1
|
Enriquez-Geppert S, Krc J, O’Higgins FJ, Lietz M. Psilocybin-assisted neurofeedback for the improvement of executive functions: a randomized semi-naturalistic-lab feasibility study. Philos Trans R Soc Lond B Biol Sci 2024; 379:20230095. [PMID: 39428872 PMCID: PMC11513162 DOI: 10.1098/rstb.2023.0095] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2023] [Revised: 02/23/2024] [Accepted: 03/20/2024] [Indexed: 10/22/2024] Open
Abstract
Executive function deficits, common in psychiatric disorders, hinder daily activities and may be linked to diminished neural plasticity, affecting treatment and training responsiveness. In this pioneering study, we evaluated the feasibility and preliminary efficacy of psilocybin-assisted frontal-midline theta neurofeedback (NF), a neuromodulation technique leveraging neuroplasticity, to improve executive functions (EFs). Thirty-seven eligible participants were randomized into an experimental group (n = 18) and a passive control group (n = 19). The experimental group underwent three microdose sessions and then three psilocybin-assisted NF sessions, without requiring psychological support, demonstrating the approach's feasibility. NF learning showed a statistical trend for increases in frontal-midline theta from session to session with a large effect size and non-significant but medium effect size dynamical changes within sessions. Placebo effects were consistent across groups, with no tasks-based EF improvements, but significant self-reported gains in daily EFs-working memory, shifting, monitoring and inhibition-showing medium and high effect sizes. The experimental group's significant gains in their key training goals underscored the approach's external relevance. A thorough study with regular sessions and an active control group is crucial to evaluate EFs improvement and their specificity in future. Psilocybin-enhanced NF could offer significant, lasting benefits across diagnoses, improving daily functioning. This article is part of the theme issue 'Neurofeedback: new territories and neurocognitive mechanisms of endogenous neuromodulation'.
Collapse
Affiliation(s)
- S. Enriquez-Geppert
- Department of Clinical and Developmental Neuropsychology, University of Groningen, Groningen, Netherlands
- Department of Biomedical Sciences of Cells & Systems, University Medical Center Groningen, Groningen, Netherlands
| | - J. Krc
- Department of Clinical and Developmental Neuropsychology, University of Groningen, Groningen, Netherlands
- Department of Psychiatry, Faculty of Medicine, Masaryk University and University Hospital Brno, Brno, Czech Republic
| | - F. J. O’Higgins
- Trinity College Institute of Neuroscience, School of Medicine, Trinity College Dublin, The University of Dublin, Dublin, Ireland
- Academic Unit of Neurology, Trinity Biomedical Sciences Institute, School of Medicine, Trinity College Dublin, The University of Dublin, Dublin, Ireland
| | - M. Lietz
- Department of Clinical and Developmental Neuropsychology, University of Groningen, Groningen, Netherlands
- Department of Medicine, Faculty of Science and Medicine, University of Fribourg, Fribourg, Switzerland
| |
Collapse
|
2
|
Chikhi S, Matton N, Sanna M, Blanchet S. Effects of one session of theta or high alpha neurofeedback on EEG activity and working memory. COGNITIVE, AFFECTIVE & BEHAVIORAL NEUROSCIENCE 2024; 24:1065-1083. [PMID: 39322825 DOI: 10.3758/s13415-024-01218-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 08/15/2024] [Indexed: 09/27/2024]
Abstract
Neurofeedback techniques provide participants immediate feedback on neuronal signals, enabling them to modulate their brain activity. This technique holds promise to unveil brain-behavior relationship and offers opportunities for neuroenhancement. Establishing causal relationships between modulated brain activity and behavioral improvements requires rigorous experimental designs, including appropriate control groups and large samples. Our primary objective was to examine whether a single neurofeedback session, designed to enhance working memory through the modulation of theta or high-alpha frequencies, elicits specific changes in electrophysiological and cognitive outcomes. Additionally, we explored predictors of successful neuromodulation. A total of 101 healthy adults were assigned to groups trained to increase frontal theta, parietal high alpha, or random frequencies (active control group). We measured resting-state EEG, working memory performance, and self-reported psychological states before and after one neurofeedback session. Although our analyses revealed improvements in electrophysiological and behavioral outcomes, these gains were not specific to the experimental groups. An increase in the frequency targeted by the training has been observed for the theta and high alpha groups, but training designed to increase randomly selected frequencies appears to induce more generalized neuromodulation compared with targeting a specific frequency. Among all the predictors of neuromodulation examined, resting theta and high alpha amplitudes predicted specifically the increase of those frequencies during the training. These results highlight the challenge of integrating a control group based on enhancing randomly selected frequency bands and suggest potential avenues for optimizing interventions (e.g., by including a control group trained in both up- and down-regulation).
Collapse
Affiliation(s)
- Samy Chikhi
- Laboratoire Mémoire, Cerveau et Cognition, Université Paris Cité, F-92100, Boulogne-Billancourt, France.
- Integrative Neuroscience and Cognition Center, Université Paris Cité, F-75006, Paris, France.
| | - Nadine Matton
- CLLE - Cognition, Langues, Langage, Ergonomie, Université de Toulouse, Toulouse, France
- Fédération ENAC ISAE-SUPAERO ONERA, Université de Toulouse, Toulouse, France
| | - Marie Sanna
- Laboratoire Mémoire, Cerveau et Cognition, Université Paris Cité, F-92100, Boulogne-Billancourt, France
| | - Sophie Blanchet
- Laboratoire Mémoire, Cerveau et Cognition, Université Paris Cité, F-92100, Boulogne-Billancourt, France
| |
Collapse
|
3
|
Tosti B, Corrado S, Mancone S, Di Libero T, Carissimo C, Cerro G, Rodio A, da Silva VF, Coimbra DR, Andrade A, Diotaiuti P. Neurofeedback Training Protocols in Sports: A Systematic Review of Recent Advances in Performance, Anxiety, and Emotional Regulation. Brain Sci 2024; 14:1036. [PMID: 39452048 PMCID: PMC11506327 DOI: 10.3390/brainsci14101036] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2024] [Revised: 10/01/2024] [Accepted: 10/07/2024] [Indexed: 10/26/2024] Open
Abstract
(1) Background. Neurofeedback has been used in sports since the 1990s, frequently showing positive outcomes in enhancing athletic performance. This systematic review provides an updated analysis of neurofeedback training in sports, evaluating reaction time, cognitive performance, and emotional regulation to address literature gaps and suggest future research directions. (2) Methods. A systematic search was conducted using PubMed, Scopus, Science Direct, and Web of Science databases for articles published from January 2016 to April 2023. The search included only original articles written in English, resulting in 24 studies meeting the inclusion criteria. (3) Results. The reviewed studies cover a wide range of sports, including golf, basketball, swimming, rifle shooting, football, volleyball, athletics, judo, ice hockey, triathlon, handball, fencing, taekwondo, and darts. They involved athletes of varying experience levels (beginners, professionals, and experts) and utilized neurofeedback training targeting different frequency bands (alpha, beta, theta, and SMR), either individually or in mixed protocols. Findings show improvements in sports and cognitive performance, emotional regulation, and anxiety management. (4) Conclusions. This systematic review supports the effectiveness of neurofeedback in enhancing sports and cognitive performance across various disciplines and experience levels. Notable improvements were observed in technical skills, physical performance parameters, scoring, attention, concentration, reaction time, short-term and working memory, self-regulation, and cognitive anxiety. Future research should standardize protocols, include more diverse samples, and explore long-term effects to further validate these findings.
Collapse
Affiliation(s)
- Beatrice Tosti
- Department of Human Sciences, Society and Health, University of Cassino and Southern Lazio, 03043 Cassino, Italy; (B.T.); (S.C.); (S.M.); (T.D.L.); (A.R.)
| | - Stefano Corrado
- Department of Human Sciences, Society and Health, University of Cassino and Southern Lazio, 03043 Cassino, Italy; (B.T.); (S.C.); (S.M.); (T.D.L.); (A.R.)
| | - Stefania Mancone
- Department of Human Sciences, Society and Health, University of Cassino and Southern Lazio, 03043 Cassino, Italy; (B.T.); (S.C.); (S.M.); (T.D.L.); (A.R.)
| | - Tommaso Di Libero
- Department of Human Sciences, Society and Health, University of Cassino and Southern Lazio, 03043 Cassino, Italy; (B.T.); (S.C.); (S.M.); (T.D.L.); (A.R.)
| | - Chiara Carissimo
- Department of Medicine and Health Sciences “Vincenzo Tiberio”, University of Molise, 86100 Campobasso, Italy; (C.C.); (G.C.)
| | - Gianni Cerro
- Department of Medicine and Health Sciences “Vincenzo Tiberio”, University of Molise, 86100 Campobasso, Italy; (C.C.); (G.C.)
| | - Angelo Rodio
- Department of Human Sciences, Society and Health, University of Cassino and Southern Lazio, 03043 Cassino, Italy; (B.T.); (S.C.); (S.M.); (T.D.L.); (A.R.)
| | - Vernon Furtado da Silva
- Instituto de Psiquiatria-IPUB, Federal University of Rio de Janeiro, UFRJ, Rio de Janeiro 21941-853, Brazil;
| | - Danilo Reis Coimbra
- Faculty of Physical Education and Sports, Federal University of Juiz de Fora, UFJF, Juiz de Fora 36036-900, Brazil;
| | - Alexandro Andrade
- Health and Sports Science Center, Department of Physical Education, CEFID, Santa Catarina State University, Florianópolis 88035-901, Brazil;
| | - Pierluigi Diotaiuti
- Department of Human Sciences, Society and Health, University of Cassino and Southern Lazio, 03043 Cassino, Italy; (B.T.); (S.C.); (S.M.); (T.D.L.); (A.R.)
| |
Collapse
|
4
|
Tesink V, Douglas T, Forsberg L, Ligthart S, Meynen G. Right to mental integrity and neurotechnologies: implications of the extended mind thesis. JOURNAL OF MEDICAL ETHICS 2024; 50:656-663. [PMID: 38408854 PMCID: PMC11503137 DOI: 10.1136/jme-2023-109645] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/09/2023] [Accepted: 01/14/2024] [Indexed: 02/28/2024]
Abstract
The possibility of neurotechnological interference with our brain and mind raises questions about the moral rights that would protect against the (mis)use of these technologies. One such moral right that has received recent attention is the right to mental integrity. Though the metaphysical boundaries of the mind are a matter of live debate, most defences of this moral right seem to assume an internalist (brain-based) view of the mind. In this article, we will examine what an extended account of the mind might imply for the right to mental integrity and the protection it provides against neurotechnologies. We argue that, on an extended account of the mind, the scope of the right to mental integrity would expand significantly, implying that neurotechnologies would no longer pose a uniquely serious threat to the right. In addition, some neurotechnologies may even be protected by the right to mental integrity, as the technologies would become part of the mind. We conclude that adopting an extended account of the mind has significant implications for the right to mental integrity in terms of its protective scope and capacity to protect against neurotechnologies, demonstrating that metaphysical assumptions about the mind play an important role in determining the moral protection provided by the right.
Collapse
Affiliation(s)
- Vera Tesink
- Department of Philosophy, Faculty of Humanities, Vrije Universiteit Amsterdam, Amsterdam, Netherlands
| | - Thomas Douglas
- Oxford Uehiro Centre for Practical Ethics, Faculty of Philosophy, University of Oxford, Oxford, UK
- Jesus College, University of Oxford, Oxford, UK
| | - Lisa Forsberg
- Oxford Uehiro Centre for Practical Ethics, Faculty of Philosophy, University of Oxford, Oxford, UK
| | - Sjors Ligthart
- Department of Criminal Law, Tilburg University, Tilburg, Netherlands
- Willem Pompe Institute for Criminal Law and Criminology and UCALL, Utrecht University, Utrecht, Netherlands
| | - Gerben Meynen
- Department of Philosophy, Faculty of Humanities, Vrije Universiteit Amsterdam, Amsterdam, Netherlands
- Willem Pompe Institute for Criminal Law and Criminology and UCALL, Utrecht University, Utrecht, Netherlands
| |
Collapse
|
5
|
Faridi A, Taremian F, Thatcher RW. Comparative Analysis of LORETA Z Score Neurofeedback and Cognitive Rehabilitation on Quality of Life and Response Inhibition in Individuals with Opioid Addiction. Clin EEG Neurosci 2024:15500594241283069. [PMID: 39275813 DOI: 10.1177/15500594241283069] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 09/16/2024]
Abstract
Background. Previous studies has shown that conventional neurofeedback and cognitive rehabilitation can improve psychological outcomes in people with opioid use disorders. However, the effectiveness of LORETA Z-score neurofeedback (LZNFB) and attention bias modification training on quality of life and inhibitory control of these people has not been investigated yet. LZNFB targets deeper brain structures with higher precision, compared to conventional neurofeedback that typically focuses on surface EEG activity. The present study aims to compare the effect of these two methods on quality of life and response inhibition in men with opioid use disorders under methadone maintenance therapy (MMT). Methods. In this randomized controlled clinical trial with a pre-test, post-test, follow-up design, 30 men with opioid use disorders under MMT were randomly assigned into three groups of LZNFB, attention bias modification training, and control (MMT alone). The LZNFB and Cognitive Rehabilitation groups received 20 and 15 sessions of treatment, respectively. The Persian versions WHO Quality of Life-BREEF questionnaire and the Go/No-Go test were completed by the participants before, immediately after, and one month after interventions. The collected data were analyzed in SPSS v.22 software. Results. Both intervention groups showed a significant improvement in quality-of-life score and a significant reduction in response time at the post-test phase (P < .05), where LZNFB group showed more improvement in quality of life and more reduction in response inhibition. After one month, the increase in quality of life continued in both groups, while the decrease in response time continued only in the LZNFB group. Conclusion. Both LZNFB and attention bias modification training are effective in improving quality of life and response inhibition of men with OUD under MMT, however, LZNFB is more effective.
Collapse
Affiliation(s)
- Alireza Faridi
- Department of Addiction Studies, Faculty of Medicine, Zanjan University of Medical Sciences, Zanjan, Iran
| | - Farhad Taremian
- Substance Abuse and Dependence Research Center, University of Social Welfare and Rehabilitation Sciences, Tehran, Iran
| | - Robert W Thatcher
- EEG and Neuroimaging Laboratory, Applied Neuroscience Research Institute, St. Petersburg, FL, USA
| |
Collapse
|
6
|
Ather M, Ejaz O, Rao AZ, Mujib MD, Raees F, Qazi SA, Hasan MA. Efficacy of audiovisual neurofeedback training for attention enhancement: a multimodal approach. Neuroreport 2024; 35:721-728. [PMID: 38874941 DOI: 10.1097/wnr.0000000000002063] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/15/2024]
Abstract
Attention is a cognitive process that involves focusing mental resources on specific stimuli and plays a fundamental role in perception, learning, memory, and decision-making. Neurofeedback (NF) is a useful technique for improving attention, providing real-time feedback on brain activity in the form of visual or auditory cues, and allowing users to learn to self-regulate their cognitive processes. This study compares the effectiveness of different cues in NF training for attention enhancement through a multimodal approach. We conducted neurological (Quantitative Electroencephalography), neuropsychological (Mindfulness Attention Awareness Scale-15), and behavioral (Stroop test) assessments before and after NF training on 36 healthy participants, divided into audiovisual (G1) and visual (G2) groups. Twelve NF training sessions were conducted on alternate days, each consisting of five subsessions, with pre- and post-NF baseline electroencephalographic evaluations using power spectral density. The pre-NF baseline was used for thresholding the NF session using the beta frequency band power. Two-way analysis of variance revealed a significant long-term effect of group (G1/G2) and state (before/after NF) on the behavioral and neuropsychological assessments, with G1 showing significantly higher Mindfulness Attention Awareness Scale-15 scores, higher Stroop scores, and lower Stroop reaction times for interaction effects. Moreover, unpaired t -tests to compare voxel-wise standardized low-resolution brain electromagnetic tomography images revealed higher activity of G1 in Brodmann area 40 due to NF training. Neurological assessments show that G1 had better improvement in immediate, short-, and long-term attention. The findings of this study offer a guide for the development of NF training protocols aimed at enhancing attention effectively.
