1
|
Zhao H, Chen M, Yu J, Sheng B, Han X, Tian Q, Xu J, Chen J. Three-dimensional rattan-derived electrodes with directional channels and large mass loadings for high-performance aqueous zinc-ion batteries. J Colloid Interface Sci 2025; 678:441-448. [PMID: 39303562 DOI: 10.1016/j.jcis.2024.09.150] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2024] [Revised: 09/05/2024] [Accepted: 09/15/2024] [Indexed: 09/22/2024]
Abstract
Aqueous zinc-ion batteries (AZIBs) have emerged as prospective candidates for wide-scale energy storage, benefiting from their exceptional reliability and budget-friendliness. To tackle the challenge of limited energy density of AZIBs, it is pivotal to explore cathodes with substantial mass loadings. In this study, rattan is converted into a three-dimensional (3D) current collector with directional channels, high compressive strength, good electrolyte affinity, and superior electrochemical stability through a process involving ultraviolet light irradiation-assisted delignification followed by high-temperature carbonization. Using this current collector and a straightforward slurry pasting method, a 3D MnO2 cathode featuring substantial loading amount of 10 mg cm-2 for active material can be constructed. This cathode's rich channel structure allows the carbon nanotube/MnO2 composite material to establish full contact with the electrolyte, significantly facilitating interfacial charge transfer. The optimized cathode achieves an outstanding areal capacity of 3.65 mAh cm-2 at 0.1 A/g and sustains 1.52 mAh cm-2 at 1 A/g. Besides, the capacity retention remains at 60.2 % after 1000 cycles, even under such large mass loading. Notably, the fabrication procedure of the 3D cathode is simple, and the associated costs are relatively low compared to other 3D cathodes for AZIBs. These findings present an effective strategy for developing cost-effective and high-performance electrodes with large areal capacities, advancing energy storage technologies.
Collapse
Affiliation(s)
- Hanrui Zhao
- Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, College of Materials Science and Engineering, Nanjing Forestry University, Nanjing 210037, China
| | - Minfeng Chen
- Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, College of Materials Science and Engineering, Nanjing Forestry University, Nanjing 210037, China
| | - Jiaqi Yu
- Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, College of Materials Science and Engineering, Nanjing Forestry University, Nanjing 210037, China
| | - Bifu Sheng
- Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, College of Materials Science and Engineering, Nanjing Forestry University, Nanjing 210037, China
| | - Xiang Han
- Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, College of Materials Science and Engineering, Nanjing Forestry University, Nanjing 210037, China
| | - Qinghua Tian
- Key Laboratory of Surface & Interface Science of Polymer Materials of Zhejiang Province, School of Chemistry and Chemical Engineering, Zhejiang Sci-Tech University, Hangzhou 310018, China
| | - Junling Xu
- School of Materials and Energy, Guangdong University of Technology, Guangzhou 510006, China
| | - Jizhang Chen
- Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, College of Materials Science and Engineering, Nanjing Forestry University, Nanjing 210037, China.
| |
Collapse
|
2
|
Ibrahim N, Hefnawy MA, Fadlallah SA, Medany SS. Recent advances in electrochemical approaches for detection of nitrite in food samples. Food Chem 2025; 462:140962. [PMID: 39241683 DOI: 10.1016/j.foodchem.2024.140962] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2024] [Revised: 08/02/2024] [Accepted: 08/21/2024] [Indexed: 09/09/2024]
Abstract
Nitrite is a common ingredient in the industry and agriculture; it is everywhere, like water, food, and surroundings. Recently, several approaches have been developed to measure the nitrite levels. So, this review was presented as a summary of many approaches utilized to detect the nitrite. Furthermore, the types of information that may be acquired using these methodologies, including optic and electrical signals, were discussed. In electrical signal methods, electrochemical sensors are usually developed using different materials, including carbon, polymers, oxides, and hydroxides. At the same time, optic signals receiving techniques involve utilizing fluorescence chromatography, absorption, and spectrometry instruments. Furthermore, these methodologies' benefits, drawbacks, and restrictions are examined. Lastly, due to the efficiency and fast means of electrochemical detectors, it was suggested that they can be used for detecting nitrite in food safety. Futuristic advancements in the techniques used for nitrite determination are subsequently outlined.
