
- Faculty of Health Sciences and Medicine, Bond University, Gold Coast, QLD 4226, Australia
| | - Sam Adhikary
- Mater Young Adult Health Centre, Mater Hospital, Brisbane, QID 4101, Australia
| | - Susannah Johnson
- Gold Coast Hospital and Health Service, Gold Coast, QLD 4215, Australia
| | - Kevin Ashton
- Faculty of Health Sciences and Medicine, Bond University, Gold Coast, QLD 4226, Australia
| | - John Headrick
- School of Medical Science, Griffith University, Gold Coast, QID 4215, Australia
| |
Collapse
|
45
|
Liu YF, Pan L, Feng M. Structural and functional brain alterations in Cushing's disease: A narrative review. Front Neuroendocrinol 2022; 67:101033. [PMID: 36126747 DOI: 10.1016/j.yfrne.2022.101033] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/17/2022] [Revised: 08/21/2022] [Accepted: 08/26/2022] [Indexed: 11/26/2022]
Abstract
Neurocognitive and psychiatric symptoms are non-negligible in Cushing's disease and are accompanied by structural and functional alterations of the brain. In this review, we have summarized multimodal neuroimaging and neurophysiological studies to highlight the current and historical understandings of the structural and functional brain alterations in Cushing's disease. Specifically, structural studies showed atrophy of the gray matter, loss of white matter integrity, and demyelination in widespread brain regions. Functional imaging studies have identified three major functional brain connectome networks influenced by hypercortisolemia: the limbic network, the default mode network, and the executive control network. After endocrinological remission, atrophy of gray matter regions and the compromised functional network activities were partially reversible, and the widespread white matter integrity alterations cannot recover in years. In conclusion, Cushing's disease patients display structural and functional brain connectomic alterations, which provides insights into the neurocognitive and psychiatric symptoms observed in this disease.
Collapse
Affiliation(s)
- Yi-Fan Liu
- Department of Neurosurgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100730, China; Department of Neurosurgery, West China Hospital, Sichuan University, Chengdu 610041, Sichuan, China
| | - Lei Pan
- Department of Neurosurgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100730, China; School of Medicine, Tsinghua University, Beijing 100083, China
| | - Ming Feng
- Department of Neurosurgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100730, China.
| |
Collapse
|
46
|
Zhao YF, Verkhratsky A, Tang Y, Illes P. Astrocytes and major depression: The purinergic avenue. Neuropharmacology 2022; 220:109252. [PMID: 36122663 DOI: 10.1016/j.neuropharm.2022.109252] [Citation(s) in RCA: 30] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2022] [Revised: 08/19/2022] [Accepted: 09/06/2022] [Indexed: 10/14/2022]
Abstract
Major depressive disorder (MDD) is one of the most prevalent psychiatric illnesses worldwide which impairs the social functioning of the afflicted patients. Astrocytes promote homeostasis of the CNS and provide defense against various types of harmful influences. Increasing evidence suggests that the number, morphology and function of astrocytes are deteriorated in the depressed brain and the malfunction of the astrocytic purinergic system appears to participate in the pathophysiology of MDD. Adenosine 5'-triphosphate (ATP) released from astrocytes modulates depressive-like behavior in animal models and probably also clinical depression in patients. Astrocytes possess purinergic receptors, such as adenosine A2A receptors (Rs), and P2X7, P2Y1, and P2Y11Rs, which mediate neuroinflammation, neuro(glio)transmission, and synaptic plasticity in depression-relevant areas of the brain (e.g. medial prefrontal cortex, hippocampus, amygdala nuclei). By contrast, astrocytic A1Rs are neuroprotective and immunosuppressive. In the present review, we shall discuss the release of purines from astrocytes, and the expression/function of astrocytic purinergic receptors. Subsequently, we shall review in more detail novel evidence indicating that the dysregulation of astrocytic purinergic signaling actively contributes to the pathophysiology of depression and shall discuss possible therapeutic options based on knowledge recently acquired in this field.
Collapse
Affiliation(s)
- Y F Zhao
- School of Acupuncture and Tuina, Chengdu University of Traditional Chinese Medicine, Chengdu, 610075, China; International Collaborative Centre on Big Science Plan for Purinergic Signalling, Chengdu University of Traditional Chinese Medicine, Chengdu, 610075, China
| | - A Verkhratsky
- International Collaborative Centre on Big Science Plan for Purinergic Signalling, Chengdu University of Traditional Chinese Medicine, Chengdu, 610075, China; Faculty of Life Sciences, The University of Manchester, Manchester, M13 9PL, UK; Department of Stem Cell Biology, State Research Institute Centre for Innovative Medicine, LT, 01102, Vilnius, Lithuania
| | - Y Tang
- School of Acupuncture and Tuina, Chengdu University of Traditional Chinese Medicine, Chengdu, 610075, China; International Collaborative Centre on Big Science Plan for Purinergic Signalling, Chengdu University of Traditional Chinese Medicine, Chengdu, 610075, China.
