1
|
Shi J, Deng C, Zhang C, Quan S, Fan L, Zhao L. Combinatorial metabolic engineering of Escherichia coli for de novo production of structurally defined and homogeneous Amino oligosaccharides. Synth Syst Biotechnol 2024; 9:713-722. [PMID: 38868610 PMCID: PMC11167392 DOI: 10.1016/j.synbio.2024.05.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2024] [Revised: 05/02/2024] [Accepted: 05/20/2024] [Indexed: 06/14/2024] Open
Abstract
Amino oligosaccharides (AOs) possess various biological activities and are valuable in the pharmaceutical, food industries, and agriculture. However, the industrial manufacturing of AOs has not been realized yet, despite reports on physical, chemical, and biological approaches. In this study, the de novo production of chitin oligosaccharides (CHOS), a type of structurally defined AOs, was achieved in Escherichia coli through combinatorial pathway engineering. The most suitable glycosyltransferase for CHOS production was found to be NodCL from Mesorhizobium Loti. Then, by knocking out the nagB gene to block the flow of N-acetyl-d-glucosamine (NAG) to the glycolytic pathway in E. coli and adjusting the copy number of NodCL-coding gene, the CHOS yield was increased by 6.56 times. Subsequently, by introducing of UDP-N-acetylglucosamine (UDP-GlcNAc) salvage pathway for and optimizing fermentation conditions, the yield of CHOS reached 207.1 and 468.6 mg/L in shake-flask cultivation and a 5-L fed-batch bioreactor, respectively. Meanwhile, the concentration of UDP-GlcNAc was 91.0 mg/L, the highest level reported in E. coli so far. This study demonstrated, for the first time, the production of CHOS with distinct structures in plasmid-free E. coli, laying the groundwork for the biosynthesis of CHOS and providing a starting point for further engineering and commercial production.
Collapse
Affiliation(s)
- Jinqi Shi
- State Key Laboratory of Bioreactor Engineering, School of Biotechnology, East China University of Science and Technology, Shanghai, 200237, China
| | - Chen Deng
- State Key Laboratory of Bioreactor Engineering, School of Biotechnology, East China University of Science and Technology, Shanghai, 200237, China
- Shanghai Collaborative Innovation Center for Biomanufacturing Technology (SCICBT), Shanghai, 200237, China
| | - Chunyue Zhang
- State Key Laboratory of Bioreactor Engineering, School of Biotechnology, East China University of Science and Technology, Shanghai, 200237, China
| | - Shu Quan
- State Key Laboratory of Bioreactor Engineering, School of Biotechnology, East China University of Science and Technology, Shanghai, 200237, China
| | - Liqiang Fan
- State Key Laboratory of Bioreactor Engineering, School of Biotechnology, East China University of Science and Technology, Shanghai, 200237, China
- Shanghai Collaborative Innovation Center for Biomanufacturing Technology (SCICBT), Shanghai, 200237, China
| | - Liming Zhao
- State Key Laboratory of Bioreactor Engineering, School of Biotechnology, East China University of Science and Technology, Shanghai, 200237, China
- Organ Transplant Center, Shanghai Changzheng Hospital, Shanghai, 200003, China
- Shanghai Collaborative Innovation Center for Biomanufacturing Technology (SCICBT), Shanghai, 200237, China
| |
Collapse
|
2
|
Dong PY, Yan YMC, Chen Y, Bai Y, Li YY, Dong Y, Liu J, Zhang BQ, Klinger FG, Chen MM, Zhang XF. Multiple omics integration analysis reveals the regulatory effect of chitosan oligosaccharide on testicular development. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2024; 283:116802. [PMID: 39106567 DOI: 10.1016/j.ecoenv.2024.116802] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/04/2024] [Revised: 05/26/2024] [Accepted: 07/24/2024] [Indexed: 08/09/2024]
Abstract
Infertility is a global health problem affecting millions of people of reproductive age worldwide, with approximately half caused by males. Chitosan oligosaccharide (COS) has strong antioxidant capacity, but its impact on the male reproductive system has not been effectively evaluated. To address this, we integrated RNA-seq, serum metabolomics and intestinal 16 S rDNA analysis to conduct a comprehensive investigation on the male reproductive system. The results showed that COS has potential targets for the treatment of oligospermia, which can promote the expression of meiotic proteins DDX4, DAZL and SYCP1, benefit germ cell proliferation and testicular development, enhance antioxidant capacity, and increase the expression of testicular steroid proteins STAR and CYP11A1. At the same time, COS can activate PI3K-Akt signaling pathway in testis and TM3 cells. Microbiome and metabolomics analysis suggested that COS alters gut microbial community composition and cooperates with serum metabolites to regulate spermatogenesis. Therefore, COS promotes male reproduction by regulating intestinal microorganisms and serum metabolism, activating PI3K-Akt signaling pathway, improving testicular antioxidant capacity and steroid regulation.
Collapse
Affiliation(s)
- Pei-Yu Dong
- College of Veterinary medicine, Qingdao Agricultural University, Qingdao 266100, China
| | - Yu-Mei Chen Yan
- College of Veterinary medicine, Qingdao Agricultural University, Qingdao 266100, China
| | - Yu Chen
- College of Veterinary medicine, Qingdao Agricultural University, Qingdao 266100, China
| | - Yue Bai
- College of Veterinary medicine, Qingdao Agricultural University, Qingdao 266100, China
| | - Yin-Yin Li
- College of Veterinary medicine, Qingdao Agricultural University, Qingdao 266100, China
| | - Yang Dong
- College of Veterinary medicine, Qingdao Agricultural University, Qingdao 266100, China
| | - Jing Liu
- Analytical & Testing Center of Qingdao Agricultural University, Qingdao 266100, China
| | - Bing-Qiang Zhang
- Key Laboratory of Cancer and Immune Cells of Qingdao, Qingdao 266111, China; Qingdao Restore Biotechnology Co., Ltd., Qingdao, Shandong 266111, China
| | | | - Meng-Meng Chen
- Key Laboratory of Cancer and Immune Cells of Qingdao, Qingdao 266111, China; Qingdao Restore Biotechnology Co., Ltd., Qingdao, Shandong 266111, China.
| | - Xi-Feng Zhang
- College of Veterinary medicine, Qingdao Agricultural University, Qingdao 266100, China.
| |
Collapse
|
3
|
Abril AG, Carrera M, Pazos M. Marine Bioactive Compounds with Functional Role in Immunity and Food Allergy. Nutrients 2024; 16:2592. [PMID: 39203729 PMCID: PMC11357426 DOI: 10.3390/nu16162592] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2024] [Revised: 07/30/2024] [Accepted: 08/02/2024] [Indexed: 09/03/2024] Open
Abstract
Food allergy, referred to as the atypical physiological overreaction of the immune system after exposure to specific food components, is considered one of the major concerns in food safety. The prevalence of this emerging worldwide problem has been increasing during the last decades, especially in industrialized countries, being estimated to affect 6-8% of young children and about 2-4% of adults. Marine organisms are an important source of bioactive substances with the potential to functionally improve the immune system, reduce food allergy sensitization and development, and even have an anti-allergic action in food allergy. The present investigation aims to be a comprehensive report of marine bioactive compounds with verified actions to improve food allergy and identified mechanisms of actions rather than be an exhaustive compilation of all investigations searching beneficial effects of marine compounds in FA. Particularly, this research highlights the capacity of bioactive components extracted from marine microbial, animal, algae, and microalgae sources, such as n-3 long-chain polyunsaturated fatty acids (LC-PUFA), polysaccharide, oligosaccharide, chondroitin, vitamin D, peptides, pigments, and polyphenols, to regulate the immune system, epigenetic regulation, inflammation, and gut dysbiosis that are essential factors in the sensitization and effector phases of food allergy. In conclusion, the marine ecosystem is an excellent source to provide foods with the capacity to improve the hypersensitivity induced against specific food allergens and also bioactive compounds with a potential pharmacological aptitude to be applied as anti-allergenic in food allergy.
Collapse
Affiliation(s)
- Ana G. Abril
- Department of Microbiology and Parasitology, Faculty of Pharmacy, University of Santiago de Compostela, 15898 Santiago de Compostela, Spain;
- Institute of Marine Research (IIM-CSIC), Spanish National Research Council (CSIC), 36208 Vigo, Spain;
| | - Mónica Carrera
- Institute of Marine Research (IIM-CSIC), Spanish National Research Council (CSIC), 36208 Vigo, Spain;
| | - Manuel Pazos
- Institute of Marine Research (IIM-CSIC), Spanish National Research Council (CSIC), 36208 Vigo, Spain;
| |
Collapse
|
4
|
Pan D, Xiao P, Li F, Liu J, Zhang T, Zhou X, Zhang Y. High Degree of Polymerization of Chitin Oligosaccharides Produced from Shrimp Shell Waste by Enrichment Microbiota Using Two-Stage Temperature-Controlled Technique of Inducing Enzyme Production and Metagenomic Analysis of Microbiota Succession. Mar Drugs 2024; 22:346. [PMID: 39195462 DOI: 10.3390/md22080346] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2024] [Revised: 07/26/2024] [Accepted: 07/27/2024] [Indexed: 08/29/2024] Open
Abstract
The direct enzymatic conversion of untreated waste shrimp and crab shells has been a key problem that plagues the large-scale utilization of chitin biological resources. The microorganisms in soil samples were enriched in two stages with powdered chitin (CP) and shrimp shell powder (SSP) as substrates. The enrichment microbiota XHQ10 with SSP degradation ability was obtained. The activities of chitinase and lytic polysaccharide monooxygenase of XHQ10 were 1.46 and 54.62 U/mL. Metagenomic analysis showed that Chitinolyticbacter meiyuanensis, Chitiniphilus shinanonensis, and Chitinimonas koreensis, with excellent chitin degradation performance, were highly enriched in XHQ10. Chitin oligosaccharides (CHOSs) are produced by XHQ10 through enzyme induction and two-stage temperature control technology, which contains CHOSs with a degree of polymerization (DP) more significant than ten and has excellent antioxidant activity. This work is the first study on the direct enzymatic preparation of CHOSs from SSP using enrichment microbiota, which provides a new path for the large-scale utilization of chitin bioresources.
Collapse
Affiliation(s)
- Delong Pan
- School of Life Science, Liaocheng University, Liaocheng 252059, China
| | - Peiyao Xiao
- School of Life Science, Liaocheng University, Liaocheng 252059, China
| | - Fuyi Li
- School of Life Science, Liaocheng University, Liaocheng 252059, China
| | - Jinze Liu
- School of Life Science, Liaocheng University, Liaocheng 252059, China
| | - Tengfei Zhang
- School of Life Science, Liaocheng University, Liaocheng 252059, China
| | - Xiuling Zhou
- School of Life Science, Liaocheng University, Liaocheng 252059, China
| | - Yang Zhang
- School of Life Science, Liaocheng University, Liaocheng 252059, China
| |
Collapse
|
5
|
Bezrodnykh EA, Blagodatskikh IV, Vyshivannaya OV, Berezin BB, Tikhonov VE. Exploiting specific properties of squid pens for the preparation of oligochitosan hydrochloride. Carbohydr Res 2024; 540:109140. [PMID: 38759342 DOI: 10.1016/j.carres.2024.109140] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2024] [Revised: 04/10/2024] [Accepted: 04/29/2024] [Indexed: 05/19/2024]
Abstract
Herein, we describe in first the application of squid pens for the preparation of pharmaceutical-grade oligochitosan hydrochloride with the physicochemical characteristics corresponding with the requirements of the European Pharmacopoeia. It is shown that the use of specific properties of squid pens as a source of parent chitosan allows preparing the product with a high yield at relatively moderate process conditions used for squid pens treatments and chitosan depolymerization.
Collapse
Affiliation(s)
- Evgeniya A Bezrodnykh
- A. N. Nesmeyanov Institute of Organoelement Compounds, Russian Academy of Sciences, 119991, Moscow, Russia
| | - Inesa V Blagodatskikh
- A. N. Nesmeyanov Institute of Organoelement Compounds, Russian Academy of Sciences, 119991, Moscow, Russia
| | - Oxana V Vyshivannaya
- A. N. Nesmeyanov Institute of Organoelement Compounds, Russian Academy of Sciences, 119991, Moscow, Russia
| | - Boris B Berezin
- A. N. Nesmeyanov Institute of Organoelement Compounds, Russian Academy of Sciences, 119991, Moscow, Russia
| | - Vladimir E Tikhonov
- A. N. Nesmeyanov Institute of Organoelement Compounds, Russian Academy of Sciences, 119991, Moscow, Russia.
| |
Collapse
|
6
|
Cho CH, Jung YS, Kim M, Kurniawati UD, Kim Y, Yim MJ, Lee DS, Je JY, Lee SH. Modulating intestinal health: Impact of chitooligosaccharide molecular weight on suppressing RAGE expression and inflammatory response in methylglyoxal-induced advanced glycation end-products. Int J Biol Macromol 2024; 269:131927. [PMID: 38685538 DOI: 10.1016/j.ijbiomac.2024.131927] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2024] [Revised: 04/07/2024] [Accepted: 04/26/2024] [Indexed: 05/02/2024]
Abstract
The accumulation of methylglyoxal (MGO) produced in high-temperature processed foods and excessive production in the body contributes to intestinal barrier dysfunction. In this study, we investigated the effects of chitooligosaccharides (COSs) of different molecular weights (<1 kDa, 1-3 kDa, 3-5 kDa, 5-10 kDa, and >10 kDa) on MGO-induced intestinal barrier dysfunction. We investigated the effect of COSs on inhibiting intracellular MGO accumulation/MGO-derived AGEs production and regulating the receptor for AGE (RAGE)-mediated downstream protein expression, including proteins related to apoptosis and inflammation, intestinal barrier integrity, and paracellular permeability. Pretreatment with COSs ameliorated MGO-induced increased RAGE protein expression, activation of apoptotic cascade/inflammatory response, loss of intestinal epithelial barrier integrity, and increased paracellular permeability, ameliorating intestinal dysfunction through MGO scavenging. 1-3 kDa COSs most effectively ameliorated MGO-induced intestinal dysfunction. Our results suggest the potential of COSs in improving intestinal health by ameliorating intestinal barrier dysfunction by acting as an MGO scavenger and highlighting the need for the optimization of the molecular weight of COSs to optimize its protective effects.
Collapse
Affiliation(s)
- Chi Heung Cho
- Division of Functional Food Research, Korea Food Research Institute, 245 nongsaengmyeong-ro, Iseo-myeon, Wanju-gun, Jeollabuk-do 55365, Republic of Korea
| | - Young Sung Jung
- Division of Functional Food Research, Korea Food Research Institute, 245 nongsaengmyeong-ro, Iseo-myeon, Wanju-gun, Jeollabuk-do 55365, Republic of Korea
| | - Mingyeong Kim
- Division of Functional Food Research, Korea Food Research Institute, 245 nongsaengmyeong-ro, Iseo-myeon, Wanju-gun, Jeollabuk-do 55365, Republic of Korea; Department of Food Biotechnology, University of Science and Technology, Daejeon 34113, Republic of Korea
| | - Ulfah Dwi Kurniawati
- Division of Functional Food Research, Korea Food Research Institute, 245 nongsaengmyeong-ro, Iseo-myeon, Wanju-gun, Jeollabuk-do 55365, Republic of Korea; Department of Food Biotechnology, University of Science and Technology, Daejeon 34113, Republic of Korea
| | - Yongeun Kim
- Division of Functional Food Research, Korea Food Research Institute, 245 nongsaengmyeong-ro, Iseo-myeon, Wanju-gun, Jeollabuk-do 55365, Republic of Korea
| | - Mi-Jin Yim
- National Marine Biodiversity Institute of Korea, Seocheon, Republic of Korea
| | - Dae-Sung Lee
- National Marine Biodiversity Institute of Korea, Seocheon, Republic of Korea
| | - Jae-Young Je
- Major of Human Bioconvergence, Division of Smart Healthcare, Pukyong National University, Busan, Republic of Korea
| | - Sang-Hoon Lee
- Division of Functional Food Research, Korea Food Research Institute, 245 nongsaengmyeong-ro, Iseo-myeon, Wanju-gun, Jeollabuk-do 55365, Republic of Korea; Department of Food Biotechnology, University of Science and Technology, Daejeon 34113, Republic of Korea.
| |
Collapse
|
7
|
Giraldo JD, García Y, Vera M, Garrido-Miranda KA, Andrade-Acuña D, Marrugo KP, Rivas BL, Schoebitz M. Alternative processes to produce chitin, chitosan, and their oligomers. Carbohydr Polym 2024; 332:121924. [PMID: 38431399 DOI: 10.1016/j.carbpol.2024.121924] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Revised: 01/20/2024] [Accepted: 02/05/2024] [Indexed: 03/05/2024]
Abstract
Sustainable recovery of chitin and its derivatives from shellfish waste will be achieved when the industrial production of these polymers is achieved with a high control of their molecular structure, low costs, and acceptable levels of pollution. Therefore, the conventional chemical method for obtaining these biopolymers needs to be replaced or optimized. The goal of the present review is to ascertain what alternative methods are viable for the industrial-scale production of chitin, chitosan, and their oligomers. Therefore, a detailed review of recent literature was undertaken, focusing on the advantages and disadvantages of each method. The analysis of the existing data allows suggesting that combining conventional, biological, and alternative methods is the most efficient strategy to achieve sustainable production, preventing negative impacts and allowing for the recovery of high added-value compounds from shellfish waste. In conclusion, a new process for obtaining chitinous materials is suggested, with the potential of reducing the consumption of reagents, energy, and water by at least 1/10, 1/4, and 1/3 part with respect to the conventional process, respectively.
