1
|
Kadokawa JI. A Mini-Review: Fabrication of Polysaccharide Composite Materials Based on Self-Assembled Chitin Nanofibers. MATERIALS (BASEL, SWITZERLAND) 2024; 17:1898. [PMID: 38673255 PMCID: PMC11052074 DOI: 10.3390/ma17081898] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/23/2024] [Revised: 03/29/2024] [Accepted: 04/18/2024] [Indexed: 04/28/2024]
Abstract
This mini-review presents the fabrication methods for polysaccharide composite materials that employ self-assembled chitin nanofibers (ChNFs) as functional components. Chitin is one of the most abundant polysaccharides in nature. However, it is mostly not utilized because of its poor feasibility and processability. Self-assembled ChNFs are efficiently obtained by a regenerative bottom-up process from chitin ion gels using an ionic liquid, 1-allyl-3-methylimodazolium bromide. This is accomplished by immersing the gels in methanol. The resulting dispersion is subjected to filtration to isolate the regenerated materials, producing ChNF films with a morphology defined by highly entangled nanofibers. The bundles are disintegrated by electrostatic repulsion among the amino groups on the ChNFs in aqueous acetic acid to produce thinner fibers known as scaled-down ChNFs. The self-assembled and scaled-down ChNFs are combined with other chitin components to fabricate chitin-based composite materials. ChNF-based composite materials are fabricated through combination with other polysaccharides.
Collapse
Affiliation(s)
- Jun-Ichi Kadokawa
- Graduate School of Science and Engineering, Kagoshima University, 1-21-40 Korimoto, Kagoshima 890-0065, Japan
| |
Collapse
|
2
|
Egi Y, Kontani A, Kadokawa JI. Fabrication of all-chitin composite films. Int J Biol Macromol 2023; 253:127512. [PMID: 37866566 DOI: 10.1016/j.ijbiomac.2023.127512] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2023] [Revised: 08/30/2023] [Accepted: 10/09/2023] [Indexed: 10/24/2023]
Abstract
The aim of this study is to propose a first concept for the procedure to prepare an all-chitin composite. The fabrication of all-chitin composite films was investigated for the first time via the mixing of low-crystalline matrix dispersions with high-crystalline fiber dispersions. Self-assembled chitin nanofiber (ChNF) films, prepared from a chitin ion gel, were treated with aqueous NaOH for deacetylation, followed by treatment with different types of aqueous acids via ultrasonication to produce dispersions. When the treatment was carried out with 1.0 mol/L aqueous acetic acid, we obtained a scaled-down ChNF (high-crystalline chitin fiber) dispersion, as previously reported. The crystallinity was reduced by treatment with 1.0 mol/L aqueous trifluoroacetic acid for 10 min at room temperature via ultrasonication and subsequent treatment for 24 h at 50 °C with stirring to produce a low-crystalline chitin matrix dispersion. The resulting two dispersions were mixed, and treated by suction filtration and drying to produce all-chitin composite films. The mechanical properties of the obtained composite films with appropriate weight ratios of the two components were superior to those of the high-crystalline scaled-down ChNF film. All-chitin complexes are expected to be used in the future as sustainable materials for a variety of applications.
Collapse
Affiliation(s)
- Yusuke Egi
- Graduate School of Science and Engineering, Kagoshima University, 1-21-40 Korimoto, Kagoshima 890-0065, Japan
| | - Aoi Kontani
- Graduate School of Science and Engineering, Kagoshima University, 1-21-40 Korimoto, Kagoshima 890-0065, Japan
| | - Jun-Ichi Kadokawa
- Graduate School of Science and Engineering, Kagoshima University, 1-21-40 Korimoto, Kagoshima 890-0065, Japan.
| |
Collapse
|
3
|
Kaku Y, Isobe N, Ogawa NO, Ohkouchi N, Ikuta T, Saito T, Fujisawa S. Chitin nanofiber-coated biodegradable polymer microparticles via one-pot aqueous process. Carbohydr Polym 2023; 312:120828. [PMID: 37059556 DOI: 10.1016/j.carbpol.2023.120828] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2022] [Revised: 02/22/2023] [Accepted: 03/14/2023] [Indexed: 04/16/2023]
Abstract
Tailoring the surface of biodegradable microparticles is important for various applications in the fields of cosmetics, biotechnology, and drug delivery. Chitin nanofibers (ChNFs) are one of the promising materials for surface tailoring owing to its functionality, such as biocompatibility and antibiotic properties. Here, we show biodegradable polymer microparticles densely coated with ChNFs. Cellulose acetate (CA) was used as the core material in this study, and ChNF coating was successfully carried out via a one-pot aqueous process. The average particle size of the ChNF-coated CA microparticles was approximately 6 μm, and the coating procedure had little effect on the size or shape of the original CA microparticles. The ChNF-coated CA microparticles comprised 0.2-0.4 wt% of the thin surface ChNF layers. Owing to the surface cationic ChNFs, the ζ-potential value of the ChNF-coated microparticles was +27.4 mV. The surface ChNF layer efficiently adsorbed anionic dye molecules, and repeatable adsorption/desorption behavior was exhibited owing to the coating stability of the surface ChNFs. The ChNF coating in this study was a facile aqueous process and was applicable to CA-based materials of various sizes and shapes. This versatility will open new possibilities for future biodegradable polymer materials that satisfy the increasing demand for sustainable development.
Collapse
Affiliation(s)
- Yuto Kaku
- Department of Biomaterial Sciences, Graduate School of Agricultural and Life Sciences, The University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo 113-8657, Japan; Biogeochemistry Research Center (BGC), Research Institute for Marine Resources Utilization (MRU), Japan Agency for Marine-Earth Science and Technology (JAMSTEC), 2-15 Natsushima-cho, Yokosuka, Kanagawa 237-0061, Japan
| | - Noriyuki Isobe
- Department of Biomaterial Sciences, Graduate School of Agricultural and Life Sciences, The University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo 113-8657, Japan; Biogeochemistry Research Center (BGC), Research Institute for Marine Resources Utilization (MRU), Japan Agency for Marine-Earth Science and Technology (JAMSTEC), 2-15 Natsushima-cho, Yokosuka, Kanagawa 237-0061, Japan
| | - Nanako O Ogawa
- Biogeochemistry Research Center (BGC), Research Institute for Marine Resources Utilization (MRU), Japan Agency for Marine-Earth Science and Technology (JAMSTEC), 2-15 Natsushima-cho, Yokosuka, Kanagawa 237-0061, Japan
| | - Naohiko Ohkouchi
- Biogeochemistry Research Center (BGC), Research Institute for Marine Resources Utilization (MRU), Japan Agency for Marine-Earth Science and Technology (JAMSTEC), 2-15 Natsushima-cho, Yokosuka, Kanagawa 237-0061, Japan
| | - Tetsuro Ikuta
- Marine Biodiversity and Environmental Assessment Research Center (BioEnv), Research Institute for Global Change (RIGC), Japan Agency for Marine-Earth Science and Technology (JAMSTEC), 2-15 Natsushima-cho, Yokosuka, Kanagawa 237-0061, Japan
| | - Tsuguyuki Saito
- Department of Biomaterial Sciences, Graduate School of Agricultural and Life Sciences, The University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo 113-8657, Japan
| | - Shuji Fujisawa
- Department of Biomaterial Sciences, Graduate School of Agricultural and Life Sciences, The University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo 113-8657, Japan.
| |
Collapse
|
4
|
Kadokawa JI. Hydrogelation from Self-Assembled and Scaled-Down Chitin Nanofibers by the Modification of Highly Polar Substituents. Gels 2023; 9:432. [PMID: 37367103 DOI: 10.3390/gels9060432] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2023] [Revised: 05/09/2023] [Accepted: 05/22/2023] [Indexed: 06/28/2023] Open
Abstract
Chitin nanofibers (ChNFs) with a bundle structure were fabricated via regenerative self-assembly at the nanoscale from a chitin ion gel with an ionic liquid using methanol. Furthermore, the bundles were disentangled by partial deacetylation under alkaline conditions, followed by cationization and electrostatic repulsion in aqueous acetic acid to obtain thinner nanofibers called scaled-down ChNFs. This review presents a method for hydrogelation from self-assembled and scaled-down ChNFs by modifying the highly polar substituents on ChNFs. The modification was carried out by the reaction of amino groups on ChNFs, which were generated by partial deacetylation, with reactive substituent candidates such as poly(2-oxazoline)s with electrophilic living propagating ends and mono- and oligosaccharides with hemiacetallic reducing ends. The substituents contributed to the formation of network structures from ChNFs in highly polar dispersed media, such as water, to produce hydrogels. Moreover, after the modification of the maltooligosaccharide primers on ChNFs, glucan phosphorylase-catalyzed enzymatic polymerization was performed from the primer chain ends to elongate the amylosic graft chains on ChNFs. The amylosic graft chains formed double helices between ChNFs, which acted as physical crosslinking points to construct network structures, giving rise to hydrogels.
Collapse
Affiliation(s)
- Jun-Ichi Kadokawa
- Graduate School of Science and Engineering, Kagoshima University, 1-21-40 Korimoto, Kagoshima 890-0065, Japan
| |
Collapse
|
5
|
Andreica BI, Anisiei A, Rosca I, Sandu AI, Pasca AS, Tartau LM, Marin L. Quaternized chitosan/chitosan nanofibrous mats: An approach toward bioactive materials for tissue engineering and regenerative medicine. Carbohydr Polym 2023; 302:120431. [PMID: 36604092 DOI: 10.1016/j.carbpol.2022.120431] [Citation(s) in RCA: 18] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2022] [Revised: 11/30/2022] [Accepted: 12/01/2022] [Indexed: 12/12/2022]
Abstract
Chitosan based nanofibers are emerging biomaterials with a plethora of applications, especially in medicine and healthcare. Herein, binary quaternized chitosan/chitosan fibers are reported for the first time. Their preparation strategy consisted in the electrospinning of ternary chitosan/quaternized chitosan/poly(ethylene oxide) solutions followed by the selective removal of poly(ethylene oxide). Their morphology and performances were systematically investigated and discussed in detail. It was found that the fibers had reversible water vapor adsorption/desorption and showed swelling degrees similar to commercial wound dressings. They presented good mechanical properties and the content of quaternized chitosan modulated their bioadhesion, mucoadhesion and biodegradation rate and conferred them strong antimicrobial activity. Tests on normal human fibroblasts confirmed their safely use in contact with tissues and the biocompatibility investigation on rats showed no harmful effect when subcutaneous implanted. All these proved the binary quaternized chitosan/chitosan fibers as bioactive materials suitable for tissue regeneration, wound healing and drug delivery systems.