Collapse
Affiliation(s)
- Nora Ibrahim
- Biotechnology Department, Faculty of Science, Cairo University, Giza, Egypt
| | - Mahmoud A Hefnawy
- Chemistry Department, Faculty of Science, Cairo University, Giza, Egypt.
| | - Sahar A Fadlallah
- Biotechnology Department, Faculty of Science, Cairo University, Giza, Egypt; Chemistry Department, Faculty of Science, Cairo University, Giza, Egypt.
| | - Shymaa S Medany
- Chemistry Department, Faculty of Science, Cairo University, Giza, Egypt.
| |
Collapse
|
3
|
Tariq A, Bilal S, Naz I, Nawaz MH, Andreescu S, Jubeen F, Arif A, Hayat A. A multifunctional N-GO/PtCo nanocomposite bridged carbon fiber interface for the electrochemical aptasensing of CA15-3 oncomarker. Anal Biochem 2024; 695:115640. [PMID: 39142532 DOI: 10.1016/j.ab.2024.115640] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2024] [Revised: 08/03/2024] [Accepted: 08/12/2024] [Indexed: 08/16/2024]
Abstract
The development of integrated analytical devices is crucial for advancing next-generation point-of-care platforms. Herein, we describe a facile synthesis of a strongly catalytic and durable Nitrogen-doped graphene oxide decorated platinum cobalt (NGO-PtCo) nanocomposite that is conjugated with target-specific DNA aptamer (i-e. MUC1) and grown on carbon fiber. Benefitting from the combined features of the high electrochemical surface area of N-doped GO, high capacitance and stabilization by Co, and high kinetic performance by Pt, a robust, multifunctional, and flexible nanotransducer surface was created. The designed platform was applied for the specific detection of a blood-based oncomarker, CA15-3. The electrochemical characterization proved that nanosurface provides a highly conductive and proficient immobilization support with a strong bio-affinity towards MUC1 aptamer. The specific interaction between CA15-3 and the aptamer alters the surface properties of the aptasensor and the electroactive signal probe generated a remarkable increase in signal intensity. The sensor exhibited a wide dynamic range of 5.0 × 10-2 -200 U mL-1, a low limit of detection (LOD) of 4.1 × 10-2 U mL-1, and good reproducibility. The analysis of spiked serum samples revealed outstanding recoveries of up to 100.03 %, by the proposed aptasensor. The aptasensor design opens new revelations in the reliable detection of tumor biomarkers for timely cancer diagnosis.
Collapse
Affiliation(s)
- Aqsa Tariq
- Interdisciplinary Research Center in Biomedical Materials (IRCBM), COMSATS University, Islamabad, Lahore Campus, Lahore, 54000, Pakistan; Department of Basic and Applied Chemistry, Faculty of Science and Technology, University of Central Punjab, Lahore, 54000, Pakistan
| | - Sehrish Bilal
- Department of Biochemistry, Gulab Devi Educational Complex, Gulab Devi Hospital, Lahore, 05307, Pakistan.
| | - Iram Naz
- Interdisciplinary Research Center in Biomedical Materials (IRCBM), COMSATS University, Islamabad, Lahore Campus, Lahore, 54000, Pakistan; Department of Chemistry, Government College Women University, Faisalabad, 38000, Pakistan
| | - Mian Hasnain Nawaz
- Interdisciplinary Research Center in Biomedical Materials (IRCBM), COMSATS University, Islamabad, Lahore Campus, Lahore, 54000, Pakistan
| | - Silvana Andreescu
- Department of Chemistry and Biomolecular Science, Clarkson University, 8 Clarkson Avenue, Potsdam, NY, 13699-5810, USA; Department of Environmental Health Sciences, Robert Stempel College of Public Health, Florida International University (FIU), 11200 SW 8th Street, AHC-5, Miami, FL, 33199, USA
| | - Farhat Jubeen
- Department of Chemistry, Government College Women University, Faisalabad, 38000, Pakistan
| | - Amina Arif
- Department of Basic and Applied Chemistry, Faculty of Science and Technology, University of Central Punjab, Lahore, 54000, Pakistan
| | - Akhtar Hayat
- Interdisciplinary Research Center in Biomedical Materials (IRCBM), COMSATS University, Islamabad, Lahore Campus, Lahore, 54000, Pakistan.