Collapse
Affiliation(s)
- Juan D Giraldo
- Escuela de Ingeniería Ambiental, Instituto de Acuicultura, Universidad Austral de Chile, Sede Puerto Montt, Balneario Pelluco, Los Pinos s/n, Chile.
| | - Yadiris García
- Departamento de Ciencias Químicas, Facultad de Ciencias Exactas, Universidad Andres Bello, Autopista Concepción-Talcahuano 7100, Talcahuano, Chile
| | - Myleidi Vera
- Departamento de Polímeros, Facultad de Ciencias Químicas, Universidad de Concepción, Casilla 160-C, Concepción, Chile
| | - Karla A Garrido-Miranda
- Center of Waste Management and Bioenergy, Scientific and Technological Bioresource Nucleus, BIOREN-UFRO, Universidad de la Frontera, Temuco 4811230, Chile; Agriaquaculture Nutritional Genomic Center (CGNA), Temuco 4780000, Chile
| | - Daniela Andrade-Acuña
- Centro de Docencia Superior en Ciencias Básicas, Universidad Austral de Chile, Sede Puerto Montt, Los Pinos s/n. Balneario Pelluco, Puerto Montt, Chile
| | - Kelly P Marrugo
- Departamento de Química Orgánica, Escuela de Química, Facultad de Química y de Farmacia, Pontificia Universidad Católica de Chile, Santiago 7820436, Chile; Centro de Investigaciones en Nanotecnología y Materiales Avanzados, CIEN-UC, Pontificia Universidad Católica de Chile, Santiago 7820436, Chile
| | - Bernabé L Rivas
- Universidad San Sebastián, Sede Concepción 4080871, Concepción, Chile
| | - Mauricio Schoebitz
- Departamento de Suelos y Recursos Naturales, Facultad de Agronomía, Campus Concepción, Casilla 160-C, Universidad de Concepción, Chile; Laboratory of Biofilms and Environmental Microbiology, Center of Biotechnology, Universidad de Concepción, Barrio Universitario s/n, Concepción, Chile
| |
Collapse
|
8
|
Isaksen I, Jana S, Payne CM, Bissaro B, Røhr ÅK. The rotamer of the second-sphere histidine in AA9 lytic polysaccharide monooxygenase is pH dependent. Biophys J 2024; 123:1139-1151. [PMID: 38571309 PMCID: PMC11079946 DOI: 10.1016/j.bpj.2024.04.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2023] [Revised: 03/10/2024] [Accepted: 04/01/2024] [Indexed: 04/05/2024] Open
Abstract
Lytic polysaccharide monooxygenases (LPMOs) catalyze a reaction that is crucial for the biological decomposition of various biopolymers and for the industrial conversion of plant biomass. Despite the importance of LPMOs, the exact molecular-level nature of the reaction mechanism is still debated today. Here, we investigated the pH-dependent conformation of a second-sphere histidine (His) that we call the stacking histidine, which is conserved in fungal AA9 LPMOs and is speculated to assist catalysis in several of the LPMO reaction pathways. Using constant-pH and accelerated molecular dynamics simulations, we monitored the dynamics of the stacking His in different protonation states for both the resting Cu(II) and active Cu(I) forms of two fungal LPMOs. Consistent with experimental crystallographic and neutron diffraction data, our calculations suggest that the side chain of the protonated and positively charged form is rotated out of the active site toward the solvent. Importantly, only one of the possible neutral states of histidine (HIE state) is observed in the stacking orientation at neutral pH or when bound to cellulose. Our data predict that, in solution, the stacking His may act as a stabilizer (via hydrogen bonding) of the Cu(II)-superoxo complex after the LPMO-Cu(I) has reacted with O2 in solution, which, in fine, leads to H2O2 formation. Also, our data indicate that the HIE-stacking His is a poor acid/base catalyst when bound to the substrate and, in agreement with the literature, may play an important stabilizing role (via hydrogen bonding) during the peroxygenase catalysis. Our study reveals the pH titration midpoint values of the pH-dependent orientation of the stacking His should be considered when modeling and interpreting LPMO reactions, whether it be for classical LPMO kinetics or in industry-oriented enzymatic cocktails, and for understanding LPMO behavior in slightly acidic natural processes such as fungal wood decay.
Collapse
Affiliation(s)
- Ingvild Isaksen
- Faculty of Chemistry, Biotechnology and Food Science, Norwegian University of Life Sciences (NMBU), Ås, Norway
| | - Suvamay Jana
- Department of Chemical and Materials Engineering, University of Kentucky, Lexington, Kentucky
| | - Christina M Payne
- Department of Chemical and Materials Engineering, University of Kentucky, Lexington, Kentucky
| | - Bastien Bissaro
- Faculty of Chemistry, Biotechnology and Food Science, Norwegian University of Life Sciences (NMBU), Ås, Norway; INRAE, Aix Marseille University, UMR1163 Biodiversité et Biotechnologie Fongiques, Marseille, France.
| | - Åsmund K Røhr
- Faculty of Chemistry, Biotechnology and Food Science, Norwegian University of Life Sciences (NMBU), Ås, Norway.
| |
Collapse
|
9
|
Jiu J, Liu H, Li D, Li J, Liu L, Yang W, Yan L, Li S, Zhang J, Li X, Li JJ, Wang B. 3D bioprinting approaches for spinal cord injury repair. Biofabrication 2024; 16:032003. [PMID: 38569491 DOI: 10.1088/1758-5090/ad3a13] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2023] [Accepted: 04/03/2024] [Indexed: 04/05/2024]
Abstract
Regenerative healing of spinal cord injury (SCI) poses an ongoing medical challenge by causing persistent neurological impairment and a significant socioeconomic burden. The complexity of spinal cord tissue presents hurdles to successful regeneration following injury, due to the difficulty of forming a biomimetic structure that faithfully replicates native tissue using conventional tissue engineering scaffolds. 3D bioprinting is a rapidly evolving technology with unmatched potential to create 3D biological tissues with complicated and hierarchical structure and composition. With the addition of biological additives such as cells and biomolecules, 3D bioprinting can fabricate preclinical implants, tissue or organ-like constructs, andin vitromodels through precise control over the deposition of biomaterials and other building blocks. This review highlights the characteristics and advantages of 3D bioprinting for scaffold fabrication to enable SCI repair, including bottom-up manufacturing, mechanical customization, and spatial heterogeneity. This review also critically discusses the impact of various fabrication parameters on the efficacy of spinal cord repair using 3D bioprinted scaffolds, including the choice of printing method, scaffold shape, biomaterials, and biological supplements such as cells and growth factors. High-quality preclinical studies are required to accelerate the translation of 3D bioprinting into clinical practice for spinal cord repair. Meanwhile, other technological advances will continue to improve the regenerative capability of bioprinted scaffolds, such as the incorporation of nanoscale biological particles and the development of 4D printing.
Collapse
Affiliation(s)
- Jingwei Jiu
- Department of Orthopaedic Surgery, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, People's Republic of China
- Department of Orthopaedic Surgery, Shanxi Medical University Second Affiliated Hospital, Taiyuan, People's Republic of China
| | - Haifeng Liu
- Department of Orthopaedic Surgery, Shanxi Medical University Second Affiliated Hospital, Taiyuan, People's Republic of China
| | - Dijun Li
- Department of Orthopaedic Surgery, Shanxi Medical University Second Affiliated Hospital, Taiyuan, People's Republic of China
| | - Jiarong Li
- School of Biomedical Engineering, Faculty of Engineering and IT, University of Technology Sydney, Ultimo, NSW 2007, Australia
| | - Lu Liu
- School of Biomedical Engineering, Faculty of Engineering and IT, University of Technology Sydney, Ultimo, NSW 2007, Australia
| | - Wenjie Yang
- School of Biomedical Engineering, Faculty of Engineering and IT, University of Technology Sydney, Ultimo, NSW 2007, Australia
| | - Lei Yan
- Department of Orthopaedic Surgery, Shanxi Medical University Second Affiliated Hospital, Taiyuan, People's Republic of China
| | - Songyan Li
- Department of Orthopaedic Surgery, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, People's Republic of China
| | - Jing Zhang
- Department of Emergency Surgery, The Affiliated Hospital of Guizhou Medical University, Guiyang, Guizhou 550001, People's Republic of China
| | - Xiaoke Li
- Department of Orthopaedic Surgery, Shanxi Medical University Second Affiliated Hospital, Taiyuan, People's Republic of China
| | - Jiao Jiao Li
- School of Biomedical Engineering, Faculty of Engineering and IT, University of Technology Sydney, Ultimo, NSW 2007, Australia
| | - Bin Wang
- Department of Orthopaedic Surgery, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, People's Republic of China
| |
Collapse
|
10
|
Li N, Sun Y, Liu Y, Wei L, Zhang J, Li N, Sun D, Jiao J, Zuo Y, Li R, Cai X, Qiao J, Meng Q. Expression profiles and characterization of microRNAs responding to chitin in Arthrobotrys oligospora. Arch Microbiol 2024; 206:220. [PMID: 38630188 DOI: 10.1007/s00203-024-03949-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2024] [Revised: 03/25/2024] [Accepted: 04/01/2024] [Indexed: 04/19/2024]
Abstract
Extracellular proteases, such as chitinases secreted by Arthrobotrys oligospora (A. oligospora), play a crucial role in the process of nematode infection. However, post-transcriptional regulation of gene expression involving microRNAs (miRNAs) in A. oligospora remains scarcely described. Hereto, transcriptome sequencing was carried out to analyze the expression profiles of chitin-responsive miRNAs in A. oligospora. Based on the RNA-seq data, the differential expression of miRNAs (DEmiRNAs) in response to chitin was screened, identified and characterized in A. oligospora. Meanwhile, the potential target genes were predicted by the online tools miRanda and Targetscan, respectively. Furthermore, the interaction of DEmiRNA with it's target gene was validated by a dual-luciferase reporter assay system. Among 85 novel miRNAs identified, 25 miRNAs displayed significant differences in expression in A. oligospora in response to chitin. Gene Ontology (GO) analysis showed that the potential genes targeted by DEmiRNAs were enriched in the biological processes such as bio-degradation, extracellular components and cell cycle. KEGG analysis revealed that the target genes were mainly involved in Hippo, carbon and riboflavin metabolic pathway. Outstandingly, chitinase AOL_s00004g379, which is involved in the hydrolysis metabolic pathway of chitin, was confirmed to be a target gene of differential miR_70. These findings suggest that chitin-responsive miRNAs are involved in the regulation of cell proliferation, predator hyphae growth and chitinase expression through the mechanisms of post-transcriptional regulation, which provides a new perspective to the molecular mechanisms underlying miRNAs-mediated control of gene expression in A. oligospora.
Collapse
Affiliation(s)
- Ningxing Li
- College of Animal Science and Technology, Shihezi University, North Street No.4, Shihezi, 832003, Xinjiang, China
| | - Yansen Sun
- College of Animal Science and Technology, Shihezi University, North Street No.4, Shihezi, 832003, Xinjiang, China
| | - Yucheng Liu
- State key laboratory of sheep genetic improvement and healthy breeding, Institute of Animal Science and Veterinary Research, Xinjiang Academy of Agricultural and Reclamation Science, Shihezi, 832000, Xinjiang, China
| | - Lixiang Wei
- College of Animal Science and Technology, Shihezi University, North Street No.4, Shihezi, 832003, Xinjiang, China
| | - Jiahua Zhang
- College of Animal Science and Technology, Shihezi University, North Street No.4, Shihezi, 832003, Xinjiang, China
| | - Nengxiu Li
- College of Animal Science and Technology, Shihezi University, North Street No.4, Shihezi, 832003, Xinjiang, China
| | - Dianming Sun
- College of Animal Science and Technology, Shihezi University, North Street No.4, Shihezi, 832003, Xinjiang, China
| | - Jian Jiao
- College of Animal Science and Technology, Shihezi University, North Street No.4, Shihezi, 832003, Xinjiang, China
| | - Yufei Zuo
- College of Animal Science and Technology, Shihezi University, North Street No.4, Shihezi, 832003, Xinjiang, China
| | - Ruobing Li
- College of Animal Science and Technology, Shihezi University, North Street No.4, Shihezi, 832003, Xinjiang, China
| | - Xuepeng Cai
- State key laboratory of veterinary etiological biology, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, 730046, Gansu, China
| | - Jun Qiao
- College of Animal Science and Technology, Shihezi University, North Street No.4, Shihezi, 832003, Xinjiang, China.
| | - Qingling Meng
- College of Animal Science and Technology, Shihezi University, North Street No.4, Shihezi, 832003, Xinjiang, China.
| |
Collapse
|
11
|
Kumari N, Hussain A, Ghosh Sachan S. Microbes as a tool for the bioremediation of fish waste from the environment and the production of value-added compounds: a review. Lett Appl Microbiol 2024; 77:ovae028. [PMID: 38490739 DOI: 10.1093/lambio/ovae028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2023] [Revised: 02/22/2024] [Accepted: 03/14/2024] [Indexed: 03/17/2024]
Abstract
Fish are the most edible protein source worldwide and generate several remnants such as scales, viscera, head, bone, and skin. Fish wastes are not disposed of properly, which adversely affects the environment, especially the water bodies where fish processing industries dispose of their waste. Fish waste mainly contains nitrogen, oil, fat, salts, heavy metals, and organic compounds, which increase the biological oxygen demand and chemical oxygen demand. Fish waste can degrade in various ways, such as physicochemical or by enzymatic action, but using microbes is an environmentally friendly approach that can provide valuable compounds such as products such as collagen, chitin, minerals, and fish protein concentrates. This review is designed to focus on the suitability of microbes as tools for fish waste degradation and the production of certain associated. This study also provides insight into the production of other compounds such as protease, chitinase, and chitin applicability of these products. After processing, fish waste as a microbial growth media for enzyme production since microorganisms synthesize enzymes such as proteases, protein hydrolysates, lipids, and chitinase, which have broader applications in the pharmaceutical, cosmetic, biomedical material, and food processing industries.
Collapse
Affiliation(s)
- Neha Kumari
- Department of Bioengineering and Biotechnology, Birla Institute of Technology, Ranchi 835215 Jharkhand, India
| | - Ahmed Hussain
- Department of Bioengineering and Biotechnology, Birla Institute of Technology, Ranchi 835215 Jharkhand, India
| | - Shashwati Ghosh Sachan
- Department of Bioengineering and Biotechnology, Birla Institute of Technology, Ranchi 835215 Jharkhand, India
| |
Collapse
|
12
|
Zhang Z, Ma Z, Song L, Farag MA. Maximizing crustaceans (shrimp, crab, and lobster) by-products value for optimum valorization practices: A comparative review of their active ingredients, extraction, bioprocesses and applications. J Adv Res 2024; 57:59-76. [PMID: 37931655 PMCID: PMC10918363 DOI: 10.1016/j.jare.2023.11.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2023] [Revised: 11/03/2023] [Accepted: 11/03/2023] [Indexed: 11/08/2023] Open
Abstract
BACKGROUND The processing of the three major crustaceans (shrimp, lobster, and crab) is associated with inevitable by-products, high waste disposal costs, environmental and human health issues, loss of multiple biomaterials (chitin, protein hydrolysates, lipids, astaxanthin and minerals). Nowadays, these bioresources are underutilized owing to the lack of effective and standardized technologies to convert these materials into valued industrial forms. AIM OF REVIEW This review aims to provide a holistic overview of the various bioactive ingredients and applications within major crustaceans by-products. This review aims to compare various extraction methods in crustaceans by-products, which will aid identify a more workable platform to minimize waste disposal and maximize its value for best valorization practices. KEY SCIENTIFIC CONCEPTS OF REVIEW The fully integrated applications (agriculture, food, cosmetics, pharmaceuticals, paper industries, etc.) of multiple biomaterials from crustaceans by-products are presented. The pros and cons of the various extraction methods, including chemical (acid and alkali), bioprocesses (enzymatic or fermentation), physical (microwave, ultrasound, hot water and carbonic acid process), solvent (ionic liquids, deep eutectic solvents, EDTA) and electrochemistry are detailed. The rapid development of corresponding biotechnological attempts present a simple, fast, effective, clean, and controllable bioprocess for the comprehensive utilization of crustacean waste that has yet to be applied at an industrial level. One feasible way for best valorization practices is to combine innovative extraction techniques with industrially applicable technologies to efficiently recover these valuable components.
