1
|
Kirthiga Devi SS, Singh S, Joga R, Patil SY, Meghana Devi V, Chetan Dushantrao S, Dwivedi F, Kumar G, Kumar Jindal D, Singh C, Dhamija I, Grover P, Kumar S. Enhancing cancer immunotherapy: Exploring strategies to target the PD-1/PD-L1 axis and analyzing the associated patent, regulatory, and clinical trial landscape. Eur J Pharm Biopharm 2024; 200:114323. [PMID: 38754524 DOI: 10.1016/j.ejpb.2024.114323] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2023] [Revised: 03/10/2024] [Accepted: 05/13/2024] [Indexed: 05/18/2024]
Abstract
Cancer treatment modalities and their progression is guided by the specifics of cancer, including its type and site of localization. Surgery, radiation, and chemotherapy are the most often used conventional treatments. Conversely, emerging treatment techniques include immunotherapy, hormone therapy, anti-angiogenic therapy, dendritic cell-based immunotherapy, and stem cell therapy. Immune checkpoint inhibitors' anticancer properties have drawn considerable attention in recent studies in the cancer research domain. Programmed Cell Death Protein-1 (PD-1) and its ligand (PD-L1) checkpoint pathway are key regulators of the interactions between activated T-cells and cancer cells, protecting the latter from immune destruction. When the ligand PD-L1 attaches to the receptor PD-1, T-cells are prevented from destroying cells that contain PD-L1, including cancer cells. The PD-1/PD-L1 checkpoint inhibitors block them, boosting the immune response and strengthening the body's defenses against tumors. Recent years have seen incredible progress and tremendous advancement in developing anticancer therapies using PD-1/PD-L1 targeting antibodies. While immune-related adverse effects and low response rates significantly limit these therapies, there is a need for research on methods that raise their efficacy and lower their toxicity. This review discusses various recent innovative nanomedicine strategies such as PLGA nanoparticles, carbon nanotubes and drug loaded liposomes to treat cancer targeting PD-1/PD-L1 axis. The biological implications of PD-1/PD-L1 in cancer treatment and the fundamentals of nanotechnology, focusing on the novel strategies used in nanomedicine, are widely discussed along with the corresponding guidelines, clinical trial status, and the patent landscape of such formulations.
Collapse
Affiliation(s)
- S S Kirthiga Devi
- Department of Regulatory Affairs, National Institute of Pharmaceutical Education and Research, Hyderabad, Telangana 500037, India
| | - Sidhartha Singh
- Department of Natural Products, National Institute of Pharmaceutical Education and Research, Hyderabad, Telangana 500037, India
| | - Ramesh Joga
- Department of Regulatory Affairs, National Institute of Pharmaceutical Education and Research, Hyderabad, Telangana 500037, India
| | - Sharvari Y Patil
- Department of Regulatory Affairs, National Institute of Pharmaceutical Education and Research, Hyderabad, Telangana 500037, India
| | - Vakalapudi Meghana Devi
- Department of Regulatory Affairs, National Institute of Pharmaceutical Education and Research, Hyderabad, Telangana 500037, India
| | - Sabnis Chetan Dushantrao
- Department of Regulatory Affairs, National Institute of Pharmaceutical Education and Research, Hyderabad, Telangana 500037, India
| | - Falguni Dwivedi
- School of Bioscience and Bioengineering, D Y Patil International University, Akurdi, Pune 411044, India
| | - Gautam Kumar
- School of Bioscience and Bioengineering, D Y Patil International University, Akurdi, Pune 411044, India; Department of Pharmacy, Birla Institute of Technology and Science Pilani, Pilani campus, Rajasthan 333031, India
| | - Deepak Kumar Jindal
- Department of Pharmaceutical Sciences, Guru Jambheshwar University of Science & Technology, Hisar, 125001, India
| | - Charan Singh
- Department of Pharmaceutical Sciences, School of Sciences, Hemvati Nandan Bahuguna Garhwal University (A Central University), Srinagar, Garhwal, Uttarakhand 246174, India
| | - Isha Dhamija
- Department of Biological Sciences, National Institute of Pharmaceutical Education and Research, Hyderabad, Telangana 500037, India
| | - Parul Grover
- KIET School of Pharmacy, KIET Group of Institutions, Delhi-NCR, Ghaziabad 201206, India; Department of Pharmaceutics, NIMS Institute of Pharmacy, NIMS University Rajasthan, Jaipur, Rajasthan 303121, India
| | - Sandeep Kumar
- Department of Regulatory Affairs, National Institute of Pharmaceutical Education and Research, Hyderabad, Telangana 500037, India; Department of Pharmaceutics, NIMS Institute of Pharmacy, NIMS University Rajasthan, Jaipur, Rajasthan 303121, India.
| |
Collapse
|
2
|
Pachane BC, Selistre-de-Araujo HS. The Role of αvβ3 Integrin in Cancer Therapy Resistance. Biomedicines 2024; 12:1163. [PMID: 38927370 PMCID: PMC11200931 DOI: 10.3390/biomedicines12061163] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2023] [Revised: 08/16/2023] [Accepted: 05/21/2024] [Indexed: 06/28/2024] Open
Abstract
A relevant challenge for the treatment of patients with neoplasia is the development of resistance to chemo-, immune-, and radiotherapies. Although the causes of therapy resistance are poorly understood, evidence suggests it relies on compensatory mechanisms that cells develop to replace specific intracellular signaling that should be inactive after pharmacological inhibition. One such mechanism involves integrins, membrane receptors that connect cells to the extracellular matrix and have a crucial role in cell migration. The blockage of one specific type of integrin is frequently compensated by the overexpression of another integrin dimer, generally supporting cell adhesion and migration. In particular, integrin αvβ3 is a key receptor involved in tumor resistance to treatments with tyrosine kinase inhibitors, immune checkpoint inhibitors, and radiotherapy; however, the specific inhibition of the αvβ3 integrin is not enough to avoid tumor relapse. Here, we review the role of integrin αvβ3 in tumor resistance to therapy and the mechanisms that have been proposed thus far. Despite our focus on the αvβ3 integrin, it is important to note that other integrins have also been implicated in drug resistance and that the collaborative action between these receptors should not be neglected.
Collapse
Affiliation(s)
- Bianca Cruz Pachane
- Biochemistry and Molecular Biology Laboratory, Department of Physiological Sciences, Universidade Federal de São Carlos (UFSCar), São Carlos 13565-905, SP, Brazil;
- Department of Molecular and Comparative Pathobiology, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Heloisa S. Selistre-de-Araujo
- Biochemistry and Molecular Biology Laboratory, Department of Physiological Sciences, Universidade Federal de São Carlos (UFSCar), São Carlos 13565-905, SP, Brazil;
| |
Collapse
|
3
|
Hartman ML, Czyz M. BCL-G: 20 years of research on a non-typical protein from the BCL-2 family. Cell Death Differ 2023:10.1038/s41418-023-01158-5. [PMID: 37031274 DOI: 10.1038/s41418-023-01158-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2022] [Revised: 03/24/2023] [Accepted: 03/28/2023] [Indexed: 04/10/2023] Open
Abstract
Proteins from the BCL-2 family control cell survival and apoptosis in health and disease, and regulate apoptosis-unrelated cellular processes. BCL-Gonad (BCL-G, also known as BCL2-like 14) is a non-typical protein of the family as its long isoform (BCL-GL) consists of BH2 and BH3 domains without the BH1 motif. BCL-G is predominantly expressed in normal testes and different organs of the gastrointestinal tract. The complexity of regulatory mechanisms of BCL-G expression and post-translational modifications suggests that BCL-G may play distinct roles in different types of cells and disorders. While several genetic alterations of BCL2L14 have been reported, gene deletions and amplifications prevail, which is also confirmed by the analysis of sequencing data for different types of cancer. Although the studies validating the phenotypic consequences of genetic manipulations of BCL-G are limited, the role of BCL-G in apoptosis has been undermined. Recent studies using gene-perturbation approaches have revealed apoptosis-unrelated functions of BCL-G in intracellular trafficking, immunomodulation, and regulation of the mucin scaffolding network. These studies were, however, limited mainly to the role of BCL-G in the gastrointestinal tract. Therefore, further efforts using state-of-the-art methods and various types of cells are required to find out more about BCL-G activities. Deciphering the isoform-specific functions of BCL-G and the BCL-G interactome may result in the designing of novel therapeutic approaches, in which BCL-G activity will be either imitated using small-molecule BH3 mimetics or inhibited to counteract BCL-G upregulation. This review summarizes two decades of research on BCL-G.
Collapse
Affiliation(s)
- Mariusz L Hartman
- Department of Molecular Biology of Cancer, Medical University of Lodz, 6/8 Mazowiecka Street, 92-215, Lodz, Poland.
| | - Malgorzata Czyz
- Department of Molecular Biology of Cancer, Medical University of Lodz, 6/8 Mazowiecka Street, 92-215, Lodz, Poland
| |
Collapse
|
4
|
Gumusoglu-Acar E, Gunel T, Hosseini MK, Dogan B, Tekarslan EE, Gurdamar B, Cevik N, Sezerman U, Topuz S, Aydinli K. Metabolic pathways of potential miRNA biomarkers derived from liquid biopsy in epithelial ovarian cancer. Oncol Lett 2023; 25:142. [PMID: 36909377 PMCID: PMC9996378 DOI: 10.3892/ol.2023.13728] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2022] [Accepted: 01/03/2023] [Indexed: 02/25/2023] Open
Abstract
Epithelial ovarian cancer (EOC) is the type of OC with the highest mortality rate. Due to the asymptomatic nature of the disease and few available diagnostic tests, it is mostly diagnosed at the advanced stage. Therefore, the present study aimed to discover predictive and/or early diagnostic novel circulating microRNAs (miRNAs or miRs) for EOC. Firstly, microarray analysis of miRNA expression levels was performed on 32 samples of female individuals: Eight plasma samples from patients with pathologically confirmed EOC (mean age, 45 (30-54) years), eight plasma samples from matched healthy individuals (HIs) (mean age, 44 (30-65) years), eight EOC tissue samples (mean age, 45 (30-54) years) and eight benign ovarian (mean age, 35 (17-70) years) neoplastic tissue samples A total of 31 significantly dysregulated miRNAs in serum and three miRNAs in tissue were identified by microarray. The results were validated using reverse transcription-quantitative PCR on samples from 10 patients with pathologically confirmed EOC (mean age, 47(30-54) years), 10 matched His (mean age, 40(26-65) years], 10 EOC tissue samples (mean age, 47(30-54) years) and 10 benign ovarian neoplastic tissue samples (mean age, 40(17-70) years). The 'Kyoto Encyclopedia of Genes and Genomes' (KEGG) database was used for target gene and pathway analysis. A total of three miRNAs from EOC serum (hsa-miR-1909-5p, hsa-miR-885-5p and hsa-let-7d-3p) and one microRNA from tissue samples (hsa-miR-200c-3p) were validated as significant to distinguish patients with EOC from HIs. KEGG pathway enrichment analysis showed seven significant pathways, which included 'prion diseases', 'proteoglycans in cancer', 'oxytocin signaling pathway', 'hippo signaling pathway', 'adrenergic signaling in cardiomyocytes', 'oocyte meiosis' and 'thyroid hormone signaling pathway', in which the validated miRNAs served a role. This supports the hypothesis that four validated miRNAs, have the potential to be a biomarker of EOC diagnosis and target for treatment.
Collapse
Affiliation(s)
- Ece Gumusoglu-Acar
- Department of Molecular Biology and Genetics, Faculty of Science, Istanbul University, 34134 Istanbul, Turkey
| | - Tuba Gunel
- Department of Molecular Biology and Genetics, Faculty of Science, Istanbul University, 34134 Istanbul, Turkey
| | - Mohammad Kazem Hosseini
- Department of Molecular Biology and Genetics, Faculty of Science, Istanbul University, 34134 Istanbul, Turkey
| | - Berkcan Dogan
- Department of Medical Genetics, Faculty of Medicine, Bursa Uludag University, 16059 Bursa, Turkey
| | - Efnan Elif Tekarslan
- Department of Molecular Biology and Genetics, Faculty of Science, Istanbul University, 34134 Istanbul, Turkey
| | - Berk Gurdamar
- Department of Biostatistics and Medical Informatics, School of Medicine, Acibadem Mehmet Ali Aydinlar University, 34752 Istanbul, Turkey
| | - Nazife Cevik
- Computer Engineering Department, Engineering and Architecture Faculty, Istanbul Arel University, 34537 Istanbul, Turkey
| | - Ugur Sezerman
- Department of Biostatistics and Medical Informatics, School of Medicine, Acibadem Mehmet Ali Aydinlar University, 34752 Istanbul, Turkey
| | - Samet Topuz
- Department of Obstetrics and Gynecology, Istanbul Medical Faculty, Istanbul University, 34093 Istanbul, Turkey
| | | |
Collapse
|
5
|
V Deligiorgi M, T Trafalis D. Refining personalized diagnosis, treatment and exploitation of hypothyroidism related to solid nonthyroid cancer. Per Med 2022; 20:87-105. [DOI: 10.2217/pme-2022-0052] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/03/2022]
Abstract
Hypothyroidism in the setting of cancer is a puzzling entity due to the dual role of the thyroid hormones (TH) in cancer – promoting versus inhibitory – and the complexity of the hypothyroidism itself. The present review provides a comprehensive overview of the personalized approach to hypothyroidism in patients with solid nonthyroid cancer, focusing on current challenges, unmet needs and future perspectives. Major electronic databases were searched from January 2011 until March 2022. The milestones of the refinement of such a personalized approach are prompt diagnosis, proper TH replacement and development of interventions and/or pharmaceutical agents to exploit hypothyroidism or, on the contrary, TH replacement as an anticancer strategy. Further elucidation of the dual role of TH in cancer – especially of the interference of TH signaling with the hallmarks of cancer – is anticipated to inform decision-making and optimize patient selection.
Collapse
Affiliation(s)
- Maria V Deligiorgi
- Department of Pharmacology – Clinical Pharmacology Unit, National and Kapodistrian University of Athens, Faculty of Medicine, Building 16, 1st Floor, 75 Mikras Asias, Goudi, Athens, 11527, Greece
| | - Dimitrios T Trafalis
- Department of Pharmacology – Clinical Pharmacology Unit, National and Kapodistrian University of Athens, Faculty of Medicine, Building 16, 1st Floor, 75 Mikras Asias, Goudi, Athens, 11527, Greece
| |
Collapse
|
6
|
Arslan E, Aksoy T, Şavlı TC, Can Trabulus D, Sünter AV, Çermik TF. Investigation of the Presence of Integrin Alpha-3 and Beta-1 Receptors on Tumor Tissue, Metastatic Lymph Node and Normal Tissue in Thyroid Cancer. Mol Imaging Radionucl Ther 2022; 31:75-81. [PMID: 35770951 PMCID: PMC9246309 DOI: 10.4274/mirt.galenos.2021.71501] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022] Open
Abstract
Objectives: The important roles of integrins in tumor invasion, migration and proliferation are well known. In this study, we investigated the presence of integrin α3 and β1 receptors in tumor tissue, metastatic lymph node (LN) and normal thyroid tissue of patients diagnosed with thyroid cancer (TCa) and showed the prognostic and diagnostic value of these molecules as well as peptide-receptor. Methods: Sixty-one patients with TCa were included in this study. The presence of integrin α3 and β1 expression was investigated by immunohistochemical methods from tumor tissue after total thyroidectomy. TNM system was used in tumor staging. The relationship between prognostic properties such as tumor size, LN metastasis, capsular invasion and the presence of integrin α3 and β1 expression was investigated. Results: Classical type papillary TCa was the most common subtype in our study group with 31.1%. Integrin β1 was expressed in 4.9% (n=3) of normal tissue, 57.4% (n=35) of tumor tissue and 16.4% (n=10) of metastatic LN; integrin α3 was expressed in 50.8% (n=31) of normal tissue, 67.2% (n=41) of tumor tissue and 9.8% (n=6) metastatic LN. Integrin β1 expression was observed 21.3% (n=13), integrin α3 in 14.8% (n=9) and integrin α3 and β1 expression in 36.1% (n=22). Integrin β1 expression increased statistically significantly in the presence of LN metastasis and capsular invasion (p=0.022, 0.014, respectively). Furthermore, the expression of integrin α3 was found to be statistically significant in primary tumors of patients with LN metastasis (p=0.045). Conclusion: Our study showed a significant increase in integrin α3 and β1 expression in LN metastasis or thyroid capsule invasion in tumor. Thus, it appears that the demonstration of the presence of integrin α3 and β1 expression in TCa is not only a prognostic biomarker but also has value as a potential theranostic target with peptide-bound radioactive agents.
Collapse
Affiliation(s)
- Esra Arslan
- University of Health and Sciences Turkey, İstanbul Training and Research Hospital, Clinic of Nuclear Medicine, İstanbul, Turkey
| | - Tamer Aksoy
- University of Health and Sciences Turkey, İstanbul Training and Research Hospital, Clinic of Nuclear Medicine, İstanbul, Turkey
| | - Taha Cumhan Şavlı
- University of Health and Sciences Turkey, İstanbul Training and Research Hospital, Clinic of Pathology, İstanbul, Turkey
| | - Didem Can Trabulus
- University of Health and Sciences Turkey, İstanbul Training and Research Hospital, Clinic of Surgery of Pathology, İstanbul, Turkey
| | - Ahmet Volkan Sünter
- University of Health and Sciences Turkey, İstanbul Training and Research Hospital, Clinic of Otorhinolaryngology, Division of Head and Neck Surgery, İstanbul, Turkey
| | - Tevfik Fikret Çermik
- University of Health and Sciences Turkey, İstanbul Training and Research Hospital, Clinic of Nuclear Medicine, İstanbul, Turkey
| |
Collapse
|
7
|
Wang K, Chen YF, Yang YCSH, Huang HM, Lee SY, Shih YJ, Li ZL, Whang-Peng J, Lin HY, Davis PJ. The power of heteronemin in cancers. J Biomed Sci 2022; 29:41. [PMID: 35705962 PMCID: PMC9202199 DOI: 10.1186/s12929-022-00816-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2022] [Accepted: 05/24/2022] [Indexed: 12/14/2022] Open
Abstract
Heteronemin (Haimian jing) is a sesterterpenoid-type natural marine product that is isolated from sponges and has anticancer properties. It inhibits cancer cell proliferation via different mechanisms, such as reactive oxygen species (ROS) production, cell cycle arrest, apoptosis as well as proliferative gene changes in various types of cancers. Recently, the novel structure and bioactivity evaluation of heteronemin has received extensive attention. Hormones control physiological activities regularly, however, they may also affect several abnormalities such as cancer. L-Thyroxine (T4), steroid hormones, and epidermal growth factor (EGF) up-regulate the accumulation of checkpoint programmed death-ligand 1 (PD-L1) and promote inflammation in cancer cells. Heteronemin suppresses PD-L1 expression and reduces the PD-L1-induced proliferative effect. In the current review, we evaluated research and evidence regarding the antitumor effects of heteronemin and the antagonizing effects of non-peptide hormones and growth factors on heteronemin-induced anti-cancer properties and utilized computational molecular modeling to explain how these ligands interacted with the integrin αvβ3 receptors. On the other hand, thyroid hormone deaminated analogue, tetraiodothyroacetic acid (tetrac), modulates signal pathways and inhibits cancer growth and metastasis. The combination of heteronemin and tetrac derivatives has been demonstrated to compensate for anti-proliferation in cancer cells under different circumstances. Overall, this review outlines the potential of heteronemin in managing different types of cancers that may lead to its clinical development as an anticancer agent.