| |
Collapse
|
4
|
Farag AA, Al-Shomar SM, Abdelshafi NS. Eco-friendly modified chitosan as corrosion inhibitor for carbon steel in acidic medium: Experimental and in-depth theoretical approaches. Int J Biol Macromol 2024; 279:135408. [PMID: 39265910 DOI: 10.1016/j.ijbiomac.2024.135408] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2024] [Revised: 08/15/2024] [Accepted: 09/05/2024] [Indexed: 09/14/2024]
Abstract
The industrial and medical sectors have a great interest in chitosan due to its unique properties, such as abundance, renewability, non-toxicity, antibacterial activity, biodegradability, and polyfunctionality. In this work, two modified chitosan Schiff bases (ChSB-1 and ChSB-2) were made using condensation methods, and their potential as corrosion inhibitor for carbon steel in 1 M HCl was investigated using chemical and electrochemical techniques. The ChSB-1 and ChSB-2 inhibitors exhibited remarkable inhibitory performance, as evidenced by the mass loss data, which showed 89.3 % and 91.5 % efficacy at 1 mM concentration, respectively. Because of the electron-donor substituent of methoxy (-OCH3), ChSB-2's active sites have more delocalized electrons than ChSB-1's. The PDP results showed that both ChSB-1 and ChSB-2 inhibitors have anti-corrosion characteristics because heteroatoms caused a protective layer to develop that functioned as mixed-typed inhibitors. The calculated adsorption-free energy ∆Gadso for ChSB-1 and ChSB-2, respectively, was found -36.1 and - 37.1 kJ mol-1. The ChSB-1 and ChSB-2 inhibitors adsorb on carbon steel in acidic conditions through physisorption and chemisorption interactions, and their adsorption is in line with the Langmuir adsorption model. Inhibited and uninhibited metallic surfaces were subjected to surface morphological assessments using contact angle (CA), the scanning electron microscopy and the energy dispersive X-ray (SEM/EDX) analysis. The DMol3 part of Materials Studio 7.0 software was used to perform the quantum chemical calculations based on DFT to visualize the structural features. Studies from quantum chemistry suggest the possibility of surface interaction between the unoccupied orbitals of the metal surface and the inhibitors ChSB-1, ChSB-2, ChSB-1H+, and ChSB-2H+. The results clearly show that the two inhibitors work well as environmentally friendly carbon steel corrosion inhibitors in acidic medium. This could be advantageous for industrial procedures such as pickling, cleaning, acidizing oil drilling in oil wells, and using citrus to de-sediment boilers.
Collapse
Affiliation(s)
- Ahmed A Farag
- Egyptian Petroleum Research Institute (EPRI), Nasr City, 11727, Cairo, Egypt.
| | - S M Al-Shomar
- Physics Department, Faculty of Science, Ha'il University, Hail, Saudi Arabia
| | - N S Abdelshafi
- Chemistry Department, Faculty of Education, Ain Shams University, Roxy, Cairo 11711, Egypt
| |
Collapse
|
5
|
Cheng Q, Zhao Q. Fluorescence assay for aflatoxin B1 based on aptamer-binding triggered DNAzyme activity. Anal Bioanal Chem 2024; 416:6367-6375. [PMID: 39264462 DOI: 10.1007/s00216-024-05523-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2024] [Revised: 07/29/2024] [Accepted: 08/26/2024] [Indexed: 09/13/2024]
Abstract
As a kind of mycotoxin, aflatoxin B1 (AFB1), which is often found in agricultural products, poses a threat to human health. Developing a simple sensitive method for AFB1 detection is in great demand. Here, we reported an aptamer-based fluorescence assay for AFB1 detection by using DNAzyme to generate and amplify a signal. We redesigned a pair of DNA sequences, which originated from the anti-AFB1 aptamer and RNA-cleaving DNAzyme 10-23. In the absence of AFB1, the aptamer hybridized with the region of the substrate-binding arm of the DNAzyme, inhibiting the activity of the DNAzyme. In the presence of AFB1, the binding of AFB1 to the aptamer led to the displacement of the DNAzyme from the aptamer. The substrate-binding arm was unblocked, and the activity of the DNAzyme was restored for the hydrolysis of the fluorophore and quencher-labeled substrate, causing a significant fluorescence increase. This assay could detect AFB1 in the dynamic range from 0.98 to 2000 nmol/L with high selectivity, and the detection limit was 0.98 nmol/L. Moreover, the assay was able to detect AFB1 in a complex sample matrix. This work provides a useful tool for the analysis of AFB1.
Collapse
Affiliation(s)
- Qiuyi Cheng
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Qiang Zhao
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China.
- University of Chinese Academy of Sciences, Beijing, 100049, China.
