1
|
Vermeire B, Walsh M, Cox E, Devriendt B. The lipopolysaccharide structure affects the detoxifying ability of intestinal alkaline phosphatases. BMC Vet Res 2024; 20:358. [PMID: 39127648 DOI: 10.1186/s12917-024-04208-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2022] [Accepted: 07/24/2024] [Indexed: 08/12/2024] Open
Abstract
Lipopolysaccharide (LPS) is one of the most potent mediators of inflammation. In swine husbandry, weaning is associated with LPS-induced intestinal inflammation, resulting in decreased growth rates due to malabsorption of nutrients by the inflamed gut. A potential strategy to treat LPS-mediated disease is administering intestinal alkaline phosphatase (IAP). The latter can detoxify lipid A, the toxic component of LPS, by removal of phosphate groups. Currently, 183 LPS O-serotypes from E. coli have been described, however, comparative experiments to elucidate functional differences between LPS serotypes are scarce. In addition, these functional differences might affect the efficacy of LPS detoxifying enzymes. Here, we evaluated the ability of four LPS serotypes (O26:B6, O55:B5, O111:B4 and O127:B8) derived from Escherichia coli to trigger the secretion of pro-inflammatory cytokines by porcine PBMCs. We also tested the ability of three commercially available IAPs to detoxify these LPS serotypes. The results show that LPS serotypes differ in their ability to trigger cytokine secretion by immune cells, especially at lower concentrations. Moreover, IAPs displayed a different detoxification efficiency of the tested serotypes. Together, this study sheds light on the impact of LPS structure on the detoxification by IAPs. Further research is however needed to elucidate the LPS serotype-specific effects and their implications for the development of novel treatment options to alleviate LPS-induced gut inflammation in weaned piglets.
Collapse
Affiliation(s)
- Bjarne Vermeire
- Laboratory of Immunology, Department of Translational Physiology, Infectiology and Public Health, Faculty of Veterinary Medicine, Ghent University, Salisburylaan 133, Merelbeke, 9820, Belgium
| | | | - Eric Cox
- Laboratory of Immunology, Department of Translational Physiology, Infectiology and Public Health, Faculty of Veterinary Medicine, Ghent University, Salisburylaan 133, Merelbeke, 9820, Belgium
| | - Bert Devriendt
- Laboratory of Immunology, Department of Translational Physiology, Infectiology and Public Health, Faculty of Veterinary Medicine, Ghent University, Salisburylaan 133, Merelbeke, 9820, Belgium.
| |
Collapse
|
2
|
Ali Z, Khan I, Iqbal MS, Zhang Q, Ai X, Shi H, Ding L, Hong M. Toxicological effects of copper on bioaccumulation and mRNA expression of antioxidant, immune, and apoptosis-related genes in Chinese striped-necked turtle ( Mauremys sinensis). Front Physiol 2023; 14:1296259. [PMID: 38028770 PMCID: PMC10665912 DOI: 10.3389/fphys.2023.1296259] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2023] [Accepted: 10/24/2023] [Indexed: 12/01/2023] Open
Abstract
Heavy metals are among the most ubiquitous environmental pollutants of recent decades. Copper is commonly used to control algal blooms or macrophyte and waste infestations, its ambient concentration has increased significantly, indicating possible environmental risk. To investigate the effects of copper exposure on bioaccumulation, antioxidant defense, immune response, and apoptosis in the Chinese Striped-necked Turtle Mauremys sinensis, three experimental groups, control (0.0 mg/L), Cu2 (2 mg/L) and Cu4 (4 mg/L) were designed, and sampled at 14 and 28 days. Results showed that copper accumulates in different organs depending on the concentration and exposure time, Liver > Kidney > Gut > Heart > Brain > Muscle and the time order was 28 days > 14 days. The liver enzymes AST, ALT, and ALP decreased when the turtles were exposed to copper stress, while the contents of bilirubin TBIL, DBIL, IBIL, and LDH showed a significant upward trend. Similarly, the mRNA expression level of acetylcholinesterase AChE in the brain was significantly downregulated upon copper exposure. An upward trend was noticed in the liver Metallothionein MT mRNA expression levels compared to the control group. The mRNA expression levels of antioxidant enzymes CAT, SOD, MnSOD, and GSH-PX1 in the liver increased initially and then significantly decreased. Furthermore, the relative mRNA expression levels of inflammatory cytokines IL-1β, IL-8, TNF-α, and IFN-γ involved in inflammatory response significantly upregulated. Copper significantly increased the hepatic mRNA transcription of heat shock proteins HSP70 and HSP90 at different exposure durations. In addition, the relative mRNA levels of caspase3, caspase8, and caspase9 related to the caspase-dependent apoptotic pathway significantly increased under copper stress. These results explain that copper toxicity causes bioaccumulation, promotes oxidative stress, obstructs immunity, and induces inflammation and apoptosis by altering their gene expression levels in M. sinensis.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Li Ding
- Ministry of Education Key Laboratory for Ecology of Tropical Islands, Key Laboratory of Tropical Animal and Plant Ecology of Hainan Province, College of Life Sciences, Hainan Normal University, Haikou, China
| | - Meiling Hong
- Ministry of Education Key Laboratory for Ecology of Tropical Islands, Key Laboratory of Tropical Animal and Plant Ecology of Hainan Province, College of Life Sciences, Hainan Normal University, Haikou, China
| |
Collapse
|
3
|
Hodkovicova N, Halas S, Tosnerova K, Stastny K, Svoboda M. The use of functional amino acids in different categories of pigs - A review. VET MED-CZECH 2023; 68:299-312. [PMID: 37982122 PMCID: PMC10646542 DOI: 10.17221/72/2023-vetmed] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2023] [Accepted: 08/11/2023] [Indexed: 11/21/2023] Open
Abstract
The present review deals with a particularly important topic: the use of functional amino acids in different categories of pigs. It is especially relevant in the context of the current efforts to reduce the use of antibiotics in pig farming and the search for possible alternatives to replace them. The review is based on the definition that functional amino acids (FAAs) are classified as dispensable amino acids, but with additional biological functions, i.e., not only are they used for protein formation, but they are also involved in regulating essential metabolic pathways to improve health, survival, growth, and development. We describe the mechanism of action of individual FAAs and their potential use in pigs, including glutamate, glutamine, arginine, branched-chain amino acids (i.e., leucine, isoleucine, and valine), tryptophan and glycine. The work is divided into three parts. The first part deals with the FAAs and their role in the overall health of sows and their offspring. The second part describes the use of functional amino acids in piglets after weaning. Part three examines the use of functional amino acids in growing and fattening pigs and their impact on meat quality.
Collapse
Affiliation(s)
- Nikola Hodkovicova
- Department of Infectious Diseases and Preventive Medicine, Veterinary Research Institute, Brno, Czech Republic
| | - Simon Halas
- Department of Animal Nutrition and Husbandry, University of Veterinary Medicine and Pharmacy in Kosice, Kosice, Slovak Republic
| | - Kristina Tosnerova
- Department of Infectious Diseases and Preventive Medicine, Veterinary Research Institute, Brno, Czech Republic
| | - Kamil Stastny
- Department of Infectious Diseases and Preventive Medicine, Veterinary Research Institute, Brno, Czech Republic
| | - Martin Svoboda
- Ruminant and Swine Clinic, University of Veterinary Sciences Brno, Brno, Czech Republic
| |
Collapse
|
4
|
Wang Y, Xu Y, Cao G, Zhou X, Wang Q, Fu A, Zhan X. Bacillus subtilis DSM29784 attenuates Clostridium perfringens-induced intestinal damage of broilers by modulating intestinal microbiota and the metabolome. Front Microbiol 2023; 14:1138903. [PMID: 37007491 PMCID: PMC10060821 DOI: 10.3389/fmicb.2023.1138903] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2023] [Accepted: 02/22/2023] [Indexed: 03/18/2023] Open
Abstract
Necrotic enteritis (NE), especially subclinical NE (SNE), without clinical symptoms, in chicks has become one of the most threatening problems to the poultry industry. Therefore, increasing attention has been focused on the research and application of effective probiotic strains as an alternative to antibiotics to prevent SNE in broilers. In the present study, we evaluated the effects of Bacillus subtilis DSM29784 (BS) on the prevention of subclinical necrotic enteritis (SNE) in broilers. A total of 480 1-day-old broiler chickens were randomly assigned to four dietary treatments, each with six replicates pens of twenty birds for 63 d. The negative (Ctr group) and positive (SNE group) groups were only fed a basal diet, while the two treatment groups received basal diets supplemented with BS (1 × 109 colony-forming units BS/kg) (BS group) and 10mg/kg enramycin (ER group), respectively. On days 15, birds except those in the Ctr group were challenged with 20-fold dose coccidiosis vaccine, and then with 1 ml of C. perfringens (2 × 108) at days 18 to 21 for SNE induction. BS, similar to ER, effectively attenuated CP-induced poor growth performance. Moreover, BS pretreatment increased villi height, claudin-1 expression, maltase activity, and immunoglobulin abundance, while decreasing lesional scores, as well as mucosal IFN-γ and TNF-α concentrations. In addition, BS pretreatment increased the relative abundance of beneficial bacteria and decreased that of pathogenic species; many lipid metabolites were enriched in the cecum of treated chickens. These results suggest that BS potentially provides active ingredients that may serve as an antibiotic substitute, effectively preventing SNE-induced growth decline by enhancing intestinal health in broilers.
Collapse
Affiliation(s)
- Yuanyuan Wang
- Key Laboratory of Molecular Animal Nutrition of the Ministry of Education, College of Animal Sciences, Institute of Feed Science, Zhejiang University, Hangzhou, China
| | - Yibin Xu
- Key Laboratory of Molecular Animal Nutrition of the Ministry of Education, College of Animal Sciences, Institute of Feed Science, Zhejiang University, Hangzhou, China
| | | | - Xihong Zhou
- Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha, China
| | - Qian Wang
- Yancheng Biological Engineering Higher Vocational Technology School, Yancheng, China
| | - Aikun Fu
- Key Laboratory of Molecular Animal Nutrition of the Ministry of Education, College of Animal Sciences, Institute of Feed Science, Zhejiang University, Hangzhou, China
- *Correspondence: Xiuan Zhan, ; Aikun Fu,
| | - Xiuan Zhan
- Key Laboratory of Molecular Animal Nutrition of the Ministry of Education, College of Animal Sciences, Institute of Feed Science, Zhejiang University, Hangzhou, China
- *Correspondence: Xiuan Zhan, ; Aikun Fu,
| |
Collapse
|
5
|
Mellors SC, Wilms JN, Welboren AC, Ghaffari MH, Leal LN, Martín-Tereso J, Sauerwein H, Steele MA. Gastrointestinal structure and function of preweaning dairy calves fed a whole milk powder or a milk replacer high in fat. J Dairy Sci 2023; 106:2408-2427. [PMID: 36894427 DOI: 10.3168/jds.2022-22155] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2022] [Accepted: 09/16/2022] [Indexed: 03/09/2023]
Abstract
The composition of milk replacer (MR) for calves greatly differs from that of bovine whole milk, which may affect gastrointestinal development of young calves. In this light, the objective of the current study was to compare gastrointestinal tract structure and function in response to feeding liquid diets having a same macronutrient profile (e.g., fat, lactose, protein) in calves in the first month of life. Eighteen male Holstein calves (46.6 ± 5.12 kg; 1.4 ± 0.50 d of age at arrival; mean ± standard deviation) were housed individually. Upon arrival, calves were blocked based on age and arrival day, and, within a block, calves were randomly assigned to either a whole milk powder (WP; 26% fat, DM basis, n = 9) or a MR high in fat (25% fat, n = 9) fed 3.0 L 3 times daily (9 L total per day) at 135 g/L through teat buckets. On d 21, gut permeability was assessed with indigestible permeability markers [chromium (Cr)-EDTA, lactulose, and d-mannitol]. On d 32 after arrival, calves were slaughtered. The weight of the total forestomach without contents was greater in WP-fed calves. Furthermore, duodenum and ileum weights were similar between treatment groups, but jejunum and total small intestine weights were greater in WP-fed calves. The surface area of the duodenum and ileum did not differ between treatment groups, but the surface area of the proximal jejunum was greater in calves fed WP. Urinary lactulose and Cr-EDTA recoveries were greater in calves fed WP in the first 6 h post marker administration. Tight junction protein gene expression in the proximal jejunum or ileum did not differ between treatments. The free fatty acid and phospholipid fatty acid profiles in the proximal jejunum and ileum differed between treatments and generally reflected the fatty acid profile of each liquid diet. Feeding WP or MR altered gut permeability and fatty acid composition of the gastrointestinal tract and further investigation are needed to understand the biological relevance of the observed differences.
Collapse
Affiliation(s)
- S C Mellors
- Department of Animal Biosciences, Animal Science and Nutrition, University of Guelph, Guelph, ON, Canada N1G 1W2
| | - J N Wilms
- Department of Animal Biosciences, Animal Science and Nutrition, University of Guelph, Guelph, ON, Canada N1G 1W2; Trouw Nutrition R&D, P.O. Box 299, 3800 AG, Amersfoort, the Netherlands.
| | - A C Welboren
- Department of Animal Biosciences, Animal Science and Nutrition, University of Guelph, Guelph, ON, Canada N1G 1W2
| | - M H Ghaffari
- Institute of Animal Science, University of Bonn, 53111 Bonn, Germany
| | - L N Leal
- Trouw Nutrition R&D, P.O. Box 299, 3800 AG, Amersfoort, the Netherlands
| | - J Martín-Tereso
- Trouw Nutrition R&D, P.O. Box 299, 3800 AG, Amersfoort, the Netherlands
| | - H Sauerwein
- Institute of Animal Science, University of Bonn, 53111 Bonn, Germany
| | - M A Steele
- Department of Animal Biosciences, Animal Science and Nutrition, University of Guelph, Guelph, ON, Canada N1G 1W2.
| |
Collapse
|
6
|
Liu Y, Jia X, Chang J, Pan X, Jiang X, Che L, Lin Y, Zhuo Y, Feng B, Fang Z, Li J, Hua L, Wang J, Sun M, Wu D, Xu S. Yeast culture supplementation of sow diets regulates the immune performance of their weaned piglets under lipopolysaccharide stress. J Anim Sci 2023; 101:skad226. [PMID: 37394233 PMCID: PMC10358228 DOI: 10.1093/jas/skad226] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2023] [Accepted: 06/30/2023] [Indexed: 07/04/2023] Open
Abstract
The aim of this study was to investigate the effect of dietary supplementation of sows with yeast cultures (XPC) during late gestation and lactation on the immune performance of their weaned offspring under lipopolysaccharide (LPS) stress. A total of 40 Landrace × Yorkshire sows (parity 3 to 7) with similar backfat thickness were selected and randomly divided into two treatment groups: a control group (basal diet) and a yeast culture group (basal diet + 2.0 g/kg XPC). The trial was conducted from day 90 of gestation to day 21 of lactation. At the end of the experiment, 12 piglets with similar weights were selected from each group and slaughtered 4 h after intraperitoneal injection with either saline or LPS. The results showed that the concentrations of interleukin-6 (IL-6) in the thymus and tumor necrosis factor-α in the liver increased significantly (P < 0.05) in weaned piglets after LPS injection. Maternal dietary supplementation with XPC significantly reduced the concentration of inflammatory factors in the plasma and thymus of weaned piglets (P < 0.05). LPS injection significantly upregulated the expression of some tissue inflammation-related genes, significantly downregulated the expression of intestinal tight junction-related genes, and significantly elevated the protein expression of liver phospho-nuclear factor kappa B (p-NF-κB), the phospho-inhibitory subunit of NF-κB (p-IκBα), phospho-c-Jun N-terminal kinase (p-JNK), Nuclear factor kappa-B (NF-κB), and the inhibitory subunit of NF-κB (IκBα) in weaned piglets (P < 0.05). Maternal dietary supplementation with XPC significantly downregulated the gene expression of IL-6 and interleukin-10 (IL-10) in the thymus and decreased the protein expression of c-Jun N-terminal kinase (JNK) in the liver of weaned piglets (P < 0.05). In summary, injection of LPS induced an inflammatory response in weaned piglets and destroyed the intestinal barrier. Maternal dietary supplementation of XPC improved the immune performance of weaned piglets by inhibiting inflammatory responses.