Collapse
Affiliation(s)
- Kuan Wang
- Graduate Institute of Nanomedicine and Medical Engineering, College of Medical Engineering, Taipei Medical University, 250 Wuxing Street, Taipei 110, Taipei, 11031, Taiwan
| | - Yi-Fong Chen
- Graduate Institute of Cancer Molecular Biology and Drug Discovery, College of Medical Science and Technology, Taipei Medical University, Taipei, 11031, Taiwan
| | - Yu-Chen S H Yang
- Joint Biobank, Office of Human Research, Taipei Medical University, Taipei, 11031, Taiwan
| | - Haw-Ming Huang
- School of Dentistry, College of Oral Medicine, Taipei Medical University, Taipei, 11031, Taiwan
| | - Sheng-Yang Lee
- School of Dentistry, College of Oral Medicine, Taipei Medical University, Taipei, 11031, Taiwan.,Dentistry, Wan-Fang Medical Center, Taipei Medical University, Taipei, 11031, Taiwan
| | - Ya-Jung Shih
- Graduate Institute of Nanomedicine and Medical Engineering, College of Medical Engineering, Taipei Medical University, 250 Wuxing Street, Taipei 110, Taipei, 11031, Taiwan.,Graduate Institute of Cancer Molecular Biology and Drug Discovery, College of Medical Science and Technology, Taipei Medical University, Taipei, 11031, Taiwan
| | - Zi-Lin Li
- Graduate Institute of Nanomedicine and Medical Engineering, College of Medical Engineering, Taipei Medical University, 250 Wuxing Street, Taipei 110, Taipei, 11031, Taiwan.,Graduate Institute of Cancer Molecular Biology and Drug Discovery, College of Medical Science and Technology, Taipei Medical University, Taipei, 11031, Taiwan
| | - Jacqueline Whang-Peng
- Cancer Center, Wan Fang Hospital, Taipei Medical University, No. 111, Section 3, Xinglong Road, Wenshan District, Taipei City, 116, Taipei, 11031, Taiwan.
| | - Hung-Yun Lin
- Graduate Institute of Cancer Molecular Biology and Drug Discovery, College of Medical Science and Technology, Taipei Medical University, Taipei, 11031, Taiwan. .,Cancer Center, Wan Fang Hospital, Taipei Medical University, No. 111, Section 3, Xinglong Road, Wenshan District, Taipei City, 116, Taipei, 11031, Taiwan. .,TMU Research Center of Cancer Translational Medicine, Taipei Medical University, Taipei, 11031, Taiwan. .,Traditional Herbal Medicine Research Center of Taipei Medical University Hospital, Taipei Medical University, Taipei, 11031, Taiwan. .,Pharmaceutical Research Institute, Albany College of Pharmacy and Health Sciences, Rensselaer, NY, 12144, USA.
| | - Paul J Davis
- Pharmaceutical Research Institute, Albany College of Pharmacy and Health Sciences, Rensselaer, NY, 12144, USA.,Department of Medicine, Albany Medical College, Albany, NY12144, USA
| |
Collapse
|
8
|
Deligiorgi MV, Trafalis DT. The Clinical Relevance of Hypothyroidism in Patients with Solid Non-Thyroid Cancer: A Tantalizing Conundrum. J Clin Med 2022; 11:3417. [PMID: 35743483 PMCID: PMC9224934 DOI: 10.3390/jcm11123417] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2022] [Revised: 06/06/2022] [Accepted: 06/08/2022] [Indexed: 02/06/2023] Open
Abstract
Hypothyroidism in patients with solid non-thyroid cancer is a tantalizing entity, integrating an intriguing thyroid hormones (THs)-cancer association with the complexity of hypothyroidism itself. The present narrative review provides a comprehensive overview of the clinical relevance of hypothyroidism in solid non-thyroid cancer. Hypothyroidism in patients with solid non-thyroid cancer is reminiscent of hypothyroidism in the general population, yet also poses distinct challenges due to the dual role of THs in cancer: promoting versus inhibitory. Close collaboration between oncologists and endocrinologists will enable the prompt and personalized diagnosis and treatment of hypothyroidism in patients with solid non-thyroid cancer. Clinical data indicate that hypothyroidism is a predictor of a decreased or increased risk of solid non-thyroid cancer and is a prognostic factor of favorable or unfavorable prognosis in solid non-thyroid cancer. However, the impact of hypothyroidism with respect to the risk and/or prognosis of solid non-thyroid cancer is not a consistent finding. To harness hypothyroidism, or THs replacement, as a personalized anticancer strategy for solid non-thyroid cancer, four prerequisites need to be fulfilled, namely: (i) deciphering the dual THs actions in cancer; (ii) identifying interventions in THs status and developing agents that block tumor-promoting THs actions and/or mimic anticancer THs actions; (iii) appropriate patient selection; and (iv) counteracting current methodological limitations.
Collapse
Affiliation(s)
- Maria V. Deligiorgi
- Department of Pharmacology—Clinical Pharmacology Unit, Faculty of Medicine, National and Kapodistrian University of Athens, 75 Mikras Asias Str., Goudi, 11527 Athens, Greece;
| | | |
Collapse
|
9
|
Godugu K, Mousa SA, Glinsky GV, Lin HY, Davis PJ. In Vivo Clearance of Apoptotic Debris From Tumor Xenografts Exposed to Chemically Modified Tetrac: Is There a Role for Thyroid Hormone Analogues in Efferocytosis? Front Endocrinol (Lausanne) 2022; 13:745327. [PMID: 35311239 PMCID: PMC8931655 DOI: 10.3389/fendo.2022.745327] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/16/2021] [Accepted: 01/28/2022] [Indexed: 11/16/2022] Open
Abstract
Apoptosis is induced in cancer cells and tumor xenografts by the thyroid hormone analogue tetraiodothyroacetic acid (tetrac) or chemically modified forms of tetrac. The effect is initiated at a hormone receptor on the extracellular domain of plasma membrane integrin αvβ3. The tumor response to tetrac includes 80% reduction in size of glioblastoma xenograft in two weeks of treatment, with absence of residual apoptotic cancer cell debris; this is consistent with efferocytosis. The molecular basis for efferocytosis linked to tetrac is incompletely understood, but several factors are proposed to play roles. Tetrac-based anticancer agents are pro-apoptotic by multiple intrinsic and extrinsic pathways and differential effects on specific gene expression, e.g., downregulation of the X-linked inhibitor of apoptosis (XIAP) gene and upregulation of pro-apoptotic chemokine gene, CXCL10. Tetrac also enhances transcription of chemokine CXCR4, which is relevant to macrophage function. Tetrac may locally control the conformation of phagocyte plasma membrane integrin αvβ3; this is a cell surface recognition system for apoptotic debris that contains phagocytosis signals. How tetrac may facilitate the catabolism of the engulfed apoptotic cell debris requires additional investigation.
Collapse
Affiliation(s)
- Kavitha Godugu
- Pharmaceutical Research Institute, Albany College of Pharmacy and Health Sciences, Rensselaer, NY, United States
| | - Shaker A. Mousa
- Pharmaceutical Research Institute, Albany College of Pharmacy and Health Sciences, Rensselaer, NY, United States
| | - Gennadi V. Glinsky
- Institute of Engineering in Medicine, University of California, San Diego, CA, United States
| | - Hung-Yun Lin
- Ph.D. Program for Cancer Molecular Biology and Drug Discovery, College of Medical Science and Technology, Taipei Medical University, Taipei, Taiwan
- Cancer Center, Wan Fang Hospital, Taipei Medical University, Taipei, Taiwan
- Traditional Herbal Medicine Research Center of Taipei Medical University Hospital, Taipei Medical University, Taipei, Taiwan
| | - Paul J. Davis
- Pharmaceutical Research Institute, Albany College of Pharmacy and Health Sciences, Rensselaer, NY, United States
- Department of Medicine, Albany Medical College, Albany, NY, United States
| |
Collapse
|
10
|
Chen YF, Yang YN, Chu HR, Huang TY, Wang SH, Chen HY, Li ZL, Yang YCSH, Lin HY, Hercbergs A, Whang-Peng J, Wang K, Davis PJ. Role of Integrin αvβ3 in Doxycycline-Induced Anti-Proliferation in Breast Cancer Cells. Front Cell Dev Biol 2022; 10:829788. [PMID: 35237605 PMCID: PMC8884148 DOI: 10.3389/fcell.2022.829788] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2021] [Accepted: 01/24/2022] [Indexed: 12/13/2022] Open
Abstract
Doxycycline, an antibiotic, displays the inhibition of different signal transduction pathways, such as anti-inflammation and anti-proliferation, in different types of cancers. However, the anti-cancer mechanisms of doxycycline via integrin αvβ3 are incompletely understood. Integrin αvβ3 is a cell-surface anchor protein. It is the target for estrogen, androgen, and thyroid hormone and plays a pivotal role in the proliferation, migration, and angiogenic process in cancer cells. In our previous study, thyroxine hormones can interact with integrin αvβ3 to activate the extracellular signal-regulated kinase 1/2 (ERK1/2), and upregulate programmed death-ligand 1 (PD-L1) expression. In the current study, we investigated the inhibitory effects of doxycycline on proliferation in two breast cancer cell lines, MCF-7 and MDA-MB-231 cells. Doxycycline induces concentration-dependent anti-proliferation in both breast cancer cell lines. It regulates gene expressions involved in proliferation, pro-apoptosis, and angiogenesis. Doxycycline suppresses cell cyclin D1 (CCND1) and c-Myc which play crucial roles in proliferation. It also inhibits PD-L1 gene expression. Our findings show that modulation on integrin αvβ3 binding activities changed both thyroxine- and doxycycline-induced signal transductions by an integrin αvβ3 inhibitor (HSDVHK-NH2). Doxycycline activates phosphorylation of focal adhesion kinase (FAK), a downstream of integrin, but inhibits the ERK1/2 phosphorylation. Regardless, doxycycline-induced FAK phosphorylation is blocked by HSDVHK-NH2. In addition, the specific mechanism of action associated with pERK1/2 inhibition via integrin αvβ3 is unknown for doxycycline treatment. On the other hand, our findings indicated that inhibiting ERK1/2 activation leads to suppression of PD-L1 expression by doxycycline treatment. Furthermore, doxycycline-induced gene expressions are disturbed by a specific integrin αvβ3 inhibitor (HSDVHK-NH2) or a mitogen-activated protein kinase (MAPK)/extracellular signal-regulated kinases (ERK) kinase (MAPK/ERK, MEK) inhibitor (PD98059). The results imply that doxycycline may interact with integrin αvβ3 and inhibits ERK1/2 activation, thereby regulating cell proliferation and downregulating PD-L1 gene expression in estrogen receptor (ER)-negative breast cancer MDA-MB-231 cells.
Collapse
Affiliation(s)
- Yi-Fong Chen
- Graduate Institute of Cancer Biology and Drug Discovery, College of Medical Science and Technology, Taipei Medical University, Taipei, Taiwan.,Graduate Institute of Nanomedicine and Medical Engineering, College of Medical Engineering, Taipei Medical University, Taipei, Taiwan
| | - Yung-Ning Yang
- School of Medicine, I-Shou University, Kaohsiung, Taiwan.,Department of Pediatrics, E-DA Hospital, Kaohsiung, Taiwan
| | - Hung-Ru Chu
- Graduate Institute of Cancer Biology and Drug Discovery, College of Medical Science and Technology, Taipei Medical University, Taipei, Taiwan.,Graduate Institute of Nanomedicine and Medical Engineering, College of Medical Engineering, Taipei Medical University, Taipei, Taiwan
| | - Tung-Yung Huang
- Graduate Institute of Cancer Biology and Drug Discovery, College of Medical Science and Technology, Taipei Medical University, Taipei, Taiwan.,Graduate Institute of Nanomedicine and Medical Engineering, College of Medical Engineering, Taipei Medical University, Taipei, Taiwan
| | - Shwu-Huey Wang
- Core Facility Center, Department of Research Development, Taipei Medical University, Taipei, Taiwan
| | - Han-Yu Chen
- Graduate Institute of Cancer Biology and Drug Discovery, College of Medical Science and Technology, Taipei Medical University, Taipei, Taiwan.,Graduate Institute of Nanomedicine and Medical Engineering, College of Medical Engineering, Taipei Medical University, Taipei, Taiwan
| | - Zi-Lin Li
- Graduate Institute of Cancer Biology and Drug Discovery, College of Medical Science and Technology, Taipei Medical University, Taipei, Taiwan.,Graduate Institute of Nanomedicine and Medical Engineering, College of Medical Engineering, Taipei Medical University, Taipei, Taiwan
| | - Yu-Chen S H Yang
- Joint Biobank, Office of Human Research, Taipei Medical University, Taipei, Taiwan
| | - Hung-Yun Lin
- Graduate Institute of Cancer Biology and Drug Discovery, College of Medical Science and Technology, Taipei Medical University, Taipei, Taiwan.,Cancer Center, Wan Fang Hospital, Taipei Medical University, Taipei, Taiwan.,TMU Research Center of Cancer Translational Medicine, Taipei Medical University, Taipei, Taiwan.,Traditional Herbal Medicine Research Center of Taipei Medical University Hospital, Taipei Medical University, Taipei, Taiwan.,Pharmaceutical Research Institute, Albany College of Pharmacy and Health Sciences, Albany, NY, United States
| | - Aleck Hercbergs
- Department of Radiation Oncology, Cleveland Clinic, Cleveland, OH, United States
| | | | - Kuan Wang
- Graduate Institute of Nanomedicine and Medical Engineering, College of Medical Engineering, Taipei Medical University, Taipei, Taiwan
| | - Paul J Davis
- Pharmaceutical Research Institute, Albany College of Pharmacy and Health Sciences, Albany, NY, United States.,Department of Medicine, Albany Medical College, Albany, NY, United States
| |
Collapse
|
11
|
Shi Q, Wu M, Chen P, Wei B, Tan H, Huang P, Chang S. Criminal of Adverse Pregnant Outcomes: A Perspective From Thyroid Hormone Disturbance Caused by SARS-CoV-2. Front Cell Infect Microbiol 2022; 11:791654. [PMID: 35047419 PMCID: PMC8761741 DOI: 10.3389/fcimb.2021.791654] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2021] [Accepted: 12/06/2021] [Indexed: 01/11/2023] Open
Abstract
Nowadays, emerging evidence has shown adverse pregnancy outcomes, including preterm birth, preeclampsia, cesarean, and perinatal death, occurring in pregnant women after getting infected by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), but the underlying mechanisms remain elusive. Thyroid hormone disturbance has been unveiled consistently in various studies. As commonly known, thyroid hormone is vital for promoting pregnancy and optimal fetal growth and development. Even mild thyroid dysfunction can cause adverse pregnancy outcomes. We explored and summarized possible mechanisms of thyroid hormone abnormality in pregnant women after coronavirus disease 2019 (COVID-19) infection and made a scientific thypothesis that adverse pregnancy outcomes can be the result of thyroid hormone disorder during COVID-19. In which case, we accentuate the importance of thyroid hormone surveillance for COVID-19-infected pregnant women.
Collapse
Affiliation(s)
- Qiman Shi
- Department of General Surgery, Xiangya Hospital Central South University, Changsha, China
| | - Min Wu
- Department of General Surgery, Xiangya Hospital Central South University, Changsha, China
| | - Pei Chen
- Department of General Surgery, Xiangya Hospital Central South University, Changsha, China
| | - Bo Wei
- Department of General Surgery, Xiangya Hospital Central South University, Changsha, China
| | - Hailong Tan
- Department of General Surgery, Xiangya Hospital Central South University, Changsha, China
| | - Peng Huang
- Department of General Surgery, Xiangya Hospital Central South University, Changsha, China
| | - Shi Chang
- Department of General Surgery, Xiangya Hospital Central South University, Changsha, China.,Clinical Research Center for Thyroid Disease in Hunan Province, Changsha, China.,Hunan Provincial Engineering Research Center for Thyroid and Related Diseases Treatment Technology, Changsha, China.,National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Changsha, China
| |
Collapse
|
12
|
Thyroid Diseases and Breast Cancer. J Pers Med 2022; 12:jpm12020156. [PMID: 35207645 PMCID: PMC8876618 DOI: 10.3390/jpm12020156] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2021] [Revised: 01/21/2022] [Accepted: 01/24/2022] [Indexed: 01/27/2023] Open
Abstract
Epidemiological studies aimed at defining the association of thyroid diseases with extra-thyroidal malignancies (EM) have aroused considerable interest in the possibility of revealing common genetic and environmental factors underlying disease etiology and progression. Over the years, multiple lines of evidence indicated a significant relationship between thyroid carcinomas and other primary EM, especially breast cancer. For the latter, a prominent association was also found with benign thyroid diseases. In particular, a meta-analysis revealed an increased risk of breast cancer in patients with autoimmune thyroiditis, and our recent work demonstrated that the odds ratio (OR) for breast cancer was raised in both thyroid autoantibody-positive and -negative patients. However, the OR was significantly lower for thyroid autoantibody-positive patients compared to the negative ones. This is in agreement with findings showing that the development of thyroid autoimmunity in cancer patients receiving immunotherapy is associated with better outcome and supports clinical evidence that breast cancer patients with thyroid autoimmunity have longer disease-free interval and overall survival. These results seem to suggest that factors other than oncologic treatments may play a role in the initiation and progression of a second primary malignancy. The molecular links between thyroid autoimmunity and breast cancer remain, however, unidentified, and different hypotheses have been proposed. Here, we will review the epidemiological, clinical, and experimental data relating thyroid diseases and breast cancer, as well as the possible hormonal and molecular mechanisms underlying such associations.
Collapse
|
13
|
Tobi D, Krashin E, Davis PJ, Cody V, Ellis M, Ashur-Fabian O. Three-Dimensional Modeling of Thyroid Hormone Metabolites Binding to the Cancer-Relevant αvβ3 Integrin: In-Silico Based Study. Front Endocrinol (Lausanne) 2022; 13:895240. [PMID: 35692387 PMCID: PMC9186291 DOI: 10.3389/fendo.2022.895240] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/13/2022] [Accepted: 04/26/2022] [Indexed: 11/13/2022] Open
Abstract
BACKGROUND Thyroid hormones (TH), T4 and T3, mediate pro-mitogenic effects in cancer cells through binding the membrane receptor αvβ3 integrin. The deaminated analogue tetrac effectively blocks TH binding to this receptor and prevents their action. While computational data on TH binding to the αvβ3 integrin was published, a comprehensive analysis of additional TH metabolites is lacking. METHODS In-silico docking of 26 TH metabolites, including the biologically active thyroid hormones (T3 and T4) and an array of sulfated, deiodinated, deaminated or decarboxylated metabolites, to the αvβ3 receptor binding pocket was performed using DOCK6, based on the three-dimensional representation of the crystallographic structure of the integrin. As the TH binding site upon the integrin is at close proximity to the well-defined RGD binding site, linear and cyclic RGD were included as a reference. Binding energy was calculated for each receptor-ligand complex using Grid score and Amber score with distance movable region protocol. RESULTS All TH molecules demonstrated negative free energy, suggesting affinity to the αvβ3 integrin. Notably, based on both Grid and Amber scores sulfated forms of 3,3' T2 (3,3' T2S) and T4 (T4S) demonstrated the highest binding affinity to the integrin, compared to both cyclic RGD and an array of examined TH metabolites. The major thyroid hormones, T3 and T4, showed high affinity to the integrin, which was superior to that of linear RGD. For all hormone metabolites, decarboxylation led to decreased affinity. This corresponds with the observation that the carboxylic group mediates binding to the integrin pocket via divalent cations at the metal-ion-dependent adhesion (MIDAS) motif site. A similar reduced affinity was documented for deaminated forms of T3 (triac) and T4 (tetrac). Lastly, the reverse forms of T3, T3S, and T3AM showed higher Amber scores relative to their native form, indicating that iodination at position 5 is associated with increased binding affinity compared to position 5'. SUMMARY Three-dimensional docking of various TH metabolites uncovered a structural basis for a differential computational free energy to the αvβ3 integrin. These findings may suggest that naturally occurring endogenous TH metabolites may impact integrin-mediate intracellular pathways in physiology and cancer.