Collapse
Affiliation(s)
- Maryam Ather
- Neurocomputation Laboratory, NED University of Engineering & Technology
| | - Osama Ejaz
- Neurocomputation Laboratory, NED University of Engineering & Technology
| | - Ahmad Zahid Rao
- Department of Biomedical Engineering, NED University of Engineering & Technology
| | | | - Faryal Raees
- Neurocomputation Laboratory, NED University of Engineering & Technology
- Department of Surgery, The Aga Khan University Hospital
| | - Saad Ahmed Qazi
- Neurocomputation Laboratory, NED University of Engineering & Technology
- Department of Electrical Engineering, NED University of Engineering & Technology, Karachi, Pakistan
| | - Muhammad Abul Hasan
- Neurocomputation Laboratory, NED University of Engineering & Technology
- Department of Biomedical Engineering, NED University of Engineering & Technology
| |
Collapse
|
7
|
Ferrante M, Boccato T, Bargione S, Toschi N. Decoding visual brain representations from electroencephalography through knowledge distillation and latent diffusion models. Comput Biol Med 2024; 178:108701. [PMID: 38901186 DOI: 10.1016/j.compbiomed.2024.108701] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2024] [Revised: 05/31/2024] [Accepted: 06/01/2024] [Indexed: 06/22/2024]
Abstract
Decoding visual representations from human brain activity has emerged as a thriving research domain, particularly in the context of brain-computer interfaces. Our study presents an innovative method that employs knowledge distillation to train an EEG classifier and reconstruct images from the ImageNet and THINGS-EEG 2 datasets using only electroencephalography (EEG) data from participants who have viewed the images themselves (i.e. "brain decoding"). We analyzed EEG recordings from 6 participants for the ImageNet dataset and 10 for the THINGS-EEG 2 dataset, exposed to images spanning unique semantic categories. These EEG readings were converted into spectrograms, which were then used to train a convolutional neural network (CNN), integrated with a knowledge distillation procedure based on a pre-trained Contrastive Language-Image Pre-Training (CLIP)-based image classification teacher network. This strategy allowed our model to attain a top-5 accuracy of 87%, significantly outperforming a standard CNN and various RNN-based benchmarks. Additionally, we incorporated an image reconstruction mechanism based on pre-trained latent diffusion models, which allowed us to generate an estimate of the images that had elicited EEG activity. Therefore, our architecture not only decodes images from neural activity but also offers a credible image reconstruction from EEG only, paving the way for, e.g., swift, individualized feedback experiments.
Collapse
Affiliation(s)
- Matteo Ferrante
- Department of Biomedicine and Prevention, University of Rome Tor Vergata (IT), Italy.
| | - Tommaso Boccato
- Department of Biomedicine and Prevention, University of Rome Tor Vergata (IT), Italy
| | - Stefano Bargione
- Department of Biomedicine and Prevention, University of Rome Tor Vergata (IT), Italy
| | - Nicola Toschi
- Department of Biomedicine and Prevention, University of Rome Tor Vergata (IT), Italy; Athinoula A. Martinos Center for Biomedical Imaging, MGH and Harvard Medical School (US), United States of America
| |
Collapse
|
8
|
Cheng MY, Yu CL, An X, Wang L, Tsai CL, Qi F, Wang KP. Evaluating EEG neurofeedback in sport psychology: a systematic review of RCT studies for insights into mechanisms and performance improvement. Front Psychol 2024; 15:1331997. [PMID: 39156814 PMCID: PMC11328324 DOI: 10.3389/fpsyg.2024.1331997] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2023] [Accepted: 07/01/2024] [Indexed: 08/20/2024] Open
Abstract
Electroencephalographic Neurofeedback Training (EEG NFT) aims to improve sport performance by teaching athletes to control their mental states, leading to better cognitive, emotional, and physical outcomes. The psychomotor efficiency hypothesis suggests that optimizing brain function could enhance athletic ability, indicating the potential of EEG NFT. However, evidence for EEG-NFT's ability to alter critical brain activity patterns, such as sensorimotor rhythm and frontal midline theta-key for concentration and relaxation-is not fully established. Current research lacks standardized methods and comprehensive studies. This shortfall is due to inconsistent EEG target selection and insufficient focus on coherence in training. This review aims to provide empirical support for EEG target selection, conduct detailed control analyses, and examine the specificity of electrodes and frequencies to relation to the psychomotor efficiency hypothesis. Following the PRISMA method, 2,869 empirical studies were identified from PubMed, Science Direct, Web of Science, Embase, CNKI, and PsycINFO. Thirteen studies met the inclusion criteria: (i) proficient skill levels; (ii) use of EEG; (iii) neurofeedback training (NFT); (iv) motor performance metrics (reaction time, precision, dexterity, balance); (v) control group for NFT comparison; (vi) peer-reviewed English-language publication; and (vii) randomized controlled trial (RCT) design. Studies indicate that NFT can enhance sports performance, including improvements in shooting accuracy, golf putting, and overall motor skills, as supported by the psychomotor efficiency hypothesis. EEG NFT demonstrates potential in enhancing sports performance by optimizing performers' mental states and psychomotor efficiency. However, the current body of research is hampered by inconsistent methodologies and a lack of standardized EEG target selection. To strengthen the empirical evidence supporting EEG NFT, future studies need to focus on standardizing target selection, employing rigorous control analyses, and investigating underexplored EEG markers. These steps are vital to bolster the evidence for EEG NFT and enhance its effectiveness in boosting sport performance.
Collapse
Affiliation(s)
- Ming-Yang Cheng
- School of Psychology, Beijing Sport University, Beijing, China
| | - Chien-Lin Yu
- Department of Physical Education and Sport Sciences, National Taiwan Normal University, Taipei City, Taiwan
| | - Xin An
- School of Psychology, Beijing Sport University, Beijing, China
| | - Letong Wang
- School of Psychology, Beijing Sport University, Beijing, China
| | - Chi-Lun Tsai
- Department of Sport Psychology, Faculty of Sport Science, Universität Leipzig, Leipzig, Germany
| | - Fengxue Qi
- Sports, Exercise and Brain Sciences Laboratory, Beijing Sport University, Beijing, China
| | - Kuo-Pin Wang
- Center for Cognitive Interaction Technology, Bielefeld University, Bielefeld, Germany
- Neurocognition and Action - Biomechanics Research Group, Faculty of Psychology and Sports Science, Bielefeld University, Bielefeld, Germany
| |
Collapse
|
9
|
Pfeiffer M, Kübler A, Hilger K. Modulation of human frontal midline theta by neurofeedback: A systematic review and quantitative meta-analysis. Neurosci Biobehav Rev 2024; 162:105696. [PMID: 38723734 DOI: 10.1016/j.neubiorev.2024.105696] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2023] [Revised: 03/27/2024] [Accepted: 04/26/2024] [Indexed: 05/19/2024]
Abstract
Human brain activity consists of different frequency bands associated with varying functions. Oscillatory activity of frontal brain regions in the theta range (4-8 Hz) is linked to cognitive processing and can be modulated by neurofeedback - a technique where participants receive real-time feedback about their brain activity and learn to modulate it. However, criticism of this technique evolved, and high heterogeneity of study designs complicates a valid evaluation of its effectiveness. This meta-analysis provides the first systematic overview over studies attempting to modulate frontal midline theta with neurofeedback in healthy human participants. Out of 1261 articles screened, 14 studies were eligible for systematic review and 11 for quantitative meta-analyses. Studies were evaluated following the DIAD model and the PRISMA guidelines. A significant across-study effect of medium size (Hedges' g = .66; 95%-CI [-0.62, 1.73]) with substantial between-study heterogeneity (Q(16) = 167.43, p < .001) was observed and subanalysis revealed effective frontal midline theta upregulation. We discuss moderators of effect sizes and provide guidelines for future research in this dynamic field.
Collapse
Affiliation(s)
- Maria Pfeiffer
- Institute of Psychology, Department of Psychology I, Würzburg University, Marcusstr. 9-11, Würzburg D-97070, Germany
| | - Andrea Kübler
- Institute of Psychology, Department of Psychology I, Würzburg University, Marcusstr. 9-11, Würzburg D-97070, Germany
| | - Kirsten Hilger
- Institute of Psychology, Department of Psychology I, Würzburg University, Marcusstr. 9-11, Würzburg D-97070, Germany.
| |
Collapse
|
10
|
Klein F. Optimizing spatial specificity and signal quality in fNIRS: an overview of potential challenges and possible options for improving the reliability of real-time applications. FRONTIERS IN NEUROERGONOMICS 2024; 5:1286586. [PMID: 38903906 PMCID: PMC11188482 DOI: 10.3389/fnrgo.2024.1286586] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Accepted: 04/29/2024] [Indexed: 06/22/2024]
Abstract
The optical brain imaging method functional near-infrared spectroscopy (fNIRS) is a promising tool for real-time applications such as neurofeedback and brain-computer interfaces. Its combination of spatial specificity and mobility makes it particularly attractive for clinical use, both at the bedside and in patients' homes. Despite these advantages, optimizing fNIRS for real-time use requires careful attention to two key aspects: ensuring good spatial specificity and maintaining high signal quality. While fNIRS detects superficial cortical brain regions, consistently and reliably targeting specific regions of interest can be challenging, particularly in studies that require repeated measurements. Variations in cap placement coupled with limited anatomical information may further reduce this accuracy. Furthermore, it is important to maintain good signal quality in real-time contexts to ensure that they reflect the true underlying brain activity. However, fNIRS signals are susceptible to contamination by cerebral and extracerebral systemic noise as well as motion artifacts. Insufficient real-time preprocessing can therefore cause the system to run on noise instead of brain activity. The aim of this review article is to help advance the progress of fNIRS-based real-time applications. It highlights the potential challenges in improving spatial specificity and signal quality, discusses possible options to overcome these challenges, and addresses further considerations relevant to real-time applications. By addressing these topics, the article aims to help improve the planning and execution of future real-time studies, thereby increasing their reliability and repeatability.
Collapse
Affiliation(s)
- Franziska Klein
- Biomedical Devices and Systems Group, R&D Division Health, OFFIS - Institute for Information Technology, Oldenburg, Germany
- Department of Psychiatry, Psychotherapy and Psychosomatics, Medical School, RWTH Aachen University, Aachen, Germany
- Neurocognition and Functional Neurorehabilitation Group, Department of Psychology, University of Oldenburg, Oldenburg, Germany
| |
Collapse
|
11
|
Xia Z, Yang PY, Chen SL, Zhou HY, Yan C. Uncovering the power of neurofeedback: a meta-analysis of its effectiveness in treating major depressive disorders. Cereb Cortex 2024; 34:bhae252. [PMID: 38889442 DOI: 10.1093/cercor/bhae252] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2024] [Revised: 05/25/2024] [Accepted: 06/04/2024] [Indexed: 06/20/2024] Open
Abstract
Neurofeedback, a non-invasive intervention, has been increasingly used as a potential treatment for major depressive disorders. However, the effectiveness of neurofeedback in alleviating depressive symptoms remains uncertain. To address this gap, we conducted a comprehensive meta-analysis to evaluate the efficacy of neurofeedback as a treatment for major depressive disorders. We conducted a comprehensive meta-analysis of 22 studies investigating the effects of neurofeedback interventions on depression symptoms, neurophysiological outcomes, and neuropsychological function. Our analysis included the calculation of Hedges' g effect sizes and explored various moderators like intervention settings, study designs, and demographics. Our findings revealed that neurofeedback intervention had a significant impact on depression symptoms (Hedges' g = -0.600) and neurophysiological outcomes (Hedges' g = -0.726). We also observed a moderate effect size for neurofeedback intervention on neuropsychological function (Hedges' g = -0.418). As expected, we observed that longer intervention length was associated with better outcomes for depressive symptoms (β = -4.36, P < 0.001) and neuropsychological function (β = -2.89, P = 0.003). Surprisingly, we found that shorter neurofeedback sessions were associated with improvements in neurophysiological outcomes (β = 3.34, P < 0.001). Our meta-analysis provides compelling evidence that neurofeedback holds promising potential as a non-pharmacological intervention option for effectively improving depressive symptoms, neurophysiological outcomes, and neuropsychological function in individuals with major depressive disorders.
Collapse
Affiliation(s)
- Zheng Xia
- Key Laboratory of Brain Functional Genomics (MOE&STCSM), Affiliated Mental Health Center (ECNU), School of Psychology and Cognitive Science, East China Normal University, 3663 North Zhongshan Road, Shanghai 200062, China
- Shanghai Changning Mental Health Center, 299 Xiehe Road, Shanghai 200335, China
| | - Peng-Yuan Yang
- Department of Methodology and Statistics, Faculty of Behavioral and Social Sciences, Tilburg University, Warandelaan 2, 5037 AB, Tilburg, The Netherlands
| | - Si-Lu Chen
- Shanghai Changning Mental Health Center, 299 Xiehe Road, Shanghai 200335, China
| | - Han-Yu Zhou
- Shanghai Key Laboratory of Mental Health and Psychological Crisis Intervention, Affiliated Mental Health Center (ECNU), School of Psychology and Cognitive Science, East China Normal University, 3663 North Zhongshan Road, Shanghai 200062, China
| | - Chao Yan
- Key Laboratory of Brain Functional Genomics (MOE&STCSM), Affiliated Mental Health Center (ECNU), School of Psychology and Cognitive Science, East China Normal University, 3663 North Zhongshan Road, Shanghai 200062, China
- Shanghai Changning Mental Health Center, 299 Xiehe Road, Shanghai 200335, China
- Key Laboratory of Philosophy and Social Science of Anhui Province on Adolescent Mental Health and Crisis Intelligence Intervention, Hefei Normal University, 1688 Lianhua Road, Hefei 230601, China
| |
Collapse
|
12
|
Kober SE, Wood G, Schuster S, Körner C. Do Miniature Eye Movements Affect Neurofeedback Training Performance? A Combined EEG-Eye Tracking Study. Appl Psychophysiol Biofeedback 2024; 49:313-327. [PMID: 38492124 PMCID: PMC11101551 DOI: 10.1007/s10484-024-09625-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/08/2024] [Indexed: 03/18/2024]
Abstract
EEG-based neurofeedback is a prominent method to modulate one's own brain activity in a desired direction. However, the EEG signal can be disturbed by artifacts, e.g., eye movements, which can consequently confound the neurofeedback performance. Involuntary miniature eye movements can be hardly detected by conventional EEG correction methods such as recording the electro-oculogram (EOG) and subtracting EOG activity from the EEG signal. However, such miniature eye movements can influence EEG activity, especially in the Gamma frequency range, enormously. In the present study, we investigated whether power in different EEG frequencies can be effectively modulated by self-control of brain signals during neurofeedback training and/or whether changes in EEG power are provoked by miniature eye movements during the training. To this end, 24 participants performed one session of SMR and one session of Gamma neurofeedback training. Additionally, in each training session sham feedback was performed. An eye tracker was used to detect miniature eye movements (< 1°) during neurofeedback training. About two thirds of the participants were able to increase their SMR power over the course of NF training, while one third was able to increase Gamma power. Generally, miniature eye movements induced a strong Gamma power increase. The number of eye movements also increased numerically over the course of the NF training. However, we did not find a significant relationship with the NF training performance. This is a first indication that miniature saccades do not affect NF training performance, but should not be neglected during NF training. Our results have to be confirmed in future studies.
Collapse
Affiliation(s)
- Silvia Erika Kober
- Department of Psychology, University of Graz, Universitaetsplatz 2/III, 8010, Graz, Austria.
- BioTechMed-Graz, Graz, Austria.
| | - Guilherme Wood
- Department of Psychology, University of Graz, Universitaetsplatz 2/III, 8010, Graz, Austria
- BioTechMed-Graz, Graz, Austria
| | - Sarah Schuster
- Department of Psychology, University of Graz, Universitaetsplatz 2/III, 8010, Graz, Austria
| | - Christof Körner
- Department of Psychology, University of Graz, Universitaetsplatz 2/III, 8010, Graz, Austria
- BioTechMed-Graz, Graz, Austria
| |
Collapse
|
13
|
Li L, Li Y, Li Z, Huang G, Liang Z, Zhang L, Wan F, Shen M, Han X, Zhang Z. Multimodal and hemispheric graph-theoretical brain network predictors of learning efficacy for frontal alpha asymmetry neurofeedback. Cogn Neurodyn 2024; 18:847-862. [PMID: 38826665 PMCID: PMC11143167 DOI: 10.1007/s11571-023-09939-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2022] [Revised: 12/29/2022] [Accepted: 01/31/2023] [Indexed: 02/23/2023] Open
Abstract
EEG neurofeedback using frontal alpha asymmetry (FAA) has been widely used for emotion regulation, but its effectiveness is controversial. Studies indicated that individual differences in neurofeedback training can be traced to neuroanatomical and neurofunctional features. However, they only focused on regional brain structure or function and overlooked possible neural correlates of the brain network. Besides, no neuroimaging predictors for FAA neurofeedback protocol have been reported so far. We designed a single-blind pseudo-controlled FAA neurofeedback experiment and collected multimodal neuroimaging data from healthy participants before training. We assessed the learning performance for evoked EEG modulations during training (L1) and at rest (L2), and investigated performance-related predictors based on a combined analysis of multimodal brain networks and graph-theoretical features. The main findings of this study are described below. First, both real and sham groups could increase their FAA during training, but only the real group showed a significant increase in FAA at rest. Second, the predictors during training blocks and at rests were different: L1 was correlated with the graph-theoretical metrics (clustering coefficient and local efficiency) of the right hemispheric gray matter and functional networks, while L2 was correlated with the graph-theoretical metrics (local and global efficiency) of the whole-brain and left the hemispheric functional network. Therefore, the individual differences in FAA neurofeedback learning could be explained by individual variations in structural/functional architecture, and the correlated graph-theoretical metrics of learning performance indices showed different laterality of hemispheric networks. These results provided insight into the neural correlates of inter-individual differences in neurofeedback learning. Supplementary Information The online version contains supplementary material available at 10.1007/s11571-023-09939-x.