Collapse
Affiliation(s)
| | - Alexandru Anisiei
- "Petru Poni" Institute of Macromolecular Chemistry, Grigore Ghica Voda Alley, Iasi, Romania
| | - Irina Rosca
- "Petru Poni" Institute of Macromolecular Chemistry, Grigore Ghica Voda Alley, Iasi, Romania
| | - Andreea-Isabela Sandu
- "Petru Poni" Institute of Macromolecular Chemistry, Grigore Ghica Voda Alley, Iasi, Romania
| | - Aurelian Sorin Pasca
- "Ion Ionescu de la Brad" University, Laboratory of Antimicrobial Chemotherapy, Iasi, Romania
| | | | - Luminita Marin
- "Petru Poni" Institute of Macromolecular Chemistry, Grigore Ghica Voda Alley, Iasi, Romania.
| |
Collapse
|
6
|
Chitosan-based Maillard self-reaction products: formation, characterization, antioxidant and antimicrobial potential. CARBOHYDRATE POLYMER TECHNOLOGIES AND APPLICATIONS 2022. [DOI: 10.1016/j.carpta.2022.100257] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
|
7
|
Sun M, Ren Z, Wei T, Huang Y, Zhang X, Zheng Q, Qin T. Preparation, characterization and immune activity of Codonopsis pilosula polysaccharide loaded in chitosan-graphene oxide. Int J Biol Macromol 2022; 221:1466-1475. [PMID: 36070821 DOI: 10.1016/j.ijbiomac.2022.08.209] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2022] [Revised: 08/24/2022] [Accepted: 08/31/2022] [Indexed: 11/25/2022]
Abstract
The purpose of this study was to investigate the effects of chitosan graphene oxide Codonopsis pilosula polysaccharide (CS-GO-CPP) complex on the immune function of macrophage cells (RAW264.7). In this experiment, chitosan (CS) was combined with graphene oxide (GO) by electrostatic action to prepare CS-GO nanocomposites, and it was used as a carrier to load Codonopsis pilosula polysaccharide (CPP) onto CS-GO to prepare CS-GO-CPP. Using infrared spectroscopy detection, zeta potential detection, and thermogravimetric analysis, we conduct a preliminary analysis of the structure of CS-GO-CPP. Macrophages were employed to evaluate CS-GO-CPP immunomodulatory activity and the possible mechanism responsible for the activation of macrophages in vitro. The results showed that compared with CPP, CS-GO-CPP did not change the basic structure of polysaccharide, and its thermal stability was improved. 0.78- 12.5 μg·mL-1 of CS-GO-CPP could significantly promote the phagocytic activity of RAW264.7 cells (P < 0.05) and significantly increase NO content, IL-4 and IFN-γ secretion, the expression of CD40, CD86, and F4/80 (P < 0.05). CS-GO-CPP might activate the NF-κB signaling pathway and induce the nuclear translocation of NF-κB p65. In conclusion, CS-GO-CPP has a capacity to activate RAW264.7 cells for an improvement of immunomodulation activities, which might be through NF-κB signaling pathway.
Collapse
Affiliation(s)
- Mengke Sun
- Key Laboratory of Traditional Chinese Veterinary Medicine and Animal Health in Fujian Province, Fujian Agriculture and Forestry University, Fuzhou 350002, PR China
| | - Zhe Ren
- Key Laboratory of Traditional Chinese Veterinary Medicine and Animal Health in Fujian Province, Fujian Agriculture and Forestry University, Fuzhou 350002, PR China
| | - Tiantian Wei
- Fujian Key Laboratory of Chinese Traditional and Western Veterinary Medicine and Animal Health, Fujian Agriculture and Forestry University, Fuzhou 350002, PR China
| | - Yongyuan Huang
- Fujian Key Laboratory of Chinese Traditional and Western Veterinary Medicine and Animal Health, Fujian Agriculture and Forestry University, Fuzhou 350002, PR China
| | - Xueli Zhang
- Key Laboratory of Traditional Chinese Veterinary Medicine and Animal Health in Fujian Province, Fujian Agriculture and Forestry University, Fuzhou 350002, PR China
| | - Qiang Zheng
- Key Laboratory of Traditional Chinese Veterinary Medicine and Animal Health in Fujian Province, Fujian Agriculture and Forestry University, Fuzhou 350002, PR China
| | - Tao Qin
- Key Laboratory of Traditional Chinese Veterinary Medicine and Animal Health in Fujian Province, Fujian Agriculture and Forestry University, Fuzhou 350002, PR China.
| |
Collapse
|
8
|
Bai L, Liu L, Esquivel M, Tardy BL, Huan S, Niu X, Liu S, Yang G, Fan Y, Rojas OJ. Nanochitin: Chemistry, Structure, Assembly, and Applications. Chem Rev 2022; 122:11604-11674. [PMID: 35653785 PMCID: PMC9284562 DOI: 10.1021/acs.chemrev.2c00125] [Citation(s) in RCA: 80] [Impact Index Per Article: 40.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Chitin, a fascinating biopolymer found in living organisms, fulfills current demands of availability, sustainability, biocompatibility, biodegradability, functionality, and renewability. A feature of chitin is its ability to structure into hierarchical assemblies, spanning the nano- and macroscales, imparting toughness and resistance (chemical, biological, among others) to multicomponent materials as well as adding adaptability, tunability, and versatility. Retaining the inherent structural characteristics of chitin and its colloidal features in dispersed media has been central to its use, considering it as a building block for the construction of emerging materials. Top-down chitin designs have been reported and differentiate from the traditional molecular-level, bottom-up synthesis and assembly for material development. Such topics are the focus of this Review, which also covers the origins and biological characteristics of chitin and their influence on the morphological and physical-chemical properties. We discuss recent achievements in the isolation, deconstruction, and fractionation of chitin nanostructures of varying axial aspects (nanofibrils and nanorods) along with methods for their modification and assembly into functional materials. We highlight the role of nanochitin in its native architecture and as a component of materials subjected to multiscale interactions, leading to highly dynamic and functional structures. We introduce the most recent advances in the applications of nanochitin-derived materials and industrialization efforts, following green manufacturing principles. Finally, we offer a critical perspective about the adoption of nanochitin in the context of advanced, sustainable materials.
Collapse
Affiliation(s)
- Long Bai
- Key
Laboratory of Bio-based Material Science & Technology (Ministry
of Education), Northeast Forestry University, Harbin 150040, P.R. China
- Bioproducts
Institute, Department of Chemical & Biological Engineering, Department
of Chemistry, and Department of Wood Science, 2360 East Mall, The University of British Columbia, Vancouver, BC V6T 1Z3, Canada
| | - Liang Liu
- Jiangsu
Co-Innovation Center of Efficient Processing and Utilization of Forest
Resources, Jiangsu Key Lab of Biomass-Based Green Fuel and Chemicals,
College of Chemical Engineering, Nanjing
Forestry University, 159 Longpan Road, Nanjing 210037, P.R. China
| | - Marianelly Esquivel
- Polymer
Research Laboratory, Department of Chemistry, National University of Costa Rica, Heredia 3000, Costa Rica
| | - Blaise L. Tardy
- Department
of Bioproducts and Biosystems, School of Chemical Engineering, Aalto University, FI-00076 Aalto, Finland
- Department
of Chemical Engineering, Khalifa University, Abu Dhabi, United Arab Emirates
| | - Siqi Huan
- Key
Laboratory of Bio-based Material Science & Technology (Ministry
of Education), Northeast Forestry University, Harbin 150040, P.R. China
- Bioproducts
Institute, Department of Chemical & Biological Engineering, Department
of Chemistry, and Department of Wood Science, 2360 East Mall, The University of British Columbia, Vancouver, BC V6T 1Z3, Canada
| | - Xun Niu
- Bioproducts
Institute, Department of Chemical & Biological Engineering, Department
of Chemistry, and Department of Wood Science, 2360 East Mall, The University of British Columbia, Vancouver, BC V6T 1Z3, Canada
| | - Shouxin Liu
- Key
Laboratory of Bio-based Material Science & Technology (Ministry
of Education), Northeast Forestry University, Harbin 150040, P.R. China
| | - Guihua Yang
- State
Key Laboratory of Biobased Material and Green Papermaking, Qilu University of Technology, Shandong Academy of
Sciences, Jinan 250353, China
| | - Yimin Fan
- Jiangsu
Co-Innovation Center of Efficient Processing and Utilization of Forest
Resources, Jiangsu Key Lab of Biomass-Based Green Fuel and Chemicals,
College of Chemical Engineering, Nanjing
Forestry University, 159 Longpan Road, Nanjing 210037, P.R. China
| | - Orlando J. Rojas
- Bioproducts
Institute, Department of Chemical & Biological Engineering, Department
of Chemistry, and Department of Wood Science, 2360 East Mall, The University of British Columbia, Vancouver, BC V6T 1Z3, Canada
- Department
of Bioproducts and Biosystems, School of Chemical Engineering, Aalto University, FI-00076 Aalto, Finland
| |
Collapse
|
9
|
Tian Y, Wu D, Wu D, Cui Y, Ren G, Wang Y, Wang J, Peng C. Chitosan-Based Biomaterial Scaffolds for the Repair of Infected Bone Defects. Front Bioeng Biotechnol 2022; 10:899760. [PMID: 35600891 PMCID: PMC9114740 DOI: 10.3389/fbioe.2022.899760] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2022] [Accepted: 04/20/2022] [Indexed: 12/15/2022] Open
Abstract
The treatment of infected bone defects includes infection control and repair of the bone defect. The development of biomaterials with anti-infection and osteogenic ability provides a promising strategy for the repair of infected bone defects. Owing to its antibacterial properties, chitosan (an emerging natural polymer) has been widely studied in bone tissue engineering. Moreover, it has been shown that chitosan promotes the adhesion and proliferation of osteoblast-related cells, and can serve as an ideal carrier for bone-promoting substances. In this review, the specific molecular mechanisms underlying the antibacterial effects of chitosan and its ability to promote bone repair are discussed. Furthermore, the properties of several kinds of functionalized chitosan are analyzed and compared with those of pure chitosan. The latest research on the combination of chitosan with different types of functionalized materials and biomolecules for the treatment of infected bone defects is also summarized. Finally, the current shortcomings of chitosan-based biomaterials for the treatment of infected bone defects and future research directions are discussed. This review provides a theoretical basis and advanced design strategies for the use of chitosan-based biomaterials in the treatment of infected bone defects.
