1
|
Yao C, Li Z, Sun K, Zhang Y, Shou S, Jin H. Mitochondrial dysfunction in acute kidney injury. Ren Fail 2024; 46:2393262. [PMID: 39192578 PMCID: PMC11360640 DOI: 10.1080/0886022x.2024.2393262] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2024] [Revised: 07/30/2024] [Accepted: 08/12/2024] [Indexed: 08/29/2024] Open
Abstract
Acute kidney injury (AKI) is a systemic clinical syndrome increasing morbidity and mortality worldwide in recent years. Renal tubular epithelial cells (TECs) death caused by mitochondrial dysfunction is one of the pathogeneses. The imbalance of mitochondrial quality control is the main cause of mitochondrial dysfunction. Mitochondrial quality control plays a crucial role in AKI. Mitochondrial quality control mechanisms are involved in regulating mitochondrial integrity and function, including antioxidant defense, mitochondrial quality control, mitochondrial DNA (mtDNA) repair, mitochondrial dynamics, mitophagy, and mitochondrial biogenesis. Currently, many studies have used mitochondrial dysfunction as a targeted therapeutic strategy for AKI. Therefore, this review aims to present the latest research advancements on mitochondrial dysfunction in AKI, providing a valuable reference and theoretical foundation for clinical prevention and treatment of this condition, ultimately enhancing patient prognosis.
Collapse
Affiliation(s)
- Congcong Yao
- Department of Emergency Medicine, Tianjin Medical University General Hospital, Tianjin, China
| | - Ziwei Li
- Department of Emergency Medicine, Tianjin Medical University General Hospital, Tianjin, China
| | - Keke Sun
- Department of Emergency Medicine, Tianjin Medical University General Hospital, Tianjin, China
| | - Yan Zhang
- Department of Emergency Medicine, Tianjin Medical University General Hospital, Tianjin, China
| | - Songtao Shou
- Department of Emergency Medicine, Tianjin Medical University General Hospital, Tianjin, China
| | - Heng Jin
- Department of Emergency Medicine, Tianjin Medical University General Hospital, Tianjin, China
| |
Collapse
|
2
|
Li Y, Zhang H, Yu C, Dong X, Yang F, Wang M, Wen Z, Su M, Li B, Yang L. New Insights into Mitochondria in Health and Diseases. Int J Mol Sci 2024; 25:9975. [PMID: 39337461 PMCID: PMC11432609 DOI: 10.3390/ijms25189975] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2024] [Revised: 09/13/2024] [Accepted: 09/14/2024] [Indexed: 09/30/2024] Open
Abstract
Mitochondria are a unique type of semi-autonomous organelle within the cell that carry out essential functions crucial for the cell's survival and well-being. They are the location where eukaryotic cells carry out energy metabolism. Aside from producing the majority of ATP through oxidative phosphorylation, which provides essential energy for cellular functions, mitochondria also participate in other metabolic processes within the cell, such as the electron transport chain, citric acid cycle, and β-oxidation of fatty acids. Furthermore, mitochondria regulate the production and elimination of ROS, the synthesis of nucleotides and amino acids, the balance of calcium ions, and the process of cell death. Therefore, it is widely accepted that mitochondrial dysfunction is a factor that causes or contributes to the development and advancement of various diseases. These include common systemic diseases, such as aging, diabetes, Parkinson's disease, and cancer, as well as rare metabolic disorders, like Kearns-Sayre syndrome, Leigh disease, and mitochondrial myopathy. This overview outlines the various mechanisms by which mitochondria are involved in numerous illnesses and cellular physiological activities. Additionally, it provides new discoveries regarding the involvement of mitochondria in both disorders and the maintenance of good health.
Collapse
Affiliation(s)
- Ya Li
- Department of Genetics and Cell Biology, Basic Medical College, Qingdao University, Qingdao 266071, China
| | - Huhu Zhang
- Department of Genetics and Cell Biology, Basic Medical College, Qingdao University, Qingdao 266071, China
| | - Chunjuan Yu
- Department of Genetics and Cell Biology, Basic Medical College, Qingdao University, Qingdao 266071, China
| | - Xiaolei Dong
- Department of Genetics and Cell Biology, Basic Medical College, Qingdao University, Qingdao 266071, China
| | - Fanghao Yang
- Department of Genetics and Cell Biology, Basic Medical College, Qingdao University, Qingdao 266071, China
| | - Mengjun Wang
- Department of Genetics and Cell Biology, Basic Medical College, Qingdao University, Qingdao 266071, China
| | - Ziyuan Wen
- Department of Genetics and Cell Biology, Basic Medical College, Qingdao University, Qingdao 266071, China
| | - Mohan Su
- Department of Genetics and Cell Biology, Basic Medical College, Qingdao University, Qingdao 266071, China
| | - Bing Li
- Department of Genetics and Cell Biology, Basic Medical College, Qingdao University, Qingdao 266071, China
| | - Lina Yang
- Department of Genetics and Cell Biology, Basic Medical College, Qingdao University, Qingdao 266071, China
| |
Collapse
|
3
|
Liu Y, Liu H, Zhang F, Xu H. The initiation of mitochondrial DNA replication. Biochem Soc Trans 2024; 52:1243-1251. [PMID: 38884788 PMCID: PMC11346463 DOI: 10.1042/bst20230952] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2024] [Revised: 05/31/2024] [Accepted: 06/04/2024] [Indexed: 06/18/2024]
Abstract
Mitochondrial DNA replication is initiated by the transcription of mitochondrial RNA polymerase (mtRNAP), as mitochondria lack a dedicated primase. However, the mechanism determining the switch between continuous transcription and premature termination to generate RNA primers for mitochondrial DNA (mtDNA) replication remains unclear. The pentatricopeptide repeat domain of mtRNAP exhibits exoribonuclease activity, which is required for the initiation of mtDNA replication in Drosophila. In this review, we explain how this exonuclease activity contributes to primer synthesis in strand-coupled mtDNA replication, and discuss how its regulation might co-ordinate mtDNA replication and transcription in both Drosophila and mammals.
Collapse
Affiliation(s)
- Yi Liu
- Hubei Jiangxia Laboratory, Wuhan 430200, China
| | - Haibin Liu
- Hubei Jiangxia Laboratory, Wuhan 430200, China
| | - Fan Zhang
- National Heart, Lung and Blood Institute, NIH, Bethesda, MD 20892, U.S.A
| | - Hong Xu
- National Heart, Lung and Blood Institute, NIH, Bethesda, MD 20892, U.S.A
| |
Collapse
|
4
|
Gwon JG, Lee SM. Role of PTEN-Induced Protein Kinase 1 as a Mitochondrial Dysfunction Regulator in Cardiovascular Disease Pathogenesis. Vasc Specialist Int 2024; 40:9. [PMID: 38486493 PMCID: PMC10940882 DOI: 10.5758/vsi.230116] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2023] [Revised: 01/29/2024] [Accepted: 02/07/2024] [Indexed: 03/17/2024] Open
Abstract
Cardiovascular disease (CVD) remains a global health challenge, primarily due to atherosclerosis, which leads to conditions such as coronary artery disease, cerebrovascular disease, and peripheral arterial disease. Mitochondrial dysfunction initiates endothelial dysfunction, a key contributor to CVD pathogenesis, as well as triggers the accumulation of reactive oxygen species (ROS), energy stress, and cell death in endothelial cells, which are crucial for atherosclerosis development. This review explores the role of PTEN-induced protein kinase 1 (PINK1) in mitochondrial quality control, focusing on its significance in cardiovascular health. PINK1 plays a pivotal role in mitophagy (selective removal of damaged mitochondria), contributing to the prevention of CVD progression. PINK1-mediated mitophagy also affects the maintenance of cardiomyocyte homeostasis in ischemic heart disease, thus mitigating mitochondrial dysfunction and oxidative stress, as well as regulates endothelial health in atherosclerosis through influencing ROS levels and inflammatory response. We also investigated the role of PINK1 in vascular smooth muscle cells, emphasizing on its role in apoptosis and atherosclerosis. Dysfunctional mitophagy in these cells accelerates cellular senescence and contributes to adverse effects including plaque rupture and inflammation. Mitophagy has also been explored as a potential therapeutic target for vascular calcification, a representative lesion in atherosclerosis, with a focus on lactate-induced mechanisms. Finally, we highlight the current research and clinical trials targeting mitophagy as a therapeutic avenue for CVD.
Collapse
Affiliation(s)
- Jun Gyo Gwon
- Division of Vascular Surgery, Department of Surgery, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Korea
| | - Seung Min Lee
- Department of Convergence Medicine and Asan Institute for Life Sciences, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Korea
| |
Collapse
|
5
|
Kadohisa M, Okamoto T, Yamamoto M, Uebayashi EY, Sonoda M, Ogawa E, Yokoyama A, Kawasaki H, Hiejima E, Ito S, Togawa T, Imagawa K, Murayama K, Okajima H, Hatano E. Living donor liver transplantation for myocerebrohepatopathy spectrum due to POLG mutations. Pediatr Transplant 2024; 28:e14659. [PMID: 38012111 DOI: 10.1111/petr.14659] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/06/2023] [Revised: 09/26/2023] [Accepted: 11/15/2023] [Indexed: 11/29/2023]
Abstract
BACKGROUND POLG is one of several nuclear genes associated with mitochondrial DNA maintenance defects and is a group of diseases caused by mitochondrial DNA deficiency that results in impaired adenosine triphosphate production and organ dysfunction. Myocerebrohepatopathy spectrum (MCHS) is the most severe and earliest presentation of POLG mutations, and liver transplantation (LT) for MCHS has never been reported. CASE PRESENTATION The patient was a 3-month-old boy with acute liver failure and no neurological manifestations (e.g., seizures). We performed a living donor LT using a left lateral segment graft from his father. The postoperative course was uneventful. Subsequently, a homozygous POLG mutation (c.2890C>T, p. R964C) was identified by multigene analysis of neonatal/infantile intrahepatic cholestasis. Moreover, respiratory chain complex I, II, and III enzyme activities and the ratio of mtDNA to nuclear DNA in the liver were reduced. Therefore, we considered that these clinical manifestations and examination findings met the definition for MCHS. During meticulous follow-up, the patient had shown satisfactory physical growth and mental development until the time of writing this report. CONCLUSION We presumed that the absence of remarkable neurologic manifestations prior to LT in patients with MCHS is a good indication for LT and contributes to a better prognosis in the present case.
Collapse
Affiliation(s)
- Masashi Kadohisa
- Department of Surgery, Kyoto University Graduate School of Medicine, Kyoto, Japan
- Department of Pediatric Surgery, Kyoto University Hospital, Kyoto, Japan
| | - Tatsuya Okamoto
- Department of Surgery, Kyoto University Graduate School of Medicine, Kyoto, Japan
- Department of Pediatric Surgery, Kyoto University Hospital, Kyoto, Japan
| | - Miki Yamamoto
- Department of Surgery, Kyoto University Graduate School of Medicine, Kyoto, Japan
- Department of Pediatric Surgery, Kyoto University Hospital, Kyoto, Japan
| | - Elena Yukie Uebayashi
- Department of Surgery, Kyoto University Graduate School of Medicine, Kyoto, Japan
- Department of Pediatric Surgery, Kyoto University Hospital, Kyoto, Japan
| | - Mari Sonoda
- Department of Surgery, Kyoto University Graduate School of Medicine, Kyoto, Japan
- Department of Pediatric Surgery, Kyoto University Hospital, Kyoto, Japan
| | - Eri Ogawa
- Department of Surgery, Kyoto University Graduate School of Medicine, Kyoto, Japan
- Department of Pediatric Surgery, Kyoto University Hospital, Kyoto, Japan
| | - Atsushi Yokoyama
- Department of Pediatrics, Kyoto University Graduate School of Medicine, Kyoto, Japan
| | - Hidenori Kawasaki
- Department of Pediatrics, Kyoto University Graduate School of Medicine, Kyoto, Japan
| | - Eitaro Hiejima
- Department of Pediatrics, Kyoto University Graduate School of Medicine, Kyoto, Japan
| | - Shogo Ito
- Department of Pediatrics and Neonatology, Nagoya City University Graduate School of Medical Sciences, Nagoya, Japan
| | - Takao Togawa
- Department of Pediatrics and Neonatology, Nagoya City University Graduate School of Medical Sciences, Nagoya, Japan
| | - Kazuo Imagawa
- Department of Child Health, Institute of Medicine, University of Tsukuba, Ibaraki, Japan
| | - Kei Murayama
- Department of Metabolism, Center for Medical Genetics, Chiba Children's Hospital, Chiba, Japan
| | - Hideaki Okajima
- Department of Surgery, Kyoto University Graduate School of Medicine, Kyoto, Japan
- Department of Pediatric Surgery, Kanazawa Medical University, Kanazawa, Japan
| | - Etsuro Hatano
- Department of Surgery, Kyoto University Graduate School of Medicine, Kyoto, Japan
- Department of Pediatric Surgery, Kyoto University Hospital, Kyoto, Japan
- Department of Hepato-Biliary-Pancreatic Surgery and Transplantation, Kyoto University Hospital, Kyoto, Japan
| |
Collapse
|
6
|
Aguilar K, Canal C, Comes G, Díaz-Clavero S, Llanos MA, Quintana A, Sanz E, Hidalgo J. Interleukin-6-elicited chronic neuroinflammation may decrease survival but is not sufficient to drive disease progression in a mouse model of Leigh syndrome. J Inflamm (Lond) 2024; 21:1. [PMID: 38212783 PMCID: PMC10782699 DOI: 10.1186/s12950-023-00369-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2023] [Accepted: 12/01/2023] [Indexed: 01/13/2024] Open
Abstract
BACKGROUND Mitochondrial diseases (MDs) are genetic disorders characterized by dysfunctions in mitochondria. Clinical data suggest that additional factors, beyond genetics, contribute to the onset and progression of this group of diseases, but these influencing factors remain largely unknown. Mounting evidence indicates that immune dysregulation or distress could play a role. Clinical observations have described the co-incidence of infection and the onset of the disease as well as the worsening of symptoms following infection. These findings highlight the complex interactions between MDs and immunity and underscore the need to better understand their underlying relationships. RESULTS We used Ndufs4 KO mice, a well-established mouse model of Leigh syndrome (one of the most relevant MDs), to test whether chronic induction of a neuroinflammatory state in the central nervous system before the development of neurological symptoms would affect both the onset and progression of the disease in Ndufs4 KO mice. To this aim, we took advantage of the GFAP-IL6 mouse, which overexpresses interleukin-6 (IL-6) in astrocytes and produces chronic glial reactivity, by generating a mouse line with IL-6 overexpression and NDUFS4 deficiency. IL-6 overexpression aggravated the mortality of female Ndufs4 KO mice but did not alter the main motor and respiratory phenotypes measured in any sex. Interestingly, an abnormal region-dependent microglial response to IL-6 overexpression was observed in Ndufs4 KO mice compared to controls. CONCLUSION Overall, our data indicate that chronic neuroinflammation may worsen the disease in Ndufs4 KO female mice, but not in males, and uncovers an abnormal microglial response due to OXPHOS dysfunction, which may have implications for our understanding of the effect of OXPHOS dysfunction in microglia.
Collapse
Affiliation(s)
- Kevin Aguilar
- Department of Cellular Biology, Physiology and Immunology, Animal Physiology Unit, Faculty of Biosciences, Universitat Autònoma de Barcelona, Bellaterra, Barcelona, Spain, 08193
- Institut de Neurociències, Universitat Autònoma de Barcelona, Bellaterra, Barcelona, Spain
- Present address: Institute for Research in Biomedicine (IRB Barcelona), Barcelona, Spain
| | - Carla Canal
- Department of Cellular Biology, Physiology and Immunology, Animal Physiology Unit, Faculty of Biosciences, Universitat Autònoma de Barcelona, Bellaterra, Barcelona, Spain, 08193
- Institut de Neurociències, Universitat Autònoma de Barcelona, Bellaterra, Barcelona, Spain
| | - Gemma Comes
- Department of Cellular Biology, Physiology and Immunology, Animal Physiology Unit, Faculty of Biosciences, Universitat Autònoma de Barcelona, Bellaterra, Barcelona, Spain, 08193
- Institut de Neurociències, Universitat Autònoma de Barcelona, Bellaterra, Barcelona, Spain
| | - Sandra Díaz-Clavero
- Department of Cellular Biology, Physiology and Immunology, Animal Physiology Unit, Faculty of Biosciences, Universitat Autònoma de Barcelona, Bellaterra, Barcelona, Spain, 08193
- Institut de Neurociències, Universitat Autònoma de Barcelona, Bellaterra, Barcelona, Spain
- Present address: Dementia Research Institute, Imperial College London, London, UK
| | - Maria Angeles Llanos
- Department of Cellular Biology, Physiology and Immunology, Animal Physiology Unit, Faculty of Biosciences, Universitat Autònoma de Barcelona, Bellaterra, Barcelona, Spain, 08193
- Institut de Neurociències, Universitat Autònoma de Barcelona, Bellaterra, Barcelona, Spain
| | - Albert Quintana
- Department of Cellular Biology, Physiology and Immunology, Animal Physiology Unit, Faculty of Biosciences, Universitat Autònoma de Barcelona, Bellaterra, Barcelona, Spain, 08193
- Institut de Neurociències, Universitat Autònoma de Barcelona, Bellaterra, Barcelona, Spain
| | - Elisenda Sanz
- Department of Cellular Biology, Physiology and Immunology, Animal Physiology Unit, Faculty of Biosciences, Universitat Autònoma de Barcelona, Bellaterra, Barcelona, Spain, 08193.