Collapse
Affiliation(s)
- Dror Tobi
- Department of Molecular Biology, Ariel University, Ariel, Israel
- Department of Computer Sciences, Ariel University, Ariel, Israel
- *Correspondence: Osnat Ashur-Fabian, ; Dror Tobi,
| | - Eilon Krashin
- Translational Oncology Laboratory, Meir Medical Center, Kfar-Saba, Israel
- Department of Human Molecular Genetics and Biochemistry, Sackler School of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Paul J. Davis
- Department of Medicine, Albany Medical College, Albany, NY, United States
- Pharmaceutical Research Institute, Albany College of Pharmacy and Health Sciences, Albany, NY, United States
| | - Vivian Cody
- Hauptman-Woodward Medical Research Institute & Department of Structural Biology, SUNY, University at Buffalo, Buffalo, NY, United States
| | - Martin Ellis
- Translational Oncology Laboratory, Meir Medical Center, Kfar-Saba, Israel
- Hematology Institute and Blood Bank, Meir Medical Center, Kfar-Saba, Israel
- Sackler School of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Osnat Ashur-Fabian
- Translational Oncology Laboratory, Meir Medical Center, Kfar-Saba, Israel
- Department of Human Molecular Genetics and Biochemistry, Sackler School of Medicine, Tel Aviv University, Tel Aviv, Israel
- Hematology Institute and Blood Bank, Meir Medical Center, Kfar-Saba, Israel
- *Correspondence: Osnat Ashur-Fabian, ; Dror Tobi,
| |
Collapse
|
14
|
Deligiorgi MV, Trafalis DT. The Intriguing Thyroid Hormones-Lung Cancer Association as Exemplification of the Thyroid Hormones-Cancer Association: Three Decades of Evolving Research. Int J Mol Sci 2021; 23:436. [PMID: 35008863 PMCID: PMC8745569 DOI: 10.3390/ijms23010436] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2021] [Revised: 12/22/2021] [Accepted: 12/28/2021] [Indexed: 12/21/2022] Open
Abstract
Exemplifying the long-pursued thyroid hormones (TH)-cancer association, the TH-lung cancer association is a compelling, yet elusive, issue. The present narrative review provides background knowledge on the molecular aspects of TH actions, with focus on the contribution of TH to hallmarks of cancer. Then, it provides a comprehensive overview of data pertinent to the TH-lung cancer association garnered over the last three decades and identifies obstacles that need to be overcome to enable harnessing this association in the clinical setting. TH contribute to all hallmarks of cancer through integration of diverse actions, currently classified according to molecular background. Despite the increasingly recognized implication of TH in lung cancer, three pending queries need to be resolved to empower a tailored approach: (1) How to stratify patients with TH-sensitive lung tumors? (2) How is determined whether TH promote or inhibit lung cancer progression? (3) How to mimic the antitumor and/or abrogate the tumor-promoting TH actions in lung cancer? To address these queries, research should prioritize the elucidation of the crosstalk between TH signaling and oncogenic signaling implicated in lung cancer initiation and progression, and the development of efficient, safe, and feasible strategies leveraging this crosstalk in therapeutics.
Collapse
Affiliation(s)
- Maria V. Deligiorgi
- Department of Pharmacology—Clinical Pharmacology Unit, Faculty of Medicine, National and Kapodistrian University of Athens, Building 16, 1st Floor, 75 Mikras Asias Str, 11527 Athens, Greece;
| | | |
Collapse
|
15
|
Vasconcelos JCD, Siqueira IBD, Maia FFR, Parisi MCR, Zantut-Wittmann DE. Influence of thyroid hormone in the expression of the marker pro-apoptosis BID, in spite of the predominance of anti-apoptosis activation in intratiroidal lymphocytic infiltration in Hashimoto's thyroiditis. Mol Cell Endocrinol 2021; 537:111421. [PMID: 34389447 DOI: 10.1016/j.mce.2021.111421] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/12/2021] [Revised: 08/07/2021] [Accepted: 08/09/2021] [Indexed: 11/25/2022]
Abstract
UNLABELLED Cell destruction in Hashimoto's thyroiditis (HT) involves autoantibodies and cytotoxic T lymphocytes. Thyrocytes maintenance occurs by pro-apoptotic, anti-apoptotic and cell proliferation balance. OBJECTIVES To characterize factors related to the mechanisms of apoptosis and cell proliferation in thyroid cells and intrathyroid lymphocytic infiltrate in HT. METHODS We assessed lymphocytic infiltrate and thyroid cells from HT and normal thyroid by immunohistochemical analysis of cell proliferation (Ki-67), antiproliferation (p27Kip1), pro-apoptosis (Fas, Fas-ligand, BID) and anti-apoptosis (MCL-1, BCL2) markers. RESULTS Lymphocytic infiltrate presented BCL2 and MCL-1 higher expression, Ki-67 and p27kip1 balance. Thyrocytes exhibited Fas and FasL balance, higher BID expression; MCL-1, BCL-2, Ki-67 similar to the normal thyroid. T4 and higher lymphocytes BID expression were associated. CONCLUSIONS In lymphocytic infiltrate predominated anti-apoptosis in relation to pro-apoptosis except for BID. Thyrocytes presented pro-apoptosis and anti-apoptosis balance and cell proliferation similar to normal thyroid. T4-associated BID expression in HT lymphocytes suggests the influence of thyroid hormone as a signal to up-regulate the BID pro-apoptotic protein and thus increase lymphocytic apoptosis rates.
Collapse
Affiliation(s)
- Jessica Castro de Vasconcelos
- Endocrinology Division, Department of Internal Medicine, School of Medical Sciences, University of Campinas, São Paulo, Brazil.
| | | | | | - Maria Cândida Ribeiro Parisi
- Endocrinology Division, Department of Internal Medicine, School of Medical Sciences, University of Campinas, São Paulo, Brazil.
| | | |
Collapse
|
16
|
Sudha T, Rehman MU, Darwish NHE, Coskun MD, Satti JA, Davis PJ, Mousa SA. Nano-Targeting of Thyrointegrin αvβ3 Receptor in Solid Tumors and Impact on Radiosensitization. Radiat Res 2021; 196:375-385. [PMID: 34260732 DOI: 10.1667/rade-21-00031.1] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2021] [Accepted: 06/21/2021] [Indexed: 11/03/2022]
Abstract
Tetraiodothyroacetic acid is a ligand of thyrointegrin αvβ3, a protein that is highly expressed in various solid tumors and surrounding neovascular regions. Its nano derivative, Nano-diamino-tetrac (NDAT), has anticancer properties in preclinical models, enhances radiosensitivity, and inhibits cancer cell growth in vitro after X-ray irradiation. Using a novel experimental system developed to deliver accurate radiation dose to tumors under sterile conditions, this study establishes NDAT's radiosensitizing effect in SUIT-2 pancreatic cancer and H1299 non-small cell lung carcinoma xenografts in athymic mice for tumor-targeted radiation. In this work, low-melting-point Lipowitz alloy was used to shield normal organs and allow accurate tumor-targeted irradiation. Over a three-week period, mice with SUIT-2 xenografts received daily NDAT treatment at different doses (0, 1, 3, or 10 mg/kg body weight) and tumor-targeted irradiation (1 or 5 Gy). Validation was performed with a test dose of 30 Gy to mice bearing SUIT-2 xenografts and resulted in more than 80% reduction in tumor weight, compared to nonirradiated tumor weight. The results of this work showed that NDAT had a radiosensitizing effect in a dose-dependent manner in decreasing tumor growth and viability. An enhanced anticancer effect of NDAT (1 mg/kg body weight) was observed in mice with H1299 xenografts receiving 5 Gy tumor-targeted irradiation, indicated by decreased tumor weight and increased necrosis, compared to nonirradiated tumors. This technique demonstrated accurate tumor-targeted irradiation with new shielding methodology, and combined with thyrointegrin antagonist NDAT treatment, showed anticancer efficacy in pancreatic cancer and non-small cell lung carcinoma.
Collapse
Affiliation(s)
- Thangirala Sudha
- The Pharmaceutical Research Institute, Albany College of Pharmacy and Health Sciences, Rensselaer, New York
| | - Mahboob Ur Rehman
- Department of Physics, University of Central Florida, Orlando, Florida
| | - Noureldien H E Darwish
- The Pharmaceutical Research Institute, Albany College of Pharmacy and Health Sciences, Rensselaer, New York
- Hematology Unit, Clinical Pathology Department, Mansoura Faculty of Medicine, Mansoura University, Egypt
| | - Melis Debreli Coskun
- The Pharmaceutical Research Institute, Albany College of Pharmacy and Health Sciences, Rensselaer, New York
| | | | - Paul J Davis
- The Pharmaceutical Research Institute, Albany College of Pharmacy and Health Sciences, Rensselaer, New York
- Departments of Medicine, Albany Medical College, Albany, New York
| | - Shaker A Mousa
- The Pharmaceutical Research Institute, Albany College of Pharmacy and Health Sciences, Rensselaer, New York
| |
Collapse
|
17
|
Sudha T, Godugu K, Darwish NHE, Nazeer T, Mousa SA. Novel Polyethylene Glycol-Conjugated Triazole Derivative with High Thyrointegrin αvβ3 Affinity in Acute Myeloid Leukemia Management. Cancers (Basel) 2021; 13:cancers13164070. [PMID: 34439224 PMCID: PMC8392871 DOI: 10.3390/cancers13164070] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2021] [Revised: 08/05/2021] [Accepted: 08/10/2021] [Indexed: 02/08/2023] Open
Abstract
(1) Background: Acute myeloid leukemia (AML) accounts for up to one-third of more than 60,000 leukemia cases diagnosed annually in the U.S. Primary AML cells express membrane αvβ3 integrin, which is associated with adverse prognosis and resistance to chemotherapies. A novel anticancer compound Polyethylene glycol-conjugated bi-TriAzole Tetraiodothyroacetic acid (P-bi-TAT) interacts with high affinity (Ki 0.3 nM) and specificity with the thyrointegrin αvβ3. We evaluated P-bi-TAT activities in two different AML models representing monocytic and myelocytic forms of acute leukemia. (2) Methods and Results: The in vivo AML models were established prior to initiation of treatment protocols by grafting human leukemia cells in immunocompromised mice. IVIS imaging scans revealed that leukemic colonies were extensively established throughout the bone marrow, liver, and lung of the untreated animals. In animals treated with P-bi-TAT at daily doses ranging from 1-10 mg/kg, subcutaneously for 2-3 weeks, IVIS imaging scans revealed 95% reduction in bone marrow colonies and leukemic colonies in liver and lung. Also, the leukemic cells were not detected in bone marrow samples of P-bi-TAT-treated animals. The anti-neoplastic effect of P-bi-TAT administration on leukemic cells was associated with marked inhibition of NF-κB activity. We conclude that experimental P-bi-TAT therapy in vivo appears extraordinarily effective against the two forms of human AML models in mice. Because the P-bi-TAT molecular target, thyrointegrin αvβ3, is consistently expressed in many, if not all, clinical AML samples, P-bi-TAT-based therapy seems to have significant clinical potential in treating most AML sub-types. Hence, P-bi-TAT represents a promising targeted therapeutic agent for AML patients.
Collapse
Affiliation(s)
- Thangirala Sudha
- Pharmaceutical Research Institute, Albany College of Pharmacy and Health Sciences, Rensselaer, NY 12144, USA; (T.S.); (K.G.); (N.H.E.D.)
| | - Kavitha Godugu
- Pharmaceutical Research Institute, Albany College of Pharmacy and Health Sciences, Rensselaer, NY 12144, USA; (T.S.); (K.G.); (N.H.E.D.)
| | - Noureldien H. E. Darwish
- Pharmaceutical Research Institute, Albany College of Pharmacy and Health Sciences, Rensselaer, NY 12144, USA; (T.S.); (K.G.); (N.H.E.D.)
- Hematology Unit, Clinical Pathology Department, Faculty of Medicine, Mansoura University, Mansoura 35516, Egypt
| | - Tipu Nazeer
- Albany Medical Center, Pathology Department, AMC Hospital, Albany, NY 12208, USA;
| | - Shaker A. Mousa
- Pharmaceutical Research Institute, Albany College of Pharmacy and Health Sciences, Rensselaer, NY 12144, USA; (T.S.); (K.G.); (N.H.E.D.)
- Correspondence:
| |
Collapse
|
18
|
Nano-Strategies Targeting the Integrin αvβ3 Network for Cancer Therapy. Cells 2021; 10:cells10071684. [PMID: 34359854 PMCID: PMC8307885 DOI: 10.3390/cells10071684] [Citation(s) in RCA: 42] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2021] [Revised: 06/29/2021] [Accepted: 06/30/2021] [Indexed: 12/12/2022] Open
Abstract
Integrin αvβ3, a cell surface receptor, participates in signaling transduction pathways in cancer cell proliferation and metastasis. Several ligands bind to integrin αvβ3 to regulate proliferation and metastasis in cancer cells. Crosstalk between the integrin and other signal transduction pathways also plays an important role in modulating cancer proliferation. Carcinoembryonic antigen cell adhesion molecule 6 (CEACAM6) activates the downstream integrin FAK to stimulate biological activities including cancer proliferation and metastasis. Blockage of signals related to integrin αvβ3 was shown to be a promising target for cancer therapies. 3,3′,5,5′-tetraiodothyroacetic acid (tetrac) completely binds to the integrin with the thyroid hormone to suppress cancer proliferation. The (E)-stilbene analog, resveratrol, also binds to integrin αvβ3 to inhibit cancer growth. Recently, nanotechnologies have been used in the biomedical field for detection and therapeutic purposes. In the current review, we show and evaluate the potentiation of the nanomaterial carrier RGD peptide, derivatives of PLGA-tetrac (NDAT), and nanoresveratrol targeting integrin αvβ3 in cancer therapies.
Collapse
|
19
|
Hamza MS, Mousa SA. Cancer-Associated Thrombosis: Risk Factors, Molecular Mechanisms, Future Management. Clin Appl Thromb Hemost 2021; 26:1076029620954282. [PMID: 32877229 PMCID: PMC7476343 DOI: 10.1177/1076029620954282] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Venous thromboembolism (VTE) is a major health problem in patients with cancer. Cancer augments thrombosis and causes cancer-associated thrombosis (CAT) and vice versa thrombosis amplifies cancer progression, termed thrombosis-associated cancer (TAC). Risk factors that lead to CAT and TAC include cancer type, chemotherapy, radiotherapy, hormonal therapy, anti-angiogenesis therapy, surgery, or supportive therapy with hematopoietic growth factors. There are some other factors that have an effect on CAT and TAC such as tissue factor, neutrophil extracellular traps (NETs) released in response to cancer, cancer procoagulant, and cytokines. Oncogenes, estrogen hormone, and thyroid hormone with its integrin αvβ3 receptor promote angiogenesis. Lastly, patient-related factors can play a role in development of thrombosis in cancer. Low-molecular-weight heparin and direct oral anticoagulants (DOACs) are used in VTE prophylaxis and treatment rather than vitamin K antagonist. Now, there are new directions for potential management of VTE in patients with cancer such as euthyroid, blockade of thyroid hormone receptor on integrin αvβ3, sulfated non-anticoagulant heparin, inhibition of NETs and stratifying low and high-risk patients with significant bleeding problems with DOACs.
Collapse
Affiliation(s)
- Marwa S. Hamza
- Clinical Pharmacy Practice Department, Faculty of Pharmacy, The British University in Egypt, Cairo, Egypt
- The Center for Drug Research and Development (CDRD), Faculty of Pharmacy, The British University in Egypt, Cairo, Egypt
| | - Shaker A. Mousa
- The Pharmaceutical Research Institute, Albany College of Pharmacy and Health Sciences, Rensselaer, NY, USA
- Shaker A. Mousa, PhD, The Pharmaceutical Research Institute, Albany College of Pharmacy and Health Sciences, 1 Discovery Drive, Rensselaer, NY 12144, USA.
| |
Collapse
|
20
|
Yang YCSH, Ko PJ, Pan YS, Lin HY, Whang-Peng J, Davis PJ, Wang K. Role of thyroid hormone-integrin αvβ3-signal and therapeutic strategies in colorectal cancers. J Biomed Sci 2021; 28:24. [PMID: 33827580 PMCID: PMC8028191 DOI: 10.1186/s12929-021-00719-5] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2020] [Accepted: 03/24/2021] [Indexed: 02/08/2023] Open
Abstract
Thyroid hormone analogues-particularly, L-thyroxine (T4) has been shown to be relevant to the functions of a variety of cancers. Integrin αvβ3 is a plasma membrane structural protein linked to signal transduction pathways that are critical to cancer cell proliferation and metastasis. Thyroid hormones, T4 and to a less extend T3 bind cell surface integrin αvβ3, to stimulate the extracellular signal-regulated kinase 1/2 (ERK1/2) pathway to stimulate cancer cell growth. Thyroid hormone analogues also engage in crosstalk with the epidermal growth factor receptor (EGFR)-Ras pathway. EGFR signal generation and, downstream, transduction of Ras/Raf pathway signals contribute importantly to tumor cell progression. Mutated Ras oncogenes contribute to chemoresistance in colorectal carcinoma (CRC); chemoresistance may depend in part on the activity of ERK1/2 pathway. In this review, we evaluate the contribution of thyroxine interacting with integrin αvβ3 and crosstalking with EGFR/Ras signaling pathway non-genomically in CRC proliferation. Tetraiodothyroacetic acid (tetrac), the deaminated analogue of T4, and its nano-derivative, NDAT, have anticancer functions, with effectiveness against CRC and other tumors. In Ras-mutant CRC cells, tetrac derivatives may overcome chemoresistance to other drugs via actions initiated at integrin αvβ3 and involving, downstream, the EGFR-Ras signaling pathways.