Collapse
Affiliation(s)
- Yalei Liu
- Animal Disease-Resistance Nutrition, Ministry of Education, Ministry of Agriculture and Rural Affairs, Key Laboratory of Sichuan Province, Animal Nutrition Institute, Sichuan Agricultural University, Chengdu 611130, Sichuan, P. R. China
| | - Xinlin Jia
- Animal Disease-Resistance Nutrition, Ministry of Education, Ministry of Agriculture and Rural Affairs, Key Laboratory of Sichuan Province, Animal Nutrition Institute, Sichuan Agricultural University, Chengdu 611130, Sichuan, P. R. China
| | - Junlei Chang
- Animal Disease-Resistance Nutrition, Ministry of Education, Ministry of Agriculture and Rural Affairs, Key Laboratory of Sichuan Province, Animal Nutrition Institute, Sichuan Agricultural University, Chengdu 611130, Sichuan, P. R. China
| | - Xunjing Pan
- Animal Disease-Resistance Nutrition, Ministry of Education, Ministry of Agriculture and Rural Affairs, Key Laboratory of Sichuan Province, Animal Nutrition Institute, Sichuan Agricultural University, Chengdu 611130, Sichuan, P. R. China
| | - Xuemei Jiang
- Animal Disease-Resistance Nutrition, Ministry of Education, Ministry of Agriculture and Rural Affairs, Key Laboratory of Sichuan Province, Animal Nutrition Institute, Sichuan Agricultural University, Chengdu 611130, Sichuan, P. R. China
| | - Lianqiang Che
- Animal Disease-Resistance Nutrition, Ministry of Education, Ministry of Agriculture and Rural Affairs, Key Laboratory of Sichuan Province, Animal Nutrition Institute, Sichuan Agricultural University, Chengdu 611130, Sichuan, P. R. China
| | - Yan Lin
- Animal Disease-Resistance Nutrition, Ministry of Education, Ministry of Agriculture and Rural Affairs, Key Laboratory of Sichuan Province, Animal Nutrition Institute, Sichuan Agricultural University, Chengdu 611130, Sichuan, P. R. China
| | - Yong Zhuo
- Animal Disease-Resistance Nutrition, Ministry of Education, Ministry of Agriculture and Rural Affairs, Key Laboratory of Sichuan Province, Animal Nutrition Institute, Sichuan Agricultural University, Chengdu 611130, Sichuan, P. R. China
| | - Bin Feng
- Animal Disease-Resistance Nutrition, Ministry of Education, Ministry of Agriculture and Rural Affairs, Key Laboratory of Sichuan Province, Animal Nutrition Institute, Sichuan Agricultural University, Chengdu 611130, Sichuan, P. R. China
| | - Zhengfeng Fang
- Animal Disease-Resistance Nutrition, Ministry of Education, Ministry of Agriculture and Rural Affairs, Key Laboratory of Sichuan Province, Animal Nutrition Institute, Sichuan Agricultural University, Chengdu 611130, Sichuan, P. R. China
| | - Jian Li
- Animal Disease-Resistance Nutrition, Ministry of Education, Ministry of Agriculture and Rural Affairs, Key Laboratory of Sichuan Province, Animal Nutrition Institute, Sichuan Agricultural University, Chengdu 611130, Sichuan, P. R. China
| | - Lun Hua
- Animal Disease-Resistance Nutrition, Ministry of Education, Ministry of Agriculture and Rural Affairs, Key Laboratory of Sichuan Province, Animal Nutrition Institute, Sichuan Agricultural University, Chengdu 611130, Sichuan, P. R. China
| | - Jianping Wang
- Animal Disease-Resistance Nutrition, Ministry of Education, Ministry of Agriculture and Rural Affairs, Key Laboratory of Sichuan Province, Animal Nutrition Institute, Sichuan Agricultural University, Chengdu 611130, Sichuan, P. R. China
| | - Mengmeng Sun
- College of Science, Sichuan Agricultural University, Xin Kang Road, Yucheng District, Ya’an 625014, P.R. China
| | - De Wu
- Animal Disease-Resistance Nutrition, Ministry of Education, Ministry of Agriculture and Rural Affairs, Key Laboratory of Sichuan Province, Animal Nutrition Institute, Sichuan Agricultural University, Chengdu 611130, Sichuan, P. R. China
| | - Shengyu Xu
- Animal Disease-Resistance Nutrition, Ministry of Education, Ministry of Agriculture and Rural Affairs, Key Laboratory of Sichuan Province, Animal Nutrition Institute, Sichuan Agricultural University, Chengdu 611130, Sichuan, P. R. China
| |
Collapse
|
7
|
Formulating Diets for Improved Health Status of Pigs: Current Knowledge and Perspectives. Animals (Basel) 2022; 12:ani12202877. [DOI: 10.3390/ani12202877] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2022] [Revised: 10/15/2022] [Accepted: 10/19/2022] [Indexed: 11/17/2022] Open
Abstract
Our understanding of nutrition has been evolving to support both performance and immune status of pigs, particularly in disease-challenged animals which experience repartitioning of nutrients from growth towards the immune response. In this sense, it is critical to understand how stress may impact nutrient metabolism and the effects of nutritional interventions able to modulate organ (e.g., gastrointestinal tract) functionality and health. This will be pivotal in the development of effective diet formulation strategies in the context of improved animal performance and health. Therefore, this review will address qualitative and quantitative effects of immune system stimulation on voluntary feed intake and growth performance measurements in pigs. Due to the known repartitioning of nutrients, the effects of stimulating the immune system on nutrient requirements, stratified according to different challenge models, will be explored. Finally, different nutritional strategies (i.e., low protein, amino acid-supplemented diets; functional amino acid supplementation; dietary fiber level and source; diet complexity; organic acids; plant secondary metabolites) will be presented and discussed in the context of their possible role in enhancing the immune response and animal performance.
Collapse
|
8
|
Effects of Dietary Supplementation with Glutamine on the Immunity and Intestinal Barrier Gene Expression in Broiler Chickens Infected with Salmonella Enteritidis. Animals (Basel) 2022; 12:ani12172168. [PMID: 36077889 PMCID: PMC9454664 DOI: 10.3390/ani12172168] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2022] [Revised: 08/16/2022] [Accepted: 08/22/2022] [Indexed: 11/30/2022] Open
Abstract
The effects of glutamine (Gln) on immunity and intestinal barrier gene expression levels in broilers challenged with Salmonella Enteritidis were evaluated. A total of 400 1-day-old broilers were randomly assigned to four groups, 10 repetition treatments per group with 10 broiler chickens for a 21-day feeding trial. The groups were the normal control group (CON, no infected group, fed with a basal diet); the S. Enteritidis-infected control group (SCC, infected with 2.0 × 104 CFU/mL of S. Enteritidis, fed a basal diet); and the Gln 1 and 2 groups, who were challenged with S. Enteritidis and fed a basal diet plus Gln at 0.5% and 1.0%, respectively. The results show that S. Enteritidis had adverse effects on the average daily feed intake, average daily gain, and the feed conversion ratio of infected broilers compared with those of CON broilers on d 7 (p < 0.05); decreased serum immunoglobulin A (IgA), immunoglobulin M (IgM), and immunoglobulin G (IgG) concentrations, and intestinal mucosa Bcl-2 mRNA expression levels (p < 0.05); increased the Lysozyme (LZM, only serum), NO, inducible NO synthase (iNOS) (except at 4 d), and total nitric oxide synthase (TNOS) (except at 4 d) activities in serum and the intestinal mucosa; and increased intestinal mucosa polymeric immunoglobulin receptor (pIgR) (except at 21 d), Avian beta-defensin 5 (AvBD5), AvBD14, Bax, and Bak mRNA expression levels during the experimental period (p < 0.05). Supplementation with Gln improved growth performance; increased serum IgA, IgG, and IgM concentrations and intestinal mucosa Bcl-2 mRNA expression levels (p < 0.05); decreased the LZM (only serum), NO, iNOS (except at 4 d), and TNOS (except at 4 d) activities in serum and the intestinal mucosa; and decreased intestinal mucosa pIgR (except at 21 d), AvBD5, AvBD14, Bax, and Bak mRNA expression levels during the experimental period (p < 0.05). These results suggest that Gln might lessen the inflammatory reaction of the small intestine and enlarge the small bowel mucosa immune and barrier function in broiler chickens challenged with S. Enteritidis.
Collapse
|
9
|
The Impact of Quercetin and Its Methylated Derivatives 3-o-Methylquercetin and Rhamnazin in Lipopolysaccharide-Induced Inflammation in Porcine Intestinal Cells. Antioxidants (Basel) 2022; 11:antiox11071265. [PMID: 35883756 PMCID: PMC9312192 DOI: 10.3390/antiox11071265] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2022] [Revised: 06/18/2022] [Accepted: 06/23/2022] [Indexed: 12/04/2022] Open
Abstract
Oxidative stress in the small intestine can lead to inflammation and barrier malfunction. The present study describes the effect of quercetin (Q), 3-o-methylquercetin (QM), and rhamnazin (R) on cell viability, paracellular permeability, production of intracellular reactive oxygen species (ROS), extracellular hydrogen peroxide (H2O2), and interleukin-6 (IL-6) after challenging jejunal cells (IPEC-J2) with different types (Salmonella enterica ser. Typhimurium, Escherichia coli O111:B4, and E. coli O127:B8) of lipopolysaccharides (LPS) applied in 10 µg/mL concentration. The intracellular ROS level increased after all LPS treatments, which could be decreased by all tested flavonoid compounds in 50 µM concentration. Extracellular H2O2 production significantly increased after Q and R treatment (50 µM). S. Typhimurium LPS could significantly increase IL-6 production of enterocytes, which could be alleviated by Q, QM, and R (50 µM) as well. Using fluorescein isothiocyanate dextran (FD4) tracer dye, we could demonstrate that S. Typhimurium LPS significantly increased the permeability of the cell layer. The simultaneous treatments of S. Typhimurium LPS and the flavonoid compounds showed no alteration in FD4 penetration compared to untreated cells. These results highlight that Q, QM, and R are promising substances that can be used to protect intestinal epithelial cells from the deteriorating effects of oxidative stress.
Collapse
|
10
|
Niu X, Ding Y, Chen S, Gooneratne R, Ju X. Effect of Immune Stress on Growth Performance and Immune Functions of Livestock: Mechanisms and Prevention. Animals (Basel) 2022; 12:ani12070909. [PMID: 35405897 PMCID: PMC8996973 DOI: 10.3390/ani12070909] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2022] [Revised: 03/19/2022] [Accepted: 03/26/2022] [Indexed: 02/06/2023] Open
Abstract
Simple Summary Immune stress is an important stressor in domestic animals that leads to decreased feed intake, slow growth, and reduced disease resistance of pigs and poultry. Especially in high-density animal feeding conditions, the risk factor of immune stress is extremely high, as they are easily harmed by pathogens, and frequent vaccinations are required to enhance the immunity function of the animals. This review mainly describes the causes, mechanisms of immune stress and its prevention and treatment measures. This provides a theoretical basis for further research and development of safe and efficient prevention and control measures for immune stress in animals. Abstract Immune stress markedly affects the immune function and growth performance of livestock, including poultry, resulting in financial loss to farmers. It can lead to decreased feed intake, reduced growth, and intestinal disorders. Studies have shown that pathogen-induced immune stress is mostly related to TLR4-related inflammatory signal pathway activation, excessive inflammatory cytokine release, oxidative stress, hormonal disorders, cell apoptosis, and intestinal microbial disorders. This paper reviews the occurrence of immune stress in livestock, its impact on immune function and growth performance, and strategies for immune stress prevention.
Collapse
Affiliation(s)
- Xueting Niu
- Department of Veterinary Medicine, Guangdong Ocean University, Zhanjiang 524088, China; (X.N.); (Y.D.); (S.C.)
- Marine Medical Research and Development Centre, Shenzhen Institute of Guangdong Ocean University, Shenzhen 518018, China
| | - Yuexia Ding
- Department of Veterinary Medicine, Guangdong Ocean University, Zhanjiang 524088, China; (X.N.); (Y.D.); (S.C.)
| | - Shengwei Chen
- Department of Veterinary Medicine, Guangdong Ocean University, Zhanjiang 524088, China; (X.N.); (Y.D.); (S.C.)
- Marine Medical Research and Development Centre, Shenzhen Institute of Guangdong Ocean University, Shenzhen 518018, China
| | - Ravi Gooneratne
- Faculty of Agriculture and Life Sciences, Lincoln University, Lincoln 7647, New Zealand;
| | - Xianghong Ju
- Department of Veterinary Medicine, Guangdong Ocean University, Zhanjiang 524088, China; (X.N.); (Y.D.); (S.C.)
- Marine Medical Research and Development Centre, Shenzhen Institute of Guangdong Ocean University, Shenzhen 518018, China
- Correspondence:
| |
Collapse
|
11
|
Gomes MDS, Saraiva A, Valente Júnior DT, de Oliveira LL, Correia AM, Serão NVL, Rocha GC. Effect of amino acid blend as alternative to antibiotics for growing pigs. J Anim Sci 2022; 100:6503529. [PMID: 35021211 PMCID: PMC8903138 DOI: 10.1093/jas/skac008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2021] [Accepted: 01/09/2022] [Indexed: 01/13/2023] Open
Abstract
This study aimed to evaluate the effect of supplementing arginine (Arg) + glutamine (Gln) replacing antibiotics on performance, immune response, and antioxidant capacity of pigs in the growing phase. One hundred fifty 63-d-old pigs with initial body weight (BW) of 25.0 ± 1.46 kg were distributed in a randomized block design, with three treatments and ten replicates. The three diets were control; antibiotic, control + 100 mg/kg tiamulin and 506 mg/kg oxytetracycline; amino acid, control + 10 g/kg Arg and 2 g/kg Gln. Dietary treatments were fed from 63 to 77 d. Following the treatment period, all pigs were fed the control diet from 77 to 90 d. Data were analyzed using GLIMMIX and UNIVARIATE in SAS 9.4. From 63 to 70 d, pigs fed diets with antibiotics had improved (P < 0.05) average daily feed intake, average daily weight gain (ADG), gain to feed ratio (G:F), and 70-d BW compared to those fed control or amino acid diets. From 70 to 77 d, including antibiotics in the diet increased (P < 0.05) ADG and 77-d BW. From 77 to 90 d, pigs fed control or amino acid diets had greater (P < 0.05) ADG than those fed an antibiotic diet. From 63 to 90 d, although pig performance was not affected (P > 0.05), growth curve of pigs fed the antibiotic diets was different (P < 0.05) from those fed the control and amino acids diets. At 70 d, serum tumor necrosis factor-α and diamine oxidase (DAO) were lower (P < 0.05) in pigs fed the antibiotic diet than the control diet, and pigs fed the amino acid diet had intermediate results. Ferric reducing antioxidant power (FRAP) was lower (P < 0.05) in pigs fed the amino acid diet than the antibiotic diet, and pigs fed the control diet had intermediate results. Serum immunoglobulin A was lower (P < 0.05) in pigs fed the antibiotic diet. At 77 d, DAO and serum immunoglobulin G were lower (P < 0.05) in pigs fed the antibiotic diet. FRAP was lower (P < 0.05) in pigs fed the amino acid and control diets. Serum malondialdehyde was higher (P < 0.05) in pigs fed the amino acid diet than those fed the control diet, and pigs fed the antibiotic diet had intermediate results. At 90 d, antibiotics or amino acids did not affect (P > 0.05) serum parameters. Amino acid blend supplementation at the selected doses in this study did not positively affect growing pigs. Although from 63 to 77 d, antibiotics improved performance, when considering the overall study period, growing pigs did not benefit from a diet containing antibiotics.
Collapse
Affiliation(s)
- Maykelly da S Gomes
- Department of Animal Science, Universidade Federal de Viçosa, Minas Gerais 36570-900, Brazil
| | - Alysson Saraiva
- Department of Animal Science, Universidade Federal de Viçosa, Minas Gerais 36570-900, Brazil
| | - Dante T Valente Júnior
- Department of Animal Science, Universidade Federal de Viçosa, Minas Gerais 36570-900, Brazil
| | - Leandro L de Oliveira
- Department of Biology, Universidade Federal de Viçosa, Minas Gerais 36570-900, Brazil
| | - Amanda M Correia
- Department of Animal Science, Universidade Federal de Viçosa, Minas Gerais 36570-900, Brazil
| | - Nicola V L Serão
- Department of Animal Science, Iowa State University, Ames, IA 50011, USA
| | - Gabriel C Rocha
- Department of Animal Science, Universidade Federal de Viçosa, Minas Gerais 36570-900, Brazil,Corresponding author:
| |
Collapse
|
12
|
Wu Y, Wang W, Kim IH, Yang Y. Dietary hydrolyzed wheat gluten supplementation ameliorated intestinal barrier dysfunctions of broilers challenged with Escherichia coli O78. Poult Sci 2021; 101:101615. [PMID: 34952261 PMCID: PMC8715217 DOI: 10.1016/j.psj.2021.101615] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2021] [Revised: 11/14/2021] [Accepted: 11/16/2021] [Indexed: 01/24/2023] Open
Abstract
This study aimed to investigate a protective effect of hydrolyzed wheat gluten (HWG) on Escherichia coli (E. coli)-induced intestinal barrier dysfunctions in broilers. Broilers fed a basal diet unsupplemented or supplemented with HWG (0.5% or 1%) were intraperitoneally injected with either E. coli O78 suspension (108 CFU/mL) or equal volume of vehicle on d 18 of age. Blood and tissue samples were collected 3rd d post infection. The results showed that E. coli-infection increased immune-organ indexes of spleen and thymus, enhanced serum diamine oxidase (DAO) level, impaired ileal villus structure and reduced tight junction mRNA levels (Occludin, Claudin-1, ZO-1, P < 0.05), while increased mRNA levels of inflammatory cytokines (TNF-α, IFN-γ, IL-1β, IL-6, IL-8) and TLR4 in the ileum of broilers (P < 0.05). The effects of E. coli O78 challenge on organ indexes of spleen and thymus, serum DAO level, mRNA levels of tight junctions were alleviated by 1% HWG supplementation, the upregulations of IL-1β and TLR4 were prevented by 0.5% HWG supplementation (P < 0.05). In addition, increased IFN-γ of E. coli-infected broilers was abrogated by 0.5% or 1% HWG supplementation (P < 0.05). In summary, dietary HWG supplementation ameliorated intestinal barrier dysfunctions triggered by E. coli-infection in the ileum of broilers. HWG supplementation might be a nutritional strategy to improve the intestinal mucosal barrier function of broilers.