Collapse
Affiliation(s)
- Yuhang Tian
- Orthopedic Medical Center, The Second Hospital of Jilin University, Changchun, China
| | - Danhua Wu
- The People’s Hospital of Chaoyang District, Changchun, China
| | - Dankai Wu
- Orthopedic Medical Center, The Second Hospital of Jilin University, Changchun, China
| | - Yutao Cui
- Orthopedic Medical Center, The Second Hospital of Jilin University, Changchun, China
| | - Guangkai Ren
- Orthopedic Medical Center, The Second Hospital of Jilin University, Changchun, China
| | - Yanbing Wang
- Orthopedic Medical Center, The Second Hospital of Jilin University, Changchun, China
| | - Jincheng Wang
- Orthopedic Medical Center, The Second Hospital of Jilin University, Changchun, China
| | - Chuangang Peng
- Orthopedic Medical Center, The Second Hospital of Jilin University, Changchun, China
- *Correspondence: Chuangang Peng,
| |
Collapse
|
10
|
Nakashima A, Kohori K, Yamamoto K, Kadokawa JI. Synthesis of thermoplastic chitin hexanoate-graft-poly(ε-caprolactone). Carbohydr Polym 2022; 280:119024. [PMID: 35027126 DOI: 10.1016/j.carbpol.2021.119024] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2021] [Revised: 11/30/2021] [Accepted: 12/14/2021] [Indexed: 11/24/2022]
Abstract
Herein, we report that chitin hexanoate-graft-poly(ε-caprolactone) (ChHex-g-PCL) is thermoplastic, as confirmed by the formation of a melt-pressed film. Chitin hexanoates with degrees of substitution (DSs) of 1.4-1.8 and bearing free hydroxy groups were first prepared by the hexanoylation of chitin using adjusted feed equivalents of hexanoyl chloride in the presence of pyridine and N,N-dimethyl-4-aminopyridine in 1-allyl-3-methylimidazolium bromide, an ionic liquid. Surface-initiated ring-opening graft polymerization of ε-caprolactone from the hydroxy groups of the chitin hexanoates was conducted in the presence of tin(II) 2-ethylhexanoate as the catalyst at 100 °C to produce (ChHex-g-PCL)s. The feed equivalent of the catalyst, reaction time, and DS value were found to affect the molar substitution and degree of polymerization of the PCL graft chains. Longer PCL graft chains formed their crystalline structures and the (ChHex-g-PCL)s largely contained uncrystallized chitin chains. Accordingly, these (ChHex-g-PCL)s exhibited melting points associated with the PCL graft chains, leading to thermoplasticity.
Collapse
Affiliation(s)
- Aoi Nakashima
- Graduate School of Science and Engineering, Kagoshima University, 1-21-40 Korimoto, Kagoshima 890-0065, Japan
| | - Kaho Kohori
- Graduate School of Science and Engineering, Kagoshima University, 1-21-40 Korimoto, Kagoshima 890-0065, Japan
| | - Kazuya Yamamoto
- Graduate School of Science and Engineering, Kagoshima University, 1-21-40 Korimoto, Kagoshima 890-0065, Japan
| | - Jun-Ichi Kadokawa
- Graduate School of Science and Engineering, Kagoshima University, 1-21-40 Korimoto, Kagoshima 890-0065, Japan.
| |
Collapse
|
11
|
Chitin Nanocrystals: Environmentally Friendly Materials for the Development of Bioactive Films. COATINGS 2022. [DOI: 10.3390/coatings12020144] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Biobased nanomaterials have gained growing interest in recent years for the sustainable development of composite films and coatings, providing new opportunities and high-performance products. In particular, chitin and cellulose nanocrystals offer an attractive combination of properties, including a rod shape, dispersibility, outstanding surface properties, and mechanical and barrier properties, which make these nanomaterials excellent candidates for sustainable reinforcing materials. Until now, most of the research has been focused on cellulose nanomaterials; however, in the last few years, chitin nanocrystals (ChNCs) have gained more interest, especially for biomedical applications. Due to their biological properties, such as high biocompatibility, biodegradability, and antibacterial and antioxidant properties, as well as their superior adhesive properties and promotion of cell proliferation, chitin nanocrystals have emerged as valuable components of composite biomaterials and bioactive materials. This review attempts to provide an overview of the use of chitin nanocrystals for the development of bioactive composite films in biomedical and packaging systems.
Collapse
|
12
|
Zhou X, Yin A, Sheng J, Wang J, Chen H, Fang Y, Zhang K. In situ deposition of nano Cu 2O on electrospun chitosan nanofibrous scaffolds and their antimicrobial properties. Int J Biol Macromol 2021; 191:600-607. [PMID: 34582906 DOI: 10.1016/j.ijbiomac.2021.09.121] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2021] [Revised: 09/07/2021] [Accepted: 09/19/2021] [Indexed: 12/30/2022]
Abstract
In order to obtain a synergistic antimicrobial effect of cuprous oxide nanoparticles (Cu2O NPs) and chitosan (CS) nanofibers, the nano Cu2O/CS nanofibrous scaffolds were synthesized in situ via two subsequent steps of chelation and reduction. The Cu2+ were stably chelated on CS nanofibrous scaffolds through the coordination of amino group (-NH2) and hydroxyl group (-OH) on CS with Cu2+, and then the chelated Cu2+ were reduced to nano Cu2O by Vitamin C under alkaline conditions. And by the measurements of XRD, XPS and FTIR-ATR, the results showed that Cu2O NPs were successfully deposited on the CS nanofibrous scaffolds. SEM clarified that the particle size of Cu2O gradually decreased and the shape changed from cubic to irregular with the increase of CuSO4 concentration. With the CuSO4 concentration of 0.02 and 0.04 mol·L-1, the Cu2O/CS nanofibrous scaffolds presented outstanding hydrophilicity and antibacterial activity against Gram-negative Escherichia coli (E. coli) and Gram-positive Staphylococcus aureus (S. aureus) comparing to the CS nanofibrous scaffolds, meanwhile, they possessed good biocompatibility. This kind of nanofibrous scaffolds deposited with nano Cu2O would have broad application prospects in the field of antibacterial biomaterials.
Collapse
Affiliation(s)
- Xinglu Zhou
- College of Materials and Textile Engineering, Nanotechnology Research Institute, Jiaxing University, Jiaxing 314001, China
| | - Anlin Yin
- College of Materials and Textile Engineering, Nanotechnology Research Institute, Jiaxing University, Jiaxing 314001, China; Key Laboratory of Yarn Materials Forming and Composite Processing Technology of Zhejiang Province, Jiaxing University, Jiaxing 314001, China
| | - Junlu Sheng
- College of Materials and Textile Engineering, Nanotechnology Research Institute, Jiaxing University, Jiaxing 314001, China; Key Laboratory of Yarn Materials Forming and Composite Processing Technology of Zhejiang Province, Jiaxing University, Jiaxing 314001, China
| | - Jiayan Wang
- College of Materials and Textile Engineering, Nanotechnology Research Institute, Jiaxing University, Jiaxing 314001, China
| | - Huifen Chen
- College of Materials and Textile Engineering, Nanotechnology Research Institute, Jiaxing University, Jiaxing 314001, China
| | - Yun Fang
- College of Materials and Textile Engineering, Nanotechnology Research Institute, Jiaxing University, Jiaxing 314001, China
| | - Kuihua Zhang
- College of Materials and Textile Engineering, Nanotechnology Research Institute, Jiaxing University, Jiaxing 314001, China; Key Laboratory of Yarn Materials Forming and Composite Processing Technology of Zhejiang Province, Jiaxing University, Jiaxing 314001, China.
| |
Collapse
|
13
|
|
14
|
Hashiguchi T, Yamamoto K, Kadokawa JI. Fabrication of highly flexible nanochitin film and its composite film with anionic polysaccharide. Carbohydr Polym 2021; 270:118369. [PMID: 34364614 DOI: 10.1016/j.carbpol.2021.118369] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2021] [Revised: 05/31/2021] [Accepted: 06/21/2021] [Indexed: 01/07/2023]
Abstract
This study investigated the fabrication of a nanochitin film via the aggregation of scaled-down chitin nanofibers (SD-ChNFs). A self-assembled ChNF film, which was prepared by regeneration from a chitin/ionic liquid ion gel using methanol, followed by filtration, was treated with aqueous NaOH for deacetylation and subsequently disintegrated by cationization and electrostatic repulsion in 1.0 mol/L aqueous acetic acid with ultrasonication to give a SD-ChNF dispersion. Isolation of the SD-ChNFs via filtration of the dispersion resulted in a highly flexible self-assembled ChNF film that bent and twisted easily. The film exhibited superior mechanical properties compared to the parent self-assembled ChNF film, where the flexibility was further enhanced by the compositing the SD-ChNFs with an anionic polysaccharide, namely ι-carrageenan, via multi-point ionic cross-linking. These enhanced mechanical properties and efficient compositing properties were attributed to the scaling down of the ChNFs.
Collapse
Affiliation(s)
- Takuya Hashiguchi
- Graduate School of Science and Engineering, Kagoshima University, 1-21-40 Korimoto, Kagoshima 890-0065, Japan
| | - Kazuya Yamamoto
- Graduate School of Science and Engineering, Kagoshima University, 1-21-40 Korimoto, Kagoshima 890-0065, Japan
| | - Jun-Ichi Kadokawa
- Graduate School of Science and Engineering, Kagoshima University, 1-21-40 Korimoto, Kagoshima 890-0065, Japan.
| |
Collapse
|
15
|
Kadokawa JI. Preparation of Composite Materials from Self-Assembled Chitin Nanofibers. Polymers (Basel) 2021; 13:polym13203548. [PMID: 34685305 PMCID: PMC8538764 DOI: 10.3390/polym13203548] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2021] [Revised: 10/10/2021] [Accepted: 10/11/2021] [Indexed: 01/18/2023] Open
Abstract
Although chitin is a representative abundant polysaccharide, it is mostly unutilized as a material source because of its poor solubility and processability. Certain specific properties, such as biodegradability, biocompatibility, and renewability, make nanofibrillation an efficient approach for providing chitin-based functional nanomaterials. The composition of nanochitins with other polymeric components has been efficiently conducted at the nanoscale to fabricate nanostructured composite materials. Disentanglement of chitin microfibrils in natural sources upon the top-down approach and regeneration from the chitin solutions/gels with appropriate media, such as hexafluoro-2-propanol, LiCl/N, N-dimethylacetamide, and ionic liquids, have, according to the self-assembling bottom-up process, been representatively conducted to fabricate nanochitins. Compared with the former approach, the latter one has emerged only in the last one-and-a-half decade. This short review article presents the preparation of composite materials from the self-assembled chitin nanofibers combined with other polymeric substrates through regenerative processes based on the bottom-up approach.