- Institut de Neurociències, Universitat Autònoma de Barcelona, Bellaterra, Barcelona, Spain.
| | - Juan Hidalgo
- Department of Cellular Biology, Physiology and Immunology, Animal Physiology Unit, Faculty of Biosciences, Universitat Autònoma de Barcelona, Bellaterra, Barcelona, Spain, 08193.
- Institut de Neurociències, Universitat Autònoma de Barcelona, Bellaterra, Barcelona, Spain.
| |
Collapse
|
7
|
Gropman AL, Uittenbogaard MN, Chiaramello AE. Challenges and opportunities to bridge translational to clinical research for personalized mitochondrial medicine. Neurotherapeutics 2024; 21:e00311. [PMID: 38266483 PMCID: PMC10903101 DOI: 10.1016/j.neurot.2023.e00311] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2023] [Revised: 12/08/2023] [Accepted: 12/13/2023] [Indexed: 01/26/2024] Open
Abstract
Mitochondrial disorders are a group of rare and heterogeneous genetic diseases characterized by dysfunctional mitochondria leading to deficient adenosine triphosphate synthesis and chronic energy deficit in patients. The majority of these patients exhibit a wide range of phenotypic manifestations targeting several organ systems, making their clinical diagnosis and management challenging. Bridging translational to clinical research is crucial for improving the early diagnosis and prognosis of these intractable mitochondrial disorders and for discovering novel therapeutic drug candidates and modalities. This review provides the current state of clinical testing in mitochondrial disorders, discusses the challenges and opportunities for converting basic discoveries into clinical settings, explores the most suited patient-centric approaches to harness the extraordinary heterogeneity among patients affected by the same primary mitochondrial disorder, and describes the current outlook of clinical trials.
Collapse
Affiliation(s)
- Andrea L Gropman
- Children's National Medical Center, Division of Neurogenetics and Neurodevelopmental Pediatrics, Washington, DC 20010, USA
| | - Martine N Uittenbogaard
- Department of Anatomy and Cell Biology, George Washington University School of Medicine and Health Sciences, Washington, DC 20037, USA
| | - Anne E Chiaramello
- Department of Anatomy and Cell Biology, George Washington University School of Medicine and Health Sciences, Washington, DC 20037, USA.
| |
Collapse
|
8
|
Ittiwut C, Ittiwut R, Kuptanon C, Matsuhashi T, Shimura M, Sugiyama Y, Onuki T, Ohtake A, Murayama K, Vatanavicharn N, Dejputtawat W, Tantisirivit N, Kor-Anantakul P, Kamolvisit W, Suphapeetiporn K, Shotelersuk V. Genetic, metabolic and clinical delineation of an MRPS23-associated mitochondrial disorder. Sci Rep 2023; 13:22005. [PMID: 38086984 PMCID: PMC10716371 DOI: 10.1038/s41598-023-49161-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2023] [Accepted: 12/05/2023] [Indexed: 12/18/2023] Open
Abstract
MRPS23 is a nuclear gene encoding a mitochondrial ribosomal protein. A patient with a mitochondrial disorder was found to carry a variant in MRPS23. More cases are necessary to establish MRPS23 as a mitochondrial disease gene. Of 5134 exomes performed in our center, we identified five independent patients who had similar clinical manifestations and were homozygous for the same germline variant c.119C>T; p.P40L in MRPS23. Detailed clinical findings, mitochondrial enzyme activity assays from cultured skin fibroblasts, PCR-Sanger-sequencing, and variant age estimation were performed. Their available family members were also studied. Eight members homozygous for the MRPS23 p.P40L were identified. All were from Hmong hilltribe. Seven presented with alteration of consciousness and recurrent vomiting, while the eighth who was a younger brother of a proband was found pre-symptomatically. Patients showed delayed growth and development, hearing impairment, hypoglycemia, lactic acidosis, and liver dysfunction. In vitro assays of cultured fibroblasts showed combined respiratory chain complex deficiency with low activities of complexes I and IV. PCR-Sanger-sequencing confirmed the variant, which was estimated to have occurred 1550 years ago. These results establish the MRPS23-associated mitochondrial disorder inherited in an autosomal recessive pattern and provide insight into its clinical and metabolic features.
Collapse
Affiliation(s)
- Chupong Ittiwut
- Center of Excellence for Medical Genomics, Department of Pediatrics, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand
- Excellence Center for Genomics and Precision Medicine, King Chulalongkorn Memorial Hospital, The Thai Red Cross Society, Bangkok, Thailand
| | - Rungnapa Ittiwut
- Center of Excellence for Medical Genomics, Department of Pediatrics, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand
- Excellence Center for Genomics and Precision Medicine, King Chulalongkorn Memorial Hospital, The Thai Red Cross Society, Bangkok, Thailand
| | - Chulaluck Kuptanon
- Department of Pediatrics, Queen Sirikit National Institute of Child Health, Bangkok, Thailand
| | - Tetsuro Matsuhashi
- Center for Medical Genetics and Department of Metabolism, Chiba Children's Hospital, Chiba, Japan
| | - Masaru Shimura
- Center for Medical Genetics and Department of Metabolism, Chiba Children's Hospital, Chiba, Japan
| | - Yohei Sugiyama
- Center for Medical Genetics and Department of Metabolism, Chiba Children's Hospital, Chiba, Japan
| | - Takanori Onuki
- Center for Medical Genetics and Department of Metabolism, Chiba Children's Hospital, Chiba, Japan
| | - Akira Ohtake
- Center for Intractable Diseases, Saitama Medical University Hospital, Saitama, Japan
| | - Kei Murayama
- Center for Medical Genetics and Department of Metabolism, Chiba Children's Hospital, Chiba, Japan
| | - Nithiwat Vatanavicharn
- Division of Medical Genetics, Department of Pediatrics, Siriraj Hospital, Mahidol University, Bangkok, Thailand
| | - Waralee Dejputtawat
- Division of Growth and Development, Department of Pediatrics, Nakornping Hospital, Chiang Mai, Thailand
| | | | - Phawin Kor-Anantakul
- Center of Excellence for Medical Genomics, Department of Pediatrics, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand
- Excellence Center for Genomics and Precision Medicine, King Chulalongkorn Memorial Hospital, The Thai Red Cross Society, Bangkok, Thailand
| | - Wuttichart Kamolvisit
- Center of Excellence for Medical Genomics, Department of Pediatrics, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand
- Excellence Center for Genomics and Precision Medicine, King Chulalongkorn Memorial Hospital, The Thai Red Cross Society, Bangkok, Thailand
| | - Kanya Suphapeetiporn
- Center of Excellence for Medical Genomics, Department of Pediatrics, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand
- Excellence Center for Genomics and Precision Medicine, King Chulalongkorn Memorial Hospital, The Thai Red Cross Society, Bangkok, Thailand
| | - Vorasuk Shotelersuk
- Center of Excellence for Medical Genomics, Department of Pediatrics, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand.
- Excellence Center for Genomics and Precision Medicine, King Chulalongkorn Memorial Hospital, The Thai Red Cross Society, Bangkok, Thailand.
| |
Collapse
|
9
|
Ikonen L, Pirnes-Karhu S, Pradhan S, Jacobs HT, Szibor M, Suomalainen A. Alternative oxidase causes cell type- and tissue-specific responses in mutator mice. Life Sci Alliance 2023; 6:e202302036. [PMID: 37657934 PMCID: PMC10474302 DOI: 10.26508/lsa.202302036] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2023] [Revised: 08/17/2023] [Accepted: 08/18/2023] [Indexed: 09/03/2023] Open
Abstract
Energetic insufficiency, excess production of reactive oxygen species (ROS), and aberrant signaling partially account for the diverse pathology of mitochondrial diseases. Whether interventions affecting ROS, a regulator of stem cell pools, could modify somatic stem cell homeostasis remains unknown. Previous data from mitochondrial DNA mutator mice showed that increased ROS leads to oxidative damage in erythroid progenitors, causing lifespan-limiting anemia. Also unclear is how ROS-targeted interventions affect terminally differentiated tissues. Here, we set out to test in mitochondrial DNA mutator mice how ubiquitous expression of the Ciona intestinalis alternative oxidase (AOX), which attenuates ROS production, affects murine stem cell pools. We found that AOX does not affect neural stem cells but delays the progression of mutator-driven anemia. Furthermore, when combined with the mutator, AOX potentiates mitochondrial stress and inflammatory responses in skeletal muscle. These differential cell type-specific findings demonstrate that AOX expression is not a global panacea for curing mitochondrial dysfunction. ROS attenuation must be carefully studied regarding specific underlying defects before AOX can be safely used in therapy.
Collapse
Affiliation(s)
- Lilli Ikonen
- https://ror.org/040af2s02 Stem Cells and Metabolism Research Program, Faculty of Medicine, University of Helsinki, Helsinki, Finland
| | - Sini Pirnes-Karhu
- https://ror.org/040af2s02 Research Program for Clinical and Molecular Metabolism, Faculty of Medicine, University of Helsinki, Helsinki, Finland
| | - Swagat Pradhan
- https://ror.org/040af2s02 Stem Cells and Metabolism Research Program, Faculty of Medicine, University of Helsinki, Helsinki, Finland
| | - Howard T Jacobs
- Faculty of Medicine and Health Technology, Tampere University, Tampere, Finland
| | - Marten Szibor
- Faculty of Medicine and Health Technology, Tampere University, Tampere, Finland
- Department of Cardiothoracic Surgery, Center for Sepsis Control and Care, Jena University Hospital, Friedrich-Schiller University of Jena, Jena, Germany
| | - Anu Suomalainen
- https://ror.org/040af2s02 Stem Cells and Metabolism Research Program, Faculty of Medicine, University of Helsinki, Helsinki, Finland
- Helsinki University Hospital, HUSLAB, Helsinki, Finland
| |
Collapse
|
10
|
Ryytty S, Hämäläinen RH. The Mitochondrial m.3243A>G Mutation on the Dish, Lessons from In Vitro Models. Int J Mol Sci 2023; 24:13478. [PMID: 37686280 PMCID: PMC10487608 DOI: 10.3390/ijms241713478] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2023] [Revised: 08/28/2023] [Accepted: 08/29/2023] [Indexed: 09/10/2023] Open
Abstract
The m.3243A>G mutation in the tRNA Leu(UUR) gene (MT-TL1) is one of the most common pathogenic point mutations in human mtDNA. Patient symptoms vary widely and the severity of the disease ranges from asymptomatic to lethal. The reason for the high heterogeneity of m.3243A>G-associated disease is still unknown, and the treatment options are limited, with only supportive interventions available. Furthermore, the heteroplasmic nature of the m.3243A>G mutation and lack of specific animal models of mtDNA mutations have challenged the study of m.3243A>G, and, besides patient data, only cell models have been available for studies. The most commonly used cell models are patient derived, such as fibroblasts and induced pluripotent stem cell (iPSC)-derived models, and cybrid models where the mutant DNA is transferred to an acceptor cell. Studies on cell models have revealed cell-type-specific effects of the m.3243A>G mutation and that the tolerance for this mutation varies between cell types and between patients. In this review, we summarize the literature on the effects of m.3243A>G in cell models.
Collapse
Affiliation(s)
| | - Riikka H. Hämäläinen
- A.I. Virtanen Institute for Molecular Sciences, University of Eastern Finland, Neulaniementie 2, 70211 Kuopio, Finland;
| |
Collapse
|
11
|
Abstract
We present a brief review of the mitochondrial respiratory chain with emphasis on complexes I, III and IV, which contribute to the generation of protonmotive force across the inner mitochondrial membrane, and drive the synthesis of ATP by the process called oxidative phosphorylation. The basic structural and functional details of these complexes are discussed. In addition, we briefly review the information on the so-called supercomplexes, aggregates of complexes I-IV, and summarize basic physiological aspects of cell respiration.
Collapse
Affiliation(s)
- Mårten Wikström
- HiLife Institute of Biotechnology, University of Helsinki, Biocenter, Viikinkaari, Helsinki, Finland.
| | - Cristina Pecorilla
- Department of Physics, University of Helsinki, Gustaf Hällströmin katu, Helsinki, Finland
| | - Vivek Sharma
- HiLife Institute of Biotechnology, University of Helsinki, Biocenter, Viikinkaari, Helsinki, Finland; Department of Physics, University of Helsinki, Gustaf Hällströmin katu, Helsinki, Finland
| |
Collapse
|
12
|
Towerman AS, Guilliams KP, Guerriero R, Shinawi MS, Stoll JM, Willis DN, Hulbert ML. Hyperammonemia and acute liver failure associated with deferasirox in two adolescents with sickle cell disease. Br J Haematol 2023; 201:e30-e33. [PMID: 36964994 DOI: 10.1111/bjh.18770] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2022] [Revised: 03/13/2023] [Accepted: 03/13/2023] [Indexed: 03/27/2023]
Affiliation(s)
- Alison S Towerman
- Division of Hematology/Oncology, Department of Pediatrics, Washington University in St. Louis School of Medicine, St. Louis, Missouri, USA
- Trudy Busch Valentine School of Nursing, Saint Louis University, St. Louis, Missouri, USA
| | - Kristin P Guilliams
- Division of Pediatric and Developmental Neurology, Department of Neurology, Washington University in St. Louis School of Medicine, St. Louis, Missouri, USA
- Division of Critical Care Medicine, Department of Pediatrics, Washington University in St. Louis School of Medicine, St. Louis, Missouri, USA
- Mallinckrodt Institute of Radiology, Washington University in St. Louis School of Medicine, St. Louis, Missouri, USA
| | - Réjean Guerriero
- Division of Pediatric and Developmental Neurology, Department of Neurology, Washington University in St. Louis School of Medicine, St. Louis, Missouri, USA
| | - Marwan S Shinawi
- Division of Genetics and Genomic Medicine, Department of Pediatrics, Washington University in St. Louis School of Medicine, St. Louis, Missouri, USA
| | - Janis M Stoll
- Division of Gastroenterology, Hepatology, and Nutrition, Department of Pediatrics, Washington University in St. Louis School of Medicine, St. Louis, Missouri, USA
| | - Daniel N Willis
- Division of Hematology/Oncology, Department of Pediatrics, Washington University in St. Louis School of Medicine, St. Louis, Missouri, USA
| | - Monica L Hulbert
- Division of Hematology/Oncology, Department of Pediatrics, Washington University in St. Louis School of Medicine, St. Louis, Missouri, USA
| |
Collapse
|
13
|
Cikes D, Elsayad K, Sezgin E, Koitai E, Torma F, Orthofer M, Yarwood R, Heinz LX, Sedlyarov V, Miranda ND, Taylor A, Grapentine S, Al-Murshedi F, Abot A, Weidinger A, Kutchukian C, Sanchez C, Cronin SJF, Novatchkova M, Kavirayani A, Schuetz T, Haubner B, Haas L, Hagelkruys A, Jackowski S, Kozlov AV, Jacquemond V, Knauf C, Superti-Furga G, Rullman E, Gustafsson T, McDermot J, Lowe M, Radak Z, Chamberlain JS, Bakovic M, Banka S, Penninger JM. PCYT2-regulated lipid biosynthesis is critical to muscle health and ageing. Nat Metab 2023; 5:495-515. [PMID: 36941451 DOI: 10.1038/s42255-023-00766-2] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/08/2021] [Accepted: 02/10/2023] [Indexed: 03/23/2023]
Abstract
Muscle degeneration is the most prevalent cause for frailty and dependency in inherited diseases and ageing. Elucidation of pathophysiological mechanisms, as well as effective treatments for muscle diseases, represents an important goal in improving human health. Here, we show that the lipid synthesis enzyme phosphatidylethanolamine cytidyltransferase (PCYT2/ECT) is critical to muscle health. Human deficiency in PCYT2 causes a severe disease with failure to thrive and progressive weakness. pcyt2-mutant zebrafish and muscle-specific Pcyt2-knockout mice recapitulate the participant phenotypes, with failure to thrive, progressive muscle weakness and accelerated ageing. Mechanistically, muscle Pcyt2 deficiency affects cellular bioenergetics and membrane lipid bilayer structure and stability. PCYT2 activity declines in ageing muscles of mice and humans, and adeno-associated virus-based delivery of PCYT2 ameliorates muscle weakness in Pcyt2-knockout and old mice, offering a therapy for individuals with a rare disease and muscle ageing. Thus, PCYT2 plays a fundamental and conserved role in vertebrate muscle health, linking PCYT2 and PCYT2-synthesized lipids to severe muscle dystrophy and ageing.