Collapse
Affiliation(s)
- Yujun Wu
- State Key Laboratory of Animal Nutrition, China Agricultural University, Beijing, 100193 China
| | - Wenyu Wang
- Nantong Tiancheng Modern Agricultural Technology Co. Ltd., Nantong, Jiangsu Province, 226634 China
| | - In Ho Kim
- Department of Animal Resource & Science, Dankook University, 330-714 Cheonan, Korea
| | - Ying Yang
- State Key Laboratory of Animal Nutrition, China Agricultural University, Beijing, 100193 China.
| |
Collapse
|
13
|
Rodrigues LA, Ferreira FNA, Costa MO, Wellington MO, Columbus DA. Factors affecting performance response of pigs exposed to different challenge models: a multivariate approach. J Anim Sci 2021; 99:6290803. [PMID: 34061959 DOI: 10.1093/jas/skab035] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2020] [Accepted: 01/27/2021] [Indexed: 01/15/2023] Open
Abstract
Factors associated with the severity with which different challenge models (CMs) compromise growth performance in pigs were investigated using hierarchical clustering on principal components (HCPC) analysis. One hundred seventy-eight studies reporting growth performance variables (average daily gain [ADG], average daily feed intake [ADFI], gain:feed [GF], and final body weight [FBW]) of a Control (Ct) vs. a Challenged (Ch) group of pigs using different CMs (enteric [ENT], environmental [ENV], lipopolysaccharide [LPS], respiratory [RES], or sanitary condition [SAN] challenges) were included. Studies were grouped by similarity in performance in three clusters (C1, C2, and C3) by HCPC. The effects of CM, cluster, and sex (males [M], females [F], mixed [Mi]) were investigated. Linear (LRP) and quadratic (QRP) response plateau models were fitted to assess the interrelationships between the change in ADG (∆ADG) and ADFI (∆ADFI) and the duration of challenge. All variables increased from C1 through C3, except for GF, which decreased (P < 0.05). LPS was more detrimental to ADG than ENV, RES, and SAN models (P < 0.05). Furthermore, LPS also lowered GF more than all the other CMs (P < 0.05). The ∆ADG independent of ∆ADFI was significant in LPS and SAN (P < 0.05), showed a trend toward the significance in ENT and RES (P < 0.10), and was not significant in ENV (P > 0.10), while the ∆ADG dependent on ∆ADFI was significant in ENT, ENV, and LPS only (P < 0.05). The critical value of ∆ADFI influencing the ∆ADG was significant in pigs belonging to C1 (P < 0.05) but not C2 or C3 (P > 0.10). The ∆ADG independent of duration post-Ch (irreparable portion of growth) was significant in C1 and C2 pigs, whereas the ∆ADFI independent of duration post-Ch (irreparable portion of feed intake) was significant in C1 pigs only (P < 0.05). Moreover, the time for recovery of ADG and ADFI after Ch was significant in pigs belonging to C1 and C2 (P < 0.05). Control F showed reduced ADG compared with Ct-M, and Ch-F showed reduced ADFI compared with Ch-M (P < 0.05). Moreover, the irreparable portion of ΔADG was 4.8 higher in F (-187.7; P < 0.05) compared with M (-39.1; P < 0.05). There are significant differences in growth performance response to CM based on cluster and sex. Furthermore, bacterial lipopolysaccharide appears to be an appropriate noninfectious model for immune stimulation and growth impairment in pigs.
Collapse
Affiliation(s)
- Lucas A Rodrigues
- Prairie Swine Centre, Inc., Saskatoon, SK S7H 5N9, Canada.,Department of Animal and Poultry Science, University of Saskatchewan, Saskatoon, SK S7N 5A8, Canada
| | - Felipe N A Ferreira
- Technical Services Department, Agroceres Multimix, Rio Claro, SP 13502-741, Brazil
| | - Matheus O Costa
- Department of Large Animal Clinical Sciences, Western College of Veterinary Medicine, University of Saskatchewan, Saskatoon, SK S7N 5B4, Canada.,Department of Population Health Sciences, Faculty of Veterinary Medicine, Utrecht University, Utrecht, 3584 CL, The Netherlands
| | - Michael O Wellington
- Department of Animal and Poultry Science, University of Saskatchewan, Saskatoon, SK S7N 5A8, Canada
| | - Daniel A Columbus
- Prairie Swine Centre, Inc., Saskatoon, SK S7H 5N9, Canada.,Department of Animal and Poultry Science, University of Saskatchewan, Saskatoon, SK S7N 5A8, Canada
| |
Collapse
|
14
|
Invited Review: Maintain or Improve Piglet Gut Health around Weanling: The Fundamental Effects of Dietary Amino Acids. Animals (Basel) 2021; 11:ani11041110. [PMID: 33924356 PMCID: PMC8069201 DOI: 10.3390/ani11041110] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2021] [Revised: 03/31/2021] [Accepted: 04/09/2021] [Indexed: 12/18/2022] Open
Abstract
Gut health has significant implications for swine nutrient utilization and overall health. The basic gut morphology and its luminal microbiota play determinant roles for maintaining gut health and functions. Amino acids (AA), a group of essential nutrients for pigs, are not only obligatory for maintaining gut mucosal mass and integrity, but also for supporting the growth of luminal microbiota. This review summarized the up-to-date knowledge concerning the effects of dietary AA supplementation on the gut health of weanling piglets. For instance, threonine, arginine, glutamine, methionine and cysteine are beneficial to gut mucosal immunity and barrier function. Glutamine, arginine, threonine, methionine and cysteine can also assist with relieving the post-weaning stress of young piglets by improving gut immunological functions, antioxidant capacity, and/or anti-inflammatory ability. Glutamine, glutamate, glycine and cysteine can assist to reconstruct the gut structure after its damage and reverse its dysfunction. Furthermore, methionine, lysine, threonine, and glutamate play key roles in affecting bacteria growth in the lumen. Overall, the previous studies with different AA showed both similar and different effects on the gut health, but how to take advantages of all these effects for field application is not clear. It is uncertain whether these AA effects are synergetic or antagonistic. The interactions between the effects of non-nutrient feed additives and the fundamental effects of AA warrant further investigation. Considering the global push to minimize the antibiotics and ZnO usage in swine production, a primary effort at present may be made to explore the specific effects of individual AA, and then the concert effects of multiple AA, on the profile and functions of gut microbiota in young pigs.
Collapse
|
15
|
Hou P, Wang C, Zhou M, Liu H. Properties and regulation of Gly-Sar uptake and transport in bovine intestinal epithelial cells. J Anim Physiol Anim Nutr (Berl) 2021; 106:24-32. [PMID: 33834547 DOI: 10.1111/jpn.13546] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2020] [Revised: 03/17/2021] [Accepted: 03/22/2021] [Indexed: 11/29/2022]
Abstract
Intestinal absorption of peptides is vital for the overall health and productivity of dairy cows. This study investigated the regulation, uptake and transport of dipeptides in bovine intestinal epithelial cells (BIECs). We also evaluated the effects of time, pH, concentration of the dipeptides, temperature, presence of diethylpyrocarbonate (DEPC)-an inhibitor of PepT1, and other dipeptides (Met-Met, Lys-Lys or Met-Lys), on the uptake and transport of Gly-Sar-FITC, which was a common fluorophore-labelled dipeptide. Under controlled experiments, BIECs were treated with 25 μM LY294002 (a phosphatidylinositol 3-kinase (PI3K) inhibitor) and 25 μM Perifosine (a protein kinase B (AKT) inhibitor). The subsequent expression of PepT1 in the BIECs was assessed by reverse transcriptase polymerase chain reaction (RT-PCR) and Western blotting. It was found that the uptake and transport of Gly-Sar-FITC were significant high at 37℃ than that at 4℃. The optimal pH for transport and uptake of Gly-Sar-FITC was 6.0-6.5, whereas the two properties decreased significantly in the presence of DEPC, Met-Met, Lys-Lys and Met-Lys (p < 0.05). The apical-to-basolateral transport was also found to be significantly higher than the reverse transport (p < 0.05). PI3K and AKT inhibitors were found to significantly suppress the expression of PepT1, thus impairing uptake and transport of Gly-Sar-FITC. Findings of this study thus suggest that the uptake and transport of Gly-Sar-FITC in BIECs are mediated by PepT1, and the PI3K/AKT signalling pathway regulates the absorption of small peptides.
Collapse
Affiliation(s)
- Pengfei Hou
- College of Animal Sciences, Zhejiang University, Hangzhou, China
| | - Caihong Wang
- College of Animal Sciences, Zhejiang University, Hangzhou, China
| | - Miaomiao Zhou
- College of Animal Sciences, Zhejiang University, Hangzhou, China.,College of Agriculture, Liaocheng University, Liaocheng, China
| | - Hongyun Liu
- College of Animal Sciences, Zhejiang University, Hangzhou, China
| |
Collapse
|
16
|
Xu B, Yan Y, Yin B, Zhang L, Qin W, Niu Y, Tang Y, Zhou S, Yan X, Ma L. Dietary glycyl-glutamine supplementation ameliorates intestinal integrity, inflammatory response, and oxidative status in association with the gut microbiota in LPS-challenged piglets. Food Funct 2021; 12:3539-3551. [PMID: 33900316 DOI: 10.1039/d0fo03080e] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
During weaning transition, mammalian newborns suffer severe enteric infections and thus induced gut microbiota dysbiosis, which in turn aggravates enteric disorder. The synthetic dipeptide glycyl-glutamine (GlyGln) has been used as a diet supplement to improve the weaning transition of newborns. However, the effect of dietary GlyGln supplementation on the gut microbiota of piglets with enteric infection remains unclear. Here, weaned piglets received a basal diet or a basal diet supplemented with 0.25% GlyGln for 3 weeks. Five piglets in each group received an intraperitoneal injection of lipopolysaccharide (LPS) (100 μg per kg BW) (LPS and GlyGln + LPS groups) and meanwhile five piglets in a control group received an intraperitoneal injection of saline (Ctrl group). The results showed that dietary GlyGln supplementation improved the LPS induced inflammation response and damage to the ileum morphology by increasing interleukin 10, tight junction proteins, villus height, and the ratio villus height/crypt depth, but decreasing the crypt depth. For the oxidative status, dietary GlyGln supplementation increased the ileal superoxide dismutase and meanwhile reduced the malondialdehyde and nitric oxide synthase activity (NOS) (total NOS and inducible NOS), compared with that in the LPS group. LPS challenge reduced the diversity of gut microbiota and enriched the facultative anaerobic Escherichia coli. The GlyGln restored alpha diversity and the structure of the gut microbiota by enriching obligate anaerobes and short-chain fatty acid (SCFA)-producing bacteria, including Clostridium, Lachnospira, Phascolarctobacterium, Roseburia, Lachnospiraceae, and Synergistetes. GlyGln enriched the gut microbiota function of carbohydrate metabolism and elevated the ileal SCFA concentrations of propionic acid and butyric acid that had been decreased by the LPS challenge. The beneficial effects of dietary GlyGln supplementation are closely associated with its enriched bacteria and SCFAs. Taken together, dietary GlyGln supplementation improved the gut microbiota dysbiosis induced by LPS challenge and enriched obligate anaerobes and SCFA-producing bacteria, which contributed to the amelioration of intestinal integrity, inflammatory responses, and oxidative status.
Collapse
Affiliation(s)
- Baoyang Xu
- State Key Laboratory of Agricultural Microbiology, College of Animal Sciences and Technology, Huazhong Agricultural University, Wuhan, Hubei 430070, China.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
17
|
Kyoung H, Lee JJ, Cho JH, Choe J, Kang J, Lee H, Liu Y, Kim Y, Kim HB, Song M. Dietary Glutamic Acid Modulates Immune Responses and Gut Health of Weaned Pigs. Animals (Basel) 2021; 11:ani11020504. [PMID: 33671988 PMCID: PMC7919271 DOI: 10.3390/ani11020504] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2021] [Revised: 02/09/2021] [Accepted: 02/10/2021] [Indexed: 12/14/2022] Open
Abstract
Simple Summary Weaning stress can lead to intestinal barrier dysfunction, immune system destruction, and intestinal microbiota disruption, thereby reducing the absorption of nutrients and causing intestinal diseases. Glutamic acid is a non-essential amino acid that is abundantly present in the body and plays an essential function in cellular metabolism and immune responses. In this study, the effects of dietary glutamic acid on the growth performance, nutrient digestibility, immune responses, and intestinal health of weaned pigs were evaluated. Based on the results, dietary glutamic acid increased growth performance, nutrient digestibility, intestinal morphology, and ileal gene expression of tight junction proteins of weaned pigs and modified immune responses and gut microbiota. This study provides information to understand the functional use of dietary glutamic acid as a feed additive for improving the growth performance and intestinal health of weaned pigs. Abstract Dietary glutamic acid (GLU) is used as a feed additive because of its functional characteristics that may affect the growth performance and health of pigs. This study was carried out to determine the effects of dietary GLU on growth performance, nutrient digestibility, immune responses, and intestinal health of weaned pigs. A total of ninety-six weaned pigs (8.07 ± 1.17 kg of body weight; 28 days of age) were assigned to two dietary treatments (8 pigs/pen; 6 replicates/treatment) in a randomized complete block design (block: body weight): (1) a typical weaner diet (CON) and (2) CON supplemented with 0.5% GLU. The experimental period was for 4 weeks. All data and sample collections were performed at the specific time points during the experimental period. Pigs fed GLU had higher average daily gain and average daily feed intake for the first two weeks and nutrient digestibility than pigs fed CON. In addition, dietary GLU increased villus height to crypt depth ratio, number of goblet cells, and ileal gene expression of claudin family and occludin compared with CON, but decreased serum TNF-α and IL-6 and ileal gene expression of TNF-α. Moreover, pigs fed GLU had increased relative composition of bacterial communities of genus Prevotella and Anaerovibrio and decreased genus Clostridium and Terrisporobacter compared with those fed CON. This study suggests that dietary GLU influences growth performance and health of weaned pigs by modulating nutrient digestibility, intestinal morphology, ileal gene expression of tight junction proteins and cytokines, immune responses, and microbial community in the gut.
Collapse
Affiliation(s)
- Hyunjin Kyoung
- Division of Animal and Dairy Science, Chungnam National University, Daejeon 34134, Korea; (H.K.); (J.J.L.); (J.K.)
| | - Jeong Jae Lee
- Division of Animal and Dairy Science, Chungnam National University, Daejeon 34134, Korea; (H.K.); (J.J.L.); (J.K.)
| | - Jin Ho Cho
- Division of Food and Animal Science, Chungbuk National University, Cheongju 28644, Korea;
| | - Jeehwan Choe
- Department of Beef Science, Korea National College of Agriculture and Fisheries, Jeonju 54874, Korea;
| | - Joowon Kang
- Division of Animal and Dairy Science, Chungnam National University, Daejeon 34134, Korea; (H.K.); (J.J.L.); (J.K.)
| | - Hanbae Lee
- Pathway Intermediates, Seoul 06253, Korea;
| | - Yanhong Liu
- Department of Animal Science, University of California, Davis, CA 95616, USA;
| | - Younghoon Kim
- Department of Agricultural Biotechnology and Research, Institute of Agriculture and Life Science, Seoul National University, Seoul 08826, Korea;
| | - Hyeun Bum Kim
- Department of Animal Resources Science, Dankook University, Cheonan 31116, Korea
- Correspondence: (H.B.K.); (M.S.)
| | - Minho Song
- Division of Animal and Dairy Science, Chungnam National University, Daejeon 34134, Korea; (H.K.); (J.J.L.); (J.K.)