Collapse
Affiliation(s)
- Zuying Zhang
- State Key Laboratory of Subtropical Silviculture, Zhejiang A&F University, Lin'an 311300, Zhejiang Province, People's Republic of China; Zhejiang Provincial Key Laboratory of Forest Aromatic Plants-based Healthcare Functions, Zhejiang A&F University, Lin'an 311300, Zhejiang Province, People's Republic of China
| | - Zhenmin Ma
- State Key Laboratory of Subtropical Silviculture, Zhejiang A&F University, Lin'an 311300, Zhejiang Province, People's Republic of China
| | - Lili Song
- State Key Laboratory of Subtropical Silviculture, Zhejiang A&F University, Lin'an 311300, Zhejiang Province, People's Republic of China; Zhejiang Provincial Key Laboratory of Forest Aromatic Plants-based Healthcare Functions, Zhejiang A&F University, Lin'an 311300, Zhejiang Province, People's Republic of China
| | - Mohamed A Farag
- Pharmacognosy Department, College of Pharmacy, Cairo University, Kasr el Aini st., Cairo P.B. 11562, Egypt.
| |
Collapse
|
13
|
Liang J, He S, Sun J, Bao H, Cui L. Secretory production and characterization of a highly effective chitosanase from Streptomyces coelicolor A3(2) M145 in Pichia pastoris. Biotechnol J 2024; 19:e2300402. [PMID: 38403403 DOI: 10.1002/biot.202300402] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2023] [Revised: 12/19/2023] [Accepted: 01/19/2024] [Indexed: 02/27/2024]
Abstract
In this study, a glycoside hydrolase family 46 chitosanase from Streptomyces coelicolor A3(2) M145 was firstly cloned and expressed in Pichia pastoris GS115 (P. pastoris GS115). The recombinant enzyme (CsnA) showed maximal activity at pH 6.0 and 65°C. Both thermal stability and pH stability of CsnA expressed in P. pastoris GS115 were significantly increased compared with homologous expression in Streptomyces coelicolor A3(2). A stable chitosanase activity of 725.7 ± 9.58 U mL-1 was obtained in fed-batch fermentation. It's the highest level of CsnA from Streptomyces coelicolor expressed in P. pastoris so far. The hydrolytic process of CsnA showed a time-dependent manner. Chitosan oligosaccharides (COSs) generated by CsnA showed antifungal activity against Fusarium oxysporum sp. cucumerinum (F. oxysporum sp. cucumerinum). The secreted expression and hydrolytic performance make the enzyme a desirable biocatalyst for industrial controllable production of chitooligosaccharides with specific degree of polymerization, which have potential to control fungi that cause important crop diseases.
Collapse
Affiliation(s)
- Jiayu Liang
- Key Laboratory of Longevity and Aging-Related Diseases of Chinese Ministry of Education, Key Laboratory of Biological Molecular Medicine Research, School of Basic Medical Sciences, Guangxi Colleges and Universities, Guangxi Medical University, Nanning, Guangxi, People's Republic of China
| | - Shengbin He
- Key Laboratory of Longevity and Aging-Related Diseases of Chinese Ministry of Education, Key Laboratory of Biological Molecular Medicine Research, School of Basic Medical Sciences, Guangxi Colleges and Universities, Guangxi Medical University, Nanning, Guangxi, People's Republic of China
| | - Jian Sun
- Key Laboratory of Longevity and Aging-Related Diseases of Chinese Ministry of Education, Key Laboratory of Biological Molecular Medicine Research, School of Basic Medical Sciences, Guangxi Colleges and Universities, Guangxi Medical University, Nanning, Guangxi, People's Republic of China
| | - Haodong Bao
- Key Laboratory of Longevity and Aging-Related Diseases of Chinese Ministry of Education, Key Laboratory of Biological Molecular Medicine Research, School of Basic Medical Sciences, Guangxi Colleges and Universities, Guangxi Medical University, Nanning, Guangxi, People's Republic of China
| | - Lanyu Cui
- Key Laboratory of Longevity and Aging-Related Diseases of Chinese Ministry of Education, Key Laboratory of Biological Molecular Medicine Research, School of Basic Medical Sciences, Guangxi Colleges and Universities, Guangxi Medical University, Nanning, Guangxi, People's Republic of China
| |
Collapse
|
14
|
Yamabhai M, Khamphio M, Min TT, Soem CN, Cuong NC, Aprilia WR, Luesukprasert K, Teeranitayatarn K, Maneedaeng A, Tuveng TR, Lorentzen SB, Antonsen S, Jitprasertwong P, Eijsink VGH. Valorization of shrimp processing waste-derived chitosan into anti-inflammatory chitosan-oligosaccharides (CHOS). Carbohydr Polym 2024; 324:121546. [PMID: 37985116 DOI: 10.1016/j.carbpol.2023.121546] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2023] [Revised: 10/02/2023] [Accepted: 10/30/2023] [Indexed: 11/22/2023]
Abstract
Bioconversion of chitosan into soluble anti-inflammatory chitosan oligosaccharides (CHOS) using a Bacillus chitosanase, BsCsn46A, was investigated, including food-grade approaches. After 48 h of enzymatic reaction, most of the final products were dimers and trimers. None of the CHOS products showed toxicity to human fibroblasts. Analysis of CHOS bioactivity against LPS-induced inflammation of human macrophages indicated that CHOS generated from different bioconversion processes have anti-inflammatory activity, the magnitude of which depends on the type of substrate and production process. Both lactic acid and HCl can be used to dissolve chitosan; however, the product generated from lactic acid solution was highly hygroscopic after lyophilization, hence not suitable for long-term storage. Downstream processes, i.e., centrifugation and filtration, affect its anti-inflammatory activity. Analysis of standard CHOS with known structure showed that an acetyl group at the reducing end and the degree of polymerization (DP) are critical for biological activity. Importantly, when applied at levels above the optimal concentrations, certain standard CHOS and CHOS mixtures could induce inflammation. These results support the potential of CHOS as anti-inflammatory agents but reveal batch-to-batch variation and possible side effects, indicating that careful quality assurance of CHOS preparations is essential.
Collapse
Affiliation(s)
- Montarop Yamabhai
- Molecular Biotechnology Laboratory, School of Biotechnology, Institute of Agricultural Technology, Suranaree University of Technology, Nakhon Ratchasima 30000, Thailand.
| | - Munthipha Khamphio
- Molecular Biotechnology Laboratory, School of Biotechnology, Institute of Agricultural Technology, Suranaree University of Technology, Nakhon Ratchasima 30000, Thailand
| | - Thae Thae Min
- Molecular Biotechnology Laboratory, School of Biotechnology, Institute of Agricultural Technology, Suranaree University of Technology, Nakhon Ratchasima 30000, Thailand
| | - Chai Noy Soem
- Molecular Biotechnology Laboratory, School of Biotechnology, Institute of Agricultural Technology, Suranaree University of Technology, Nakhon Ratchasima 30000, Thailand
| | - Nguyen Cao Cuong
- Molecular Biotechnology Laboratory, School of Biotechnology, Institute of Agricultural Technology, Suranaree University of Technology, Nakhon Ratchasima 30000, Thailand; Faculty of Engineering and Food Technology, Hue University of Agriculture and Forestry, Hue University, Thua Thien Hue 530000, Vietnam
| | - Waheni Rizki Aprilia
- Molecular Biotechnology Laboratory, School of Biotechnology, Institute of Agricultural Technology, Suranaree University of Technology, Nakhon Ratchasima 30000, Thailand
| | | | | | - Atthaphon Maneedaeng
- School of Chemical Engineering, Institute of Engineering, Suranaree University of Technology, Nakhon Ratchasima 30000, Thailand
| | - Tina R Tuveng
- Faculty of Chemistry, Biotechnology and Food Science, Norwegian University of Life Sciences (NMBU), P.O. Box 5003, 1432 Ås, Norway
| | - Silje B Lorentzen
- Faculty of Chemistry, Biotechnology and Food Science, Norwegian University of Life Sciences (NMBU), P.O. Box 5003, 1432 Ås, Norway
| | - Simen Antonsen
- Faculty of Chemistry, Biotechnology and Food Science, Norwegian University of Life Sciences (NMBU), P.O. Box 5003, 1432 Ås, Norway
| | - Paiboon Jitprasertwong
- SUT Oral Health Center, Suranaree University of Technology Hospital (SUTH), Nakhon Ratchasima 30000, Thailand; School of Dentistry, Suranaree University of Technology, Nakhon Ratchasima 30000, Thailand
| | - Vincent G H Eijsink
- Faculty of Chemistry, Biotechnology and Food Science, Norwegian University of Life Sciences (NMBU), P.O. Box 5003, 1432 Ås, Norway
| |
Collapse
|
15
|
Mohan K, Rajan DK, Ganesan AR, Divya D, Johansen J, Zhang S. Chitin, chitosan and chitooligosaccharides as potential growth promoters and immunostimulants in aquaculture: A comprehensive review. Int J Biol Macromol 2023; 251:126285. [PMID: 37582433 DOI: 10.1016/j.ijbiomac.2023.126285] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2023] [Revised: 08/06/2023] [Accepted: 08/09/2023] [Indexed: 08/17/2023]
Abstract
There is a stable growth in aquaculture production to avoid seafood scarcity. The usage of eco-friendly feed additives is not only associated with aquatic animal health but also reduces the risk of deleterious effects to the environment and consumers. Aquaculture researchers are seeking dietary solutions to improve the growth performance and yield of target organisms. A wide range of naturally derived compounds such as probiotics, prebiotics, synbiotics, complex carbohydrates, nutritional factors, herbs, hormones, vitamins, and cytokines was utilized as immunostimulants in aquaculture. The use of polysaccharides derived from natural resources, such as alginate, agar, laminarin, carrageenan, fucoidan, chitin, and chitosan, as supplementary feed in aquaculture species has been reported. Polysaccharides are prebiotic substances which are enhancing the immunity, disease resistance and growth of aquatic animals. Further, chitin (CT), chitosan (CTS) and chitooligosaccharides (COS) were recognized for their biodegradable properties and unique biological functions. The dietary effects of CT, CTS and COS at different inclusion levels on growth performance, immune response and gut microbiota in aquaculture species has been reviewed. The safety regulations, challenges and future outlooks of CT, CTS and COS in aquatic animals have been discussed in this review.
Collapse
Affiliation(s)
- Kannan Mohan
- PG and Research Department of Zoology, Sri Vasavi College, Erode, Tamil Nadu 638 316, India.
| | - Durairaj Karthick Rajan
- Department of Cell Biology, School of Life Sciences, Central South University, Changsha, Hunan 410013, PR China.
| | - Abirami Ramu Ganesan
- Division of Food Production and Society, Biomarine Resource Valorisation, Norwegian Institute of Bioeconomy Research, Torggården, Kudalsveien 6, NO-8027 Bodø, Norway
| | - Dharmaraj Divya
- Department of Animal Health and Management, Alagappa University, Karaikudi, Tamil Nadu 630003, India
| | - Johan Johansen
- Division of Food Production and Society, Biomarine Resource Valorisation, Norwegian Institute of Bioeconomy Research, Torggården, Kudalsveien 6, NO-8027 Bodø, Norway
| | - Shubing Zhang
- Department of Cell Biology, School of Life Sciences, Central South University, Changsha, Hunan 410013, PR China
| |
Collapse
|
16
|
Zhuravleva IL, Bezrodnykh EA, Berezin BB, Tikhonov VE, Antonov YA. Effect of Soft Preheating of Bovine Serum Albumin on the Complexation with Oligochitosan: Structure and Conformation of BSA in the Complex. Macromol Biosci 2023; 23:e2300088. [PMID: 37268604 DOI: 10.1002/mabi.202300088] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2023] [Revised: 05/25/2023] [Indexed: 06/04/2023]
Abstract
Phase analysis, spectroscopic, and light scattering methods are applied to investigate the peculiarities of the interaction of oligochitosan (OCHI) with native and preheated bovine serum albumin (BSA) as well as the conformational and structural changes of BSA in BSA/OCHI complex. As shown, untreated BSA binds with OCHI mainly forming soluble electrostatic nanocomplexes, with the binding causing an increase in BSA helicity without a change in the local tertiary structure and thermal stability of BSA. In contrast, soft preheating at 56 °C enhances the complexation of BSA with OCHI and slightly destabilizes the secondary and local tertiary structures of BSA within the complex particles. Preheating at 64 °C (below the irreversible stage of BSA thermodenaturation) leads to further enhancement in the complexation and formation of insoluble complexes stabilized by both Coulomb forces and hydrophobic interactions. The finding can be promising for the preparation of biodegradable BSA/chitosan-based drug delivery systems.
Collapse
Affiliation(s)
- Irina L Zhuravleva
- N.M. Emanuel Institute of Biochemical Physics, Russian Academy of Sciences, Moscow, 119334, Russia
| | - Evgeniya A Bezrodnykh
- A. N. Nesmeyanov Institute of Organoelement Compounds, Russian Academy of Sciences, Moscow, 119334, Russia
| | - Boris B Berezin
- A. N. Nesmeyanov Institute of Organoelement Compounds, Russian Academy of Sciences, Moscow, 119334, Russia
| | - Vladimir E Tikhonov
- A. N. Nesmeyanov Institute of Organoelement Compounds, Russian Academy of Sciences, Moscow, 119334, Russia
| | - Yurij A Antonov
- N.M. Emanuel Institute of Biochemical Physics, Russian Academy of Sciences, Moscow, 119334, Russia
| |
Collapse
|
17
|
Sim I, Choe W, Ri J, Su H, Moqbel SAA, Yan W. Chitosan oligosaccharide suppresses osteosarcoma malignancy by inhibiting CEMIP via the PI3K/AKT/mTOR pathway. Med Oncol 2023; 40:294. [PMID: 37668818 PMCID: PMC10480286 DOI: 10.1007/s12032-023-02165-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2023] [Accepted: 08/14/2023] [Indexed: 09/06/2023]
Abstract
Osteosarcoma is a malignant bone tumor that is prone to metastasize early and primarily affects children and adolescents. Cell migration-inducing protein (CEMIP) plays a crucial role in the progression and malignancy of various tumor diseases, including osteosarcoma. Chitosan oligosaccharide (COS), an oligomer isolated from chitin, has been found to have significant anti-tumor activity in various cancers. This study investigates the effects of COS on CEMIP expression in osteosarcoma and explores the underlying mechanism. In present study, in vitro experiments were conducted to confirm the inhibitory activity of COS on human osteosarcoma cells. Our results demonstrate that COS possesses inhibitory effects against human osteosarcoma cells and significantly suppresses CEMIP expression in vitro. Next, we studied the inhibition of the expression of CEMIP by COS and then performed bioinformatics analysis to explore the potential inhibitory mechanism of COS against signaling pathways involved in regulating CEMIP expression. Bioinformatics analysis predicted a close association between the PI3K signaling pathway and CEMIP expression and that the inhibitory effect of COS on CEMIP expression may be related to PI3K signaling pathway regulation. The results of this study show that COS treatment significantly inhibits CEMIP expression and the PI3K/AKT/mTOR signaling pathway, as observed both in vitro and in vivo. This study demonstrates that COS could inhibit the expression of CEMIP, which is closely related to osteosarcoma malignancy. This inhibitory effect may be attributed to the inhibition of the PI3K/AKT/mTOR signaling pathway in vitro and in vivo.