| | - P Illes
- School of Acupuncture and Tuina, Chengdu University of Traditional Chinese Medicine, Chengdu, 610075, China; International Collaborative Centre on Big Science Plan for Purinergic Signalling, Chengdu University of Traditional Chinese Medicine, Chengdu, 610075, China; Rudolf Boehm Institute for Pharmacology and Toxicology, University of Leipzig, 04107, Leipzig, Germany.
| |
Collapse
|
47
|
Minocycline Ameliorates Chronic Unpredictable Mild Stress-Induced Neuroinflammation and Abnormal mPFC-HIPP Oscillations in Mice. Mol Neurobiol 2022; 59:6874-6895. [PMID: 36048340 DOI: 10.1007/s12035-022-03018-8] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2022] [Accepted: 08/24/2022] [Indexed: 10/14/2022]
Abstract
Stress-induced neuroinflammation is a hallmark of modern society and has been linked to various emotional disorders, including anxiety. However, how microglia-associated neuroinflammation under chronic unpredictable mild stress (CUMS) alters mitochondrial function and subsequent medial prefrontal cortex-hippocampus (mPFC-HIPP) connectivity remains obscure. We speculated that CUMS might induce neuroinflammation, which involves altered mitochondrial protein levels, blockade of neuroinflammation by a microglial modulator, minocycline, protects against CUMS-induced alterations. Mice were exposed to CUMS for 3 weeks and received minocycline (50 mg/kg) intraperitoneally for 7 consecutive days during the 3rd week of CUMS. Novelty-suppressed feeding test and contextual anxiety test assessed anxiety-like behavior. Western blotting and immunofluorescent staining were employed to evaluate levels of proteins involved in neuroinflammation and mitochondrial function. In vivo dual-site extracellular recordings of local field potential (LFP) were conducted to evaluate the oscillatory activity and brain connectivity in mPFC-HIPP circuitry. We show that CUMS results in excessive microglial activation accompanied by aberrant levels of mitochondrial proteins, such as ATP-5A and the fission protein, Drp-1, increased oxidative stress indicated by elevated levels of nitrotyrosine, and decreased Nrf-2 levels. Furthermore, CUMS causes downregulation of α1 subunit of GABAAR, vesicular GABA transporter (Vgat), and glutamine synthetase (GS), leading to impaired LFP and connectivity of the mPFC-HIPP circuitry. Strikingly, blockage of microglial activation by minocycline ameliorates CUMS-induced aberrant levels of mitochondrial and GABAergic signaling proteins and prevents CUMS-induced anxiety-like behavior in mice. To the end, the study revealed that microglia is critically involved in stress-induced neuroinflammation, which may underlie the molecular mechanism of CUMS-induced anxiety behavior.
Collapse
|
48
|
Ortega MA, Fraile-Martínez Ó, García-Montero C, Alvarez-Mon MA, Lahera G, Monserrat J, Llavero-Valero M, Gutiérrez-Rojas L, Molina R, Rodríguez-Jimenez R, Quintero J, De Mon MA. Biological Role of Nutrients, Food and Dietary Patterns in the Prevention and Clinical Management of Major Depressive Disorder. Nutrients 2022; 14:3099. [PMID: 35956276 PMCID: PMC9370795 DOI: 10.3390/nu14153099] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2022] [Revised: 07/20/2022] [Accepted: 07/26/2022] [Indexed: 02/06/2023] Open
Abstract
Major Depressive Disorder (MDD) is a growing disabling condition affecting around 280 million people worldwide. This complex entity is the result of the interplay between biological, psychological, and sociocultural factors, and compelling evidence suggests that MDD can be considered a disease that occurs as a consequence of an evolutionary mismatch and unhealthy lifestyle habits. In this context, diet is one of the core pillars of health, influencing multiple biological processes in the brain and the entire body. It seems that there is a bidirectional relationship between MDD and malnutrition, and depressed individuals often lack certain critical nutrients along with an aberrant dietary pattern. Thus, dietary interventions are one of the most promising tools to explore in the field of MDD, as there are a specific group of nutrients (i.e., omega 3, vitamins, polyphenols, and caffeine), foods (fish, nuts, seeds fruits, vegetables, coffee/tea, and fermented products) or dietary supplements (such as S-adenosylmethionine, acetyl carnitine, creatine, amino acids, etc.), which are being currently studied. Likewise, the entire nutritional context and the dietary pattern seem to be another potential area of study, and some strategies such as the Mediterranean diet have demonstrated some relevant benefits in patients with MDD; although, further efforts are still needed. In the present work, we will explore the state-of-the-art diet in the prevention and clinical support of MDD, focusing on the biological properties of its main nutrients, foods, and dietary patterns and their possible implications for these patients.