- Correspondence: (H.B.K.); (M.S.)
| |
Collapse
|
18
|
Ma D, Guedes JM, Duttlinger AW, Johnson JS, Zuelly SM, Lay DC, Richert BT, Kim YHB. Impact of L-glutamine as replacement of dietary antibiotics during post weaning and transport recovery on carcass and meat quality attributes in pigs. Livest Sci 2021. [DOI: 10.1016/j.livsci.2020.104350] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
|
19
|
Wu QJ, Liu ZH, Jiao C, Cheng BY, Li SW, Ma Y, Wang YQ, Wang Y. Effects of Glutamine on Lymphocyte Proliferation and Intestinal Mucosal Immune Response in Heat-Stressed Broilers. BRAZILIAN JOURNAL OF POULTRY SCIENCE 2021. [DOI: 10.1590/1806-9061-2019-1207] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Affiliation(s)
- QJ Wu
- Henan University of Science and Technology, PR China
| | - ZH Liu
- Henan University of Science and Technology, PR China
| | - C Jiao
- Henan University of Science and Technology, PR China
| | - BY Cheng
- Henan University of Science and Technology, PR China
| | - SW Li
- Henan University of Science and Technology, PR China
| | - Y Ma
- Henan University of Science and Technology, PR China
| | - YQ Wang
- Henan University of Science and Technology, PR China
| | - Y Wang
- Henan University of Science and Technology, PR China
| |
Collapse
|
20
|
McConn BR, Duttlinger AW, Kpodo KR, Eicher SD, Richert BT, Johnson JS. Replacing dietary antibiotics with 0.20% l-glutamine and synbiotics following weaning and transport in pigs. J Anim Sci 2020; 98:5897049. [PMID: 32841327 PMCID: PMC7507408 DOI: 10.1093/jas/skaa272] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2020] [Accepted: 08/19/2020] [Indexed: 01/22/2023] Open
Abstract
Dietary antibiotic use has been limited in swine production due to concerns regarding antibiotic resistance. However, this may negatively impact the health, productivity, and welfare of pigs. Therefore, the study objective was to determine if combining dietary synbiotics and 0.20% l-glutamine would improve pig growth performance and intestinal health following weaning and transport when compared with traditionally used dietary antibiotics. Because previous research indicates that l-glutamine improves swine growth performance and synbiotics reduce enterogenic bacteria, it was hypothesized that supplementing diets with 0.20% l-glutamine (GLN) and synbiotics (SYN; 3 strains of Lactobacillus [1.2 × 10^9 cfu/g of strain/pig/d] + β-glucan [0.01 g/pig/d] + fructooligosaccharide [0.01 g/pig/d]) would have an additive effect and improve pig performance and intestinal health over that of dietary antibiotics. Mixed-sex pigs (N = 226; 5.86 ± 0.11 kg body weight [BW]) were weaned (19.4 ± 0.2 d of age) and transported for 12 h in central Indiana. Pigs were blocked by BW and allotted to one of two dietary treatments (5 to 6 pigs per pen): antibiotics (positive control [PC]; chlortetracycline [441 ppm] + tiamulin [38.5 ppm]), no antibiotics (negative control [NC]), GLN, SYN, or the NC diet with both the GLN and SYN additives (GLN + SYN) fed for 14 d. From day 14 post-weaning to the end of the grow-finish period, all pigs were provided common antibiotic-free diets. Data were analyzed using PROC GLIMMIX and PROC MIXED in SAS 9.4. Overall, haptoglobin was greater (P = 0.03; 216%) in NC pigs compared with PC pigs. On day 13, GLN and PC pigs tended to have reduced (P = 0.07; 75.2% and 67.3%, respectively) haptoglobin compared with NC pigs. On day 34, the jejunal goblet cell count per villi and per millimeter tended to be greater (P < 0.08; 71.4% and 62.9%, respectively) in SYN pigs compared with all other dietary treatments. Overall, jejunal mucosa tumor necrosis factor-alpha (TNFα) gene expression tended to be greater (P = 0.09; 40.0%) in NC pigs compared with PC pigs on day 34. On day 34, jejunal mucosa TNFα gene expression tended to be greater (P = 0.09; 33.3%, 41.2%, and 60.0%, respectively) in GLN pigs compared with SYN, GLN + SYN, and PC pigs. Although it was determined that some metrics of pig health were improved by the addition of GLN and SYN (i.e., haptoglobin and goblet cell count), overall, there were very few differences detected between dietary treatments and this may be related to the stress load incurred by the pigs.
Collapse
Affiliation(s)
- Betty R McConn
- Oak Ridge Institute for Science and Education, Oak Ridge, TN
| | - Alan W Duttlinger
- Department of Animal Sciences, Purdue University, West Lafayette, IN
| | - Kouassi R Kpodo
- Department of Animal Sciences, Purdue University, West Lafayette, IN
| | - Susan D Eicher
- Livestock Behavior Research Unit, USDA-ARS, West Lafayette, IN
| | - Brian T Richert
- Department of Animal Sciences, Purdue University, West Lafayette, IN
| | - Jay S Johnson
- Livestock Behavior Research Unit, USDA-ARS, West Lafayette, IN,Corresponding author:
| |
Collapse
|
21
|
van Keulen P, Khan MA, Dijkstra J, Knol F, McCoard SA. Effect of arginine or glutamine supplementation and milk feeding allowance on small intestine development in calves. J Dairy Sci 2020; 103:4754-4764. [PMID: 32197854 DOI: 10.3168/jds.2019-17529] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2019] [Accepted: 01/24/2020] [Indexed: 01/05/2023]
Abstract
The development of the small intestine (SI) is important for the health and growth of neonatal calves. This study evaluated the effect of arginine (Arg) and glutamine (Gln) supplementation and 2 levels of milk allowance on the histomorphological development of the SI in preweaning calves. Sixty mixed-sex Friesian × Jersey calves (3-5 d of age) were offered reconstituted whole milk (125 g/L, 26% fat, 26% protein) at either high (20% of arrival body weight/d; HM) or low (10% of arrival body weight/d; LM) milk allowance without (Ctrl) or with supplementary Arg or Gln (at 1% of milk dry matter) in a 2 × 3 factorial design (n = 10/treatment). After 35 d on the diets, all calves were slaughtered to collect tissues for examination of SI development. Calves in the HM group had higher milk intake, total weight gain, and average daily gain compared with LM calves, but no effect of AA supplementation nor an interaction between milk allowance and AA supplementation was observed. For the duodenum, we observed an AA by milk allowance interaction for villus height and width, and goblet cell number per villus (HM-Arg > HM-Gln > HM-Ctrl), and villus height to crypt depth ratio (HM-Arg > HM-Gln = HM-Ctrl), but no effect of AA supplementation in the LM group. Goblet cell numbers per 100 µm of SI were greater in Arg-supplemented calves than in unsupplemented controls, with Gln-supplemented calves intermediate to but not different from the other groups. Epithelium thickness was greater in LM than in HM calves. Villus density, crypt depth, and muscle thickness did not differ between groups. For the jejunum, there was an AA by milk allowance interaction for villus height, villus surface area, and villus height to crypt depth ratio (HM-Arg = HM-Gln > HM-Ctrl), with no effect of AA supplementation in the LM groups. Amino acid supplementation affected goblet cell number per villus (HM-Gln > HM-Ctrl calves, HM-Arg intermediate), and both LM-Arg and LM-Gln calves had greater numbers than LM-Ctrl calves. Villus width, crypt depth, and muscle thickness were greater in HM than LM calves but there was no effect of AA supplementation. Villus density, goblet cell number per 100 µm of SI, and epithelium thickness were unaffected by AA supplementation and milk allowance. Milk allowance and AA supplementation had no effect on SI morphology in the ileum. Increasing milk allowance improved villus height, width, and surface area but only in Arg- or Gln-supplemented calves, not in control calves. The observed changes in development may be important for intestinal functionality, integrity, and barrier function in preweaning calves, potentially through increased cell growth and proliferation or reduced levels of cellular atrophy.
Collapse
Affiliation(s)
- P van Keulen
- Animal Nutrition and Physiology Team, AgResearch Grasslands Ltd., Palmerston North 4474, New Zealand; Animal Nutrition Group, Wageningen University and Research, 6700 AH Wageningen, the Netherlands
| | - M A Khan
- Animal Nutrition and Physiology Team, AgResearch Grasslands Ltd., Palmerston North 4474, New Zealand
| | - J Dijkstra
- Animal Nutrition Group, Wageningen University and Research, 6700 AH Wageningen, the Netherlands
| | - F Knol
- Animal Nutrition and Physiology Team, AgResearch Grasslands Ltd., Palmerston North 4474, New Zealand
| | - S A McCoard
- Animal Nutrition and Physiology Team, AgResearch Grasslands Ltd., Palmerston North 4474, New Zealand.
| |
Collapse
|
22
|
Parois SP, Duttlinger AW, Richert BT, Lindemann SR, Johnson JS, Marchant-Forde JN. Effects of Three Distinct 2-Week Long Diet Strategies After Transport on Weaned Pigs' Short and Long-Term Welfare Markers, Behaviors, and Microbiota. Front Vet Sci 2020; 7:140. [PMID: 32258069 PMCID: PMC7090170 DOI: 10.3389/fvets.2020.00140] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2019] [Accepted: 02/24/2020] [Indexed: 01/14/2023] Open
Abstract
Alternative feed supplements have shown promising effects in terms of performance, but their effects on welfare have had little evaluation. In the present study, we aimed at evaluating the effect of diet supplementation on welfare indicators. A total of 246 piglets were weaned and transported for 12 h. After transport, they were assigned to one of 3 diets for a 14-day period: A-an antibiotic diet including chlortetracycline and tiamulin, NA-a control diet without any antibiotic or feed supplement, GLN-a diet including 0.20% L-glutamine. After the 14-day period, all piglets were fed the same diet. Tear staining was measured 11 times post-weaning (from d0 to 147). Skin lesions were counted before and after weaning (d-2, 2, and 36). Novel object tests (NOT) were done in groups 4 times post-weaning (d17, 47, 85, 111). Samples for 16S rRNA gene composition were collected prior to transport (d0), following the 14-day period (d14) and at the conclusion of the nursery phase (d34). The NA pigs appeared less interested in novel objects. On d17, they avoided the object less than A pigs (P < 0.05). They spent less time exploring the object on d85 and took longer to interact with the object on d111 than A and GLN pigs (P < 0.05). NA pigs also appeared more sensitive to environment and management. They had larger tear stains than GLN pigs on d84 and 110 (P < 0.05). On d2, NA pigs had more lesions than A and GLN (P < 0.01). In terms of microbiota composition, GLN had higher α-diversity than A and NA (P < 0.001). Differences between dietary treatments were absent at d0, were demonstrated at d14 and disappeared at d34. Pearson correlations between aggression, stress and anxiety indicators and bacterial populations were medium to high from 0.31 to 0.69. The results demonstrate that short-term feeding strategy can have both short- and long-term effects on behavior and welfare, that may partly be explained by changes in gut microbiota composition. Supplementation with GLN appears to confer similar benefits to dietary antibiotics and thus could be a viable alternative.
Collapse
Affiliation(s)
- Severine P. Parois
- PEGASE, Agrocampus Ouest, INRA, Saint-Gilles, France
- USDA-ARS, Livestock Behavior Research Unit, West Lafayette, IN, United States
| | - Alan W. Duttlinger
- Department of Animal Sciences, Purdue University, West Lafayette, IN, United States
| | - Brian T. Richert
- Department of Animal Sciences, Purdue University, West Lafayette, IN, United States
| | - Stephen R. Lindemann
- Department of Food Science, Purdue University, West Lafayette, IN, United States
| | - Jay S. Johnson
- USDA-ARS, Livestock Behavior Research Unit, West Lafayette, IN, United States
| | | |
Collapse
|
23
|
Singh S, Arthur S, Sundaram U. Mechanisms of Regulation of Transporters of Amino Acid Absorption in Inflammatory Bowel Diseases. Compr Physiol 2020; 10:673-686. [PMID: 32163200 DOI: 10.1002/cphy.c190016] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Intestinal absorption of dietary amino acids/peptides is essential for protein homeostasis, which in turn is crucial for maintaining health as well as restoration of health from significant diseases. Dietary amino acids/peptides are absorbed by unique transporter processes present in the brush border membrane of absorptive villus cells, which line the entire length of the intestine. To date, the only nutrient absorptive system described in the secretory crypt cells in the mammalian intestine is the one that absorbs the amino acid glutamine. Majority of the amino acid transporters are sodium dependent and therefore require basolateral membrane Na-K-ATPase to maintain an efficient transcellular Na gradient for their activity. These transport processes are tightly regulated by various cellular and molecular mechanisms that facilitate their optimal activity during normal physiological processes. Malabsorption of amino acids, recently described in pathophysiological states such as in inflammatory bowel disease (IBD), is undoubtedly responsible for the debilitating symptoms of IBD such as malnutrition, weight loss and ultimately a failure to thrive. Also recently, in vivo models of IBD and in vitro studies have demonstrated that specific immune-inflammatory mediators/pathways regulate specific amino acid transporters. This provides possibilities to derive novel nutrition and immune-based treatment options for conditions such as IBD. © 2020 American Physiological Society. Compr Physiol 10:673-686, 2020.
Collapse
Affiliation(s)
- Soudamani Singh
- Department of Clinical and Translational Sciences and Appalachian Clinical and Translational Science Institute, Joan C. Edwards School of Medicine, Marshall University, Huntington, West Virginia, USA
| | - Subha Arthur
- Department of Clinical and Translational Sciences and Appalachian Clinical and Translational Science Institute, Joan C. Edwards School of Medicine, Marshall University, Huntington, West Virginia, USA
| | - Uma Sundaram
- Department of Clinical and Translational Sciences and Appalachian Clinical and Translational Science Institute, Joan C. Edwards School of Medicine, Marshall University, Huntington, West Virginia, USA
| |
Collapse
|
24
|
Yan Y, Xu B, Yin B, Xu X, Niu Y, Tang Y, Wang X, Xie C, Yang T, Zhou S, Yan X, Ma L. Modulation of Gut Microbial Community and Metabolism by Dietary Glycyl-Glutamine Supplementation May Favor Weaning Transition in Piglets. Front Microbiol 2020; 10:3125. [PMID: 32117085 PMCID: PMC7025575 DOI: 10.3389/fmicb.2019.03125] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2019] [Accepted: 12/24/2019] [Indexed: 12/15/2022] Open
Abstract
Gut microbiota plays a crucial role in diet nutrient metabolism and maintaining host health. The synthetic dipeptides glycyl-glutamine (Gly-Gln) used as diet supplementation to improve the weaning transition of newborns could be metabolized by certain bacteria in vitro. However, the effect of diet Gly-Gln supplementation on gut microbiota in vivo remains largely unknown. 240 piglets at the age of 28 days (day 28) were randomly assigned to two groups that received a basal diet (Ctrl group) or a basal diet supplemented with 0.25% Gly-Gln (Gly-Gln group) for 3 weeks. Five piglets from each group were euthanized for sampling after overnight fasting on day 38 and day 49, respectively. We determined their structure shifts of the gut microbiota using 16S rDNA-based high-throughput sequencing analysis. Microbial metabolites short-chain fatty acids (SCFAs) in the ileum and the colon were determined with high-performance gas chromatography. The concentrations of endocrine peptides including epidermal growth factor, glucagon-like peptide-1, and glucagon-like peptide-2 in ileal mucosa, as well as the serum concentration of interleukin 1 beta, interleukin 6, interleukin 10, and tumor necrosis factor alpha were determined using Enzyme-Linked Immunosorbent Assay. In addition, we also checked the diarrhea ratio, growth performance, and intestinal morphology to assess the favorable effect of dietary Gly-Gln supplementation during the weaning transition. Dietary Gly-Gln supplementation beneficially altered the gut microbiota by increasing bacterial loading, elevating alpha diversity, and increasing the relative abundance of anaerobes and fiber-degrading bacteria (Phylum Fibrobacteres). Accordingly, the microbial metabolites SCFAs in both colon and ileum, as well as the downstream endocrine peptides in the ileum increased. Meanwhile, dietary Gly-Gln's favorable weaning transition was reflected in the increase of growth performance indices and the reduced inflammatory response in a time dependent manner. There were significant correlations among the bacteria which responded to dietary Gly-Gln supplementation and these checked indices. Taken together, dietary Gly-Gln supplementation selectively modulated the gut microbiota, which may favor piglets' weaning-transition. These findings suggest that gut microbiota targeted approaches can be potentially used to improve weaning transition of piglets by dietary functional amino acid.