Collapse
Affiliation(s)
- IlJin Sim
- Department of Orthopedics, The Second Affiliated Hospital of Zhejiang University School of Medicine, Jiefang Campus, 88 Jiefang Road, Shangcheng District, Hangzhou, 310009 China
- Zhejiang University School of Medicine, Zhejiang University Huajiachi Campus, 268 Kaixuan Road, Jianggan District, Hangzhou, 310029 China
- Clinical Institute, Pyongyang Medical University, Pyongyang, 999093 Democratic People’s Republic of Korea
| | - WonGyom Choe
- Clinical Institute, Pyongyang Medical University, Pyongyang, 999093 Democratic People’s Republic of Korea
| | - JinJu Ri
- Department of Cardiology, Pyongyang Medical University Hospital, Pyongyang, 999093 Democratic People’s Republic of Korea
| | - Hang Su
- Department of Orthopedics, The Second Affiliated Hospital of Zhejiang University School of Medicine, Jiefang Campus, 88 Jiefang Road, Shangcheng District, Hangzhou, 310009 China
- Zhejiang University School of Medicine, Zhejiang University Huajiachi Campus, 268 Kaixuan Road, Jianggan District, Hangzhou, 310029 China
| | - Safwat Adel Abdo Moqbel
- Zhejiang University School of Medicine, Zhejiang University Huajiachi Campus, 268 Kaixuan Road, Jianggan District, Hangzhou, 310029 China
- Department of Emergency Medicine, The Second Affiliated Hospital of Zhejiang University School of Medicine, Jiefang Campus, 88 Jiefang Road, Shangcheng District, Hangzhou, 310009 China
| | - WeiQi Yan
- Department of Orthopedics, The Second Affiliated Hospital of Zhejiang University School of Medicine, Jiefang Campus, 88 Jiefang Road, Shangcheng District, Hangzhou, 310009 China
- Zhejiang University School of Medicine, Zhejiang University Huajiachi Campus, 268 Kaixuan Road, Jianggan District, Hangzhou, 310029 China
- The BioMed Innovation Institute of Hangzhou Medical College, Hangzhou, 310010 China
| |
Collapse
|
18
|
Liu Y, Qin Z, Wang C, Jiang Z. N-acetyl-d-glucosamine-based oligosaccharides from chitin: Enzymatic production, characterization and biological activities. Carbohydr Polym 2023; 315:121019. [PMID: 37230627 DOI: 10.1016/j.carbpol.2023.121019] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2023] [Revised: 04/28/2023] [Accepted: 05/09/2023] [Indexed: 05/27/2023]
Abstract
Chitin, the second most abundant biopolymer, possesses diverse applications in the food, agricultural, and pharmaceutical industries due to its functional properties. However, the potential applications of chitin are limited owing to its high crystallinity and low solubility. N-acetyl chitooligosaccharides and lacto-N-triose II, the two types of GlcNAc-based oligosaccharides, can be obtained from chitin by enzymatic methods. With their lower molecular weights and improved solubility, these two types of GlcNAc-based oligosaccharides display more various beneficial health effects when compared to chitin. Among their abilities, they have exhibited antioxidant, anti-inflammatory, anti-tumor, antimicrobial, and plant elicitor activities as well as immunomodulatory and prebiotic effects, which suggests they have the potential to be utilized as food additives, functional daily supplements, drug precursors, elicitors for plants, and prebiotics. This review comprehensively covers the enzymatic methods used for the two types of GlcNAc-based oligosaccharides production from chitin by chitinolytic enzymes. Moreover, current advances in the structural characterization and biological activities of these two types of GlcNAc-based oligosaccharides are summarized in the review. We also highlight current problems in the production of these oligosaccharides and trends in their development, aiming to offer some directions for producing functional oligosaccharides from chitin.
Collapse
Affiliation(s)
- Yihao Liu
- College of Food Science and Engineering, State Key Laboratory of Food Nutrition and Safety, Key Laboratory of Food Nutrition and Safety, Ministry of Education, Tianjin University of Science & Technology, Tianjin Economy Technological Development Area, No. 29, 13th Avenue, Tianjin 300222, People's Republic of China
| | - Zhen Qin
- School of Life Sciences, Shanghai University, Baoshan District, No.99 Shangda Road, Shanghai 200444, People's Republic of China
| | - Chunling Wang
- College of Food Science and Engineering, State Key Laboratory of Food Nutrition and Safety, Key Laboratory of Food Nutrition and Safety, Ministry of Education, Tianjin University of Science & Technology, Tianjin Economy Technological Development Area, No. 29, 13th Avenue, Tianjin 300222, People's Republic of China.
| | - Zhengqiang Jiang
- Key Laboratory of Food Bioengineering (China National Light Industry), College of Food Science and Nutritional Engineering, China Agricultural University, Haidian District, No.17 Qinghua East Road, Beijing 100083, People's Republic of China.
| |
Collapse
|
19
|
Ibrahim AM, Bekhit M, Sokary R, Hammam O, Atta S. Toxicological, hepato-renal, endocrine disruption, oxidative stress and immunohistopathological responses of chitosan capped gold nanocomposite on Biomphalaria alexandrina snails. PESTICIDE BIOCHEMISTRY AND PHYSIOLOGY 2023; 195:105559. [PMID: 37666595 DOI: 10.1016/j.pestbp.2023.105559] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/18/2023] [Revised: 07/15/2023] [Accepted: 07/26/2023] [Indexed: 09/06/2023]
Abstract
The present investigation aimed to synthesize chitosan‑gold nanocomposites (Ch-AuNPs) with gamma radiation, then to evaluate its toxic effect on the freshwater snails Biomphalaia alexandrina. Results showed that Ch-AuNPs is spherical shaped with average size 12 nm. It had a toxic effect against B. alexandrina snails with LC50 20.43 mg/l. Exposure of B. alexandrina snails to LC10 7.51 or LC25 13.63 mg/l of Ch-AuNPs, reduced the survival, reproductive and fecundity rates; total protein and albumin; both testosterone (T) and 17β Estradiol (E) levels; SOD and CAT activities of exposed snails while increased the activities of transaminases (AST & ALT), uric acid, creatinine, TAC and MDA levels compared to the control group. Results were supported by histopathological and immunohistopathological alterations of the digestive and hermaphrodite glands. In conclusion B. alexandrina could be used as a model to screen the negative impact of nanomaterials. Also, Ch-AuNPs could be used as a molluscicidal agent.
Collapse
Affiliation(s)
- Amina M Ibrahim
- Medical Malacology Department, Theodor Bilharz Research Institute, Giza, Egypt.
| | - Mohamad Bekhit
- Radiation Chemistry Department, National Center for Radiation Research and Technology, Egyptian Atomic Energy Authority, Cairo, Egypt
| | - Rehab Sokary
- Radiation Chemistry Department, National Center for Radiation Research and Technology, Egyptian Atomic Energy Authority, Cairo, Egypt
| | - Olfat Hammam
- Pathology Department, Theodor Bilharz Research Institute, Giza, Egypt
| | - Shimaa Atta
- Immunology Department, Theodor Bilharz Research Institute, Giza, Egypt
| |
Collapse
|
20
|
Arnold ND, Garbe D, Brück TB. Isolation, biochemical characterization, and genome sequencing of two high-quality genomes of a novel chitinolytic Jeongeupia species. Microbiologyopen 2023; 12:e1372. [PMID: 37642486 PMCID: PMC10404844 DOI: 10.1002/mbo3.1372] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2023] [Revised: 07/19/2023] [Accepted: 07/27/2023] [Indexed: 08/26/2023] Open
Abstract
Chitin is the second most abundant polysaccharide worldwide as part of arthropods' exoskeletons and fungal cell walls. Low concentrations in soils and sediments indicate rapid decomposition through chitinolytic organisms in terrestrial and aquatic ecosystems. The enacting enzymes, so-called chitinases, and their products, chitooligosaccharides, exhibit promising characteristics with applications ranging from crop protection to cosmetics, medical, textile, and wastewater industries. Exploring novel chitinolytic organisms is crucial to expand the enzymatical toolkit for biotechnological chitin utilization and to deepen our understanding of diverse catalytic mechanisms. In this study, we present two long-read sequencing-based genomes of highly similar Jeongeupia species, which have been screened, isolated, and biochemically characterized from chitin-amended soil samples. Through metabolic characterization, whole-genome alignments, and phylogenetic analysis, we could demonstrate how the investigated strains differ from the taxonomically closest strain Jeongeupia naejangsanensis BIO-TAS4-2T (DSM 24253). In silico analysis and sequence alignment revealed a multitude of highly conserved chitinolytic enzymes in the investigated Jeongeupia genomes. Based on these results, we suggest that the two strains represent a novel species within the genus of Jeongeupia, which may be useful for environmentally friendly N-acetylglucosamine production from crustacean shell or fungal biomass waste or as a crop protection agent.
Collapse
Affiliation(s)
- Nathanael D. Arnold
- Department of ChemistryWerner‐Siemens Chair for Synthetic Biotechnology (WSSB), TUM School of Natural Sciences, Technical University of MunichGarchingGermany
| | - Daniel Garbe
- Department of ChemistryWerner‐Siemens Chair for Synthetic Biotechnology (WSSB), TUM School of Natural Sciences, Technical University of MunichGarchingGermany
| | - Thomas B. Brück
- Department of ChemistryWerner‐Siemens Chair for Synthetic Biotechnology (WSSB), TUM School of Natural Sciences, Technical University of MunichGarchingGermany
| |
Collapse
|
21
|
Yang S, Wu C, Yan Q, Li X, Jiang Z. Nondigestible Functional Oligosaccharides: Enzymatic Production and Food Applications for Intestinal Health. Annu Rev Food Sci Technol 2023; 14:297-322. [PMID: 36972156 DOI: 10.1146/annurev-food-052720-114503] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/29/2023]
Abstract
Nondigestible functional oligosaccharides are of particular interest in recent years because of their unique prebiotic activities, technological characteristics, and physiological effects. Among different types of strategies for the production of nondigestible functional oligosaccharides, enzymatic methods are preferred owing to the predictability and controllability of the structure and composition of the reaction products. Nondigestible functional oligosaccharides have been proved to show excellent prebiotic effects as well as other benefits to intestinal health. They have exhibited great application potential as functional food ingredients for various food products with improved quality and physicochemical characteristics. This article reviews the research progress on the enzymatic production of several typical nondigestible functional oligosaccharides in the food industry, including galacto-oligosaccharides, xylo-oligosaccharides, manno-oligosaccharides, chito-oligosaccharides, and human milk oligosaccharides. Moreover, their physicochemical properties and prebiotic activities are discussed as well as their contributions to intestinal health and applications in foods.
Collapse
Affiliation(s)
- Shaoqing Yang
- Key Laboratory of Food Bioengineering, China National Light Industry, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, China;
| | - Chenxuan Wu
- Key Laboratory of Food Bioengineering, China National Light Industry, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, China;
| | - Qiaojuan Yan
- College of Engineering, China Agricultural University, Beijing, China
| | - Xiuting Li
- School of Food and Health, Beijing Technology and Business University, Beijing, China
| | - Zhengqiang Jiang
- Key Laboratory of Food Bioengineering, China National Light Industry, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, China;
| |
Collapse
|
22
|
Cheng M, Shao Z, Wang X, Lu C, Li S, Duan D. Novel Chitin Deacetylase from Thalassiosira weissflogii Highlights the Potential for Chitin Derivative Production. Metabolites 2023; 13:metabo13030429. [PMID: 36984869 PMCID: PMC10057020 DOI: 10.3390/metabo13030429] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2023] [Revised: 03/07/2023] [Accepted: 03/13/2023] [Indexed: 03/18/2023] Open
Abstract
β-Chitin is an important carbon fixation product of diatoms, and is the most abundant nitrogen-containing polysaccharide in the ocean. It has potential for widespread application, but the characterization of chitin-related enzymes from β-chitin producers has rarely been reported. In this study, a chitin deacetylase (TwCDA) was retrieved from the Marine Microbial Eukaryote Transcriptome Sequencing Project (MMETSP) database and was heterologously expressed in vitro for functional analysis. The results showed that both the full-length sequence (TwCDA) and the N-terminal truncated sequence (TwCDA-S) had chitin deacetylase and chitinolytic activities after expression in Escherichia coli. High-performance liquid chromatography (HPLC) and gas chromatography–mass spectrometry (GC-MS) indicated that TwCDA and TwCDA-S could catalyze the deacetylation of oligosaccharide (GlcNAc)5. TwCDA had higher deacetylase activity, and also catalyzed the deacetylation of the β-chitin polymer. A dinitrosalicylic acid (DNS) assay showed that TwCDA-S had high chitinolytic activity for (GlcNAc)5, and the optimal reaction temperature was 35 °C. Liquid chromatography combined with time-of-flight mass spectrometry (LC-coTOF-MS) detected the formation of a N-acetylglucosamine monomer (C8H15NO6) in the reaction mixture. Altogether, we isolated a chitin deacetylase from a marine diatom, which can catalyze the deacetylation and degradation of chitin and chitin oligosaccharides. The relevant results lay a foundation for the internal regulation mechanism of chitin metabolism in diatoms and provide a candidate enzyme for the green industrial preparation of chitosan and chitin oligosaccharides.
Collapse
Affiliation(s)
- Mengzhen Cheng
- CAS and Shandong Province Key Laboratory of Experimental Marine Biology, Center for Ocean Mega-Science, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China
- Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266237, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Zhanru Shao
- CAS and Shandong Province Key Laboratory of Experimental Marine Biology, Center for Ocean Mega-Science, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China
- Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266237, China
| | - Xin Wang
- CAS and Shandong Province Key Laboratory of Experimental Marine Biology, Center for Ocean Mega-Science, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China
- Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266237, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Chang Lu
- Department of Biological Engineering, College of Life Science, Yantai University, Yantai 264005, China
| | - Shuang Li
- CAS and Shandong Province Key Laboratory of Experimental Marine Biology, Center for Ocean Mega-Science, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China
- Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266237, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Delin Duan
- CAS and Shandong Province Key Laboratory of Experimental Marine Biology, Center for Ocean Mega-Science, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China
- Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266237, China
| |
Collapse
|
23
|
Saravanan A, Kumar PS, Yuvaraj D, Jeevanantham S, Aishwaria P, Gnanasri PB, Gopinath M, Rangasamy G. A review on extraction of polysaccharides from crustacean wastes and their environmental applications. ENVIRONMENTAL RESEARCH 2023; 221:115306. [PMID: 36682444 DOI: 10.1016/j.envres.2023.115306] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/11/2022] [Revised: 01/03/2023] [Accepted: 01/12/2023] [Indexed: 06/17/2023]
Abstract
Disposal of biodegradable waste of seashells leads to an environmental imbalance. A tremendous amount of wastes produced from flourishing shell fish industries while preparing crustaceans for human consumption can be directed towards proper utilization. The review of the present study focuses on these polysaccharides from crustaceans and a few important industrial applications. This review aimed to emphasize the current research on structural analyses and extraction of polysaccharides. The article summarises the properties of chitin, chitosan, and chitooligosaccharides and their derivatives that make them non-toxic, biodegradable, and biocompatible. Different extraction methods of chitin, chitosan, and chitooligosaccharides have been discussed in detail. Additionally, this information outlines possible uses for derivatives of chitin, chitosan, and chitooligosaccharides in the environmental, pharmaceutical, agricultural, and food industries. Additionally, it is essential to the textile, cosmetic, and enzyme-immobilization industries. This review focuses on new, insightful suggestions for raising the value of crustacean shell waste by repurposing a highly valuable material.