Collapse
Affiliation(s)
- Yu-Chen S H Yang
- Joint Biobank, Office of Human Research, Taipei Medical University, Taipei, 11031, Taiwan
| | - Po-Jui Ko
- School of Medicine, I-Shou University, Kaohsiung, 84001, Taiwan.,Department of Pediatrics, E-DA Hospital, Kaohsiung, 82445, Taiwan
| | - Yi-Shin Pan
- Graduate Institute of Nanomedicine and Medical Engineering, College of Medical Engineering, Taipei Medical University, Taipei, 11031, Taiwan
| | - Hung-Yun Lin
- Graduate Institute for Cancer Biology and Drug Discovery, College of Medical Science and Technology, Taipei Medical University, Taipei, 11031, Taiwan. .,Cancer Center, Wan Fang Hospital, Taipei Medical University, Taipei, 11031, Taiwan. .,Traditional Herbal Medicine Research Center of Taipei Medical University Hospital, Taipei Medical University, Taipei, 11031, Taiwan. .,TMU Research Center of Cancer Translational Medicine, Taipei Medical University, Taipei, 11031, Taiwan. .,Pharmaceutical Research Institute, Albany College of Pharmacy and Health Sciences, Albany, NY, 12144, USA.
| | - Jacqueline Whang-Peng
- Graduate Institute for Cancer Biology and Drug Discovery, College of Medical Science and Technology, Taipei Medical University, Taipei, 11031, Taiwan.,Cancer Center, Wan Fang Hospital, Taipei Medical University, Taipei, 11031, Taiwan
| | - Paul J Davis
- Pharmaceutical Research Institute, Albany College of Pharmacy and Health Sciences, Albany, NY, 12144, USA.,Albany Medical College, Albany, NY, 12144, USA
| | - Kuan Wang
- Graduate Institute of Nanomedicine and Medical Engineering, College of Medical Engineering, Taipei Medical University, Taipei, 11031, Taiwan
| |
Collapse
|
21
|
Huang TY, Chang TC, Chin YT, Pan YS, Chang WJ, Liu FC, Hastuti ED, Chiu SJ, Wang SH, Changou CA, Li ZL, Chen YR, Chu HR, Shih YJ, Cheng RH, Wu A, Lin HY, Wang K, Whang-Peng J, Mousa SA, Davis PJ. NDAT Targets PI3K-Mediated PD-L1 Upregulation to Reduce Proliferation in Gefitinib-Resistant Colorectal Cancer. Cells 2020; 9:cells9081830. [PMID: 32756527 PMCID: PMC7464180 DOI: 10.3390/cells9081830] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2020] [Revised: 07/23/2020] [Accepted: 07/31/2020] [Indexed: 12/12/2022] Open
Abstract
The property of drug-resistance may attenuate clinical therapy in cancer cells, such as chemoresistance to gefitinib in colon cancer cells. In previous studies, overexpression of PD-L1 causes proliferation and metastasis in cancer cells; therefore, the PD-L1 pathway allows tumor cells to exert an adaptive resistance mechanism in vivo. Nano-diamino-tetrac (NDAT) has been shown to enhance the anti-proliferative effect induced by first-line chemotherapy in various types of cancer, including colorectal cancer (CRC). In this work, we attempted to explore whether NDAT could enhance the anti-proliferative effect of gefitinib in CRC and clarified the mechanism of their interaction. The MTT assay was utilized to detect a reduction in cell proliferation in four primary culture tumor cells treated with gefitinib or NDAT. The gene expression of PD-L1 and other tumor growth-related molecules were quantified by quantitative polymerase chain reaction (qPCR). Furthermore, the identification of PI3K and PD-L1 in treated CRC cells were detected by western blotting analysis. PD-L1 presentation in HCT116 xenograft tumors was characterized by specialized immunohistochemistry (IHC) and the hematoxylin and eosin stain (H&E stain). The correlations between the change in PD-L1 expression and tumorigenic characteristics were also analyzed. (3) The PD-L1 was highly expressed in Colo_160224 rather than in the other three primary CRC cells and HCT-116 cells. Moreover, the PD-L1 expression was decreased by gefitinib (1 µM and 10 µM) in two cells (Colo_150624 and 160426), but 10 µM gefitinib stimulated PD-L1 expression in gefitinib-resistant primary CRC Colo_160224 cells. Inactivated PI3K reduced PD-L1 expression and proliferation in CRC Colo_160224 cells. Gefitinib didn’t inhibit PD-L1 expression and PI3K activation in gefitinib-resistant Colo_160224 cells. However, NDAT inhibited PI3K activation as well as PD-L1 accumulation in gefitinib-resistant Colo_160224 cells. The combined treatment of NDAT and gefitinib inhibited pPI3K and PD-L1 expression and cell proliferation. Additionally, NDAT reduced PD-L1 accumulation and tumor growth in the HCT116 (K-RAS mutant) xenograft experiment. (4) Gefitinib might suppress PD-L1 expression but did not inhibit proliferation through PI3K in gefitinib-resistant primary CRC cells. However, NDAT not only down-regulated PD-L1 expression via blocking PI3K activation but also inhibited cell proliferation in gefitinib-resistant CRCs.
Collapse
Affiliation(s)
- Tung-Yung Huang
- Graduate Institute of Cancer Biology and Drug Discovery, College of Medical Science and Technology, Taipei Medical University, Taipei 11031, Taiwan; (T.-Y.H.); (Y.-S.P.); (W.-J.C.); (Z.-L.L.); (Y.-R.C.); (H.-R.C.); (Y.-J.S.); (J.W.-P.)
- Graduate Institute of Nanomedicine and Medical Engineering, College of Medical Engineering, Taipei Medical University, Taipei 11031, Taiwan;
| | - Tung-Cheng Chang
- Division of Colorectal Surgery, Department of Surgery, Taipei Medical University Shuang Ho Hospital, New Taipei City 235041, Taiwan;
- Division of Colorectal Surgery, Department of Surgery, School of Medicine, College of Medicine, Taipei Medical University, Taipei 11031, Taiwan
| | - Yu-Tang Chin
- School of Dentistry, Taipei Medical University, Taipei 11031, Taiwan;
| | - Yi-Shin Pan
- Graduate Institute of Cancer Biology and Drug Discovery, College of Medical Science and Technology, Taipei Medical University, Taipei 11031, Taiwan; (T.-Y.H.); (Y.-S.P.); (W.-J.C.); (Z.-L.L.); (Y.-R.C.); (H.-R.C.); (Y.-J.S.); (J.W.-P.)
- Graduate Institute of Nanomedicine and Medical Engineering, College of Medical Engineering, Taipei Medical University, Taipei 11031, Taiwan;
| | - Wong-Jin Chang
- Graduate Institute of Cancer Biology and Drug Discovery, College of Medical Science and Technology, Taipei Medical University, Taipei 11031, Taiwan; (T.-Y.H.); (Y.-S.P.); (W.-J.C.); (Z.-L.L.); (Y.-R.C.); (H.-R.C.); (Y.-J.S.); (J.W.-P.)
- Graduate Institute of Nanomedicine and Medical Engineering, College of Medical Engineering, Taipei Medical University, Taipei 11031, Taiwan;
| | - Feng-Cheng Liu
- Division of Rheumatology, Immunology, and Allergy, Tri-Service General Hospital, Taipei 114, Taiwan;
| | - Ema Dwi Hastuti
- School of Pharmacy, College of Pharmacy, Taipei Medical University, Taipei 11031, Taiwan; (E.D.H.); (S.-J.C.)
| | - Shih-Jiuan Chiu
- School of Pharmacy, College of Pharmacy, Taipei Medical University, Taipei 11031, Taiwan; (E.D.H.); (S.-J.C.)
| | - Shwu-Huey Wang
- Department of Biochemistry and Molecular Cell Biology, College of Medicine, Taipei Medical University, Taipei 11031, Taiwan;
- Core Facility Center, Department of Research Development, Taipei Medical University, Taipei 11031, Taiwan;
| | - Chun A. Changou
- Core Facility Center, Department of Research Development, Taipei Medical University, Taipei 11031, Taiwan;
- TMU Research Center of Cancer Translational Medicine, Taipei Medical University, Taipei 11031, Taiwan
| | - Zi-Lin Li
- Graduate Institute of Cancer Biology and Drug Discovery, College of Medical Science and Technology, Taipei Medical University, Taipei 11031, Taiwan; (T.-Y.H.); (Y.-S.P.); (W.-J.C.); (Z.-L.L.); (Y.-R.C.); (H.-R.C.); (Y.-J.S.); (J.W.-P.)
- Graduate Institute of Nanomedicine and Medical Engineering, College of Medical Engineering, Taipei Medical University, Taipei 11031, Taiwan;
| | - Yi-Ru Chen
- Graduate Institute of Cancer Biology and Drug Discovery, College of Medical Science and Technology, Taipei Medical University, Taipei 11031, Taiwan; (T.-Y.H.); (Y.-S.P.); (W.-J.C.); (Z.-L.L.); (Y.-R.C.); (H.-R.C.); (Y.-J.S.); (J.W.-P.)
- Graduate Institute of Nanomedicine and Medical Engineering, College of Medical Engineering, Taipei Medical University, Taipei 11031, Taiwan;
| | - Hung-Ru Chu
- Graduate Institute of Cancer Biology and Drug Discovery, College of Medical Science and Technology, Taipei Medical University, Taipei 11031, Taiwan; (T.-Y.H.); (Y.-S.P.); (W.-J.C.); (Z.-L.L.); (Y.-R.C.); (H.-R.C.); (Y.-J.S.); (J.W.-P.)
- Graduate Institute of Nanomedicine and Medical Engineering, College of Medical Engineering, Taipei Medical University, Taipei 11031, Taiwan;
| | - Ya-Jung Shih
- Graduate Institute of Cancer Biology and Drug Discovery, College of Medical Science and Technology, Taipei Medical University, Taipei 11031, Taiwan; (T.-Y.H.); (Y.-S.P.); (W.-J.C.); (Z.-L.L.); (Y.-R.C.); (H.-R.C.); (Y.-J.S.); (J.W.-P.)
- Graduate Institute of Nanomedicine and Medical Engineering, College of Medical Engineering, Taipei Medical University, Taipei 11031, Taiwan;
| | - R. Holland Cheng
- Department of Molecular and Cellular Biology, College of Biological Sciences, University of California, Davis, CA 95616, USA;
| | - Alexander Wu
- The Ph.D. Program for Translational Medicine, College of Medical Science and Technology, Taipei Medical University, Taipei 110, Taiwan
- Correspondence: (A.W.); (H.-Y.L.); Tel.: +886-2-2-697-2035 (A.W.); +886-2-7361661 (H.-Y.L.)
| | - Hung-Yun Lin
- Graduate Institute of Cancer Biology and Drug Discovery, College of Medical Science and Technology, Taipei Medical University, Taipei 11031, Taiwan; (T.-Y.H.); (Y.-S.P.); (W.-J.C.); (Z.-L.L.); (Y.-R.C.); (H.-R.C.); (Y.-J.S.); (J.W.-P.)
- Graduate Institute for Cancer Molecular Biology and Drug Discovery, College of Medical Science and Technology, Taipei Medical University, Taipei 11031, Taiwan
- Integrated Laboratory, Center of Translational Medicine, Taipei Medical University, Taipei 11031, Taiwan
- Cancer Center, Wan Fang Hospital, Taipei Medical University, Taipei 11031, Taiwan
- Traditional Herbal Medicine Research Center of Taipei Medical University Hospital, Taipei Medical University, Taipei 11031, Taiwan
- Pharmaceutical Research Institute, Albany College of Pharmacy and Health Sciences, Albany, NY 12208, USA; (S.A.M.); (P.J.D.)
- Correspondence: (A.W.); (H.-Y.L.); Tel.: +886-2-2-697-2035 (A.W.); +886-2-7361661 (H.-Y.L.)
| | - Kuan Wang
- Graduate Institute of Nanomedicine and Medical Engineering, College of Medical Engineering, Taipei Medical University, Taipei 11031, Taiwan;
| | - Jacqueline Whang-Peng
- Graduate Institute of Cancer Biology and Drug Discovery, College of Medical Science and Technology, Taipei Medical University, Taipei 11031, Taiwan; (T.-Y.H.); (Y.-S.P.); (W.-J.C.); (Z.-L.L.); (Y.-R.C.); (H.-R.C.); (Y.-J.S.); (J.W.-P.)
- Graduate Institute for Cancer Molecular Biology and Drug Discovery, College of Medical Science and Technology, Taipei Medical University, Taipei 11031, Taiwan
- Cancer Center, Wan Fang Hospital, Taipei Medical University, Taipei 11031, Taiwan
| | - Shaker A Mousa
- Pharmaceutical Research Institute, Albany College of Pharmacy and Health Sciences, Albany, NY 12208, USA; (S.A.M.); (P.J.D.)
| | - Paul J. Davis
- Pharmaceutical Research Institute, Albany College of Pharmacy and Health Sciences, Albany, NY 12208, USA; (S.A.M.); (P.J.D.)
- Department of Medicine, Albany Medical College, Albany, NY 12208, USA
| |
Collapse
|
22
|
Davis PJ, Lin HY, Hercbergs A, Keating KA, Mousa SA. Coronaviruses and Integrin αvβ3: Does Thyroid Hormone Modify the Relationship? Endocr Res 2020; 45:210-215. [PMID: 32628899 DOI: 10.1080/07435800.2020.1767127] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
BACKGROUND Uptake of coronaviruses by target cells involves binding of the virus by cell ectoenzymes. For the etiologic agent of COVID-19 (SARS-CoV-2), a receptor has been identified as angiotensin-converting enzyme-2 (ACE2). Recently it has been suggested that plasma membrane integrins may be involved in the internalization and replication of clinically important coronaviruses. For example, integrin αvβ3 is involved in the cell uptake of a model porcine enteric α-coronavirus that causes human epidemics. ACE2 modulates the intracellular signaling generated by integrins. OBJECTIVE We propose that the cellular internalization of αvβ3 applies to uptake of coronaviruses bound to the integrin, and we evaluate the possibility that clinical host T4 may contribute to target cell uptake of coronavirus and to the consequence of cell uptake of the virus. DISCUSSION AND CONCLUSIONS The viral binding domain of the integrin is near the Arg-Gly-Asp (RGD) peptide-binding site and RGD molecules can affect virus binding. In this same locale on integrin αvβ3 is the receptor for thyroid hormone analogues, particularly, L-thyroxine (T4). By binding to the integrin, T4 has been shown to modulate the affinity of the integrin for other proteins, to control internalization of αvβ3 and to regulate the expression of a panel of cytokine genes, some of which are components of the 'cytokine storm' of viral infections. If T4 does influence coronavirus uptake by target cells, other thyroid hormone analogues, such as deaminated T4 and deaminated 3,5,3'-triiodo-L-thyronine (T3), are candidate agents to block the virus-relevant actions of T4 at integrin αvβ3 and possibly restrict virus uptake.
Collapse
Affiliation(s)
- Paul J Davis
- Department of Medicine, Albany Medical College , Albany, NY, USA
- Pharmaceutical Research Institute, Albany College of Pharmacy and Health Sciences , Rensselaer, NY, USA
| | - Hung-Yun Lin
- Ph.D. Program for Cancer Molecular Biology and Drug Discovery, College of Medical Science and Technology, Taipei Medical University , Taipei, Taiwan
- Taipei Cancer Center, Taipei Medical University , Taipei, Taiwan
- Traditional Herbal Medicine Research Center of Taipei Medical University Hospital, Taipei Medical University , Taipei, Taiwan
| | - Aleck Hercbergs
- Department of Radiation Oncology, The Cleveland Clinic , Cleveland, OH, USA
| | - Kelly A Keating
- Pharmaceutical Research Institute, Albany College of Pharmacy and Health Sciences , Rensselaer, NY, USA
| | - Shaker A Mousa
- Pharmaceutical Research Institute, Albany College of Pharmacy and Health Sciences , Rensselaer, NY, USA
| |
Collapse
|
23
|
Davis PJ, Lin HY, Hercbergs A, Mousa SA. Actions of L-thyroxine (T4) and Tetraiodothyroacetic Acid (Tetrac) on Gene Expression in Thyroid Cancer Cells. Genes (Basel) 2020; 11:genes11070755. [PMID: 32645835 PMCID: PMC7396989 DOI: 10.3390/genes11070755] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2020] [Revised: 06/26/2020] [Accepted: 07/01/2020] [Indexed: 12/19/2022] Open
Abstract
The clinical behavior of thyroid cancers is seen to reflect inherent transcriptional activities of mutated genes and trophic effects on tumors of circulating pituitary thyrotropin (TSH). The thyroid hormone, L-thyroxine (T4), has been shown to stimulate proliferation of a large number of different forms of cancer. This activity of T4 is mediated by a cell surface receptor on the extracellular domain of integrin αvβ3. In this brief review, we describe what is known about T4 as a circulating trophic factor for differentiated (papillary and follicular) thyroid cancers. Given T4′s cancer-stimulating activity in differentiated thyroid cancers, it was not surprising to find that genomic actions of T4 were anti-apoptotic. Transduction of the T4-generated signal at the integrin primarily involved mitogen-activated protein kinase (MAPK). In thyroid C cell-origin medullary carcinoma of the thyroid (MTC), effects of thyroid hormone analogues, such as tetraiodothyroacetic acid (tetrac), include pro-angiogenic and apoptosis-linked genes. Tetrac is an inhibitor of the actions of T4 at αvβ3, and it is assumed, but not yet proved, that the anti-angiogenic and pro-apoptotic actions of tetrac in MTC cells are matched by T4 effects that are pro-angiogenic and anti-apoptotic. We also note that papillary thyroid carcinoma cells may express the leptin receptor, and circulating leptin from adipocytes may stimulate tumor cell proliferation. Transcription was stimulated by leptin in anaplastic, papillary, and follicular carcinomas of genes involved in invasion, such as matrix metalloproteinases (MMPs). In summary, thyroid hormone analogues may act at their receptor on integrin αvβ3 in a variety of types of thyroid cancer to modulate transcription of genes relevant to tumor invasiveness, apoptosis, and angiogenesis. These effects are independent of TSH.
Collapse
Affiliation(s)
- Paul J. Davis
- Department of Medicine, Albany Medical College, Albany, NY 12208, USA
- Pharmaceutical Research Institute, Albany College of Pharmacy and Health Sciences, Rensselaer, NY 12144, USA;
- Correspondence:
| | - Hung-Yun Lin
- Ph.D. Program for Cancer Molecular Biology and Drug Discovery, College of Medical Science and Technology, Taipei Medical University, Taipei 11031, Taiwan;
- Cancer Center, Wan Fang Hospital, Taipei Medical University, Taipei 11031, Taiwan
- Traditional Herbal Medicine Research Center of Taipei Medical University Hospital, Taipei Medical University, Taipei 11031, Taiwan
| | - Aleck Hercbergs
- Department of Radiation Oncology, The Cleveland Clinic, Cleveland, OH 44195, USA;
| | - Shaker A. Mousa
- Pharmaceutical Research Institute, Albany College of Pharmacy and Health Sciences, Rensselaer, NY 12144, USA;
| |
Collapse
|
24
|
Davis PJ, Mousa SA, Lin HY. Nongenomic Actions of Thyroid Hormone: The Integrin Component. Physiol Rev 2020; 101:319-352. [PMID: 32584192 DOI: 10.1152/physrev.00038.2019] [Citation(s) in RCA: 70] [Impact Index Per Article: 17.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
The extracellular domain of plasma membrane integrin αvβ3 contains a cell surface receptor for thyroid hormone analogues. The receptor is largely expressed and activated in tumor cells and rapidly dividing endothelial cells. The principal ligand for this receptor is l-thyroxine (T4), usually regarded only as a prohormone for 3,5,3'-triiodo-l-thyronine (T3), the hormone analogue that expresses thyroid hormone in the cell nucleus via nuclear receptors that are unrelated structurally to integrin αvβ3. At the integrin receptor for thyroid hormone, T4 regulates cancer and endothelial cell division, tumor cell defense pathways (such as anti-apoptosis), and angiogenesis and supports metastasis, radioresistance, and chemoresistance. The molecular mechanisms involve signal transduction via mitogen-activated protein kinase and phosphatidylinositol 3-kinase, differential expression of multiple genes related to the listed cell processes, and regulation of activities of other cell surface proteins, such as vascular growth factor receptors. Tetraiodothyroacetic acid (tetrac) is derived from T4 and competes with binding of T4 to the integrin. In the absence of T4, tetrac and chemically modified tetrac also have anticancer effects that culminate in altered gene transcription. Tumor xenografts are arrested by unmodified and chemically modified tetrac. The receptor requires further characterization in terms of contributions to nonmalignant cells, such as platelets and phagocytes. The integrin αvβ3 receptor for thyroid hormone offers a large panel of cellular actions that are relevant to cancer biology and that may be regulated by tetrac derivatives.