- School of Environment, Hangzhou Institute for Advanced Study, UCAS, Hangzhou, 310024, China.
| |
Collapse
|
6
|
Hu X, Wei W, Li X, Yang Y, Zhou B. Recent advances in ratiometric electrochemical sensors for food analysis. Food Chem X 2024; 23:101681. [PMID: 39157660 PMCID: PMC11328010 DOI: 10.1016/j.fochx.2024.101681] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2024] [Revised: 07/13/2024] [Accepted: 07/20/2024] [Indexed: 08/20/2024] Open
Abstract
Ratiometric electrochemical sensors are renowned for their dual-signal processing capabilities, enabling automatic correction of background noise and interferences through built-in calibration, thus providing more accurate and reproducible measurements. This characteristic makes them highly promising for food analysis. This review comprehensively summarizes and discusses the latest advancements in ratiometric electrochemical sensors and their applications in food analysis, emphasizing their design strategies, detection capabilities, and practical uses. Initially, we explore the construction and design strategies of these sensors. We then review the detection of various food-related analytes, including nutrients, additives, metal ions, pharmaceutical and pesticide residues, biotoxins, and pathogens. The review also briefly explores the challenges faced by ratiometric electrochemical sensors in food testing and potential future directions for development. It aims to provide researchers with a clear introduction and serve as a reference for the design and application of new, efficient ratiometric electrochemical sensors in food analysis.
Collapse
Affiliation(s)
- Xincheng Hu
- College of Chemistry and Chemical Engineering, Henan Engineering Center of New Energy Battery Materials, Shangqiu Normal University, Shangqiu 476000, China
| | - Wei Wei
- College of Chemistry and Chemical Engineering, Henan Engineering Center of New Energy Battery Materials, Shangqiu Normal University, Shangqiu 476000, China
| | - Xinyi Li
- College of Chemistry and Chemical Engineering, Hunan Institute of Science and Technology, Yueyang 414006, China
| | - Yewen Yang
- School of Chemistry and Chemical Engineering, Hunan University of Science and Technology, Xiangtan 411201, China
| | - Binbin Zhou
- College of Chemistry and Chemical Engineering, Hunan Institute of Science and Technology, Yueyang 414006, China
| |
Collapse
|
7
|
Ambagaspitiya TD, Garza DJC, Zuercher A, Asetre Cimatu KL. Investigating the self-assembly of pH-sensitive switchable diamine surfactant using sum frequency generation spectroscopy and molecular dynamics simulations. J Chem Phys 2024; 161:164709. [PMID: 39450732 DOI: 10.1063/5.0230410] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2024] [Accepted: 10/09/2024] [Indexed: 10/26/2024] Open
Abstract
The responses of the N-alkyl diamine groups to variations in pH affect their conformations and surface activities, making them relevant to applications relying on interfacial interactions, such as controlled emulsification and mineral flotation. An in-depth understanding of interfacial self-assembly is crucial. Herein, a molecular-level study was performed to investigate the adsorption and self-assembly of N-dodecylpropane-1,3-diamine (DPDA) at the air-water (A/W) interface using sum frequency generation (SFG) spectroscopy and molecular dynamics (MD) simulations. The SFG spectra of DPDA, acquired under three pH conditions, suggest that the protonation of the DPDA diamine group influences the alkyl chain arrangement at a varying degree at the A/W interface. Analysis of the di-cationic DPDA SFG spectrum at a low pH showed fewer gauche defects at low concentration, as indicated by the relatively higher intensity ratio (ICH3SS/ICH2SS) of 18.1 ± 0.6. The density profiles from MD simulations at different surface areas per molecule and pH conditions, showing varying degrees of packing, support the observation of gauche defects in SFG. With MD simulation, the radial distribution factor for di-cationic species has the highest probability of forming hydrogen bonds compared to mono-cationic and non-ionic species. These g(r) probability results conform with observations obtained from SFG spectroscopy, where we observed a strong hydrogen bond interaction at low pH conditions with di-cationic species, forming tetrahedrally arranged water molecules at the A/W interface. Overall, comprehensive insights will facilitate the visualization of alkyl diamines and their potential derivatives at the A/W interface, enabling a better understanding of their behavior across various applications.