Collapse
Affiliation(s)
- Yiqin Yan
- College of Animal Science and Technology, Huazhong Agricultural University, Wuhan, China.,The Cooperative Innovation Center for Sustainable Pig Production, Huazhong Agricultural University, Wuhan, China.,Hubei Provincial Engineering Laboratory for Pig Precision Feeding and Feed Safety Technology, Wuhan, China
| | - Baoyang Xu
- College of Animal Science and Technology, Huazhong Agricultural University, Wuhan, China.,The Cooperative Innovation Center for Sustainable Pig Production, Huazhong Agricultural University, Wuhan, China.,Hubei Provincial Engineering Laboratory for Pig Precision Feeding and Feed Safety Technology, Wuhan, China
| | - Boqi Yin
- College of Animal Science and Technology, Huazhong Agricultural University, Wuhan, China.,The Cooperative Innovation Center for Sustainable Pig Production, Huazhong Agricultural University, Wuhan, China.,Hubei Provincial Engineering Laboratory for Pig Precision Feeding and Feed Safety Technology, Wuhan, China
| | - Xiaofan Xu
- College of Animal Science and Technology, Huazhong Agricultural University, Wuhan, China.,The Cooperative Innovation Center for Sustainable Pig Production, Huazhong Agricultural University, Wuhan, China.,Hubei Provincial Engineering Laboratory for Pig Precision Feeding and Feed Safety Technology, Wuhan, China
| | - Yaorong Niu
- College of Animal Science and Technology, Huazhong Agricultural University, Wuhan, China.,The Cooperative Innovation Center for Sustainable Pig Production, Huazhong Agricultural University, Wuhan, China.,Hubei Provincial Engineering Laboratory for Pig Precision Feeding and Feed Safety Technology, Wuhan, China
| | - Yimei Tang
- College of Animal Science and Technology, Huazhong Agricultural University, Wuhan, China.,The Cooperative Innovation Center for Sustainable Pig Production, Huazhong Agricultural University, Wuhan, China.,Hubei Provincial Engineering Laboratory for Pig Precision Feeding and Feed Safety Technology, Wuhan, China
| | - Xinkai Wang
- College of Animal Science and Technology, Huazhong Agricultural University, Wuhan, China.,The Cooperative Innovation Center for Sustainable Pig Production, Huazhong Agricultural University, Wuhan, China.,Hubei Provincial Engineering Laboratory for Pig Precision Feeding and Feed Safety Technology, Wuhan, China
| | - Chunlin Xie
- College of Animal Science and Technology, Huazhong Agricultural University, Wuhan, China.,The Cooperative Innovation Center for Sustainable Pig Production, Huazhong Agricultural University, Wuhan, China.,Hubei Provincial Engineering Laboratory for Pig Precision Feeding and Feed Safety Technology, Wuhan, China
| | - Tao Yang
- College of Animal Science and Technology, Huazhong Agricultural University, Wuhan, China.,The Cooperative Innovation Center for Sustainable Pig Production, Huazhong Agricultural University, Wuhan, China.,Hubei Provincial Engineering Laboratory for Pig Precision Feeding and Feed Safety Technology, Wuhan, China
| | - Shuyi Zhou
- College of Animal Science and Technology, Huazhong Agricultural University, Wuhan, China.,The Cooperative Innovation Center for Sustainable Pig Production, Huazhong Agricultural University, Wuhan, China.,Hubei Provincial Engineering Laboratory for Pig Precision Feeding and Feed Safety Technology, Wuhan, China
| | - Xianghua Yan
- College of Animal Science and Technology, Huazhong Agricultural University, Wuhan, China.,The Cooperative Innovation Center for Sustainable Pig Production, Huazhong Agricultural University, Wuhan, China.,Hubei Provincial Engineering Laboratory for Pig Precision Feeding and Feed Safety Technology, Wuhan, China
| | - Libao Ma
- College of Animal Science and Technology, Huazhong Agricultural University, Wuhan, China.,The Cooperative Innovation Center for Sustainable Pig Production, Huazhong Agricultural University, Wuhan, China.,Hubei Provincial Engineering Laboratory for Pig Precision Feeding and Feed Safety Technology, Wuhan, China
| |
Collapse
|
25
|
Duttlinger AW, Kpodo KR, Lay DC, Richert BT, Johnson JS. Replacing dietary antibiotics with 0.20% l-glutamine in swine nursery diets: impact on health and productivity of pigs following weaning and transport1,2,3. J Anim Sci 2019; 97:2035-2052. [PMID: 30924491 DOI: 10.1093/jas/skz098] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2018] [Accepted: 03/22/2019] [Indexed: 12/18/2022] Open
Abstract
Antibiotic use has been limited in U.S. swine production. Therefore, the objective was to determine whether supplementing l-glutamine at cost-effective levels can replace dietary antibiotics to improve piglet welfare and productivity following weaning and transport. Based on previous research, we hypothesized that withholding dietary antibiotics would negatively affect pigs while diet supplementation with 0.20% l-glutamine (GLN) would have similar effects on pig performance and health as antibiotics. Mixed sex piglets (N = 480; 5.62 ± 0.06 kg BW) were weaned (18.4 ± 0.2 d of age) and transported for 12 h in central Indiana, for 2 replicates, during the summer of 2016 and the spring of 2017. Pigs were blocked by BW and allotted to 1 of 3 dietary treatments (n = 10 pens/dietary treatment/replicate [8 pigs/pen]); antibiotics (A; chlortetracycline [441 ppm] + tiamulin [38.6 ppm]), no antibiotics (NA), or GLN fed for 14 d. On days 15 to 34, pigs were provided common antibiotic-free diets in 2 phases. Data were analyzed using PROC MIXED in SAS 9.4. Day 14 BW and days 0 to 14 ADG were greater (P = 0.01) for A (5.6% and 18.5%, respectively) and GLN pigs (3.8% and 11.4%, respectively) compared with NA pigs, with no differences between A and GLN pigs. Days 0 to 14 ADFI increased for A (P < 0.04; 9.3%) compared with NA pigs; however, no differences were detected when comparing GLN with A and NA pigs. Once dietary treatments ceased, no differences (P > 0.05) in productivity between dietary treatments were detected. On day 13, plasma tumor necrosis factor alpha (TNF-α) was reduced (P = 0.02) in A (36.7 ± 6.9 pg/mL) and GLN pigs (40.9 ± 6.9 pg/mL) vs. NA pigs (63.2 ± 6.9 pg/mL). Aggressive behavior tended to be reduced overall (P = 0.09; 26.4%) in GLN compared with A pigs, but no differences were observed between A and GLN vs. NA pigs. Huddling, active, and eating/drinking behaviors were increased overall (P < 0.02; 179%, 37%, and 29%, respectively) in the spring replicate compared with the summer replicate. When hot carcass weight (HCW) was used as a covariate, loin depth and lean percentage were increased (P = 0.01; 4.0% and 1.1%, respectively) during the spring replicate compared with the summer replicate. In conclusion, GLN supplementation improved pig performance and health after weaning and transport similarly to A across replicates; however, the positive effects of A and GLN were diminished when dietary treatments ceased.
Collapse
Affiliation(s)
- Alan W Duttlinger
- Department of Animal Sciences, Purdue University, West Lafayette, IN.,USDA-ARS Livestock Behavior Research Unit, West Lafayette, IN
| | - Kouassi R Kpodo
- Department of Animal Sciences, Purdue University, West Lafayette, IN.,USDA-ARS Livestock Behavior Research Unit, West Lafayette, IN
| | - Donald C Lay
- USDA-ARS Livestock Behavior Research Unit, West Lafayette, IN
| | - Brian T Richert
- Department of Animal Sciences, Purdue University, West Lafayette, IN
| | - Jay S Johnson
- USDA-ARS Livestock Behavior Research Unit, West Lafayette, IN
| |
Collapse
|
26
|
Wu S, Li T, Niu H, Zhu Y, Liu Y, Duan Y, Sun Q, Yang X. Effects of glucose oxidase on growth performance, gut function, and cecal microbiota of broiler chickens. Poult Sci 2019; 98:828-841. [PMID: 30169708 DOI: 10.3382/ps/pey393] [Citation(s) in RCA: 41] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2018] [Accepted: 08/03/2018] [Indexed: 02/06/2023] Open
Abstract
A study was conducted to study the effects of glucose oxidase (GOD) supplement on the growth performance, gut function, and cecal microbiota in broiler chickens from 1 to 42 d, and further evaluate the use of GOD as an antibiotic substitution. A total of 525 1-d-old healthy Arbor Acres broilers were randomly assigned to five treatments, including control group, antibiotic growth promoters (AGP) supplement group, and three GOD supplement groups, with seven replicates per treatment and 15 birds per replicate. Growth performance, gut function including digestive ability and gut barrier, and cecal microbiota were determined. Compared with the control group, the increased daily body weight gain, improved meat quality, and enhanced digestive ability that indicated from the nutrients apparent digestibility and digestive enzymes were identified in GOD supplement groups, which could have a similar effect with the AGP supplement. The content of secreted immunoglobulin A and the transepithelial electrical resistance were also increased with the GOD supplement, which indicated an enhanced gut barrier. Additionally, 16S rRNA gene of cecal contents was sequenced by high-throughput sequencing. Sequencing data indicated that the Firmicutes phylum, Ruminococcaceae and Rikenellaceae families, Faecalibacterium genus, and F. prausnitzii species were significantly altered. Especially, combined with previous studies, our results indicated that the significantly increased F. prausnitzii, Ruminococcaceae, and Firmicutes could be involved in the effect of GOD on gut function and growth performance of broilers. Our results indicated that dietary GOD supplement could improve the growth performance of broilers in two main ways: by enhancing the digestive function of gut, which concluded from the improved nutrients apparent digestibility and digestive enzyme, and by increasing the abundance of beneficial bacterium, such as F. prausnitzii, Ruminococcaceae, and Firmicutes, which could be further served as an important regulator to improve the growth performance and the gut health.
Collapse
Affiliation(s)
- Shengru Wu
- College of Animal Science and Technology, Northwest A&F University, Yangling 712100, Shaanxi, China.,College of animal science and Technology, Hebei Agricultural University, Baoding 071001, Hebei, China
| | - Taohuan Li
- College of Animal Science and Technology, Northwest A&F University, Yangling 712100, Shaanxi, China
| | - Huafeng Niu
- Yangling Vocational and Technical College, Yangling 712100, Shaanxi, China
| | - Yufei Zhu
- College of Animal Science and Technology, Northwest A&F University, Yangling 712100, Shaanxi, China
| | - Yanli Liu
- College of Animal Science and Technology, Northwest A&F University, Yangling 712100, Shaanxi, China
| | - Yulan Duan
- College of Animal Science and Technology, Northwest A&F University, Yangling 712100, Shaanxi, China
| | - Qingzhu Sun
- College of Animal Science and Technology, Northwest A&F University, Yangling 712100, Shaanxi, China
| | - Xiaojun Yang
- College of Animal Science and Technology, Northwest A&F University, Yangling 712100, Shaanxi, China
| |
Collapse
|
27
|
Xiong X, Tan B, Song M, Ji P, Kim K, Yin Y, Liu Y. Nutritional Intervention for the Intestinal Development and Health of Weaned Pigs. Front Vet Sci 2019; 6:46. [PMID: 30847348 PMCID: PMC6393345 DOI: 10.3389/fvets.2019.00046] [Citation(s) in RCA: 102] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2018] [Accepted: 02/04/2019] [Indexed: 01/20/2023] Open
Abstract
Weaning imposes simultaneous stress, resulting in reduced feed intake, and growth rate, and increased morbidity and mortality of weaned pigs. Weaning impairs the intestinal integrity, disturbs digestive and absorptive capacity, and increases the intestinal oxidative stress, and susceptibility of diseases in piglets. The improvement of intestinal development and health is critically important for enhancing nutrient digestibility capacity and disease resistance of weaned pigs, therefore, increasing their survival rate at this most vulnerable stage, and overall productive performance during later stages. A healthy gut may include but not limited several important features: a healthy proliferation of intestinal epithelial cells, an integrated gut barrier function, a preferable or balanced gut microbiota, and a well-developed intestinal mucosa immunity. Burgeoning evidence suggested nutritional intervention are one of promising measures to enhance intestinal health of weaned pigs, although the exact protective mechanisms may vary and are still not completely understood. Previous research indicated that functional amino acids, such as arginine, cysteine, glutamine, or glutamate, may enhance intestinal mucosa immunity (i.e., increased sIgA secretion), reduce oxidative damage, stimulate proliferation of enterocytes, and enhance gut barrier function (i.e., enhanced expression of tight junction protein) of weaned pigs. A number of feed additives are marketed to assist in boosting intestinal immunity and regulating gut microbiota, therefore, reducing the negative impacts of weaning, and other environmental challenges on piglets. The promising results have been demonstrated in antimicrobial peptides, clays, direct-fed microbials, micro-minerals, milk components, oligosaccharides, organic acids, phytochemicals, and many other feed additives. This review summarizes our current understanding of nutritional intervention on intestinal health and development of weaned pigs and the importance of mechanistic studies focusing on this research area.
Collapse
Affiliation(s)
- Xia Xiong
- Laboratory of Animal Nutritional Physiology and Metabolic Process, Key Laboratory of Agro-Ecological Processes in Subtropical Region, National Engineering Laboratory for Pollution Control and Waste Utilization in Livestock and Poultry Production, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha, China
| | - Bie Tan
- Laboratory of Animal Nutritional Physiology and Metabolic Process, Key Laboratory of Agro-Ecological Processes in Subtropical Region, National Engineering Laboratory for Pollution Control and Waste Utilization in Livestock and Poultry Production, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha, China
| | - Minho Song
- Department of Animal Science and Biotechnology, Chungnam National University, Daejeon, South Korea
| | - Peng Ji
- Department of Nutrition, University of California, Davis, Davis, CA, United States
| | - Kwangwook Kim
- Department of Animal Science, University of California, Davis, Davis, CA, United States
| | - Yulong Yin
- Laboratory of Animal Nutritional Physiology and Metabolic Process, Key Laboratory of Agro-Ecological Processes in Subtropical Region, National Engineering Laboratory for Pollution Control and Waste Utilization in Livestock and Poultry Production, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha, China
| | - Yanhong Liu
- Department of Animal Science, University of California, Davis, Davis, CA, United States
| |
Collapse
|
28
|
Abdelnour SA, Abd El-Hack ME, Khafaga AF, Arif M, Taha AE, Noreldin AE. Stress biomarkers and proteomics alteration to thermal stress in ruminants: A review. J Therm Biol 2019; 79:120-134. [DOI: 10.1016/j.jtherbio.2018.12.013] [Citation(s) in RCA: 53] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2018] [Revised: 12/02/2018] [Accepted: 12/11/2018] [Indexed: 11/30/2022]
|
29
|
Wang W, Li Z, Gan L, Fan H, Guo Y. Dietary supplemental Kluyveromyces marxianus alters the serum metabolite profile in broiler chickens. Food Funct 2018; 9:3776-3787. [PMID: 29912245 DOI: 10.1039/c8fo00268a] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Metabolomics is used to evaluate the bioavailability of food components, as well as to validate the metabolic changes associated with food consumption. This study was conducted to investigate the effects of the dietary supplement Kluyveromyces marxianus on the serum metabolite profile in broiler chickens. A total of 240 1-d-old broilers were divided into 2 groups with 8 replicates. Birds were fed basal diets without or with K. marxianus supplementation (5 × 1010 CFU kg-1 of diet). Serum samples were collected on d 21 and were analyzed by high-performance liquid chromatography with quadrupole time-of flight/mass spectrometry. The results showed that supplemental K. marxianus altered the concentrations of a variety of metabolites in the serum. Thereinto, a total of 39 metabolites were identified at higher (P < 0.05) concentrations while 21 metabolites were identified at lower (P < 0.05) concentrations in the treatment group as compared with the control. These metabolites were primarily involved with the regulation of amino acids and carbohydrate metabolism. Further metabolic pathway analysis revealed that glutamine and glutamate metabolism was the most relevant and critical pathway identified from these two groups. The activated pathway may partially interpret the beneficial effects of K. marxianus. Overall, the present research could promote our understanding of the probiotic action of K. marxianus and provide new insight into the design and application of K. marxianus-containing functional foods.
Collapse
Affiliation(s)
- Weiwei Wang
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing, 100193, China.
| | | | | | | | | |
Collapse
|
30
|
Chen Z, Yuan Q, Xu G, Chen H, Lei H, Su J. Effects of Quercetin on Proliferation and H₂O₂-Induced Apoptosis of Intestinal Porcine Enterocyte Cells. Molecules 2018; 23:E2012. [PMID: 30103566 PMCID: PMC6222514 DOI: 10.3390/molecules23082012] [Citation(s) in RCA: 56] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2018] [Revised: 08/05/2018] [Accepted: 08/09/2018] [Indexed: 12/12/2022] Open
Abstract
Weanling stress and toxicosis, which are harmful to the health of pigs' intestines, are associated with oxidative stress. Quercetin (Que) is a polyphenolic compound that shows good anti-cancer, anti-inflammation and anti-oxidation effects. This study aimed to elaborate whether or not Que promotes IPEC-J2 (intestinal porcine enterocyte cells) proliferation and protects IPEC-J2 from oxidative damage. Thus, we examined the effects of Que on proliferation and H₂O₂-induced apoptosis in IPEC-J2. The results showed that Que increased IPEC-J2 viabililty, propelled cells from G1 phase into S phase and down-regulated gene levels of P27 and P21, respectively. Besides, H₂O₂-induced cell damage was alleviated by Que after different exposure times, and Que depressed apoptosis rate, reactive oxygen species (ROS) level and percentage of G1 phase cells and elevated the percentage of cells in G2 phase and S phase and mitochondrial membrane potential (Δψm) after IPEC-J2 exposure to H₂O₂. Meanwhile, Que reduced the value of Bax/Bcl-2 in H₂O₂ exposed cells. In low-degree oxidative damage cells, lipid peroxidation product malondialdehyde (MDA) content and superoxide dismutase (SOD) activity were increased. In turn, Que could reverse the change of MDA content and SOD activity in low-degree damage cells. Nevertheless, catalase (CAT) activity was not changed in IPEC-J2 incubated with Que under low-degree damage conditions. Interestingly, relative expressive levels of the proteins claudin-1 and occludin were not altered under low-degree damage conditions, but Que could improve claudin-1 and occludin levels, slightly. This research indicates that Que can be greatly beneficial for intestinal porcine enterocyte cell proliferation and it protects intestinal porcine enterocyte cells from oxidation-induced apoptosis, and could be used as a potential feed additive for porcine intestinal health against pathogenic factor-induced oxidative damages and apoptosis.