Collapse
Affiliation(s)
- Jun-Ichi Kadokawa
- Graduate School of Science and Engineering, Kagoshima University, 1-21-40 Korimoto, Kagoshima 890-0065, Japan
| |
Collapse
|
16
|
Liu P, Woo MW, An J, Razmi R, Dang X, Shan Z. Spray-Drying-Assisted Electrochemical Synthesis: A Facile and Green Strategy for the Fabrication and Functionalization of Cellulose–Gelatin Powders. Ind Eng Chem Res 2021. [DOI: 10.1021/acs.iecr.1c01871] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Peng Liu
- The Key Laboratory of Leather Chemistry and Engineering Ministry of Education & National Engineering Laboratory for Clean Technology of Leather Manufacture, College of Biomass Science and Engineering, Sichuan University, Chengdu 610065, China
| | - Meng Wai Woo
- Department of Chemical & Materials Engineering, Faculty of Engineering, The University of Auckland, Auckland 1010, New Zealand
| | - Jingxian An
- Department of Chemical & Materials Engineering, Faculty of Engineering, The University of Auckland, Auckland 1010, New Zealand
| | - Ramin Razmi
- Department of Chemical & Materials Engineering, Faculty of Engineering, The University of Auckland, Auckland 1010, New Zealand
| | - Xugang Dang
- Institute for Biomass and Function Materials & National Demonstration Centre for Experimental Light Chemistry Engineering Education, College of Bioresources Chemical and Materials Engineering, Shaanxi University of Science and Technology, Xi’an 710021, China
| | - Zhihua Shan
- The Key Laboratory of Leather Chemistry and Engineering Ministry of Education & National Engineering Laboratory for Clean Technology of Leather Manufacture, College of Biomass Science and Engineering, Sichuan University, Chengdu 610065, China
| |
Collapse
|
17
|
Preparation of Nanochitin/Polystyrene Composite Particles by Pickering Emulsion Polymerization Using Scaled-Down Chitin Nanofibers. COATINGS 2021. [DOI: 10.3390/coatings11060672] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
In this study, we investigate the Pickering emulsion polymerization of styrene using scaled-down chitin nanofibers (SD-ChNFs) as stabilizers to produce nanochitin/polystyrene composite particles. Prior to emulsion polymerization, an SD-ChNF aqueous dispersion was prepared by disintegrating bundles of the parent ChNFs with an upper hierarchical scale in aqueous acetic acid through ultrasonication. After styrene was added to the resulting dispersions, the mixtures at the desired weight ratios (SD-ChNFs to styrene = 0.1:1–1.4:1) were ultrasonicated to produce Pickering emulsions. Radical polymerization was then conducted in the presence of potassium persulfate as an initiator in the resulting emulsions to fabricate the composite particles. The results show that their average diameters decreased to a minimum of 84 nm as the weight ratios of SD-ChNFs to styrene increased. The IR and 1H-NMR spectra of the composite particle supported the presence of both chitin and polystyrene in the material.
Collapse
|
18
|
Anraku M, Mizukai Y, Maezaki Y, Kawano K, Okazaki S, Takeshita K, Adachi T, Otagiri M, Iohara D, Hirayama F. The preparation and validation of chitosan tablets that rapidly disperse and disintegrate as an oral adsorbent in the treatment of lifestyle-related diseases. Carbohydr Polym 2021; 253:117246. [PMID: 33279001 DOI: 10.1016/j.carbpol.2020.117246] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2020] [Revised: 08/27/2020] [Accepted: 10/12/2020] [Indexed: 11/15/2022]
Abstract
A carrier and an oral absorbent for the treatment of chronic diseases in the form of a tablet was prepared from granulated chitosan (G-CS) particles. The resulting tablet was highly dispersible and disintegrated rapidly (< 30 s) in aqueous media. The non-granulated chitosan (N-CS) powder partially crystallized (2θ = 12-15° and 20°) during wet granulation to give G-CS crystalline particles. The rate of penetration of water into G-CS aggregates was markedly faster than that for N-CS aggregates, as evidenced by the ease of disintegration of the tablets. The rapid disintegration and dispersion of the tablets in vivo was confirmed by MRI measurements after the oral administration of the both tablets to rats. Some ureic toxins were adsorbed more strongly to G-CS tablets than on N-CS tablets. The results suggest that G-CS tablets have great potential for use as a fast disintegrating carrier and as an oral adsorbent in lifestyle-related diseases.
Collapse
Affiliation(s)
- Makoto Anraku
- Faculty of Pharmaceutical Sciences, Sojo University, 4-22-1 Ikeda, Nishi-ku, Kumamoto 860-0082, Japan; DDS Research Institute, Sojo University, 4-22-1 Ikeda, Nishi-ku, Kumamoto 860-0082, Japan.
| | - Yasuyuki Mizukai
- Nippon Kayaku Food Techno Co., Ltd., 219, Iwahanamachi, Takasaki, Gunma 370-1208, Japan
| | - Yuji Maezaki
- Nippon Kayaku Food Techno Co., Ltd., 219, Iwahanamachi, Takasaki, Gunma 370-1208, Japan
| | - Kazuo Kawano
- Nippon Kayaku Food Techno Co., Ltd., 219, Iwahanamachi, Takasaki, Gunma 370-1208, Japan
| | - Shoko Okazaki
- Faculty of Pharmaceutical Sciences, Sojo University, 4-22-1 Ikeda, Nishi-ku, Kumamoto 860-0082, Japan
| | - Keizo Takeshita
- Faculty of Pharmaceutical Sciences, Sojo University, 4-22-1 Ikeda, Nishi-ku, Kumamoto 860-0082, Japan; DDS Research Institute, Sojo University, 4-22-1 Ikeda, Nishi-ku, Kumamoto 860-0082, Japan
| | - Tomoki Adachi
- Faculty of Pharmaceutical Sciences, Sojo University, 4-22-1 Ikeda, Nishi-ku, Kumamoto 860-0082, Japan
| | - Masaki Otagiri
- Faculty of Pharmaceutical Sciences, Sojo University, 4-22-1 Ikeda, Nishi-ku, Kumamoto 860-0082, Japan; DDS Research Institute, Sojo University, 4-22-1 Ikeda, Nishi-ku, Kumamoto 860-0082, Japan
| | - Daisuke Iohara
- Faculty of Pharmaceutical Sciences, Sojo University, 4-22-1 Ikeda, Nishi-ku, Kumamoto 860-0082, Japan; DDS Research Institute, Sojo University, 4-22-1 Ikeda, Nishi-ku, Kumamoto 860-0082, Japan
| | - Fumitoshi Hirayama
- Faculty of Pharmaceutical Sciences, Sojo University, 4-22-1 Ikeda, Nishi-ku, Kumamoto 860-0082, Japan; DDS Research Institute, Sojo University, 4-22-1 Ikeda, Nishi-ku, Kumamoto 860-0082, Japan
| |
Collapse
|
19
|
Ni Y, Jing Y, Jiang Q, Gao R. Combination of Starch and Nano‐Chitin Whiskers for Surface Treatment of Cellulosic Paper. STARCH-STARKE 2021. [DOI: 10.1002/star.202000219] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Yeyan Ni
- Jiangsu Co‐Innovation Center of Efficient Processing and Utilization of Forest Resources College of Light Industry and Food Engineering Nanjing Forestry University Nanjing 210037 PR China
| | - Yi Jing
- Jiangsu Co‐Innovation Center of Efficient Processing and Utilization of Forest Resources College of Light Industry and Food Engineering Nanjing Forestry University Nanjing 210037 PR China
| | - Qiwen Jiang
- Jiangsu Co‐Innovation Center of Efficient Processing and Utilization of Forest Resources College of Light Industry and Food Engineering Nanjing Forestry University Nanjing 210037 PR China
| | - Ruoshi Gao
- Jiangsu Co‐Innovation Center of Efficient Processing and Utilization of Forest Resources College of Light Industry and Food Engineering Nanjing Forestry University Nanjing 210037 PR China
| |
Collapse
|
20
|
Bonilla-Represa V, Abalos-Labruzzi C, Herrera-Martinez M, Guerrero-Pérez MO. Nanomaterials in Dentistry: State of the Art and Future Challenges. NANOMATERIALS (BASEL, SWITZERLAND) 2020; 10:E1770. [PMID: 32906829 PMCID: PMC7557393 DOI: 10.3390/nano10091770] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/02/2020] [Revised: 08/21/2020] [Accepted: 09/02/2020] [Indexed: 02/07/2023]
Abstract
Nanomaterials are commonly considered as those materials in which the shape and molecular composition at a nanometer scale can be controlled. Subsequently, they present extraordinary properties that are being useful for the development of new and improved applications in many fields, including medicine. In dentistry, several research efforts are being conducted, especially during the last decade, for the improvement of the properties of materials used in dentistry. The objective of the present article is to offer the audience a complete and comprehensive review of the main applications that have been developed in dentistry, by the use of these materials, during the last two decades. It was shown how these materials are improving the treatments in mainly all the important areas of dentistry, such as endodontics, periodontics, implants, tissue engineering and restorative dentistry. The scope of the present review is, subsequently, to revise the main applications regarding nano-shaped materials in dentistry, including nanorods, nanofibers, nanotubes, nanospheres/nanoparticles, and zeolites and other orders porous materials. The results of the bibliographic analysis show that the most explored nanomaterials in dentistry are graphene and carbon nanotubes, and their derivatives. A detailed analysis and a comparative study of their applications show that, although they are quite similar, graphene-based materials seem to be more promising for most of the applications of interest in dentistry. The bibliographic study also demonstrated the potential of zeolite-based materials, although the low number of studies on their applications shows that they have not been totally explored, as well as other porous nanomaterials that have found important applications in medicine, such as metal organic frameworks, have not been explored. Subsequently, it is expected that the research effort will concentrate on graphene and zeolite-based materials in the coming years. Thus, the present review paper presents a detailed bibliographic study, with more than 200 references, in order to briefly describe the main achievements that have been described in dentistry using nanomaterials, compare and analyze them in a critical way, with the aim of predicting the future challenges.