Collapse
Affiliation(s)
- Domagoj Cikes
- IMBA, Institute of Molecular Biotechnology of the Austrian Academy of Sciences, Vienna, Austria.
| | - Kareem Elsayad
- Division of Anatomy, Center for Anatomy and Cell Biology and Medical Imaging Cluster (MIC), Vienna, Austria.
| | - Erdinc Sezgin
- MRC Weatherall Institute of Molecular Medicine, MRC Human Immunology Unit, University of Oxford, Oxford, UK
- Science for Life Laboratory, Department of Women's and Children's Health, Karolinska Institutet, Solna, Sweden
| | - Erika Koitai
- Research Institute of Sport Science, University of Physical Education, Budapest, Hungary
| | - Ferenc Torma
- Research Institute of Sport Science, University of Physical Education, Budapest, Hungary
| | - Michael Orthofer
- IMBA, Institute of Molecular Biotechnology of the Austrian Academy of Sciences, Vienna, Austria
| | - Rebecca Yarwood
- School of Biological Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester, UK
| | - Leonhard X Heinz
- CeMM Research Center for Molecular Medicine of the Austrian Academy of Sciences, Vienna, Austria
| | - Vitaly Sedlyarov
- CeMM Research Center for Molecular Medicine of the Austrian Academy of Sciences, Vienna, Austria
| | | | - Adrian Taylor
- Department of Human Health and Nutritional Sciences, University of Guelph, Guelph, Ontario, Canada
| | - Sophie Grapentine
- Department of Human Health and Nutritional Sciences, University of Guelph, Guelph, Ontario, Canada
| | - Fathiya Al-Murshedi
- Department of Genetics, College of Medicine, Sultan Qaboos University, Muscat, Sultanate of Oman
| | - Anne Abot
- Enterosys SAS, Prologue Biotech, Labège, France
| | - Adelheid Weidinger
- Ludwig Boltzmann Institute for Traumatology, The Research Center in Cooperation with AUVA, Vienna, Austria
| | - Candice Kutchukian
- Institut NeuroMyoGène, Université Claude Bernard Lyon 1, Villeurbanne, France
| | - Colline Sanchez
- Institut NeuroMyoGène, Université Claude Bernard Lyon 1, Villeurbanne, France
| | - Shane J F Cronin
- IMBA, Institute of Molecular Biotechnology of the Austrian Academy of Sciences, Vienna, Austria
| | - Maria Novatchkova
- IMBA, Institute of Molecular Biotechnology of the Austrian Academy of Sciences, Vienna, Austria
| | - Anoop Kavirayani
- VBCF, Vienna BioCenter Core Facilities, Vienna BioCenter, Vienna, Austria
| | - Thomas Schuetz
- IMBA, Institute of Molecular Biotechnology of the Austrian Academy of Sciences, Vienna, Austria
| | - Bernhard Haubner
- IMBA, Institute of Molecular Biotechnology of the Austrian Academy of Sciences, Vienna, Austria
| | - Lisa Haas
- IMP Research Institute of Molecular Pathology, Vienna, Austria
| | - Astrid Hagelkruys
- IMBA, Institute of Molecular Biotechnology of the Austrian Academy of Sciences, Vienna, Austria
| | | | - Andrey V Kozlov
- Ludwig Boltzmann Institute for Traumatology, The Research Center in Cooperation with AUVA, Vienna, Austria
| | - Vincent Jacquemond
- Institut NeuroMyoGène, Université Claude Bernard Lyon 1, Villeurbanne, France
| | - Claude Knauf
- INSERM U1220 Institut de Recherche en Santé Digestive, CHU Purpan, Université Toulouse III Paul Sabatier Toulouse, Toulouse, France
| | - Giulio Superti-Furga
- CeMM Research Center for Molecular Medicine of the Austrian Academy of Sciences, Vienna, Austria
- Center for Physiology and Pharmacology, Medical University of Vienna, Vienna, Austria
| | - Eric Rullman
- Division of Clinical Physiology, Department of Laboratory Medicine, Karolinska Institutet, and Unit of Clinical Physiology, Karolinska University Hospital, Stockholm, Sweden
- Cardiovascular Theme, Karolinska Institutet, Karolinska University Hospital Huddinge, Stockholm, Sweden
| | - Thomas Gustafsson
- Division of Clinical Physiology, Department of Laboratory Medicine, Karolinska Institutet, and Unit of Clinical Physiology, Karolinska University Hospital, Stockholm, Sweden
| | - John McDermot
- Manchester Centre for Genomics Medicine, St Mary's Hospital, Manchester University Hospital Foundation Trust, Manchester, UK
| | - Martin Lowe
- School of Biological Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester, UK
| | - Zsolt Radak
- Research Institute of Sport Science, University of Physical Education, Budapest, Hungary
| | - Jeffrey S Chamberlain
- Department of Neurology, University of Washington, Seattle, WA, USA
- Senator Paul D. Wellstone Muscular Dystrophy Specialized Research Center, University of Washington, Seattle, WA, USA
| | - Marica Bakovic
- Department of Human Health and Nutritional Sciences, University of Guelph, Guelph, Ontario, Canada
| | - Siddharth Banka
- Manchester Centre for Genomics Medicine, St Mary's Hospital, Manchester University Hospital Foundation Trust, Manchester, UK
- Division of Evolution and Genomic Sciences, School of Biological Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester, UK
| | - Josef M Penninger
- IMBA, Institute of Molecular Biotechnology of the Austrian Academy of Sciences, Vienna, Austria.
- Department of Medical Genetics, Life Science Institute, University of British Columbia, Vancouver, British Columbia, Canada.
| |
Collapse
|
14
|
Nabi SU, Rehman MU, Arafah A, Taifa S, Khan IS, Khan A, Rashid S, Jan F, Wani HA, Ahmad SF. Treatment of Autism Spectrum Disorders by Mitochondrial-targeted Drug: Future of Neurological Diseases Therapeutics. Curr Neuropharmacol 2023; 21:1042-1064. [PMID: 36411568 PMCID: PMC10286588 DOI: 10.2174/1570159x21666221121095618] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2022] [Revised: 10/09/2022] [Accepted: 10/11/2022] [Indexed: 11/23/2022] Open
Abstract
Autism is a neurodevelopmental disorder with a complex etiology that might involve environmental and genetic variables. Recently, some epidemiological studies conducted in various parts of the world have estimated a significant increase in the prevalence of autism, with 1 in every 59 children having some degree of autism. Since autism has been associated with other clinical abnormalities, there is every possibility that a sub-cellular component may be involved in the progression of autism. The organelle remains a focus based on mitochondria's functionality and metabolic role in cells. Furthermore, the mitochondrial genome is inherited maternally and has its DNA and organelle that remain actively involved during embryonic development; these characteristics have linked mitochondrial dysfunction to autism. Although rapid stride has been made in autism research, there are limited studies that have made particular emphasis on mitochondrial dysfunction and autism. Accumulating evidence from studies conducted at cellular and sub-cellular levels has indicated that mitochondrial dysfunction's role in autism is more than expected. The present review has attempted to describe the risk factors of autism, the role of mitochondria in the progression of the disease, oxidative damage as a trigger point to initiate mitochondrial damage, genetic determinants of the disease, possible pathogenic pathways and therapeutic regimen in vogue and the developmental stage. Furthermore, in the present review, an attempt has been made to include the novel therapeutic regimens under investigation at different clinical trial stages and their potential possibility to emerge as promising drugs against ASD.
Collapse
Affiliation(s)
- Showkat Ul Nabi
- Large Animal Diagnostic Laboratory, Department of Clinical Veterinary Medicine, Ethics & Jurisprudence, Faculty of Veterinary Sciences and Animal Husbandry, Sher-e-Kashmir University of Agricultural Sciences and Technology (SKUAST-K), Srinagar J&K, 190006, India
| | - Muneeb U. Rehman
- Department of Clinical Pharmacy, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia
| | - Azher Arafah
- Department of Clinical Pharmacy, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia
| | - Syed Taifa
- Large Animal Diagnostic Laboratory, Department of Clinical Veterinary Medicine, Ethics & Jurisprudence, Faculty of Veterinary Sciences and Animal Husbandry, Sher-e-Kashmir University of Agricultural Sciences and Technology (SKUAST-K), Srinagar J&K, 190006, India
| | - Iqra Shafi Khan
- Large Animal Diagnostic Laboratory, Department of Clinical Veterinary Medicine, Ethics & Jurisprudence, Faculty of Veterinary Sciences and Animal Husbandry, Sher-e-Kashmir University of Agricultural Sciences and Technology (SKUAST-K), Srinagar J&K, 190006, India
| | - Andleeb Khan
- Department of Pharmacology and Toxicology, College of Pharmacy, Jazan University, Jazan, 45142, Saudi Arabia
| | - Summya Rashid
- Department of Pharmacology & Toxicology, College of Pharmacy, Prince Sattam Bin Abdulaziz University, P.O. Box 173, Al-Kharj, 11942, Saudi Arabia
| | - Fatimah Jan
- Department of Pharmaceutical Sciences, CT University, Ludhiana, Ferozepur Road, Punjab, 142024, India
| | - Hilal Ahmad Wani
- Department of Biochemistry, Government Degree College Sumbal, Bandipora, J&K, India
| | - Sheikh Fayaz Ahmad
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, Riyadh, 11451, Saudi Arabia
| |
Collapse
|
15
|
Wu J, Li J, Feng B, Bi Z, Zhu G, Zhang Y, Li X. Activation of AMPK-PGC-1α pathway ameliorates peritoneal dialysis related peritoneal fibrosis in mice by enhancing mitochondrial biogenesis. Ren Fail 2022; 44:1545-1557. [PMID: 36148521 PMCID: PMC9518249 DOI: 10.1080/0886022x.2022.2126789] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/31/2022] Open
Abstract
BACKGROUND The pathogenesis of peritoneal dialysis (PD)-related peritoneal fibrosis (PF) is not clearly understood, and current treatment options are limited. METHODS In this study, the effect of PD-related PF on mitochondrial biogenesis was investigated, and the effect of activation of the adenosine monophosphate-activated protein kinase (AMPK)-PGC-1α (peroxisome proliferator-activated receptor γ coactivator-1α) pathway on PF was evaluated in mice. RESULTS In a mouse model of PD-related PF, AMPK-PGC-1α signaling (phospho-AMPK, PGC-1α, NRF-1, NRF-2 and TFAM expression) was downregulated, mitochondrial DNA (mtDNA) levels were reduced, and mitochondrial structure was damaged in the peritoneum. In addition, TdT-mediated dUTP nick-end labeling (TUNEL) staining showed typical apoptosis characteristics in peritoneal mesothelial cells (PMCs). Activation of the AMPK-PGC-1α pathway (PGC-1α overexpression or metformin, which is an agonist of AMPK) upregulated phospho-AMPK, PGC-1α, nuclear respiratory factors 1 (NRF-1) and 2 (NRF-2), and mitochondrial transcription factor A (TFAM) expression and mtDNA content, improved mitochondrial morphological manifestations, inhibited apoptosis of PMCs and alleviated PF. CONCLUSION Our study may suggest that activation of the AMPK-PGC-1α pathway ameliorates PD-related PF by enhancing mitochondrial biogenesis.
Collapse
Affiliation(s)
- Jun Wu
- Department of Nephrology, Tongren Hospital of Wuhan University (Wuhan Third Hospital), Wuhan University, Wuhan, P.R. China
| | - Jushuang Li
- Department of Nephrology, Tongren Hospital of Wuhan University (Wuhan Third Hospital), Wuhan University, Wuhan, P.R. China
| | - Baohong Feng
- Department of Nephrology, Tongren Hospital of Wuhan University (Wuhan Third Hospital), Wuhan University, Wuhan, P.R. China
| | - Zhimin Bi
- Department of Nephrology, Tongren Hospital of Wuhan University (Wuhan Third Hospital), Wuhan University, Wuhan, P.R. China
| | - Geli Zhu
- Department of Nephrology, Tongren Hospital of Wuhan University (Wuhan Third Hospital), Wuhan University, Wuhan, P.R. China
| | - Yanxia Zhang
- Department of Nephrology, Tongren Hospital of Wuhan University (Wuhan Third Hospital), Wuhan University, Wuhan, P.R. China
| | - Xiangyou Li
- Department of Nephrology, Tongren Hospital of Wuhan University (Wuhan Third Hospital), Wuhan University, Wuhan, P.R. China
| |
Collapse
|
16
|
Mitochondrial DNA Changes in Genes of Respiratory Complexes III, IV and V Could Be Related to Brain Tumours in Humans. Int J Mol Sci 2022; 23:ijms232012131. [PMID: 36292984 PMCID: PMC9603055 DOI: 10.3390/ijms232012131] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2022] [Revised: 10/02/2022] [Accepted: 10/09/2022] [Indexed: 11/17/2022] Open
Abstract
Mitochondrial DNA changes can contribute to both an increased and decreased likelihood of cancer. This process is complex and not fully understood. Polymorphisms and mutations, especially those of the missense type, can affect mitochondrial functions, particularly if the conservative domain of the protein is concerned. This study aimed to identify the possible relationships between brain gliomas and the occurrence of specific mitochondrial DNA polymorphisms and mutations in respiratory complexes III, IV and V. The investigated material included blood and tumour material collected from 30 Caucasian patients diagnosed with WHO grade II, III or IV glioma. The mitochondrial genetic variants were investigated across the mitochondrial genome using next-generation sequencing (MiSeq/FGx system—Illumina). The study investigated, in silico, the effects of missense mutations on the biochemical properties, structure and functioning of the encoded protein, as well as their potential harmfulness. The A14793G (MTCYB), A15758G, (MT-CYB), A15218G (MT-CYB), G7444A (MT-CO1) polymorphisms, and the T15663C (MT-CYB) and G8959A (ATP6) mutations were assessed in silico as harmful alterations that could be involved in oncogenesis. The G8959A (E145K) ATP6 missense mutation has not been described in the literature so far. In light of these results, further research into the role of mtDNA changes in brain tumours should be conducted.
Collapse
|
17
|
Abstract
Mitochondrial hepatopathies are a subset of mitochondrial diseases defined by primary dysfunction of hepatocyte mitochondria leading to a phenotype of hepatocyte cell injury, steatosis, or liver failure. Increasingly, the diagnosis is established by new sequencing approaches that combine analysis of both nuclear DNA and mitochondrial DNA and allow for timely diagnosis in most patients. Despite advances in diagnostics, for most affected children their disorders are relentlessly progressive, and result in substantial morbidity and mortality. Treatment remains mainly supportive; however, novel therapeutics and a more definitive role for liver transplantation hold promise for affected children.
Collapse
Affiliation(s)
- Mary Ayers
- University of Pittsburgh School of Medicine, Children's Hospital of Pittsburgh of UPMC, 4401 Penn Avenue, Pittsburgh, PA 15224, USA
| | - Simon P Horslen
- University of Pittsburgh School of Medicine, Children's Hospital of Pittsburgh of UPMC, 4401 Penn Avenue, Pittsburgh, PA 15224, USA
| | - Anna María Gómez
- University of Pittsburgh School of Medicine, Children's Hospital of Pittsburgh of UPMC, 4401 Penn Avenue, Pittsburgh, PA 15224, USA
| | - James E Squires
- University of Pittsburgh School of Medicine, Children's Hospital of Pittsburgh of UPMC, 4401 Penn Avenue, Pittsburgh, PA 15224, USA.
| |
Collapse
|
18
|
Abstract
Abstract
Mitochondria, the cell powerhouse, are membrane-bound organelles present in the cytoplasm of almost all the eukaryotic cells. Their main function is to generate energy in the form of adenosine triphosphate (ATP). In addition, mitochondria store calcium for the cell signaling activities, generate heat, harbor pathways of intermediate metabolism and mediate cell growth and death. Primary mitochondrial diseases (MDs) form a clinically as well as genetically heterogeneous group of inherited disorders that result from the mitochondrial energetic metabolism malfunctions. The lifetime risk of the MDs development is estimated at 1:1470 of newborns, which makes them one of the most recurrent groups of inherited disorders with an important burden for society.
MDs are progressive with wide range of symptoms of variable severity that can emerge congenitally or anytime during the life. MD can be caused by mutations in the mitochondrial DNA (mtDNA) or nuclear DNA genes. Mutations inducing impairment of mitochondrial function have been found in more than 400 genes. Furthermore, more than 1200 nuclear genes, which could play a role in the MDs’ genetic etiology, are involved in the mitochondrial activities. However, the knowledge regarding the mechanism of the mitochondrial pathogenicity appears to be most essential for the development of effective patient’s treatment suffering from the mitochondrial disease. This is an overview update focused on the mitochondrial biology and the mitochondrial diseases associated genes.