Collapse
Affiliation(s)
- Linling Li
- School of Biomedical Engineering, Medical School, Shenzhen University, Shenzhen 518060, China
- Guangdong Provincial Key Laboratory of Biomedical Measurements and Ultrasound Imaging, Shenzhen 518060, China
| | - Yutong Li
- School of Biomedical Engineering, Medical School, Shenzhen University, Shenzhen 518060, China
- Guangdong Provincial Key Laboratory of Biomedical Measurements and Ultrasound Imaging, Shenzhen 518060, China
| | - Zhaoxun Li
- School of Biomedical Engineering, Medical School, Shenzhen University, Shenzhen 518060, China
- Guangdong Provincial Key Laboratory of Biomedical Measurements and Ultrasound Imaging, Shenzhen 518060, China
| | - Gan Huang
- School of Biomedical Engineering, Medical School, Shenzhen University, Shenzhen 518060, China
- Guangdong Provincial Key Laboratory of Biomedical Measurements and Ultrasound Imaging, Shenzhen 518060, China
| | - Zhen Liang
- School of Biomedical Engineering, Medical School, Shenzhen University, Shenzhen 518060, China
- Guangdong Provincial Key Laboratory of Biomedical Measurements and Ultrasound Imaging, Shenzhen 518060, China
| | - Li Zhang
- School of Biomedical Engineering, Medical School, Shenzhen University, Shenzhen 518060, China
- Guangdong Provincial Key Laboratory of Biomedical Measurements and Ultrasound Imaging, Shenzhen 518060, China
| | - Feng Wan
- Department of Electrical and Computer Engineering, Faculty of Science and Technology, University of Macau, Macau, China
| | - Manjun Shen
- Department of Mental Health, Shenzhen Nanshan Center for Chronic Disease Control, Shenzhen 518060, China
| | - Xue Han
- Department of Mental Health, Shenzhen Nanshan Center for Chronic Disease Control, Shenzhen 518060, China
| | - Zhiguo Zhang
- School of Computer Science and Technology, Harbin Institute of Technology, Shenzhen 518060, China
- Peng Cheng Laboratory, Shenzhen 518060, China
- Marshall Laboratory of Biomedical Engineering, Shenzhen University, Shenzhen 518060, China
| |
Collapse
|
14
|
Gacek M, Smoleń T, Krzywoszański Ł, Bartecka-Śmietana A, Kulasek-Filip B, Piotrowska M, Sepielak D, Supernak K. Effects of School-Based Neurofeedback Training on Attention in Students with Autism and Intellectual Disabilities. J Autism Dev Disord 2024:10.1007/s10803-024-06400-8. [PMID: 38806749 DOI: 10.1007/s10803-024-06400-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/06/2024] [Indexed: 05/30/2024]
Abstract
In this study we aimed to assess the influence of school-based neurofeedback training on the attention of students with autism and intellectual disabilities. We assessed 24 students of a special education center who attended neurofeedback training sessions during the schoolyear; we also assessed 25 controls from the same center. We used two computer tasks to assess sustained attention in simple and cognitively demanding test situations, and we used a pen-and-paper task to assess selective attention. Each student who took part in the study was tested at the beginning and at the end of the schoolyear. Students from the experimental group significantly improved their performance in the task related to sustained attention to simple stimuli. No performance improvement related to neurofeedback treatment was observed in either sustained attention in cognitively demanding situations or selective attention. School-based neurofeedback training may improve sustained attention to simple stimuli in students with developmental disabilities.
Collapse
Affiliation(s)
- Michał Gacek
- Institute of Psychology, Jagiellonian University, ul. Ingardena 6, 30-060, Krakow, Poland.
| | - Tomasz Smoleń
- Department of Cognitive Science, Jagiellonian University, ul. Grodzka 52, 31-044, Krakow, Poland
| | - Łukasz Krzywoszański
- Institute of Psychology, The Pedagogical University of Krakow, ul. Podchorazych 2, 30-084, Krakow, Poland
| | | | - Beata Kulasek-Filip
- Special Education and Child Care Center No. 1 in Krakow, ul. Barska 45, 30-307, Krakow, Poland
| | - Maja Piotrowska
- Institute of Psychology, Jagiellonian University, ul. Ingardena 6, 30-060, Krakow, Poland
| | - Dominika Sepielak
- Institute of Psychology, Jagiellonian University, ul. Ingardena 6, 30-060, Krakow, Poland
| | - Katarzyna Supernak
- Special Education and Child Care Center No. 1 in Krakow, ul. Barska 45, 30-307, Krakow, Poland
| |
Collapse
|
15
|
Gouret A, Le Bars S, Porssut T, Waszak F, Chokron S. Advancements in brain-computer interfaces for the rehabilitation of unilateral spatial neglect: a concise review. Front Neurosci 2024; 18:1373377. [PMID: 38784094 PMCID: PMC11111994 DOI: 10.3389/fnins.2024.1373377] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2024] [Accepted: 04/24/2024] [Indexed: 05/25/2024] Open
Abstract
This short review examines recent advancements in neurotechnologies within the context of managing unilateral spatial neglect (USN), a common condition following stroke. Despite the success of brain-computer interfaces (BCIs) in restoring motor function, there is a notable absence of effective BCI devices for treating cerebral visual impairments, a prevalent consequence of brain lesions that significantly hinders rehabilitation. This review analyzes current non-invasive BCIs and technological solutions dedicated to cognitive rehabilitation, with a focus on visuo-attentional disorders. We emphasize the need for further research into the use of BCIs for managing cognitive impairments and propose a new potential solution for USN rehabilitation, by combining the clinical subtleties of this syndrome with the technological advancements made in the field of neurotechnologies.
Collapse
Affiliation(s)
- Alix Gouret
- Integrative Neuroscience and Cognition Center (INCC), CNRS, Université Paris Cité, Paris, France
- Research and Innovation Department, Capgemini Engineering, Paris, France
| | - Solène Le Bars
- Integrative Neuroscience and Cognition Center (INCC), CNRS, Université Paris Cité, Paris, France
- Research and Innovation Department, Capgemini Engineering, Paris, France
| | - Thibault Porssut
- Research and Innovation Department, Capgemini Engineering, Paris, France
| | - Florian Waszak
- Integrative Neuroscience and Cognition Center (INCC), CNRS, Université Paris Cité, Paris, France
| | - Sylvie Chokron
- Integrative Neuroscience and Cognition Center (INCC), CNRS, Université Paris Cité, Paris, France
- Research and Innovation Department, Capgemini Engineering, Paris, France
| |
Collapse
|
16
|
Mergl R, Karch S, Henl J, Meindl D, Schöpf F, Szabo SI, Hallweger P, Heiler P, Maywald M, Tschentscher N, Allgaier AK, Pogarell O. Effects of Four Different EEG-Neurofeedback Reinforcement Types in Healthy Individuals - A Pilot Study. Clin EEG Neurosci 2024; 55:305-316. [PMID: 36373604 DOI: 10.1177/15500594221138278] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
EEG neurofeedback (EEG-NFB) is a promising tool for the treatment of depressive disorders. However, many methods for the presentation of neurobiological reactions are available and it is widely unknown which of these feedback options are preferrable. Moreover, the influence of motivation on NFB training success is insufficiently studied. This study analyzed the efficacy of a novel EEG protocol (FC3/Pz) based on findings for NFB in depression. The role of four feedback options (Rumination, Anxiety, Meditation Master, Moving Art) from the NFB software "Brain Assistant" and motivation in EEG-based NFB performance was studied. Regarding "Anxiety" and "Rumination" visual feedback was used to evoke emotions; reinforcement (both negative and positive operant conditioning) was continuous. Regarding "Meditation Master" visual feedback was combined with continuous positive reinforcement. Regarding "Moving Art" 20-min calm nature films with neutral character were used; both visual and auditive feedback were applied. The reinforcement was positive and continuous. 13 healthy participants completed 15 EEG sessions over four months combining simultaneous frontal (aims: reduction of theta-, alpha- and high beta-activity, increase of low and mid beta-activity) and parietal training (aims: reduction of theta-, alpha 1-, mid and high beta-activity, increase of alpha 2- and low beta-activity). We observed significantly more pronounced percentage change in the expected direction for Anxiety than Moving Art (mean difference = 3.32; p = 0.003). The association between motivation and performance was non-significant. Based on these results we conclude that feedback with both negative and positive operant conditioning and emotion evoking effects should be preferred.
Collapse
Affiliation(s)
- Roland Mergl
- Institute of Psychology, Universität der Bundeswehr München, Neubiberg, Germany
| | - Susanne Karch
- Department of Psychiatry and Psychotherapy, University Hospital, LMU Munich, Munich, Germany
| | - Jennifer Henl
- Institute of Psychology, Universität der Bundeswehr München, Neubiberg, Germany
| | - Dorothea Meindl
- Department of Psychiatry and Psychotherapy, University Hospital, LMU Munich, Munich, Germany
| | - Felix Schöpf
- Department of Psychiatry and Psychotherapy, University Hospital, LMU Munich, Munich, Germany
| | - Szilard I Szabo
- Department of Psychiatry and Psychotherapy, University Hospital, LMU Munich, Munich, Germany
| | - Paulina Hallweger
- Department of Psychiatry and Psychotherapy, University Hospital, LMU Munich, Munich, Germany
| | - Philipp Heiler
- Department of Psychiatry and Psychotherapy, University Hospital, LMU Munich, Munich, Germany
- Medical Practice for Neurofeedback Philipp Heiler, Munich, Germany
| | - Maximilian Maywald
- Department of Psychiatry and Psychotherapy, University Hospital, LMU Munich, Munich, Germany
| | - Nadja Tschentscher
- Department of Psychiatry and Psychotherapy, University Hospital, LMU Munich, Munich, Germany
| | | | - Oliver Pogarell
- Department of Psychiatry and Psychotherapy, University Hospital, LMU Munich, Munich, Germany
| |
Collapse
|
17
|
EskandariNasab M, Raeisi Z, Lashaki RA, Najafi H. A GRU-CNN model for auditory attention detection using microstate and recurrence quantification analysis. Sci Rep 2024; 14:8861. [PMID: 38632246 PMCID: PMC11024110 DOI: 10.1038/s41598-024-58886-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2024] [Accepted: 04/04/2024] [Indexed: 04/19/2024] Open
Abstract
Attention as a cognition ability plays a crucial role in perception which helps humans to concentrate on specific objects of the environment while discarding others. In this paper, auditory attention detection (AAD) is investigated using different dynamic features extracted from multichannel electroencephalography (EEG) signals when listeners attend to a target speaker in the presence of a competing talker. To this aim, microstate and recurrence quantification analysis are utilized to extract different types of features that reflect changes in the brain state during cognitive tasks. Then, an optimized feature set is determined by employing the processes of significant feature selection based on classification performance. The classifier model is developed by hybrid sequential learning that employs Gated Recurrent Units (GRU) and Convolutional Neural Network (CNN) into a unified framework for accurate attention detection. The proposed AAD method shows that the selected feature set achieves the most discriminative features for the classification process. Also, it yields the best performance as compared with state-of-the-art AAD approaches from the literature in terms of various measures. The current study is the first to validate the use of microstate and recurrence quantification parameters to differentiate auditory attention using reinforcement learning without access to stimuli.
Collapse
Affiliation(s)
| | - Zahra Raeisi
- Department of Computer Science, University of Fairleigh Dickinson, Vancouver Campus, Vancouver, Canada
| | - Reza Ahmadi Lashaki
- Department of Computer Engineering, Faculty of Electrical and Computer Engineering, University of Tabriz, Tabriz, Iran
| | - Hamidreza Najafi
- Biomedical Engineering Department, School of Electrical Engineering, Iran University of Science and Technology, Tehran, Iran
| |
Collapse
|
18
|
Hilbert A, Rösch SA, Petroff D, Prettin C, Lührs M, Ehlis AC, Schmidt R. Near-infrared spectroscopy and electroencephalography neurofeedback for binge-eating disorder: an exploratory randomized trial. Psychol Med 2024; 54:675-686. [PMID: 37964437 DOI: 10.1017/s0033291723002350] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/16/2023]
Abstract
BACKGROUND Binge-eating disorder (BED) co-occurs with neurobehavioral alterations in the processing of disorder-relevant content such as visual food stimuli. Whether neurofeedback (NF) directly targeting them is suited for treatment remains unclear. This study sought to determine feasibility and estimate effects of individualized, functional near-infrared spectroscopy-based real-time NF (rtfNIRS-NF) and high-beta electroencephalography-based NF (EEG-NF), assuming superiority over waitlist (WL). METHODS Single-center, assessor-blinded feasibility study with randomization to rtfNIRS-NF, EEG-NF, or WL and assessments at baseline (t0), postassessment (t1), and 6-month follow-up (t2). NF comprised 12 60-min food-specific rtfNIRS-NF or EEG-NF sessions over 8 weeks. Primary outcome was the binge-eating frequency at t1 assessed interview-based. Secondary outcomes included feasibility, eating disorder symptoms, mental and physical health, weight management-related behavior, executive functions, and brain activity at t1 and t2. RESULTS In 72 patients (intent-to-treat), the results showed feasibility of NF regarding recruitment, attrition, adherence, compliance, acceptance, and assessment completion. Binge eating improved at t1 by -8.0 episodes, without superiority of NF v. WL (-0.8 episodes, 95% CI -2.4 to 4.0), but with improved estimates in NF at t2 relative to t1. NF was better than WL for food craving, anxiety symptoms, and body mass index, but overall effects were mostly small. Brain activity changes were near zero. CONCLUSIONS The results show feasibility of food-specific rtfNIRS-NF and EEG-NF in BED, and no posttreatment differences v. WL, but possible continued improvement of binge eating. Confirmatory and mechanistic evidence is warranted in a double-blind randomized design with long-term follow-up, considering dose-response relationships and modes of delivery.
Collapse
Affiliation(s)
- Anja Hilbert
- Integrated Research and Treatment Center AdiposityDiseases, Behavioral Medicine Research Unit, Department of Psychosomatic Medicine and Psychotherapy, Leipzig University Medical Center, Leipzig, Germany
| | - Sarah Alica Rösch
- Integrated Research and Treatment Center AdiposityDiseases, Behavioral Medicine Research Unit, Department of Psychosomatic Medicine and Psychotherapy, Leipzig University Medical Center, Leipzig, Germany
| | - David Petroff
- Clinical Trial Centre Leipzig, University of Leipzig, Leipzig, Germany
| | | | - Michael Lührs
- Faculty of Psychology and Neuroscience, Maastricht University, Maastricht, The Netherlands
- Brain Innovation B.V., Maastricht, The Netherlands
| | - Ann-Christin Ehlis
- Department of Psychiatry and Psychotherapy, University Hospital of Tuebingen, Tuebingen, Germany
| | - Ricarda Schmidt
- Integrated Research and Treatment Center AdiposityDiseases, Behavioral Medicine Research Unit, Department of Psychosomatic Medicine and Psychotherapy, Leipzig University Medical Center, Leipzig, Germany
| |
Collapse
|
19
|
Prochnow A, Mückschel M, Eggert E, Senftleben J, Frings C, Münchau A, Roessner V, Bluschke A, Beste C. The Ability to Voluntarily Regulate Theta Band Activity Affects How Pharmacological Manipulation of the Catecholaminergic System Impacts Cognitive Control. Int J Neuropsychopharmacol 2024; 27:pyae003. [PMID: 38181228 PMCID: PMC10810285 DOI: 10.1093/ijnp/pyae003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/17/2023] [Accepted: 01/04/2024] [Indexed: 01/07/2024] Open
Abstract
BACKGROUND The catecholaminergic system influences response inhibition, but the magnitude of the impact of catecholaminergic manipulation is heterogeneous. Theoretical considerations suggest that the voluntary modulability of theta band activity can explain this variance. The study aimed to investigate to what extent interindividual differences in catecholaminergic effects on response inhibition depend on voluntary theta band activity modulation. METHODS A total of 67 healthy adults were tested in a randomized, double-blind, cross-over study design. At each appointment, they received a single dose of methylphenidate or placebo and performed a Go/Nogo task with stimuli of varying complexity. Before the first appointment, the individual's ability to modulate theta band activity was measured. Recorded EEG data were analyzed using temporal decomposition and multivariate pattern analysis. RESULTS Methylphenidate effects and voluntary modulability of theta band activity showed an interactive effect on the false alarm rates of the different Nogo conditions. The multivariate pattern analysis revealed that methylphenidate effects interacted with voluntary modulability of theta band activity at a stimulus processing level, whereas during response selection methylphenidate effects interacted with the complexity of the Nogo condition. CONCLUSIONS The findings reveal that the individual's theta band modulability affects the responsiveness of an individual's catecholaminergic system to pharmacological modulation. Thus, the impact of pharmacological manipulation of the catecholaminergic system on cognitive control most likely depends on the existing ability to self-modulate relevant brain oscillatory patterns underlying the cognitive processes being targeted by pharmacological modulations.