Collapse
Affiliation(s)
- Tharushi D Ambagaspitiya
- Department of Chemistry and Biochemistry, Ohio University, 133 University Terrace, Chemistry Building, Athens, Ohio 45701-2979, USA
| | - Danielle John C Garza
- Department of Chemistry and Biochemistry, Ohio University, 133 University Terrace, Chemistry Building, Athens, Ohio 45701-2979, USA
| | - Aoife Zuercher
- Department of Chemistry and Biochemistry, Ohio University, 133 University Terrace, Chemistry Building, Athens, Ohio 45701-2979, USA
| | - Katherine Leslee Asetre Cimatu
- Department of Chemistry and Biochemistry, Ohio University, 133 University Terrace, Chemistry Building, Athens, Ohio 45701-2979, USA
| |
Collapse
|
8
|
Dehghan-Chenar S, Zare HR, Mohammadpour Z. Chitosan-ImH@γ-CD: a pH-sensitive smart bio-coating to enhance the corrosion resistance of magnesium alloys in bio-implants. RSC Adv 2024; 14:33301-33310. [PMID: 39434998 PMCID: PMC11492830 DOI: 10.1039/d4ra04744c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2024] [Accepted: 10/12/2024] [Indexed: 10/23/2024] Open
Abstract
Magnesium alloys hold promise as bio-implants but are hindered by poor corrosion resistance. To overcome this, a pH-sensitive smart anti-corrosion bio-coating was developed using a layer-by-layer technique. The first layer consists of Imidazol@waterproofed γ-Cyclodextrin metal organic framework (ImH@waterproofed γ-CD MOF), which encapsulates ImH, a green inhibitor, in waterproofed γ-CD MOF. The second layer is composed of 1% w/v chitosan. ImH@waterproofed γ-CD MOF was characterized by SEM, FTIR, and XRD. The corrosion parameters of the smart bio-coating were investigated through potentiodynamic polarization (Tafel) plots and electrochemical impedance spectroscopy (EIS) in simulated body fluid (SBF). The results indicate that when the magnesium alloy coated with the chitosan-ImH@γ-CD composite is placed in the SBF solution, the pH near the corrosion site increases over time. This increase in pH leads to the release of imidazole as a corrosion inhibitor, effectively preventing surface corrosion by forming a protective layer on the alloy's surface. The chitosan-ImH@γ-CD composite exhibits an inhibition efficiency of 97.27% after 5 days of immersion in SBF. Additionally, the cell viability on the chitosan-ImH@γ-CD composite surface is significantly higher than on uncoated Mg alloy, promoting MC3T3-E1 cell proliferation. Alkaline phosphatase results also indicate improved differentiation of MC3T3-E1 cells with the chitosan-ImH@γ-CD composite.
Collapse
Affiliation(s)
| | - Hamid Reza Zare
- Department of Chemistry, Yazd University Yazd 89195-741 Iran
| | | |
Collapse
|
9
|
Deehan L, Kaushik AK, Chaudhary GR, Papakonstantinou P, Bhalla N. Decoupling Variable Capacitance and Diffusive Components of Active Solid-Liquid Interfaces with Flex Points. ACS MEASUREMENT SCIENCE AU 2024; 4:599-605. [PMID: 39430958 PMCID: PMC11487932 DOI: 10.1021/acsmeasuresciau.4c00057] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/11/2024] [Revised: 08/16/2024] [Accepted: 08/19/2024] [Indexed: 10/22/2024]
Abstract
Understanding the current transport characteristics of electrode interfaces is essential for optimizing device performance across a wide range of applications including bio-/chemical sensing and energy storage sectors. Cyclic voltammetry (CV) is a popular method for studying interfacial properties, particularly those involving redox systems. However, it remains challenging to differentiate between electron movements that contribute to capacitive and diffusive behaviors. In this study, we introduce a technique called flex point analysis, which uses a single differentiation step to separate capacitive and diffusive electron movements at the electrode interface during a redox reaction. Our results show that the variable capacitance at the electrode surface exhibited both positive and negative values on the order of 10-6 (micro) Farad. This approach provides a clearer understanding of interfacial electron dynamics, enhancing the interpretation of CV data and potentially improving the design and optimization of related materials and devices.
Collapse
Affiliation(s)
- Liam Deehan
- Nanotechnology
and Integrated Bioengineering Centre (NIBEC), School of Engineering, Ulster University, 2-24 York Street, Belfast, Northern Ireland BT15 1AP, United Kingdom
| | - Ajeet Kumar Kaushik
- Department
of Environmental Engineering, Florida Polytechnic
University, Lakeland, Florida 33805, United States
| | - Ganga Ram Chaudhary
- Department
of Chemistry and Centre of Advanced Studies in Chemistry, Panjab University, Chandigarh 160 014, India
| | - Pagona Papakonstantinou
- Nanotechnology
and Integrated Bioengineering Centre (NIBEC), School of Engineering, Ulster University, 2-24 York Street, Belfast, Northern Ireland BT15 1AP, United Kingdom
| | - Nikhil Bhalla
- Nanotechnology
and Integrated Bioengineering Centre (NIBEC), School of Engineering, Ulster University, 2-24 York Street, Belfast, Northern Ireland BT15 1AP, United Kingdom