Collapse
|
19
|
Heineman BD, Liu X, Wu GY. Targeted Mitochondrial Delivery to Hepatocytes: A Review. J Clin Transl Hepatol 2022; 10:321-328. [PMID: 35528979 PMCID: PMC9039707 DOI: 10.14218/jcth.2021.00093] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/14/2021] [Revised: 07/22/2021] [Accepted: 09/15/2021] [Indexed: 12/04/2022] Open
Abstract
Defects in mitochondria are responsible for various genetic and acquired diseases. Mitochondrial transplantation, a method that involves introduction of healthy donor mitochondria into cells with dysfunctional mitochondria, could offer a novel approach to treat such diseases. Some studies have demonstrated the therapeutic benefit of mitochondrial transplantation and targeted delivery in vivo and in vitro within hepatocytes and the liver. This review discusses the issues regarding isolation and delivery of mitochondria to hepatocytes and the liver, and examines the existing literature in order to elucidate the utility and practicality of mitochondrial transplantation in the treatment of liver disease. Studies reviewed demonstrate that mitochondrial uptake could specifically target hepatocytes, address the challenge of non-specific localization of donor mitochondria, and provide evidence of changes in liver function following injection of mitochondria into mouse and rat disease models. While potential benefits and advantages of mitochondrial transplantation are evident, more research is needed to determine the practicality of mitochondrial transplantation for the treatment of genetic and acquired liver diseases.
Collapse
Affiliation(s)
- Brent D. Heineman
- Correspondence to: Brent D. Heineman, 8 Talcott Forest Rd, Farmington Apt. M, Farmington, CT 06032, USA. ORCID: https://orcid.org/0000-0003-3867-1216. Tel: +1-860-986-2943, Fax: +1-860-679-6582, E-mail:
| | | | | |
Collapse
|
20
|
van Kempen CMA, Beynon AJ, Smits JJ, Janssen MCH. A retrospective cohort study exploring the association between different mitochondrial diseases and hearing loss. Mol Genet Metab 2022; 135:333-341. [PMID: 35190254 DOI: 10.1016/j.ymgme.2022.02.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/10/2021] [Revised: 01/08/2022] [Accepted: 02/11/2022] [Indexed: 10/19/2022]
Abstract
Some pathogenic variants in mtDNA and nuclear DNA, affecting mitochondrial function, are associated with hearing loss. Behavioral and electrophysiological auditory performance are obtained from 62 patients, clinically diagnosed with different mitochondrial diseases (MD) using tone/speech audiometry and Auditory Brainstem Responses (ABR). Audiological variables (hearing loss type, pure tone average (PTA), interaural asymmetry, speech perception and brainstem neural conductivity) were analyzed and related to Newcastle Mitochondrial Disease Scale for Adults (NMDAS). In 35% of MDs, a mild to severe symmetrical sensorineural hearing loss (SNHL) was found. Patients with Maternally Inherited Diabetes and Deafness (MIDD) show significantly higher PTAs compared to other MDs. For all MDs, speech recognition scores were in accordance with their individual age- and gender-corrected tone audiometry, but ABR peak latencies were prolonged in patients with MIDD, Mitochondrial Encephalopathy Lactate acidosis and Stroke-like episodes (MELAS), Chronic Progressive External Ophthalmoplegia (CPEO) and Subacute necrotizing encephalopathy (Leigh). Correlations between NMDAS and audiological variables were low.
Collapse
Affiliation(s)
- Carlijn M A van Kempen
- Dept. Oto-Rhino-Laryngology, Head and Neck Surgery, Radboudumc Nijmegen, the Netherlands
| | - Andy J Beynon
- Dept. Oto-Rhino-Laryngology, Head and Neck Surgery, Radboudumc Nijmegen, the Netherlands.
| | - Jeroen J Smits
- Dept. Oto-Rhino-Laryngology, Head and Neck Surgery, Radboudumc Nijmegen, the Netherlands
| | - Mirian C H Janssen
- Dept. Internal Medicine, Radboud Center for Mitochondrial Medicine, Radboudumc Nijmegen, the Netherlands
| |
Collapse
|
21
|
Zhao Y, Zhang Y, Qi M, Ping F, Zhang H, Xu L, Li W, Li Y. The Role of Lactate Exercise Test and Fasting Plasma C-Peptide Levels in the Diagnosis of Mitochondrial Diabetes: Analysis of Clinical Characteristics of 12 Patients With Mitochondrial Diabetes in a Single Center With Long-Term Follow-Up. Front Endocrinol (Lausanne) 2022; 13:835570. [PMID: 35265041 PMCID: PMC8899008 DOI: 10.3389/fendo.2022.835570] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/14/2021] [Accepted: 01/26/2022] [Indexed: 11/25/2022] Open
Abstract
Objective The aim of this study was to analyze the clinical characteristics and the pattern of long-term changes of fasting plasma C-peptide in patients with mitochondrial diabetes (MD), and to provide guidance for the diagnosis and treatment of MD. Methods We retrieved MD patients with long-term follow-up at Peking Union Medical College Hospital from January 2005 to July 2021 through the medical record retrieval system and retrospectively analyzed their clinical data, biochemical parameters, fasting plasma C-peptide, glycosylated hemoglobin and treatment regimens. Non-parametric receiver operating characteristic (ROC) curves were used to assess the relationship between exercise test-related plasma lactate levels and suffering from MD. Results A total of 12 MD patients were included, with clinical characteristics of early-onset, normal or low body weight, hearing loss, maternal inheritance, and negative islet-related autoantibodies. In addition, patients with MD exhibited significantly higher mean plasma lactate levels immediately after exercise compared to patients with type 1 diabetes mellitus (T1DM) (8.39 ± 2.75 vs. 3.53 ± 1.47 mmol/L, p=0.003) and delayed recovery time after exercise (6.02 ± 2.65 vs. 2.17 ± 1.27 mmol/L, p=0.011). The optimal cut-off points identified were 5.5 and 3.4 mmol/L for plasma lactate levels immediately after and 30 minutes after exercise, respectively. The fasting plasma C-peptide levels decreased as a negative exponential function with disease progression (Y= 1.343*e-0.07776X, R2 = 0.4154). Treatment regimens in MD patients were varied, with no metformin users and a weak correlation between insulin dosage and body weight. Conclusions The increased level of plasma lactate during exercise or its delayed recovery after exercise would contribute to the diagnosis of MD. Changes of fasting plasma C-peptide in MD patients over the course of the disease indicated a rapid decline in the early stages, followed by a gradual slowing rate of decline.
Collapse
Affiliation(s)
- Yuan Zhao
- Key Laboratory of Endocrinology of National Health Commission, Department of Endocrinology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| | - Ying Zhang
- Department of Endocrinology, The Hospital of Shunyi District, Beijing, China
| | - Mengya Qi
- Key Laboratory of Endocrinology of National Health Commission, Department of Endocrinology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| | - Fan Ping
- Key Laboratory of Endocrinology of National Health Commission, Department of Endocrinology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| | - Huabing Zhang
- Key Laboratory of Endocrinology of National Health Commission, Department of Endocrinology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| | - Lingling Xu
- Key Laboratory of Endocrinology of National Health Commission, Department of Endocrinology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| | - Wei Li
- Key Laboratory of Endocrinology of National Health Commission, Department of Endocrinology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| | - Yuxiu Li
- Key Laboratory of Endocrinology of National Health Commission, Department of Endocrinology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| |
Collapse
|
22
|
Abstract
Vaccination affords protection from disease by activating pathogen-specific immune cells and facilitating the development of persistent immunologic memory toward the vaccine-specific pathogen. Current vaccine regimens are often based on the efficiency of the acute immune response, and not necessarily on the generation of memory cells, in part because the mechanisms underlying the development of efficient immune memory remain incompletely understood. This Review describes recent advances in defining memory T cell metabolism and how metabolism of these cells might be altered in patients affected by mitochondrial diseases or metabolic syndrome, who show higher susceptibility to recurrent infections and higher rates of vaccine failure. It discusses how this new understanding could add to the way we think about immunologic memory, vaccine development, and cancer immunotherapy.
Collapse
Affiliation(s)
- Mauro Corrado
- Cologne Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases (CECAD), Cologne, Germany
| | - Erika L. Pearce
- Department of Oncology, The Bloomberg~Kimmel Institute for Cancer Immunotherapy, Johns Hopkins University, Baltimore, Maryland, USA
| |
Collapse
|
23
|
Blood biomarkers for assessment of mitochondrial dysfunction: An expert review. Mitochondrion 2021; 62:187-204. [PMID: 34740866 DOI: 10.1016/j.mito.2021.10.008] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2021] [Revised: 09/28/2021] [Accepted: 10/28/2021] [Indexed: 12/20/2022]
Abstract
Although mitochondrial dysfunction is the known cause of primary mitochondrial disease, mitochondrial dysfunction is often difficult to measure and prove, especially when biopsies of affected tissue are not available. In order to identify blood biomarkers of mitochondrial dysfunction, we reviewed studies that measured blood biomarkers in genetically, clinically or biochemically confirmed primary mitochondrial disease patients. In this way, we were certain that there was an underlying mitochondrial dysfunction which could validate the biomarker. We found biomarkers of three classes: 1) functional markers measured in blood cells, 2) biochemical markers of serum/plasma and 3) DNA markers. While none of the reviewed single biomarkers may perfectly reveal all underlying mitochondrial dysfunction, combining biomarkers that cover different aspects of mitochondrial impairment probably is a good strategy. This biomarker panel may assist in the diagnosis of primary mitochondrial disease patients. As mitochondrial dysfunction may also play a significant role in the pathophysiology of multifactorial disorders such as Alzheimer's disease and glaucoma, the panel may serve to assess mitochondrial dysfunction in complex multifactorial diseases as well and enable selection of patients who could benefit from therapies targeting mitochondria.
Collapse
|
24
|
Inatomi T, Matsuda S, Ishiuchi T, Do Y, Nakayama M, Abe S, Kasho K, Wanrooij S, Nakada K, Ichiyanagi K, Sasaki H, Yasukawa T, Kang D. TFB2M and POLRMT are essential for mammalian mitochondrial DNA replication. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2021; 1869:119167. [PMID: 34744028 DOI: 10.1016/j.bbamcr.2021.119167] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/08/2021] [Revised: 10/13/2021] [Accepted: 10/13/2021] [Indexed: 12/24/2022]
Abstract
Two classes of replication intermediates have been observed from mitochondrial DNA (mtDNA) in many mammalian tissue and cells with two-dimensional agarose gel electrophoresis. One is assigned to leading-strand synthesis in the absence of synchronous lagging-strand synthesis (strand-asynchronous replication), and the other has properties of coupled leading- and lagging-strand synthesis (strand-coupled replication). While strand-asynchronous replication is primed by long noncoding RNA synthesized from a defined transcription initiation site, little is known about the commencement of strand-coupled replication. To investigate it, we attempted to abolish strand-asynchronous replication in cultured human cybrid cells by knocking out the components of the transcription initiation complexes, mitochondrial transcription factor B2 (TFB2M/mtTFB2) and mitochondrial RNA polymerase (POLRMT/mtRNAP). Unexpectedly, removal of either protein resulted in complete mtDNA loss, demonstrating for the first time that TFB2M and POLRMT are indispensable for the maintenance of human mtDNA. Moreover, a lack of TFB2M could not be compensated for by mitochondrial transcription factor B1 (TFB1M/mtTFB1). These findings indicate that TFB2M and POLRMT are crucial for the priming of not only strand-asynchronous but also strand-coupled replication, providing deeper insights into the molecular basis of mtDNA replication initiation.
Collapse
Affiliation(s)
- Teppei Inatomi
- Department of Clinical Chemistry and Laboratory Medicine, Graduate School of Medical Sciences, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka-shi, Fukuoka 812-8582, Japan
| | - Shigeru Matsuda
- Department of Clinical Chemistry and Laboratory Medicine, Graduate School of Medical Sciences, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka-shi, Fukuoka 812-8582, Japan; Department of Modomics Biology and Medicine, Institute of Development, Aging and Cancer, Tohoku University, 4-1 Seiryocho, Aoba-ku, Sendai-shi, Miyagi 980-8575, Japan
| | - Takashi Ishiuchi
- Division of Epigenomics and Development, Medical Institute of Bioregulation, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka-shi, Fukuoka 812-8582, Japan
| | - Yura Do
- Department of Clinical Chemistry and Laboratory Medicine, Graduate School of Medical Sciences, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka-shi, Fukuoka 812-8582, Japan
| | - Masunari Nakayama
- Department of Clinical Chemistry and Laboratory Medicine, Graduate School of Medical Sciences, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka-shi, Fukuoka 812-8582, Japan
| | - Shusaku Abe
- Division of Epigenomics and Development, Medical Institute of Bioregulation, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka-shi, Fukuoka 812-8582, Japan
| | - Kazutoshi Kasho
- Department of Medical Biochemistry and Biophysics, Umeå University, Umeå, Sweden
| | - Sjoerd Wanrooij
- Department of Medical Biochemistry and Biophysics, Umeå University, Umeå, Sweden
| | - Kazuto Nakada
- Faculty of Life and Environmental Sciences, University of Tsukuba, 1-1-1 Tennoudai, Tsukuba-shi, Ibaraki 305-8572, Japan
| | - Kenji Ichiyanagi
- Department of Animal Sciences, Graduate School of Bioagricultural Sciences, Nagoya University, Furo-cho, Chikusa-ku, Nagoya-shi, Aichi 464-8601, Japan
| | - Hiroyuki Sasaki
- Division of Epigenomics and Development, Medical Institute of Bioregulation, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka-shi, Fukuoka 812-8582, Japan
| | - Takehiro Yasukawa
- Department of Clinical Chemistry and Laboratory Medicine, Graduate School of Medical Sciences, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka-shi, Fukuoka 812-8582, Japan; Department of Pathology and Oncology, Juntendo University School of Medicine, 2-1-1 Hongo, Bunkyo-ku, Tokyo 113-8421, Japan.
| | - Dongchon Kang
- Department of Clinical Chemistry and Laboratory Medicine, Graduate School of Medical Sciences, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka-shi, Fukuoka 812-8582, Japan
| |
Collapse
|
25
|
Gayathri N, Deepha S, Sharma S. Diagnosis of primary mitochondrial disorders -Emphasis on myopathological aspects. Mitochondrion 2021; 61:69-84. [PMID: 34592422 DOI: 10.1016/j.mito.2021.09.007] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2021] [Revised: 09/03/2021] [Accepted: 09/22/2021] [Indexed: 12/29/2022]
Abstract
Mitochondrial disorders are one of the most common neurometabolic disorders affecting all age groups. The phenotype-genotype heterogeneity in these disorders can be attributed to the dual genetic control on mitochondrial functions, posing a challenge for diagnosis. Though the advancement in the high-throughput sequencing and other omics platforms resulted in a "genetics-first" approach, the muscle biopsy remains the benchmark in most of the mitochondrial disorders. This review focuses on the myopathological aspects of primary mitochondrial disorders. The utility of muscle biopsy is not limited to analyse the structural abnormalities; rather it also proves to be a potential tool to understand the deranged sub-cellular functions.
Collapse
Affiliation(s)
- Narayanappa Gayathri
- Department of Neuropathology, National Institute of Mental Health and Neurosciences (NIMHANS), Bangalore 560 029, India.
| | - Sekar Deepha
- Department of Neuropathology, National Institute of Mental Health and Neurosciences (NIMHANS), Bangalore 560 029, India
| | - Shivani Sharma
- Department of Neuropathology, National Institute of Mental Health and Neurosciences (NIMHANS), Bangalore 560 029, India
| |
Collapse
|
26
|
Dayanidhi S. Skeletal Muscle Mitochondrial Physiology in Children With Cerebral Palsy: Considerations for Healthy Aging. Front Neurol 2021; 12:735009. [PMID: 34589051 PMCID: PMC8473886 DOI: 10.3389/fneur.2021.735009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2021] [Accepted: 08/09/2021] [Indexed: 11/24/2022] Open
Abstract
Skeletal muscle contractile proteins require a constant supply of energy to produce force needed for movement. Energy (ATP) is primarily produced by mitochondrial organelles, located within and around muscle fibers, by oxidative phosphorylation that couples electron flux through the electron transport chain to create a proton gradient across the inner mitochondrial membrane that is in turn used by the ATP synthase. Mitochondrial networks increase in size by biogenesis to increase mitochondrial abundance and activity in response to endurance exercise, while their function and content reduce with constant inactivity, such as during muscle atrophy. During healthy aging, there is an overall decline in mitochondrial activity and abundance, increase in mitochondrial DNA mutations, potential increase in oxidative stress, and reduction in overall muscular capacity. Many of these alterations can be attenuated by consistent endurance exercise. Children with cerebral palsy (CP) have significantly increased energetics of movement, reduced endurance capacity, and increased perceived effort. Recent work in leg muscles in ambulatory children with CP show a marked reduction in mitochondrial function. Arm muscles show that mitochondrial protein content and mitochondria DNA copy number are lower, suggesting a reduction in mitochondrial abundance, along with a reduction in markers for mitochondrial biogenesis. Gene expression networks are reduced for glycolytic and mitochondrial pathways and share similarities with gene networks with aging and chronic inactivity. Given the importance of mitochondria for energy production and changes with aging, future work needs to assess changes in mitochondria across the lifespan in people with CP and the effect of exercise on promoting metabolic health.