Collapse
Affiliation(s)
- Paul J Davis
- Pharmaceutical Research Institute, Albany College of Pharmacy and Health Sciences, Rensselaer, New York; Department of Medicine, Albany Medical College, Albany, New York; Ph.D. Program for Cancer Molecular Biology and Drug Discovery, College of Medical Science and Technology, Taipei Medical University, Taipei, Taiwan; Taipei Cancer Center, Taipei Medical University, Taipei, Taiwan; and Traditional Herbal Medicine Research Center of Taipei Medical University Hospital, Taipei Medical University, Taipei, Taiwan
| | - Shaker A Mousa
- Pharmaceutical Research Institute, Albany College of Pharmacy and Health Sciences, Rensselaer, New York; Department of Medicine, Albany Medical College, Albany, New York; Ph.D. Program for Cancer Molecular Biology and Drug Discovery, College of Medical Science and Technology, Taipei Medical University, Taipei, Taiwan; Taipei Cancer Center, Taipei Medical University, Taipei, Taiwan; and Traditional Herbal Medicine Research Center of Taipei Medical University Hospital, Taipei Medical University, Taipei, Taiwan
| | - Hung-Yun Lin
- Pharmaceutical Research Institute, Albany College of Pharmacy and Health Sciences, Rensselaer, New York; Department of Medicine, Albany Medical College, Albany, New York; Ph.D. Program for Cancer Molecular Biology and Drug Discovery, College of Medical Science and Technology, Taipei Medical University, Taipei, Taiwan; Taipei Cancer Center, Taipei Medical University, Taipei, Taiwan; and Traditional Herbal Medicine Research Center of Taipei Medical University Hospital, Taipei Medical University, Taipei, Taiwan
| |
Collapse
|
25
|
Ramezani P, Abnous K, Taghdisi SM, Zahiri M, Ramezani M, Alibolandi M. Targeted MMP-2 responsive chimeric polymersomes for therapy against colorectal cancer. Colloids Surf B Biointerfaces 2020; 193:111135. [PMID: 32447200 DOI: 10.1016/j.colsurfb.2020.111135] [Citation(s) in RCA: 37] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2020] [Revised: 05/09/2020] [Accepted: 05/12/2020] [Indexed: 12/12/2022]
Abstract
In the current study, polyethylene glycol (PEG) was linked to polylactide (PLA) through the synthetic peptide PVGLIG which can be selectively cleaved by the tumor-associated matrix metalloproteinase 2 (MMP-2) enzyme. The synthesized chimeric triblock polymer of PEG-b-PVGLIG-PLA was implemented to form nanoscale self-assemble chimeric polymersomes. The hydrophobic SN38 was loaded into polymersomes with 70.3% ± 3.0% encapsulation efficiency demonstrating monodispersed spherical morphologies with 172 ± 30 nm dimension. The prepared chimeric polymersomal formulation provided controlled release of SN38 at physiological condition while illustrating seven-folds higher release rate when exposed to MMP-2 enzyme. At the next stage, AS1411 aptamer was conjugated onto the surface of MMP-2 responsive polymersomal formulation in order to provide guided drug delivery against nucleolin positive cells. In vitro cellular toxicity assay against C26 cell line (nucleolin positive) demonstrated significantly higher toxicity of targeted formulation in comparison with non-targeted one in low SN38 concentrations (0.15-1.25 μg/mL). In vivo study in mice bearing subcutaneous C26 tumor showed higher therapeutic index for MMP-2 responsive chimeric polymersomal formulation of SN38 in comparison with non-responsive one. On the other hand, AS1411 aptamer-targeted MMP-2 responsive chimeric polymersomal formulation exhibited highest therapeutic index compared to other groups. It could be concluded that the targeted chimeric polymersomes bearing both cleavable peptide sequence between their blocks and targeting ligand on their surface, provide favorable characteristics as an ideal delivery system against cancer.
Collapse
Affiliation(s)
- Pouria Ramezani
- Pharmaceutical Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran; Department of Pharmaceutical Biotechnology, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Khalil Abnous
- Pharmaceutical Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran; Department of Medicinal Chemistry, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Seyed Mohammad Taghdisi
- Targeted Drug Delivery Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Mahsa Zahiri
- Pharmaceutical Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran; Department of Pharmaceutical Nanotechnology, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Mohammad Ramezani
- Pharmaceutical Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran; Department of Pharmaceutical Biotechnology, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran.
| | - Mona Alibolandi
- Pharmaceutical Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran; Department of Pharmaceutical Biotechnology, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran.
| |
Collapse
|
26
|
Debreli Coskun M, Sudha T, Bharali DJ, Celikler S, Davis PJ, Mousa SA. αvβ3 Integrin Antagonists Enhance Chemotherapy Response in an Orthotopic Pancreatic Cancer Model. Front Pharmacol 2020; 11:95. [PMID: 32174830 PMCID: PMC7056702 DOI: 10.3389/fphar.2020.00095] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2019] [Accepted: 01/27/2020] [Indexed: 12/19/2022] Open
Abstract
Pancreatic cancer decreases survival time and quality of life because of drug resistance and peripheral neuropathy during conventional treatment. This study was undertaken to investigate whether αvβ3 integrin receptor antagonist compounds NDAT and XT199 can suppress the development of cisplatin resistance and cisplatin-induced peripheral neuropathy in an orthotopic pancreatic SUIT2-luc cancer cell mouse model. Anticancer effects of these compounds and their combination with cisplatin were assessed in this tumor mouse model with bioluminescent signaling and histopathology, and a cytokine assay was used to examine expression of inflammatory cytokines IL-1β, IL-6, IL-10, and TNF-α from plasma samples. To determine the neuroprotective effects of the compounds on cisplatin-induced peripheral neuropathy, behavioral hind-limb posture of the mice was evaluated. The combination therapy of NDAT or XT199 with cisplatin elicited greater inhibition of tumor growth and increased tumor necrosis compared to cisplatin alone. NDAT and XT199 in combination with cisplatin significantly decreased expression of pro-inflammatory cytokines IL-1β, IL-6, and TNF-α and significantly increased expression of anti-inflammatory cytokine IL-10 in comparison to cisplatin alone. Cisplatin-treated groups showed stocking-glove hind-limb posture, whereas NDAT and XT199 with cisplatin-treated groups displayed normal hind-limb posture. Results clearly suggest that NDAT and XT199 treatment with cisplatin that inactivates NF-κB may contribute to increased antitumor and anti-inflammatory efficacy as well as alleviate cisplatin-mediated loss of motor function in this pancreatic tumor mouse model.
Collapse
Affiliation(s)
- Melis Debreli Coskun
- Pharmaceutical Research Institute, Albany College of Pharmacy and Health Sciences, Rensselaer, NY, United States.,Department of Biology, Faculty of Arts and Sciences, Uludag University, Bursa, Turkey
| | - Thangirala Sudha
- Pharmaceutical Research Institute, Albany College of Pharmacy and Health Sciences, Rensselaer, NY, United States
| | - Dhruba J Bharali
- Pharmaceutical Research Institute, Albany College of Pharmacy and Health Sciences, Rensselaer, NY, United States
| | - Serap Celikler
- Department of Biology, Faculty of Arts and Sciences, Uludag University, Bursa, Turkey
| | - Paul J Davis
- Pharmaceutical Research Institute, Albany College of Pharmacy and Health Sciences, Rensselaer, NY, United States.,Department of Medicine, Albany Medical College, Albany, NY, United States
| | - Shaker A Mousa
- Pharmaceutical Research Institute, Albany College of Pharmacy and Health Sciences, Rensselaer, NY, United States
| |
Collapse
|
27
|
NDAT suppresses pro-inflammatory gene expression to enhance resveratrol-induced anti-proliferation in oral cancer cells. Food Chem Toxicol 2020; 136:111092. [DOI: 10.1016/j.fct.2019.111092] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2019] [Revised: 10/25/2019] [Accepted: 12/24/2019] [Indexed: 12/13/2022]
|
28
|
Sami SA, Darwish NHE, Barile ANM, Mousa SA. Current and Future Molecular Targets for Acute Myeloid Leukemia Therapy. Curr Treat Options Oncol 2020; 21:3. [PMID: 31933183 DOI: 10.1007/s11864-019-0694-6] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
OPINION STATEMENT Acute myeloid leukemia (AML) disease prognosis is poor and there is a high risk of chemo-resistant relapse for both young and old patients. Thus, there is a demand for alternative and target-specific drugs to improve the 5-year survival rate. Current treatment mainstays include chemotherapy, or mutation-specific targeting molecules including FLT3 inhibitors, IDH inhibitors, and monoclonal antibodies. Efforts to devise new, targeted therapy have included recent advances in methods for high-throughput genomic screening and the availability of computer-assisted techniques for the design of novel agents predicted to specifically inhibit mutant molecules involved in leukemogenesis. Crosstalk between the leukemia cells and the bone marrow microenvironment through cell surface molecules, such as the integrins αvβ3 and αvβ5, might influence drug response and AML progression. This review article focuses on current AML treatment options, new AML targeted therapies, the role of integrins in AML progression, and a potential therapeutic agent-integrin αvβ3 antagonist.
Collapse
Affiliation(s)
- Shaheedul A Sami
- Pharmaceutical Research Institute, Albany College of Pharmacy and Health Sciences, 1 Discovery Drive, Rensselaer, NY, USA
| | - Noureldien H E Darwish
- Pharmaceutical Research Institute, Albany College of Pharmacy and Health Sciences, 1 Discovery Drive, Rensselaer, NY, USA.,Hematology Unit, Clinical Pathology Department, Mansoura Faculty of Medicine, Mansoura University, Mansoura, Egypt
| | - Amanda N M Barile
- Pharmaceutical Research Institute, Albany College of Pharmacy and Health Sciences, 1 Discovery Drive, Rensselaer, NY, USA
| | - Shaker A Mousa
- Pharmaceutical Research Institute, Albany College of Pharmacy and Health Sciences, 1 Discovery Drive, Rensselaer, NY, USA.
| |
Collapse
|
29
|
Yang YCS, Li ZL, Shih YJ, Bennett JA, Whang-Peng J, Lin HY, Davis PJ, Wang K. Herbal Medicines Attenuate PD-L1 Expression to Induce Anti-Proliferation in Obesity-Related Cancers. Nutrients 2019; 11:nu11122979. [PMID: 31817534 PMCID: PMC6949899 DOI: 10.3390/nu11122979] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2019] [Revised: 11/27/2019] [Accepted: 12/02/2019] [Indexed: 12/12/2022] Open
Abstract
Pro-inflammatory hormones and cytokines (leptin, tumor necrosis factor (TNF)-α, and interleukin (IL)-6) rise in obesity. Elevated levels of hormones and cytokines are linked with several comorbidities such as diabetes, heart disease, and cancer. The checkpoint programmed cell death protein 1 (PD-1)/programmed death-ligand 1 (PD-L1) plays an important role in obesity and cancer proliferation. L-thyroxine (T4) and steroid hormones up-regulate PD-L1 accumulation and promote inflammation in cancer cells and diabetics. On the other hand, resveratrol and other herbal medicines suppress PD-L1 accumulation and reduce diabetic effects. In addition, they induce anti-cancer proliferation in various types of cancer cells via different mechanisms. In the current review, we discuss new findings and visions into the antagonizing effects of hormones on herbal medicine-induced anti-cancer properties.
Collapse
Affiliation(s)
- Yu-Chen S.H. Yang
- Joint Biobank, Office of Human Research, Taipei Medical University, Taipei 11031, Taiwan;
| | - Zi-Lin Li
- Graduate Institute of Nanomedicine and Medical Engineering, College of Medical Engineering, Taipei Medical University, Taipei 11031, Taiwan; (Z.-L.L.); (Y.-J.S.); (J.W.-P.); (K.W.)
- Taipei Cancer Center, Taipei Medical University, Taipei 11031, Taiwan
| | - Ya-Jung Shih
- Graduate Institute of Nanomedicine and Medical Engineering, College of Medical Engineering, Taipei Medical University, Taipei 11031, Taiwan; (Z.-L.L.); (Y.-J.S.); (J.W.-P.); (K.W.)
- Taipei Cancer Center, Taipei Medical University, Taipei 11031, Taiwan
| | - James A. Bennett
- Center for Immunology and Microbial Diseases, Albany Medical College, Albany, NY 12208, USA;
| | - Jaqueline Whang-Peng
- Graduate Institute of Nanomedicine and Medical Engineering, College of Medical Engineering, Taipei Medical University, Taipei 11031, Taiwan; (Z.-L.L.); (Y.-J.S.); (J.W.-P.); (K.W.)
- Taipei Cancer Center, Taipei Medical University, Taipei 11031, Taiwan
- Cancer Center, Wang-Fan Hospital, Taipei Medical University, Taipei 11031, Taiwan
- Graduate Institute of Cancer Biology and Drug Discovery, College of Medical Science and Technology, Taipei Medical University, Taipei 11031, Taiwan
| | - Hung-Yun Lin
- Graduate Institute of Nanomedicine and Medical Engineering, College of Medical Engineering, Taipei Medical University, Taipei 11031, Taiwan; (Z.-L.L.); (Y.-J.S.); (J.W.-P.); (K.W.)
- Taipei Cancer Center, Taipei Medical University, Taipei 11031, Taiwan
- Cancer Center, Wang-Fan Hospital, Taipei Medical University, Taipei 11031, Taiwan
- Graduate Institute of Cancer Biology and Drug Discovery, College of Medical Science and Technology, Taipei Medical University, Taipei 11031, Taiwan
- TMU Research Center of Cancer Translational Medicine, Taipei Medical University, Taipei 11031, Taiwan
- Traditional Herbal Medicine Research Center of Taipei Medical University Hospital, Taipei Medical University, Taipei 11031, Taiwan
- Correspondence:
| | - Paul J. Davis
- Pharmaceutical Research Institute, Albany College of Pharmacy and Health Sciences, Rensselaer, NY 12208, USA;
- Department of Medicine, Albany Medical College, Albany, NY 12208, USA
| | - Kuan Wang
- Graduate Institute of Nanomedicine and Medical Engineering, College of Medical Engineering, Taipei Medical University, Taipei 11031, Taiwan; (Z.-L.L.); (Y.-J.S.); (J.W.-P.); (K.W.)
- Taipei Cancer Center, Taipei Medical University, Taipei 11031, Taiwan
| |
Collapse
|
30
|
Schmohl KA, Mueller AM, Dohmann M, Spellerberg R, Urnauer S, Schwenk N, Ziegler SI, Bartenstein P, Nelson PJ, Spitzweg C. Integrin αvβ3-Mediated Effects of Thyroid Hormones on Mesenchymal Stem Cells in Tumor Angiogenesis. Thyroid 2019; 29:1843-1857. [PMID: 31816265 DOI: 10.1089/thy.2019.0413] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Background: Several clinical and experimental studies have implicated thyroid hormones in cancer progression. Cancer-relevant effects, including stimulation of tumor growth and new blood vessel formation by angiogenesis, are thought to be mediated by a nonclassical signaling pathway initiated through integrin αvβ3 expressed on cancer cells and proliferating endothelium. In an earlier study, we established mesenchymal stem cells (MSCs), important contributors to the fibrovascular network of tumors, as new thyroid hormone-dependent targets. Here, we evaluated the effects of the thyroid hormones triiodothyronine (T3) and thyroxine (T4) versus Tetrac, an integrin-specific inhibitor of thyroid hormone action, on MSCs in tumor angiogenesis. Methods: Modulation of the expression and secretion of angiogenesis-relevant factors by thyroid hormones in primary human MSCs and their effect on endothelial cell tube formation were tested in vitro. We further engineered MSCs to express the sodium iodide symporter (NIS) reporter gene under control of a hypoxia-responsive promoter and the vascular endothelial growth factor (VEGF) promoter to test effects on these pathways in vitro and, for VEGF, in vivo in an orthotopic hepatocellular carcinoma (HCC) xenograft mouse model by positron emission tomography imaging. Results: T3 and T4 increased the expression of pro-angiogenic genes in MSCs and NIS-mediated radioiodide uptake in both NIS reporter MSC lines in the presence of HCC cell-conditioned medium. Supernatant from thyroid hormone-treated MSCs significantly enhanced endothelial cell tube formation. Tetrac and/or inhibitors of signaling pathways downstream of the integrin reversed all these effects. Tumoral radioiodide uptake in vivo demonstrated successful recruitment of MSCs to tumors and VEGF promoter-driven NIS expression. Hyperthyroid mice showed an increased radioiodide uptake compared with euthyroid mice, while tracer uptake was markedly reduced in hypothyroid and Tetrac-treated mice. Conclusions: Our data suggest that thyroid hormones influence angiogenic signaling in MSCs via integrin αvβ3 and further substantiate the anti-angiogenic activity of Tetrac in the tumor microenvironment.
Collapse
Affiliation(s)
- Kathrin A Schmohl
- Department of Internal Medicine IV, University Hospital of Munich, LMU Munich, Munich, Germany
| | - Andrea M Mueller
- Department of Internal Medicine IV, University Hospital of Munich, LMU Munich, Munich, Germany
| | - Maike Dohmann
- Department of Internal Medicine IV, University Hospital of Munich, LMU Munich, Munich, Germany
| | - Rebekka Spellerberg
- Department of Internal Medicine IV, University Hospital of Munich, LMU Munich, Munich, Germany
| | - Sarah Urnauer
- Department of Internal Medicine IV, University Hospital of Munich, LMU Munich, Munich, Germany
| | - Nathalie Schwenk
- Department of Internal Medicine IV, University Hospital of Munich, LMU Munich, Munich, Germany
| | - Sibylle I Ziegler
- Department of Nuclear Medicine, University Hospital of Munich, LMU Munich, Munich, Germany
| | - Peter Bartenstein
- Department of Nuclear Medicine, University Hospital of Munich, LMU Munich, Munich, Germany
| | - Peter J Nelson
- Department of Internal Medicine IV, University Hospital of Munich, LMU Munich, Munich, Germany
| | - Christine Spitzweg
- Department of Internal Medicine IV, University Hospital of Munich, LMU Munich, Munich, Germany
| |
Collapse
|
31
|
Abstract
Background: Reverse T3 (rT3; 3,3',5'-triiodo-L-thyronine) is widely regarded as an inactive naturally occurring analog of thyroid hormone. rT3 is known to bind to the thyroid hormone analog receptor on plasma membrane integrin αvβ3. This integrin is generously expressed by tumor cells and is the initiation site for the stimulation by L-thyroxine (T4) at physiological free concentrations on cancer cell proliferation. Results: In the present studies, we show that rT3 caused increases of proliferation in vitro of 50% to 80% (P < 0.05-0.001) of human breast cancer and glioblastoma cells. Conclusion: rT3 may be a host factor supporting cancer growth.