| |
Collapse
|
10
|
Gutiérrez A, Ramírez-Ledesma MG, Rivas GA, Luna-Bárcenas G, Escalona-Villalpando RA, Ledesma-García J. Development of an electrochemical sensor for the quantification of ascorbic acid and acetaminophen in pharmaceutical samples. J Pharm Biomed Anal 2024; 249:116334. [PMID: 38976964 DOI: 10.1016/j.jpba.2024.116334] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2024] [Revised: 07/01/2024] [Accepted: 07/02/2024] [Indexed: 07/10/2024]
Abstract
This work presents the modification of glassy carbon electrodes (GCE) by using a dispersion resulting from the non-covalent functionalization of multi-walled carbon nanotubes (MWCNT) with polyarginine (polyArg). MWCNT-polyArg is used for the quantification of ascorbic acid (AA) in the presence of acetaminophen (APAP) and viceversa. Since ascorbic acid and acetaminophen are strongly absorbed on GCE/MWCNT-polyArg, they can be detected in the presence of 4.0×10-5 M acetaminophen (and 3.0×10-5 M ascorbic acid) by using adsorptive stripping with media exchange and differential pulse voltammetry. Using water as the solvent for the MWCNT dispersion, the result was Z-potential of 0.053 ± 0.006 V. The developed sensor showed excellent specificity, sensitivity, stability and reproducibility compared to previously published sensors. The GCE/MWCNT-polyArg sensor shows a fast response time of ∼5 minutes, low limits of detection and quantification for AA (0.95 and 2.9 μM respectively) and APAP (0.27 and 0.82μM, respectively), high sensitivity of 0.0616 μA/M for AA or APAP 0.240μA/M. It was used to test its practicability by determining the concentration of AA or APAP (AA and APAP) in pharmaceutical samples. Finally, the simultaneous measurement of ascorbic acid and acetaminophen in pharmaceuticals showed a good correlation, with a maximum error and RSD of 4.5 and 5.1 %, respectively.
Collapse
Affiliation(s)
- Alejandro Gutiérrez
- División de Investigación y Posgrado, Facultad de Ingeniería, Universidad Autónoma de Querétaro, Santiago de Querétaro 76010, Mexico; CONAHCYT, Consejo Nacional de Humanidades, Ciencias y Tecnologías, Av. Insurgentes Sur 1582, Col. Crédito Constructor, Benito Juárez, Ciudad de México 03940, Mexico.
| | - María Guadalupe Ramírez-Ledesma
- División de Investigación y Posgrado, Facultad de Ingeniería, Universidad Autónoma de Querétaro, Santiago de Querétaro 76010, Mexico
| | - Gustavo A Rivas
- INFIQC, Departamento de Físico Química, Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, Córdoba 5000, Argentina
| | - Gabriel Luna-Bárcenas
- Tecnológico de Monterrey, Institute of Advanced Materials for Sustainable Manufacturing, Santiago de Querétaro 76130, Mexico
| | - Ricardo A Escalona-Villalpando
- División de Investigación y Posgrado, Facultad de Ingeniería, Universidad Autónoma de Querétaro, Santiago de Querétaro 76010, Mexico
| | - Janet Ledesma-García
- División de Investigación y Posgrado, Facultad de Ingeniería, Universidad Autónoma de Querétaro, Santiago de Querétaro 76010, Mexico.
| |
Collapse
|
11
|
Meng J, Zahran M, Li X. Metal-Organic Framework-Based Nanostructures for Electrochemical Sensing of Sweat Biomarkers. BIOSENSORS 2024; 14:495. [PMID: 39451708 PMCID: PMC11506703 DOI: 10.3390/bios14100495] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/05/2024] [Revised: 10/04/2024] [Accepted: 10/10/2024] [Indexed: 10/26/2024]
Abstract
Sweat is considered the most promising candidate to replace conventional blood samples for noninvasive sensing. There are many tools and optical and electrochemical methods that can be used for detecting sweat biomarkers. Electrochemical methods are known for their simplicity and cost-effectiveness. However, they need to be optimized in terms of selectivity and catalytic activity. Therefore, electrode modifiers such as nanostructures and metal-organic frameworks (MOFs) or combinations of them were examined for boosting the performance of the electrochemical sensors. The MOF structures can be prepared by hydrothermal/solvothermal, sonochemical, microwave synthesis, mechanochemical, and electrochemical methods. Additionally, MOF nanostructures can be prepared by controlling the synthesis conditions or mixing bulk MOFs with nanoparticles (NPs). In this review, we spotlight the previously examined MOF-based nanostructures as well as promising ones for the electrochemical determination of sweat biomarkers. The presence of NPs strongly improves the electrical conductivity of MOF structures, which are known for their poor conductivity. Specifically, Cu-MOF and Co-MOF nanostructures were used for detecting sweat biomarkers with the lowest detection limits. Different electrochemical methods, such as amperometric, voltammetric, and photoelectrochemical, were used for monitoring the signal of sweat biomarkers. Overall, these materials are brilliant electrode modifiers for the determination of sweat biomarkers.