Collapse
Affiliation(s)
- Sudarshan Dayanidhi
- Shirley Ryan AbilityLab, Chicago, IL, United States.,Department of Physical Medicine and Rehabilitation and Physical Therapy and Human Movement Science, Feinberg School of Medicine, Northwestern University, Chicago, IL, United States
| |
Collapse
|
27
|
van der Walt G, Lindeque JZ, Mason S, Louw R. Sub-Cellular Metabolomics Contributes Mitochondria-Specific Metabolic Insights to a Mouse Model of Leigh Syndrome. Metabolites 2021; 11:metabo11100658. [PMID: 34677373 PMCID: PMC8537744 DOI: 10.3390/metabo11100658] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2021] [Revised: 09/16/2021] [Accepted: 09/22/2021] [Indexed: 12/15/2022] Open
Abstract
Direct injury of mitochondrial respiratory chain (RC) complex I by Ndufs4 subunit mutations results in complex I deficiency (CID) and a progressive encephalomyopathy, known as Leigh syndrome. While mitochondrial, cytosolic and multi-organelle pathways are known to be involved in the neuromuscular LS pathogenesis, compartment-specific metabolomics has, to date, not been applied to murine models of CID. We thus hypothesized that sub-cellular metabolomics would be able to contribute organelle-specific insights to known Ndufs4 metabolic perturbations. To that end, whole brains and skeletal muscle from late-stage Ndufs4 mice and age/sex-matched controls were harvested for mitochondrial and cytosolic isolation. Untargeted 1H-NMR and semi-targeted LC-MS/MS metabolomics was applied to the resulting cell fractions, whereafter important variables (VIPs) were selected by univariate statistics. A predominant increase in multiple targeted amino acids was observed in whole-brain samples, with a more prominent effect at the mitochondrial level. Similar pathways were implicated in the muscle tissue, showing a greater depletion of core metabolites with a compartment-specific distribution, however. The altered metabolites expectedly implicate altered redox homeostasis, alternate RC fueling, one-carbon metabolism, urea cycling and dysregulated proteostasis to different degrees in the analyzed tissues. A first application of EDTA-chelated magnesium and calcium measurement by NMR also revealed tissue- and compartment-specific alterations, implicating stress response-related calcium redistribution between neural cell compartments, as well as whole-cell muscle magnesium depletion. Altogether, these results confirm the ability of compartment-specific metabolomics to capture known alterations related to Ndufs4 KO and CID while proving its worth in elucidating metabolic compartmentalization in said pathways that went undetected in the diluted whole-cell samples previously studied.
Collapse
|
28
|
Klein Gunnewiek TM, Verboven AHA, Pelgrim I, Hogeweg M, Schoenmaker C, Renkema H, Beyrath J, Smeitink J, de Vries BBA, Hoen PBAC', Kozicz T, Nadif Kasri N. Sonlicromanol improves neuronal network dysfunction and transcriptome changes linked to m.3243A>G heteroplasmy in iPSC-derived neurons. Stem Cell Reports 2021; 16:2197-2212. [PMID: 34329596 PMCID: PMC8452519 DOI: 10.1016/j.stemcr.2021.07.002] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2020] [Revised: 07/01/2021] [Accepted: 07/02/2021] [Indexed: 12/13/2022] Open
Abstract
Mitochondrial encephalomyopathy, lactic acidosis, and stroke-like episodes (MELAS) is often caused by an adenine to guanine variant at m.3243 (m.3243A>G) of the MT-TL1 gene. To understand how this pathogenic variant affects the nervous system, we differentiated human induced pluripotent stem cells (iPSCs) into excitatory neurons with normal (low heteroplasmy) and impaired (high heteroplasmy) mitochondrial function from MELAS patients with the m.3243A>G pathogenic variant. We combined micro-electrode array (MEA) measurements with RNA sequencing (MEA-seq) and found reduced expression of genes involved in mitochondrial respiration and presynaptic function, as well as non-cell autonomous processes in co-cultured astrocytes. Finally, we show that the clinical phase II drug sonlicromanol can improve neuronal network activity when treatment is initiated early in development. This was intricately linked with changes in the neuronal transcriptome. Overall, we provide insight in transcriptomic changes in iPSC-derived neurons with high m.3243A>G heteroplasmy, and show the pathology is partially reversible by sonlicromanol.
Collapse
Affiliation(s)
- Teun M Klein Gunnewiek
- Department of Medical Imaging, Anatomie, Radboud University Medical Center, Geert Grooteplein 10, Nijmegen, 6525 GA, the Netherlands; Department of Human Genetics, Radboudumc, Donders Institute for Brain, Cognition, and Behaviour, Nijmegen, 6500 HB, the Netherlands
| | - Anouk H A Verboven
- Department of Human Genetics, Radboudumc, Donders Institute for Brain, Cognition, and Behaviour, Nijmegen, 6500 HB, the Netherlands; Centre for Molecular and Biomolecular Informatics, Radboudumc, Nijmegen, the Netherlands
| | - Iris Pelgrim
- Department of Human Genetics, Radboudumc, Donders Institute for Brain, Cognition, and Behaviour, Nijmegen, 6500 HB, the Netherlands; Khondrion B.V., Nijmegen, the Netherlands
| | - Mark Hogeweg
- Department of Human Genetics, Radboudumc, Donders Institute for Brain, Cognition, and Behaviour, Nijmegen, 6500 HB, the Netherlands
| | - Chantal Schoenmaker
- Department of Human Genetics, Radboudumc, Donders Institute for Brain, Cognition, and Behaviour, Nijmegen, 6500 HB, the Netherlands
| | | | | | | | - Bert B A de Vries
- Department of Human Genetics, Radboudumc, Donders Institute for Brain, Cognition, and Behaviour, Nijmegen, 6500 HB, the Netherlands
| | - Peter-Bram A C 't Hoen
- Centre for Molecular and Biomolecular Informatics, Radboudumc, Nijmegen, the Netherlands
| | - Tamas Kozicz
- Department of Medical Imaging, Anatomie, Radboud University Medical Center, Geert Grooteplein 10, Nijmegen, 6525 GA, the Netherlands; Department of Laboratory Medicine and Pathology. Mayo Clinic, Rochester, MN 55905, USA; Department of Clinical Genomics, Mayo Clinic, 55905 Rochester, MN, USA; Department of Biochemistry and Molecular Biology, Mayo Clinic, 55905 Rochester, MN, USA.
| | - Nael Nadif Kasri
- Department of Human Genetics, Radboudumc, Donders Institute for Brain, Cognition, and Behaviour, Nijmegen, 6500 HB, the Netherlands.
| |
Collapse
|
29
|
Kaur P, Pan H, Longley MJ, Copeland WC, Wang H. Using Atomic Force Microscopy to Study the Real Time Dynamics of DNA Unwinding by Mitochondrial Twinkle Helicase. Bio Protoc 2021; 11:e4139. [PMID: 34604445 DOI: 10.21769/bioprotoc.4139] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2021] [Revised: 05/23/2021] [Accepted: 06/29/2021] [Indexed: 12/06/2022] Open
Abstract
Understanding the structure and dynamics of DNA-protein interactions during DNA replication is crucial for elucidating the origins of disorders arising from its dysfunction. In this study, we employed Atomic Force Microscopy as a single-molecule imaging tool to examine the mitochondrial DNA helicase Twinkle and its interactions with DNA. We used imaging in air and time-lapse imaging in liquids to observe the DNA binding and unwinding activities of Twinkle hexamers at the single-molecule level. These procedures helped us visualize Twinkle loading onto and unloading from the DNA in the open-ring conformation. Using traditional methods, it has been shown that Twinkle is capable of unwinding dsDNA up to 20-55 bps. We found that the addition of mitochondrial single-stranded DNA binding protein (mtSSB) facilitates a 5-fold increase in the DNA unwinding rate for the Twinkle helicase. The protocols developed in this study provide new platforms to examine DNA replication and to explore the mechanism driving DNA deletion and human diseases. Graphic abstract: Mitochondrial Twinkle Helicase Dynamics.
Collapse
Affiliation(s)
- Parminder Kaur
- Physics Department, North Carolina State University, Raleigh, North Carolina, USA.,Center for Human Health and the Environment, North Carolina State University, Raleigh, North Carolina, USA
| | - Hai Pan
- Physics Department, North Carolina State University, Raleigh, North Carolina, USA
| | - Matthew J Longley
- Genome Integrity and Structural Biology Laboratory, NIEHS, National Institutes of Health, Research Triangle Park, North Carolina, USA
| | - William C Copeland
- Genome Integrity and Structural Biology Laboratory, NIEHS, National Institutes of Health, Research Triangle Park, North Carolina, USA
| | - Hong Wang
- Physics Department, North Carolina State University, Raleigh, North Carolina, USA.,Center for Human Health and the Environment, North Carolina State University, Raleigh, North Carolina, USA.,Toxicology Program, North Carolina State University, Raleigh, North Carolina, USA
| |
Collapse
|
30
|
Zapata‐Pérez R, Wanders RJA, van Karnebeek CDM, Houtkooper RH. NAD + homeostasis in human health and disease. EMBO Mol Med 2021; 13:e13943. [PMID: 34041853 PMCID: PMC8261484 DOI: 10.15252/emmm.202113943] [Citation(s) in RCA: 94] [Impact Index Per Article: 31.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2021] [Revised: 03/15/2021] [Accepted: 03/25/2021] [Indexed: 12/12/2022] Open
Abstract
Depletion of nicotinamide adenine dinucleotide (NAD+ ), a central redox cofactor and the substrate of key metabolic enzymes, is the causative factor of a number of inherited and acquired diseases in humans. Primary deficiencies of NAD+ homeostasis are the result of impaired biosynthesis, while secondary deficiencies can arise due to other factors affecting NAD+ homeostasis, such as increased NAD+ consumption or dietary deficiency of its vitamin B3 precursors. NAD+ depletion can manifest in a wide variety of pathological phenotypes, ranging from rare inherited defects, characterized by congenital malformations, retinal degeneration, and/or encephalopathy, to more common multifactorial, often age-related, diseases. Here, we discuss NAD+ biochemistry and metabolism and provide an overview of the etiology and pathological consequences of alterations of the NAD+ metabolism in humans. Finally, we discuss the state of the art of the potential therapeutic implications of NAD+ repletion for boosting health as well as treating rare and common diseases, and the possibilities to achieve this by means of the different NAD+ -enhancing agents.
Collapse
Affiliation(s)
- Rubén Zapata‐Pérez
- Laboratory Genetic Metabolic DiseasesAmsterdam Gastroenterology, Endocrinology, and Metabolism (AGEM)Amsterdam Cardiovascular Sciences (ACS)Amsterdam UMCUniversity of AmsterdamAmsterdamThe Netherlands
| | - Ronald J A Wanders
- Laboratory Genetic Metabolic DiseasesAmsterdam Gastroenterology, Endocrinology, and Metabolism (AGEM)Amsterdam Cardiovascular Sciences (ACS)Amsterdam UMCUniversity of AmsterdamAmsterdamThe Netherlands
| | - Clara D M van Karnebeek
- Department of PediatricsAmsterdam UMCUniversity of AmsterdamAmsterdamThe Netherlands
- Department of Pediatrics (Metabolic Diseases)Radboud Centre for Mitochondrial MedicineAmalia Children’s HospitalRadboud University Medical CenterNijmegenThe Netherlands
- On behalf of ‘United for Metabolic Diseases’AmsterdamThe Netherlands
| | - Riekelt H Houtkooper
- Laboratory Genetic Metabolic DiseasesAmsterdam Gastroenterology, Endocrinology, and Metabolism (AGEM)Amsterdam Cardiovascular Sciences (ACS)Amsterdam UMCUniversity of AmsterdamAmsterdamThe Netherlands
| |
Collapse
|
31
|
Almannai M, Al Mahmoud RA, Mekki M, El-Hattab AW. Metabolic Seizures. Front Neurol 2021; 12:640371. [PMID: 34295297 PMCID: PMC8290068 DOI: 10.3389/fneur.2021.640371] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2020] [Accepted: 05/21/2021] [Indexed: 12/13/2022] Open
Abstract
Metabolic diseases should always be considered when evaluating children presenting with seizures. This is because many metabolic disorders are potentially treatable and seizure control can be achieved when these diseases are appropriately treated. Seizures caused by underlying metabolic diseases (metabolic seizures) should be particularly considered in unexplained neonatal seizures, refractory seizures, seizures related to fasting or food intake, seizures associated with other systemic or neurologic features, parental consanguinity, and family history of epilepsy. Metabolic seizures can be caused by various amino acids metabolic disorders, disorders of energy metabolism, cofactor-related metabolic diseases, purine and pyrimidine metabolic diseases, congenital disorders of glycosylation, and lysosomal and peroxisomal disorders. Diagnosing metabolic seizures without delay is essential because the immediate initiation of appropriate therapy for many metabolic diseases can prevent or minimize complications.
Collapse
Affiliation(s)
- Mohammed Almannai
- Section of Medical Genetics, Children's Hospital, King Fahad Medical City, Riyadh, Saudi Arabia
| | - Rabah A Al Mahmoud
- Department of Clinical Sciences, College of Medicine, University of Sharjah, Sharjah, United Arab Emirates.,Department of Pediatrics, University Hospital Sharjah, Sharjah, United Arab Emirates
| | - Mohammed Mekki
- Department of Clinical Sciences, College of Medicine, University of Sharjah, Sharjah, United Arab Emirates.,Department of Pediatrics, Al Qassimi Women's and Children's Hospital, Sharjah, United Arab Emirates
| | - Ayman W El-Hattab
- Department of Clinical Sciences, College of Medicine, University of Sharjah, Sharjah, United Arab Emirates.,Clinical Genetics, University Hospital Sharjah, Sharjah, United Arab Emirates
| |
Collapse
|
32
|
Klein Gunnewiek TM, Van Hugte EJH, Frega M, Guardia GS, Foreman K, Panneman D, Mossink B, Linda K, Keller JM, Schubert D, Cassiman D, Rodenburg R, Vidal Folch N, Oglesbee D, Perales-Clemente E, Nelson TJ, Morava E, Nadif Kasri N, Kozicz T. m.3243A > G-Induced Mitochondrial Dysfunction Impairs Human Neuronal Development and Reduces Neuronal Network Activity and Synchronicity. Cell Rep 2021; 31:107538. [PMID: 32320658 DOI: 10.1016/j.celrep.2020.107538] [Citation(s) in RCA: 45] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2019] [Revised: 02/13/2020] [Accepted: 03/30/2020] [Indexed: 12/11/2022] Open
Abstract
Epilepsy, intellectual and cortical sensory deficits, and psychiatric manifestations are the most frequent manifestations of mitochondrial diseases. How mitochondrial dysfunction affects neural structure and function remains elusive, mostly because of a lack of proper in vitro neuronal model systems with mitochondrial dysfunction. Leveraging induced pluripotent stem cell technology, we differentiated excitatory cortical neurons (iNeurons) with normal (low heteroplasmy) and impaired (high heteroplasmy) mitochondrial function on an isogenic nuclear DNA background from patients with the common pathogenic m.3243A > G variant of mitochondrial encephalomyopathy, lactic acidosis, and stroke-like episodes (MELAS). iNeurons with high heteroplasmy exhibited mitochondrial dysfunction, delayed neural maturation, reduced dendritic complexity, and fewer excitatory synapses. Micro-electrode array recordings of neuronal networks displayed reduced network activity and decreased synchronous network bursting. Impaired neuronal energy metabolism and compromised structural and functional integrity of neurons and neural networks could be the primary drivers of increased susceptibility to neuropsychiatric manifestations of mitochondrial disease.