Collapse
Affiliation(s)
- Astrid Prochnow
- Cognitive Neurophysiology, Department of Child and Adolescent Psychiatry, Faculty of Medicine, TU Dresden, Dresden, Germany
- University Neuropsychology Center, Faculty of Medicine, TU Dresden, Dresden, Germany
| | - Moritz Mückschel
- Cognitive Neurophysiology, Department of Child and Adolescent Psychiatry, Faculty of Medicine, TU Dresden, Dresden, Germany
- University Neuropsychology Center, Faculty of Medicine, TU Dresden, Dresden, Germany
| | - Elena Eggert
- Cognitive Neurophysiology, Department of Child and Adolescent Psychiatry, Faculty of Medicine, TU Dresden, Dresden, Germany
- University Neuropsychology Center, Faculty of Medicine, TU Dresden, Dresden, Germany
| | - Jessica Senftleben
- Cognitive Neurophysiology, Department of Child and Adolescent Psychiatry, Faculty of Medicine, TU Dresden, Dresden, Germany
| | - Christian Frings
- Cognitive Psychology, Institute of Psychology, University of Trier, Trier, Germany
| | - Alexander Münchau
- Institute of Systems Motor Science, University of Lübeck, Lübeck, Germany
| | - Veit Roessner
- Cognitive Neurophysiology, Department of Child and Adolescent Psychiatry, Faculty of Medicine, TU Dresden, Dresden, Germany
| | - Annet Bluschke
- Cognitive Neurophysiology, Department of Child and Adolescent Psychiatry, Faculty of Medicine, TU Dresden, Dresden, Germany
- University Neuropsychology Center, Faculty of Medicine, TU Dresden, Dresden, Germany
| | - Christian Beste
- Cognitive Neurophysiology, Department of Child and Adolescent Psychiatry, Faculty of Medicine, TU Dresden, Dresden, Germany
- University Neuropsychology Center, Faculty of Medicine, TU Dresden, Dresden, Germany
| |
Collapse
|
20
|
Koizumi K, Kunii N, Ueda K, Takabatake K, Nagata K, Fujitani S, Shimada S, Nakao M. Intracranial Neurofeedback Modulating Neural Activity in the Mesial Temporal Lobe During Memory Encoding: A Pilot Study. Appl Psychophysiol Biofeedback 2023; 48:439-451. [PMID: 37405548 PMCID: PMC10581957 DOI: 10.1007/s10484-023-09595-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/24/2023] [Indexed: 07/06/2023]
Abstract
Removal of the mesial temporal lobe (MTL) is an established surgical procedure that leads to seizure freedom in patients with intractable MTL epilepsy; however, it carries the potential risk of memory damage. Neurofeedback (NF), which regulates brain function by converting brain activity into perceptible information and providing feedback, has attracted considerable attention in recent years for its potential as a novel complementary treatment for many neurological disorders. However, no research has attempted to artificially reorganize memory functions by applying NF before resective surgery to preserve memory functions. Thus, this study aimed (1) to construct a memory NF system that used intracranial electrodes to feedback neural activity on the language-dominant side of the MTL during memory encoding and (2) to verify whether neural activity and memory function in the MTL change with NF training. Two intractable epilepsy patients with implanted intracranial electrodes underwent at least five sessions of memory NF training to increase the theta power in the MTL. There was an increase in theta power and a decrease in fast beta and gamma powers in one of the patients in the late stage of memory NF sessions. NF signals were not correlated with memory function. Despite its limitations as a pilot study, to our best knowledge, this study is the first to report that intracranial NF may modulate neural activity in the MTL, which is involved in memory encoding. The findings provide important insights into the future development of NF systems for the artificial reorganization of memory functions.
Collapse
Affiliation(s)
- Koji Koizumi
- Department of Mechanical Engineering, Graduate School of Engineering, The University of Tokyo, Tokyo, Japan.
| | - Naoto Kunii
- Department of Neurosurgery, The University of Tokyo, Tokyo, Japan
| | - Kazutaka Ueda
- Department of Mechanical Engineering, Graduate School of Engineering, The University of Tokyo, Tokyo, Japan
| | | | - Keisuke Nagata
- Department of Neurosurgery, The University of Tokyo, Tokyo, Japan
| | - Shigeta Fujitani
- Department of Neurosurgery, The University of Tokyo, Tokyo, Japan
| | - Seijiro Shimada
- Department of Neurosurgery, The University of Tokyo, Tokyo, Japan
| | - Masayuki Nakao
- Department of Mechanical Engineering, Graduate School of Engineering, The University of Tokyo, Tokyo, Japan
| |
Collapse
|
21
|
Jackson LE, Han YJ, Evans LH. The efficacy of electroencephalography neurofeedback for enhancing episodic memory in healthy and clinical participants: A systematic qualitative review and meta-analysis. Neurosci Biobehav Rev 2023; 155:105455. [PMID: 37926240 DOI: 10.1016/j.neubiorev.2023.105455] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2023] [Revised: 10/09/2023] [Accepted: 10/30/2023] [Indexed: 11/07/2023]
Abstract
Several studies have examined whether electroencephalography neurofeedback (EEG-NF), a self-regulatory technique where an individual receives real-time feedback on a pattern of brain activity that is theoretically linked to a target behaviour, can enhance episodic memory. The aim of this research was to i) provide a qualitative overview of the literature, and ii) conduct a meta-analysis of appropriately controlled studies to determine whether EEG-NF can enhance episodic memory. The literature search returned 46 studies, with 21 studies (44 effect sizes) meeting the inclusion criteria for the meta-analysis. The qualitative overview revealed that, across EEG-NF studies on both healthy and clinical populations, procedures and protocols vary considerably and many studies were insufficiently powered with inadequate design features. The meta-analysis, conducted on studies with an active control, revealed a small-size, significant positive effect of EEG-NF on episodic memory performance (g = 0.31, p = 0.003), moderated by memory modality and EEG-NF self-regulation success. These results are discussed with a view towards optimising EEG-NF training and subsequent benefits to episodic memory.
Collapse
Affiliation(s)
- Lucy E Jackson
- Cardiff University Brain Research Imaging Centre (CUBRIC), School of Psychology, Cardiff University, Cardiff CF24 4HQ, Wales, UK
| | - Yi-Jhong Han
- Department of Neuroimaging, Institute of Psychiatry, Psychology and Neuroscience (IoPPN), King's College London, London SE5 9RJ, England, UK
| | - Lisa H Evans
- Cardiff University Brain Research Imaging Centre (CUBRIC), School of Psychology, Cardiff University, Cardiff CF24 4HQ, Wales, UK.
| |
Collapse
|
22
|
Ribeiro TF, Carriello MA, de Paula EP, Garcia AC, da Rocha GL, Teive HAG. Clinical applications of neurofeedback based on sensorimotor rhythm: a systematic review and meta-analysis. Front Neurosci 2023; 17:1195066. [PMID: 38053609 PMCID: PMC10694284 DOI: 10.3389/fnins.2023.1195066] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2023] [Accepted: 07/07/2023] [Indexed: 12/07/2023] Open
Abstract
Background Among the brain-machine interfaces, neurofeedback is a non-invasive technique that uses sensorimotor rhythm (SMR) as a clinical intervention protocol. This study aimed to investigate the clinical applications of SMR neurofeedback to understand its clinical effectiveness in different pathologies or symptoms. Methods A systematic review study with meta-analysis of the clinical applications of EEG-based SMR neurofeedback performed using pre-selected publication databases. A qualitative analysis of these studies was performed using the Consensus tool on the Reporting and Experimental Design of Neurofeedback studies (CRED-nf). The Meta-analysis of clinical efficacy was carried out using Review Manager software, version 5.4.1 (RevMan 5; Cochrane Collaboration, Oxford, UK). Results The qualitative analysis includes 44 studies, of which only 27 studies had some kind of control condition, five studies were double-blinded, and only three reported a blind follow-up throughout the intervention. The meta-analysis included a total sample of 203 individuals between stroke and fibromyalgia. Studies on multiple sclerosis, insomnia, quadriplegia, paraplegia, and mild cognitive impairment were excluded due to the absence of a control group or results based only on post-intervention scales. Statistical analysis indicated that stroke patients did not benefit from neurofeedback interventions when compared to other therapies (Std. mean. dif. 0.31, 95% CI 0.03-0.60, p = 0.03), and there was no significant heterogeneity among stroke studies, classified as moderate I2 = 46% p-value = 0.06. Patients diagnosed with fibromyalgia showed, by means of quantitative analysis, a better benefit for the group that used neurofeedback (Std. mean. dif. -0.73, 95% CI -1.22 to -0.24, p = 0.001). Thus, on performing the pooled analysis between conditions, no significant differences were observed between the neurofeedback intervention and standard therapy (0.05, CI 95%, -0.20 to -0.30, p = 0.69), with the presence of substantial heterogeneity I2 = 92.2%, p-value < 0.001. Conclusion We conclude that although neurofeedback based on electrophysiological patterns of SMR contemplates the interest of numerous researchers and the existence of research that presents promising results, it is currently not possible to point out the clinical benefits of the technique as a form of clinical intervention. Therefore, it is necessary to develop more robust studies with a greater sample of a more rigorous methodology to understand the benefits that the technique can provide to the population.
Collapse
Affiliation(s)
- Tatiana Ferri Ribeiro
- Internal Medicine and Health Sciences, Federal University of Paraná (UFPR), Curitiba, Paraná, Brazil
| | - Marcelo Alves Carriello
- Internal Medicine and Health Sciences, Federal University of Paraná (UFPR), Curitiba, Paraná, Brazil
| | - Eugenio Pereira de Paula
- Physical Education (UFPR)—Invited Colaborador, Federal University of Paraná (UFPR), Curitiba, Paraná, Brazil
| | - Amanda Carvalho Garcia
- Internal Medicine and Health Sciences, Federal University of Paraná (UFPR), Curitiba, Paraná, Brazil
| | - Guilherme Luiz da Rocha
- Internal Medicine and Health Sciences, Federal University of Paraná (UFPR), Curitiba, Paraná, Brazil
| | - Helio Afonso Ghizoni Teive
- Internal Medicine and Health Sciences, Federal University of Paraná (UFPR), Curitiba, Paraná, Brazil
- Department of Clinical Medicine, UFPR, and Coordinator of the Movement Disorders Sector, Neurology Service, Clinic Hospital, Federal University of Paraná (UFPR), Curitiba, Paraná, Brazil
| |
Collapse
|
23
|
Shen L, Jiang Y, Wan F, Ku Y, Nan W. Successful alpha neurofeedback training enhances working memory updating and event-related potential activity. Neurobiol Learn Mem 2023; 205:107834. [PMID: 37757954 DOI: 10.1016/j.nlm.2023.107834] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2022] [Revised: 07/19/2023] [Accepted: 09/24/2023] [Indexed: 09/29/2023]
Abstract
Neurofeedback (NF) is a promising method to self-regulate human brain activity for cognition enhancement. Due to the unclear results of alpha NF training on working memory updating as well as the impact of feedback modality on NF learning, this study aimed to understand further the underlying neural mechanism of alpha NF training effects on working memory updating, where the NF learning was also compared between visual and auditory feedback modalities. A total of 30 participants were assigned to Visual NF, Auditory NF, and Control groups. Working memory updating was evaluated by n-back (n =2,3) tasks before and after five alpha upregulation NF sessions. The result showed no significant difference in NF learning performance between the Visual and Auditory groups, indicating that the difference in feedback modality did not affect NF learning. In addition, compared to the control group, the participants who achieved successful NF learning showed a significant increase in n-back behavioral performance and P3a amplitude in 2-back and a significant decrease in P3a latency in 3-back. Our results in n-back further suggested that successful alpha NF training might improve updating performance in terms of the behavioral and related event-related potential (ERP) measures. These findings contribute to the understanding of the effect of alpha training on memory updating and the design of NF experimental protocol in terms of feedback modality selection.
Collapse
Affiliation(s)
- Lu Shen
- Department of Psychology, Shanghai Normal University, Shanghai, China; Department of Electrical and Computer Engineering, University of Macau, Macau; Centre for Cognitive and Brain Sciences, Institute of Collaborative Innovation, University of Macau, Macau
| | - Yali Jiang
- Department of Psychology, Shanghai Normal University, Shanghai, China
| | - Feng Wan
- Department of Electrical and Computer Engineering, University of Macau, Macau; Centre for Cognitive and Brain Sciences, Institute of Collaborative Innovation, University of Macau, Macau
| | - Yixuan Ku
- Department of Psychology, Sun Yat-Sen University, Guangzhou, Guangdong, China
| | - Wenya Nan
- Department of Psychology, Shanghai Normal University, Shanghai, China.
| |
Collapse
|
24
|
Askovic M, Soh N, Elhindi J, Harris AW. Neurofeedback for post-traumatic stress disorder: systematic review and meta-analysis of clinical and neurophysiological outcomes. Eur J Psychotraumatol 2023; 14:2257435. [PMID: 37732560 PMCID: PMC10515677 DOI: 10.1080/20008066.2023.2257435] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/24/2023] [Accepted: 07/22/2023] [Indexed: 09/22/2023] Open
Abstract
Background: Posttraumatic stress disorder (PTSD) is a debilitating condition affecting millions of people worldwide. Existing treatments often fail to address the complexity of its symptoms and functional impairments resulting from severe and prolonged trauma. Electroencephalographic Neurofeedback (NFB) has emerged as a promising treatment that aims to reduce the symptoms of PTSD by modulating brain activity.Objective: We conducted a systematic review and meta-analysis of ten clinical trials to answer the question: how effective is NFB in addressing PTSD and other associated symptoms across different trauma populations, and are these improvements related to neurophysiological changes?Method: The review followed the Preferred Reporting Items for Systematic Reviews and Meta analyses guidelines. We considered all published and unpublished randomised controlled trials (RCTs) and non-randomised studies of interventions (NRSIs) involving adults with PTSD as a primary diagnosis without exclusion by type of trauma, co-morbid diagnosis, locality, or sex. Ten controlled studies were included; seven RCTs and three NRSIs with a total number of participants n = 293 (128 male). Only RCTs were included in the meta-analysis (215 participants; 88 male).Results: All included studies showed an advantage of NFB over control conditions in reducing symptoms of PTSD, with indications of improvement in symptoms of anxiety and depression and related neurophysiological changes. Meta-analysis of the pooled data shows a significant reduction in PTSD symptoms post-treatment SMD of -1.76 (95% CI -2.69, -0.83), and the mean remission rate was higher in the NFB group (79.3%) compared to the control group (24.4%). However, the studies reviewed were mostly small, with heterogeneous populations and varied quality.Conclusions: The effect of NFB on the symptoms of PTSD was moderate and mechanistic evidence suggested that NFB leads to therapeutic changes in brain functioning. Future research should focus on more rigorous methodological designs, expanded sample size and longer follow-up.
Collapse
Affiliation(s)
- Mirjana Askovic
- New South Wales Service for the Treatment and Rehabilitation of Torture and Trauma Survivors (STARTTS), Sydney, NSW, Australia
- Specialty of Psychiatry, Sydney Medical School, The University of Sydney, Sydney, NSW, Australia
- Brain Dynamics Centre, Westmead Institute for Medical Research, University of Sydney, Sydney, NSW, Australia
| | - Nerissa Soh
- Specialty of Psychiatry, Sydney Medical School, The University of Sydney, Sydney, NSW, Australia
| | - James Elhindi
- Research and Education Network, Western Sydney Local Health District, Sydney, NSW, Australia
| | - Anthony W.F. Harris
- Specialty of Psychiatry, Sydney Medical School, The University of Sydney, Sydney, NSW, Australia
- Brain Dynamics Centre, Westmead Institute for Medical Research, University of Sydney, Sydney, NSW, Australia
| |
Collapse
|
25
|
Frick LD, Hankir MK, Borner T, Malagola E, File B, Gero D. Novel Insights into the Physiology of Nutrient Sensing and Gut-Brain Communication in Surgical and Experimental Obesity Therapy. Obes Surg 2023; 33:2906-2916. [PMID: 37474864 PMCID: PMC10435392 DOI: 10.1007/s11695-023-06739-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2023] [Revised: 07/05/2023] [Accepted: 07/14/2023] [Indexed: 07/22/2023]
Abstract
Despite standardized surgical technique and peri-operative care, metabolic outcomes of bariatric surgery are not uniform. Adaptive changes in brain function may play a crucial role in achieving optimal postbariatric weight loss. This review follows the anatomic-physiologic structure of the postbariatric nutrient-gut-brain communication chain through its key stations and provides a concise summary of recent findings in bariatric physiology, with a special focus on the composition of the intestinal milieu, intestinal nutrient sensing, vagal nerve-mediated gastrointestinal satiation signals, circulating hormones and nutrients, as well as descending neural signals from the forebrain. The results of interventional studies using brain or vagal nerve stimulation to induce weight loss are also summarized. Ultimately, suggestions are made for future diagnostic and therapeutic research for the treatment of obesity.