Collapse
Affiliation(s)
- Jing Meng
- School of Civil Engineering, Nantong Institute of Technology, Nantong 226002, China
| | - Moustafa Zahran
- Institute of Intelligent Manufacturing Technology, Shenzhen Polytechnic University, Shenzhen 518055, China
| | - Xiaolin Li
- Institute of Intelligent Manufacturing Technology, Shenzhen Polytechnic University, Shenzhen 518055, China
| |
Collapse
|
12
|
Chen Y, Xiao H, Fan Q, Tu W, Zhang S, Li X, Hu T. Fully Integrated Biosensing System for Dynamic Monitoring of Sweat Glucose and Real-Time pH Adjustment Based on 3D Graphene MXene Aerogel. ACS APPLIED MATERIALS & INTERFACES 2024. [PMID: 39365144 DOI: 10.1021/acsami.4c13013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/05/2024]
Abstract
The development of noninvasive glucose sensors capable of continuous monitoring without restricting user mobility is crucial, particularly for managing diabetes, which demands consistent and long-term observation. Traditional sensors often face challenges with accuracy and stability that curtail their practical applications. To address these issues, we have innovatively applied a three-dimensional porous aerogel composed of Ti3C2Tx MXene and reduced graphene oxide (MX-rGO) in electrochemical sensing. It significantly reduces the electron-transfer distance between the enzyme's redox center and the electrode surface while firmly anchoring the enzyme layer to effectively prevent any leakage. Another pivotal advancement in our study is the integration of the sensor with a real-time adaptive calibration mechanism tailored specifically for analyzing sweat glucose. This sensor not only measures glucose levels but also dynamically monitors and adjusts to pH fluctuations in sweat. Such capabilities ensure the precise delivery of physiological data during physical activities, providing strong support for personalized health management.
Collapse
Affiliation(s)
- Yuxian Chen
- School of Mechanical Engineering, Jiangsu Key Laboratory for Design and Manufacture of Micro-Nano Biomedical Instruments, Southeast University, Nanjing 211189, China
| | - Haoyu Xiao
- School of Mechanical Engineering, Jiangsu Key Laboratory for Design and Manufacture of Micro-Nano Biomedical Instruments, Southeast University, Nanjing 211189, China
| | - Qiaolin Fan
- School of Mechanical Engineering, Jiangsu Key Laboratory for Design and Manufacture of Micro-Nano Biomedical Instruments, Southeast University, Nanjing 211189, China
| | - Weilong Tu
- School of Mechanical Engineering, Jiangsu Key Laboratory for Design and Manufacture of Micro-Nano Biomedical Instruments, Southeast University, Nanjing 211189, China
| | - Shiqi Zhang
- School of Mechanical Engineering, Jiangsu Key Laboratory for Design and Manufacture of Micro-Nano Biomedical Instruments, Southeast University, Nanjing 211189, China
| | - Xiao Li
- School of Mechanical Engineering, Jiangsu Key Laboratory for Design and Manufacture of Micro-Nano Biomedical Instruments, Southeast University, Nanjing 211189, China
| | - Tao Hu
- School of Mechanical Engineering, Jiangsu Key Laboratory for Design and Manufacture of Micro-Nano Biomedical Instruments, Southeast University, Nanjing 211189, China
| |
Collapse
|
13
|
Bergschneider M, Kong F, Hwang T, Jo Y, Alvarez D, Cho K. Progress and perspectives on the reaction mechanisms in mild-acidic aqueous zinc-manganese oxide batteries. Phys Chem Chem Phys 2024; 26:24753-24773. [PMID: 39308208 DOI: 10.1039/d3cp01843a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/03/2024]
Abstract
The appeal of safe, energy-dense, and environmentally-friendly MnO2 as a cathode for rechargeable aqueous zinc-metal oxide batteries (AZMOBs) has attracted significant research attention, but unexpected complexities have resulted in a decade of confusion and conflicting claims. The literature base is near saturation with a mix of efforts to achieve practical, rechargeable Zn-ion batteries and to untangle the presented electrochemical mechanisms. We have summarized the respective mechanisms and contextualized the respective justifications. As new perspectives arise from in situ and operando techniques, renewed efforts must solidify mechanistic understandings and reconcile disparate data through judicial application of ab initio modelling. In light of a variety of MnO2 cathode phases and stable, meta-stable, and complex reaction products, this perspective emphasizes the need for greater supplementation of the in situ and operando characterization with modelling, such as density functional theory. Through the elucidation of key mechanisms under dynamic operating and characterization conditions, the body of previously contradictory research and routes to practical batteries may be unified, and guide the way to longevity and grid-scale applicable charge rates and capacity.