Collapse
Affiliation(s)
- Teun M Klein Gunnewiek
- Department of Anatomy, Radboudumc, Donders Institute for Brain, Cognition, and Behaviour, 6500 HB Nijmegen, the Netherlands; Department of Human Genetics, Radboudumc, Donders Institute for Brain, Cognition, and Behaviour, 6500 HB Nijmegen, the Netherlands
| | - Eline J H Van Hugte
- Department of Human Genetics, Radboudumc, Donders Institute for Brain, Cognition, and Behaviour, 6500 HB Nijmegen, the Netherlands
| | - Monica Frega
- Department of Human Genetics, Radboudumc, Donders Institute for Brain, Cognition, and Behaviour, 6500 HB Nijmegen, the Netherlands; Department of Clinical Neurophysiology, University of Twente, 7522 NB Enschede, the Netherlands
| | - Gemma Solé Guardia
- Department of Anatomy, Radboudumc, Donders Institute for Brain, Cognition, and Behaviour, 6500 HB Nijmegen, the Netherlands; Department of Human Genetics, Radboudumc, Donders Institute for Brain, Cognition, and Behaviour, 6500 HB Nijmegen, the Netherlands
| | - Katharina Foreman
- Department of Cognitive Neuroscience, Radboudumc, Donders Institute for Brain, Cognition, and Behaviour, 6500 HB Nijmegen, the Netherlands
| | - Daan Panneman
- Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, MN 55905, USA
| | - Britt Mossink
- Department of Human Genetics, Radboudumc, Donders Institute for Brain, Cognition, and Behaviour, 6500 HB Nijmegen, the Netherlands
| | - Katrin Linda
- Department of Human Genetics, Radboudumc, Donders Institute for Brain, Cognition, and Behaviour, 6500 HB Nijmegen, the Netherlands
| | - Jason M Keller
- Department of Human Genetics, Radboudumc, Donders Institute for Brain, Cognition, and Behaviour, 6500 HB Nijmegen, the Netherlands
| | - Dirk Schubert
- Department of Cognitive Neuroscience, Radboudumc, Donders Institute for Brain, Cognition, and Behaviour, 6500 HB Nijmegen, the Netherlands
| | - David Cassiman
- Department of Hepatology, UZ Leuven, 3000 Leuven, Belgium
| | - Richard Rodenburg
- Radboud Center for Mitochondrial Disorders, Radboudumc, 6500 HB Nijmegen, the Netherlands
| | - Noemi Vidal Folch
- Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, MN 55905, USA
| | - Devin Oglesbee
- Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, MN 55905, USA
| | | | - Timothy J Nelson
- Division of General Internal Medicine, Division of Pediatric Cardiology, Departments of Medicine, Molecular Pharmacology, and Experimental Therapeutics, Mayo Clinic Center for Regenerative Medicine, Rochester, MN 55905, USA
| | - Eva Morava
- Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, MN 55905, USA; Department of Clinical Genomics, Mayo Clinic, Rochester, MN 55905, USA
| | - Nael Nadif Kasri
- Department of Human Genetics, Radboudumc, Donders Institute for Brain, Cognition, and Behaviour, 6500 HB Nijmegen, the Netherlands; Department of Cognitive Neuroscience, Radboudumc, Donders Institute for Brain, Cognition, and Behaviour, 6500 HB Nijmegen, the Netherlands.
| | - Tamas Kozicz
- Department of Anatomy, Radboudumc, Donders Institute for Brain, Cognition, and Behaviour, 6500 HB Nijmegen, the Netherlands; Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, MN 55905, USA; Department of Clinical Genomics, Mayo Clinic, Rochester, MN 55905, USA; Department of Biochemistry and Molecular Biology, Mayo Clinic, 55905 Rochester, MN, USA.
| |
Collapse
|
33
|
Chakrabarty S, Govindaraj P, Sankaran BP, Nagappa M, Kabekkodu SP, Jayaram P, Mallya S, Deepha S, Ponmalar JNJ, Arivinda HR, Meena AK, Jha RK, Sinha S, Gayathri N, Taly AB, Thangaraj K, Satyamoorthy K. Contribution of nuclear and mitochondrial gene mutations in mitochondrial encephalopathy, lactic acidosis, and stroke-like episodes (MELAS) syndrome. J Neurol 2021; 268:2192-2207. [PMID: 33484326 PMCID: PMC8179915 DOI: 10.1007/s00415-020-10390-9] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2020] [Revised: 12/27/2020] [Accepted: 12/28/2020] [Indexed: 11/30/2022]
Abstract
Background Mitochondrial disorders are clinically complex and have highly variable phenotypes among all inherited disorders. Mutations in mitochon
drial DNA (mtDNA) and nuclear genome or both have been reported in mitochondrial diseases suggesting common pathophysiological pathways. Considering the clinical heterogeneity of mitochondrial encephalopathy, lactic acidosis and stroke-like episodes (MELAS) phenotype including focal neurological deficits, it is important to look beyond mitochondrial gene mutation. Methods The clinical, histopathological, biochemical analysis for OXPHOS enzyme activity, and electron microscopic, and neuroimaging analysis was performed to diagnose 11 patients with MELAS syndrome with a multisystem presentation. In addition, whole exome sequencing (WES) and whole mitochondrial genome sequencing were performed to identify nuclear and mitochondrial mutations. Results Analysis of whole mtDNA sequence identified classical pathogenic mutation m.3243A > G in seven out of 11 patients. Exome sequencing identified pathogenic mutation in several nuclear genes associated with mitochondrial encephalopathy, sensorineural hearing loss, diabetes, epilepsy, seizure and cardiomyopathy (POLG, DGUOK, SUCLG2, TRNT1, LOXHD1, KCNQ1, KCNQ2, NEUROD1, MYH7) that may contribute to classical mitochondrial disease phenotype alone or in combination with m.3243A > G mutation. Conclusion Individuals with MELAS exhibit clinical phenotypes with varying degree of severity affecting multiple systems including auditory, visual, cardiovascular, endocrine, and nervous system. This is the first report to show that nuclear genetic factors influence the clinical outcomes/manifestations of MELAS subjects alone or in combination with m.3243A > G mutation. Electronic supplementary material The online version of this article (10.1007/s00415-020-10390-9) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Sanjiban Chakrabarty
- Department of Cell and Molecular Biology, Manipal School of Life Sciences, Manipal Academy of Higher Education, Manipal, India
| | - Periyasamy Govindaraj
- Department of Neuropathology, National Institute of Mental Health and Neurosciences (NIMHANS), Bangalore, India.,Department of Neurology, National Institute of Mental Health and Neurosciences (NIMHANS), Bangalore, India.,Neuromuscular Laboratory, Neurobiology Research Centre, National Institute of Mental Health and Neurosciences (NIMHANS), Bangalore, India.,Institute of Bioinformatics, International Tech Park, Bangalore, India.,Manipal Academy of Higher Education, Manipal, India
| | - Bindu Parayil Sankaran
- Department of Neurology, National Institute of Mental Health and Neurosciences (NIMHANS), Bangalore, India.,Neuromuscular Laboratory, Neurobiology Research Centre, National Institute of Mental Health and Neurosciences (NIMHANS), Bangalore, India.,Genetic Metabolic Disorders Service, Children's Hospital At Westmead, Sydney, NSW, Australia.,Discipline of Child and Adolescent Health, Faculty of Medicine and Health, The University of Sydney, Sydney, NSW, Australia
| | - Madhu Nagappa
- Department of Neurology, National Institute of Mental Health and Neurosciences (NIMHANS), Bangalore, India.,Neuromuscular Laboratory, Neurobiology Research Centre, National Institute of Mental Health and Neurosciences (NIMHANS), Bangalore, India
| | - Shama Prasada Kabekkodu
- Department of Cell and Molecular Biology, Manipal School of Life Sciences, Manipal Academy of Higher Education, Manipal, India
| | - Pradyumna Jayaram
- Department of Cell and Molecular Biology, Manipal School of Life Sciences, Manipal Academy of Higher Education, Manipal, India
| | - Sandeep Mallya
- Department of Bioinformatics, Manipal School of Life Sciences, Manipal Academy of Higher Education, Manipal, India
| | - Sekar Deepha
- Department of Neuropathology, National Institute of Mental Health and Neurosciences (NIMHANS), Bangalore, India.,Neuromuscular Laboratory, Neurobiology Research Centre, National Institute of Mental Health and Neurosciences (NIMHANS), Bangalore, India
| | - J N Jessiena Ponmalar
- Neuromuscular Laboratory, Neurobiology Research Centre, National Institute of Mental Health and Neurosciences (NIMHANS), Bangalore, India
| | - Hanumanthapura R Arivinda
- Department of Neuroimaging and Interventional Radiology, National Institute of Mental Health and Neurosciences (NIMHANS), Bangalore, India
| | | | - Rajan Kumar Jha
- CSIR-Centre for Cellular and Molecular Biology, Hyderabad, India
| | - Sanjib Sinha
- Department of Neurology, National Institute of Mental Health and Neurosciences (NIMHANS), Bangalore, India
| | - Narayanappa Gayathri
- Department of Neuropathology, National Institute of Mental Health and Neurosciences (NIMHANS), Bangalore, India.,Neuromuscular Laboratory, Neurobiology Research Centre, National Institute of Mental Health and Neurosciences (NIMHANS), Bangalore, India
| | - Arun B Taly
- Department of Neurology, National Institute of Mental Health and Neurosciences (NIMHANS), Bangalore, India.,Neuromuscular Laboratory, Neurobiology Research Centre, National Institute of Mental Health and Neurosciences (NIMHANS), Bangalore, India
| | - Kumarasamy Thangaraj
- CSIR-Centre for Cellular and Molecular Biology, Hyderabad, India.,Centre for DNA Fingerprinting and Diagnostics, Hyderabad, India
| | - Kapaettu Satyamoorthy
- Department of Cell and Molecular Biology, Manipal School of Life Sciences, Manipal Academy of Higher Education, Manipal, India.
| |
Collapse
|
34
|
Caglayan AO, Yaghouti K, Kockaya T, Kemer D, Cankaya T, Ameziane N, Cogulu O, Coker M, Yalcinkaya C. Biallelic ZNF335 mutations cause basal ganglia abnormality with progressive cerebral/cerebellar atrophy. J Neurogenet 2020; 35:23-28. [PMID: 33216650 DOI: 10.1080/01677063.2020.1833006] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Abstract
To date, less than 10 pedigrees have been reported with ZNF335 mutations since it was discovered in 2012 and little is known about ZNF335-related clinical spectrum. We describe a 12 years old male patient who is only child of nonconsanguineous Turkish parents. Trio whole genome sequencing identified previously unreported compound heterozygous variants in ZNF335, namely, c.3889T > A p.(Ser1297Thr) and c.758G > A p.(Arg253Gln) where transmitted by his father and mother, respectively. Patient' magnetic resonance imaging findings were overlapping to those observed in the previous cases with ZNF335 mutations. Here we report the oldest patient with biallelic ZNF335 mutations. We recommend screening for ZNF335 defects in patients with basal ganglia anomaly, secondary white matter abnormalities and microcephaly.
Collapse
Affiliation(s)
- Ahmet Okay Caglayan
- Department of Medical Genetics, School of Medicine, Dokuz Eylul University, Izmir, Turkey
| | - Kourosh Yaghouti
- Department of Radiology, Gayrettepe Florence Nightingale Hospital, Istanbul, Turkey
| | - Tanyel Kockaya
- Department of Pediatrics, School of Medicine, Cerrahpasa University, Istanbul, Turkey
| | - Demet Kemer
- Department of Medical Genetics, School of Medicine, Dokuz Eylul University, Izmir, Turkey
| | - Tufan Cankaya
- Department of Medical Genetics, School of Medicine, Dokuz Eylul University, Izmir, Turkey
| | | | - Ozgur Cogulu
- Departments of Pediatrics and Medical Genetics, Ege University, Izmir, Turkey
| | - Mahmut Coker
- Department of Pediatrics, Faculty of Medicine, Ege University, Izmir, Turkey
| | - Cengiz Yalcinkaya
- Department of Neurology, School of Medicine, Cerrahpasa University, Istanbul, Turkey
| |
Collapse
|
35
|
Uittenbogaard M, Chiaramello A. Maternally inherited mitochondrial respiratory disorders: from pathogenetic principles to therapeutic implications. Mol Genet Metab 2020; 131:38-52. [PMID: 32624334 PMCID: PMC7749081 DOI: 10.1016/j.ymgme.2020.06.011] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/04/2020] [Revised: 06/22/2020] [Accepted: 06/23/2020] [Indexed: 01/19/2023]
Abstract
Maternally inherited mitochondrial respiratory disorders are rare, progressive, and multi-systemic diseases that remain intractable, with no effective therapeutic interventions. Patients share a defective oxidative phosphorylation pathway responsible for mitochondrial ATP synthesis, in most cases due to pathogenic mitochondrial variants transmitted from mother to child or to a rare de novo mutation or large-scale deletion of the mitochondrial genome. The clinical diagnosis of these mitochondrial diseases is difficult due to exceptionally high clinical variability, while their genetic diagnosis has improved with the advent of next-generation sequencing. The mechanisms regulating the penetrance of the mitochondrial variants remain unresolved with the patient's nuclear background, epigenomic regulation, heteroplasmy, mitochondrial haplogroups, and environmental factors thought to act as rheostats. The lack of animal models mimicking the phenotypic manifestations of these disorders has hampered efforts toward curative therapies. Patient-derived cellular paradigms provide alternative models for elucidating the pathogenic mechanisms and screening pharmacological small molecules to enhance mitochondrial function. Recent progress has been made in designing promising approaches to curtail the negative impact of dysfunctional mitochondria and alleviate clinical symptoms: 1) boosting mitochondrial biogenesis; 2) shifting heteroplasmy; 3) reprogramming metabolism; and 4) administering hypoxia-based treatment. Here, we discuss their varying efficacies and limitations and provide an outlook on their therapeutic potential and clinical application.
Collapse
Affiliation(s)
- Martine Uittenbogaard
- George Washington University School of Medicine and Health Sciences, Department of Anatomy and Cell Biology, 2300 I Street N.W., Washington, DC 20037, USA
| | - Anne Chiaramello
- George Washington University School of Medicine and Health Sciences, Department of Anatomy and Cell Biology, 2300 I Street N.W., Washington, DC 20037, USA.
| |
Collapse
|
36
|
Lalonde E, Rentas S, Lin F, Dulik MC, Skraban CM, Spinner NB. Genomic Diagnosis for Pediatric Disorders: Revolution and Evolution. Front Pediatr 2020; 8:373. [PMID: 32733828 PMCID: PMC7360789 DOI: 10.3389/fped.2020.00373] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/26/2019] [Accepted: 06/02/2020] [Indexed: 12/14/2022] Open
Abstract
Powerful, recent advances in technologies to analyze the genome have had a profound impact on the practice of medical genetics, both in the laboratory and in the clinic. Increasing utilization of genome-wide testing such as chromosomal microarray analysis and exome sequencing have lead a shift toward a "genotype-first" approach. Numerous techniques are now available to diagnose a particular syndrome or phenotype, and while traditional techniques remain efficient tools in certain situations, higher-throughput technologies have become the de facto laboratory tool for diagnosis of most conditions. However, selecting the right assay or technology is challenging, and the wrong choice may lead to prolonged time to diagnosis, or even a missed diagnosis. In this review, we will discuss current core technologies for the diagnosis of classic genetic disorders to shed light on the benefits and disadvantages of these strategies, including diagnostic efficiency, variant interpretation, and secondary findings. Finally, we review upcoming technologies posed to impart further changes in the field of genetic diagnostics as we move toward "genome-first" practice.
Collapse
Affiliation(s)
- Emilie Lalonde
- Division of Genomic Diagnostics, Department of Pathology and Laboratory Medicine, School of Medicine, Children's Hospital of Philadelphia, University of Pennsylvania, Philadelphia, PA, United States
| | - Stefan Rentas
- Division of Genomic Diagnostics, Department of Pathology and Laboratory Medicine, School of Medicine, Children's Hospital of Philadelphia, University of Pennsylvania, Philadelphia, PA, United States
| | - Fumin Lin
- Division of Genomic Diagnostics, Department of Pathology and Laboratory Medicine, School of Medicine, Children's Hospital of Philadelphia, University of Pennsylvania, Philadelphia, PA, United States
| | - Matthew C. Dulik
- Division of Genomic Diagnostics, Department of Pathology and Laboratory Medicine, School of Medicine, Children's Hospital of Philadelphia, University of Pennsylvania, Philadelphia, PA, United States
| | - Cara M. Skraban
- Division of Human Genetics, Department of Pediatrics, School of Medicine, Children's Hospital of Philadelphia, University of Pennsylvania, Philadelphia, PA, United States
| | - Nancy B. Spinner
- Division of Genomic Diagnostics, Department of Pathology and Laboratory Medicine, School of Medicine, Children's Hospital of Philadelphia, University of Pennsylvania, Philadelphia, PA, United States
| |
Collapse
|
37
|
A Almuqbil M, Vernon HJ, Ferguson M, Kline AD. PARS2-associated mitochondrial disease: A case report of a patient with prolonged survival and literature review. Mol Genet Metab Rep 2020; 24:100613. [PMID: 32514400 PMCID: PMC7267727 DOI: 10.1016/j.ymgmr.2020.100613] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2020] [Revised: 05/25/2020] [Accepted: 05/26/2020] [Indexed: 10/24/2022] Open
Abstract
Biallelic pathogenic variants in mitochondrial aminoacyl-tRNA synthetase (mt-aaRS) PARS2 are associated with mitochondrial cytopathy. Here, we report the tenth case of an individual with biallelic PARS2 pathogenic variants, detected by exome sequencing (ES), and a literature review of ten cases of PARS2 mutations. Our patient displayed symptoms and clinical and laboratory findings similar to those reported previously with normal lactate levels. These symptoms included seizure disorder (which was managed with antiepileptics), developmental delay, and progressive cardiomyopathy which manifested at 19 years of age. The patient received a vitamin regimen including antioxidants as part of his treatment regimen. While further studies are required to conclusively establish the beneficial role of vitamin and cofactor administration on the mitochondria in PARS2-associated mitochondrial disease, these factors may have delayed the onset of cardiomyopathy.