Collapse
Affiliation(s)
- A Saravanan
- Department of Sustainable Engineering, Institute of Biotechnology, Saveetha School of Engineering, SIMATS, Chennai, 602105, India
| | - P Senthil Kumar
- Department of Chemical Engineering, Sri Sivasubramaniya Nadar College of Engineering, Kalavakkam, 603110, Tamil Nadu, India; Centre of Excellence in Water Research (CEWAR), Sri Sivasubramaniya Nadar College of Engineering, Kalavakkam, 603110, Tamil Nadu, India; School of Engineering, Lebanese American University, Byblos, Lebanon.
| | - D Yuvaraj
- Department of Biotechnology, Vel Tech High Tech Dr. Rangaragan Dr. Sakunthala Engineering College, Chennai, Tamil Nadu, 600062, India
| | - S Jeevanantham
- Department of Biotechnology, Rajalakshmi Engineering College, Chennai, 602105, India
| | - P Aishwaria
- Department of Biotechnology, Vel Tech High Tech Dr. Rangaragan Dr. Sakunthala Engineering College, Chennai, Tamil Nadu, 600062, India
| | - P B Gnanasri
- Department of Biotechnology, Vel Tech High Tech Dr. Rangaragan Dr. Sakunthala Engineering College, Chennai, Tamil Nadu, 600062, India
| | - M Gopinath
- Department of Biotechnology, Vel Tech High Tech Dr. Rangaragan Dr. Sakunthala Engineering College, Chennai, Tamil Nadu, 600062, India
| | - Gayathri Rangasamy
- School of Engineering, Lebanese American University, Byblos, Lebanon; University Centre for Research and Development & Department of Civil Engineering, Chandigarh University, Gharuan, Mohali, Punjab, 140413, India
| |
Collapse
|
24
|
Grosu OM, Dragostin OM, Gardikiotis I, Chitescu CL, Lisa EL, Zamfir AS, Confederat L, Dragostin I, Dragan M, Stan CD, Zamfir CL. Experimentally Induced Burns in Rats Treated with Innovative Polymeric Films Type Therapies. Biomedicines 2023; 11:852. [PMID: 36979831 PMCID: PMC10045338 DOI: 10.3390/biomedicines11030852] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2023] [Revised: 02/27/2023] [Accepted: 03/08/2023] [Indexed: 03/18/2023] Open
Abstract
Considering that microbial resistance to antibiotics is becoming an increasingly widespread problem, burn management, which usually includes the use of topical antimicrobial dressings, is still facing difficulties regarding their efficiency to ensure rapid healing. In this context, the main objective of this research is to include new oxytetracycline derivatives in polymeric-film-type dressings for the treatment of wounds caused by experimentally induced burns in rats. The structural and physico-chemical properties of synthesized oxytetracycline derivatives and the corresponding membranes were analyzed by FT-IR and MS spectroscopy, swelling ability and biodegradation capacity. In vitro antimicrobial activity using Gram-positive and Gram-negative bacterial strains and pathogenic yeasts, along with an in vivo study of a burn wound model induced in Wistar rats, was also analyzed. The newly obtained polymeric films, namely chitosan-oxytetracycline derivative membranes, showed good antimicrobial activity noticed in the tested strains, a membrane swelling ratio (MSR) of up to 1578% in acidic conditions and a biodegradation rate of up to 15.7% on day 7 of testing, which are important required characteristics for the tissue regeneration process, after the production of a burn. The in vivo study proved that chitosan-derived oxytetracycline membranes showed also improved healing effects which contributes to supporting the idea of using them for the treatment of wounds caused by burns.
Collapse
Affiliation(s)
- Oxana-Madalina Grosu
- Department of Surgery I, Faculty of Medicine, “Grigore T. Popa” University of Medicine and Pharmacy, 16 Universitatii Street, 700115 Iasi, Romania
| | - Oana-Maria Dragostin
- Research Centre in the Medical-Pharmaceutical Field, Faculty of Medicine and Pharmacy, “Dunarea de Jos” University of Galati, 47 Domneasca Street, 800008 Galati, Romania
| | - Ioannis Gardikiotis
- Advanced Centre for Research-Development in Experimental Medicine, “Grigore T. Popa” University of Medicine and Pharmacy, 16 Universitatii Street, 700115 Iasi, Romania
| | - Carmen Lidia Chitescu
- Research Centre in the Medical-Pharmaceutical Field, Faculty of Medicine and Pharmacy, “Dunarea de Jos” University of Galati, 47 Domneasca Street, 800008 Galati, Romania
| | - Elena Lacramioara Lisa
- Research Centre in the Medical-Pharmaceutical Field, Faculty of Medicine and Pharmacy, “Dunarea de Jos” University of Galati, 47 Domneasca Street, 800008 Galati, Romania
| | - Alexandra-Simona Zamfir
- Medical Department III, Faculty of Medicine, University of Medicine and Pharmacy “Grigore T. Popa”, 16 Universitatii Street, 700115 Iasi, Romania
| | - Luminita Confederat
- Department of Biomedical Sciences, Faculty of Medical Bioengineering, University of Medicine and Pharmacy “Grigore T. Popa”, 16 Universitatii Street, 700115 Iasi, Romania
| | - Ionut Dragostin
- Research Centre in the Medical-Pharmaceutical Field, Faculty of Medicine and Pharmacy, “Dunarea de Jos” University of Galati, 47 Domneasca Street, 800008 Galati, Romania
| | - Maria Dragan
- Department of Pharmaceutical Science, Faculty of Pharmacy, “Grigore T. Popa” University of Medicine and Pharmacy, 16 Universităţii Street, 700115 Iaşi, Romania
| | - Catalina Daniela Stan
- Department of Pharmaceutical Science, Faculty of Pharmacy, “Grigore T. Popa” University of Medicine and Pharmacy, 16 Universităţii Street, 700115 Iaşi, Romania
| | - Carmen-Lacramioara Zamfir
- Department of Morpho-Functional Sciences I, Faculty of Medicine, “Grigore T. Popa” University of Medicine and Pharmacy, 16 University Street, 700115 Iasi, Romania
| |
Collapse
|
25
|
Boamah PO, Onumah J, Aduguba WO, Santo KG. Application of depolymerized chitosan in crop production: A review. Int J Biol Macromol 2023; 235:123858. [PMID: 36871686 DOI: 10.1016/j.ijbiomac.2023.123858] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2022] [Revised: 02/04/2023] [Accepted: 02/24/2023] [Indexed: 03/06/2023]
Abstract
Currently, chitosan (CHT) is well known for its uses, particularly in veterinary and agricultural fields. However, chitosan's uses suffer greatly due to its extremely solid crystalline structure, it is insoluble at pH levels above or equal to 7. This has sped up the process of derivatizing and depolymerizing it into low molecular weight chitosan (LMWCHT). As a result of its diverse physicochemical as well as biological features which include antibacterial activity, non-toxicity, and biodegradability, LMWCHT has evolved into new biomaterials with extremely complex functions. The most important physicochemical and biological property is antibacterial, which has some degree of industrialization today. CHT and LMWCHT have potential due to the antibacterial and plant resistance-inducing properties when applied in crop production. This study has highlighted the many advantages of chitosan derivatives as well as the most recent studies on low molecular weight chitosan applications in crop development.
Collapse
Affiliation(s)
- Peter Osei Boamah
- Department of Ecological Agriculture, Bolgatanga Technical University, Bolgatanga, Ghana.
| | - Jacqueline Onumah
- Department of Ecological Agriculture, Bolgatanga Technical University, Bolgatanga, Ghana
| | | | - Kwadwo Gyasi Santo
- Department of Horticulture and Crop Production, University of Energy and Natural Resources, Ghana
| |
Collapse
|
26
|
Xia C, Li D, Qi M, Wang Y, Zhang Y, Yang Y, Hu Z, Du X, Zhao Y, Yu K, Huang Y, Li Z, Ye X, Cui Z. Preparation of chitooligosaccharides with a low degree of polymerization and anti-microbial properties using the novel chitosanase AqCsn1. Protein Expr Purif 2023; 203:106199. [PMID: 36372201 DOI: 10.1016/j.pep.2022.106199] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2022] [Revised: 11/05/2022] [Accepted: 11/06/2022] [Indexed: 11/13/2022]
Abstract
Chitosanases hydrolyze chitosan into chitooligosaccharides (COSs) with various biological activities, which are widely employed in many areas including plant disease management. In this study, the novel chitosanase AqCsn1 belonging to the glycoside hydrolase family 46 (GH46) was cloned from Aquabacterium sp. A7-Y and heterologously expressed in Escherichia coli BL21 (DE3). AqCsn1 displayed the highest hydrolytic activity towards chitosan with 95% degree of deacetylation at 40 °C and pH 5.0, with a specific activity of 13.18 U/mg. Product analysis showed that AqCsn1 hydrolyzed chitosan into (GlcN)2 and (GlcN)3 as the main products, demonstrating an endo-type cleavage pattern. Evaluation of antagonistic activity showed that the hydrolysis products of AqCsn1 suppress the mycelial growth of Magnaporthe oryzae and Phytophthora sojae in a concentration-dependent manner, and the inhibition rate of P. sojae reached 39.82% at a concentration of 8 g/L. Our study demonstrates that AqCsn1 and hydrolysis products with a low degree of polymerization might have potential applications in the biological control of agricultural diseases.
Collapse
Affiliation(s)
- Chengyao Xia
- Key Laboratory of Agricultural Environmental Microbiology, Ministry of Agriculture, College of Life Science, Nanjing Agricultural University, Nanjing, 210095, PR China
| | - Ding Li
- Institute of Veterinary Immunology & Engineering, Jiangsu Academy of Agricultural Sciences, 210014, Nanjing, PR China; Jiangsu Co-Innovation Center for the Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou, 225009, China; Jiangsu Key Laboratory for Food Quality and Safety-State Key Laboratory Cultivation Base, Ministry of Science and Technology, Nanjing, 210014, China
| | - Mengyi Qi
- Key Laboratory of Agricultural Environmental Microbiology, Ministry of Agriculture, College of Life Science, Nanjing Agricultural University, Nanjing, 210095, PR China
| | - Yanxin Wang
- Key Laboratory of Agricultural Environmental Microbiology, Ministry of Agriculture, College of Life Science, Nanjing Agricultural University, Nanjing, 210095, PR China
| | - Yue Zhang
- Key Laboratory of Agricultural Environmental Microbiology, Ministry of Agriculture, College of Life Science, Nanjing Agricultural University, Nanjing, 210095, PR China
| | - Yiheng Yang
- Key Laboratory of Agricultural Environmental Microbiology, Ministry of Agriculture, College of Life Science, Nanjing Agricultural University, Nanjing, 210095, PR China
| | - Zejia Hu
- Key Laboratory of Agricultural Environmental Microbiology, Ministry of Agriculture, College of Life Science, Nanjing Agricultural University, Nanjing, 210095, PR China
| | - Xin Du
- Key Laboratory of Agricultural Environmental Microbiology, Ministry of Agriculture, College of Life Science, Nanjing Agricultural University, Nanjing, 210095, PR China
| | - Yuqiang Zhao
- Institute of Botany, Jiangsu Province and Chinese Academy of Sciences, Nanjing, 210014, China
| | - Kuai Yu
- Key Laboratory of Agricultural Environmental Microbiology, Ministry of Agriculture, College of Life Science, Nanjing Agricultural University, Nanjing, 210095, PR China
| | - Yan Huang
- Key Laboratory of Agricultural Environmental Microbiology, Ministry of Agriculture, College of Life Science, Nanjing Agricultural University, Nanjing, 210095, PR China
| | - Zhoukun Li
- Key Laboratory of Agricultural Environmental Microbiology, Ministry of Agriculture, College of Life Science, Nanjing Agricultural University, Nanjing, 210095, PR China
| | - Xianfeng Ye
- Key Laboratory of Agricultural Environmental Microbiology, Ministry of Agriculture, College of Life Science, Nanjing Agricultural University, Nanjing, 210095, PR China.
| | - Zhongli Cui
- Key Laboratory of Agricultural Environmental Microbiology, Ministry of Agriculture, College of Life Science, Nanjing Agricultural University, Nanjing, 210095, PR China.
| |
Collapse
|
27
|
Liu Y, Yang H, Wen F, Bao L, Zhao Z, Zhong Z. Chitooligosaccharide-induced plant stress resistance. Carbohydr Polym 2023; 302:120344. [PMID: 36604042 DOI: 10.1016/j.carbpol.2022.120344] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2022] [Revised: 10/25/2022] [Accepted: 11/10/2022] [Indexed: 11/17/2022]
Abstract
In nature, the production of plant stress resistance traits is often induced by extreme environmental conditions. Under extreme conditions, plants can be irreversibly damaged. Intervention with phytostimulants, however, can improve plant stress resistance without causing damage to the plants themselves, hence maintaining the production. For example, exogenous substances such as proteins and polysaccharides can be used effectively as phytostimulants. Chitooligosaccharide, a plant stimulant, can promote seed germination and plant growth and development, and improve plant photosynthesis. In this review, we summarize progress in the research of chitooligosaccharide-induced plant stress resistance. The mechanism and related experiments of chitooligosaccharide-induced resistance to pathogen, drought, low-temperature, saline-alkali, and other stresses are classified and discussed. In addition, we put forward the challenges confronted by chitooligosaccharide-induced plant stress resistance and the future research concept that requires multidisciplinary cooperation, which could provide data for the in-depth study of the effect of chitooligosaccharide on plants.
Collapse
Affiliation(s)
- Yao Liu
- College of Sciences, Inner Mongolia Agricultural University, Hohhot 010018, China
| | - Hehe Yang
- College of Sciences, Inner Mongolia Agricultural University, Hohhot 010018, China
| | - Fang Wen
- College of Sciences, Inner Mongolia Agricultural University, Hohhot 010018, China
| | - Liangliang Bao
- College of Sciences, Inner Mongolia Agricultural University, Hohhot 010018, China
| | - Zhihong Zhao
- College of Sciences, Inner Mongolia Agricultural University, Hohhot 010018, China
| | - Zhimei Zhong
- College of Sciences, Inner Mongolia Agricultural University, Hohhot 010018, China; Inner Mongolia Key Laboratory of Soil Quality and Nutrient Resource, Hohhot 010018, China; Key Laboratory of Agricultural Ecological Security and Green Development at Universities of Inner Mongolia Autonomous Region, Hohhot 010018, China.
| |
Collapse
|
28
|
Dinculescu D, Gîjiu CL, Apetroaei MR, Isopescu R, Rău I, Schröder V. Optimization of Chitosan Extraction Process from Rapana venosa Egg Capsules Waste Using Experimental Design. MATERIALS (BASEL, SWITZERLAND) 2023; 16:525. [PMID: 36676262 PMCID: PMC9862177 DOI: 10.3390/ma16020525] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/04/2022] [Revised: 12/23/2022] [Accepted: 01/01/2023] [Indexed: 06/17/2023]
Abstract
New green and sustainable sources were chosen to obtain chitosan, an important material, with many applications in different fields. The present study is focused on egg capsules of Rapana venosa waste as raw material for chitosan oligomers. As previous studies revealed that chitosan extraction from this material takes place with a low yield, the present research aimed to optimize this step. A 22 experimental plan, with three replicates in the center, was proposed to investigate the influence of NaOH concentration and temperature on the yield extraction. After a primary analysis of the experimental data, a favorable temperature value was selected (90 °C) at which the total dissolution of the egg capsules was obtained. Then, at this temperature, the experimental plan was extended exploring the influence of the NaOH concentration on three levels (5, 6, and 7%) and the extraction duration on two levels (60 and 85 min). Based on all experimental data, a neural model was obtained and validated. The neural model was used to maximize the yield, applying Genetic Algorithm (GA) implemented in Matlab®. The resulting optimal solution is: NaOH concentration 6.47%, temperature 90 °C, duration 120 min, with a yield value of 7.05%.
Collapse
Affiliation(s)
- Daniel Dinculescu
- Faculty of Chemical Engineering and Biotechnologies, University POLITEHNICA of Bucharest, 011061 Bucharest, Romania
| | - Cristiana Luminița Gîjiu
- Faculty of Chemical Engineering and Biotechnologies, University POLITEHNICA of Bucharest, 011061 Bucharest, Romania
| | | | - Raluca Isopescu
- Faculty of Chemical Engineering and Biotechnologies, University POLITEHNICA of Bucharest, 011061 Bucharest, Romania
| | - Ileana Rău
- Faculty of Chemical Engineering and Biotechnologies, University POLITEHNICA of Bucharest, 011061 Bucharest, Romania
| | - Verginica Schröder
- Faculty of Pharmacy, Ovidius University of Constanta, 900527 Constanta, Romania
| |
Collapse
|
29
|
WANG Y, ZHAO K, LI L, SONG X, HE Y, DING N, LI L, WANG S, LIU Z. A review of the immune activity of chitooligosaccharides. FOOD SCIENCE AND TECHNOLOGY 2023. [DOI: 10.1590/fst.97822] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Affiliation(s)
| | | | - Li LI
- Chenland Nutritionals, United States
| | - Xuena SONG
- Qingdao Chenland Health Industry Group Co, China
| | - Yao HE
- Nanchang University, China
| | | | - Lijie LI
- Qingdao Engineering Vocational College, China
| | | | - Zimin LIU
- Chenland Nutritionals, United States
| |
Collapse
|
30
|
Giraldo JD, Garrido-Miranda KA, Schoebitz M. Chitin and its derivatives: Functional biopolymers for developing bioproducts for sustainable agriculture-A reality? Carbohydr Polym 2023; 299:120196. [PMID: 36876809 DOI: 10.1016/j.carbpol.2022.120196] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2022] [Revised: 10/01/2022] [Accepted: 10/03/2022] [Indexed: 11/07/2022]
Abstract
Chitinous materials (chitin and its derivatives) are obtained from renewable sources, mainly shellfish waste, having a great potential for the development of bioproducts as alternatives to synthetic agrochemicals. Recent studies have provided evidence that the use of these biopolymers can help control postharvest diseases, increase the content of nutrients available to plants, and elicit positive metabolic changes that lead to higher plant resistance against pathogens. However, agrochemicals are still widely and intensively used in agriculture. This perspective addresses the gap in knowledge and innovation to make bioproducts based on chitinous materials more competitive in the market. It also provides the readers with background to understand why these products are scarcely used and the aspects that need to be considered to increase their use. Finally, information on the development and commercialization of agricultural bioproducts containing chitin or its derivatives in the Chilean market is also provided.