Collapse
Affiliation(s)
- Hung-Yun Lin
- Taipei Cancer Center, Taipei Medical University , Taipei , Taiwan
- Graduate Institute for Cancer Molecular Biology and Drug Discovery, College of Medical Science and Technology, Taipei Medical University , Taipei , Taiwan
- Traditional Herbal Medicine Research Center of Taipei Medical University Hospital, Taipei Medical University , Taipei , Taiwan
- TMU Research Center of Cancer Translational Medicine, Taipei Medical University , Taipei , Taiwan
| | - Heng-Yuan Tang
- Pharmacetuical Research Institute, Albany College of Pharmacy and Health Sciences , Rensselaer , NY , USA
| | - Matthew Leinung
- Department of Medicine, Albany Medical College , Albany , NY , USA
| | - Shaker A Mousa
- Taipei Cancer Center, Taipei Medical University , Taipei , Taiwan
| | - Aleck Hercbergs
- Department of Radiation Oncology, Cleveland Clinic , Cleveland , OH , USA
| | - Paul J Davis
- Taipei Cancer Center, Taipei Medical University , Taipei , Taiwan
- Department of Medicine, Albany Medical College , Albany , NY , USA
| |
Collapse
|
32
|
Schmohl KA, Müller AM, Nelson PJ, Spitzweg C. Thyroid Hormone Effects on Mesenchymal Stem Cell Biology in the Tumour Microenvironment. Exp Clin Endocrinol Diabetes 2019; 128:462-468. [PMID: 31648351 DOI: 10.1055/a-1022-9874] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
Non-classical thyroid hormone signalling via cell surface receptor integrin αvβ3, expressed on most cancer cells and proliferating endothelial cells, has been shown to drive tumour cell proliferation and survival, as well as angiogenesis. Tumours develop within a complex microenvironment that is composed of many different cell types, including mesenchymal stem cells. These multipotent progenitor cells actively home to growing tumours where they differentiate into cancer-associated fibroblast-like cells and blood vessel-stabilising pericytes and thus support the tumour's fibrovascular network. Integrin αvβ3 expression on mesenchymal stem cells makes them susceptible to thyroid hormone stimulation. Indeed, our studies demonstrated - for the first time - that thyroid hormones stimulate the differentiation of mesenchymal stem cells towards a carcinoma-associated fibroblast-/pericyte-like and hypoxia-responsive, pro-angiogenic phenotype, characterised by the secretion of numerous paracrine pro-angiogenic factors, in addition to driving their migration, invasion, and recruitment to the tumour microenvironment in an experimental hepatocellular carcinoma model. The deaminated thyroid hormone metabolite tetrac, a specific inhibitor of thyroid hormone action at the integrin site, reverses these effects. The modulation of mesenchymal stem cell signalling and recruitment by thyroid hormones via integrin αvβ3 adds a further layer to the multifaceted effects of thyroid hormones on tumour progression, with important implications for the management of cancer patients and suggests a novel mechanism for the anti-tumour activity of tetrac.
Collapse
Affiliation(s)
| | - Andrea Maria Müller
- Department of Internal Medicine IV, University Hospital of Munich, LMU Munich, Munich, Germany
| | - Peter Jon Nelson
- Department of Internal Medicine IV, University Hospital of Munich, LMU Munich, Munich, Germany
| | - Christine Spitzweg
- Department of Internal Medicine IV, University Hospital of Munich, LMU Munich, Munich, Germany
| |
Collapse
|
33
|
Liu YC, Yeh CT, Lin KH. Molecular Functions of Thyroid Hormone Signaling in Regulation of Cancer Progression and Anti-Apoptosis. Int J Mol Sci 2019; 20:ijms20204986. [PMID: 31600974 PMCID: PMC6834155 DOI: 10.3390/ijms20204986] [Citation(s) in RCA: 67] [Impact Index Per Article: 13.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2019] [Revised: 10/04/2019] [Accepted: 10/05/2019] [Indexed: 02/06/2023] Open
Abstract
Several physiological processes, including cellular growth, embryonic development, differentiation, metabolism and proliferation, are modulated by genomic and nongenomic actions of thyroid hormones (TH). Several intracellular and extracellular candidate proteins are regulated by THs. 3,3,5-Triiodo-L-thyronine (T3) can interact with nuclear thyroid hormone receptors (TR) to modulate transcriptional activities via thyroid hormone response elements (TRE) in the regulatory regions of target genes or bind receptor molecules showing no structural homology to TRs, such as the cell surface receptor site on integrin αvβ3. Additionally, L-thyroxine (T4) binding to integrin αvβ3 is reported to induce gene expression through initiating non-genomic actions, further influencing angiogenesis and cell proliferation. Notably, thyroid hormones not only regulate the physiological processes of normal cells but also stimulate cancer cell proliferation via dysregulation of molecular and signaling pathways. Clinical hypothyroidism is associated with delayed cancer growth. Conversely, hyperthyroidism is correlated with cancer prevalence in various tumor types, including breast, thyroid, lung, brain, liver and colorectal cancer. In specific types of cancer, both nuclear thyroid hormone receptor isoforms and those on the extracellular domain of integrin αvβ3 are high risk factors and considered potential therapeutic targets. In addition, thyroid hormone analogs showing substantial thyromimetic activity, including triiodothyroacetic acid (Triac), an acetic acid metabolite of T3, and tetraiodothyroacetic acid (Tetrac), a derivative of T4, have been shown to reduce risk of cancer progression, enhance therapeutic effects and suppress cancer recurrence. Here, we have reviewed recent studies focusing on the roles of THs and TRs in five cancer types and further discussed the potential therapeutic applications and underlying molecular mechanisms of THs.
Collapse
Affiliation(s)
- Yu-Chin Liu
- Department of Biochemistry, College of Medicine, Chang-Gung University, Taoyuan 333, Taiwan.
- Department of Biomedical Sciences, College of Medicine, Chang-Gung University, Taoyuan 333, Taiwan.
| | - Chau-Ting Yeh
- Liver Research Center, Chang Gung Memorial Hospital, Taoyuan 333, Taiwan.
| | - Kwang-Huei Lin
- Department of Biochemistry, College of Medicine, Chang-Gung University, Taoyuan 333, Taiwan.
- Department of Biomedical Sciences, College of Medicine, Chang-Gung University, Taoyuan 333, Taiwan.
- Liver Research Center, Chang Gung Memorial Hospital, Taoyuan 333, Taiwan.
- Research Center for Chinese Herbal Medicine, College of Human Ecology, Chang Gung University of Science and Technology, Taoyuan 333, Taiwan.
| |
Collapse
|
34
|
Chen YR, Chen YS, Chin YT, Li ZL, Shih YJ, Yang YCSH, ChangOu CA, Su PY, Wang SH, Wu YH, Chiu HC, Lee SY, Liu LF, Whang-Peng J, Lin HY, Mousa SA, Davis PJ, Wang K. Thyroid hormone-induced expression of inflammatory cytokines interfere with resveratrol-induced anti-proliferation of oral cancer cells. Food Chem Toxicol 2019; 132:110693. [PMID: 31336132 DOI: 10.1016/j.fct.2019.110693] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2019] [Revised: 06/26/2019] [Accepted: 07/19/2019] [Indexed: 12/15/2022]
Abstract
Thyroid hormone, L-thyroxine (T4), induces inflammatory genes expressions and promotes cancer growth. It also induces expression of the checkpoint programmed death-ligand 1 (PD-L1), which plays a vital role in cancer progression. On the other hand, resveratrol inhibits inflammatory genes expressions. Moreover, resveratrol increases nuclear inducible cyclooxygenase (COX)-2 accumulation, complexes with p53, and induces p53-dependent anti-proliferation. In this study, we investigated the effect of T4 on resveratrol-induced anti-proliferation in oral cancer. T4 increased the expression and cytoplasmic accumulation of PD-L1. Increased expressions of pro-inflammatory genes, interleukin (IL)-1β and transforming growth factor (TGF)-β1, were shown to stimulate PD-L1 expression. T4 stimulated pro-inflammatory and proliferative genes expressions, and oral cancer cells proliferation. In contrast, resveratrol inhibited those genes and activated anti-proliferative genes. T4 retained resveratrol-induced COX-2 in cytoplasm and prevented COX-2 nuclear accumulation when resveratrol treated cancer cells. A specific signal transducer and activator of transcription 3 (STAT3) inhibitor, S31-201, blocked T4-induced inhibition and restored resveratrol-induced nuclear COX-2 accumulation. By inhibiting the T4-activated STAT3 signal transduction axis with S31-201, resveratrol was able to sequentially reestablish COX-2/p53-dependent gene expressions and anti-proliferation. These findings provide a novel understanding of the inhibitory effects of T4 on resveratrol-induced anticancer properties via the sequential expression of PD-L1 and inflammatory genes.
Collapse
Affiliation(s)
- Yi-Ru Chen
- Graduate Institute of Nanomedicine and Medical Engineering, College of Medical Engineering, Taipei Medical University, Taipei, 11031, Taiwan; Taipei Cancer Center, Taipei Medical University, Taipei, 11031, Taiwan
| | - Yu-Shen Chen
- Department of Pediatrics, E-Da Hospital, Kaohsiung, 82445, Taiwan; School of Medicine, I-Shou University, Kaohsiung, 84001, Taiwan
| | - Yu-Tang Chin
- Taipei Cancer Center, Taipei Medical University, Taipei, 11031, Taiwan; Cancer Center, Wan Fang Hospital, Taipei Medical University, Taipei, 11031, Taiwan
| | - Zi-Lin Li
- Graduate Institute of Nanomedicine and Medical Engineering, College of Medical Engineering, Taipei Medical University, Taipei, 11031, Taiwan; Taipei Cancer Center, Taipei Medical University, Taipei, 11031, Taiwan
| | - Ya-Jung Shih
- Graduate Institute of Nanomedicine and Medical Engineering, College of Medical Engineering, Taipei Medical University, Taipei, 11031, Taiwan; Taipei Cancer Center, Taipei Medical University, Taipei, 11031, Taiwan
| | - Yu-Chen S H Yang
- Joint Biobank, Office of Human Research, Taipei Medical University, Taipei, 11031, Taiwan
| | - Chun A ChangOu
- Core Facility Center, Office of Research and Development, Taipei Medical University, Taipei, 11031, Taiwan; Integrated Laboratory, Center of Translational Medicine, Taipei Medical University, Taipei, 11031, Taiwan
| | - Po-Yu Su
- Graduate Institute of Nanomedicine and Medical Engineering, College of Medical Engineering, Taipei Medical University, Taipei, 11031, Taiwan
| | - Shwu-Huey Wang
- Core Facility Center, Office of Research and Development, Taipei Medical University, Taipei, 11031, Taiwan; Department of Biochemistry and Molecular Cell Biology, College of Medicine, Taipei Medical University, Taipei, 11031, Taiwan
| | - Yun-Hsuan Wu
- Institute of Sociology, Academia Sinica, Taipei, 11529, Taiwan
| | - Hsien-Chung Chiu
- Department of Periodontology, School of Dentistry, National Defense Medical, Center and Tri-Service General Hospital, Taipei, 11490, Taiwan
| | - Sheng-Yang Lee
- School of Dentistry, College of Oral Medicine, Taipei Medical University, Taipei, 11031, Taiwan
| | - Leroy F Liu
- Taipei Cancer Center, Taipei Medical University, Taipei, 11031, Taiwan
| | - Jacqueline Whang-Peng
- Taipei Cancer Center, Taipei Medical University, Taipei, 11031, Taiwan; Cancer Center, Wan Fang Hospital, Taipei Medical University, Taipei, 11031, Taiwan; Graduate Institute of Cancer Biology and Drug Discovery, College of Medical Science and Technology, Taipei Medical University, Taipei, 11031, Taiwan
| | - Hung-Yun Lin
- Taipei Cancer Center, Taipei Medical University, Taipei, 11031, Taiwan; Cancer Center, Wan Fang Hospital, Taipei Medical University, Taipei, 11031, Taiwan; Graduate Institute of Cancer Biology and Drug Discovery, College of Medical Science and Technology, Taipei Medical University, Taipei, 11031, Taiwan; TMU Research Center of Cancer Translational Medicine, Taipei Medical University, Taipei, 11031, Taiwan; Traditional Herbal Medicine Research Center of Taipei Medical University Hospital, Taipei Medical University, Taipei, 11031, Taiwan; Pharmaceutical Research Institute, Albany College of Pharmacy and Health Sciences, Albany, NY, 12208, USA.
| | - Shaker A Mousa
- Pharmaceutical Research Institute, Albany College of Pharmacy and Health Sciences, Albany, NY, 12208, USA
| | - Paul J Davis
- Pharmaceutical Research Institute, Albany College of Pharmacy and Health Sciences, Albany, NY, 12208, USA; Albany Medical College, Albany, NY, 12208, USA
| | - Kuan Wang
- Graduate Institute of Nanomedicine and Medical Engineering, College of Medical Engineering, Taipei Medical University, Taipei, 11031, Taiwan; Taipei Cancer Center, Taipei Medical University, Taipei, 11031, Taiwan
| |
Collapse
|
35
|
Li W, Yalcin M, Bharali DJ, Lin Q, Godugu K, Fujioka K, Keating KA, Mousa SA. Pharmacokinetics, Biodistribution, and Anti-Angiogenesis Efficacy of Diamino Propane Tetraiodothyroacetic Acid-conjugated Biodegradable Polymeric Nanoparticle. Sci Rep 2019; 9:9006. [PMID: 31227723 PMCID: PMC6588584 DOI: 10.1038/s41598-019-44979-6] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2018] [Accepted: 05/22/2019] [Indexed: 12/19/2022] Open
Abstract
The anti-angiogenic agent, diamino propane tetraiodothyroacetic acid (DAT), is a thyro-integrin (integrin αvβ3) antagonist anticancer agent that works via genetic and nongenetic actions. Tetraiodothyroacetic acid (tetrac) and DAT as thyroid hormone derivatives influence gene expression after they transport across cellular membranes. To restrict the action of DAT to the integrin αvβ3 receptors on the cell surface, we used DAT-conjugated PLGA nanoparticles (NDAT) in an active targeting mode to bind to these receptors. Preparation and characterization of NDAT is described, and both in vitro and in vivo experiments were done to compare DAT to NDAT. Intracellular uptake and distribution of DAT and NDAT in U87 glioblastoma cells were evaluated using confocal microscopy and showed that DAT reached the nucleus, but NDAT was restricted from the nucleus. Pharmacokinetic studies using LC-MS/MS analysis in male C57BL/6 mice showed that administration of NDAT improved the area under the drug concentration curve AUC(0-48 h) by 4-fold at a dose of 3 mg/kg when compared with DAT, and Cmax of NDAT (4363 ng/mL) was 8-fold greater than that of DAT (548 ng/mL). Biodistribution studies in the mice showed that the concentrations of NDAT were higher than DAT/Cremophor EL micelles in heart, lung, liver, spleen, and kidney. In another mouse model using female NCr nude homozygous mice with U87 xenografts, tumor growth was significantly decreased at doses of 1 and 3 mg/kg of NDAT. In the chick chorioallantoic membrane (CAM) assay used to measure angiogenesis, DAT (500 ng/CAM) resulted in 48% inhibition of angiogenesis levels. In comparison, NDAT at low dose (50 ng/CAM) showed 45% inhibition of angiogenesis levels. Our investigation of NDAT bridges the study of polymeric nanoparticles and anti-angiogenic agents and offers new insight for the rational design of anti-angiogenic agents.
Collapse
Affiliation(s)
- Weikun Li
- The Pharmaceutical Research Institute, Albany College of Pharmacy and Health Sciences, Rensselaer, NY, USA
| | - Murat Yalcin
- The Pharmaceutical Research Institute, Albany College of Pharmacy and Health Sciences, Rensselaer, NY, USA
- Department of Physiology, Veterinary Medicine Faculty, Uludag University, Bursa, Turkey
| | - Dhruba J Bharali
- The Pharmaceutical Research Institute, Albany College of Pharmacy and Health Sciences, Rensselaer, NY, USA
| | - Qishan Lin
- Center for Functional Genomics, University at Albany SUNY, Albany, NY, USA
| | - Kavitha Godugu
- The Pharmaceutical Research Institute, Albany College of Pharmacy and Health Sciences, Rensselaer, NY, USA
| | - Kazutoshi Fujioka
- The Pharmaceutical Research Institute, Albany College of Pharmacy and Health Sciences, Rensselaer, NY, USA
| | - Kelly A Keating
- The Pharmaceutical Research Institute, Albany College of Pharmacy and Health Sciences, Rensselaer, NY, USA
| | - Shaker A Mousa
- The Pharmaceutical Research Institute, Albany College of Pharmacy and Health Sciences, Rensselaer, NY, USA.
| |
Collapse
|
36
|
Label-free evaluation of small-molecule-protein interaction using magnetic capture and electrochemical detection. Anal Bioanal Chem 2019; 411:2111-2119. [PMID: 30739194 DOI: 10.1007/s00216-019-01636-1] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2018] [Accepted: 01/22/2019] [Indexed: 12/17/2022]
Abstract
The evaluation of interaction between small molecules and protein is an important step in the discovery of new drugs and to study complex biological systems. In this work, an alternative method was presented to evaluate small-molecule-protein interaction by using ligand capture by protein-coated magnetic particles (MPs) and disposable electrochemical cells. The interaction study was conducted using [10]-gingerol from ginger rhizome and a transmembrane protein αVβ3 integrin. Initially, the electrochemical behavior of the natural compound [10]-gingerol was evaluated with the disposable carbon-based electrodes and presented an irreversible oxidation process controlled by diffusion. The analytical curve for [10]-gingerol was obtained in the range of 1.0 to 20.0 μmol L-1, with limit of detection of 0.26 μmol L-1. Then MPs coated with αVβ3 integrin were incubated with standard solutions and extracts of ginger rhizome for [10]-gingerol capture and separation. The bioconjugate obtained was dropped to the disposable electrochemical cells, keeping a permanent magnet behind the working electrode, and the binding process was evaluated by the electrochemical detection of [10]-gingerol. The assay method proposed was also employed to calculate the [10]-gingerol-αVβ3 integrin association constant, which was calculated as 4.3 × 107 M-1. The method proposed proved to be a good label-free alternative to ligand-protein interaction studies. Graphical abstract ᅟ.
Collapse
|
37
|
Gionfra F, De Vito P, Pallottini V, Lin HY, Davis PJ, Pedersen JZ, Incerpi S. The Role of Thyroid Hormones in Hepatocyte Proliferation and Liver Cancer. Front Endocrinol (Lausanne) 2019; 10:532. [PMID: 31543862 PMCID: PMC6730500 DOI: 10.3389/fendo.2019.00532] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/25/2019] [Accepted: 07/17/2019] [Indexed: 12/13/2022] Open
Abstract
Thyroid hormones T3 and T4 (thyroxine) control a wide variety of effects related to development, differentiation, growth and metabolism, through their interaction with nuclear receptors. But thyroid hormones also produce non-genomic effects that typically start at the plasma membrane and are mediated mainly by integrin αvβ3, although other receptors such as TRα and TRβ are also able to elicit non-genomic responses. In the liver, the effects of thyroid hormones appear to be particularly important. The liver is able to regenerate, but it is subject to pathologies that may lead to cancer, such as fibrosis, cirrhosis, and non-alcoholic fatty liver disease. In addition, cancer cells undergo a reprogramming of their metabolism, resulting in drastic changes such as aerobic glycolysis instead of oxidative phosphorylation. As a consequence, the pyruvate kinase isoform M2, the rate-limiting enzyme of glycolysis, is dysregulated, and this is considered an important factor in tumorigenesis. Redox equilibrium is also important, in fact cancer cells give rise to the production of more reactive oxygen species (ROS) than normal cells. This increase may favor the survival and propagation of cancer cells. We evaluate the possible mechanisms involving the plasma membrane receptor integrin αvβ3 that may lead to cancer progression. Studying diseases that affect the liver and their experimental models may help to unravel the cellular pathways mediated by integrin αvβ3 that can lead to liver cancer. Inhibitors of integrin αvβ3 might represent a future therapeutic tool against liver cancer. We also include information on the possible role of exosomes in liver cancer, as well as on recent strategies such as organoids and spheroids, which may provide a new tool for research, drug discovery, and personalized medicine.