Collapse
Affiliation(s)
- Mohammed A Almuqbil
- McKusick-Nathans Institute of Genetic Medicine, Johns Hopkins University, Baltimore, MD, USA.,Division of Pediatric Neurology, King Saud bin Abdulaziz University for Health Sciences, Riyadh, Saudi Arabia.,King Abdullah International Medical Research Center, King Abdullah Specialist Children's Hospital - Ministry of National Guard, Riyadh, Saudi Arabia
| | - Hilary J Vernon
- McKusick-Nathans Institute of Genetic Medicine, Johns Hopkins University, Baltimore, MD, USA
| | - Marcia Ferguson
- Harvey Institute for Human Genetics, Greater Baltimore Medical Center, Baltimore, MD, USA
| | - Antonie D Kline
- Harvey Institute for Human Genetics, Greater Baltimore Medical Center, Baltimore, MD, USA
| |
Collapse
|
38
|
Pirinen E, Auranen M, Khan NA, Brilhante V, Urho N, Pessia A, Hakkarainen A, Kuula J, Heinonen U, Schmidt MS, Haimilahti K, Piirilä P, Lundbom N, Taskinen MR, Brenner C, Velagapudi V, Pietiläinen KH, Suomalainen A. Niacin Cures Systemic NAD + Deficiency and Improves Muscle Performance in Adult-Onset Mitochondrial Myopathy. Cell Metab 2020; 31:1078-1090.e5. [PMID: 32386566 DOI: 10.1016/j.cmet.2020.04.008] [Citation(s) in RCA: 133] [Impact Index Per Article: 33.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/07/2019] [Revised: 01/24/2020] [Accepted: 04/03/2020] [Indexed: 12/21/2022]
Abstract
NAD+ is a redox-active metabolite, the depletion of which has been proposed to promote aging and degenerative diseases in rodents. However, whether NAD+ depletion occurs in patients with degenerative disorders and whether NAD+ repletion improves their symptoms has remained open. Here, we report systemic NAD+ deficiency in adult-onset mitochondrial myopathy patients. We administered an increasing dose of NAD+-booster niacin, a vitamin B3 form (to 750-1,000 mg/day; clinicaltrials.govNCT03973203) for patients and their matched controls for 10 or 4 months, respectively. Blood NAD+ increased in all subjects, up to 8-fold, and muscle NAD+ of patients reached the level of their controls. Some patients showed anemia tendency, while muscle strength and mitochondrial biogenesis increased in all subjects. In patients, muscle metabolome shifted toward controls and liver fat decreased even 50%. Our evidence indicates that blood analysis is useful in identifying NAD+ deficiency and points niacin to be an efficient NAD+ booster for treating mitochondrial myopathy.
Collapse
Affiliation(s)
- Eija Pirinen
- Research Program for Clinical and Molecular Metabolism, Faculty of Medicine, University of Helsinki, Helsinki 00290, Finland.
| | - Mari Auranen
- Research Program of Stem Cells and Metabolism, Faculty of Medicine, University of Helsinki, Helsinki 00290, Finland; Department of Neurosciences, Helsinki University Hospital, Helsinki, Finland
| | - Nahid A Khan
- Research Program of Stem Cells and Metabolism, Faculty of Medicine, University of Helsinki, Helsinki 00290, Finland
| | - Virginia Brilhante
- Research Program of Stem Cells and Metabolism, Faculty of Medicine, University of Helsinki, Helsinki 00290, Finland
| | - Niina Urho
- Department of Neurosciences, Helsinki University Hospital, Helsinki, Finland
| | - Alberto Pessia
- Metabolomics Unit, Institute for Molecular Medicine Finland (FIMM), Helsinki 00290, Finland
| | - Antti Hakkarainen
- Department of Radiology, Medical Imaging Center, University of Helsinki and Helsinki University Hospital, Helsinki, Finland; Department of Neuroscience and Biomedical Engineering, Aalto University School of Science, Espoo 12200, Finland
| | - Juho Kuula
- Department of Radiology, Medical Imaging Center, University of Helsinki and Helsinki University Hospital, Helsinki, Finland
| | - Ulla Heinonen
- Department of Neurosciences, Helsinki University Hospital, Helsinki, Finland
| | - Mark S Schmidt
- Department of Biochemistry, Carver College of Medicine, University of Iowa, Iowa City, IA 52242, USA
| | - Kimmo Haimilahti
- Research Program for Clinical and Molecular Metabolism, Faculty of Medicine, University of Helsinki, Helsinki 00290, Finland
| | - Päivi Piirilä
- Unit of Clinical Physiology, Helsinki University Hospital and University of Helsinki, Helsinki, Finland
| | - Nina Lundbom
- Department of Radiology, Medical Imaging Center, University of Helsinki and Helsinki University Hospital, Helsinki, Finland
| | - Marja-Riitta Taskinen
- Research Program for Clinical and Molecular Metabolism, Faculty of Medicine, University of Helsinki, Helsinki 00290, Finland
| | - Charles Brenner
- Department of Biochemistry, Carver College of Medicine, University of Iowa, Iowa City, IA 52242, USA
| | - Vidya Velagapudi
- Metabolomics Unit, Institute for Molecular Medicine Finland (FIMM), Helsinki 00290, Finland
| | - Kirsi H Pietiläinen
- Obesity Research Unit, Research Program for Clinical and Molecular Metabolism, Faculty of Medicine, University of Helsinki, Helsinki 00290, Finland; Obesity Centre, Abdominal Centre, Endocrinology, Helsinki University Hospital and University of Helsinki, Helsinki, Finland
| | - Anu Suomalainen
- Research Program of Stem Cells and Metabolism, Faculty of Medicine, University of Helsinki, Helsinki 00290, Finland; HUSlab, Helsinki University Hospital, Helsinki 00290, Finland; Neuroscience Center, HiLife, University of Helsinki, Helsinki 00290, Finland.
| |
Collapse
|
39
|
Panuzzo C, Jovanovski A, Pergolizzi B, Pironi L, Stanga S, Fava C, Cilloni D. Mitochondria: A Galaxy in the Hematopoietic and Leukemic Stem Cell Universe. Int J Mol Sci 2020; 21:ijms21113928. [PMID: 32486249 PMCID: PMC7312164 DOI: 10.3390/ijms21113928] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2020] [Revised: 05/24/2020] [Accepted: 05/28/2020] [Indexed: 12/17/2022] Open
Abstract
Mitochondria are the main fascinating energetic source into the cells. Their number, shape, and dynamism are controlled by the cell’s type and current behavior. The perturbation of the mitochondrial inward system via stress response and/or oncogenic insults could activate several trafficking molecular mechanisms with the intention to solve the problem. In this review, we aimed to clarify the crucial pathways in the mitochondrial system, dissecting the different metabolic defects, with a special emphasis on hematological malignancies. We investigated the pivotal role of mitochondria in the maintenance of hematopoietic stem cells (HSCs) and their main alterations that could induce malignant transformation, culminating in the generation of leukemic stem cells (LSCs). In addition, we presented an overview of LSCs mitochondrial dysregulated mechanisms in terms of (1) increasing in oxidative phosphorylation program (OXPHOS), as a crucial process for survival and self-renewal of LSCs,(2) low levels of reactive oxygen species (ROS), and (3) aberrant expression of B-cell lymphoma 2 (Bcl-2) with sustained mitophagy. Furthermore, these peculiarities may represent attractive new “hot spots” for mitochondrial-targeted therapy. Finally, we remark the potential of the LCS metabolic effectors to be exploited as novel therapeutic targets.
Collapse
Affiliation(s)
- Cristina Panuzzo
- Department of Clinical and Biological Sciences, University of Turin, 10043 Orbassano, Italy; (A.J.); (B.P.); (L.P.); (C.F.)
- Correspondence: (C.P.); (D.C.)
| | - Aleksandar Jovanovski
- Department of Clinical and Biological Sciences, University of Turin, 10043 Orbassano, Italy; (A.J.); (B.P.); (L.P.); (C.F.)
| | - Barbara Pergolizzi
- Department of Clinical and Biological Sciences, University of Turin, 10043 Orbassano, Italy; (A.J.); (B.P.); (L.P.); (C.F.)
| | - Lucrezia Pironi
- Department of Clinical and Biological Sciences, University of Turin, 10043 Orbassano, Italy; (A.J.); (B.P.); (L.P.); (C.F.)
| | - Serena Stanga
- Department of Neuroscience Rita Levi Montalcini, 10124 Turin, Italy;
- Neuroscience Institute Cavalieri Ottolenghi, University of Turin, 10043 Orbassano, Italy
| | - Carmen Fava
- Department of Clinical and Biological Sciences, University of Turin, 10043 Orbassano, Italy; (A.J.); (B.P.); (L.P.); (C.F.)
| | - Daniela Cilloni
- Department of Clinical and Biological Sciences, University of Turin, 10043 Orbassano, Italy; (A.J.); (B.P.); (L.P.); (C.F.)
- Correspondence: (C.P.); (D.C.)
| |
Collapse
|
40
|
Do Y, Matsuda S, Inatomi T, Nakada K, Yasukawa T, Kang D. The accessory subunit of human DNA polymerase γ is required for mitochondrial DNA maintenance and is able to stabilize the catalytic subunit. Mitochondrion 2020; 53:133-139. [PMID: 32470614 DOI: 10.1016/j.mito.2020.05.008] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2020] [Revised: 05/18/2020] [Accepted: 05/22/2020] [Indexed: 01/10/2023]
Abstract
Human DNA polymerase γ (POLG) is a mitochondria-specific replicative DNA polymerase consisting of a single catalytic subunit, POLGα, and a dimeric accessory subunit, POLGβ. To gain a deeper understanding of the role of POLGβ, we knocked out this protein in cultured human cybrid cells and established numerous knockout clones. POLGβ-knockout clones presented a clear phenotype of mitochondrial DNA loss, indicating that POLGβ is necessary for mitochondrial DNA replication. Moreover, POLGβ-knockout cells showed a severe decrease in POLGα levels and acute suppression of POLGβ expression efficiently down-regulated POLGα levels. These results suggest that, in addition to its role as the processivity factor of POLG, POLGβ acts as a POLGα stabilizer, an important role for POLGβ in mitochondrial DNA maintenance.
Collapse
Affiliation(s)
- Yura Do
- Department of Clinical Chemistry and Laboratory Medicine, Graduate School of Medical Sciences, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka-shi, Fukuoka 812-8582, Japan
| | - Shigeru Matsuda
- Department of Clinical Chemistry and Laboratory Medicine, Graduate School of Medical Sciences, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka-shi, Fukuoka 812-8582, Japan
| | - Teppei Inatomi
- Department of Clinical Chemistry and Laboratory Medicine, Graduate School of Medical Sciences, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka-shi, Fukuoka 812-8582, Japan
| | - Kazuto Nakada
- Graduate School of Life and Environmental Sciences, University of Tsukuba, 1-1-1 Tennodai, Tsukuba-shi, Ibaraki, 305-8572, Japan
| | - Takehiro Yasukawa
- Department of Clinical Chemistry and Laboratory Medicine, Graduate School of Medical Sciences, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka-shi, Fukuoka 812-8582, Japan.
| | - Dongchon Kang
- Department of Clinical Chemistry and Laboratory Medicine, Graduate School of Medical Sciences, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka-shi, Fukuoka 812-8582, Japan
| |
Collapse
|
41
|
Ramachandra CJA, Chua J, Cong S, Kp MMJ, Shim W, Wu JC, Hausenloy DJ. Human-induced pluripotent stem cells for modelling metabolic perturbations and impaired bioenergetics underlying cardiomyopathies. Cardiovasc Res 2020; 117:694-711. [PMID: 32365198 DOI: 10.1093/cvr/cvaa125] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/15/2020] [Revised: 03/23/2020] [Accepted: 04/24/2020] [Indexed: 12/17/2022] Open
Abstract
Normal cardiac contractile and relaxation functions are critically dependent on a continuous energy supply. Accordingly, metabolic perturbations and impaired mitochondrial bioenergetics with subsequent disruption of ATP production underpin a wide variety of cardiac diseases, including diabetic cardiomyopathy, dilated cardiomyopathy, hypertrophic cardiomyopathy, anthracycline cardiomyopathy, peripartum cardiomyopathy, and mitochondrial cardiomyopathies. Crucially, there are no specific treatments for preventing the onset or progression of these cardiomyopathies to heart failure, one of the leading causes of death and disability worldwide. Therefore, new treatments are needed to target the metabolic disturbances and impaired mitochondrial bioenergetics underlying these cardiomyopathies in order to improve health outcomes in these patients. However, investigation of the underlying mechanisms and the identification of novel therapeutic targets have been hampered by the lack of appropriate animal disease models. Furthermore, interspecies variation precludes the use of animal models for studying certain disorders, whereas patient-derived primary cell lines have limited lifespan and availability. Fortunately, the discovery of human-induced pluripotent stem cells has provided a promising tool for modelling cardiomyopathies via human heart tissue in a dish. In this review article, we highlight the use of patient-derived iPSCs for studying the pathogenesis underlying cardiomyopathies associated with metabolic perturbations and impaired mitochondrial bioenergetics, as the ability of iPSCs for self-renewal and differentiation makes them an ideal platform for investigating disease pathogenesis in a controlled in vitro environment. Continuing progress will help elucidate novel mechanistic pathways, and discover novel therapies for preventing the onset and progression of heart failure, thereby advancing a new era of personalized therapeutics for improving health outcomes in patients with cardiomyopathy.
Collapse
Affiliation(s)
- Chrishan J A Ramachandra
- National Heart Research Institute Singapore, National Heart Centre Singapore, 5 Hospital Drive, Singapore 169609, Singapore.,Cardiovascular and Metabolic Disorders Programme, Duke-NUS Medical School, 8 College Road, Singapore 169857, Singapore
| | - Jasper Chua
- National Heart Research Institute Singapore, National Heart Centre Singapore, 5 Hospital Drive, Singapore 169609, Singapore.,Faculty of Science, National University of Singapore, 6 Science Drive 2, Singapore 117546, Singapore
| | - Shuo Cong
- National Heart Research Institute Singapore, National Heart Centre Singapore, 5 Hospital Drive, Singapore 169609, Singapore.,Department of Cardiac Surgery, Zhongshan Hospital, Fudan University, 111 Yixueyuan Road, Xuhui District, Shanghai 200032, China
| | - Myu Mai Ja Kp
- National Heart Research Institute Singapore, National Heart Centre Singapore, 5 Hospital Drive, Singapore 169609, Singapore
| | - Winston Shim
- Health and Social Sciences Cluster, Singapore Institute of Technology, 10 Dover Drive, Singapore 138683, Singapore
| | - Joseph C Wu
- Cardiovascular Institute, Stanford University School of Medicine, 265 Campus Drive, Stanford, CA 94305, USA.,Institute for Stem Cell Biology and Regenerative Medicine, Stanford University School of Medicine, Stanford, CA 94305, USA.,Department of Medicine, Stanford University, Stanford, CA 94305, USA.,Department of Radiology, Stanford University, Stanford, CA 94305, USA
| | - Derek J Hausenloy
- National Heart Research Institute Singapore, National Heart Centre Singapore, 5 Hospital Drive, Singapore 169609, Singapore.,Cardiovascular and Metabolic Disorders Programme, Duke-NUS Medical School, 8 College Road, Singapore 169857, Singapore.,Yong Loo Lin Medical School, National University of Singapore, 10 Medical Drive, Singapore 11759, Singapore.,The Hatter Cardiovascular Institute, University College London, 67 Chenies Mews, Bloomsbury, London WC1E 6HX, UK.,Cardiovascular Research Centre, College of Medical and Health Sciences, Asia University, No. 500, Liufeng Road, Wufeng District, Taichung City 41354,Taiwan
| |
Collapse
|
42
|
Gheorghiu ML, Badiu C. Selenium involvement in mitochondrial function in thyroid disorders. Hormones (Athens) 2020; 19:25-30. [PMID: 31960358 DOI: 10.1007/s42000-020-00173-2] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/29/2019] [Accepted: 01/16/2020] [Indexed: 12/18/2022]
Abstract
Selenium (Se), an important oligoelement, is a component of the antioxidant system. Over the last decade, it has been ever more frequently discussed in the context of thyroid disorders. Graves' disease and Hashimoto's thyroiditis, differentiated thyroid cancer, and even endemic goiter may have common triggers that are activated by excess reactive oxygen species (ROS), which are involved in various stages of the pathogenesis of thyroid disorders. Most oxidative events occur in mitochondria, organelles that contain enzymes with Se as a cofactor. Mitochondria are responsible for the production of ATP in the cell and are also a major site of ROS production. Thyroid hormone status (the thyroid being the organ with the highest concentration of Se in the body) has a profound impact on mitochondria biogenesis. In this review, we focus on the role of Se in mitochondrial function in thyroid disorders with impaired oxidative stress, since both thyroid hormone synthesis and thyroid dysfunction involve ROS. The role of Se deficiency or its excess in relation to mitochondrial dysfunction in the context of thyroid disorders is therefore of interest.