Collapse
Affiliation(s)
- Lukas D Frick
- Institute of Neuropathology, University Hospital Zurich, University of Zurich, Zurich, Switzerland
| | - Mohammed K Hankir
- Department of Experimental Surgery, University Hospital Würzburg, Würzburg, Germany
| | - Tito Borner
- Department of Biobehavioral Health Sciences, School of Nursing, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Ermanno Malagola
- Division of Digestive and Liver Diseases, Department of Medicine and Irving Cancer Research Center, Columbia University Medical Center, New York, NY, 10032, USA
| | - Bálint File
- Faculty of Information Technology and Bionics, Pázmány Péter Catholic University, Budapest, Hungary, Institute of Cognitive Neuroscience and Psychology, Research Centre for Natural Sciences, Budapest, Hungary
- Wigner Research Centre for Physics, Budapest, Hungary
| | - Daniel Gero
- Department of Surgery and Transplantation, University Hospital Zurich, University of Zurich, Rämistrasse 100, 8091, Zürich, Switzerland.
| |
Collapse
|
26
|
Lee I, Kim D, Kim S, Kim HJ, Chung US, Lee JJ. Cognitive training based on functional near-infrared spectroscopy neurofeedback for the elderly with mild cognitive impairment: a preliminary study. Front Aging Neurosci 2023; 15:1168815. [PMID: 37564400 PMCID: PMC10410268 DOI: 10.3389/fnagi.2023.1168815] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2023] [Accepted: 07/05/2023] [Indexed: 08/12/2023] Open
Abstract
Introduction Mild cognitive impairment (MCI) is often described as an intermediate stage of the normal cognitive decline associated with aging and dementia. There is a growing interest in various non-pharmacological interventions for MCI to delay the onset and inhibit the progressive deterioration of daily life functions. Previous studies suggest that cognitive training (CT) contributes to the restoration of working memory and that the brain-computer-interface technique can be applied to elicit a more effective treatment response. However, these techniques have certain limitations. Thus, in this preliminary study, we applied the neurofeedback paradigm during CT to increase the working memory function of patients with MCI. Methods Near-infrared spectroscopy (NIRS) was used to provide neurofeedback by measuring the changes in oxygenated hemoglobin in the prefrontal cortex. Thirteen elderly MCI patients who received CT-neurofeedback sessions four times on the left dorsolateral prefrontal cortex (dlPFC) once a week were recruited as participants. Results Compared with pre-intervention, the activity of the targeted brain region increased when the participants first engaged in the training; after 4 weeks of training, oxygen saturation was significantly decreased in the left dlPFC. The participants demonstrated significantly improved working memory compared with pre-intervention and decreased activity significantly correlated with improved cognitive performance. Conclusion Our results suggest that the applications for evaluating brain-computer interfaces can aid in elucidation of the subjective mental workload that may create additional or decreased task workloads due to CT.
Collapse
Affiliation(s)
- Ilju Lee
- Department of Psychology, College of Health Science, Dankook University, Cheonan, Republic of Korea
| | - Dohyun Kim
- Department of Psychiatry, Dankook University Hospital, Cheonan, Republic of Korea
- Department of Psychiatry, College of Medicine, Dankook University, Cheonan, Republic of Korea
| | - Sehwan Kim
- Department of Biomedical Engineering, College of Medicine, Dankook University, Cheonan, Republic of Korea
| | - Hee Jung Kim
- Department of Physiology, College of Medicine, Dankook University, Cheonan, Republic of Korea
| | - Un Sun Chung
- Department of Psychiatry, School of Medicine, Kyungpook National University, Daegu, Republic of Korea
| | - Jung Jae Lee
- Department of Psychiatry, Dankook University Hospital, Cheonan, Republic of Korea
- Department of Psychiatry, College of Medicine, Dankook University, Cheonan, Republic of Korea
| |
Collapse
|
27
|
Smit D, Dapor C, Koerts J, Tucha OM, Huster RJ, Enriquez-Geppert S. Long-term improvements in executive functions after frontal-midline theta neurofeedback in a (sub)clinical group. Front Hum Neurosci 2023; 17:1163380. [PMID: 37362947 PMCID: PMC10290172 DOI: 10.3389/fnhum.2023.1163380] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2023] [Accepted: 05/23/2023] [Indexed: 06/28/2023] Open
Abstract
Impairments in executive functions (EFs) are common across disorders and can greatly affect daily functioning. Frontal-midline (FM) theta neurofeedback (NF) has been shown effective in enhancing EFs in healthy adults, prompting interest in exploring its potential as an alternative treatment for EFs in (sub)clinical samples. This study aims to determine the effects of FM theta NF on EFs in a sample of 58 adults (aged 20-60 years) with pronounced subjective EF complaints in daily life. Using a pre/post/follow-up design with a sham NF group, the present study assessed upregulation of FM theta in an eight-session individualized FM theta NF training and its immediate and long-term transfer effects on objective and subjective measures of EFs. These included behavioral performance on EF tasks assessing working memory updating (N-back task), set-shifting (Switching task), conflict monitoring (Stroop task), and response inhibition (Stop-signal task), as well as FM theta power during these tasks, and subjective EFs in daily life (BRIEF-A). The results indicate that there are only differences in FM theta self-upregulation between the NF group and sham group when non-responders are excluded from the analysis. Regarding behavioral transfer effects, NF-specific improvements are found in working memory updating reaction time (RT) and conflict monitoring RT variability at 6-month follow-up, but not immediately after the NF training. The effects on FM theta power during the EF tasks and subjective changes in EFs in daily life were not specific to the NF training. As a next step, research should identify the best predictors to stratify NF training, as well as explore ways to improve NF responsiveness, for instance by increasing neuroplasticity.
Collapse
Affiliation(s)
- Diede Smit
- Department of Clinical and Developmental Neuropsychology, University of Groningen, Groningen, Netherlands
- Research School of Behavioural and Cognitive Neurosciences, University of Groningen, Groningen, Netherlands
| | - Cecilia Dapor
- Department of Psychology and Cognitive Science, University of Trento, Trento, Italy
| | - Janneke Koerts
- Department of Clinical and Developmental Neuropsychology, University of Groningen, Groningen, Netherlands
- Research School of Behavioural and Cognitive Neurosciences, University of Groningen, Groningen, Netherlands
| | - Oliver M. Tucha
- Department of Clinical and Developmental Neuropsychology, University of Groningen, Groningen, Netherlands
- Department of Psychiatry and Psychotherapy, University Medical Center Rostock, Rostock, Germany
- Department of Psychology, National University of Ireland, Maynooth, Irleand
| | - Rene J. Huster
- Department of Psychology, University of Oslo, Oslo, Norway
| | - Stefanie Enriquez-Geppert
- Department of Clinical and Developmental Neuropsychology, University of Groningen, Groningen, Netherlands
- Department of Biomedical Sciences of Cells and Systems, University Medical Center Groningen, Groningen, Netherlands
| |
Collapse
|
28
|
Norata D, Broggi S, Alvisi L, Lattanzi S, Brigo F, Tinuper P. The EEG pen-on-paper sound: History and recent advances. Seizure 2023; 107:67-70. [PMID: 36965379 DOI: 10.1016/j.seizure.2023.03.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2022] [Revised: 03/02/2023] [Accepted: 03/14/2023] [Indexed: 03/17/2023] Open
Abstract
The electroencephalogram (EEG) is one of the most useful technologies for brain research and clinical neurology, characterized by non-invasiveness and high time resolution. The acquired traces are visibly displayed, but various studies investigate the translation of brain waves in sound (i.e., a process called sonification). Several articles have been published since 1934 about the sonification of EEG traces, in the attempt to identify the "brain-sound." However, for a long time this sonification technique was not used for clinical purposes. The analog EEG was in fact already equipped with an auditory output, although rarely mentioned in scientific papers: the pen-on-paper noise made by the writer unit. EEG technologists often relied on the sound that pens made on paper to facilitate the diagnosis. This article provides a sample of analog video-EEG recordings with audio support representing the strengths of a combined visual-and-auditory detection of different types of seizures. The purpose of the present article is to illustrate how the analog EEG "sounded," as well as to highlight the advantages of this pen-writing noise. It was considered so useful that early digital EEG devices could be equipped with special software to duplicate it digitally. Even in the present days, the sonification can be considered as an attempt to modify the EEG practice using auditory neurofeedback with applications in therapeutic interventions, cognitive improvement, and basic research.
Collapse
Affiliation(s)
- Davide Norata
- Neurological Clinic and Stroke Unit, Department of Experimental and Clinical Medicine (DiMSC), Marche Polytechnic University, Via Conca 71, Ancona 60020, Italy.
| | - Serena Broggi
- Neurological Clinic and Stroke Unit, Department of Experimental and Clinical Medicine (DiMSC), Marche Polytechnic University, Via Conca 71, Ancona 60020, Italy
| | - Lara Alvisi
- Dipartimento di Scienze Biomediche e Neuromotorie, University of Bologna, Bologna, Italy; IRCCS Istituto delle Scienze Neurologiche di Bologna, Epilepsy Center (full member of the European Reference Network EpiCARE), Bologna, Italy
| | - Simona Lattanzi
- Neurological Clinic and Stroke Unit, Department of Experimental and Clinical Medicine (DiMSC), Marche Polytechnic University, Via Conca 71, Ancona 60020, Italy
| | - Francesco Brigo
- Department of Neurology, Hospital of Merano (SABES-ASDAA), Merano-Meran, Italy
| | - Paolo Tinuper
- Dipartimento di Scienze Biomediche e Neuromotorie, University of Bologna, Bologna, Italy; IRCCS Istituto delle Scienze Neurologiche di Bologna, Epilepsy Center (full member of the European Reference Network EpiCARE), Bologna, Italy
| | | |
Collapse
|
29
|
Zhao L, Zhang Y, Yu X, Wu H, Wang L, Li F, Duan M, Lai Y, Liu T, Dong L, Yao D. Quantitative signal quality assessment for large-scale continuous scalp electroencephalography from a big data perspective. Physiol Meas 2023; 44. [PMID: 35952665 DOI: 10.1088/1361-6579/ac890d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2021] [Accepted: 08/11/2022] [Indexed: 11/12/2022]
Abstract
Objective. Despite electroencephalography (EEG) being a widely used neuroimaging technique with an excellent temporal resolution, in practice, the signals are heavily contaminated by artifacts masking responses of interest in an experiment. It is thus essential to guarantee a prompt and effective detection of artifacts that provides quantitative quality assessment (QA) on raw EEG data. This type of pipeline is crucial for large-scale EEG studies. However, current EEG QA studies are still limited.Approach. In this study, combined from a big data perspective, we therefore describe a quantitative signal quality assessment pipeline, a stable and general threshold-based QA pipeline that automatically integrates artifact detection and new QA measures to assess continuous resting-state raw EEG data. One simulation dataset and two resting-state EEG datasets from 42 healthy subjects and 983 clinical patients were utilized to calibrate the QA pipeline.Main Results. The results demonstrate that (1) the QA indices selected are sensitive: they almost strictly and linearly decrease as the noise level increases; (2) stable, replicable QA thresholds are valid for other experimental and clinical EEG datasets; and (3) use of the QA pipeline on these datasets reveals that high-frequency noises are the most common noises in EEG practice. The QA pipeline is also deployed in the WeBrain cloud platform (https://webrain.uestc.edu.cn/, the Chinese EEG Brain Consortium portal).Significance. These findings suggest that the proposed QA pipeline may be a stable and promising approach for quantitative EEG signal quality assessment in large-scale EEG studies.
Collapse
Affiliation(s)
- Lingling Zhao
- The Clinical Hospital of Chengdu Brain Science Institute, MOE Key Lab for Neuroinformation, University of Electronic Science and Technology of China, Chengdu, People's Republic of China.,School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu, People's Republic of China
| | - Yufan Zhang
- The Clinical Hospital of Chengdu Brain Science Institute, MOE Key Lab for Neuroinformation, University of Electronic Science and Technology of China, Chengdu, People's Republic of China.,School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu, People's Republic of China
| | - Xue Yu
- The Clinical Hospital of Chengdu Brain Science Institute, MOE Key Lab for Neuroinformation, University of Electronic Science and Technology of China, Chengdu, People's Republic of China.,School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu, People's Republic of China
| | - Hanxi Wu
- The Clinical Hospital of Chengdu Brain Science Institute, MOE Key Lab for Neuroinformation, University of Electronic Science and Technology of China, Chengdu, People's Republic of China
| | - Lei Wang
- The Clinical Hospital of Chengdu Brain Science Institute, MOE Key Lab for Neuroinformation, University of Electronic Science and Technology of China, Chengdu, People's Republic of China
| | - Fali Li
- The Clinical Hospital of Chengdu Brain Science Institute, MOE Key Lab for Neuroinformation, University of Electronic Science and Technology of China, Chengdu, People's Republic of China.,School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu, People's Republic of China.,Research Unit of NeuroInformation, Chinese Academy of Medical Sciences, 2019RU035, Chengdu, People's Republic of China
| | - Mingjun Duan
- The Clinical Hospital of Chengdu Brain Science Institute, MOE Key Lab for Neuroinformation, University of Electronic Science and Technology of China, Chengdu, People's Republic of China.,Sichuan Institute for Brain Science and Brain-Inspired Intelligence, Chengdu 611731, People's Republic of China
| | - Yongxiu Lai
- The Clinical Hospital of Chengdu Brain Science Institute, MOE Key Lab for Neuroinformation, University of Electronic Science and Technology of China, Chengdu, People's Republic of China.,School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu, People's Republic of China.,Research Unit of NeuroInformation, Chinese Academy of Medical Sciences, 2019RU035, Chengdu, People's Republic of China
| | - Tiejun Liu
- The Clinical Hospital of Chengdu Brain Science Institute, MOE Key Lab for Neuroinformation, University of Electronic Science and Technology of China, Chengdu, People's Republic of China.,School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu, People's Republic of China.,Research Unit of NeuroInformation, Chinese Academy of Medical Sciences, 2019RU035, Chengdu, People's Republic of China.,Sichuan Institute for Brain Science and Brain-Inspired Intelligence, Chengdu 611731, People's Republic of China
| | - Li Dong
- The Clinical Hospital of Chengdu Brain Science Institute, MOE Key Lab for Neuroinformation, University of Electronic Science and Technology of China, Chengdu, People's Republic of China.,School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu, People's Republic of China.,Research Unit of NeuroInformation, Chinese Academy of Medical Sciences, 2019RU035, Chengdu, People's Republic of China.,Sichuan Institute for Brain Science and Brain-Inspired Intelligence, Chengdu 611731, People's Republic of China
| | - Dezhong Yao
- The Clinical Hospital of Chengdu Brain Science Institute, MOE Key Lab for Neuroinformation, University of Electronic Science and Technology of China, Chengdu, People's Republic of China.,School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu, People's Republic of China.,Research Unit of NeuroInformation, Chinese Academy of Medical Sciences, 2019RU035, Chengdu, People's Republic of China.,Sichuan Institute for Brain Science and Brain-Inspired Intelligence, Chengdu 611731, People's Republic of China
| |
Collapse
|
30
|
Chikhi S, Matton N, Sanna M, Blanchet S. Mental strategies and resting state EEG: Effect on high alpha amplitude modulation by neurofeedback in healthy young adults. Biol Psychol 2023; 178:108521. [PMID: 36801435 DOI: 10.1016/j.biopsycho.2023.108521] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2022] [Revised: 11/30/2022] [Accepted: 02/15/2023] [Indexed: 02/19/2023]
Abstract
Neurofeedback (NFB) is a brain-computer interface which allows individuals to modulate their brain activity. Despite the self-regulatory nature of NFB, the effectiveness of strategies used during NFB training has been little investigated. In a single session of NFB training (6*3 min training blocks) with healthy young participants, we experimentally tested if providing a list of mental strategies (list group, N = 46), compared with a group receiving no strategies (no list group, N = 39), affected participants' neuromodulation ability of high alpha (10-12 Hz) amplitude. We additionally asked participants to verbally report the mental strategies used to enhance high alpha amplitude. The verbatim was then classified in pre-established categories in order to examine the effect of type of mental strategy on high alpha amplitude. First, we found that giving a list to the participants did not promote the ability to neuromodulate high alpha activity. However, our analysis of the specific strategies reported by learners during training blocks revealed that cognitive effort and recalling memories were associated with higher high alpha amplitude. Furthermore, the resting amplitude of trained high alpha frequency predicted an amplitude increase during training, a factor that may optimize inclusion in NFB protocols. The present results also corroborate the interrelation with other frequency bands during NFB training. Although these findings are based on a single NFB session, our study represents a further step towards developing effective protocols for high alpha neuromodulation by NFB.