Collapse
Affiliation(s)
- Zhigang Chen
- Department of Basic Veterinary Medicine, College of Veterinary Medicine, Hunan Agricultural University, Changsha 410128, Hunan, China.
| | - Qiaoling Yuan
- Department of Basic Veterinary Medicine, College of Veterinary Medicine, Hunan Agricultural University, Changsha 410128, Hunan, China.
| | - Guangren Xu
- Department of Basic Veterinary Medicine, College of Veterinary Medicine, Hunan Agricultural University, Changsha 410128, Hunan, China.
| | - Huiyu Chen
- Department of Preventive Veterinary Medicine, College of Veterinary Medicine, Hunan Agricultural University, Changsha 410128, Hunan, China.
| | - Hongyu Lei
- Department of Preventive Veterinary Medicine, College of Veterinary Medicine, Hunan Agricultural University, Changsha 410128, Hunan, China.
| | - Jianming Su
- Department of Basic Veterinary Medicine, College of Veterinary Medicine, Hunan Agricultural University, Changsha 410128, Hunan, China.
| |
Collapse
|
31
|
Lv D, Xiong X, Yang H, Wang M, He Y, Liu Y, Yin Y. Effect of dietary soy oil, glucose, and glutamine on growth performance, amino acid profile, blood profile, immunity, and antioxidant capacity in weaned piglets. SCIENCE CHINA-LIFE SCIENCES 2018; 61:1233-1242. [PMID: 29785573 DOI: 10.1007/s11427-018-9301-y] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/13/2018] [Accepted: 03/07/2018] [Indexed: 10/16/2022]
Abstract
Weaning stress results in gastrointestinal dysfunction and depressed performance in pigs. This study aimed to investigate the effect of soy oil, glucose, and glutamine on the growth and health of weaned piglets. Compared with those in the glutamine group, piglets in the glucose and soy oil groups had greater average daily gain, average daily feed intake, and gain: feed ratio from day 0 to 14, and gain: feed ratio for the overall period. There were no differences with regard to serum amino acids among the three groups on day 14, except glycine and threonine. The serum concentration of histidine, serine, threonine, proline, and cysteine was the highest in the glutamine group, while the content of glycine and lysine in the soy oil group on day 28 was the highest among all groups. Piglets fed with glutamine had greater serum glucose and creatinine on day 14, high-density lipoprotein on day 28, and serum IgG and IgM on day 28. Piglets in the glutamine group demonstrated lower serum total superoxide dismutase on day 14 and 28; however, they demonstrated higher total superoxide dismutase and total antioxidant capacity in the duodenum and ileum on day 14. Weaned pigs supplemented with glucose or soy oil demonstrate better growth performance possibly due to their enhanced feed intake, whereas those supplemented with glutamine may have improved immunity and intestinal oxidative capacity.
Collapse
Affiliation(s)
- Dinghong Lv
- Hunan International Joint Laboratory of Animal Intestinal Ecology and Health, Laboratory of Animal Nutrition and Human Health, College of Life Sciences, Hunan Normal University, Changsha, 410006, China.,Key Laboratory of Agro-ecological Processes in Subtropical Region, Laboratory of Animal Nutritional Physiology and Metabolic Process, Hunan Provincial Engineering Research Center of Healthy Livestock, Scientific Observing and Experimental Station of Animal Nutrition and Feed Science in South-Central, Ministry of Agriculture, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha, 410125, China
| | - Xia Xiong
- Key Laboratory of Agro-ecological Processes in Subtropical Region, Laboratory of Animal Nutritional Physiology and Metabolic Process, Hunan Provincial Engineering Research Center of Healthy Livestock, Scientific Observing and Experimental Station of Animal Nutrition and Feed Science in South-Central, Ministry of Agriculture, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha, 410125, China.
| | - Huansheng Yang
- Hunan International Joint Laboratory of Animal Intestinal Ecology and Health, Laboratory of Animal Nutrition and Human Health, College of Life Sciences, Hunan Normal University, Changsha, 410006, China
| | - Meiwei Wang
- Hunan International Joint Laboratory of Animal Intestinal Ecology and Health, Laboratory of Animal Nutrition and Human Health, College of Life Sciences, Hunan Normal University, Changsha, 410006, China
| | - Yijie He
- Department of Animal Science, University of California, Davis, 95616, USA
| | - Yanhong Liu
- Department of Animal Science, University of California, Davis, 95616, USA
| | - Yulong Yin
- Hunan International Joint Laboratory of Animal Intestinal Ecology and Health, Laboratory of Animal Nutrition and Human Health, College of Life Sciences, Hunan Normal University, Changsha, 410006, China. .,Key Laboratory of Agro-ecological Processes in Subtropical Region, Laboratory of Animal Nutritional Physiology and Metabolic Process, Hunan Provincial Engineering Research Center of Healthy Livestock, Scientific Observing and Experimental Station of Animal Nutrition and Feed Science in South-Central, Ministry of Agriculture, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha, 410125, China.
| |
Collapse
|
32
|
Johnson JS. Heat stress: impact on livestock well-being and productivity and mitigation strategies to alleviate the negative effects. ANIMAL PRODUCTION SCIENCE 2018. [DOI: 10.1071/an17725] [Citation(s) in RCA: 39] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
Heat stress (HS) is a multi-factorial problem that negatively affects livestock health and productivity and is closely linked with animal welfare. While HS may not be harmful when animals are able to adapt, the physiological changes that occur to ensure survival may impede the efficient conversion of feed energy into animal products. This adaptive response can be variable and is often based on previous HS exposure, genetics, species and production stage. When the heat load becomes too great for adaptive responses to compensate, the subsequent strain response causes reduced productivity and well-being and, in severe cases, mortality. The effects of HS on livestock productivity are well documented and range from decreased feed intake and body weight gain, to reduced reproductive efficiency and altered carcass composition and meat quality. In addition, researchers are beginning to elucidate the effects of prenatal HS on postnatal livestock performance and welfare. As knowledge of the negative impacts of HS on livestock performance and welfare increases, so will the development of effective mitigation strategies to support maintenance of productivity during times of high thermal heat loads and preserve appropriate animal welfare standards.
Collapse
|
33
|
Alanyl-glutamine but not glycyl-glutamine improved the proliferation of enterocytes as glutamine substitution in vitro. Amino Acids 2017; 49:2023-2031. [PMID: 28861626 DOI: 10.1007/s00726-017-2460-z] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2017] [Accepted: 06/26/2017] [Indexed: 10/19/2022]
Abstract
The synthetic dipeptides alanyl-glutamine (Ala-Gln) and glycyl-glutamine (Gly-Gln) are used as Gln substitution to provide energy source in the gastrointestinal tract due to their high solubility and stability. This study aimed to investigate the effects of Gln, Ala-Gln and Gly-Gln on mitochondrial respiration and protein turnover of enterocytes. Intestinal porcine epithelial cells (IPEC-J2) were cultured for 2 days in Dulbecco's modified Eagle's-F12 Ham medium (DMEM-F12) containing 2.5 mM Gln, Ala-Gln or Gly-Gln. Results from 5-ethynyl-2'-deoxyuridine incorporation and flow cytometry analysis indicated that there were no differences in proliferation between free Gln and Ala-Gln-treated cells, whereas Gly-Gln treatment inhibited the cell growth compared with Gln treatment. Significantly lower mRNA expressions of Sp1 and PepT1 were also observed in Gly-Gln-treated cells than that of Ala-Gln treatment. Ala-Gln treatment increased the basal respiration and ATP production, compared with free Gln and Gly-Gln treatments. There were no differences in protein turnover between free Gln and Ala-Gln-treated cells, but Gly-Gln treatment reduced protein synthesis and increased protein degradation. Ala-Gln treatment stimulated mTOR activation whereas Gly-Gln decreased mTOR phosphorylation and increased the UB protein expression compared with free Gln treatment. These results indicate that Ala-Gln has the very similar functional profile to free Gln in porcine enterocytes in vitro and can be substituted Gln as energy and protein sources in the gastrointestinal tract.
Collapse
|
34
|
Qi X, Qin L, Du R, Chen Y, Lei M, Deng M, Wang J. Lipopolysaccharide Upregulated Intestinal Epithelial Cell Expression of Fn14 and Activation of Fn14 Signaling Amplify Intestinal TLR4-Mediated Inflammation. Front Cell Infect Microbiol 2017; 7:315. [PMID: 28744451 PMCID: PMC5504244 DOI: 10.3389/fcimb.2017.00315] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2017] [Accepted: 06/26/2017] [Indexed: 12/16/2022] Open
Abstract
TLR4 in intestinal epithelial cells has been shown both inflammatory and homeostatic roles following binding of its cognate ligand lipopolysaccharide (LPS). TWEAK-Fn14 axis plays an important role in pathologies caused by excessive or abnormal inflammatory responses. This study aimed to evaluate potential cross-talk between TLR4 and TWEAK/Fn14 system in porcine small intestinal epithelial cells. Our in vivo results showed that, compared with the age-matched normal control piglets, increased expression of Fn14 in epithelium and decreased TWEAK expression in lamina propria were detected in the small intestinal of piglets stimulated with LPS. Consistent with this finding, treatment with LPS increased the expression of Fn14 and TLR4 while decreased TWEAK expression in porcine small intestinal epithelial cell lines SIEC02. Interestingly, modulating Fn14 activation using agonistic anti-Fn14 decreased TLR4-mediated TNF-α production by SIEC02. In addition, pretreatment of LPS-stimulated SIEC02 with recombinant TWEAK protein suppresses the expression of Fn14 and TNF-α and inhibits the negative impact of LPS on the tight junctional protein occludin expression. In conclusion, this study demonstrates that the TWEAK-independent Fn14 activation augments TLR4-mediated inflammatory responses in the intestine of piglets. Furthermore, the TWEAK-dependent suppression of Fn14 signaling may play a role in intestinal homeostasis.
Collapse
Affiliation(s)
- Xuefeng Qi
- College of Veterinary Medicine, Northwest A&F UniversityYangling, China
| | - Lijuan Qin
- College of Veterinary Medicine, Northwest A&F UniversityYangling, China
| | - Ruijing Du
- College of Veterinary Medicine, Northwest A&F UniversityYangling, China
| | - Yungang Chen
- College of Veterinary Medicine, Northwest A&F UniversityYangling, China
| | - Mingzhu Lei
- College of Veterinary Medicine, Northwest A&F UniversityYangling, China
| | - Meiyu Deng
- College of Veterinary Medicine, Northwest A&F UniversityYangling, China
| | - Jingyu Wang
- College of Veterinary Medicine, Northwest A&F UniversityYangling, China
| |
Collapse
|
35
|
Yang HS, Wu F, Long LN, Li TJ, Xiong X, Liao P, Liu HN, Yin YL. Effects of yeast products on the intestinal morphology, barrier function, cytokine expression, and antioxidant system of weaned piglets. J Zhejiang Univ Sci B 2017; 17:752-762. [PMID: 27704745 DOI: 10.1631/jzus.b1500192] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
The goal of this study was to evaluate the effects of a mixture of yeast culture, cell wall hydrolysates, and yeast extracts (collectively "yeast products," YP) on the performance, intestinal physiology, and health of weaned piglets. A total of 90 piglets weaned at 21 d of age were blocked by body weight, sex, and litter and randomly assigned to one of three treatments for a 14-d feeding experiment, including (1) a basal diet (control), (2) 1.2 g/kg of YP, and (3) 20 mg/kg of colistin sulfate (CSE). No statistically significant differences were observed in average daily feed intake, average daily weight gain, or gain-to-feed ratio among CSE, YP, and control piglets. Increased prevalence of diarrhea was observed among piglets fed the YP diet, whereas diarrhea was less prevalent among those fed CSE. Duodenal and jejunal villus height and duodenal crypt depth were greater in the control group than they were in the YP or CSE groups. Intraepithelial lymphocytes (IEL) in the duodenal and jejunal villi were enhanced by YP, whereas IEL in the ileal villi were reduced in weaned piglets fed YP. Secretion of jejunal and ileal interleukin-10 (IL-10) was higher and intestinal and serum antioxidant indexes were affected by YP and CSE. In YP- and CSE-supplemented animals, serum D-lactate concentration and diamine oxidase (DAO) activity were both increased, and intestinal mRNA expressions of occludin and ZO-1 were reduced as compared to the control animals. In conclusion, YP supplementation in the diets of weaned piglets appears to increase the incidence of diarrhea and has adverse effects on intestinal morphology and barrier function.
Collapse
Affiliation(s)
- Huan-Sheng Yang
- Observation and Experiment Station of Animal Nutrition and Feed Science in South-Central China, Ministry of Agriculture; Hunan Provincial Engineering Research Center for Healthy Livestock and Poultry Production; Key Laboratory of Agro-ecological Processes in Subtropical Region, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha 410125, China.,School of Life Sciences, Hunan Normal University, Changsha 410006, China.,Fujian Aonong Bio-Technology Co., Ltd., Xiamen 361008, China
| | - Fei Wu
- Observation and Experiment Station of Animal Nutrition and Feed Science in South-Central China, Ministry of Agriculture; Hunan Provincial Engineering Research Center for Healthy Livestock and Poultry Production; Key Laboratory of Agro-ecological Processes in Subtropical Region, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha 410125, China
| | - Li-Na Long
- Observation and Experiment Station of Animal Nutrition and Feed Science in South-Central China, Ministry of Agriculture; Hunan Provincial Engineering Research Center for Healthy Livestock and Poultry Production; Key Laboratory of Agro-ecological Processes in Subtropical Region, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha 410125, China
| | - Tie-Jun Li
- Observation and Experiment Station of Animal Nutrition and Feed Science in South-Central China, Ministry of Agriculture; Hunan Provincial Engineering Research Center for Healthy Livestock and Poultry Production; Key Laboratory of Agro-ecological Processes in Subtropical Region, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha 410125, China
| | - Xia Xiong
- Observation and Experiment Station of Animal Nutrition and Feed Science in South-Central China, Ministry of Agriculture; Hunan Provincial Engineering Research Center for Healthy Livestock and Poultry Production; Key Laboratory of Agro-ecological Processes in Subtropical Region, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha 410125, China.,National Research Center of Engineering Technology for Utilization of Botanical Functional Ingredients from Botanicals, Provincial Co-Innovation Center for Utilization of Botanical Function Ingredients, Hunan Agricultural University, Changsha 410128, China
| | - Peng Liao
- Observation and Experiment Station of Animal Nutrition and Feed Science in South-Central China, Ministry of Agriculture; Hunan Provincial Engineering Research Center for Healthy Livestock and Poultry Production; Key Laboratory of Agro-ecological Processes in Subtropical Region, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha 410125, China
| | - Hong-Nan Liu
- Observation and Experiment Station of Animal Nutrition and Feed Science in South-Central China, Ministry of Agriculture; Hunan Provincial Engineering Research Center for Healthy Livestock and Poultry Production; Key Laboratory of Agro-ecological Processes in Subtropical Region, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha 410125, China
| | - Yu-Long Yin
- Observation and Experiment Station of Animal Nutrition and Feed Science in South-Central China, Ministry of Agriculture; Hunan Provincial Engineering Research Center for Healthy Livestock and Poultry Production; Key Laboratory of Agro-ecological Processes in Subtropical Region, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha 410125, China
| |
Collapse
|
36
|
Odle J, Jacobi SK, Boyd RD, Bauman DE, Anthony RV, Bazer FW, Lock AL, Serazin AC. The Potential Impact of Animal Science Research on Global Maternal and Child Nutrition and Health: A Landscape Review. Adv Nutr 2017; 8:362-381. [PMID: 28298279 PMCID: PMC5347102 DOI: 10.3945/an.116.013896] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
High among the challenges facing mankind as the world population rapidly expands toward 9 billion people by 2050 is the technological development and implementation of sustainable agriculture and food systems to supply abundant and wholesome nutrition. In many low-income societies, women and children are the most vulnerable to food insecurity, and it is unequivocal that quality nutrition during the first 1000 d of life postconception can be transformative in establishing a robust, lifelong developmental trajectory. With the desire to catalyze disruptive advancements in global maternal and child health, this landscape review was commissioned by the Bill & Melinda Gates Foundation to examine the nutritional and managerial practices used within the food-animal agricultural system that may have relevance to the challenges faced by global human health. The landscape was categorized into a framework spanning 1) preconception, 2) gestation and pregnancy, 3) lactation and suckling, and 4) postweaning and toddler phases. Twelve key findings are outlined, wherein research within the discipline of animal sciences stands to inform the global health community and in some cases identifies gaps in knowledge in which further research is merited. Notable among the findings were 1) the quantitative importance of essential fatty acid and amino acid nutrition in reproductive health, 2) the suggested application of the ideal protein concept for improving the amino acid nutrition of mothers and children, 3) the prospect of using dietary phytase to improve the bioavailability of trace minerals in plant and vegetable-based diets, and 4) nutritional interventions to mitigate environmental enteropathy. The desired outcome of this review was to identify potential interventions that may be worthy of consideration. Better appreciation of the close linkage between human health, medicine, and agriculture will identify opportunities that will enable faster and more efficient innovations in global maternal and child health.