Collapse
Affiliation(s)
- Monica Livia Gheorghiu
- Department of Endocrinology, "Carol Davila" University of Medicine and Pharmacy, Bucharest, Romania
- Department of Endemic Goiter and Its Complications, "C.I. Parhon" National Institute of Endocrinology, Bucharest, Romania
| | - Corin Badiu
- Department of Endocrinology, "Carol Davila" University of Medicine and Pharmacy, Bucharest, Romania.
- Department of Thyroid Related Disorders, "C.I. Parhon" National Institute of Endocrinology, Bucharest, Romania.
| |
Collapse
|
43
|
Abstract
Mitochondria play various important roles in energy production, metabolism, and apoptosis. Mitochondrial dysfunction caused by alterations in mitochondrial DNA (mtDNA) can lead to the initiation and progression of cancers and other diseases. These alterations include mutations and copy number variations. Especially, the mutations in D-loop, MT-ND1, and MT-ND5 affect mitochondrial functions and are widely detected in various cancers. Meanwhile, several other mutations have been correlated with muscular and neuronal diseases, especially MT-TL1 is deeply related. These pieces of evidence indicated mtDNA alterations in diseases show potential as a novel therapeutic target. mtDNA repair enzymes are the target for delaying or stalling the mtDNA damage-induced cancer progression and metastasis. Moreover, some mutations reveal a prognosis ability of the drug resistance. Current efforts aim to develop mitochondrial transplantation technique as a direct cure for deregulated mitochondria-associated diseases. This review summarizes the implications of mitochondrial dysfunction in cancers and other pathologies; and discusses the relevance of mitochondria-targeted therapies, along with their contribution as potential biomarkers.
Collapse
Affiliation(s)
- Ngoc Ngo Yen Nguyen
- Department of Biomedical Science, Graduate School, Kyung Hee University, Seoul, Republic of Korea.,Biomedical Science Institute, Kyung Hee University, Seoul, Republic of Korea
| | - Sung Soo Kim
- Biomedical Science Institute, Kyung Hee University, Seoul, Republic of Korea.,Department of Biochemistry and Molecular Biology, School of Medicine, Kyung Hee University, Seoul, Republic of Korea
| | - Yong Hwa Jo
- Biomedical Science Institute, Kyung Hee University, Seoul, Republic of Korea.,Department of Biochemistry and Molecular Biology, School of Medicine, Kyung Hee University, Seoul, Republic of Korea
| |
Collapse
|
44
|
Chinopoulos C. Quantification of mitochondrial DNA from peripheral tissues: Limitations in predicting the severity of neurometabolic disorders and proposal of a novel diagnostic test. Mol Aspects Med 2019; 71:100834. [PMID: 31740079 DOI: 10.1016/j.mam.2019.11.004] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2019] [Revised: 11/07/2019] [Accepted: 11/12/2019] [Indexed: 11/25/2022]
Abstract
Neurometabolic disorders stem from errors in metabolic processes yielding a neurological phenotype. A subset of those disorders encompasses mitochondrial abnormalities partially due to mitochondrial DNA (mtDNA) depletion. mtDNA depletion can be attributed to inheritance, spontaneous mutations or acquired from drug-related toxicities. In the armamentarium of diagnostic procedures, mtDNA quantification is a standard for disease classification. However, alterations in mtDNA obtained from peripheral tissues such as skin fibroblasts and blood cells do not often reflect the severity of the affected organ, in this case, the brain. The purpose of this review is to highlight the pitfalls of quantitating mtDNA from peripheral -and not limited to-tissues for diagnosing patients suffering from a variety of mtDNA depletion syndromes exhibiting neurologic abnormalities. In lieu, a qualitative test of mitochondrial substrate-level phosphorylation -even from peripheral tissues-reflecting the ability of mitochondria to rely on glutaminolysis in the presence of respiratory chain defects is proposed as a novel diagnostic assessment of mitochondrial functionality.
Collapse
Affiliation(s)
- Christos Chinopoulos
- Department of Medical Biochemistry, Semmelweis University, Tuzolto St. 37-47, Budapest, 1094, Hungary.
| |
Collapse
|
45
|
Zhang S. MGARP is ultrastructurally located in the inner faces of mitochondrial membranes. Biochem Biophys Res Commun 2019; 516:138-143. [PMID: 31202457 DOI: 10.1016/j.bbrc.2019.06.028] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2019] [Accepted: 06/06/2019] [Indexed: 12/22/2022]
Abstract
Mitochondria, the centers of energy production, are highly organized with inner membranes, cristae and outer membranes. The mitochondrial architecture determines their functions in all cellular processes. Changes in the mitochondrial ultrastructure are tightly related to a wide variety of diseases. MGARP, a mitochondria-localized protein, was predicted by bioinformatics and confirmed by cellular and biochemical methods to be located in mitochondria, but there is no direct and clear evidence for its precise location. This report demonstrates the precise ultrastructural location of MGARP within mitochondria by the ascorbate peroxidase 2 (APEX2) system in combination with electron microscopy (EM). EM revealed that more MGARP is located in the inner/cristae membranes, with its C-terminus at the inner faces of the intramembrane spaces, than in the outer membranes. MGARP overexpression caused both mitochondrial remodeling and cristae shaping, leading to the collapse of the mitochondrial network. The mitochondrial morphologies in MGARP-overexpressing cells were diverse; the cells became round or short, and their cristae were deformed and became discontinuous or circular. An engineered MGARP mutant deficient in its transmembrane domain no longer localized to the mitochondria and lost its effects on mitochondrial structure, confirming that the localization of MGARP in the mitochondria depends on its structural integrity. Collectively, our findings define the location of MGARP within the mitochondria, which is associated with its functional implications for the architecture and organization of mitochondria.
Collapse
Affiliation(s)
- Shuping Zhang
- School of Life Sciences, Tsinghua University, Beijing, 100084, China.
| |
Collapse
|
46
|
El-Hattab AW, Suleiman J, Almannai M, Scaglia F. Mitochondrial dynamics: Biological roles, molecular machinery, and related diseases. Mol Genet Metab 2018; 125:315-321. [PMID: 30361041 DOI: 10.1016/j.ymgme.2018.10.003] [Citation(s) in RCA: 98] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/01/2018] [Accepted: 10/15/2018] [Indexed: 01/09/2023]
Abstract
Mitochondria are dynamic organelles that undergo fusion, fission, movement, and mitophagy. These processes are essential to maintain the normal mitochondrial morphology, distribution, and function. Mitochondrial fusion allows the exchange of intramitochondrial material, whereas the fission process is required to replicate the mitochondria during cell division, facilitate the transport and distribution of mitochondria, and allow the isolation of damaged organelles. Mitochondrial mobility is essential for mitochondrial distribution depending on the cellular metabolic demands. Mitophagy is needed for the elimination of dysfunctional and damaged mitochondria to maintain a healthy mitochondrial population. The mitochondrial dynamic processes are mediated by a number of nuclear-encoded proteins that function in mitochondrial transport, fusion, fission, and mitophagy. Disorders of mitochondrial dynamics are caused by pathogenic variants in the genes encoding these proteins. These diseases have a high clinical variability, and range in severity from isolated optic atrophy to lethal encephalopathy. These disorders include defects in mitochondrial fusion (caused by pathogenic variants in MFN2, OPA1, YME1L1, MSTO1, and FBXL4), mitochondrial fission (caused by pathogenic variants in DNM1L and MFF), and mitochondrial autophagy (caused by pathogenic variants in PINK1 and PRKN). In this review, the molecular machinery and biological roles of mitochondrial dynamic processes are discussed. Subsequently, the currently known diseases related to mitochondrial dynamic defects are presented.
Collapse
Affiliation(s)
- Ayman W El-Hattab
- Division of Clinical Genetics and Metabolic Disorders, Pediatrics Department, Tawam Hospital, Al-Ain, United Arab Emirates
| | - Jehan Suleiman
- Division of Neurology, Pediatrics Department, Tawam Hospital, Al Ain, United Arab Emirates
| | - Mohammed Almannai
- Medical Genetics Division, King Fahad Medical City, Riyadh, Saudi Arabia
| | - Fernando Scaglia
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, USA; Texas Children's Hospital, Houston, TX, USA; Joint BCM-CUHK Center of Medical Genetics, Prince of Wales Hospital, ShaTin, Hong Kong Special Administrative Region.
| |
Collapse
|
47
|
Landoni JC, Wang L, Suomalainen A. Quantitative solid-phase assay to measure deoxynucleoside triphosphate pools. Biol Methods Protoc 2018; 3:bpy011. [PMID: 32161804 PMCID: PMC6994031 DOI: 10.1093/biomethods/bpy011] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2018] [Revised: 08/09/2018] [Accepted: 08/15/2018] [Indexed: 12/25/2022] Open
Abstract
deoxynucleoside triphosphate (dNTPs) are the reduced nucleotides used as the building blocks and energy source for deoxyribonucleic acid (DNA) replication and maintenance in all living systems. They are present in highly regulated amounts and ratios in the cell, and their balance has been implicated in the most important cell processes, from determining the fidelity of DNA replication to affecting cell fate. Furthermore, many cancer drugs target biosynthetic enzymes in dNTP metabolism, and mutations in genes directly or indirectly affecting these pathways that are the cause of devastating diseases. The accurate and systematic measurement of these pools is key to understanding the mechanisms behind these diseases and their treatment. We present a new method for measuring dNTP pools from biological samples, utilizing the current state-of-the-art polymerase method, modified to a solid-phase setting and optimized for larger scale measurements.
Collapse
Affiliation(s)
- Juan Cruz Landoni
- Research Programs Unit, Molecular Neurology, University of Helsinki, Helsinki, Finland
| | - Liya Wang
- Department of Anatomy, Physiology, and Biochemistry, Swedish University of Agricultural Sciences, Uppsala, Sweden
| | - Anu Suomalainen
- Research Programs Unit, Molecular Neurology, University of Helsinki, Helsinki, Finland.,Department of Neurosciences, Helsinki University Hospital, Helsinki, Finland.,Neuroscience Center, HiLife, University of Helsinki, Helsinki, Finland
| |
Collapse
|
48
|
Yasukawa T, Kang D. An overview of mammalian mitochondrial DNA replication mechanisms. J Biochem 2018; 164:183-193. [PMID: 29931097 PMCID: PMC6094444 DOI: 10.1093/jb/mvy058] [Citation(s) in RCA: 69] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2018] [Accepted: 06/15/2018] [Indexed: 11/14/2022] Open
Abstract
While the majority of DNA is enclosed within the nucleus, the mitochondria also contain their own, separate DNA, the mitochondrial DNA (mtDNA). Mutations in mtDNA are associated with various human diseases, demonstrating the importance of mtDNA. Intensive studies over the last 18 years have demonstrated the presence of two distinct classes of mtDNA replication intermediates in mammals. One involves leading-strand DNA synthesis in the absence of synchronous lagging-strand DNA synthesis. Currently there are competing models in which the lagging-strand template is either systematically hybridized to processed mitochondrial transcripts, or coated with protein, until the lagging-strand DNA synthesis takes place. The other class of mtDNA replication intermediates has many properties of conventional, coupled leading- and lagging-strand DNA synthesis. Additionally, the highly unusual arrangement of DNA in human heart mitochondria suggests a third mechanism of replication. These findings indicate that the mtDNA replication systems of humans and other mammals are far more complex than previously thought, and thereby will require further research to understand the full picture of mtDNA replication.
Collapse
Affiliation(s)
- Takehiro Yasukawa
- Department of Clinical Chemistry and Laboratory Medicine, Graduate School of Medical Sciences, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka, Japan
| | - Dongchon Kang
- Department of Clinical Chemistry and Laboratory Medicine, Graduate School of Medical Sciences, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka, Japan
| |
Collapse
|
49
|
Daniele JR, Heydari K, Dillin A. Mitochondrial Subtype Identification and Characterization. CURRENT PROTOCOLS IN CYTOMETRY 2018; 85:e41. [PMID: 29944197 PMCID: PMC6039279 DOI: 10.1002/cpcy.41] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
Healthy, functional mitochondria are central to many cellular and physiological phenomena, including aging, metabolism, and stress resistance. A key feature of healthy mitochondria is a high membrane potential (Δψ) or charge differential (i.e., proton gradient) between the matrix and inner mitochondrial membrane. Mitochondrial Δψ has been extensively characterized via flow cytometry of intact cells, which measures the average membrane potential within a cell. However, the characteristics of individual mitochondria differ dramatically even within a single cell, and thus interrogation of mitochondrial features at the organelle level is necessary to better understand and accurately measure heterogeneity. Here we describe a new flow cytometric methodology that enables the quantification and classification of mitochondrial subtypes (via their Δψ, size, and substructure) using the small animal model C. elegans. Future application of this methodology should allow research to discern the bioenergetic and mitochondrial component in a number of human disease and aging models, including, C. elegans, cultured cells, small animal models, and human biopsy samples. © 2018 by John Wiley & Sons, Inc.
Collapse
Affiliation(s)
- Joseph R. Daniele
- Department of Molecular & Cellular Biology, University of
California, Berkeley, Berkeley, CA 94720
| | - Kartoosh Heydari
- LKS Flow Cytometry Core, Cancer Research Laboratory, University of
California, Berkeley, Berkeley, CA 94720
| | - Andrew Dillin
- Department of Molecular & Cellular Biology, University of
California, Berkeley, Berkeley, CA 94720
| |
Collapse
|
50
|
Beyrath J, Pellegrini M, Renkema H, Houben L, Pecheritsyna S, van Zandvoort P, van den Broek P, Bekel A, Eftekhari P, Smeitink JAM. KH176 Safeguards Mitochondrial Diseased Cells from Redox Stress-Induced Cell Death by Interacting with the Thioredoxin System/Peroxiredoxin Enzyme Machinery. Sci Rep 2018; 8:6577. [PMID: 29700325 PMCID: PMC5920042 DOI: 10.1038/s41598-018-24900-3] [Citation(s) in RCA: 48] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2018] [Accepted: 04/10/2018] [Indexed: 01/01/2023] Open
Abstract
A deficient activity of one or more of the mitochondrial oxidative phosphorylation (OXPHOS) enzyme complexes leads to devastating diseases, with high unmet medical needs. Mitochondria, and more specifically the OXPHOS system, are the main cellular production sites of Reactive Oxygen Species (ROS). Increased ROS production, ultimately leading to irreversible oxidative damage of macromolecules or to more selective and reversible redox modulation of cell signalling, is a causative hallmark of mitochondrial diseases. Here we report on the development of a new clinical-stage drug KH176 acting as a ROS-Redox modulator. Patient-derived primary skin fibroblasts were used to assess the potency of a new library of chromanyl-based compounds to reduce ROS levels and protect cells against redox-stress. The lead compound KH176 was studied in cell-based and enzymatic assays and in silico. Additionally, the metabolism, pharmacokinetics and toxicokinetics of KH176 were assessed in vivo in different animal species. We demonstrate that KH176 can effectively reduce increased cellular ROS levels and protect OXPHOS deficient primary cells against redox perturbation by targeting the Thioredoxin/Peroxiredoxin system. Due to its dual activity as antioxidant and redox modulator, KH176 offers a novel approach to the treatment of mitochondrial (-related) diseases. KH176 efficacy and safety are currently being evaluated in a Phase 2 clinical trial.
Collapse
Affiliation(s)
- Julien Beyrath
- Khondrion BV, Philips van Leydenlaan 15, 6525EX, Nijmegen, The Netherlands.
| | - Mina Pellegrini
- Khondrion BV, Philips van Leydenlaan 15, 6525EX, Nijmegen, The Netherlands
| | - Herma Renkema
- Khondrion BV, Philips van Leydenlaan 15, 6525EX, Nijmegen, The Netherlands
| | - Lisanne Houben
- Khondrion BV, Philips van Leydenlaan 15, 6525EX, Nijmegen, The Netherlands
| | | | | | - Petra van den Broek
- Department of Pharmacology and Toxicology, Radboudumc, Radboud Institute for Molecular Life Sciences, Grooteplein Zuid 28, 6525 GA, Nijmegen, The Netherlands
| | - Akkiz Bekel
- Inoviem Scientific SAS, Bioparc 3, 850 Boulevard Sébastien Brant, 67400, Illkirch-Graffenstaden, France
| | - Pierre Eftekhari
- Inoviem Scientific SAS, Bioparc 3, 850 Boulevard Sébastien Brant, 67400, Illkirch-Graffenstaden, France
| | - Jan A M Smeitink
- Khondrion BV, Philips van Leydenlaan 15, 6525EX, Nijmegen, The Netherlands
- Radboud Center for Mitochondrial Medicine, Radboud University Medical Center, Geert Grooteplein Zuid 10, 6500 HB, Nijmegen, The Netherlands
| |
Collapse
|