Collapse
Affiliation(s)
- Miguel A. Ortega
- Department of Medicine and Medical Specialities, University of Alcala, 28801 Alcalá de Henares, Spain; (Ó.F.-M.); (C.G.-M.); (M.A.A.-M.); (G.L.); (J.M.); (M.A.D.M.)
- Ramón y Cajal Institute of Sanitary Research (IRYCIS), 28034 Madrid, Spain
- Cancer Registry and Pathology Department, Hospital Universitario Principe de Asturias, 28805 Alcalá de Henares, Spain
| | - Óscar Fraile-Martínez
- Department of Medicine and Medical Specialities, University of Alcala, 28801 Alcalá de Henares, Spain; (Ó.F.-M.); (C.G.-M.); (M.A.A.-M.); (G.L.); (J.M.); (M.A.D.M.)
- Ramón y Cajal Institute of Sanitary Research (IRYCIS), 28034 Madrid, Spain
| | - Cielo García-Montero
- Department of Medicine and Medical Specialities, University of Alcala, 28801 Alcalá de Henares, Spain; (Ó.F.-M.); (C.G.-M.); (M.A.A.-M.); (G.L.); (J.M.); (M.A.D.M.)
- Ramón y Cajal Institute of Sanitary Research (IRYCIS), 28034 Madrid, Spain
| | - Miguel Angel Alvarez-Mon
- Department of Medicine and Medical Specialities, University of Alcala, 28801 Alcalá de Henares, Spain; (Ó.F.-M.); (C.G.-M.); (M.A.A.-M.); (G.L.); (J.M.); (M.A.D.M.)
- Ramón y Cajal Institute of Sanitary Research (IRYCIS), 28034 Madrid, Spain
- Department of Psychiatry and Mental Health, Hospital Universitario Infanta Leonor, 28031 Madrid, Spain; (M.L.-V.); (J.Q.)
| | - Guillermo Lahera
- Department of Medicine and Medical Specialities, University of Alcala, 28801 Alcalá de Henares, Spain; (Ó.F.-M.); (C.G.-M.); (M.A.A.-M.); (G.L.); (J.M.); (M.A.D.M.)
- Ramón y Cajal Institute of Sanitary Research (IRYCIS), 28034 Madrid, Spain
- Department of Psychiatry and Mental Health, Hospital Universitario Infanta Leonor, 28031 Madrid, Spain; (M.L.-V.); (J.Q.)
- Psychiatry Service, Center for Biomedical Research in the Mental Health Network, University Hospital Príncipe de Asturias, 28806 Alcalá de Henares, Spain
| | - Jorge Monserrat
- Department of Medicine and Medical Specialities, University of Alcala, 28801 Alcalá de Henares, Spain; (Ó.F.-M.); (C.G.-M.); (M.A.A.-M.); (G.L.); (J.M.); (M.A.D.M.)
- Ramón y Cajal Institute of Sanitary Research (IRYCIS), 28034 Madrid, Spain
| | - Maria Llavero-Valero
- Department of Psychiatry and Mental Health, Hospital Universitario Infanta Leonor, 28031 Madrid, Spain; (M.L.-V.); (J.Q.)
| | - Luis Gutiérrez-Rojas
- Department of Psychiatry and CTS-549 Research Group, Institute of Neuroscience, University of Granada, 18071 Granada, Spain;
- Psychiatry Service, San Cecilio University Hospital, 18016 Granada, Spain
| | - Rosa Molina
- Department of Psychiatry and Mental, Health San Carlos University Hospital (HCSC), 28034 Madrid, Spain;
- Research Biomedical Fundation of HCSC Hospital, 28034 Madrid, Spain
- Department of Psychology, Comillas University, Cantoblanco, 28015 Madrid, Spain
| | - Roberto Rodríguez-Jimenez
- Department of Legal Medicine, Psychiatry, and Pathology, Complutense University (UCM), 28040 Madrid, Spain;
- Institute for Health Research 12 de Octubre Hospital, (imas12)/CIBERSAM-ISCIII (Biomedical Research Networking Centre in Mental Health), 28041 Madrid, Spain
| | - Javier Quintero
- Department of Psychiatry and Mental Health, Hospital Universitario Infanta Leonor, 28031 Madrid, Spain; (M.L.-V.); (J.Q.)
- Department of Legal Medicine, Psychiatry, and Pathology, Complutense University (UCM), 28040 Madrid, Spain;
| | - Melchor Alvarez De Mon
- Department of Medicine and Medical Specialities, University of Alcala, 28801 Alcalá de Henares, Spain; (Ó.F.-M.); (C.G.-M.); (M.A.A.-M.); (G.L.); (J.M.); (M.A.D.M.)