Collapse
Affiliation(s)
- Jack Odle
- Laboratory of Developmental Nutrition, Department of Animal Science, North Carolina State University, Raleigh, NC;
| | - Sheila K Jacobi
- Department of Animal Science, The Ohio State University, Wooster, OH
| | - R Dean Boyd
- Laboratory of Developmental Nutrition, Department of Animal Science, North Carolina State University, Raleigh, NC
- Department of Science Integration, The Hanor Company, Spring Green, WI
| | - Dale E Bauman
- Department of Animal Science, Cornell University, Ithaca, NY
| | - Russell V Anthony
- Animal Reproduction and Biotechnology Laboratory, Department of Biomedical Sciences, Colorado State University, Fort Collins, CO
| | - Fuller W Bazer
- Department of Animal Science, Texas A&M University, College Station, TX
| | - Adam L Lock
- Department of Animal Science, Michigan State University, East Lansing, MI; and
| | | |
Collapse
|
37
|
Zhong JF, Wu WG, Zhang XQ, Tu W, Liu ZX, Fang RJ. Effects of dietary addition of heat-killed Mycobacterium phlei on growth performance, immune status and anti-oxidative capacity in early weaned piglets. Arch Anim Nutr 2017; 70:249-62. [PMID: 27216553 DOI: 10.1080/1745039x.2016.1183365] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
The contradiction between high susceptibility of early weaned piglets to enteric pathogens and rigid restriction of antibiotic use in the diet is still prominent in the livestock production industry. To address this issue, the study was designed to replace dietary antibiotics partly or completely by an immunostimulant, namely heat-killed Mycobacterium phlei (M. phlei). Piglets (n = 192) were randomly assigned to one of the four groups: (1) basal diet (Group A), (2) basal diet + a mixture of antibiotics (80 mg/kg diet, Group B), (3) basal diet + a mixture of antibiotics (same as in Group B, but 40 mg/kg diet) + heat-killed M. phlei (1.5 g/kg diet) (Group C) and (4) basal diet + heat-killed M. phlei (3 g/kg diet) (Group D). All piglets received the respective diets from days 21 to 51 of age and were weaned at the age of 28 d. Compared with the Control (Group A), in all other groups the average daily gain, average daily feed intake, small intestinal villus height:crypt depth ratio and protein levels of occludin and ZO-1 in the jejunal mucosa were increased. A decreased incidence of diarrhoea in conjunction with an increased sIgA concentration in the intestinal mucosa and serum IL-12 and IFN-γ concentrations was found in groups supplemented with heat-killed M. phlei (Groups C and D), but not in Group B. Groups C and D also showed decreased IL-2 concentrations in the intestinal mucosa with lower TLR4 and phosphor-IκB protein levels. The antioxidant capacity was reinforced in Groups C and D, as evidenced by the reduction in malondialdehyde and enhanced activities of antioxidant enzymes in serum. These data indicate that heat-killed M. phlei is a promising alternative to antibiotic use for early weaned piglets via induction of protective immune responses.
Collapse
Affiliation(s)
- Jin-Feng Zhong
- a College of Animal Science and Technology , Hunan Agricultural University , Changsha , China.,b Hunan Co-Innovation Center of Animal Production Safety , Changsha , China.,c Hunan Polytechnic of Environment and Biology , Hengyang , China
| | - Wei-Gao Wu
- c Hunan Polytechnic of Environment and Biology , Hengyang , China
| | - Xiao-Qing Zhang
- d Grassland Research Institute , Chinese Academy of Agricultural Sciences , Hohhot , China
| | - Wei Tu
- a College of Animal Science and Technology , Hunan Agricultural University , Changsha , China.,b Hunan Co-Innovation Center of Animal Production Safety , Changsha , China
| | - Zhen-Xiang Liu
- c Hunan Polytechnic of Environment and Biology , Hengyang , China
| | - Re-Jun Fang
- a College of Animal Science and Technology , Hunan Agricultural University , Changsha , China.,b Hunan Co-Innovation Center of Animal Production Safety , Changsha , China
| |
Collapse
|
38
|
Adewole DI, Kim IH, Nyachoti CM. Gut Health of Pigs: Challenge Models and Response Criteria with a Critical Analysis of the Effectiveness of Selected Feed Additives - A Review. ASIAN-AUSTRALASIAN JOURNAL OF ANIMAL SCIENCES 2016; 29:909-24. [PMID: 26954144 PMCID: PMC4932585 DOI: 10.5713/ajas.15.0795] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 09/23/2015] [Revised: 10/20/2015] [Accepted: 11/11/2015] [Indexed: 02/08/2023]
Abstract
The gut is the largest organ that helps with the immune function. Gut health, especially in young pigs has a significant benefit to health and performance. In an attempt to maintain and enhance intestinal health in pigs and improve productivity in the absence of in-feed antibiotics, researchers have evaluated a wide range of feed additives. Some of these additives such as zinc oxide, copper sulphate, egg yolk antibodies, mannan-oligosaccharides and spray dried porcine plasma and their effectiveness are discussed in this review. One approach to evaluate the effectiveness of these additives in vivo is to use an appropriate disease challenge model. Over the years, researchers have used a number of challenge models which include the use of specific strains of enterotoxigenic Escherichia coli, bacteria lipopolysaccharide challenge, oral challenge with Salmonella enteric serotype Typhimurium, sanitation challenge, and Lawsonia intercellularis challenge. These challenge models together with the criteria used to evaluate the responses of the animals to them are also discussed in this review.
Collapse
Affiliation(s)
| | - I. H. Kim
- Department of Animal Resources and Science, Dankook University, Cheonan 330-714, Korea
| | - C. M. Nyachoti
- Corresponding Author: C. M. Nyachoti. Tel: +1-204-474-7323, Fax: +1-204-474-7628, E-mail:
| |
Collapse
|
39
|
He J, Feng G, Ao X, Li Y, Qian H, Liu J, Bai G, He Z. Effects of L-glutamine on growth performance, antioxidant ability, immunity and expression of genes related to intestinal health in weanling pigs. Livest Sci 2016. [DOI: 10.1016/j.livsci.2016.05.009] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
|
40
|
Jiang Z, Wei S, Wang Z, Zhu C, Hu S, Zheng C, Chen Z, Hu Y, Wang L, Ma X, Yang X. Effects of different forms of yeast Saccharomyces cerevisiae on growth performance, intestinal development, and systemic immunity in early-weaned piglets. J Anim Sci Biotechnol 2015; 6:47. [PMID: 26568826 PMCID: PMC4644338 DOI: 10.1186/s40104-015-0046-8] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2015] [Accepted: 10/19/2015] [Indexed: 11/10/2022] Open
Abstract
The present study was conducted to determine effects of different forms of yeast (Saccharomyces cerevisiae, strain Y200007) on the growth performance, intestinal development, and systemic immunity in early-weaned piglets. A total of 96 piglets (14-d old, initial average body weight of 4.5 kg) were assigned to 4 dietary treatments: (1) basal diet without yeast (Control); (2) basal diet supplemented with 3.00 g/kg live yeast (LY); (3) basal diet supplemented with 2.66 g/kg heat-killed whole yeast (HKY); and (4) basal diet supplemented with 3.00 g/kg superfine yeast powders (SFY). Diets and water were provided ad libitum to the piglets during 3-week experiment. Growth performance of piglets was measured weekly. Samples of blood and small intestine were collected at days 7 and 21 of experiment. Dietary supplementation with LY and SFY improved G:F of piglets at days 1-21 of the experiment (P < 0.05) compared to Control group. Serum concentrations of growth hormone (GH), triiodothyronine (T3), tetraiodothyronine (T4), and insulin growth factor 1 (IGF-1) in piglets at day 21 of the experiment were higher when fed diets supplemented with LY and SFY than those in Control group (P < 0.05). Compared to Control group, contents of serum urea nitrogen of piglets were reduced by the 3 yeast-supplemented diets (P < 0.05). Diets supplemented with LY increased villus height and villus-to-crypt ratio in duodenum and jejunum of piglets (P < 0.05) compared to other two groups at day 7 of the experiment. Feeding diets supplemented with LY and SFY increased (P < 0.05) serum concentrations of IgA, IL-2, and IL-6 levels in piglets compared to Control. The CD4(+)/CD8(+) ratio and proliferation of T-lymphocytes in piglets fed diets supplemented with LY were increased compared to that of Control group at day 7 of the experiment (P < 0.05). In conclusion, dietary supplementation with both LY and SFY enhanced feed conversion, small intestinal development, and systemic immunity in early-weaned piglets, with better improvement in feed conversion by dietary supplementation with LY, while dietary supplementation with SFY was more effective in increasing systemic immune functions in early-weaned piglets.
Collapse
Affiliation(s)
- Zongyong Jiang
- Key Laboratory of Animal Nutrition and Feed (South China), Ministry of Agriculture of China, State Key Laboratory of Livestock and Poultry Breeding, Guangdong Public Laboratory of Animal Breeding and Nutrition, Institute of Animal Science, Guangdong Academy of Agricultural Sciences, Guangzhou, 510640 China ; Agro-biological Gene Research Center, Guangdong Academy of Agricultural Sciences, Guangzhou, 510640 China
| | - Shaoyong Wei
- Key Laboratory of Animal Nutrition and Feed (South China), Ministry of Agriculture of China, State Key Laboratory of Livestock and Poultry Breeding, Guangdong Public Laboratory of Animal Breeding and Nutrition, Institute of Animal Science, Guangdong Academy of Agricultural Sciences, Guangzhou, 510640 China
| | - Zhilin Wang
- Key Laboratory of Animal Nutrition and Feed (South China), Ministry of Agriculture of China, State Key Laboratory of Livestock and Poultry Breeding, Guangdong Public Laboratory of Animal Breeding and Nutrition, Institute of Animal Science, Guangdong Academy of Agricultural Sciences, Guangzhou, 510640 China
| | - Cui Zhu
- Agro-biological Gene Research Center, Guangdong Academy of Agricultural Sciences, Guangzhou, 510640 China
| | - Shenglan Hu
- Key Laboratory of Animal Nutrition and Feed (South China), Ministry of Agriculture of China, State Key Laboratory of Livestock and Poultry Breeding, Guangdong Public Laboratory of Animal Breeding and Nutrition, Institute of Animal Science, Guangdong Academy of Agricultural Sciences, Guangzhou, 510640 China
| | - Chuntian Zheng
- Key Laboratory of Animal Nutrition and Feed (South China), Ministry of Agriculture of China, State Key Laboratory of Livestock and Poultry Breeding, Guangdong Public Laboratory of Animal Breeding and Nutrition, Institute of Animal Science, Guangdong Academy of Agricultural Sciences, Guangzhou, 510640 China
| | - Zhuang Chen
- Agro-biological Gene Research Center, Guangdong Academy of Agricultural Sciences, Guangzhou, 510640 China
| | - Youjun Hu
- Key Laboratory of Animal Nutrition and Feed (South China), Ministry of Agriculture of China, State Key Laboratory of Livestock and Poultry Breeding, Guangdong Public Laboratory of Animal Breeding and Nutrition, Institute of Animal Science, Guangdong Academy of Agricultural Sciences, Guangzhou, 510640 China
| | - Li Wang
- Key Laboratory of Animal Nutrition and Feed (South China), Ministry of Agriculture of China, State Key Laboratory of Livestock and Poultry Breeding, Guangdong Public Laboratory of Animal Breeding and Nutrition, Institute of Animal Science, Guangdong Academy of Agricultural Sciences, Guangzhou, 510640 China
| | - Xianyong Ma
- Key Laboratory of Animal Nutrition and Feed (South China), Ministry of Agriculture of China, State Key Laboratory of Livestock and Poultry Breeding, Guangdong Public Laboratory of Animal Breeding and Nutrition, Institute of Animal Science, Guangdong Academy of Agricultural Sciences, Guangzhou, 510640 China
| | - Xuefen Yang
- Key Laboratory of Animal Nutrition and Feed (South China), Ministry of Agriculture of China, State Key Laboratory of Livestock and Poultry Breeding, Guangdong Public Laboratory of Animal Breeding and Nutrition, Institute of Animal Science, Guangdong Academy of Agricultural Sciences, Guangzhou, 510640 China
| |
Collapse
|
41
|
Watford M. Glutamine and glutamate: Nonessential or essential amino acids? ACTA ACUST UNITED AC 2015; 1:119-122. [PMID: 29767158 PMCID: PMC5945979 DOI: 10.1016/j.aninu.2015.08.008] [Citation(s) in RCA: 57] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2015] [Accepted: 08/17/2015] [Indexed: 12/15/2022]
Abstract
Glutamine and glutamate are not considered essential amino acids but they play important roles in maintaining growth and health in both neonates and adults. Although glutamine and glutamate are highly abundant in most feedstuffs there is increasing evidence that they may be limiting during pregnancy, lactation and neonatal growth, particularly when relatively low protein diets are fed. Supplementation of diets with glutamine, glutamate or both at 0.5 to 1.0% to both suckling and recently weaned piglets improves intestinal and immune function and results in better growth. In addition such supplementation to the sow prevents some of the loss of lean body mass during lactation, and increases milk glutamine content. However, a number of important questions related to physiological condition, species under study and the form and amount of the supplements need to be addressed before the full benefits of glutamine and glutamate supplementation in domestic animal production can be realized.
Collapse
Affiliation(s)
- Malcolm Watford
- Department of Nutritional Sciences, Rutgers, The State University, New Brunswick 08901, USA
| |
Collapse
|
42
|
Zhu C, Wu Y, Jiang Z, Zheng C, Wang L, Yang X, Ma X, Gao K, Hu Y. Dietary soy isoflavone attenuated growth performance and intestinal barrier functions in weaned piglets challenged with lipopolysaccharide. Int Immunopharmacol 2015; 28:288-94. [PMID: 25979760 DOI: 10.1016/j.intimp.2015.04.054] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2015] [Revised: 04/29/2015] [Accepted: 04/29/2015] [Indexed: 12/24/2022]
Abstract
This study was conducted to investigate the protective roles of soy isoflavone in weaned pigs challenged with lipopolysaccharide (LPS). A total of 72 weaned piglets (14 days of age) were randomly allotted into either 0 (control group) or 40 mg/kg soy isoflavone (ISO) supplementation group. On days 7 and 14, half of the pigs in each group were challenged with LPS. Soy isoflavone increased average daily gain (ADG) and average daily feed intake (ADFI) of piglets challenged with LPS at days 7-14 (P<0.05). The incidence of diarrhea and plasma concentrations of malondialdehyde (MDA) and endotoxin in piglets from LPS group were higher than those in control group (P<0.05). Soy isoflavone reduced the incidence of diarrhea and plasma concentrations of endotoxin in piglets challenged with LPS (P<0.05). LPS challenge decreased (P<0.05) mRNA abundances of β-defensin 2 (pBD-2), mucin (MUC-4), zona occludens 1 (ZO-1), and occludin in jejunal mucosa of piglets, and soy isoflavone upregulated (P<0.05) mRNA abundances of ZO-1 and occludin in jejunal mucosa of piglets challenged with LPS. The present results demonstrated that both p38 and TLR4 pathways in jejunal mucosa of piglets were activated by LPS challenge (P<0.05), and soy isoflavone reduced their activations (P<0.05). Collectively, our results suggested that supplementation of soy isoflavone could partly attenuate the barrier-damaged effects of LPS and improve the intestinal barrier function of weaned piglets, at least partially by inhibiting activations of p38 and TLR4 dependent pathways induced by LPS. This study provides a potential usage of soy isoflavone for alleviating intestinal barrier damages of neonates and piglets.