Collapse
Affiliation(s)
- Victoria Bonilla-Represa
- Departamento de Operatoria Dental y Endodoncia, Universidad de Sevilla, E-41009 Sevilla, Spain; (V.B.-R.); (M.H.-M.)
| | | | - Manuela Herrera-Martinez
- Departamento de Operatoria Dental y Endodoncia, Universidad de Sevilla, E-41009 Sevilla, Spain; (V.B.-R.); (M.H.-M.)
| | | |
Collapse
|
21
|
Somsak P, Sriwattana S, Prinyawiwatkul W. Ultrasonic‐assisted chitin nanoparticle and its application as saltiness enhancer. Int J Food Sci Technol 2020. [DOI: 10.1111/ijfs.14715] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Affiliation(s)
- Prachern Somsak
- Product Development Technology Division Faculty of Agro‐Industry Chiang Mai University Chiang Mai50100Thailand
| | - Sujinda Sriwattana
- Product Development Technology Division Faculty of Agro‐Industry Chiang Mai University Chiang Mai50100Thailand
- Research Center of Producing and Development of Products and Innovations for Animal Health and Production Chiang Mai University Chiang Mai50100Thailand
| | - Witoon Prinyawiwatkul
- School of Nutrition and Food Sciences Agricultural Center Louisiana State University Baton Rouge LA70803USA
| |
Collapse
|
22
|
Fabrication of cationized chitin nanofiber-reinforced xanthan gum hydrogels. Polym Bull (Berl) 2020. [DOI: 10.1007/s00289-019-02960-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
|
23
|
Preparation of chitin-based fluorescent hollow particles by Pickering emulsion polymerization using functional chitin nanofibers. Int J Biol Macromol 2020; 157:680-686. [DOI: 10.1016/j.ijbiomac.2019.11.225] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2019] [Revised: 11/19/2019] [Accepted: 11/27/2019] [Indexed: 12/31/2022]
|
24
|
Joseph B, Mavelil Sam R, Balakrishnan P, J. Maria H, Gopi S, Volova T, C. M. Fernandes S, Thomas S. Extraction of Nanochitin from Marine Resources and Fabrication of Polymer Nanocomposites: Recent Advances. Polymers (Basel) 2020; 12:E1664. [PMID: 32726958 PMCID: PMC7465063 DOI: 10.3390/polym12081664] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2020] [Revised: 07/15/2020] [Accepted: 07/20/2020] [Indexed: 12/25/2022] Open
Abstract
Industrial sea food residues, mainly crab and shrimp shells, are considered to be the most promising and abundant source of chitin. In-depth understanding of the biological properties of chitin and scientific advancements in the field of nanotechnology have enabled the development of high-performance chitin nanomaterials. Nanoscale chitin is of great economic value as an efficient functional and reinforcement material for a wide range of applications ranging from water purification to tissue engineering. The use of polymers and nanochitin to produce (bio) nanocomposites offers a good opportunity to prepare bioplastic materials with enhanced functional and structural properties. Most processes for nanochitin isolation rely on the use of chemical, physical or mechanical methods. Chitin-based nanocomposites are fabricated by various methods, involving electrospinning, freeze drying, etc. This review discusses the progress and new developments in the isolation and physico-chemical characterization of chitin; it also highlights the processing of nanochitin in various composite and functional materials.
Collapse
Affiliation(s)
- Blessy Joseph
- International and Inter University Centre for Nanoscience and Nanotechnology, Mahatma Gandhi University, Kottayam, Kerala 686560, India; (B.J.); (P.B.); (H.J.M.)
| | - Rubie Mavelil Sam
- Research and Post Graduate Department of Chemistry, Bishop Moore College, Mavelikara, Kerala 690110, India;
| | - Preetha Balakrishnan
- International and Inter University Centre for Nanoscience and Nanotechnology, Mahatma Gandhi University, Kottayam, Kerala 686560, India; (B.J.); (P.B.); (H.J.M.)
| | - Hanna J. Maria
- International and Inter University Centre for Nanoscience and Nanotechnology, Mahatma Gandhi University, Kottayam, Kerala 686560, India; (B.J.); (P.B.); (H.J.M.)
| | - Sreeraj Gopi
- Plant Lipids Pvt. Ltd., Cochin, Kerala 682311, India
| | - Tatiana Volova
- Institute of Biophysics of Russian Academy of Science, Siberian Federal University, 660041 Krasnoyarsk, Russia
| | - Susana C. M. Fernandes
- Institute of Interdisciplinary Research on Environment and Materials (IPREM), Université de Pau et des Pays de l’Adour, E2S UPPA, CNRS, IPREM, 64600 Anglet, France
| | - Sabu Thomas
- School of Energy Materials, Mahatma Gandhi University, Kottayam, Kerala 686560, India
| |
Collapse
|
25
|
Effects of surface-deacetylated chitin nanofibers on non-alcoholic steatohepatitis model rats and their gut microbiota. Int J Biol Macromol 2020; 164:659-666. [PMID: 32698063 DOI: 10.1016/j.ijbiomac.2020.07.184] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2020] [Revised: 07/01/2020] [Accepted: 07/16/2020] [Indexed: 01/21/2023]
Abstract
Nonalcoholic steatohepatitis (NASH), a more advanced form of nonalcoholic fatty liver disease (NAFLD), is associated with increased cardiovascular and liver-related mortality. Stroke-prone spontaneously hypertensive rats (SHRSP5/Dmcr) that are fed a high-fat and high-cholesterol diet develop hepatic lesions that are similar to those observed in human NASH pathology. We investigated the hepatic protective and antioxidant effects of surface-deacetylated chitin nanofibers (SDACNFs) that were administered to SHRSP5/Dmcr rats for 8 weeks. The administration of SDACNFs (80 mg/kg/day) resulted in a significant decrease in hepatic injury, oxidative stress, compared with the non-treatment. The SDACNFs also caused a reduction in the population of harmful members of the Morganella and Prevotella genus, and increased the abundance of the Blautia genus, a useful bacterium in gut microbiota. We therefore conclude that SDACNF exerts anti-hepatic and antioxidative effects not only by adsorbing lipid substances but also by reforming the community of intestinal microflora in the intestinal tract.
Collapse
|
26
|
Ahmad SI, Ahmad R, Khan MS, Kant R, Shahid S, Gautam L, Hasan GM, Hassan MI. Chitin and its derivatives: Structural properties and biomedical applications. Int J Biol Macromol 2020; 164:526-539. [PMID: 32682975 DOI: 10.1016/j.ijbiomac.2020.07.098] [Citation(s) in RCA: 72] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2020] [Revised: 06/19/2020] [Accepted: 07/09/2020] [Indexed: 12/17/2022]
Abstract
Chitin, a polysaccharide that occurs abundantly in nature after cellulose, has attracted the interest of the scientific community due to its plenty of availability and low cost. Mostly, it is derived from the exoskeleton of insects and marine crustaceans. Often, it is insoluble in common solvents that limit its applications but its deacetylated product, named chitosan is found to be soluble in protonated aqueous medium and used widely in various biomedical fields. Indeed, the existence of the primary amino group on the backbone of chitosan provides it an important feature to modify it chemically into other derivatives easily. In the present review, we present the structural properties of chitin, and its derivatives and highlighted their biomedical implications including, tissue engineering, drug delivery, diagnosis, molecular imaging, antimicrobial activity, and wound healing. We further discussed the limitations and prospects of this versatile natural polysaccharide.
Collapse
Affiliation(s)
- Syed Ishraque Ahmad
- Department of Chemistry, Zakir Husain Delhi College (University of Delhi), New Delhi 110002, India.
| | - Razi Ahmad
- Regional Center for Advanced Technologies and Materials, Faculty of Science, Palacky University, Slechtitelu 27, 78371 Olomouc, Czech Republic
| | - Mohd Shoeb Khan
- Interdisciplinary Nanotechnology Centre, Aligarh Muslim University, Aligarh 202002, India
| | - Ravi Kant
- Department of Chemistry, Zakir Husain Delhi College (University of Delhi), New Delhi 110002, India
| | - Shumaila Shahid
- Division of Plant Pathology, ICAR-Indian Agricultural Research Institute, New Delhi 110 012, India
| | - Leela Gautam
- Department of Chemistry, Zakir Husain Delhi College (University of Delhi), New Delhi 110002, India
| | - Ghulam Mustafa Hasan
- Department of Biochemistry, College of Medicine, Prince Sattam Bin Abdulaziz University, Al-Kharj, Saudi Arabia
| | - Md Imtaiyaz Hassan
- Centre for Interdisciplinary Research in Basic Sciences, Jamia Millia Islamia (Central University), New Delhi 110025, India.
| |
Collapse
|
27
|
Effect of Chitosan as a Cross-Linker on Matrix Metalloproteinase Activity and Bond Stability with Different Adhesive Systems. Mar Drugs 2020; 18:md18050263. [PMID: 32443628 PMCID: PMC7280998 DOI: 10.3390/md18050263] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2020] [Revised: 05/11/2020] [Accepted: 05/13/2020] [Indexed: 02/07/2023] Open
Abstract
The aim of the present study was to evaluate the effect of 0.1% chitosan (Ch) solution as an additional primer on the mechanical durability and enzymatic activity on dentine using an etch-and-rinse (E&R) adhesive and a universal self-etch (SE) adhesive. Microtensile bond strength and interfacial nanoleakage expression of the bonded interfaces for all adhesives (with or without pretreatment with 0.1% Ch solution for 1 min and air-dried for 5 s) were analyzed immediately and after 10,000 thermocycles. Zymograms of protein extracts from human dentine powder incubated with Optibond FL and Scotchbond Universal on untreated or Ch-treated dentine were obtained to examine dentine matrix metalloproteinase (MMP) activities. The use of 0.1% Ch solution as an additional primer in conjunction with the E&R or SE adhesive did not appear to have influenced the immediate bond strength (T0) or bond strength after thermocycling (T1). Zymography showed a reduction in MMP activities only for mineralized and demineralized dentine powder after the application of Ch. Application of 0.1% Ch solution does not increase the longevity of resin–dentine bonds. Nonetheless, the procedure appears to be proficient in reducing dentine MMP activities within groups without adhesive treatments. Further studies are required to comprehend the cross-linking of Ch with dentine collagen.
Collapse
|
28
|
Synthesis of Chitosan Beads Incorporating Graphene Oxide/Titanium Dioxide Nanoparticles for In Vivo Studies. Molecules 2020; 25:molecules25102308. [PMID: 32423061 PMCID: PMC7287625 DOI: 10.3390/molecules25102308] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2020] [Revised: 05/08/2020] [Accepted: 05/11/2020] [Indexed: 01/08/2023] Open
Abstract
Scaffold development for cell regeneration has increased in recent years due to the high demand for more efficient and biocompatible materials. Nanomaterials have become a critical alternative for mechanical, thermal, and antimicrobial property reinforcement in several biopolymers. In this work, four different chitosan (CS) bead formulations crosslinked with glutaraldehyde (GLA), including titanium dioxide nanoparticles (TiO2), and graphene oxide (GO) nanosheets, were prepared with potential biomedical applications in mind. The characterization of by FTIR spectroscopy, X-ray photoelectron spectroscopy (XRD), thermogravimetric analysis (TGA), energy-dispersive spectroscopy (EDS) and scanning electron microscopy (SEM), demonstrated an efficient preparation of nanocomposites, with nanoparticles well-dispersed in the polymer matrix. In vivo, subdermal implantation of the beads in Wistar rat′s tissue for 90 days showed a proper and complete healing process without any allergenic response to any of the formulations. Masson′s trichrome staining of the histological implanted tissues demonstrated the presence of a group of macrophage/histiocyte compatible cells, which indicates a high degree of biocompatibility of the beads. The materials were very stable under body conditions as the morphometry studies showed, but with low resorption percentages. These high stability beads could be used as biocompatible, resistant materials for long-term applications. The results presented in this study show the enormous potential of these chitosan nanocomposites in cell regeneration and biomedical applications.