Collapse
Affiliation(s)
- Fabio Gionfra
- Department of Sciences, University Roma Tre, Rome, Italy
| | - Paolo De Vito
- Department of Biology, University of Rome Tor Vergata, Rome, Italy
| | | | - Hung-Yun Lin
- Ph.D. Program for Cancer Molecular Biology and Drug Discovery, College of Medical Science and Technology, Taipei Medical University, Taipei, Taiwan
- Taipei Cancer Center, Taipei Medical University, Taipei, Taiwan
- Pharmaceutical Research Institute, Albany College of Pharmacy and Health Sciences, Rensselaer, NY, United States
- Traditional Herbal Medicine Research Center of Taipei Medical University Hospital, Taipei Medical University, Taipei, Taiwan
- Department of Medicine, Albany Medical College, Albany, NY, United States
| | - Paul J. Davis
- Pharmaceutical Research Institute, Albany College of Pharmacy and Health Sciences, Rensselaer, NY, United States
- Department of Medicine, Albany Medical College, Albany, NY, United States
| | - Jens Z. Pedersen
- Department of Biology, University of Rome Tor Vergata, Rome, Italy
| | - Sandra Incerpi
- Department of Sciences, University Roma Tre, Rome, Italy
- *Correspondence: Sandra Incerpi
| |
Collapse
|
38
|
Hercbergs A. Clinical Implications and Impact of Discovery of the Thyroid Hormone Receptor on Integrin αvβ3-A Review. Front Endocrinol (Lausanne) 2019; 10:565. [PMID: 31507530 PMCID: PMC6716053 DOI: 10.3389/fendo.2019.00565] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/13/2019] [Accepted: 08/02/2019] [Indexed: 12/17/2022] Open
Abstract
Hypothyroidism has been reported to improve survival in cancer patients but only recently has the putative mechanism been identified as a receptor for thyroxine and tri-iodothyronine on integrin αvβ3. Recognition of divergence of action of the pro-oncogenic L-thyroxine (T4) from pro-metabolic 3,5,3'-triiodo-L-thyronine (T3) has enabled clinical implementation whereby exogenous T3 may replace exogenous (or endogenous) T4 to maintain clinical euthyroid hypothyroxinemia that results in significantly better survival in advanced cancer patients without the morbidity of clinical hypothyroidism.
Collapse
|
39
|
Chin YT, He ZR, Chen CL, Chu HC, Ho Y, Su PY, Yang YCSH, Wang K, Shih YJ, Chen YR, Pedersen JZ, Incerpi S, Nana AW, Tang HY, Lin HY, Mousa SA, Davis PJ, Whang-Peng J. Tetrac and NDAT Induce Anti-proliferation via Integrin αvβ3 in Colorectal Cancers With Different K-RAS Status. Front Endocrinol (Lausanne) 2019; 10:130. [PMID: 30915033 PMCID: PMC6422911 DOI: 10.3389/fendo.2019.00130] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/16/2018] [Accepted: 02/12/2019] [Indexed: 12/21/2022] Open
Abstract
Colorectal cancer is a serious medical problem in Taiwan. New, effective therapeutic approaches are needed. The selection of promising anticancer drugs and the transition from pre-clinical investigations to clinical trials are often challenging. The deaminated thyroid hormone analog (tetraiodothyroacetic acid, tetrac) and its nanoparticulate analog (NDAT) have been shown to have anti-proliferative activity in vitro and in xenograft model of different neoplasms, including colorectal cancers. However, mechanisms involved in tetrac- and NDAT-induced anti-proliferation in colorectal cancers are incompletely understood. We have investigated possible mechanisms of tetrac and NDAT action in colorectal cancer cells, using a perfusion bellows cell culture system that allows efficient, large-scale screening for mechanisms of drug actions on tumor cells. Although integrin αvβ3 in K-RAS wild type colorectal cancer HT-29 cells was far less than that in K-RAS mutant HCT116 cells, HT-29 was more sensitive to both tetrac and NDAT. Results also indicate that both tetrac and NDAT bind to tumor cell surface integrin αvβ3, and the agents may have different mechanisms of anti-proliferation in colorectal cancer cells. K-RAS status appears to play an important role in drug resistance that may be encountered in treatment with this drug combination.
Collapse
Affiliation(s)
- Yu-Tang Chin
- Taipei Cancer Center, Taipei Medical University, Taipei, Taiwan
- Cancer Center, Wan Fang Hospital, Taipei Medical University, Taipei, Taiwan
| | - Zong-Rong He
- Department of Pediatrics, E-Da Hospital, Kaohsiung, Taiwan
- School of Medicine, I-Shou University, Kaohsiung, Taiwan
| | - Chi-Long Chen
- School of Medicine, Taipei Medical University, Taipei, Taiwan
| | - Hsiao-Ching Chu
- Division of Medical Imaging, E-Da Cancer Hospital, I-Shou University, Kaohsiung, Taiwan
| | - Yih Ho
- Taipei Cancer Center, Taipei Medical University, Taipei, Taiwan
- School of Pharmacy, Taipei Medical University, Taipei, Taiwan
| | - Po-Yu Su
- Graduate Institute of Nanomedicine and Medical Engineering, College of Biomedical Engineering, Taipei Medical University, Taipei, Taiwan
| | - Yu-Chen S. H. Yang
- Joint Biobank, Office of Human Research, Taipei Medical University, Taipei, Taiwan
| | - Kuan Wang
- Taipei Cancer Center, Taipei Medical University, Taipei, Taiwan
- Graduate Institute of Nanomedicine and Medical Engineering, College of Biomedical Engineering, Taipei Medical University, Taipei, Taiwan
| | - Ya-Jung Shih
- Taipei Cancer Center, Taipei Medical University, Taipei, Taiwan
- Graduate Institute of Nanomedicine and Medical Engineering, College of Biomedical Engineering, Taipei Medical University, Taipei, Taiwan
| | - Yi-Ru Chen
- Taipei Cancer Center, Taipei Medical University, Taipei, Taiwan
- Graduate Institute of Nanomedicine and Medical Engineering, College of Biomedical Engineering, Taipei Medical University, Taipei, Taiwan
| | - Jens Z. Pedersen
- Department of Biology, University of Rome Tor Vergata, Rome, Italy
| | - Sandra Incerpi
- Department of Sciences, Roma Tre University, Rome, Italy
| | - André Wendindondé Nana
- Graduate Institute of Cancer Biology and Drug Discovery, College of Medical Science and Technology, Taipei Medical University, Taipei, Taiwan
| | - Heng-Yuan Tang
- Pharmaceutical Research Institute, Albany College of Pharmacy and Health Sciences, Rensselaer, NY, United States
| | - Hung-Yun Lin
- Taipei Cancer Center, Taipei Medical University, Taipei, Taiwan
- Graduate Institute of Cancer Biology and Drug Discovery, College of Medical Science and Technology, Taipei Medical University, Taipei, Taiwan
- Pharmaceutical Research Institute, Albany College of Pharmacy and Health Sciences, Rensselaer, NY, United States
- TMU Research Center of Cancer Translational Medicine, Taipei Medical University, Taipei, Taiwan
- Traditional Herbal Medicine Research Center of Taipei Medical University Hospital, Taipei Medical University, Taipei, Taiwan
- *Correspondence: Hung-Yun Lin
| | - Shaker A. Mousa
- Pharmaceutical Research Institute, Albany College of Pharmacy and Health Sciences, Rensselaer, NY, United States
| | - Paul J. Davis
- Pharmaceutical Research Institute, Albany College of Pharmacy and Health Sciences, Rensselaer, NY, United States
- Department of Medicine, Albany Medical College, Albany, NY, United States
| | - Jacqueline Whang-Peng
- Taipei Cancer Center, Taipei Medical University, Taipei, Taiwan
- Cancer Center, Wan Fang Hospital, Taipei Medical University, Taipei, Taiwan
- Graduate Institute of Cancer Biology and Drug Discovery, College of Medical Science and Technology, Taipei Medical University, Taipei, Taiwan
- Jacqueline Whang-Peng
| |
Collapse
|
40
|
Leith JT, Mousa SA, Hercbergs A, Lin HY, Davis PJ. Radioresistance of cancer cells, integrin αvβ3 and thyroid hormone. Oncotarget 2018; 9:37069-37075. [PMID: 30651936 PMCID: PMC6319341 DOI: 10.18632/oncotarget.26434] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2018] [Accepted: 11/16/2018] [Indexed: 02/06/2023] Open
Abstract
Radioresistance is a substantial barrier to success in cancer management. A number of molecular mechanisms support radioresistance. We have shown experimentally that the thyroid hormone analogue receptor on the extracellular domain of integrin αvβ3 may modulate the state of radiosensitivity of tumor cells. Specifically, tetraiodothyroacetic acid (tetrac), a derivative of L-thyroxine (T4), can reduce radioresistance in cancer cells. In this review, we list a number of intrinsic signal transduction molecules and other host factors that have been reported to support/induce radioresistance in cancer cells and that are also subject to control by T4 through actions primarily initiated at integrin αvβ3. Additional preclinical evidence is needed to support these radioresistance-relevant actions of thyroid hormone.
Collapse
Affiliation(s)
- John T Leith
- Rhode Island Nuclear Science Center, Narragansett, RI, USA
| | - Shaker A Mousa
- Pharmaceutical Research Institute, Albany College of Pharmacy and Health Sciences, Rensselaer, NY, USA
| | - Aleck Hercbergs
- Department of Radiation Oncology, Cleveland Clinic, Cleveland, OH, USA
| | - Hung-Yun Lin
- Taipei Cancer Center, Taipei Medical University, Taipei, Taiwan.,PhD Program for Cancer Molecular Biology and Drug Discovery, College of Medical Science and Technology, Taipei Medical University, Taipei, Taiwan.,Traditional Herbal Medicine Research Center, Taipei Medical University, Taipei, Taiwan.,TMU Research Center of Cancer Translational Medicine, Taipei Medical University, Taipei, Taiwan
| | - Paul J Davis
- Pharmaceutical Research Institute, Albany College of Pharmacy and Health Sciences, Rensselaer, NY, USA.,Department of Medicine, Albany Medical College, Albany, NY, USA
| |
Collapse
|
41
|
Davis PJ, Tang HY, Hercbergs A, Lin HY, Keating KA, Mousa SA. Bioactivity of Thyroid Hormone Analogs at Cancer Cells. Front Endocrinol (Lausanne) 2018; 9:739. [PMID: 30564196 PMCID: PMC6288194 DOI: 10.3389/fendo.2018.00739] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/24/2018] [Accepted: 11/21/2018] [Indexed: 12/13/2022] Open
Abstract
In the context of genomic thyroid hormone actions in normal (noncancer) cells that involve primary interactions with nuclear thyroid hormone receptors (TRs), L-thyroxine (T4), and 3,3',5'-triiodo-L-thyronine (reverse T3, rT3) have little bioactivity. In terms of TRs, T4 is a prohormone from which the active nuclear ligand, 3,5,3'-triido-L-thyronine (T3), is generated by deiodination. Deaminated T4 and T3 metabolites have different genomic effects: tetraiodothyroacetic acid (tetrac) is a low grade thyromimetic derivative of T4, whereas triiodothyroacetic acid (triac), the acetic acid metabolite of T3, has substantial thyromimetic activity. In cancer cells, the cell surface receptor for thyroid hormone on integrin αvβ3 mediates non-genomic actions of thyroid hormone analogs. The integrin is expressed in large measure by cancer cells and dividing endothelial cells and has a substantially different panel of responses to thyroid hormone analogs. At αvβ3, T4 is a potent proliferative, anti-apoptotic and pro-angiogenic hormone and is the primary ligand. rT3 may also be proliferative at this site. In contrast, tetrac and triac are antagonists of T4 at αvβ3, but also have anticancer properties at this site that are independent of their effects on the binding of T4.
Collapse
Affiliation(s)
- Paul J. Davis
- Department of Medicine, Albany Medical College, Albany, NY, United States
- Pharmaceutical Research Institute, Albany College of Pharmacy and Health Sciences, Rensselaer, NY, United States
| | - Heng-Yuan Tang
- Pharmaceutical Research Institute, Albany College of Pharmacy and Health Sciences, Rensselaer, NY, United States
| | - Aleck Hercbergs
- Department of Radiation Oncology, The Cleveland Clinic, Cleveland, OH, United States
| | - Hung-Yun Lin
- PhD Program for Cancer Molecular Biology and Drug Discovery, College of Medical Science and Technology, Taipei Medical University, Taipei, Taiwan
- Taipei Cancer Center, Taipei Medical University, Taipei, Taiwan
- Traditional Herbal Medicine Research Center of Taipei Medical University Hospital, Taipei Medical University, Taipei, Taiwan
- TMU Research Center of Cancer Translational Medicine, Taipei Medical University, Taipei, Taiwan
| | - Kelly A. Keating
- Pharmaceutical Research Institute, Albany College of Pharmacy and Health Sciences, Rensselaer, NY, United States
| | - Shaker A. Mousa
- Pharmaceutical Research Institute, Albany College of Pharmacy and Health Sciences, Rensselaer, NY, United States
| |
Collapse
|
42
|
Lin HY, Chin YT, Shih YJ, Chen YR, Leinung M, Keating KA, Mousa SA, Davis PJ. In tumor cells, thyroid hormone analogues non-immunologically regulate PD-L1 and PD-1 accumulation that is anti-apoptotic. Oncotarget 2018; 9:34033-34037. [PMID: 30344919 PMCID: PMC6183344 DOI: 10.18632/oncotarget.26143] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2018] [Accepted: 09/08/2018] [Indexed: 12/12/2022] Open
Abstract
The PD-1/PD-L1 immune checkpoint involving tumor cells and host immune defense lymphocytes is a well-studied therapeutic target in oncology. That PD-1 and PD-L1 may have additional functions within tumor cells that are independent of the checkpoint is indicated by actions of a thyroid hormone analogue, L-thyroxine (T4), on these checkpoint components. Acting at a cell surface receptor on plasma membrane integrin αvβ3, T4 stimulates intracellular accumulation of PD-L1 in cancer cells. In these thyroid hormone-treated cells, T4-induced PD-L1 is non-immunologically anti-apoptotic, blocking activation of p53. Several laboratories have also described accumulation of PD-1 in a variety of cancer cells, not just immune defense lymphocytes and macrophages. Preliminary observations indicate that T4 stimulates intracellular accumulation of PD-1 in tumor cells, suggesting that, like PD-L1, PD-1 has non-immunologic roles in the setting of cancer. Where such roles are anti-apoptotic, thyroid hormone-directed cancer cell accumulation of PD-1 and PD-L1 may limit effectiveness of immunologic therapy directed at the immune checkpoint.
Collapse
Affiliation(s)
- Hung-Yun Lin
- PhD Program for Cancer Molecular Biology and Drug Discovery, College of Medical Science and Technology, Taipei Medical University, Taipei, Taiwan.,Taipei Cancer Center, Taipei Medical University, Taipei, Taiwan.,Traditional Herbal Medicine Research Center of Taipei Medical University Hospital, Taipei, Taiwan.,TMU Research Center of Cancer Translational Medicine, Taipei Medical University, Taipei, Taiwan
| | - Yu-Tang Chin
- PhD Program for Cancer Molecular Biology and Drug Discovery, College of Medical Science and Technology, Taipei Medical University, Taipei, Taiwan.,Taipei Cancer Center, Taipei Medical University, Taipei, Taiwan
| | - Ya-Jung Shih
- PhD Program for Cancer Molecular Biology and Drug Discovery, College of Medical Science and Technology, Taipei Medical University, Taipei, Taiwan.,Taipei Cancer Center, Taipei Medical University, Taipei, Taiwan
| | - Yi-Ru Chen
- PhD Program for Cancer Molecular Biology and Drug Discovery, College of Medical Science and Technology, Taipei Medical University, Taipei, Taiwan.,Taipei Cancer Center, Taipei Medical University, Taipei, Taiwan
| | - Matthew Leinung
- Department of Medicine, Albany Medical College, Albany, NY, USA
| | - Kelly A Keating
- Pharmaceutical Research Institute, Albany College of Pharmacy and Health Sciences, Rensselaer, NY, USA
| | - Shaker A Mousa
- Pharmaceutical Research Institute, Albany College of Pharmacy and Health Sciences, Rensselaer, NY, USA
| | - Paul J Davis
- Department of Medicine, Albany Medical College, Albany, NY, USA.,Pharmaceutical Research Institute, Albany College of Pharmacy and Health Sciences, Rensselaer, NY, USA
| |
Collapse
|
43
|
Chang TC, Chin YT, Nana AW, Wang SH, Liao YM, Chen YR, Shih YJ, Changou CA, Yang YCS, Wang K, Whang-Peng J, Wang LS, Stain SC, Shih A, Lin HY, Wu CH, Davis PJ. Enhancement by Nano-Diamino-Tetrac of Antiproliferative Action of Gefitinib on Colorectal Cancer Cells: Mediation by EGFR Sialylation and PI3K Activation. Discov Oncol 2018; 9:420-432. [PMID: 30187356 PMCID: PMC6223990 DOI: 10.1007/s12672-018-0341-x] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/05/2018] [Accepted: 06/25/2018] [Indexed: 02/06/2023] Open
Abstract
Drug resistance complicates the clinical use of gefitinib. Tetraiodothyroacetic acid (tetrac) and nano-diamino-tetrac (NDAT) have been shown in vitro and in xenografts to have antiproliferative/angiogenic properties and to potentiate antiproliferative activity of other anticancer agents. In the current study, we investigated the effects of NDAT on the anticancer activities of gefitinib in human colorectal cancer cells. β-Galactoside α-2,6-sialyltransferase 1 (ST6Gal1) catalyzes EGFR sialylation that is associated with gefitinib resistance in colorectal cancers, and this was also investigated. Gefitinib inhibited cell proliferation of HT-29 cells (K-ras wild-type), and NDAT significantly enhanced the antiproliferative action of gefitinib. Gefitinib inhibited cell proliferation of HCT116 cells (K-ras mutant) only in high concentration, and this was further enhanced by NDAT. NDAT enhancedd gefitinib-induced antiproliferation in gefitinib-resistant colorectal cancer cells by inhibiting ST6Gal1 activity and PI3K activation. Furthermore, NDAT enhanced gefitinib-induced anticancer activity additively in colorectal cancer HCT116 cell xenograft-bearing nude mice. Results suggest that NDAT may have an application with gefitinib as combination colorectal cancer therapy.