Collapse
Affiliation(s)
- Samy Chikhi
- Université Paris Cité, Laboratoire Mémoire, Cerveau et Cognition, F-92100 Boulogne-Billancourt, France
| | - Nadine Matton
- CLLE, Université de Toulouse, CNRS (UMR 5263), Toulouse, France; ENAC, École Nationale d'Aviation Civile, Université de Toulouse, France
| | - Marie Sanna
- Université Paris Cité, Laboratoire Mémoire, Cerveau et Cognition, F-92100 Boulogne-Billancourt, France
| | - Sophie Blanchet
- Université Paris Cité, Laboratoire Mémoire, Cerveau et Cognition, F-92100 Boulogne-Billancourt, France.
| |
Collapse
|
31
|
Selaskowski B, Asché LM, Wiebe A, Kannen K, Aslan B, Gerding TM, Sanchez D, Ettinger U, Kölle M, Lux S, Philipsen A, Braun N. Gaze-based attention refocusing training in virtual reality for adult attention-deficit/hyperactivity disorder. BMC Psychiatry 2023; 23:74. [PMID: 36703134 PMCID: PMC9879564 DOI: 10.1186/s12888-023-04551-z] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/21/2022] [Accepted: 01/16/2023] [Indexed: 01/28/2023] Open
Abstract
BACKGROUND Attention-deficit/hyperactivity disorder (ADHD) is characterized by substantial interindividual heterogeneity that challenges the systematic assessment and treatment. Considering mixed evidence from previous neurofeedback research, we present a novel feedback system that relies on gaze behavior to detect signs of inattention while performing a neuropsychological attention task in a virtual seminar room. More specifically, an audiovisual feedback was given whenever participants averted their gaze from the given task. METHODS Eighteen adults with ADHD and 18 healthy controls performed a continuous performance task (CPT) in virtual reality under three counterbalanced conditions in which either gaze-based feedback, sham feedback, or no feedback was provided. In all conditions, phases of high and low virtual distraction alternated. CPT errors and reaction times, proportions of gaze dwell times (e.g., task focus or distraction focus), saccade characteristics, EEG theta/beta ratios, head movements, and an experience sampling of ADHD symptoms were analyzed. RESULTS While patients can be discriminated well from healthy controls in that they showed more omission errors, higher reaction times, higher distraction-related dwell times, and more head movements, the feedback did not immediately improve task performance. It was also indicated that sham feedback was rather associated with an aggravation of symptoms in patients. CONCLUSIONS Our findings demonstrate sufficient suitability and specificity for this holistic ADHD symptom assessment. Regarding the feedback, a single-session training was insufficient to achieve learning effects based on the proposed metacognitive strategies. Future longitudinal, multi-session trials should conclusively examine the therapeutic efficacy of gaze-based virtual reality attention training in ADHD. TRIAL REGISTRATION drks.de (identifier: DRKS00022370).
Collapse
Affiliation(s)
- Benjamin Selaskowski
- grid.15090.3d0000 0000 8786 803XDepartment of Psychiatry and Psychotherapy, University Hospital Bonn, Bonn, Germany
| | - Laura Marie Asché
- grid.15090.3d0000 0000 8786 803XDepartment of Psychiatry and Psychotherapy, University Hospital Bonn, Bonn, Germany
| | - Annika Wiebe
- grid.15090.3d0000 0000 8786 803XDepartment of Psychiatry and Psychotherapy, University Hospital Bonn, Bonn, Germany
| | - Kyra Kannen
- grid.15090.3d0000 0000 8786 803XDepartment of Psychiatry and Psychotherapy, University Hospital Bonn, Bonn, Germany
| | - Behrem Aslan
- grid.15090.3d0000 0000 8786 803XDepartment of Psychiatry and Psychotherapy, University Hospital Bonn, Bonn, Germany
| | - Thiago Morano Gerding
- grid.15090.3d0000 0000 8786 803XDepartment of Psychiatry and Psychotherapy, University Hospital Bonn, Bonn, Germany
| | - Dario Sanchez
- grid.15090.3d0000 0000 8786 803XDepartment of Psychiatry and Psychotherapy, University Hospital Bonn, Bonn, Germany
| | - Ulrich Ettinger
- grid.10388.320000 0001 2240 3300Department of Psychology, University of Bonn, Bonn, Germany
| | - Markus Kölle
- grid.15090.3d0000 0000 8786 803XDepartment of Psychiatry and Psychotherapy, University Hospital Bonn, Bonn, Germany
| | - Silke Lux
- grid.15090.3d0000 0000 8786 803XDepartment of Psychiatry and Psychotherapy, University Hospital Bonn, Bonn, Germany
| | - Alexandra Philipsen
- grid.15090.3d0000 0000 8786 803XDepartment of Psychiatry and Psychotherapy, University Hospital Bonn, Bonn, Germany
| | - Niclas Braun
- Department of Psychiatry and Psychotherapy, University Hospital Bonn, Bonn, Germany.
| |
Collapse
|
32
|
Uslu S, Vögele C. The more, the better? Learning rate and self-pacing in neurofeedback enhance cognitive performance in healthy adults. Front Hum Neurosci 2023; 17:1077039. [PMID: 36733608 PMCID: PMC9887027 DOI: 10.3389/fnhum.2023.1077039] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2022] [Accepted: 01/03/2023] [Indexed: 01/18/2023] Open
Abstract
Real time electroencephalogram (EEG) based neurofeedback has been shown to be effective in regulating brain activity, thereby modifying cognitive performance and behavior. Nevertheless, individual variations in neurofeedback learning rates limit the overall efficacy of EEG based neurofeedback. In the present study we investigated the effects of learning rate and control over training realized by self-pacing on cognitive performance and electrocortical activity. Using a double-blind design, we randomly allocated 60 participants to either individual upper alpha (IUA) or sham neurofeedback and subsequently to self- or externally paced training. Participants receiving IUA neurofeedback improved their IUA activity more than participants receiving sham neurofeedback. Furthermore, the learning rate predicted enhancements in resting-state activity and mental rotation ability. The direction of this linear relationship depended on the neurofeedback condition being positive for IUA and negative for sham neurofeedback. Finally, self-paced training increased higher-level cognitive skills more than externally paced training. These results underpin the important role of learning rate in enhancing both resting-state activity and cognitive performance. Our design allowed us to differentiate the effect of learning rate between neurofeedback conditions, and to demonstrate the positive effect of self-paced training on cognitive performance in IUA neurofeedback.
Collapse
|
33
|
Kerick SE, Asbee J, Spangler DP, Brooks JB, Garcia JO, Parsons TD, Bannerjee N, Robucci R. Neural and behavioral adaptations to frontal theta neurofeedback training: A proof of concept study. PLoS One 2023; 18:e0283418. [PMID: 36952490 PMCID: PMC10035884 DOI: 10.1371/journal.pone.0283418] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2021] [Accepted: 03/08/2023] [Indexed: 03/25/2023] Open
Abstract
Previous neurofeedback research has shown training-related frontal theta increases and performance improvements on some executive tasks in real feedback versus sham control groups. However, typical sham control groups receive false or non-contingent feedback, making it difficult to know whether observed differences between groups are associated with accurate contingent feedback or other cognitive mechanisms (motivation, control strategies, attentional engagement, fatigue, etc.). To address this question, we investigated differences between two frontal theta training groups, each receiving accurate contingent feedback, but with different top-down goals: (1) increase and (2) alternate increase/decrease. We hypothesized that the increase group would exhibit greater increases in frontal theta compared to the alternate group, which would exhibit lower frontal theta during down- versus up-modulation blocks over sessions. We also hypothesized that the alternate group would exhibit greater performance improvements on a Go-NoGo shooting task requiring alterations in behavioral activation and inhibition, as the alternate group would be trained with greater task specificity, suggesting that receiving accurate contingent feedback may be the more salient learning mechanism underlying frontal theta neurofeedback training gains. Thirty young healthy volunteers were randomly assigned to increase or alternate groups. Training consisted of an orientation session, five neurofeedback training sessions (six blocks of six 30-s trials of FCz theta modulation (4-7 Hz) separated by 10-s rest intervals), and six Go-NoGo testing sessions (four blocks of 90 trials in both Low and High time-stress conditions). Multilevel modeling revealed greater frontal theta increases in the alternate group over training sessions. Further, Go-NoGo task performance increased at a greater rate in the increase group (accuracy and reaction time, but not commission errors). Overall, these results reject our hypotheses and suggest that changes in frontal theta and performance outcomes were not explained by reinforcement learning afforded by accurate contingent feedback. We discuss our findings in terms of alternative conceptual and methodological considerations, as well as limitations of this research.
Collapse
Affiliation(s)
- Scott E Kerick
- U.S. Combat Capabilities Development Command, Army Research Laboratory, Aberdeen Proving Ground, Aberdeen, MD, United States of America
| | - Justin Asbee
- The Institute for Integrative & Innovative Research, University of Arkansas, Fayetteville, AR, United States of America
| | - Derek P Spangler
- U.S. Combat Capabilities Development Command, Army Research Laboratory, Aberdeen Proving Ground, Aberdeen, MD, United States of America
- Department of Biobehavioral Health, Penn State University, University Park, PA, United States of America
| | - Justin B Brooks
- U.S. Combat Capabilities Development Command, Army Research Laboratory, Aberdeen Proving Ground, Aberdeen, MD, United States of America
- D-Prime, Washington, DC, United States of America
- Department of Computer Science and Electrical Engineering, University of Maryland at Baltimore County, Baltimore, MD, United States of America
| | - Javier O Garcia
- U.S. Combat Capabilities Development Command, Army Research Laboratory, Aberdeen Proving Ground, Aberdeen, MD, United States of America
| | - Thomas D Parsons
- Computational Neuropsychology and Simulation (CNS) Laboratory, Edson College, Arizona State University, Phoenix, AZ, United States of America
| | - Nilanjan Bannerjee
- Department of Computer Science and Electrical Engineering, University of Maryland at Baltimore County, Baltimore, MD, United States of America
| | - Ryan Robucci
- Department of Computer Science and Electrical Engineering, University of Maryland at Baltimore County, Baltimore, MD, United States of America
| |
Collapse
|
34
|
Janssen TWP, van Atteveldt N. Explore your brain: A randomized controlled trial into the effectiveness of a growth mindset intervention with psychosocial and psychophysiological components. BRITISH JOURNAL OF EDUCATIONAL PSYCHOLOGY 2022. [PMID: 36504085 DOI: 10.1111/bjep.12572] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2022] [Accepted: 11/26/2022] [Indexed: 12/14/2022]
Abstract
BACKGROUND Although past research demonstrated growth mindset interventions to improve school outcomes, effects were small. This may be due to the theoretical nature of psychosocial techniques (e.g., reading about brain plasticity), which may not be optimally convincing for students. AIMS To address this issue and improve effectiveness, we developed a growth mindset intervention, which combined psychosocial and psychophysiological components. The latter adds a convincing experience of influencing one's own brain activity, using mobile electroencephalography (EEG) neurofeedback, emphasizing the controllable and malleable nature of one's brain. SAMPLE In this randomized controlled trial (RCT), twenty high-school classes (N = 439) were randomized to either the active control condition (no mindset messaging) or our newly developed growth mindset intervention condition (4 × 50 min). METHODS School outcomes (pre, post, 1-year follow-up) were analysed with Linear Mixed Models (LMM: variable-oriented) and Latent Transition Analysis (LTA: person-oriented). RESULTS LMM: students in the growth mindset intervention reported increased growth mindset directly after the intervention (post, d = .38) and at 1-year follow-up (d = .25) and demonstrated a protective effect against deterioration of math grades at 1-year follow-up (d = .36), compared to controls. LTA: we identified three mindset profiles (Fixed, Growth competitive, Growth non-competitive), with more frequent transitions from fixed to one of the growth mindset profiles at 1-year follow-up for students in the growth mindset intervention compared to controls (OR 2.58-2.68). CONCLUSIONS Compared to previous studies, we found relatively large effects of our intervention on growth mindset and math grades, which may be attributable to synergetic effects of psychosocial and psychophysiological (neurofeedback) components. The person-oriented approach demonstrated more holistic effects, involving multiple motivational constructs.
Collapse
Affiliation(s)
- Tieme W P Janssen
- Department of Clinical, Neuro- & Developmental Psychology, Vrije Universiteit Amsterdam, Amsterdam, The Netherlands
| | - Nienke van Atteveldt
- Department of Clinical, Neuro- & Developmental Psychology, Vrije Universiteit Amsterdam, Amsterdam, The Netherlands
| |
Collapse
|
35
|
Brůha P, Mouček R, Salamon J, Vacek V. Workflow for health-related and brain data lifecycle. Front Digit Health 2022; 4:1025086. [PMID: 36532611 PMCID: PMC9748096 DOI: 10.3389/fdgth.2022.1025086] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2022] [Accepted: 11/01/2022] [Indexed: 09/19/2023] Open
Abstract
Poor lifestyle leads potentially to chronic diseases and low-grade physical and mental fitness. However, ahead of time, we can measure and analyze multiple aspects of physical and mental health, such as body parameters, health risk factors, degrees of motivation, and the overall willingness to change the current lifestyle. In conjunction with data representing human brain activity, we can obtain and identify human health problems resulting from a long-term lifestyle more precisely and, where appropriate, improve the quality and length of human life. Currently, brain and physical health-related data are not commonly collected and evaluated together. However, doing that is supposed to be an interesting and viable concept, especially when followed by a more detailed definition and description of their whole processing lifecycle. Moreover, when best practices are used to store, annotate, analyze, and evaluate such data collections, the necessary infrastructure development and more intense cooperation among scientific teams and laboratories are facilitated. This approach also improves the reproducibility of experimental work. As a result, large collections of physical and brain health-related data could provide a robust basis for better interpretation of a person's overall health. This work aims to overview and reflect some best practices used within global communities to ensure the reproducibility of experiments, collected datasets and related workflows. These best practices concern, e.g., data lifecycle models, FAIR principles, and definitions and implementations of terminologies and ontologies. Then, an example of how an automated workflow system could be created to support the collection, annotation, storage, analysis, and publication of findings is shown. The Body in Numbers pilot system, also utilizing software engineering best practices, was developed to implement the concept of such an automated workflow system. It is unique just due to the combination of the processing and evaluation of physical and brain (electrophysiological) data. Its implementation is explored in greater detail, and opportunities to use the gained findings and results throughout various application domains are discussed.
Collapse
Affiliation(s)
- Petr Brůha
- Department of Computer Science and Engineering, Faculty of Applied Sciences, University of West Bohemia, Pilsen, Czech Republic
| | - Roman Mouček
- Department of Computer Science and Engineering, Faculty of Applied Sciences, University of West Bohemia, Pilsen, Czech Republic
- New Technologies for the Information Society, Faculty of Applied Sciences, University of West Bohemia, Pilsen, Czech Republic
| | - Jaromír Salamon
- Department of Computer Science and Engineering, Faculty of Applied Sciences, University of West Bohemia, Pilsen, Czech Republic
| | - Vítězslav Vacek
- Department of Computer Science and Engineering, Faculty of Applied Sciences, University of West Bohemia, Pilsen, Czech Republic
| |
Collapse
|
36
|
Attention neuroenhancement through tDCS or neurofeedback: a randomized, single-blind, controlled trial. Sci Rep 2022; 12:17613. [PMID: 36266396 PMCID: PMC9584934 DOI: 10.1038/s41598-022-22245-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2022] [Accepted: 10/12/2022] [Indexed: 01/13/2023] Open
Abstract
Neurofeedback and transcranial Direct Current Stimulation (tDCS) are promising techniques for neuroenhancement of attentional performance. As far as we know no study compared both techniques on attentional performance in healthy participants. We compared tDCS and neurofeedback in a randomized, single-blind, controlled experiment assessing both behavioral (accuracy and time reaction) and electrophysiological (N1, P1, and P3 components) data of participants responding to the Attention Network Task (ANT). Eighty volunteers volunteered for this study. We adopted standard protocols for both techniques, i.e., a Sensorimotor Rhythm (SMR) protocol for neurofeedback and the right DLPFC anodal stimulation for tDCS, applied over nine sessions (two weeks). We did not find significant differences between treatment groups on ANT, neither at the behavioral nor at the electrophysiological levels. However, we found that participants from both neuromodulation groups, irrespective of if active or sham, reported attentional improvements in response to the treatment on a subjective scale. Our study adds another null result to the neuromodulation literature, showing that neurofeedback and tDCS effects are more complex than previously suggested and associated with placebo effect. More studies in neuroenhancement literature are necessary to fully comprehend neuromodulation mechanisms.
Collapse
|
37
|
Effectiveness of neurofeedback training, behaviour management including attention enhancement training and medication in children with attention-deficit/hyperactivity disorder - A comparative follow up study. Asian J Psychiatr 2022; 76:103133. [PMID: 35551878 DOI: 10.1016/j.ajp.2022.103133] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/12/2022] [Revised: 03/10/2022] [Accepted: 04/20/2022] [Indexed: 11/22/2022]
Abstract
BACKGROUND Attention Deficit/ Hyperactivity Disorder (ADHD) is one of the most common neurodevelopmental psychiatric disorders of childhood. Treatment of ADHD includes medications and Behavioural interventions. Neurofeedback, a type of biofeedback, has been found to be useful in ADHD. It helps patients to control their brain waves consciously. However, it is not yet conclusive if it is efficacious in comparison to behavioural management training and medication. AIM To compare the efficacy of neurofeedback training, behaviour management including attention enhancement training and medication in children with ADHD. METHOD Ninety children between 6 and 12 years with ADHD were taken and randomly divided into 3 treatment groups equally- neurofeedback, behaviour management and medication (methylphenidate). Conners 3-P Short Scale was applied for baseline assessment. The respective interventions were given and follow up was done at the end of 3 months by using Conners 3-P Short scale to assess the improvement in the symptoms. There were 6 dropouts, the final sample size was 84. RESULTS The medication group showed the greatest reduction of symptoms in inattention, hyperactivity, executive functioning domain (core symptoms of ADHD). No statistically significant difference was observed between Neurofeedback and Behaviour Management in these domains. Learning problems improved in all three groups, neurofeedback being the most effective followed by medication. Both Neurofeedback and Medication groups showed similar effect which was higher than the Behavioural Management group in Peer Relation. CONCLUSION Improvement in core ADHD symptoms have been observed with all 3 interventions with medication showing the greatest improvement Neurofeedback has been superior for learning problems. Thus, Neurofeedback can be an independent or combined intervention tool for children with ADHD in outpatient department of Psychiatry.