- Ramón y Cajal Institute of Sanitary Research (IRYCIS), 28034 Madrid, Spain
- Immune System Diseases-Rheumatology, Oncology Service an Internal Medicine, University Hospital Príncipe de Asturias, (CIBEREHD), 28806 Alcalá de Henares, Spain
| |
Collapse
|
49
|
Zhao F, Li B, Yang W, Ge T, Cui R. Brain-immune interaction mechanisms: Implications for cognitive dysfunction in psychiatric disorders. Cell Prolif 2022; 55:e13295. [PMID: 35860850 PMCID: PMC9528770 DOI: 10.1111/cpr.13295] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2021] [Revised: 04/28/2022] [Accepted: 06/07/2022] [Indexed: 12/15/2022] Open
Abstract
Objectives Cognitive dysfunction has been identified as a major symptom of a series of psychiatric disorders. Multidisciplinary studies have shown that cognitive dysfunction is monitored by a two‐way interaction between the neural and immune systems. However, the specific mechanisms of cognitive dysfunction in immune response and brain immune remain unclear. Materials and methods In this review, we summarized the relevant research to uncover our comprehension of the brain–immune interaction mechanisms underlying cognitive decline. Results The pathophysiological mechanisms of brain‐immune interactions in psychiatric‐based cognitive dysfunction involve several specific immune molecules and their associated signaling pathways, impairments in neural and synaptic plasticity, and the potential neuro‐immunological mechanism of stress. Conclusions Therefore, this review may provide a better theoretical basis for integrative therapeutic considerations for psychiatric disorders associated with cognitive dysfunction.
Collapse
Affiliation(s)
- Fangyi Zhao
- Jilin Provincial Key Laboratory on Molecular and Chemical Genetic, The Second Hospital of Jilin University, Changchun, China
| | - Bingjin Li
- Jilin Provincial Key Laboratory on Molecular and Chemical Genetic, The Second Hospital of Jilin University, Changchun, China
| | - Wei Yang
- Jilin Provincial Key Laboratory on Molecular and Chemical Genetic, The Second Hospital of Jilin University, Changchun, China
| | - Tongtong Ge
- Jilin Provincial Key Laboratory on Molecular and Chemical Genetic, The Second Hospital of Jilin University, Changchun, China
| | - Ranji Cui
- Jilin Provincial Key Laboratory on Molecular and Chemical Genetic, The Second Hospital of Jilin University, Changchun, China
| |
Collapse
|
50
|
Jones KL, Zhou M, Jhaveri DJ. Dissecting the role of adult hippocampal neurogenesis towards resilience versus susceptibility to stress-related mood disorders. NPJ SCIENCE OF LEARNING 2022; 7:16. [PMID: 35842419 PMCID: PMC9288448 DOI: 10.1038/s41539-022-00133-y] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/02/2021] [Accepted: 07/01/2022] [Indexed: 05/13/2023]
Abstract
Adult hippocampal neurogenesis in the developmental process of generating and integrating new neurons in the hippocampus during adulthood and is a unique form of structural plasticity with enormous potential to modulate neural circuit function and behaviour. Dysregulation of this process is strongly linked to stress-related neuropsychiatric conditions such as anxiety and depression, and efforts have focused on unravelling the contribution of adult-born neurons in regulating stress response and recovery. Chronic stress has been shown to impair this process, whereas treatment with clinical antidepressants was found to enhance the production of new neurons in the hippocampus. However, the precise role of adult hippocampal neurogenesis in mediating the behavioural response to chronic stress is not clear and whether these adult-born neurons buffer or increase susceptibility to stress-induced mood-related maladaptation remains one of the controversial issues. In this review, we appraise evidence probing the causal role of adult hippocampal neurogenesis in the regulation of emotional behaviour in rodents. We find that the relationship between adult-born hippocampal neurons and stress-related mood disorders is not linear, and that simple subtraction or addition of these neurons alone is not sufficient to lead to anxiety/depression or have antidepressant-like effects. We propose that future studies examining how stress affects unique properties of adult-born neurons, such as the excitability and the pattern of connectivity during their critical period of maturation will provide a deeper understanding of the mechanisms by which these neurons contribute to functional outcomes in stress-related mood disorders.
Collapse
Affiliation(s)
- Katherine L Jones
- Queensland Brain Institute, University of Queensland, Brisbane, QLD 4072, Australia
| | - Mei Zhou
- Queensland Brain Institute, University of Queensland, Brisbane, QLD 4072, Australia
- Mater Research Institute - University of Queensland, Translational Research Institute, Woolloongabba, QLD 4102, Australia
| | - Dhanisha J Jhaveri
- Queensland Brain Institute, University of Queensland, Brisbane, QLD 4072, Australia.
- Mater Research Institute - University of Queensland, Translational Research Institute, Woolloongabba, QLD 4102, Australia.
| |
Collapse
|