Collapse
|
29
|
Comparison of acidic deep eutectic solvents in production of chitin nanocrystals. Carbohydr Polym 2020; 236:116095. [PMID: 32172897 DOI: 10.1016/j.carbpol.2020.116095] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2019] [Revised: 01/04/2020] [Accepted: 02/28/2020] [Indexed: 12/14/2022]
Abstract
Five different acidic deep eutectic solvents (DESs) composed of choline chloride and organic acids were applied to fabricate chitin nanocrystals (ChNCs). All DESs resulted in high transmittance and stable ChNCs suspensions with very high mass yield ranging from 78 % to 87.5 % under proper reaction conditions. The acidic DESs had a dual role in ChNCs fabrication, i.e. they promoted hydrolysis of chitin and acted as an acylation reagent. Physicochemical characterization of chitin revealed that the removal of amorphous area during DES treatments led to increased crystallinity of ChNCs and a dimension diversity correlated the DES used. The average diameter and length of individual ChNCs ranged from 42 nm to 49 nm and from 257 nm to 670 nm, respectively. The thermal stability of ChNCs was comparable to that of pristine chitin. Thus, acidic DESs showed to be non-toxic and environmentally benign solvents for production of functionalized chitin nanocrystals.
Collapse
|
30
|
Wysokowski M, Machałowski T, Petrenko I, Schimpf C, Rafaja D, Galli R, Ziętek J, Pantović S, Voronkina A, Kovalchuk V, Ivanenko VN, Hoeksema BW, Diaz C, Khrunyk Y, Stelling AL, Giovine M, Jesionowski T, Ehrlich H. 3D Chitin Scaffolds of Marine Demosponge Origin for Biomimetic Mollusk Hemolymph-Associated Biomineralization Ex-Vivo. Mar Drugs 2020; 18:E123. [PMID: 32092907 PMCID: PMC7074400 DOI: 10.3390/md18020123] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2019] [Revised: 02/11/2020] [Accepted: 02/14/2020] [Indexed: 12/14/2022] Open
Abstract
Structure-based tissue engineering requires large-scale 3D cell/tissue manufacture technologies, to produce biologically active scaffolds. Special attention is currently paid to naturally pre-designed scaffolds found in skeletons of marine sponges, which represent a renewable resource of biomaterials. Here, an innovative approach to the production of mineralized scaffolds of natural origin is proposed. For the first time, a method to obtain calcium carbonate deposition ex vivo, using living mollusks hemolymph and a marine-sponge-derived template, is specifically described. For this purpose, the marine sponge Aplysin aarcheri and the terrestrial snail Cornu aspersum were selected as appropriate 3D chitinous scaffold and as hemolymph donor, respectively. The formation of calcium-based phase on the surface of chitinous matrix after its immersion into hemolymph was confirmed by Alizarin Red staining. A direct role of mollusks hemocytes is proposed in the creation of fine-tuned microenvironment necessary for calcification ex vivo. The X-ray diffraction pattern of the sample showed a high CaCO3 amorphous content. Raman spectroscopy evidenced also a crystalline component, with spectra corresponding to biogenic calcite. This study resulted in the development of a new biomimetic product based on ex vivo synthetized ACC and calcite tightly bound to the surface of 3D sponge chitin structure.
Collapse
Affiliation(s)
- Marcin Wysokowski
- Faculty of Chemical Technology, Institute of Chemical Technology and Engineering, Poznan University of Technology, Berdychowo 4, 60965 Poznan, Poland; (T.M.); (T.J.)
- Institute of Electronics and Sensor Materials, TU Bergakademie Freiberg, Gustav-Zeuner str. 3, 09599 Freiberg, Germany;
| | - Tomasz Machałowski
- Faculty of Chemical Technology, Institute of Chemical Technology and Engineering, Poznan University of Technology, Berdychowo 4, 60965 Poznan, Poland; (T.M.); (T.J.)
- Institute of Electronics and Sensor Materials, TU Bergakademie Freiberg, Gustav-Zeuner str. 3, 09599 Freiberg, Germany;
| | - Iaroslav Petrenko
- Institute of Electronics and Sensor Materials, TU Bergakademie Freiberg, Gustav-Zeuner str. 3, 09599 Freiberg, Germany;
| | - Christian Schimpf
- Institute of Materials Science, TU Bergakademie Freiberg, 09599 Freiberg, Germany; (C.S.); (D.R.)
| | - David Rafaja
- Institute of Materials Science, TU Bergakademie Freiberg, 09599 Freiberg, Germany; (C.S.); (D.R.)
| | - Roberta Galli
- Clinical Sensoring and Monitoring, Department of Anesthesiology and Intensive Care Medicine, Faculty of Medicine, TU Dresden, 01307 Dresden, Germany;
| | - Jerzy Ziętek
- Faculty of Veterinary Medicine, Department of Epizootiology and Clinic of Infectious Diseases, University of Life Sciences, Głęboka 30, 20612 Lublin, Poland;
| | - Snežana Pantović
- Faculty of Medicine, University of Montenegro, Kruševac bb, 81000 Podgorica, Montenegro;
| | - Alona Voronkina
- Department of Pharmacy, National Pirogov Memorial Medical University, 21018 Vinnitsa, Ukraine;
| | - Valentine Kovalchuk
- Department of Microbiology, National Pirogov Memorial Medical University, 21018 Vinnitsa, Ukraine;
| | - Viatcheslav N. Ivanenko
- Department of Invertebrate Zoology, Biological Faculty, Lomonosov Moscow State University, 119992 Moscow, Russia;
| | - Bert W. Hoeksema
- Taxonomy and Systematics Group, Naturalis Biodiversity Center, 2333CR Leiden, The Netherlands;
- Groningen Institute for Evolutionary Life Sciences, University of Groningen, 9747AG Groningen, The Netherlands
| | - Cristina Diaz
- Harbor Branch Oceanographic Institute, Florida Atlantic University, 5600 Old Dixie Hwy, Fort Pierce, FL 34946, USA;
| | - Yuliya Khrunyk
- Department of Heat Treatment and Physics of Metal, Ural Federal University, Mira Str. 19, 620002 Ekaterinburg, Russia;
- The Institute of High Temperature Electrochemistry of the Ural Branch of the Russian Academy of Sciences, Akademicheskaya Str. 20, 620990 Ekaterinburg, Russia
| | - Allison L. Stelling
- Department of Biochemistry, Duke University Medical School, Durham, NC 27708, USA;
| | - Marco Giovine
- Department of Sciences of Earth, Environment and Life, University of Genoa, Corso Europa 26, 16132 Genova, Italy;
| | - Teofil Jesionowski
- Faculty of Chemical Technology, Institute of Chemical Technology and Engineering, Poznan University of Technology, Berdychowo 4, 60965 Poznan, Poland; (T.M.); (T.J.)
| | - Hermann Ehrlich
- Institute of Electronics and Sensor Materials, TU Bergakademie Freiberg, Gustav-Zeuner str. 3, 09599 Freiberg, Germany;
- Center for Advanced Technology, Adam Mickiewicz University, 61614 Poznan, Poland
| |
Collapse
|
31
|
Magnabosco G, Ianiro A, Stefani D, Soldà A, Rapino S, Falini G, Calvaresi M. Doxorubicin-Loaded Squid Pen Plaster: A Natural Drug Delivery System for Cancer Cells. ACS APPLIED BIO MATERIALS 2020; 3:1514-1519. [DOI: 10.1021/acsabm.9b01137] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
- Giulia Magnabosco
- Dipartimento di Chimica “Giacomo Ciamician”, Alma Mater Studiorum - Università di Bologna, via Francesco Selmi 2, 40126 Bologna, Italy
| | - Alessandro Ianiro
- Dipartimento di Chimica “Giacomo Ciamician”, Alma Mater Studiorum - Università di Bologna, via Francesco Selmi 2, 40126 Bologna, Italy
| | - Dario Stefani
- Dipartimento di Chimica “Giacomo Ciamician”, Alma Mater Studiorum - Università di Bologna, via Francesco Selmi 2, 40126 Bologna, Italy
| | - Alice Soldà
- Dipartimento di Chimica “Giacomo Ciamician”, Alma Mater Studiorum - Università di Bologna, via Francesco Selmi 2, 40126 Bologna, Italy
| | - Stefania Rapino
- Dipartimento di Chimica “Giacomo Ciamician”, Alma Mater Studiorum - Università di Bologna, via Francesco Selmi 2, 40126 Bologna, Italy
| | - Giuseppe Falini
- Dipartimento di Chimica “Giacomo Ciamician”, Alma Mater Studiorum - Università di Bologna, via Francesco Selmi 2, 40126 Bologna, Italy
| | - Matteo Calvaresi
- Dipartimento di Chimica “Giacomo Ciamician”, Alma Mater Studiorum - Università di Bologna, via Francesco Selmi 2, 40126 Bologna, Italy
| |
Collapse
|
32
|
Kaku Y, Fujisawa S, Saito T, Isogai A. Synthesis of Chitin Nanofiber-Coated Polymer Microparticles via Pickering Emulsion. Biomacromolecules 2020; 21:1886-1891. [DOI: 10.1021/acs.biomac.9b01757] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Affiliation(s)
- Yuto Kaku
- Department of Biomaterial Sciences, Graduate School of Agricultural and Life Sciences, The University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo 113-8657, Japan
| | - Shuji Fujisawa
- Department of Biomaterial Sciences, Graduate School of Agricultural and Life Sciences, The University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo 113-8657, Japan
| | - Tsuguyuki Saito
- Department of Biomaterial Sciences, Graduate School of Agricultural and Life Sciences, The University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo 113-8657, Japan
| | - Akira Isogai
- Department of Biomaterial Sciences, Graduate School of Agricultural and Life Sciences, The University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo 113-8657, Japan
| |
Collapse
|
33
|
Mesoporous chitosan based conformable and resorbable biostrip for dopamine detection. Biosens Bioelectron 2020; 147:111781. [DOI: 10.1016/j.bios.2019.111781] [Citation(s) in RCA: 39] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2019] [Revised: 10/08/2019] [Accepted: 10/10/2019] [Indexed: 02/01/2023]
|
34
|
Effect of Mold Geometry on Pore Size in Freeze-Cast Chitosan-Alginate Scaffolds for Tissue Engineering. Ann Biomed Eng 2019; 48:1090-1102. [PMID: 31654152 DOI: 10.1007/s10439-019-02381-3] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2019] [Accepted: 10/09/2019] [Indexed: 02/06/2023]
Abstract
Freeze-casting is a popular method to produce biomaterial scaffolds with highly porous structures. The pore structure of freeze-cast biomaterial scaffolds is influenced by processing parameters but has mostly been controlled experimentally. A mathematical model integrating Computational Fluid Dynamics with Population Balance Model was developed to predict average pore size (APS) of 3D porous chitosan-alginate scaffolds and to assess the influence of the geometrical parameters of mold on scaffold pore structure. The model predicted the crystallization pattern and APS for scaffolds cast in different diameter molds and filled to different heights. The predictions demonstrated that the temperature gradient and solidification pattern affect ice crystal nucleation and growth, subsequently influencing APS homogeneity. The predicted APS compared favorably with APS measurements from a corresponding experimental dataset, validating the model. Sensitivity analysis was performed to assess the response of the APS to the three geometrical parameters of the mold: well radius; solution fill height; and spacing between wells. The pore size was most sensitive to the distance between the wells and least sensitive to solution height. This validated model demonstrates a method for optimizing the APS of freeze-cast biomaterial scaffolds that could be applied to other compositions or applications.