Collapse
|
38
|
Oda K, Colman R, Koshiba M. Simplified Attachable EEG Revealed Child Development Dependent Neurofeedback Brain Acute Activities in Comparison with Visual Numerical Discrimination Task and Resting. SENSORS (BASEL, SWITZERLAND) 2022; 22:7207. [PMID: 36236305 PMCID: PMC9572555 DOI: 10.3390/s22197207] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/06/2022] [Revised: 09/16/2022] [Accepted: 09/19/2022] [Indexed: 06/16/2023]
Abstract
The development of an easy-to-attach electroencephalograph (EEG) would enable its frequent use for the assessment of neurodevelopment and clinical monitoring. In this study, we designed a two-channel EEG headband measurement device that could be used safely and was easily attachable and removable without the need for restraint or electrode paste or gel. Next, we explored the use of this device for neurofeedback applications relevant to education or neurocognitive development. We developed a prototype visual neurofeedback game in which the size of a familiar local mascot changes in the PC display depending on the user's brain wave activity. We tested this application at a local children's play event. Children at the event were invited to experience the game and, upon agreement, were provided with an explanation of the game and support in attaching the EEG device. The game began with a consecutive number visual discrimination task which was followed by an open-eye resting condition and then a neurofeedback task. Preliminary linear regression analyses by the least-squares method of the acquired EEG and age data in 30 participants from 5 to 20 years old suggested an age-dependent left brain lateralization of beta waves at the neurofeedback stage (p = 0.052) and of alpha waves at the open-eye resting stage (p = 0.044) with potential involvement of other wave bands. These results require further validation.
Collapse
Affiliation(s)
- Kazuyuki Oda
- Engineering Department, Graduate School of Sciences and Technology for Innovation Yamaguchi University, Yamaguchi 755-8611, Japan
| | - Ricki Colman
- Department of Cell and Regenerative Biology, University of Wisconsin, Madison, Madison, WI 53706, USA
| | - Mamiko Koshiba
- Engineering Department, Graduate School of Sciences and Technology for Innovation Yamaguchi University, Yamaguchi 755-8611, Japan
- Department of Pediatrics, Saitama Medical University, Saitama 350-0495, Japan
- Graduate School of Information Sciences, Tohoku University, Sendai 980-8579, Japan
| |
Collapse
|
39
|
Wang Z, Wong CM, Nan W, Tang Q, Rosa AC, Xu P, Wan F. Learning Curve of a Short-Time Neurofeedback Training: Reflection of Brain Network Dynamics Based on Phase-Locking Value. IEEE Trans Cogn Dev Syst 2022. [DOI: 10.1109/tcds.2021.3125948] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Ze Wang
- Department of Electrical and Computer Engineering, Faculty of Science and Technology, Centre for Cognitive and Brain Sciences, and the Centre for Artificial Intelligence and Robotics, Institute of Collaborative Innovation, University of Macau, Macau, China
| | - Chi Man Wong
- Department of Electrical and Computer Engineering, Faculty of Science and Technology, Centre for Cognitive and Brain Sciences, and the Centre for Artificial Intelligence and Robotics, Institute of Collaborative Innovation, University of Macau, Macau, China
| | - Wenya Nan
- Department of Psychology, Shanghai Normal University, Shanghai, China
| | - Qi Tang
- Department of Electrical and Computer Engineering, Faculty of Science and Technology, Centre for Cognitive and Brain Sciences, and the Centre for Artificial Intelligence and Robotics, Institute of Collaborative Innovation, University of Macau, Macau, China
| | - Agostinho C. Rosa
- Department of Bioengineering, LaSEEBSystem and Robotics Institute, Instituto Superior Tecnico, University of Lisbon, Lisbon, Portugal
| | - Peng Xu
- Clinical Hospital of Chengdu Brain Science Institute, MOE Key Laboratory for Neuroinformation, and the School of Life Science and Technology, Center for Information in Medicine, University of Electronic Science and Technology of China, Chengdu, China
| | - Feng Wan
- Department of Electrical and Computer Engineering, Faculty of Science and Technology, Centre for Cognitive and Brain Sciences, and the Centre for Artificial Intelligence and Robotics, Institute of Collaborative Innovation, University of Macau, Macau, China
| |
Collapse
|
40
|
Kober SE, Ninaus M, Witte M, Buchrieser F, Grössinger D, Fischmeister FPS, Neuper C, Wood G. Triathletes are experts in self-regulating physical activity - But what about self-regulating neural activity? Biol Psychol 2022; 173:108406. [PMID: 35952864 DOI: 10.1016/j.biopsycho.2022.108406] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2022] [Revised: 08/01/2022] [Accepted: 08/06/2022] [Indexed: 11/26/2022]
Abstract
Regular exercise improves cognitive control abilities and successful self-regulation of physical activity. However, it is not clear whether exercising also improves the ability to self-regulate one's own brain activity. We investigated this in 26 triathletes and 25 control participants who did not exercise regularly. Within each group half of the participants performed one session of sensorimotor rhythm (SMR, 12-15 Hz) upregulation neurofeedback training, the other half received a sham neurofeedback training. The neurofeedback training session took about 45 min. In a separate session, participants underwent structural magnetic resonance imaging (MRI) to investigate possible differences in brain structure between triathletes and controls. Triathletes and controls were able to voluntarily upregulate their SMR activity during neurofeedback when receiving real feedback. Triathletes showed a stronger increase in SMR activity in the second half of the training compared to controls, suggesting that triathletes are able to self-regulate their own brain activity over a longer period of time. Further, triathletes and controls showed differences in brain structure as reflected by larger gray and white matter volumes in the inferior frontal gyrus and insula compared to controls. These brain areas are generally involved in cognitive control mechanisms. Our results provide new evidence regarding self-regulation abilities of people who exercise regularly and might impact the practical application of neurofeedback.
Collapse
Affiliation(s)
- Silvia Erika Kober
- Institute of Psychology, University of Graz, Graz, Austria; BioTechMed-Graz, Graz, Austria.
| | - Manuel Ninaus
- Institute of Psychology, University of Graz, Graz, Austria; LEAD Graduate School & Research Network, University of Tübingen, Tübingen, Germany.
| | - Matthias Witte
- Institute of Psychology, University of Graz, Graz, Austria; Adidas AG, Herzogenaurach, Germany.
| | | | | | - Florian Ph S Fischmeister
- Institute of Psychology, University of Graz, Graz, Austria; BioTechMed-Graz, Graz, Austria; Department of Biomedical Imaging and Image-guided Therapy, Medical University of Vienna, Vienna, Austria.
| | - Christa Neuper
- Institute of Psychology, University of Graz, Graz, Austria; BioTechMed-Graz, Graz, Austria; Laboratory of Brain-Computer Interfaces, Institute of Neural Engineering, Graz University of Technology, Graz, Austria.
| | - Guilherme Wood
- Institute of Psychology, University of Graz, Graz, Austria; BioTechMed-Graz, Graz, Austria.
| |
Collapse
|
41
|
Krogmeier C, Coventry BS, Mousas C. Frontal alpha asymmetry interaction with an experimental story EEG brain-computer interface. Front Hum Neurosci 2022; 16:883467. [PMID: 36034123 PMCID: PMC9413083 DOI: 10.3389/fnhum.2022.883467] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2022] [Accepted: 07/21/2022] [Indexed: 11/20/2022] Open
Abstract
Although interest in brain-computer interfaces (BCIs) from researchers and consumers continues to increase, many BCIs lack the complexity and imaginative properties thought to guide users toward successful brain activity modulation. We investigate the possibility of using a complex BCI by developing an experimental story environment with which users interact through cognitive thought strategies. In our system, the user's frontal alpha asymmetry (FAA) measured with electroencephalography (EEG) is linearly mapped to the color saturation of the main character in the story. We implemented a user-friendly experimental design using a comfortable EEG device and short neurofeedback (NF) training protocol. In our system, seven out of 19 participants successfully increased FAA during the course of the study, for a total of ten successful blocks out of 152. We detail our results concerning left and right prefrontal cortical activity contributions to FAA in both successful and unsuccessful story blocks. Additionally, we examine inter-subject correlations of EEG data, and self-reported questionnaire data to understand the user experience of BCI interaction. Results suggest the potential of imaginative story BCI environments for engaging users and allowing for FAA modulation. Our data suggests new research directions for BCIs investigating emotion and motivation through FAA.
Collapse
Affiliation(s)
- Claudia Krogmeier
- Department of Computer Graphics Technology, Purdue University, West Lafayette, IN, United States
- *Correspondence: Claudia Krogmeier
| | - Brandon S. Coventry
- Department of Biomedical Engineering, University of Wisconsin−Madison, Madison, WI, United States
- Wisconsin Institute for Translational Neuroengineering, University of Wisconsin-Madison, Madison, WI, United States
| | - Christos Mousas
- Department of Computer Graphics Technology, Purdue University, West Lafayette, IN, United States
| |
Collapse
|
42
|
Berger LM, Wood G, Kober SE. Effects of virtual reality-based feedback on neurofeedback training performance—A sham-controlled study. Front Hum Neurosci 2022; 16:952261. [PMID: 36034118 PMCID: PMC9411512 DOI: 10.3389/fnhum.2022.952261] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2022] [Accepted: 07/13/2022] [Indexed: 11/21/2022] Open
Abstract
Electroencephalography-neurofeedback (EEG-NF) has become a valuable tool in the field of psychology, e.g., to improve cognitive function. Nevertheless, a large percentage of NF users seem to be unable to control their own brain activation. Therefore, the aim of this study was to examine whether a different kind of visual feedback could positively influence NF performance after one training session. Virtual reality (VR) seems to have beneficial training effects and has already been reported to increase motivational training aspects. In the present study, we tested 61 young healthy adults (mean age: 23.48 years; 28 female) to investigate, whether 3D VR-based NF training has a more beneficial effect on the sensorimotor rhythm (SMR, 12–15 Hz) power increase than a mere 2D conventional NF paradigm. In the 3D group, participants had to roll a ball along a predefined path in an immersive virtual environment, whereas the 2D group had to increase the height of a bar. Both paradigms were presented using VR goggles. Participants completed one baseline and six feedback runs with 3 min each, in which they should try to increase SMR power over Cz. Half of the participants received real feedback whereas the other half received sham feedback. Participants receiving 3D VR-based feedback showed a linear increase in SMR power over the feedback runs within one training session. This was the case for the real as well as for the sham 3D feedback group and might be related to more general VR-related effects. The 2D group receiving the conventional bar feedback showed no changes in SMR power over the feedback runs. The present study underlines that the visual feedback modality has differential effects on the NF training performance and that 3D VR-based feedback has advantages over conventional 2D feedback.
Collapse
Affiliation(s)
- Lisa M. Berger
- Institute of Psychology, University of Graz, Graz, Austria
- *Correspondence: Lisa M. Berger,
| | - Guilherme Wood
- Institute of Psychology, University of Graz, Graz, Austria
- BioTechMed-Graz, Graz, Austria
| | - Silvia E. Kober
- Institute of Psychology, University of Graz, Graz, Austria
- BioTechMed-Graz, Graz, Austria
| |
Collapse
|
43
|
Richard S, Gabriel S, John S, Emmanuel M, John-Mary V. The focused quantitative EEG bio-marker in studying childhood atrophic encephalopathy. Sci Rep 2022; 12:13437. [PMID: 35927445 PMCID: PMC9352776 DOI: 10.1038/s41598-022-17062-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2021] [Accepted: 07/20/2022] [Indexed: 11/12/2022] Open
Abstract
Although it is a normal involution process in advanced age, brain atrophy—also termed atrophic encephalopathy—can also occur prematurely in childhood as a consequential effect of brain tissues injury through trauma or central nervous system infection, though in both normal and premature occurrences this condition always presents with loss of volume relative to the skull. A common tool for the functional study of brain activities is an electroencephalogram, but analyses of this have reportedly identified mismatches between qualitative and quantitative forms, particularly in the use of Delta-alpha ratio (DAR) indices, meaning that the values may be case dependent. The current study thus examines the value of Focused Occipital Beta-Alpha Ratio (FOBAR) as a modified biomarker for evaluating brain functional changes resulting from brain atrophy. This cross-sectional design study involves 260 patients under 18 years of age. Specifically, 207 patients with brain atrophy are compared with 53 control subjects with CT scan-proven normal brain volume. All the children underwent digital electroencephalography with brain mapping. Results show that alpha posterior dominant rhythm was present in 88 atrophic children and 44 controls. Beta as posterior dominant rhythm was present in an overwhelming 91.5% of atrophic subjects, with 0.009 p-values. The focused occipital Beta-alpha ratio correlated significantly with brain volume loss presented in diagonal brain fraction. The FOBAR and DAR values of the QEEG showed no significant correlation. This work concludes that QEEG cerebral dysfunctional studies may be etiologically and case dependent from the nature of the brain injury. Also, the focused Beta-alpha ratio of the QEEG is a prospective and potential biomarker of consideration in studying childhood atrophic encephalopathy.
Collapse
Affiliation(s)
- Sungura Richard
- Department of Health and Biomedical Sciences, School of Life Science, Nelson Mandela-African Institution of Science and Technology, Arusha, Tanzania.
| | - Shirima Gabriel
- Department of Health and Biomedical Sciences, School of Life Science, Nelson Mandela-African Institution of Science and Technology, Arusha, Tanzania
| | - Spitsbergen John
- Department of Neuroscience, Western Michigan University, Kalamazoo, MI, USA
| | - Mpolya Emmanuel
- Department of Health and Biomedical Sciences, School of Life Science, Nelson Mandela-African Institution of Science and Technology, Arusha, Tanzania
| | - Vianney John-Mary
- Department of Health and Biomedical Sciences, School of Life Science, Nelson Mandela-African Institution of Science and Technology, Arusha, Tanzania
| |
Collapse
|
44
|
Leonardi G, Ciurleo R, Cucinotta F, Fonti B, Borzelli D, Costa L, Tisano A, Portaro S, Alito A. The role of brain oscillations in post-stroke motor recovery: An overview. Front Syst Neurosci 2022; 16:947421. [PMID: 35965998 PMCID: PMC9373799 DOI: 10.3389/fnsys.2022.947421] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2022] [Accepted: 07/13/2022] [Indexed: 11/25/2022] Open
Abstract
Stroke is the second cause of disability and death worldwide, highly impacting patient’s quality of life. Several changes in brain architecture and function led by stroke can be disclosed by neurophysiological techniques. Specifically, electroencephalogram (EEG) can disclose brain oscillatory rhythms, which can be considered as a possible outcome measure for stroke recovery, and potentially shaped by neuromodulation techniques. We performed a review of randomized controlled trials on the role of brain oscillations in patients with post-stroke searching the following databases: Pubmed, Scopus, and the Web of Science, from 2012 to 2022. Thirteen studies involving 346 patients in total were included. Patients in the control groups received various treatments (sham or different stimulation modalities) in different post-stroke phases. This review describes the state of the art in the existing randomized controlled trials evaluating post-stroke motor function recovery after conventional rehabilitation treatment associated with neuromodulation techniques. Moreover, the role of brain pattern rhythms to modulate cortical excitability has been analyzed. To date, neuromodulation approaches could be considered a valid tool to improve stroke rehabilitation outcomes, despite more high-quality, and homogeneous randomized clinical trials are needed to determine to which extent motor functional impairment after stroke can be improved by neuromodulation approaches and which one could provide better functional outcomes. However, the high reproducibility of brain oscillatory rhythms could be considered a promising predictive outcome measure applicable to evaluate patients with stroke recovery after rehabilitation.