Collapse
Affiliation(s)
- Juan D Giraldo
- Escuela de Ingeniería Ambiental, Instituto de Acuicultura, Universidad Austral de Chile, Sede Puerto Montt, Balneario Pelluco, Los Pinos s/n, Chile.
| | - Karla A Garrido-Miranda
- Center of Waste Management and Bioenergy, Scientific and Technological Bioresource Nucleus, BIOREN-UFRO, Universidad de la Frontera, P.O. Box 54-D, Temuco, Chile; Agriaquaculture Nutritional Genomic Center (CGNA), Temuco 4780000, Chile.
| | - Mauricio Schoebitz
- Departamento de Suelos y Recursos Naturales, Facultad de Agronomía, Campus Concepción, Casilla 160-C, Universidad de Concepción, Chile; Laboratory of Biofilms and Environmental Microbiology, Center of Biotechnology, University of Concepción, Barrio Universitario s/n, Concepción, Chile.
| |
Collapse
|
31
|
Kim J, Chhetri G, Kim I, So Y, Seo T. Paenibacillus agilis sp. nov., Paenibacillus cremeus sp. nov. and Paenibacillus terricola sp. nov., isolated from rhizosphere soils. Int J Syst Evol Microbiol 2022; 72. [PMID: 36748605 DOI: 10.1099/ijsem.0.005640] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
Members of the genus Paenibacillus are well known for their metabolic versatility and great application potential in plant growth promotion. Three novel bacterial strains, designated N4T, JC52T and PR3T, were isolated from rhizosphere soils and characterized by using a polyphasic taxonomic approach. The 16S rRNA gene sequence phylogenetic and phylogenomic analysis revealed that the three strains belonged to the genus Paenibacillus and formed three independent branches distinct from all reference strains. The results of DNA-DNA hybridization (DDH) and average nucleotide identity (ANI) analyses between the three strains and their relatives further demonstrated that the three strains represented different novel genospecies. Strain N4T exhibited the highest similarity, ANI and digital DDH values with Paenibacillus assamensis DSM 18201T (99.0/87.5/33.9 %) and Paenibacillus insulae DS80T (97.2/-/18.2±1.2 %). Values for JC52T with Paenibacillus validus NBRC 15382T were 96.9, 73.3 and 19.6 %, and with Paenibacillus rigui JCM 16352T were 96.1, 72.1 and 19.3 %. Values for PR3T with Paenibacillus ginsengiterrae DCY89T were 98.2, - and 31.8±1.5 %, with Paenibacillus cellulosilyticus ASM318225v1T were 97.8, 83.3 and 26.7 %, and with Paenibacillus kobensis NBRC 15729T were 97.6, 75.7 and 20.4 %. Cells of the three novel bacterial strains were Gram-positive, spore-forming, motile and rod-shaped. The novel species contained anteiso-C15 : 0 and MK-7 as the predominant fatty acid and menaquinone, respectively. The novel strains have numerous similar known clusters of non-ribosomal peptide synthetases, siderophores, lanthipeptide, lassopeptide-like bacillibactin, paeninodin and polyketide-like chejuenolide A/B lankacidin C. Based on the distinct morphological, physiological, chemotaxonomic and phylogenetic differences from their closest phylogenetic neighbours, we propose that strains N4T, JC52T and PR3T represent novel species of the genus Paenibacillus, with the names Paenibacillus agilis sp. nov. (=KACC 19717T=JCM 32775T), Paenibacillus cremeus sp. nov. (=KACC 21221T=NBRC 113867T) and Paenibacillus terricola sp. nov. (=KACC 21455T=NBRC 114385T), respectively.
Collapse
Affiliation(s)
- Jiyoun Kim
- Department of Life Science, Dongguk University-Seoul, Goyang 10326, South Korea
| | - Geeta Chhetri
- Department of Life Science, Dongguk University-Seoul, Goyang 10326, South Korea
| | - Inhyup Kim
- Department of Life Science, Dongguk University-Seoul, Goyang 10326, South Korea
| | - Yoonseop So
- Department of Life Science, Dongguk University-Seoul, Goyang 10326, South Korea
| | - Taegun Seo
- Department of Life Science, Dongguk University-Seoul, Goyang 10326, South Korea
| |
Collapse
|
32
|
Sreekumar S, Wattjes J, Niehues A, Mengoni T, Mendes AC, Morris ER, Goycoolea FM, Moerschbacher BM. Biotechnologically produced chitosans with nonrandom acetylation patterns differ from conventional chitosans in properties and activities. Nat Commun 2022; 13:7125. [PMID: 36418307 PMCID: PMC9684148 DOI: 10.1038/s41467-022-34483-3] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2021] [Accepted: 10/27/2022] [Indexed: 11/24/2022] Open
Abstract
Chitosans are versatile biopolymers with multiple biological activities and potential applications. They are linear copolymers of glucosamine and N-acetylglucosamine defined by their degree of polymerisation (DP), fraction of acetylation (FA), and pattern of acetylation (PA). Technical chitosans produced chemically from chitin possess defined DP and FA but random PA, while enzymatically produced natural chitosans probably have non-random PA. This natural process has not been replicated using biotechnology because chitin de-N-acetylases do not efficiently deacetylate crystalline chitin. Here, we show that such enzymes can partially N-acetylate fully deacetylated chitosan in the presence of excess acetate, yielding chitosans with FA up to 0.7 and an enzyme-dependent non-random PA. The biotech chitosans differ from technical chitosans both in terms of physicochemical and nanoscale solution properties and biological activities. As with synthetic block co-polymers, controlling the distribution of building blocks within the biopolymer chain will open a new dimension of chitosan research and exploitation.
Collapse
Affiliation(s)
- Sruthi Sreekumar
- grid.5949.10000 0001 2172 9288Institute for Biology and Biotechnology of Plants, University of Münster, 48143 Münster, Germany ,grid.5170.30000 0001 2181 8870Research Group for Food Production Engineering, Laboratory of Nano-BioScience, National Food Institute, Technical University of Denmark, 2800 Kgs Lyngby, Denmark ,grid.9909.90000 0004 1936 8403School of Food Science and Nutrition, University of Leeds, LS2 9JT Leeds, United Kingdom
| | - Jasper Wattjes
- grid.5949.10000 0001 2172 9288Institute for Biology and Biotechnology of Plants, University of Münster, 48143 Münster, Germany ,grid.5170.30000 0001 2181 8870Research Group for Food Production Engineering, Laboratory of Nano-BioScience, National Food Institute, Technical University of Denmark, 2800 Kgs Lyngby, Denmark
| | - Anna Niehues
- grid.5949.10000 0001 2172 9288Institute for Biology and Biotechnology of Plants, University of Münster, 48143 Münster, Germany
| | - Tamara Mengoni
- grid.5949.10000 0001 2172 9288Institute for Biology and Biotechnology of Plants, University of Münster, 48143 Münster, Germany
| | - Ana C. Mendes
- grid.5170.30000 0001 2181 8870Research Group for Food Production Engineering, Laboratory of Nano-BioScience, National Food Institute, Technical University of Denmark, 2800 Kgs Lyngby, Denmark
| | - Edwin R. Morris
- grid.7872.a0000000123318773School of Food and Nutritional Sciences, University College Cork, Cork, Ireland
| | - Francisco M. Goycoolea
- grid.5949.10000 0001 2172 9288Institute for Biology and Biotechnology of Plants, University of Münster, 48143 Münster, Germany ,grid.9909.90000 0004 1936 8403School of Food Science and Nutrition, University of Leeds, LS2 9JT Leeds, United Kingdom
| | - Bruno M. Moerschbacher
- grid.5949.10000 0001 2172 9288Institute for Biology and Biotechnology of Plants, University of Münster, 48143 Münster, Germany
| |
Collapse
|
33
|
Abu-Sbeih KA, Al-Mazaideh GM, Al-Zereini WA. Production of medium-sized chitosan oligomers using molecular sieves and their antibacterial activity. Carbohydr Polym 2022; 295:119889. [DOI: 10.1016/j.carbpol.2022.119889] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2022] [Revised: 07/14/2022] [Accepted: 07/15/2022] [Indexed: 11/29/2022]
|
34
|
Zhang C, Zhang Q, Yang D, Qiao Y, Wang B, Yan J, Li Z, Huang Z, Zhou Y, Hu K, Zhang Y. Chitosan degradation products promote healing of burn wounds of rat skin. Front Bioeng Biotechnol 2022; 10:1002437. [PMID: 36304900 PMCID: PMC9592717 DOI: 10.3389/fbioe.2022.1002437] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2022] [Accepted: 09/26/2022] [Indexed: 11/23/2022] Open
Abstract
Burns can impair the barrier function of the skin, and small burns can also cause high mortality. The WHO has described that over 180,000 people die of burns worldwide each year. Thus, the treatment of burn wounds is a major clinical challenge. Chitooligosaccharides (COS) are alkaline amino oligosaccharides with small molecular weights obtained by enzyme or chemical degradation of chitosan. With the characteristics of biocompatibility, water solubility and degradability, it has attracted increasing attention in the fields of biomedicine. In the present study, we used COS to treat deep second-degree burn wounds of rat skin and found that COS was able to promote wound healing. We also revealed that COS could promote fibroblast proliferation. Transcriptome sequencing analysis was performed on COS-treated fibroblasts to identify the underlying mechanisms. The results showed that COS was able to promote wound healing through regulation of the mitogen-activated protein kinase (MAPK) pathway and growth factor Hepatocyte Growth Factor (HGF). Our results provide a potential drug for burn wound therapy and the related molecular mechanism.
Collapse
Affiliation(s)
- Chuwei Zhang
- Department of Burn and Plastic Surgery, Affiliated Hospital of Nantong University, Medical School of Nantong University, Nantong, China
| | - Qingrong Zhang
- Department of Burn and Plastic Surgery, Affiliated Hospital of Nantong University, Nantong, China
- Third Military Medical University (Army Medical University), Chongqing, China
| | - Dongmei Yang
- Outpatient Treatment Center, Department of Burn and Plastic Surgery, Affiliated Hospital of Nantong University, Nantong, China
| | - Yating Qiao
- Department of Gastrointestinal Surgery, Affiliated Hospital of Hebei University, Baoding, China
| | - Bolin Wang
- Department of Burn and Plastic Surgery, Affiliated Hospital of Nantong University, Medical School of Nantong University, Nantong, China
| | - Jun Yan
- Department of Burn and Plastic Surgery, Affiliated Hospital of Nantong University, Medical School of Nantong University, Nantong, China
| | - Zihan Li
- Department of Burn and Plastic Surgery, Affiliated Hospital of Nantong University, Medical School of Nantong University, Nantong, China
| | - Zhanghao Huang
- Department of Thoracic Surgery, Affiliated Hospital of Nantong University, Medical School of Nantong University, Nantong, China
| | - Youlang Zhou
- The Hand Surgery Research Center, Department of Hand Surgery, Affiliated Hospital of Nantong University, Nantong, China
- *Correspondence: Youlang Zhou, ; Kesu Hu, ; Yi Zhang,
| | - Kesu Hu
- Department of Burn and Plastic Surgery, Affiliated Hospital of Nantong University, Nantong, China
- *Correspondence: Youlang Zhou, ; Kesu Hu, ; Yi Zhang,
| | - Yi Zhang
- Department of Burn and Plastic Surgery, Affiliated Hospital of Nantong University, Nantong, China
- *Correspondence: Youlang Zhou, ; Kesu Hu, ; Yi Zhang,
| |
Collapse
|
35
|
Raouani NEH, Claverie E, Randoux B, Chaveriat L, Yaseen Y, Yada B, Martin P, Cabrera JC, Jacques P, Reignault P, Magnin-Robert M, Lounès-Hadj Sahraoui A. Bio-Inspired Rhamnolipids, Cyclic Lipopeptides and a Chito-Oligosaccharide Confer Protection against Wheat Powdery Mildew and Inhibit Conidia Germination. Molecules 2022; 27:molecules27196672. [PMID: 36235207 PMCID: PMC9571057 DOI: 10.3390/molecules27196672] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2022] [Revised: 09/26/2022] [Accepted: 09/27/2022] [Indexed: 11/06/2022] Open
Abstract
Plant protection is mainly based on the application of synthetic pesticides to limit yield losses resulting from diseases. However, the use of more eco-friendly strategies for sustainable plant protection has become a necessity that could contribute to controlling pathogens through a direct antimicrobial effect and/or an induction of plant resistance. Three different families of natural or bioinspired compounds originated from bacterial or fungal strains have been evaluated to protect wheat against powdery mildew, caused by the biotrophic Blumeria graminis f.sp. tritici (Bgt). Thus, three bio-inspired mono-rhamnolipids (smRLs), three cyclic lipopeptides (CLPs, mycosubtilin (M), fengycin (F), surfactin (S)) applied individually and in mixtures (M + F and M + F + S), as well as a chitosan oligosaccharide (COS) BioA187 were tested against Bgt, in planta and in vitro. Only the three smRLs (Rh-Eth-C12, Rh-Est-C12 and Rh-Succ-C12), the two CLP mixtures and the BioA187 led to a partial protection of wheat against Bgt. The higher inhibitor effects on the germination of Bgt spores in vitro were observed from smRLs Rh-Eth-C12 and Rh-Succ-C12, mycosubtilin and the two CLP mixtures. Taking together, these results revealed that such molecules could constitute promising tools for a more eco-friendly agriculture.
Collapse
Affiliation(s)
- Nour El Houda Raouani
- Unité de Chimie Environnementale et Interactions sur le Vivant (EA 4492), Université Littoral Côte d’Opale, CEDEX CS 80699, 62228 Calais, France
| | - Elodie Claverie
- Materia Nova ASBL, Avenue du Champ de Mars 6, 7000 Mons, Belgium
| | - Béatrice Randoux
- Unité de Chimie Environnementale et Interactions sur le Vivant (EA 4492), Université Littoral Côte d’Opale, CEDEX CS 80699, 62228 Calais, France
| | - Ludovic Chaveriat
- ULR 7519—Unité Transformations & Agroressources, Université d’Artois, UnilaSalle, CEDEX CS 20819, 62408 Béthune, France
| | - Yazen Yaseen
- Lipofabrik, Parc d’Activités du Mélantois, 917 Rue des Saules, 59810 Lesquin, France
| | - Bopha Yada
- Materia Nova ASBL, Avenue du Champ de Mars 6, 7000 Mons, Belgium
| | - Patrick Martin
- ULR 7519—Unité Transformations & Agroressources, Université d’Artois, UnilaSalle, CEDEX CS 20819, 62408 Béthune, France
| | | | - Philippe Jacques
- JUNIA, Joint Research Unit UMRt 1158-INRAE, BioEcoAgro, Équipe Métabolites Spécialisés d’Origine Végétale, University Lille, INRAE, University Liège, UPJV, University Artois, ULCO, 48, Boulevard Vauban, CEDEX BP 41290, 59014 Lille, France
- Joint Research Unit 1158 BioEcoAgro, Équipe Métabolites Spécialisés d’Origine Végétale, Microbial Processes and Interactions, TERRA Research Centre, Gembloux Agro-Bio Tech, Université de Liège, 5030 Gembloux, Belgium
| | - Philippe Reignault
- Unité de Chimie Environnementale et Interactions sur le Vivant (EA 4492), Université Littoral Côte d’Opale, CEDEX CS 80699, 62228 Calais, France
| | - Maryline Magnin-Robert
- Unité de Chimie Environnementale et Interactions sur le Vivant (EA 4492), Université Littoral Côte d’Opale, CEDEX CS 80699, 62228 Calais, France
- Correspondence: (M.M.-R.); (A.L.-H.S.)
| | - Anissa Lounès-Hadj Sahraoui
- Unité de Chimie Environnementale et Interactions sur le Vivant (EA 4492), Université Littoral Côte d’Opale, CEDEX CS 80699, 62228 Calais, France
- Correspondence: (M.M.-R.); (A.L.-H.S.)
| |
Collapse
|
36
|
You J, Zhao M, Chen S, Jiang L, Gao S, Yin H, Zhao L. Effect of chitooligosaccharides with a specific degree of polymerization on multiple targets in T2DM mice. BIORESOUR BIOPROCESS 2022; 9:94. [PMID: 38647883 PMCID: PMC10992422 DOI: 10.1186/s40643-022-00579-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2022] [Accepted: 08/11/2022] [Indexed: 11/10/2022] Open
Abstract
Chitooligosaccharides (COS) are found naturally in the ocean and present a variety of physiological activities, of which hypoglycemic action has attracted considerable research attention. This study aimed to assess the therapeutic effect of COS on mice suffering from type 2 diabetes mellitus (T2DM). COS effectively reduced blood glucose and blood lipid levels and improved glucose tolerance. Furthermore, COS revealed strong inhibitory activity against α-glucosidase, reducing postprandial blood glucose levels. Molecular docking data showed that COS might interact with surrounding amino acids to form a complex and decrease α-glucosidase activity. Additionally, COS enhanced insulin signal transduction and glycogen synthesis while restricting gluconeogenesis in the liver and muscles, reducing insulin resistance (IR) as a result. Moreover, COS effectively protected and restored islet cell function to increase insulin secretion. These results indicated that COS exhibited a significant hypoglycemic effect with multi-target participation. Therefore, COS may serve as a new preventive or therapeutic drug for diabetes to alleviate metabolic syndrome.