Collapse
|
35
|
Hata Y, Fukaya Y, Sawada T, Nishiura M, Serizawa T. Biocatalytic oligomerization-induced self-assembly of crystalline cellulose oligomers into nanoribbon networks assisted by organic solvents. BEILSTEIN JOURNAL OF NANOTECHNOLOGY 2019; 10:1778-1788. [PMID: 31501749 PMCID: PMC6720341 DOI: 10.3762/bjnano.10.173] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/28/2019] [Accepted: 08/06/2019] [Indexed: 05/05/2023]
Abstract
Crystalline poly- and oligosaccharides such as cellulose can form extremely robust assemblies, whereas the construction of self-assembled materials from such molecules is generally difficult due to their complicated chemical synthesis and low solubility in solvents. Enzyme-catalyzed oligomerization-induced self-assembly has been shown to be promising for creating nanoarchitectured crystalline oligosaccharide materials. However, the controlled self-assembly into organized hierarchical structures based on a simple method is still challenging. Herein, we demonstrate that the use of organic solvents as small-molecule additives allows for control of the oligomerization-induced self-assembly of cellulose oligomers into hierarchical nanoribbon network structures. In this study, we dealt with the cellodextrin phosphorylase-catalyzed oligomerization of phosphorylated glucose monomers from ᴅ-glucose primers, which produce precipitates of nanosheet-shaped crystals in aqueous solution. The addition of appropriate organic solvents to the oligomerization system was found to result in well-grown nanoribbon networks. The organic solvents appeared to prevent irregular aggregation and subsequent precipitation of the nanosheets via solvation for further growth into the well-grown higher-order structures. This finding indicates that small-molecule additives provide control over the self-assembly of crystalline oligosaccharides for the creation of hierarchically structured materials with high robustness in a simple manner.
Collapse
Affiliation(s)
- Yuuki Hata
- Department of Chemical Science and Engineering, School of Materials and Chemical Technology, Tokyo Institute of Technology, 2-12-1 Ookayama, Meguro-ku, Tokyo 152-8550, Japan
| | - Yuka Fukaya
- Department of Chemical Science and Engineering, School of Materials and Chemical Technology, Tokyo Institute of Technology, 2-12-1 Ookayama, Meguro-ku, Tokyo 152-8550, Japan
| | - Toshiki Sawada
- Department of Chemical Science and Engineering, School of Materials and Chemical Technology, Tokyo Institute of Technology, 2-12-1 Ookayama, Meguro-ku, Tokyo 152-8550, Japan
- Precursory Research for Embryonic Science and Technology (PRESTO), Japan Science and Technology Agency (JST), 4-1-8 Honcho, Kawaguchi-shi, Saitama 332-0012, Japan
| | - Masahito Nishiura
- DKS Co. Ltd., 5 Ogawaracho, Kisshoin, Minami-ku, Kyoto-shi, Kyoto 601-8391, Japan
| | - Takeshi Serizawa
- Department of Chemical Science and Engineering, School of Materials and Chemical Technology, Tokyo Institute of Technology, 2-12-1 Ookayama, Meguro-ku, Tokyo 152-8550, Japan
| |
Collapse
|
36
|
Hata Y, Sawada T, Marubayashi H, Nojima S, Serizawa T. Temperature-Directed Assembly of Crystalline Cellulose Oligomers into Kinetically Trapped Structures during Biocatalytic Synthesis. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2019; 35:7026-7034. [PMID: 31045372 DOI: 10.1021/acs.langmuir.9b00850] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/21/2023]
Abstract
Crystalline polysaccharides, such as cellulose and chitin, can form superior assemblies in terms of physicochemical stability and mechanical properties. However, their use as molecular building blocks for self-assembled materials is rare, possibly because each crystalline polysaccharide has its own unique monomer unit, preventing molecular design for controlling the self-assembly. Herein, we demonstrate the temperature-directed assembly of crystalline cellulose oligomers into kinetically trapped structures, namely, precipitated nanosheets, nanoribbon network hydrogels, and dispersed nanosheets (in descending order of temperature). It was found that enzymatically synthesized cellulose oligomers self-assembled in situ into those structures depending on the synthetic temperatures. Mechanistic studies suggested that the formation of the nanoribbon networks and the dispersed nanosheets at lower temperatures were driven by synergy between the decreased hydrophobic effect and the simultaneously induced self-crowding effect. Furthermore, nanoribbon network formation was exploited for the construction of cellulose oligomer-based hybrid gels with colloidal particles. Our findings promote the development of robust self-assembled materials composed of crystalline polysaccharides with highly ordered nano-to-macroscale structures.
Collapse
Affiliation(s)
- Yuuki Hata
- Department of Chemical Science and Engineering, School of Materials and Chemical Technology , Tokyo Institute of Technology , 2-12-1 Ookayama , Meguro-ku, Tokyo 152-8550 , Japan
| | - Toshiki Sawada
- Department of Chemical Science and Engineering, School of Materials and Chemical Technology , Tokyo Institute of Technology , 2-12-1 Ookayama , Meguro-ku, Tokyo 152-8550 , Japan
- Precursory Research for Embryonic Science and Technology (PRESTO) , Japan Science and Technology Agency (JST) , 4-1-8 Honcho , Kawaguchi-shi , Saitama 332-0012 , Japan
| | - Hironori Marubayashi
- Department of Chemical Science and Engineering, School of Materials and Chemical Technology , Tokyo Institute of Technology , 2-12-1 Ookayama , Meguro-ku, Tokyo 152-8550 , Japan
| | - Shuichi Nojima
- Department of Chemical Science and Engineering, School of Materials and Chemical Technology , Tokyo Institute of Technology , 2-12-1 Ookayama , Meguro-ku, Tokyo 152-8550 , Japan
| | - Takeshi Serizawa
- Department of Chemical Science and Engineering, School of Materials and Chemical Technology , Tokyo Institute of Technology , 2-12-1 Ookayama , Meguro-ku, Tokyo 152-8550 , Japan
| |
Collapse
|
37
|
A Spectroscopic Study of Solid-Phase Chitosan/Cyclodextrin-Based Electrospun Fibers. FIBERS 2019. [DOI: 10.3390/fib7050048] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
In this study, chitosan (chi)/hydroxypropyl-β-cyclodextrin (HPCD) 2:20 and 2:50 Chi:HPCD fibers were assembled via an electrospinning process that contained a mixture of chitosan and HPCD with trifluoroacetic acid (TFA) as a solvent. Complementary thermal analysis (thermal gravimetric analysis (TGA)/differential scanning calorimetry (DSC)) and spectroscopic methods (Raman/IR/NMR) were used to evaluate the structure and composition of the fiber assemblies. This study highlights the multifunctional role of TFA as a solvent, proton donor and electrostatically bound pendant group to chitosan, where the formation of a ternary complex occurs via supramolecular host–guest interactions. This work contributes further insight on the formation and stability of such ternary (chitosan + HPCD + solvent) electrospun fibers and their potential utility as “smart” fiber coatings for advanced applications.
Collapse
|
38
|
Preparation of composite and hollow particles from self-assembled chitin nanofibers by Pickering emulsion polymerization. Int J Biol Macromol 2019; 126:187-192. [DOI: 10.1016/j.ijbiomac.2018.12.209] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2018] [Revised: 12/16/2018] [Accepted: 12/21/2018] [Indexed: 01/26/2023]
|
39
|
Jung HS, Kim MH, Park WH. Preparation and Structural Investigation of Novel β-Chitin Nanocrystals from Cuttlefish Bone. ACS Biomater Sci Eng 2019; 5:1744-1752. [DOI: 10.1021/acsbiomaterials.8b01652] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Affiliation(s)
- Hyeong-Seop Jung
- Department of Advanced Organic Materials and Textile Engineering System, Chungnam National University, Daejeon 34134, South Korea
| | - Min Hee Kim
- Department of Advanced Organic Materials and Textile Engineering System, Chungnam National University, Daejeon 34134, South Korea
| | - Won Ho Park
- Department of Advanced Organic Materials and Textile Engineering System, Chungnam National University, Daejeon 34134, South Korea
| |
Collapse
|
40
|
Chiriboga O, Rorrer GL. Phosphate addition strategies for enhancing the co-production of lipid and chitin nanofibers during fed-batch cultivation of the diatom Cyclotella sp. ALGAL RES 2019. [DOI: 10.1016/j.algal.2018.101403] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
|
41
|
Abstract
Cosmetic products are generally formulated as emulsions, ointments, solutions or powders containing active ingredients. According to EU legislation, a cosmetic product is “any substance or preparation intended to be placed in contact with the various external parts of the human body with a view exclusively or mainly to cleaning, perfuming them, changing their appearance, and/or correcting body odors and/or protecting them or keeping them in good conditions”. However, science advancement in both active carriers and ingredients has streamlined the process through which many cosmetic products by their delivery systems can induce modifications on the skin physiology. This is the reason why Reed and Kligman redefined these products as “cosmeceuticals”, which refers to the combination of cosmetics and pharmaceuticals. Until recently, the term of cosmeceuticals has not had legal significance. The so-called cosmeceuticals, in fact, may induce modifications on the skin physiology, modifying, for example, transepidermal water loss, keratinocytes cohesion and turnover, modulating the inflammatory cascade, and/or altering the surface microbiota by the activity of the preservatives content. For these reasons, they are claimed to have medical or drug-like benefits. Naturally, their effectiveness on minor skin disorders or mild skin abnormalities has to be shown by in vitro and in vivo studies. On the other hand, their formulations contain emulsifiers, preservatives, and other chemicals which, by their cumulative use, may provoke side effects, such as allergic and/or sensitization phenomena. Moreover, many ingredients and packaging for such products are not biodegradable. In this study, we would like to introduce an innovative category of cosmeceuticals made by biodegradable nonwoven tissues. These cosmeceutical tissues, produced through the use of natural fibers, may bind different active ingredients and therefore become effective as antibacterial, anti-inflammatory, sun-protective, whitening, or anti-aging products, depending on the ingredient(s) used. Differently from the usual cosmetics, they do not contain preservatives, emulsifiers, colors, and other chemicals. They can be applied as dried tissue on wet skin, remaining in loco for around 30 min, slowly releasing the active ingredients entrapped into the fibers. It is interesting to underline that the tissue, acting as a carrier, has its own effectiveness via chitin and lignin polymers with an antibacterial and anti-inflammatory activity. When hydrolyzed by the human microbiota enzymes, they give rise to ingredients used as cell nourishment or energy. This paper will review part of the scientific research results, supporting this new category of biodegradable cosmetic products known as facial mask sheets.