Collapse
Affiliation(s)
- Cui Zhu
- Institute of Animal Science, Guangdong Academy of Agricultural Sciences, Guangzhou 510640, China; Agro-biological Gene Research Center, Guangdong Academy of Agricultural Sciences, Guangzhou 510640, China
| | - Yunpeng Wu
- College of Animal Science, South China Agricultural University, Guangzhou 510642, China
| | - Zongyong Jiang
- Institute of Animal Science, Guangdong Academy of Agricultural Sciences, Guangzhou 510640, China.
| | - Chuntian Zheng
- Institute of Animal Science, Guangdong Academy of Agricultural Sciences, Guangzhou 510640, China
| | - Li Wang
- Institute of Animal Science, Guangdong Academy of Agricultural Sciences, Guangzhou 510640, China
| | - Xuefen Yang
- Institute of Animal Science, Guangdong Academy of Agricultural Sciences, Guangzhou 510640, China
| | - Xianyong Ma
- Institute of Animal Science, Guangdong Academy of Agricultural Sciences, Guangzhou 510640, China
| | - Kaiguo Gao
- Institute of Animal Science, Guangdong Academy of Agricultural Sciences, Guangzhou 510640, China
| | - Youjun Hu
- Institute of Animal Science, Guangdong Academy of Agricultural Sciences, Guangzhou 510640, China
| |
Collapse
|
43
|
Jiang Y, Zhang W, Gao F, Zhou G. Effect of sodium butyrate on intestinal inflammatory response to lipopolysaccharide in broiler chickens. CANADIAN JOURNAL OF ANIMAL SCIENCE 2015. [DOI: 10.4141/cjas-2014-183] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Jiang, Y., Zhang, W., Gao, F. and Zhou, G. 2015. Effect of sodium butyrate on intestinal inflammatory response to lipopolysaccharide in broiler chickens. Can. J. Anim. Sci. 95: 389–395. The aim of this study was to investigate the effect of sodium butyrate (SB) supplementation on intestinal inflammatory response to lipopolysaccharide (LPS) in broiler chickens. A total of 120 one-day-old chickens (Arbor Acres) were divided into two groups and fed a control diet (without SB) or 1.00 g SB kg−1 diet. Half of the chickens fed each diet were injected intra-peritoneally with 0.5 g kg−1 body weight of Escherichia coli LPS at 16, 18 and 20 d of age. The results showed that the LPS challenge decreased (P<0.05) villus height and the ratio of villus height to crypt depth (V/C ratio), increased (P<0.01) crypt depth of the duodenum. SB supplementation increased (P<0.05) villus height, crypt depth and V/C ratio of the duodenum and jejunum, except for the crypt depth of the jejunum. The LPS challenge increased (P<0.05) myeloperoxidase (MPO) activities, intercellular adhesion molecule-1 (ICAM-1) and activated nuclear factor kappa B (NF-κB) levels in mucosa of the duodenum and jejunum, while decreasing (P<0.05) insulin-like growth factor-1 (IGF-1) concentrations. The LPS challenge increased (P<0.05) the mRNA levels of interleukin-1beta (IL-1β), interleukin-6 (IL-6) and tumor necrosis factor-alpha (TNF-α) in duodenal mucosa. SB supplementation decreased (P<0.05) the MPO activities and mRNA expression of TNF-α in the duodenal mucosa, and the activated NF-κB levels in mucosa of the duodenum and jejunum. There were no significant interactions between dietary SB and LPS on the histomorphology of the small intestine and those inflammatory mediators except for MPO and ICAM-1 in duodenal mucosa (P<0.05). The results indicate that SB supplementation could improve the intestinal morphology and function of broiler chickens and partially attenuate inflammatory responses caused by LPS challenge but not involving NF-κB activation.
Collapse
Affiliation(s)
- Yun Jiang
- College of Animal Science and Technology, Synergetic Innovation Center of Food Safety and Nutrition, Nanjing Agricultural University, Nanjing 210095, People's Republic of China
- Ginling College, Nanjing Normal University, Nanjing, 210097, People's Republic of China
- These authors contributed equally to this work
| | - Weihui Zhang
- College of Animal Science and Technology, Synergetic Innovation Center of Food Safety and Nutrition, Nanjing Agricultural University, Nanjing 210095, People's Republic of China
- These authors contributed equally to this work
| | - Feng Gao
- College of Animal Science and Technology, Synergetic Innovation Center of Food Safety and Nutrition, Nanjing Agricultural University, Nanjing 210095, People's Republic of China
| | - Guanghong Zhou
- College of Animal Science and Technology, Synergetic Innovation Center of Food Safety and Nutrition, Nanjing Agricultural University, Nanjing 210095, People's Republic of China
| |
Collapse
|
44
|
Regulation of skeletal muscle protein synthetic and degradative signaling by alanyl-glutamine in piglets challenged with Escherichia coli lipopolysaccharide. Nutrition 2015; 31:749-56. [DOI: 10.1016/j.nut.2014.11.010] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2014] [Revised: 11/18/2014] [Accepted: 11/20/2014] [Indexed: 12/11/2022]
|
45
|
Myokine interleukin-15 expression profile is different in suckling and weaning piglets. ACTA ACUST UNITED AC 2015; 1:30-35. [PMID: 29766983 PMCID: PMC5884465 DOI: 10.1016/j.aninu.2015.02.005] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2014] [Accepted: 01/08/2015] [Indexed: 11/25/2022]
Abstract
Interleukin-15 (IL-15) is a cytokine highly expressed in skeletal muscle. The objective of the present study was to investigate the development of muscle IL-15 expression in suckling piglets and in early weaning piglets (day 14) at each level, that is, mRNA, protein, and secretion. Eight litters (eight piglets per litter) of newborn healthy piglets (Large × White × Landrace) with a similar initial weight (1618.0 ± 140.1 g) were chosen and divided into two groups. Group one used suckling piglets that were killed, respectively, at days 1, 7, 14, 21, and group two used early (day 14) weaning piglets that were killed respectively, at days 15, 17, 19, 21. In group one, IL-15 gene expression levels increased significantly (P < 0.05) along with increased body weight over time. IL-15 protein expression levels in piglets at day 21 of age were higher (P < 0.05) than those in piglets at other ages, and there was no difference (P > 0.05) among piglets at other ages. These findings indicated that increased IL-15 mRNA expression did not result in a corresponding increase of its protein expression. In group two, which used early weaning piglets from days 15–19, IL-15 mRNA and protein expression levels increased constantly (P < 0.05) and were higher (P < 0.05) than those in suckling piglets. Moreover, there was no gain of body weight (P > 0.05) compared with suckling piglets at day 14 of age. However, IL-15 protein expression levels in early weaning piglets at day 21 of age dropped significantly (P < 0.05) to the levels as suckling piglets at day 21 of age, while body weight increased (P < 0.05) markedly to the levels as suckling piglets at day 21 of age. In both groups, the serum IL-15 levels of piglets decreased significantly (P < 0.01) over time. Taken together, our results indicate that IL-15 expression differs in suckling piglets and in weaning piglets. It is speculated that IL-15 may play an important role in counteracting the effects of early weaning stress.
Collapse
|
46
|
Yu H, Dong M, Xu Y, He N, Dai X, Li K. Arginyl-glutamine dipeptide attenuates experimental colitis by enhancing antioxidant function and inhibiting nuclear factor-kappaB. RSC Adv 2015. [DOI: 10.1039/c5ra16739f] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023] Open
Abstract
This study aimed to investigate the effect and underlying mechanism of Arginyl-glutamine (AG) dipeptide on dextran sulfate sodium (DSS)-induced colitis byin vivoandin vitromodels.
Collapse
Affiliation(s)
- Hua Yu
- Department of Analogy
- Ningbo No. 2 Hospital
- Ningbo 315010
- China
| | - Mingjun Dong
- Department of Analogy
- Ningbo No. 2 Hospital
- Ningbo 315010
- China
| | - Yidong Xu
- Department of Analogy
- Ningbo No. 2 Hospital
- Ningbo 315010
- China
| | - Ning He
- Department of Analogy
- Ningbo No. 2 Hospital
- Ningbo 315010
- China
| | - Xiaoyu Dai
- Department of Analogy
- Ningbo No. 2 Hospital
- Ningbo 315010
- China
| | - Keqiang Li
- Department of Analogy
- Ningbo No. 2 Hospital
- Ningbo 315010
- China
| |
Collapse
|
47
|
Vetvicka V, Oliveira C. β(1-3)(1-6)-D-glucans modulate immune status in pigs: potential importance for efficiency of commercial farming. ANNALS OF TRANSLATIONAL MEDICINE 2014; 2:16. [PMID: 25332992 DOI: 10.3978/j.issn.2305-5839.2014.01.04] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 11/20/2013] [Accepted: 01/20/2014] [Indexed: 11/14/2022]
Abstract
BACKGROUND In face of the challenge of the emergent diseases and the current efforts of the governments to create conditions to ban growth-promoting antibiotics and to improve efficiency of the commercial farming, new opportunities are created for natural, highly effective and cost affordable immunomodulators; able to induce and enhance resistance against diseases and to reduce farming-related stress. Supplementation of animal feed with β(1-3)(1-6)-D-glucans has been repeatedly shown to modulate the immune system ant to influence growth characteristics of farmed animals. MATERIALS AND METHODS In our study we focused on evaluation of effects of an insoluble, fungi-derived β(1-3)(1-6)-D-glucan as dietary supplement in piglets. We measured the growth, phagocytosis of peripheral blood cells and interleukin 2 (IL-2) and tumor necrosis factor alpha (TNF-α) production after feeding with 15 mg of glucan/kg/day. CONCLUSIONS Following supplementation, β(1-3)(1-6)-D-glucan has been shown to stimulate growth, phagocytic activity, and IL-2 production. In addition, it significantly lowered the cortisol and TNF-α levels after lipopolysaccharide (LPS) challenge.
Collapse
Affiliation(s)
- Vaclav Vetvicka
- 1 University of Louisville, Department of Pathology, Louisville, KY, USA ; 2 Department of Research and Development, Biorigin Company, Lençóis Paulista, SP, Brazil
| | - Carlos Oliveira
- 1 University of Louisville, Department of Pathology, Louisville, KY, USA ; 2 Department of Research and Development, Biorigin Company, Lençóis Paulista, SP, Brazil
| |
Collapse
|
48
|
Wang B, Wu G, Zhou Z, Dai Z, Sun Y, Ji Y, Li W, Wang W, Liu C, Han F, Wu Z. Glutamine and intestinal barrier function. Amino Acids 2014; 47:2143-54. [PMID: 24965526 DOI: 10.1007/s00726-014-1773-4] [Citation(s) in RCA: 162] [Impact Index Per Article: 14.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2013] [Accepted: 05/27/2014] [Indexed: 12/27/2022]
Abstract
The intestinal barrier integrity is essential for the absorption of nutrients and health in humans and animals. Dysfunction of the mucosal barrier is associated with increased gut permeability and development of multiple gastrointestinal diseases. Recent studies highlighted a critical role for glutamine, which had been traditionally considered as a nutritionally non-essential amino acid, in activating the mammalian target of rapamycin cell signaling in enterocytes. In addition, glutamine has been reported to enhance intestinal and whole-body growth, to promote enterocyte proliferation and survival, and to regulate intestinal barrier function in injury, infection, weaning stress, and other catabolic conditions. Mechanistically, these effects were mediated by maintaining the intracellular redox status and regulating expression of genes associated with various signaling pathways. Furthermore, glutamine stimulates growth of the small intestinal mucosa in young animals and also enhances ion transport by the gut in neonates and adults. Growing evidence supports the notion that glutamine is a nutritionally essential amino acid for neonates and a conditionally essential amino acid for adults. Thus, as a functional amino acid with multiple key physiological roles, glutamine holds great promise in protecting the gut from atrophy and injury under various stress conditions in mammals and other animals.
Collapse
Affiliation(s)
- Bin Wang
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing, 100193, People's Republic of China
| | - Guoyao Wu
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing, 100193, People's Republic of China.,Department of Animal Science, Texas A&M University, College Station, TX, 77843, USA
| | - Zhigang Zhou
- Key Laboratory for Feed Biotechnology of the Ministry of Agriculture, Feed Research Institute, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Zhaolai Dai
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing, 100193, People's Republic of China
| | - Yuli Sun
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing, 100193, People's Republic of China
| | - Yun Ji
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing, 100193, People's Republic of China
| | - Wei Li
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing, 100193, People's Republic of China
| | - Weiwei Wang
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing, 100193, People's Republic of China
| | - Chuang Liu
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing, 100193, People's Republic of China
| | - Feng Han
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing, 100193, People's Republic of China
| | - Zhenlong Wu
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing, 100193, People's Republic of China.
| |
Collapse
|
49
|
Wu G. Dietary requirements of synthesizable amino acids by animals: a paradigm shift in protein nutrition. J Anim Sci Biotechnol 2014; 5:34. [PMID: 24999386 PMCID: PMC4082180 DOI: 10.1186/2049-1891-5-34] [Citation(s) in RCA: 170] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2014] [Accepted: 06/08/2014] [Indexed: 12/17/2022] Open
Abstract
Amino acids are building blocks for proteins in all animals. Based on growth or nitrogen balance, amino acids were traditionally classified as nutritionally essential or nonessential for mammals, birds and fish. It was assumed that all the “nutritionally nonessential amino acids (NEAA)” were synthesized sufficiently in the body to meet the needs for maximal growth and optimal health. However, careful analysis of the scientific literature reveals that over the past century there has not been compelling experimental evidence to support this assumption. NEAA (e.g., glutamine, glutamate, proline, glycine and arginine) play important roles in regulating gene expression, cell signaling, antioxidative responses, fertility, neurotransmission, and immunity. Additionally, glutamate, glutamine and aspartate are major metabolic fuels for the small intestine to maintain its digestive function and to protect the integrity of the intestinal mucosa. Thus, diets for animals must contain all NEAA to optimize their survival, growth, development, reproduction, and health. Furthermore, NEAA should be taken into consideration in revising the “ideal protein” concept that is currently used to formulate swine and poultry diets. Adequate provision of all amino acids (including NEAA) in diets enhances the efficiency of animal production. In this regard, amino acids should not be classified as nutritionally essential or nonessential in animal or human nutrition. The new Texas A&M University’s optimal ratios of dietary amino acids for swine and chickens are expected to beneficially reduce dietary protein content and improve the efficiency of their nutrient utilization, growth, and production performance.
Collapse
Affiliation(s)
- Guoyao Wu
- Department of Animal Science, Texas A&M University, College Station, Texas 77843, USA
| |
Collapse
|
50
|
Cabrera RA, Usry JL, Arrellano C, Nogueira ET, Kutschenko M, Moeser AJ, Odle J. Effects of creep feeding and supplemental glutamine or glutamine plus glutamate (Aminogut) on pre- and post-weaning growth performance and intestinal health of piglets. J Anim Sci Biotechnol 2013; 4:29. [PMID: 23916292 PMCID: PMC3765720 DOI: 10.1186/2049-1891-4-29] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2013] [Accepted: 08/01/2013] [Indexed: 01/16/2023] Open
Abstract
BACKGROUND Creep feeding is used to stimulate piglet post-weaning feed consumption. L-Glutamine (GLN) is an important source of fuel for intestinal epithelial cells. The objective of this study was to determine the impact of creep feeding and adding GLN or AminoGut (AG; containing glutamine + glutamate) to pre- and post-weaning diets on pig performance and intestinal health. Litters (N = 120) were allotted to four treatments during 14-21 d of lactation: 1) No creep feed (NC, n = 45); 2) creep fed control diet (CFCD, n = 45); 3) creep fed 1% GLN (CFGLN, n = 15); 4) creep fed .88% AG (CFAG, n = 15). After weaning, the NC and CFCD groups were sub-divided into three groups (n = 15 each), receiving either a control nursery diet (NC-CD, CFCD-CD) or a diet supplemented with either GLN (NC-GLN, CFCD-GLN) or with AG (NC-AG, CFCD-AG). Litters that were creep fed with diets containing GLN or AG also were supplemented with those amino acids in the nursery diets (CFGLN-GLN, CFAG-AG). Glutamine was added at 1% in all three post-weaning diet phases and AG was added at .88% in phase 1 and 2 and at .66% in phase 3. RESULTS Feed conversion (feed/gain) showed means among treatment means close to significance (P = 0.056) and Tukey's test for pairwise mean comparisons showed that Pigs in the CFGLN-GLN group had the best feed conversion (feed/gain) in the first three-week period post-weaning, exceeding (P = 0.044) controls (CFCD-CD) by 34%. The NC-AG group had (P = 0.02) the greatest feed intake in the last three week of the study, exceeding controls (CFCD-CD) by 12%. CFGLN-GLN, CFCD-GLN and sow reared (SR) pigs had the greatest (P = 0.049) villi height exceeding the CFCD-AG group by 18%, 20% and 19% respectively. The CFAG-AG group had the deepest (P = 0.001) crypts among all treatments. CFGLN-GLN, CFCD-GLN and SR groups had the greatest (P = 0.001) number of cells proliferating (PCNA) exceeding those in the NC-CD group by 43%, 54% and 63% respectively. Sow reared pigs showed the greatest (P = 0.001) intestinal absorption capacity for xylose and mannitol. CONCLUSION Supplementation of creep feed and nursery diets with GLN and/or AminoGut in the first three week improved feed conversion possibly due to improved intestinal health.
Collapse
Affiliation(s)
- Rafael A Cabrera
- Laboratory of Developmental Nutrition, Department of Animal Science, North Carolina State University, 101 Polk Hall, North Carolina State University, Raleigh, NC 27695, USA
- Author current employment: Huvepharma USA, 525 West Park Drive Suite 230, Peachtree City, GA 30269, USA
| | - James L Usry
- Ajinomoto Heartland Lysine, Chicago, IL 60631, USA
- Author current employment: Micronutrients, 1550 Research Way, Indianapolis, IN 46231, USA
| | - Consuelo Arrellano
- Department of Statistics, North Carolina State University, Raleigh, NC 27695-8203, USA
| | - Eduardo T Nogueira
- Ajinomoto do Brasil. Ajinomoto Animal Nutrition, São Paulo, SP 04015-001, Brazil
| | - Marianne Kutschenko
- Ajinomoto do Brasil. Ajinomoto Animal Nutrition, São Paulo, SP 04015-001, Brazil
| | - Adam J Moeser
- Department of Population Health and Pathobiology, College of Veterinary Medicine, North Carolina State University, Raleigh, NC 27695, USA
| | - Jack Odle
- Laboratory of Developmental Nutrition, Department of Animal Science, North Carolina State University, 101 Polk Hall, North Carolina State University, Raleigh, NC 27695, USA
| |
Collapse
|