Collapse
Affiliation(s)
- Jiangshan You
- State Key Laboratory of Bioreactor Engineering, School of Biotechnology, East China University of Science and Technology, Shanghai, 200237, China
| | - Mengyao Zhao
- State Key Laboratory of Bioreactor Engineering, School of Biotechnology, East China University of Science and Technology, Shanghai, 200237, China
- Shanghai Collaborative Innovation Center for Biomanufacturing Technology (SCICBT), Shanghai, 200237, China
| | - Shumin Chen
- State Key Laboratory of Bioreactor Engineering, School of Biotechnology, East China University of Science and Technology, Shanghai, 200237, China
| | - Lihua Jiang
- State Key Laboratory of Bioreactor Engineering, School of Biotechnology, East China University of Science and Technology, Shanghai, 200237, China
- Shanghai Collaborative Innovation Center for Biomanufacturing Technology (SCICBT), Shanghai, 200237, China
| | - Shuhong Gao
- State Key Laboratory of Bioreactor Engineering, School of Biotechnology, East China University of Science and Technology, Shanghai, 200237, China
| | - Hao Yin
- Organ Transplant Center, Shanghai Changzheng Hospital, Shanghai, 200003, China.
| | - Liming Zhao
- State Key Laboratory of Bioreactor Engineering, School of Biotechnology, East China University of Science and Technology, Shanghai, 200237, China.
- Shanghai Collaborative Innovation Center for Biomanufacturing Technology (SCICBT), Shanghai, 200237, China.
| |
Collapse
|
37
|
Potential Medical Applications of Chitooligosaccharides. Polymers (Basel) 2022; 14:polym14173558. [PMID: 36080631 PMCID: PMC9460531 DOI: 10.3390/polym14173558] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2022] [Revised: 08/22/2022] [Accepted: 08/23/2022] [Indexed: 11/16/2022] Open
Abstract
Chitooligosaccharides, also known as chitosan oligomers or chitooligomers, are made up of chitosan with a degree of polymerization (DP) that is less than 20 and an average molecular weight (MW) that is lower than 3.9 kDa. COS can be produced through enzymatic conversions using chitinases, physical and chemical applications, or a combination of these strategies. COS is of significant interest for pharmacological and medical applications due to its increased water solubility and non-toxicity, with a wide range of bioactivities, including antibacterial, anti-inflammatory, anti-obesity, neuroprotective, anticancer, and antioxidant effects. This review aims to outline the recent advances and potential applications of COS in various diseases and conditions based on the available literature, mainly from preclinical research. The prospects of further in vivo studies and translational research on COS in the medical field are highlighted.
Collapse
|
38
|
Thomas R, Fukamizo T, Suginta W. Bioeconomic production of high-quality chitobiose from chitin food wastes using an in-house chitinase from Vibrio campbellii. BIORESOUR BIOPROCESS 2022; 9:86. [PMID: 38647850 PMCID: PMC10991452 DOI: 10.1186/s40643-022-00574-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2022] [Accepted: 08/05/2022] [Indexed: 11/10/2022] Open
Abstract
Marine Vibrio species are natural degraders of chitin and usually secrete high levels of chitinolytic enzymes to digest recalcitrant chitin to chitooligosaccharides. This study used an endochitinase (VhChiA) from Vibrio campbellii to produce high-quality chitobiose from crustacean chitins. The enzyme was shown to be fully active and stable over 24 h when BSA was used as an additive. When different chitin sources were tested, VhChiA preferentially digested shrimp and squid (α) chitins compared to crab (β) chitin and did not utilize non-chitin substrates. The overall yields of chitobiose obtained from small-scale production using a single-step reaction was 96% from shrimp, and 91% from squid pen and crab-shell chitins. Larger-scale production yielded 200 mg of chitobiose, with > 99% purity after a desalting and purification step using preparative HPLC. In conclusion, we report the employment of an in-house produced chitinase as an effective biocatalyst to rapidly convert chitin food wastes to chitobiose, in a quantity and quality suitable for use in research and commercial purposes. Chitobiose production by this economical and eco-friendly approach can be easily scaled up to obtain multi-gram quantities of chitobiose for chemo-enzymic synthesis of rare chitooligosaccharide derivatives and long chain chitooligosaccharides, as well as preparation of sugar-based functionalized nanomaterials.
Collapse
Affiliation(s)
- Reeba Thomas
- School of Biomolecular Science and Engineering (BSE), Vidyasirimedhi Institute of Science and Technology (VISTEC), Payupnai, Wangchan District, Rayong, 21210, Thailand
| | - Tamo Fukamizo
- School of Biomolecular Science and Engineering (BSE), Vidyasirimedhi Institute of Science and Technology (VISTEC), Payupnai, Wangchan District, Rayong, 21210, Thailand
| | - Wipa Suginta
- School of Biomolecular Science and Engineering (BSE), Vidyasirimedhi Institute of Science and Technology (VISTEC), Payupnai, Wangchan District, Rayong, 21210, Thailand.
| |
Collapse
|
39
|
Mechano-Enzymatic Degradation of the Chitin from Crustacea Shells for Efficient Production of N-acetylglucosamine (GlcNAc). Molecules 2022; 27:molecules27154720. [PMID: 35897896 PMCID: PMC9331973 DOI: 10.3390/molecules27154720] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2022] [Revised: 07/15/2022] [Accepted: 07/18/2022] [Indexed: 12/04/2022] Open
Abstract
Chitin, the second richest polymer in nature, is composed of the monomer N-acetylglucosamine (GlcNAc), which has numerous functions and is widely applied in the medical, food, and chemical industries. However, due to the highly crystalline configuration and low accessibility in water of the chitin resources, such as shrimp and crab shells, the chitin is difficult utilize, and the traditional chemical method causes serious environment pollution and a waste of resources. In the present study, three genes encoding chitinolytic enzymes, including the N-acetylglucosaminidase from Ostrinia furnacalis (OfHex1), endo-chitinase from Trichoderma viride (TvChi1), and multifunctional chitinase from Chitinolyticbacter meiyuanensis (CmChi1), were expressed in the Pichia pastoris system, and the positive transformants with multiple copies were isolated by the PTVA (post-transformational vector amplification) method, respectively. The three recombinants OfHex1, TvChi1, and CmChi1 were induced by methanol and purified by the chitin affinity adsorption method. The purified recombinants OfHex1 and TvChi1 were characterized, and they were further used together for degrading chitin from shrimp and crab shells to produce GlcNAc through liquid-assisted grinding (LAG) under a water-less condition. The substrate chitin concentration reached up to 300 g/L, and the highest yield of the product GlcNAc reached up to 61.3 g/L using the mechano-enzymatic method. A yield rate of up to 102.2 g GlcNAc per 1 g enzyme was obtained.
Collapse
|
40
|
Kim J, Lee B, Chhetri G, Kim I, So Y, Jang W, Seo T. Identification of Mucilaginibacter conchicola sp. nov., Mucilaginibacter achroorhodeus sp. nov. and Mucilaginibacter pallidiroseus sp. nov. and emended description of the genus Mucilaginibacter. Int J Syst Evol Microbiol 2022; 72. [DOI: 10.1099/ijsem.0.005431] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Three chitinolytic, Gram-negative, light pink, capsule-forming, rod-shaped bacterial strains with gliding motion (MYSH2T, MJ1aT and dk17T) were isolated from seashells, soil and foxtail, respectively. Phylogenetic analysis of the 16S rRNA gene sequences and concatenated alignment of 92 core genes indicated that strains MYSH2T, MJ1aT and dk17T were novel species of the genus
Mucilaginibacter
and exhibited a high 16S rRNA sequence similarity (i.e. more than 97.2 %) among each other. These novel strains contained summed feature 3 (C16:1 ω7c and/or C16:1 ω6), iso-C15:0 and MK-7 as the predominant fatty acids and menaquinone. According to the CAZys coding gene of KAAS, MYSH2T and MJ1aT were interpreted as strains containing both GH18 and 19 family coding genes, except for dk17T, which shows only GH19 family genes. These strains likely degrade chitin to chitobiose or directly to N-acetyl-d-glucosamine, which may enhance their chitinolytic capacity, thus making these stains potentially useful for industrial chitin degradation. Based on distinct morphological, physiological, chemotaxonomic and phylogenetic differences from their closest phylogenetic neighbours, we propose that strains MYSH2T, MJ1aT and dk17T represent three novel species in the genus
Mucilaginibacter
, for which the names Mucilaginibacter conchicola sp. nov. (=KACC 19716T=JCM 32787T), Mucilaginibacter achroorhodeus sp. nov. (=KACC 19906T=NBRC 113667T) and Mucilaginibacter pallidiroseus sp. nov. (=KACC 19907T=NBRC 113666T) are proposed. An emended description of the genus
Mucilaginibacter
is proposed.
Collapse
Affiliation(s)
- Jiyoun Kim
- Department of Life Science, Dongguk University-Seoul, Goyang 10326, South Korea
| | - Byungjo Lee
- Department of Life Science, Dongguk University-Seoul, Goyang 10326, South Korea
| | - Geeta Chhetri
- Department of Life Science, Dongguk University-Seoul, Goyang 10326, South Korea
| | - Inhyup Kim
- Department of Life Science, Dongguk University-Seoul, Goyang 10326, South Korea
| | - Yoonseop So
- Department of Life Science, Dongguk University-Seoul, Goyang 10326, South Korea
| | - Wonhee Jang
- Department of Life Science, Dongguk University-Seoul, Goyang 10326, South Korea
| | - Taegun Seo
- Department of Life Science, Dongguk University-Seoul, Goyang 10326, South Korea
| |
Collapse
|
41
|
Blagodatskikh IV, Vyshivannaya OV, Bezrodnykh EA, Tikhonov VE, Orlov VN, Shabelnikova YL, Khokhlov AR. Peculiarities of the interaction of sodium dodecyl sulfate with chitosan in acidic and alkaline media. Int J Biol Macromol 2022; 214:192-202. [PMID: 35709870 DOI: 10.1016/j.ijbiomac.2022.06.059] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2022] [Revised: 04/25/2022] [Accepted: 06/10/2022] [Indexed: 11/05/2022]
Abstract
In this work, the interaction between the negatively charged surfactant sodium dodecyl sulfate (SDS) and partially N-reacetylated chitosan (RA-CHI), which is soluble at pH range up to pH 12, is studied in a wide pH range including alkaline media by light scattering (LS) and isothermic titration calorimetry (ITC). It is shown that in the weakly alkaline medium (pH 7.4), RA-CHI/SDS interaction is exothermic and cooperative. This interaction is found to be coupled with proton transfer from the buffer substance to chitosan as it is revealed by the dependence of the measured heat release on the ionization enthalpy of the buffer. At higher pH values (pH > 8), another mechanism of interaction is observed that include SDS micellization induced by hydrophobic interactions with polymer segments, so that no phase separation occurred in these mixtures. The results obtained can contribute to expand the knowledge about application of chitosan for preparation of pharmaceutical and cosmetic compositions containing anionic surfactants.
Collapse
Affiliation(s)
- Inesa V Blagodatskikh
- A. N. Nesmeyanov Institute of Organoelement Compounds, Russian Academy of Sciences (INEOS RAS), Vavilova St. 28, Moscow 119991, Russia.
| | - Oxana V Vyshivannaya
- A. N. Nesmeyanov Institute of Organoelement Compounds, Russian Academy of Sciences (INEOS RAS), Vavilova St. 28, Moscow 119991, Russia
| | - Evgeniya A Bezrodnykh
- A. N. Nesmeyanov Institute of Organoelement Compounds, Russian Academy of Sciences (INEOS RAS), Vavilova St. 28, Moscow 119991, Russia
| | - Vladimir E Tikhonov
- A. N. Nesmeyanov Institute of Organoelement Compounds, Russian Academy of Sciences (INEOS RAS), Vavilova St. 28, Moscow 119991, Russia
| | - Victor N Orlov
- A. N. Belozersky Research Institute of Physico-Chemical Biology MSU, Leninskie Gory, 1-40, Moscow 119992, Russia
| | - Yana L Shabelnikova
- Institute of Microelectronics Technology and High Purity Materials, Russian Academy of Sciences, Academician Osipyan St. 6, 142432 Chernogolovka, Moscow Region, Russia
| | - Alexey R Khokhlov
- A. N. Nesmeyanov Institute of Organoelement Compounds, Russian Academy of Sciences (INEOS RAS), Vavilova St. 28, Moscow 119991, Russia; Faculty of Physics, M.V. Lomonosov Moscow State University, Leninskie Gory 1-2, Moscow 119991, Russia
| |
Collapse
|
42
|
Huang JH, Zeng FJ, Guo JF, Huang JY, Lin HC, Lo CT, Chou WM. Purification, identification and characterization of Nag2 N-acetylglucosaminidase from Trichoderma virens strain mango. BOTANICAL STUDIES 2022; 63:14. [PMID: 35578140 PMCID: PMC9110600 DOI: 10.1186/s40529-022-00344-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/04/2021] [Accepted: 04/19/2022] [Indexed: 06/15/2023]
Abstract
BACKGROUND N-acetylglucosaminidase (NAGase) could liberate N-acetylglucosamine (GlcNAc) from GlcNAc-containing oligosaccharides. Trichoderma spp. is an important source of chitinase, particularly NAGase for industrial use. nag1 and nag2 genes encoding NAGase, are found in the genome in Trichoderma spp. The deduced Nag1 and Nag2 shares ~ 55% homology in Trichoderma virens. Most studies were focus on Nag1 and nag1 previously. RESULTS The native NAGase (TvmNAG2) was purified to homogeneity with molecular mass of ~ 68 kDa on SDS-PAGE analysis, and identified as Nag2 by MALDI/MS analysis from an isolate T. virens strain mango. RT-PCR analyses revealed that only nag2 gene was expressed in liquid culture of T. virens, while both of nag1 and nag2 were expressed in T. virens cultured on the plates. TvmNAG2 was thermally stable up to 60 °C for 2 h, and the optimal pH and temperature were 5.0 and 60-65 °C, respectively, using p-nitrophenyl-N-acetyl-β-D-glucosaminide (pNP-NAG) as substrate. The hydrolytic product of colloidal chitin by TvmNAG2 was suggested to be GlcNAc based on TLC analyses. Moreover, TvmNAG2 possesses antifungal activity, inhibiting the mycelium growth of Sclerotium rolfsii. And it was resistant to the proteolysis by papain and trypsin. CONCLUSIONS The native Nag2, TvmNAG2 was purified and identified from T. virens strain mango, as well as enzymatic properties. To our knowledge, it is the first report with the properties of native Trichoderma Nag2.