Collapse
Affiliation(s)
- Giulia Leonardi
- Department of Physical and Rehabilitation Medicine and Sports Medicine, Policlinico “G. Martino,”Messina, Italy
| | | | | | - Bartolo Fonti
- IRCCS Centro Neurolesi Bonino-Pulejo, Messina, Italy
| | - Daniele Borzelli
- Department of Biomedical, Dental Sciences and Morphological and Functional Images, University of Messina, Messina, Italy
| | - Lara Costa
- Department of Clinical and Experimental Medicine, University of Messina, Messina, Italy
| | - Adriana Tisano
- Department of Clinical and Experimental Medicine, University of Messina, Messina, Italy
| | - Simona Portaro
- Department of Physical and Rehabilitation Medicine and Sports Medicine, Policlinico “G. Martino,”Messina, Italy
| | - Angelo Alito
- Department of Biomedical, Dental Sciences and Morphological and Functional Images, University of Messina, Messina, Italy
- *Correspondence: Angelo Alito,
| |
Collapse
|
45
|
Mathew J, Adhia DB, Smith ML, De Ridder D, Mani R. Source localized infraslow neurofeedback training in people with chronic painful knee osteoarthritis: A randomized, double-blind, sham-controlled feasibility clinical trial. Front Neurosci 2022; 16:899772. [PMID: 35968375 PMCID: PMC9366917 DOI: 10.3389/fnins.2022.899772] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2022] [Accepted: 07/01/2022] [Indexed: 11/15/2022] Open
Abstract
Persistent pain is a key symptom in people living with knee osteoarthritis (KOA). Infra-slow Neurofeedback (ISF-NF) training is a recent development focusing on modulating cortical slow-wave activity to improve pain outcomes. A parallel, two-armed double-blinded, randomized sham-controlled, feasibility clinical trial aimed to determine the feasibility and safety of a novel electroencephalography-based infraslow fluctuation neurofeedback (EEG ISF-NF) training in people with KOA and determine the variability of clinical outcomes and EEG changes following NF training. Eligible participants attended nine 30-min ISF-NF training sessions involving three cortical regions linked to pain. Feasibility measures were monitored during the trial period. Pain and functional outcomes were measured at baseline, post-intervention, and follow-up after 2 weeks. Resting-state EEG was recorded at baseline and immediate post-intervention. Participants were middle-aged (61.7 ± 7.6 years), New Zealand European (90.5%), and mostly females (62%) with an average knee pain duration of 4 ± 3.4 years. The study achieved a retention rate of 91%, with 20/22 participants completing all the sessions. Participants rated high levels of acceptance and “moderate to high levels of perceived effectiveness of the training.” No serious adverse events were reported during the trial. Mean difference (95% CI) for clinical pain and function measures are as follows for pain severity [active: 0.89 ± 1.7 (−0.27 to 2.0); sham: 0.98 ± 1.1 (0.22–1.7)], pain interference [active: 0.75 ± 2.3 (−0.82 to 2.3); Sham: 0.89 ± 2.1 (−0.60 to 2.4)], pain unpleasantness [active: 2.6 ± 3.7 (0.17–5.1); sham: 2.8 ± 3 (0.62–5.0)] and physical function [active: 6.2 ± 13 (−2.6 to 15); sham: 1.6 ± 12 (−6.8 to 10)]. EEG sources demonstrated frequency-specific neuronal activity, functional connectivity, and ISF ratio changes following NF training. The findings of the study indicated that the ISF-NF training is a feasible, safe, and acceptable intervention for pain management in people with KOA, with high levels of perceived effectiveness. The study also reports the variability in clinical, brain activity, and connectivity changes following training.
Collapse
Affiliation(s)
- Jerin Mathew
- Centre for Health, Activity, and Rehabilitation Research, School of Physiotherapy, University of Otago, Dunedin, New Zealand
- Department of Surgical Sciences, Dunedin School of Medicine, University of Otago, Dunedin, New Zealand
- *Correspondence: Jerin Mathew,
| | - Divya Bharatkumar Adhia
- Department of Surgical Sciences, Dunedin School of Medicine, University of Otago, Dunedin, New Zealand
| | | | - Dirk De Ridder
- Department of Surgical Sciences, Dunedin School of Medicine, University of Otago, Dunedin, New Zealand
| | - Ramakrishnan Mani
- Centre for Health, Activity, and Rehabilitation Research, School of Physiotherapy, University of Otago, Dunedin, New Zealand
| |
Collapse
|
46
|
Wöstmann M, Störmer VS, Obleser J, Addleman DA, Andersen SK, Gaspelin N, Geng JJ, Luck SJ, Noonan MP, Slagter HA, Theeuwes J. Ten simple rules to study distractor suppression. Prog Neurobiol 2022. [PMID: 35427732 DOI: 10.1016/j.pneurobio.2022.102269] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/15/2023]
Abstract
Distractor suppression refers to the ability to filter out distracting and task-irrelevant information. Distractor suppression is essential for survival and considered a key aspect of selective attention. Despite the recent and rapidly evolving literature on distractor suppression, we still know little about how the brain suppresses distracting information. What limits progress is that we lack mutually agreed upon principles of how to study the neural basis of distractor suppression and its manifestation in behavior. Here, we offer ten simple rules that we believe are fundamental when investigating distractor suppression. We provide guidelines on how to design conclusive experiments on distractor suppression (Rules 1-3), discuss different types of distractor suppression that need to be distinguished (Rules 4-6), and provide an overview of models of distractor suppression and considerations of how to evaluate distractor suppression statistically (Rules 7-10). Together, these rules provide a concise and comprehensive synopsis of promising advances in the field of distractor suppression. Following these rules will propel research on distractor suppression in important ways, not only by highlighting prominent issues to both new and more advanced researchers in the field, but also by facilitating communication between sub-disciplines.
Collapse
Affiliation(s)
- Malte Wöstmann
- Department of Psychology, University of Lübeck, Lübeck, Germany; Center of Brain, Behavior and Metabolism (CBBM), University of Lübeck, Lübeck, Germany.
| | - Viola S Störmer
- Department of Psychological and Brain Sciences, Dartmouth College, USA.
| | - Jonas Obleser
- Department of Psychology, University of Lübeck, Lübeck, Germany; Center of Brain, Behavior and Metabolism (CBBM), University of Lübeck, Lübeck, Germany
| | | | - Søren K Andersen
- School of Psychology, University of Aberdeen, UK; Department of Psychology, University of Southern Denmark, Denmark
| | - Nicholas Gaspelin
- Department of Psychology and Department of Integrative Neuroscience, Binghamton University, State University of New York, USA
| | - Joy J Geng
- Center for Mind and Brain and Department of Psychology, University of California, Davis, USA
| | - Steven J Luck
- Center for Mind and Brain and Department of Psychology, University of California, Davis, USA
| | | | - Heleen A Slagter
- Department of Experimental and Applied Psychology, Vrije Universiteit Amsterdam, Amsterdam, the Netherlands; Institute for Brain and Behavior, Vrije Universiteit Amsterdam, Amsterdam, the Netherlands
| | - Jan Theeuwes
- Department of Experimental and Applied Psychology, Vrije Universiteit Amsterdam, Amsterdam, the Netherlands; Institute for Brain and Behavior, Vrije Universiteit Amsterdam, Amsterdam, the Netherlands
| |
Collapse
|
47
|
Behzadifard B, Sabaghypour S, Farkhondeh Tale Navi F, Nazari MA. Training the brain to time: the effect of neurofeedback of SMR-Beta1 rhythm on time perception in healthy adults. Exp Brain Res 2022; 240:2027-2038. [PMID: 35576072 DOI: 10.1007/s00221-022-06380-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2021] [Accepted: 04/25/2022] [Indexed: 11/04/2022]
Abstract
The timing ability plays an important role in everyday activities and is influenced by several factors such as the attention and arousal levels of the individuals. The effects of these factors on time perception have been interpreted through psychological models of time, including Attentional Gate Model (AGM). On the other hand, research has indicated that neurofeedback (NFB) training improves attention and increases arousal levels in the clinical and healthy population. Regarding the link between attentional processing and arousal levels and NFB and their relation to time perception, this study is a pilot demonstration of the influence of SMR-Beta1 (12-18 Hz) NFB training on time production and reproduction performance in healthy adults. To this end, 12 (9 female and 3 males; M = 26.3, SD = 3.8) and 12 participants (7 female and 5 males; M = 26.9, SD = 3.1) were randomly assigned into the experimental (with SMR-Beta1 NFB) and control groups (without any NFB training), respectively. The experimental group underwent intensive 10 sessions (3 days a week) of the 12-18 Hz up-training. Time production and reproduction performance were assessed pre and post NFB training for all participants. Three-way mixed ANOVA was carried out on T-corrected scores of reproduction and production tasks. Correlation analysis was also performed between SMR-Beta1 and time perception. While NFB training significantly influenced time production (P < 0.01), no such effect was observed for the time reproduction task. The results of the study are finally discussed within the frameworks of AGM, dual-process and cognitive aspects of time perception. Overall, our results contribute to disentangling the underlying mechanisms of temporal performance in healthy individuals.
Collapse
Affiliation(s)
- Behnoush Behzadifard
- Department of Psychology, Kish International Branch, Islamic Azad University, Kish Island, Iran
| | - Saied Sabaghypour
- Department of Cognitive Neuroscience, University of Tabriz, Tabriz, Iran
| | | | - Mohammad Ali Nazari
- Department of Neuroscience, Faculty of Advanced Technologies in Medicine, Iran University of Medical Sciences, Hemmat Exp.way, Tehran, Iran.
| |
Collapse
|
48
|
Zhou Q, Cheng R, Yao L, Ye X, Xu K. Neurofeedback Training of Alpha Relative Power Improves the Performance of Motor Imagery Brain-Computer Interface. Front Hum Neurosci 2022; 16:831995. [PMID: 35463935 PMCID: PMC9026187 DOI: 10.3389/fnhum.2022.831995] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2021] [Accepted: 03/16/2022] [Indexed: 01/03/2023] Open
Abstract
Significant variation in performance in motor imagery (MI) tasks impedes their wide adoption for brain-computer interface (BCI) applications. Previous researchers have found that resting-state alpha-band power is positively correlated with MI-BCI performance. In this study, we designed a neurofeedback training (NFT) protocol based on the up-regulation of the alpha band relative power (RP) to investigate its effect on MI-BCI performance. The principal finding of this study is that alpha NFT could successfully help subjects increase alpha-rhythm power and improve their MI-BCI performance. An individual difference was also found in this study in that subjects who increased alpha power more had a better performance improvement. Additionally, the functional connectivity (FC) of the frontal-parietal (FP) network was found to be enhanced after alpha NFT. However, the enhancement failed to reach a significant level after multiple comparisons correction. These findings contribute to a better understanding of the neurophysiological mechanism of cognitive control through alpha regulation.
Collapse
Affiliation(s)
- Qing Zhou
- Qiushi Academy for Advanced Studies (QAAS), Zhejiang University, Hangzhou, China
- Zhejiang Lab, Hangzhou, China
- Zhejiang Provincial Key Laboratory of Cardio-Cerebral Vascular Detection Technology and Medicinal Effectiveness Appraisal, Key Laboratory of Biomedical Engineering of Education Ministry, Zhejiang University, Hangzhou, China
| | - Ruidong Cheng
- Center for Rehabilitation Medicine, Rehabilitation and Sports Medicine Research Institute of Zhejiang Province, Department of Rehabilitation Medicine, Zhejiang Provincial People’s Hospital (Affiliated People’s Hospital, Hangzhou Medical College), Hangzhou, China
| | - Lin Yao
- MOE Frontiers Science Center for Brain and Brain-Machine Integration, Zhejiang University, Hangzhou, China
- Department of Neurobiology, Affiliated Mental Health Center and Hangzhou Seventh People’s Hospital, Zhejiang University School of Medicine, Hangzhou, China
- The College of Computer Science, Zhejiang University, Hangzhou, China
| | - Xiangming Ye
- Center for Rehabilitation Medicine, Rehabilitation and Sports Medicine Research Institute of Zhejiang Province, Department of Rehabilitation Medicine, Zhejiang Provincial People’s Hospital (Affiliated People’s Hospital, Hangzhou Medical College), Hangzhou, China
- Xiangming Ye,
| | - Kedi Xu
- Qiushi Academy for Advanced Studies (QAAS), Zhejiang University, Hangzhou, China
- Zhejiang Lab, Hangzhou, China
- Zhejiang Provincial Key Laboratory of Cardio-Cerebral Vascular Detection Technology and Medicinal Effectiveness Appraisal, Key Laboratory of Biomedical Engineering of Education Ministry, Zhejiang University, Hangzhou, China
- MOE Frontiers Science Center for Brain and Brain-Machine Integration, Zhejiang University, Hangzhou, China
- *Correspondence: Kedi Xu,
| |
Collapse
|
49
|
Wöstmann M, Störmer VS, Obleser J, Addleman DA, Andersen SK, Gaspelin N, Geng JJ, Luck SJ, Noonan MP, Slagter HA, Theeuwes J. Ten simple rules to study distractor suppression. Prog Neurobiol 2022; 213:102269. [PMID: 35427732 PMCID: PMC9069241 DOI: 10.1016/j.pneurobio.2022.102269] [Citation(s) in RCA: 30] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2021] [Revised: 03/28/2022] [Accepted: 04/04/2022] [Indexed: 01/23/2023]
Abstract
Distractor suppression refers to the ability to filter out distracting and task-irrelevant information. Distractor suppression is essential for survival and considered a key aspect of selective attention. Despite the recent and rapidly evolving literature on distractor suppression, we still know little about how the brain suppresses distracting information. What limits progress is that we lack mutually agreed upon principles of how to study the neural basis of distractor suppression and its manifestation in behavior. Here, we offer ten simple rules that we believe are fundamental when investigating distractor suppression. We provide guidelines on how to design conclusive experiments on distractor suppression (Rules 1–3), discuss different types of distractor suppression that need to be distinguished (Rules 4–6), and provide an overview of models of distractor suppression and considerations of how to evaluate distractor suppression statistically (Rules 7–10). Together, these rules provide a concise and comprehensive synopsis of promising advances in the field of distractor suppression. Following these rules will propel research on distractor suppression in important ways, not only by highlighting prominent issues to both new and more advanced researchers in the field, but also by facilitating communication between sub-disciplines. Distractor suppression is the ability to filter out irrelevant information. At present, we know little about how the brain suppresses distraction. We offer ten rules that are fundamental when investigating distractor suppression. Following the rules will propel research and foster interaction between disciplines.
Collapse
Affiliation(s)
- Malte Wöstmann
- Department of Psychology, University of Lübeck, Lübeck, Germany; Center of Brain, Behavior and Metabolism (CBBM), University of Lübeck, Lübeck, Germany.
| | - Viola S Störmer
- Department of Psychological and Brain Sciences, Dartmouth College, USA.
| | - Jonas Obleser
- Department of Psychology, University of Lübeck, Lübeck, Germany; Center of Brain, Behavior and Metabolism (CBBM), University of Lübeck, Lübeck, Germany
| | | | - Søren K Andersen
- School of Psychology, University of Aberdeen, UK; Department of Psychology, University of Southern Denmark, Denmark
| | - Nicholas Gaspelin
- Department of Psychology and Department of Integrative Neuroscience, Binghamton University, State University of New York, USA
| | - Joy J Geng
- Center for Mind and Brain and Department of Psychology, University of California, Davis, USA
| | - Steven J Luck
- Center for Mind and Brain and Department of Psychology, University of California, Davis, USA
| | | | - Heleen A Slagter
- Department of Experimental and Applied Psychology, Vrije Universiteit Amsterdam, Amsterdam, the Netherlands; Institute for Brain and Behavior, Vrije Universiteit Amsterdam, Amsterdam, the Netherlands
| | - Jan Theeuwes
- Department of Experimental and Applied Psychology, Vrije Universiteit Amsterdam, Amsterdam, the Netherlands; Institute for Brain and Behavior, Vrije Universiteit Amsterdam, Amsterdam, the Netherlands
| |
Collapse
|
50
|
Orendáčová M, Kvašňák E. Possible Mechanisms Underlying Neurological Post-COVID Symptoms and Neurofeedback as a Potential Therapy. Front Hum Neurosci 2022; 16:837972. [PMID: 35431842 PMCID: PMC9010738 DOI: 10.3389/fnhum.2022.837972] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2021] [Accepted: 01/26/2022] [Indexed: 12/13/2022] Open
Abstract
Theoretical considerations related to neurological post-COVID complications have become a serious issue in the COVID pandemic. We propose 3 theoretical hypotheses related to neurological post-COVID complications. First, pathophysiological processes responsible for long-term neurological complications caused by COVID-19 might have 2 phases: (1) Phase of acute Sars-CoV-2 infection linked with the pathogenesis responsible for the onset of COVID-19-related neurological complications and (2) the phase of post-acute Sars-CoV-2 infection linked with the pathogenesis responsible for long-lasting persistence of post-COVID neurological problems and/or exacerbation of another neurological pathologies. Second, post-COVID symptoms can be described and investigated from the perspective of dynamical system theory exploiting its fundamental concepts such as system parameters, attractors and criticality. Thirdly, neurofeedback may represent a promising therapy for neurological post-COVID complications. Based on the current knowledge related to neurofeedback and what is already known about neurological complications linked to acute COVID-19 and post-acute COVID-19 conditions, we propose that neurofeedback modalities, such as functional magnetic resonance-based neurofeedback, quantitative EEG-based neurofeedback, Othmer's method of rewarding individual optimal EEG frequency and heart rate variability-based biofeedback, represent a potential therapy for improvement of post-COVID symptoms.
Collapse
Affiliation(s)
- Mária Orendáčová
- Department of Medical Biophysics and Medical Informatics, Third Faculty of Medicine, Charles University in Prague, Prague, Czechia
| | - Eugen Kvašňák
- Department of Medical Biophysics and Medical Informatics, Third Faculty of Medicine, Charles University in Prague, Prague, Czechia
| |
Collapse
|