Collapse
|
42
|
Izzo D, Palazzo B, Scalera F, Gullotta F, lapesa V, Scialla S, Sannino A, Gervaso F. Chitosan scaffolds for cartilage regeneration: influence of different ionic crosslinkers on biomaterial properties. INT J POLYM MATER PO 2018. [DOI: 10.1080/00914037.2018.1525538] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Affiliation(s)
| | - Barbara Palazzo
- Department of Engineering for Innovation, University of Salento, Lecce, Italy
- Ghimas S.p.A., c/o Dhitech S.c.a.r.l., Lecce, Italy
| | - Francesca Scalera
- Department of Engineering for Innovation, University of Salento, Lecce, Italy
| | - Fabiana Gullotta
- Department of Biomedicine, University Hospital of Basel, Basel, Switzerland
| | - Velia lapesa
- Division of Neuroscience, IRCCS San Raffaele Scientific Institute, Neuropathology Unit, Institute of Experimental Neurology, Milan, Italy
| | - Stefania Scialla
- Department of Engineering for Innovation, University of Salento, Lecce, Italy
| | - Alessandro Sannino
- Department of Engineering for Innovation, University of Salento, Lecce, Italy
| | - Francesca Gervaso
- Department of Engineering for Innovation, University of Salento, Lecce, Italy
| |
Collapse
|
43
|
Ling S, Chen W, Fan Y, Zheng K, Jin K, Yu H, Buehler MJ, Kaplan DL. Biopolymer nanofibrils: structure, modeling, preparation, and applications. Prog Polym Sci 2018; 85:1-56. [PMID: 31915410 PMCID: PMC6948189 DOI: 10.1016/j.progpolymsci.2018.06.004] [Citation(s) in RCA: 179] [Impact Index Per Article: 29.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Biopolymer nanofibrils exhibit exceptional mechanical properties with a unique combination of strength and toughness, while also presenting biological functions that interact with the surrounding environment. These features of biopolymer nanofibrils profit from their hierarchical structures that spun angstrom to hundreds of nanometer scales. To maintain these unique structural features and to directly utilize these natural supramolecular assemblies, a variety of new methods have been developed to produce biopolymer nanofibrils. In particular, cellulose nanofibrils (CNFs), chitin nanofibrils (ChNFs), silk nanofibrils (SNFs) and collagen nanofibrils (CoNFs), as the four most abundant biopolymer nanofibrils on earth, have been the focus of research in recent years due to their renewable features, wide availability, low-cost, biocompatibility, and biodegradability. A series of top-down and bottom-up strategies have been accessed to exfoliate and regenerate these nanofibrils for versatile advanced applications. In this review, we first summarize the structures of biopolymer nanofibrils in nature and outline their related computational models with the aim of disclosing fundamental structure-property relationships in biological materials. Then, we discuss the underlying methods used for the preparation of CNFs, ChNFs, SNF and CoNFs, and discuss emerging applications for these biopolymer nanofibrils.
Collapse
Affiliation(s)
- Shengjie Ling
- School of Physical Science and Technology, ShanghaiTech University, Shanghai, 201210, China
- Department of Civil and Environmental Engineering, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA
- Department of Biomedical Engineering, Tufts University, Medford, MA, 02155, USA
| | - Wenshuai Chen
- Key Laboratory of Bio-based Material Science & Technology, Ministry of Education, Northeast Forestry University, Harbin, China
| | - Yimin Fan
- College of Chemical Engineering, Nanjing Forestry University, Nanjing, China
| | - Ke Zheng
- School of Physical Science and Technology, ShanghaiTech University, Shanghai, 201210, China
| | - Kai Jin
- Department of Civil and Environmental Engineering, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA
| | - Haipeng Yu
- Key Laboratory of Bio-based Material Science & Technology, Ministry of Education, Northeast Forestry University, Harbin, China
| | - Markus J. Buehler
- Department of Civil and Environmental Engineering, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA
| | - David L. Kaplan
- Department of Biomedical Engineering, Tufts University, Medford, MA, 02155, USA
| |
Collapse
|
44
|
Xue W, Han Y, Tan J, Wang Y, Wang G, Wang H. Effects of Nanochitin on the Enhancement of the Grain Yield and Quality of Winter Wheat. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2018; 66:6637-6645. [PMID: 28605197 DOI: 10.1021/acs.jafc.7b00641] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
This study investigated the effects of different rates of nanochitin in soil on the grain yield and quality of winter wheat. Nanochitin obtained by acidic hydrolysis of shrimp chitin was a rod-like whisker possessing a hydrodynamic diameter of 143 nm and ζ potential of 55.7 mV. Two varieties of winter wheat, multi-spike wheat (MSW) and large spike wheat (LSW), were treated with the nanochitin suspension in outside pot experiments. The results showed that 0.006 g kg-1 of nanochitin in soil could significantly enhance the yield by 23.0% for MSW and 33.4% for LSW, with significant increases of net photosynthesis rate, stomatal conductance, intercellular CO2 concentrations, and transpiration rate in flag leaf at the grain filling stage. Grain protein, iron, and zinc contents in wheat treated with nanochitin were also increased by 5.0, 10.3, and 22.1% for MSW and 33.4, 32.0, and 27.0% for LSW, respectively. This indicated that utilization of nanochitin has a great potential in future agriculture sustainability and crop production.
Collapse
|
45
|
Kadokawa JI, Obama Y, Yoshida J, Yamamoto K. Gel Formation from Self-assembled Chitin Nanofiber Film by Grafting of Poly(2-methyl-2-oxazoline). CHEM LETT 2018. [DOI: 10.1246/cl.180285] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Affiliation(s)
- Jun-ichi Kadokawa
- Graduate School of Science and Engineering, Kagoshima University, 1-21-40 Korimoto, Kagoshima 890-0065, Japan
| | - Yu Obama
- Graduate School of Science and Engineering, Kagoshima University, 1-21-40 Korimoto, Kagoshima 890-0065, Japan
| | - Junpei Yoshida
- Graduate School of Science and Engineering, Kagoshima University, 1-21-40 Korimoto, Kagoshima 890-0065, Japan
| | - Kazuya Yamamoto
- Graduate School of Science and Engineering, Kagoshima University, 1-21-40 Korimoto, Kagoshima 890-0065, Japan
| |
Collapse
|
46
|
Retraction: Azuma, K. et al. Chitin, Chitosan, and Its Derivatives for Wound Healing: Old and New Materials. J. Funct. Biomater. 2015, 6, 104⁻142. J Funct Biomater 2018; 9:jfb9020038. [PMID: 29880726 PMCID: PMC6023297 DOI: 10.3390/jfb9020038] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2018] [Accepted: 06/04/2018] [Indexed: 11/17/2022] Open
Abstract
The Journal of Functional Biomaterials Editorial Office have been made aware that some parts of the article [1] are duplicated from other publications[...].
Collapse
|
47
|
Kadokawa JI. Enzymatic preparation of functional polysaccharide hydrogels by phosphorylase catalysis. PURE APPL CHEM 2018. [DOI: 10.1515/pac-2017-0802] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Abstract
This article reviews enzymatic preparation of functional polysaccharide hydrogels by means of phosphorylase-catalyzed enzymatic polymerization. A first topic of this review deals with the synthesis of amylose-grafted polymeric materials and their formation of hydrogels, composed of abundant natural polymeric main-chains, such as chitosan, cellulose, xantham gum, carboxymethyl cellulose, and poly(γ-glutamic acid). Such synthesis was achieved by combining the phosphorylase-catalyzed enzymatic polymerization forming amylose with the appropriate chemical reaction (chemoenzymatic method). An amylose-grafted chitin nanofiber hyrogel was also prepared by the chemoenzymatic approach. As a second topic, the preparation of glycogen hydrogels by the phosphorylase-catalyzed enzymatic reactions was described. When the phosphorylase-catalyzed enzymatic polymerization from glycogen as a polymeric primer was carried out, followed by standing the reaction mixture at room temperature, a hydrogel was obtained. pH-Responsive amphoteric glycogen hydrogels were also fabricated by means of the successive phosphorylase-catalyzed enzymatic reactions.
Collapse
Affiliation(s)
- Jun-ichi Kadokawa
- Graduate School of Science and Engineering , Kagoshima University , 1-21-40 Korimoto , Kagoshima 890-0065 , Japan
| |
Collapse
|
48
|
Ogawa Y, Azuma K, Izawa H, Morimoto M, Ochi K, Osaki T, Ito N, Okamoto Y, Saimoto H, Ifuku S. Preparation and biocompatibility of a chitin nanofiber/gelatin composite film. Int J Biol Macromol 2017; 104:1882-1889. [DOI: 10.1016/j.ijbiomac.2017.02.041] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2016] [Revised: 01/16/2017] [Accepted: 02/09/2017] [Indexed: 01/19/2023]
|
49
|
Reys LL, Silva SS, Pirraco RP, Marques AP, Mano JF, Silva TH, Reis RL. Influence of freezing temperature and deacetylation degree on the performance of freeze-dried chitosan scaffolds towards cartilage tissue engineering. Eur Polym J 2017. [DOI: 10.1016/j.eurpolymj.2017.08.017] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
50
|
Yokoi M, Tanaka R, Saito T, Isogai A. Dynamic Viscoelastic Functions of Liquid-Crystalline Chitin Nanofibril Dispersions. Biomacromolecules 2017. [DOI: 10.1021/acs.biomac.7b00690] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Morihiko Yokoi
- Department
of Biomaterials Science, Graduate School of Agricultural and Life
Sciences, The University of Tokyo, Tokyo 113-8657, Japan
| | - Reina Tanaka
- Department
of Biomaterials Science, Graduate School of Agricultural and Life
Sciences, The University of Tokyo, Tokyo 113-8657, Japan
- Department
of Macromolecular Science, Graduate School of Science, Osaka University, Osaka 560-0043, Japan
| | - Tsuguyuki Saito
- Department
of Biomaterials Science, Graduate School of Agricultural and Life
Sciences, The University of Tokyo, Tokyo 113-8657, Japan
| | - Akira Isogai
- Department
of Biomaterials Science, Graduate School of Agricultural and Life
Sciences, The University of Tokyo, Tokyo 113-8657, Japan
| |
Collapse
|