Collapse
Affiliation(s)
- Jheng-Hua Huang
- Department of Biotechnology, National Formosa University, Yunlin, 632 Taiwan, ROC
| | - Feng-Jin Zeng
- Department of Biotechnology, National Formosa University, Yunlin, 632 Taiwan, ROC
| | - Jhe-Fu Guo
- Department of Biotechnology, National Formosa University, Yunlin, 632 Taiwan, ROC
| | - Jian-Yuan Huang
- Department of Biotechnology, National Formosa University, Yunlin, 632 Taiwan, ROC
| | - Hua-Chian Lin
- Department of Biotechnology, National Formosa University, Yunlin, 632 Taiwan, ROC
| | - Chaur-Tsuen Lo
- Department of Biotechnology, National Formosa University, Yunlin, 632 Taiwan, ROC
| | - Wing-Ming Chou
- Department of Biotechnology, National Formosa University, Yunlin, 632 Taiwan, ROC
| |
Collapse
|
43
|
Vasiliev GO, Pigaleva MA, Blagodatskikh IV, Mazur DM, Levin EE, Naumkin AV, Kharitonova EP, Gallyamov MO. Chitosan oxidative scission in self‐neutralizing biocompatible solution of peroxycarbonic acid under high‐pressure
CO
2
. J Appl Polym Sci 2022. [DOI: 10.1002/app.52514] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Gleb O. Vasiliev
- Faculty of Physics Lomonosov Moscow State University Moscow Russian Federation
| | - Marina A. Pigaleva
- Faculty of Physics Lomonosov Moscow State University Moscow Russian Federation
| | - Inesa V. Blagodatskikh
- A. N. Nesmeyanov Institute of Organoelement Compounds Russian Academy of Sciences Moscow Russian Federation
| | - Dmitrii M. Mazur
- Faculty of Chemistry Lomonosov Moscow State University Moscow Russian Federation
| | - Eduard E. Levin
- Faculty of Chemistry Lomonosov Moscow State University Moscow Russian Federation
- FSRC “Crystallography and Photonics” RAS Moscow Russia
| | - Alexander V. Naumkin
- A. N. Nesmeyanov Institute of Organoelement Compounds Russian Academy of Sciences Moscow Russian Federation
| | | | - Marat O. Gallyamov
- Faculty of Physics Lomonosov Moscow State University Moscow Russian Federation
- A. N. Nesmeyanov Institute of Organoelement Compounds Russian Academy of Sciences Moscow Russian Federation
| |
Collapse
|
44
|
Chen Y, Zhou N, Chen X, Wei G, Zhang A, Chen K, Ouyang P. Characterization of a New Multifunctional GH20 β- N-Acetylglucosaminidase From Chitinibacter sp. GC72 and Its Application in Converting Chitin Into N-Acetyl Glucosamine. Front Microbiol 2022; 13:874908. [PMID: 35620090 PMCID: PMC9129912 DOI: 10.3389/fmicb.2022.874908] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2022] [Accepted: 03/24/2022] [Indexed: 11/13/2022] Open
Abstract
In this study, a gene encoding β-N-acetylglucosaminidase, designated NAGaseA, was cloned from Chitinibacter sp. GC72 and subsequently functional expressed in Escherichia coli BL21 (DE3). NAGaseA contains a glycoside hydrolase family 20 catalytic domain that shows low identity with the corresponding domain of the well-characterized NAGases. The recombinant NAGaseA had a molecular mass of 92 kDa. Biochemical characterization of the purified NAGaseA revealed that the optimal reaction condition was at 40°C and pH 6.5, and exhibited great pH stability in the range of pH 6.5-9.5. The V ma x , K m, k cat, and k cat /K m of NAGaseA toward p-nitrophenyl-N-acetyl glucosaminide (pNP-GlcNAc) were 3333.33 μmol min-1 l-1, 39.99 μmol l-1, 4667.07 s-1, and 116.71 ml μmol-1 s-1, respectively. Analysis of the hydrolysis products of N-acetyl chitin oligosaccharides (N-Acetyl COSs) indicated that NAGaseA was capable of converting N-acetyl COSs ((GlcNAc)2-(GlcNAc)6) into GlcNAc with hydrolysis ability order: (GlcNAc)2 > (GlcNAc)3 > (GlcNAc)4 > (GlcNAc)5 > (GlcNAc)6. Moreover, NAGaseA could generate (GlcNAc)3-(GlcNAc)6 from (GlcNAc)2-(GlcNAc)5, respectively. These results showed that NAGaseA is a multifunctional NAGase with transglycosylation activity. In addition, significantly synergistic action was observed between NAGaseA and other sources of chitinases during hydrolysis of colloid chitin. Finally, 0.759, 0.481, and 0.986 g/l of GlcNAc with a purity of 96% were obtained using three different chitinase combinations, which were 1.61-, 2.36-, and 2.69-fold that of the GlcNAc production using the single chitinase. This observation indicated that NAGaseA could be a potential candidate enzyme in commercial GlcNAc production.
Collapse
Affiliation(s)
- Yan Chen
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing, China
| | - Ning Zhou
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing, China
| | - Xueman Chen
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing, China
| | - Guoguang Wei
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing, China
| | - Alei Zhang
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing, China
- Jiangsu Key Laboratory of Marine Bioresources and Environment, Jiangsu Ocean University, Lianyungang, China
| | - Kequan Chen
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing, China
| | - Pingkai Ouyang
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing, China
| |
Collapse
|
45
|
Tian Y, Wu D, Wu D, Cui Y, Ren G, Wang Y, Wang J, Peng C. Chitosan-Based Biomaterial Scaffolds for the Repair of Infected Bone Defects. Front Bioeng Biotechnol 2022; 10:899760. [PMID: 35600891 PMCID: PMC9114740 DOI: 10.3389/fbioe.2022.899760] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2022] [Accepted: 04/20/2022] [Indexed: 12/15/2022] Open
Abstract
The treatment of infected bone defects includes infection control and repair of the bone defect. The development of biomaterials with anti-infection and osteogenic ability provides a promising strategy for the repair of infected bone defects. Owing to its antibacterial properties, chitosan (an emerging natural polymer) has been widely studied in bone tissue engineering. Moreover, it has been shown that chitosan promotes the adhesion and proliferation of osteoblast-related cells, and can serve as an ideal carrier for bone-promoting substances. In this review, the specific molecular mechanisms underlying the antibacterial effects of chitosan and its ability to promote bone repair are discussed. Furthermore, the properties of several kinds of functionalized chitosan are analyzed and compared with those of pure chitosan. The latest research on the combination of chitosan with different types of functionalized materials and biomolecules for the treatment of infected bone defects is also summarized. Finally, the current shortcomings of chitosan-based biomaterials for the treatment of infected bone defects and future research directions are discussed. This review provides a theoretical basis and advanced design strategies for the use of chitosan-based biomaterials in the treatment of infected bone defects.
Collapse
Affiliation(s)
- Yuhang Tian
- Orthopedic Medical Center, The Second Hospital of Jilin University, Changchun, China
| | - Danhua Wu
- The People’s Hospital of Chaoyang District, Changchun, China
| | - Dankai Wu
- Orthopedic Medical Center, The Second Hospital of Jilin University, Changchun, China
| | - Yutao Cui
- Orthopedic Medical Center, The Second Hospital of Jilin University, Changchun, China
| | - Guangkai Ren
- Orthopedic Medical Center, The Second Hospital of Jilin University, Changchun, China
| | - Yanbing Wang
- Orthopedic Medical Center, The Second Hospital of Jilin University, Changchun, China
| | - Jincheng Wang
- Orthopedic Medical Center, The Second Hospital of Jilin University, Changchun, China
| | - Chuangang Peng
- Orthopedic Medical Center, The Second Hospital of Jilin University, Changchun, China
- *Correspondence: Chuangang Peng,
| |
Collapse
|
46
|
Rajput M, Kumar M, Pareek N. Myco-chitinases as versatile biocatalysts for translation of coastal residual resources to eco-competent chito-bioactives. FUNGAL BIOL REV 2022. [DOI: 10.1016/j.fbr.2022.04.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
47
|
Deproteinization of Shrimp Shell Waste by Kurthia gibsonii Mb126 immobilized chitinase. JOURNAL OF PURE AND APPLIED MICROBIOLOGY 2022. [DOI: 10.22207/jpam.16.2.11] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
This work was aimed at immobilization, characterization, and utilization of chitinase from Kurthia gibsonii Mb126. Immobilization of Kurthia gibsonii Mb126 chitinase on glutaraldehyde treated chitosan was carried out with immobilization yield of 106%. The optimal factors of the immobilization technique such as concentration of glutaraldehyde, chitinase concentration, and immobilization time were evaluated. After optimizing process parameters of immobilization (Glutaraldehyde concentration 4%, chitinase conc. 60mg, immobilization time 30min.), the specific activity of immobilized chitinase improved to 4.3-fold compared to the free form of chitinase. Temperature and pH optima of the immobilized chitinase and free enzyme were same i.e., 7.5 and 40°C respectively. The relative activity of immobilized chitinase remained 90% at 40°C, at 50°C, and at 60°C for 120 min. In the pH range from 5.5 to 8, the immobilized chitinase retained 100% activity. The results confirmed that the pH stability and thermal stability of chitinase increased by immobilizing chitinase on chitosan. The immobilized enzyme system maintained 90% of its efficiency even after 16 successive reaction cycles. The immobilized chitinase maintained 78% of its activity even after 20 months. Fermentation of prawn shell waste with immobilized chitinase indicated a high level of deproteinization. Deproteinization experiments were carried out with 5mL (0.4 mg/mL ) of immobilized and free chitinase on 300 mg/mL of prawn shell waste for 20 days without any additional supplements at 40°C and 6.5 pH. Protein content was reduced from 38.4 to 0.8% with immobilized chitinase. Results suggests the possibility of using immobilized enzymes to remove the prawn shell waste from the environment. To the best of our knowledge there was no such study about the deproteinization of prawn shell waste using immobilized chitinase till the date.
Collapse
|
48
|
Triunfo M, Tafi E, Guarnieri A, Salvia R, Scieuzo C, Hahn T, Zibek S, Gagliardini A, Panariello L, Coltelli MB, De Bonis A, Falabella P. Characterization of chitin and chitosan derived from Hermetia illucens, a further step in a circular economy process. Sci Rep 2022; 12:6613. [PMID: 35459772 PMCID: PMC9033872 DOI: 10.1038/s41598-022-10423-5] [Citation(s) in RCA: 61] [Impact Index Per Article: 30.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2022] [Accepted: 03/28/2022] [Indexed: 11/09/2022] Open
Abstract
Due to their properties and applications, the growing demand for chitin and chitosan has stimulated the market to find more sustainable alternatives to the current commercial source (crustaceans). Bioconverter insects, such as Hermetia illucens, are the appropriate candidates, as chitin is a side stream of insect farms for feed applications. This is the first report on production and characterization of chitin and chitosan from different biomasses derived from H. illucens, valorizing the overproduced larvae in feed applications, the pupal exuviae and the dead adults. Pupal exuviae are the best biomass, both for chitin and chitosan yields and for their abundance and easy supply from insect farms. Fourier-transform infrared spectroscopy, X-ray diffraction and scanning electron microscope analysis revealed the similarity of insect-derived polymers to commercial ones in terms of purity and structural morphology, and therefore their suitability for industrial and biomedical applications. Its fibrillary nature makes H. illucens chitin suitable for producing fibrous manufacts after conversion to chitin nanofibrils, particularly adults-derived chitin, because of its high crystallinity. A great versatility emerged from the evaluation of the physicochemical properties of chitosan obtained from H. illucens, which presented a lower viscosity-average molecular weight and a high deacetylation degree, fostering its putative antimicrobial properties.
Collapse
Affiliation(s)
- Micaela Triunfo
- Department of Sciences, University of Basilicata, Potenza, Italy
| | - Elena Tafi
- Department of Sciences, University of Basilicata, Potenza, Italy
| | - Anna Guarnieri
- Department of Sciences, University of Basilicata, Potenza, Italy
| | - Rosanna Salvia
- Department of Sciences, University of Basilicata, Potenza, Italy.
- Spinoff XFLIES s.r.l, University of Basilicata, Potenza, Italy.
| | - Carmen Scieuzo
- Department of Sciences, University of Basilicata, Potenza, Italy
- Spinoff XFLIES s.r.l, University of Basilicata, Potenza, Italy
| | - Thomas Hahn
- Fraunhofer Institute for Interfacial Engineering and Biotechnology IGB, Stuttgart, Germany
| | - Susanne Zibek
- Fraunhofer Institute for Interfacial Engineering and Biotechnology IGB, Stuttgart, Germany
| | | | - Luca Panariello
- Department of Civil and Industrial Engineering, University of Pisa, Pisa, Italy
| | | | - Angela De Bonis
- Department of Sciences, University of Basilicata, Potenza, Italy
| | - Patrizia Falabella
- Department of Sciences, University of Basilicata, Potenza, Italy.
- Spinoff XFLIES s.r.l, University of Basilicata, Potenza, Italy.
| |
Collapse
|
49
|
Guo M, Wei X, Chen S, Xiao J, Huang D. Enhancing nonspecific enzymatic hydrolysis of chitin to oligosaccharides pretreated by acid and green solvents under simultaneous microwave-radiation. Int J Biol Macromol 2022; 209:631-641. [PMID: 35413325 DOI: 10.1016/j.ijbiomac.2022.04.032] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2021] [Revised: 03/13/2022] [Accepted: 04/04/2022] [Indexed: 11/05/2022]
Abstract
It is hard to degrade untreated highly crystalline chitin. In this study, two solvents pretreatment chitin (acid swollen chitin (AC), super fine chitin (FC)) and microwave-heating method were used to enhance nonspecific enzymatic hydrolysis (lysozyme and pepsin), which obviously improved the enzymolysis rates by at least 1.31 times. Characterizations of chitin substrates (Mv, SEM, XRD) showed that calcium solvent pretreatment (obtained FC) was milder but effective than phosphoric acid pretreatment (obtained AC). The highest yield of chitin oligosaccharides (37.58 mg/g) were obtained after hydrolyzing AC under five-hour simultaneous microwave radiation by pepsin, among them, the content of N-acetylglucosamine was 13.76 mg/g. While, more chitin oligosaccharides with DP (degree of polymerization) 3-4 and lower DA (degree of acetylation) were obtained when using lysozyme than pepsin. Significantly, the conversion rate of chitin to oligosaccharides went best only when microwave and enzymes acting together (simultaneous strategy), which were at least 35.59% higher than separately pretreatment enzymes and substrates by microwave. The damages of microwave radiation on lysozyme and chitin substrates were revealed, and the operating principle of the whole enzyme reaction system heated by microwave was preliminatively explored.
Collapse
Affiliation(s)
- Mengyuan Guo
- College of Life Sciences, Nankai University, Tianjin 300071, China
| | - Xunfan Wei
- College of Life Sciences, Nankai University, Tianjin 300071, China
| | - Sicong Chen
- College of Life Sciences, Nankai University, Tianjin 300071, China
| | - Jinhua Xiao
- College of Life Sciences, Nankai University, Tianjin 300071, China.
| | - Dawei Huang
- College of Life Sciences, Nankai University, Tianjin 300071, China.
| |
Collapse
|
50
|
Zhang W, Zhou J, Gu Q, Sun R, Yang W, Lu Y, Wang C, Yu X. Heterologous Expression of GH5 Chitosanase in Pichia pastoris and Antioxidant Biological Activity of Its Chitooligosacchride Hydrolysate. J Biotechnol 2022; 348:55-63. [PMID: 35304164 DOI: 10.1016/j.jbiotec.2022.03.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2021] [Revised: 03/01/2022] [Accepted: 03/10/2022] [Indexed: 11/25/2022]
Abstract
Chitosanase was widely used in the production of bioactive chitooligosacchride (CHOS) due to their safety, controllability, environmental protection, and biodegradability. Studies showed that the bioactivity of CHOS is closely related to its degree of polymerization. Therefore, the production of ideal polymerized CHOS becomes our primary goal. In this study, the glycosyl hydrolase (GH) family 5 chitosanase was successfully expressed heterologously in Pichia pastoris. After 96h of high-density fermentation, the chitosanase activity reached 90.62 U·mL-1, the protein content reached 9.76mg·mL-1. When 2% chitosan was hydrolyzed by crude enzyme (20U/mL), the hydrolysis rate reached 91.2% after 8h, producing a mixture of CHOS with 2-4 desirable degrees of polymerization (DP). Then, the antioxidant activity of CHOS mixture was investigated, and the results showed that the antioxidant effect was concentration-dependent and had great application potential in the field of nutrition.
Collapse
Affiliation(s)
- Wenshuai Zhang
- School of Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi 214122, China; The Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi 214122, China
| | - Jianli Zhou
- School of Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi 214122, China; The Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi 214122, China
| | - Qiuya Gu
- School of Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi 214122, China; The Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi 214122, China
| | - Ruobin Sun
- School of Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi 214122, China; The Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi 214122, China
| | - Wenhua Yang
- School of Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi 214122, China; The Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi 214122, China
| | - Yu Lu
- School of Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi 214122, China; The Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi 214122, China
| | - Congcong Wang
- School of Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi 214122, China; The Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi 214122, China
| | - Xiaobin Yu
- School of Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi 214122, China; The Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi 214122, China.
| |
Collapse
|