Collapse
Affiliation(s)
- Tung-Cheng Chang
- Graduate Institute of Clinical Medicine, College of Medicine, Taipei Medical University, Taipei, 11031, Taiwan.,Division of Colorectal Surgery, Department of Surgery, Shuang Ho Hospital, Taipei Medical University, New Taipei City, 23561, Taiwan.,Division of Colorectal Surgery, Department of Surgery, School of Medicine, College of Medicine, Taipei Medical University, Taipei, 11031, Taiwan
| | - Yu-Tang Chin
- Taipei Cancer Center, Taipei Medical University, Taipei, 11031, Taiwan.,The PhD program for Cancer Molecular Biology and Drug Discovery, College of Medical Science and Technology, Taipei Medical University, Taipei, Taiwan
| | - André Wendindondé Nana
- The PhD program for Cancer Molecular Biology and Drug Discovery, College of Medical Science and Technology, Taipei Medical University, Taipei, Taiwan
| | - Shwu-Huey Wang
- Core Facility Center, Office of Research and Development, Taipei Medical University, Taipei, 11031, Taiwan.,Department of Biochemistry and Molecular Cell Biology, College of Medicine, Taipei Medical University, Taipei, 11031, Taiwan
| | - Yu-Min Liao
- Division of Hematology and Oncology, Department of Internal Medicine, Taipei Medical University Hospital, Taipei, 11031, Taiwan
| | - Yi-Ru Chen
- Taipei Cancer Center, Taipei Medical University, Taipei, 11031, Taiwan.,The PhD program for Cancer Molecular Biology and Drug Discovery, College of Medical Science and Technology, Taipei Medical University, Taipei, Taiwan
| | - Ya-Jung Shih
- Taipei Cancer Center, Taipei Medical University, Taipei, 11031, Taiwan.,The PhD program for Cancer Molecular Biology and Drug Discovery, College of Medical Science and Technology, Taipei Medical University, Taipei, Taiwan
| | - Chun A Changou
- The PhD program for Cancer Molecular Biology and Drug Discovery, College of Medical Science and Technology, Taipei Medical University, Taipei, Taiwan.,Core Facility Center, Office of Research and Development, Taipei Medical University, Taipei, 11031, Taiwan.,Integrated Laboratory, Center of Translational Medicine, Taipei Medical University, Taipei, 11031, Taiwan
| | - Yu-Chen Sh Yang
- Joint Biobank, Office of Human Research, Taipei Medical University, Taipei, 11031, Taiwan
| | - Kuan Wang
- Graduate Institute of Nanomedicine and Medical Engineering, College of Medical Engineering, Taipei Medical University, Taipei, 11031, Taiwan
| | - Jacqueline Whang-Peng
- Taipei Cancer Center; Cancer Center, Wan Fang Hospital, Taipei Medical University, Taipei, Taiwan
| | - Liang-Shun Wang
- Graduate Institute of Clinical Medicine, College of Medicine, Taipei Medical University, Taipei, 11031, Taiwan.,Department of Surgery, Shuang Ho Hospital, Taipei Medical University, No. 291, Zhongzheng Rd., Zhonghe, New Taipei City, 23561, Taiwan
| | - Steven C Stain
- Department of Surgery, Albany Medical College, Albany, NY, 12208, USA
| | - Ai Shih
- National Laboratory Animal Center, Taipei, 11599, Taiwan
| | - Hung-Yun Lin
- Taipei Cancer Center, Taipei Medical University, Taipei, 11031, Taiwan. .,The PhD program for Cancer Molecular Biology and Drug Discovery, College of Medical Science and Technology, Taipei Medical University, Taipei, Taiwan. .,Pharmaceutical Research Institute, Albany College of Pharmacy and Health Sciences, Rensselaer, NY, 12144, USA. .,Traditional Herbal Medicine Research Center of Taipei Medical University Hospital, Taipei Medical University, Taipei, 11031, Taiwan. .,TMU Research Center of Cancer Translational Medicine, Taipei Medical University, Taipei, 11031, Taiwan.
| | - Chih-Hsiung Wu
- Graduate Institute of Clinical Medicine, College of Medicine, Taipei Medical University, Taipei, 11031, Taiwan. .,Department of Surgery, Shuang Ho Hospital, Taipei Medical University, No. 291, Zhongzheng Rd., Zhonghe, New Taipei City, 23561, Taiwan.
| | - Paul J Davis
- Pharmaceutical Research Institute, Albany College of Pharmacy and Health Sciences, Rensselaer, NY, 12144, USA. .,NanoPharmaceuticals LLC, Rensselaer, NY, 12144, USA. .,Department of Medicine, Albany Medical College, Albany, NY, 12208, USA.
| |
Collapse
|
44
|
Mousa SA, Glinsky GV, Lin HY, Ashur-Fabian O, Hercbergs A, Keating KA, Davis PJ. Contributions of Thyroid Hormone to Cancer Metastasis. Biomedicines 2018; 6:biomedicines6030089. [PMID: 30135398 PMCID: PMC6165185 DOI: 10.3390/biomedicines6030089] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2018] [Revised: 08/14/2018] [Accepted: 08/18/2018] [Indexed: 12/17/2022] Open
Abstract
Acting at a cell surface receptor on the extracellular domain of integrin αvβ3, thyroid hormone analogues regulate downstream the expression of a large panel of genes relevant to cancer cell proliferation, to cancer cell survival pathways, and to tumor-linked angiogenesis. Because αvβ3 is involved in the cancer cell metastatic process, we examine here the possibility that thyroid hormone as l-thyroxine (T4) and the thyroid hormone antagonist, tetraiodothyroacetic acid (tetrac), may respectively promote and inhibit metastasis. Actions of T4 and tetrac that are relevant to cancer metastasis include the multitude of synergistic effects on molecular levels such as expression of matrix metalloproteinase genes, angiogenesis support genes, receptor tyrosine kinase (EGFR/ERBB2) genes, specific microRNAs, the epithelial–mesenchymal transition (EMT) process; and on the cellular level are exemplified by effects on macrophages. We conclude that the thyroid hormone-αvβ3 interaction is mechanistically linked to cancer metastasis and that modified tetrac molecules have antimetastatic activity with feasible therapeutic potential.
Collapse
Affiliation(s)
- Shaker A Mousa
- Pharmaceutical Research Institute, Albany College of Pharmacy and Health Sciences, Rensselaer, NY 12144, USA.
| | - Gennadi V Glinsky
- Institute of Engineering in Medicine, University of California, San Diego, CA 92093, USA.
| | - Hung-Yun Lin
- Pharmaceutical Research Institute, Albany College of Pharmacy and Health Sciences, Rensselaer, NY 12144, USA.
- PhD Program for Cancer Molecular Biology and Drug Discovery, College of Medical Science and Technology, Taipei Medical University, Taipei 11031, Taiwan.
- Taipei Cancer Center, Taipei Medical University, Taipei 11031 Taiwan.
- Traditional Herbal Medicine Research Center of Taipei Medical University Hospital, Taipei 11031, Taiwan.
- TMU Research Center of Cancer Translational Medicine, Taipei Medical University, Taipei 11031, Taiwan.
| | - Osnat Ashur-Fabian
- Department of Human Molecular Genetics and Biochemistry, Tel Aviv University, Tel Aviv 69978, Israel.
| | - Aleck Hercbergs
- Department of Radiation Oncology, Cleveland Clinic, Cleveland, OH 44195, USA.
| | - Kelly A Keating
- Pharmaceutical Research Institute, Albany College of Pharmacy and Health Sciences, Rensselaer, NY 12144, USA.
| | - Paul J Davis
- Pharmaceutical Research Institute, Albany College of Pharmacy and Health Sciences, Rensselaer, NY 12144, USA.
- Department of Medicine, Albany Medical College, Albany, NY 12208, USA.
| |
Collapse
|
45
|
Nana AW, Wu SY, Yang YCS, Chin YT, Cheng TM, Ho Y, Li WS, Liao YM, Chen YR, Shih YJ, Liu YR, Pedersen J, Incerpi S, Hercbergs A, Liu LF, Whang-Peng J, Davis PJ, Lin HY. Nano-Diamino-Tetrac (NDAT) Enhances Resveratrol-Induced Antiproliferation by Action on the RRM2 Pathway in Colorectal Cancers. Discov Oncol 2018; 9:349-360. [PMID: 30027502 DOI: 10.1007/s12672-018-0334-9] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/12/2018] [Accepted: 05/10/2018] [Indexed: 12/19/2022] Open
Abstract
Cancer resistance to chemotherapeutic agents is a major issue in the management of cancer patients. Overexpression of the ribonucleotide reductase regulatory subunit M2 (RRM2) has been associated with aggressive cancer behavior and chemoresistance. Nano-diamino-tetrac (NDAT) is a nanoparticulate derivative of tetraiodothyroacetic acid (tetrac), which exerts anticancer properties via several mechanisms and downregulates RRM2 gene expression in cancer cells. Resveratrol is a stilbenoid phytoalexin which binds to a specific site on the cell surface integrin αvβ3 to trigger cancer cell death via nuclear translocation of COX-2. Here we report that resveratrol paradoxically activates RRM2 gene expression and protein translation in colon cancer cells. This unanticipated effect inhibits resveratrol-induced COX-2 nuclear accumulation. RRM2 downregulation, whether achieved by RNA interference or treatment with NDAT, enhanced resveratrol-induced COX-2 gene expression and nuclear uptake which is essential to integrin αvβ3-mediated-resveratrol-induced antiproliferation in cancer cells. Elsewhere, NDAT downregulated resveratrol-induced RRM2 expression in vivo but potentiated the anticancer effect of the stilbene. These findings suggest that RRM2 appears as a cancer cell defense mechanism which can hinder the anticancer effect of the stilbene via the integrin αvβ3 axis. Furthermore, the antagonistic effect of RRM2 against resveratrol is counteracted by the administration of NDAT.
Collapse
Affiliation(s)
- André Wendindondé Nana
- PhD Program for Cancer Molecular Biology and Drug Discovery, College of Medical Science and Technology, Taipei Medical University and Academia Sinica, Taipei, Taiwan
| | - Szu Yuan Wu
- Institute of Toxicology, College of Medicine, National Taiwan University, Taipei, Taiwan
- Department of Radiation Oncology, Wan Fang Hospital, Taipei Medical University, Taipei, Taiwan
- Department of Internal Medicine, School of Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan
- Department of Biotechnology, Hungkuang University, Taichung, Taiwan
| | - Yu-Chen Sh Yang
- Joint Biobank, Office of Human Research, Taipei Medical University, Taipei, Taiwan
| | - Yu-Tang Chin
- PhD Program for Cancer Molecular Biology and Drug Discovery, College of Medical Science and Technology, Taipei Medical University, 250 Wu-Hsing Street, Taipei, 11031, Taiwan
- Taipei Cancer Center, Taipei Medical University, Taipei, Taiwan
| | - Tsai-Mu Cheng
- Graduate Institute of Translational Medicine, College of Medicine and Technology, Taipei Medical University, Taipei, Taiwan
| | - Yih Ho
- School of Pharmacy, Taipei Medical University, Taipei, Taiwan
| | - Wen-Shan Li
- Laboratory of Chemical Biology and Medicinal Chemistry, Institute of Chemistry, Academia Sinica, Taipei, Taiwan
- Doctoral Degree Program in Marine Biotechnology, National Sun Yat-Sen University, Kaohsiung, Taiwan
| | - Yu-Min Liao
- Integrated Laboratory, Center of Translational Medicine, Core Facility, Taipei Medical University, Taipei, Taiwan
| | - Yi-Ru Chen
- Taipei Cancer Center, Taipei Medical University, Taipei, Taiwan
| | - Ya-Jung Shih
- Taipei Cancer Center, Taipei Medical University, Taipei, Taiwan
| | - Yun-Ru Liu
- Joint Biobank, Office of Human Research, Taipei Medical University, Taipei, Taiwan
| | - Jens Pedersen
- Department of Biology, University of Rome Tor Vergata, Rome, Italy
| | - Sandra Incerpi
- Department of Sciences, Roma Tre University, Rome, Italy
| | - Aleck Hercbergs
- Department of Radiation Oncology, Cleveland Clinic, Cleveland, OH, USA
| | - Leroy F Liu
- Taipei Cancer Center, Taipei Medical University, Taipei, Taiwan
| | | | - Paul J Davis
- Pharmaceutical Research Institute, Albany College of Pharmacy and Health Sciences, Albany, NY, USA
- Department of Medicine, Albany Medical College, Albany, NY, USA
| | - Hung-Yun Lin
- PhD Program for Cancer Molecular Biology and Drug Discovery, College of Medical Science and Technology, Taipei Medical University, 250 Wu-Hsing Street, Taipei, 11031, Taiwan.
- Taipei Cancer Center, Taipei Medical University, Taipei, Taiwan.
- Pharmaceutical Research Institute, Albany College of Pharmacy and Health Sciences, Albany, NY, USA.
- Traditional Herbal Medicine Research Center of Taipei Medical University Hospital, Taipei Medical University, Taipei, Taiwan.
| |
Collapse
|
46
|
Davis PJ, Mousa SA, Schechter GP. New Interfaces of Thyroid Hormone Actions With Blood Coagulation and Thrombosis. Clin Appl Thromb Hemost 2018; 24:1014-1019. [PMID: 29742907 PMCID: PMC6714741 DOI: 10.1177/1076029618774150] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Substantial clinical evidence indicates hyperthyroidism enhances coagulation and increases the risk of thrombosis. In vitro and clinical evidence implicate multiple mechanisms for this risk. Genomic actions of thyroid hormone as 3,5,3′-triiodo-L-thyronine (T3) via a nuclear thyroid hormone receptor have been implicated, but recent evidence shows that nongenomic mechanisms initiated at the receptor for L-thyroxine (T4) on platelet integrin αvβ3 are prothrombotic. The T4-initiated mechanisms involve platelet activation and, in addition, cellular production of cytokines and chemokines such as CX3CL1 with procoagulatory activities. These procoagulant actions of T4 are particulary of note because within cells T4 is not seen to be functional, but to be only a prohormone for T3. Finally, it is also possible that thyroid hormone stimulates platelet-endothelial cell interaction involved in local thrombus generation. In this brief review, we survey mechanisms by which thyroid hormone is involved in coagulation and platelet functions. It is suggested that the threshold should be lowered for considering the possibility that clinically significant clotting may complicate hyperthyroidism. The value of routine measurement of partial thromboplastin time or circulating D-dimer in patients with hyperthyroid or in patients treated with thyrotropin-suppressing dosage of T4 requires clinical testing.
Collapse
Affiliation(s)
- Paul J Davis
- 1 Pharmaceutical Research Institute, Albany College of Pharmacy and Health Sciences, Rensselaer, NY, USA.,2 Department of Medicine, Albany Medical College, Albany, NY, USA
| | - Shaker A Mousa
- 1 Pharmaceutical Research Institute, Albany College of Pharmacy and Health Sciences, Rensselaer, NY, USA
| | - Geraldine P Schechter
- 3 Hematology Section, Medical Service, Washington Veterans Affairs Medical Center, Washington, DC, USA.,4 Department of Medicine, George Washington University, Washington, DC, USA
| |
Collapse
|
47
|
Hercbergs A, Mousa SA, Davis PJ. Nonthyroidal Illness Syndrome and Thyroid Hormone Actions at Integrin αvβ3. J Clin Endocrinol Metab 2018; 103:1291-1295. [PMID: 29409047 DOI: 10.1210/jc.2017-01939] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/31/2017] [Accepted: 01/29/2018] [Indexed: 02/13/2023]
Abstract
CONTEXT The nonthyroidal illness syndrome (NTIS) is a constellation of changes in circulating thyroid hormone levels that occur in euthyroid patients with acute or chronic systemic diseases. The changes that occur include a reduction in serum T3, an increase in serum rT3, and variable changes in circulating T4 levels. No consensus exists regarding therapeutic intervention for NTIS. METHODS We briefly review the published literature on the physiological actions of T4 and of rT3-hormones that until recently have been seen to have little or no bioactivity-and analyze the apparent significance of changes in circulating T4 and T3 encountered in the setting of NTIS in patients with cancer. In the case of T4, these actions may be initiated at a cancer or endothelial cell plasma membrane receptor on integrin αvβ3 or at the cytoskeleton. RESULTS This review examines possible therapeutic intervention in NTIS in patients with cancer in terms of T4 reduction and T3 support. Evidence also exists that rT3 may support cancer. CONCLUSIONS Prospective study is proposed of pharmacological reduction of normal or elevated T4 in cancer-associated NTIS. We also support investigation of normally circulating levels of T3 in such patients.
Collapse
Affiliation(s)
- Aleck Hercbergs
- Department of Radiation Oncology, Cleveland Clinic, Cleveland, Ohio
| | - Shaker A Mousa
- Pharmaceutical Research Institute, Albany College of Pharmacy and Health Sciences, Albany, New York
| | - Paul J Davis
- Pharmaceutical Research Institute, Albany College of Pharmacy and Health Sciences, Albany, New York
- Department of Medicine, Albany Medical College, Albany, New York
| |
Collapse
|
48
|
Abstract
There is preclinical and recent epidemiological evidence that thyroid hormone supports breast cancer. These observations raise the issue of whether management of breast cancer in certain settings should include consideration of reducing the possible contribution of thyroid hormone to the advancement of the disease. In a preliminary experience, elimination of the clinical action of endogenous L-thyroxine (T4) in patients with advanced solid tumors, including breast cancer, has favorably affected the course of the cancer, particularly when coupled with administration of exogenous 3,5,3′-triiodo-L-thyronine (T3) (euthyroid hypothyroxinemia). We discuss in the current brief review the possible clinical settings in which to consider whether endogenous thyroid hormone—or exogenous thyroid hormone in the patient with hypothyroidism and coincident breast cancer—is significantly contributing to breast cancer outcome.
Collapse
|
49
|
Little AG. Local Regulation of Thyroid Hormone Signaling. VITAMINS AND HORMONES 2018; 106:1-17. [DOI: 10.1016/bs.vh.2017.06.004] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|
50
|
Ashur-Fabian O, Zloto O, Fabian I, Tsarfaty G, Ellis M, Steinberg DM, Hercbergs A, Davis PJ, Fabian ID. Tetrac Delayed the Onset of Ocular Melanoma in an Orthotopic Mouse Model. Front Endocrinol (Lausanne) 2018; 9:775. [PMID: 30671022 PMCID: PMC6331424 DOI: 10.3389/fendo.2018.00775] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/12/2018] [Accepted: 12/10/2018] [Indexed: 12/15/2022] Open
Abstract
Ocular melanoma research, the most common primary intraocular malignancy in adults, is hindered by limited in vivo models. In a series of experiments using melanoma cells injected intraocularly into mouse eyes, we developed a model for ocular melanoma. Inoculation of 5 × 105 B16F10 cells led to rapid tumor growth, extensive lung metastasis, and limited animal survival, while injection of 102 cells was sufficient for intraocular tumors to grow with extended survival. In order to improve tumor visualization, 102 melanoma cells (B16F10 or B16LS9) were inoculated into Balb/C albino mouse eyes. These mice developed intraocular tumors that did not metastasize and exhibited extended survival. Next, we studied the therapeutic potential of inhibitor of the thyroid hormones-αvβ3 integrin signaling pathway in ocular melanoma. By utilizing tetraiodothyroacetic acid (tetrac), a thyroid hormone derivative, a delay in tumor onset in the B16F10 (integrin+) arm was observed, compared to the untreated group, while in the B16LS9 cells (integrin-) a similar rate of tumor onset was noticed in both experimental and control groups. In summary, following an optimization process, the mouse ocular melanoma model was developed. The models exhibited an extended therapeutic window and can be utilized as a platform for investigating various drugs and other treatment modalities.
Collapse
Affiliation(s)
- Osnat Ashur-Fabian
- Department of Human Molecular Genetics and Biochemistry, The Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
- Translational Hemato-Oncology Laboratory, Meir Medical Center, The Hematology Institute and Blood Bank, Kfar-Saba, Israel
- *Correspondence: Osnat Ashur-Fabian
| | - Ofira Zloto
- Goldschleger Eye Institute, Sheba Medical Center, Affiliated to The Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Ina Fabian
- Department of Cell and Developmental Biology, The Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Galya Tsarfaty
- Department of Diagnostic Imaging, Sheba Medical Center, Ramat Gan, Israel
| | - Martin Ellis
- Translational Hemato-Oncology Laboratory, Meir Medical Center, The Hematology Institute and Blood Bank, Kfar-Saba, Israel
- Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - David M. Steinberg
- Department of Statistics and Operations Research, Tel Aviv University, Tel Aviv, Israel
| | - Aleck Hercbergs
- Department of Radiation Oncology, Cleveland Clinic, Cleveland, OH, United States
| | - Paul J. Davis
- Pharmaceutical Research Institute, Albany College of Pharmacy and Health Sciences, Albany, NY, United States
- Department of Medicine, Albany Medical College, Albany, NY, United States
| | - Ido Didi Fabian
- Goldschleger Eye Institute, Sheba Medical Center, Affiliated to The Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| |
Collapse
|