Collapse
Affiliation(s)
- Matthew Bergschneider
- Department of Materials Science and Engineering, The University of Texas at Dallas, Richardson, Texas 75080, USA.
| | - Fantai Kong
- Department of Materials Science and Engineering, The University of Texas at Dallas, Richardson, Texas 75080, USA.
- Hunt Energy Enterprises, LLC, Dallas, Texas 75201, USA
| | - Taesoon Hwang
- Department of Materials Science and Engineering, The University of Texas at Dallas, Richardson, Texas 75080, USA.
| | - Youhwan Jo
- Department of Materials Science and Engineering, The University of Texas at Dallas, Richardson, Texas 75080, USA.
| | | | - Kyeongjae Cho
- Department of Materials Science and Engineering, The University of Texas at Dallas, Richardson, Texas 75080, USA.
| |
Collapse
|
14
|
Hao T, Xu K, Zheng X, Yao X, Li J, Yu Y, Liu Z. Hydrogen inhibition of wet AlLi alloy dust collector systems using a composite green biopolymer inhibitor based on chitosan/sodium alginate: Experimental and theoretical studies. Int J Biol Macromol 2024; 278:134708. [PMID: 39151867 DOI: 10.1016/j.ijbiomac.2024.134708] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2024] [Revised: 07/31/2024] [Accepted: 08/11/2024] [Indexed: 08/19/2024]
Abstract
Aluminum‑lithium (AlLi) alloy polishing and grinding processes in wet dust collector systems could cause hydrogen fire and explosion. From the fundamental perspective of preventing hydrogen explosions, a safe, nontoxic, and sustainable modified green hydrogen inhibitor based on chitosan (CS) and sodium alginate (SA) was developed in this study and was used as a hydrogen evolution inhibitor for the processing of waste dust from AlLi alloys. The structure and elemental distribution of the synthesized material were characterized through characterization experiments. Hydrogen evolution experiments and a hydrolysis kinetic model were used to explore the inhibitory effect of modified CS/SA on AlLi alloy dust, and the results revealed that the inhibitory concentration of the hydrogen explosion lower limit was 0.40 wt%, with an inhibition efficiency of 91.93 %, indicating an 11.88-61.44 % improvement over that of CS and SA. As the inhibitor concentration increased and the temperature decreased, the hydrogen inhibition effect increased. Characterization experiments and density functional theory showed that CS/SA primarily formed a dense physical protective barrier on the dust surface through chemical adsorption and complexation reactions, interrupting the hydrogen evolution reaction between the metal and water. This study introduces a novel green modified hydrogen inhibitor that fundamentally addresses hydrogen generation and explosion.
Collapse
Affiliation(s)
- Tengteng Hao
- School of Resources and Civil Engineering, Northeastern University, Shenyang 110819, China
| | - Kaili Xu
- School of Resources and Civil Engineering, Northeastern University, Shenyang 110819, China.
| | - Xin Zheng
- School of Resources and Civil Engineering, Northeastern University, Shenyang 110819, China
| | - Xiwen Yao
- School of Resources and Civil Engineering, Northeastern University, Shenyang 110819, China
| | - Jishuo Li
- School of Resources and Civil Engineering, Northeastern University, Shenyang 110819, China
| | - Yanwu Yu
- School of Chemical Engineering and Environment, North University of China, Taiyuan 030051, China
| | - Zhenhua Liu
- School of Architecture and Environmental Engineering, Ningxia Institute of Science and Technology, Shizuishan 753000, China
| |
Collapse
|
15
|
Zahara FN, Keshavayya J, Krishnamurthy C, Pallavi KM. Live Cell Imaging Studies on Orange Emitting Thiazole-Pyridone Azo Fluorophore and Its Latent Fingerprints, Computational, Electrochemical Sensing for Dopamine Detection. LUMINESCENCE 2024; 39:e70003. [PMID: 39467663 DOI: 10.1002/bio.70003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2024] [Revised: 09/25/2024] [Accepted: 10/05/2024] [Indexed: 10/30/2024]
Abstract
The fluorescent materials have sparked a lot of research interests due to their unique electronic, optical and chemical characteristics. Here, we are intended to present a simple and facile synthesis of novel orange emitting thiazole-pyridone fluorescent tag (TPFT) by a simple diazo coupling reaction and the structural elucidation was carried out by IR, NMR (1H and 13C), UV-Vis, photoluminescence and HR-MS spectrometry. The solvatochromic behaviour of the TPFT offered crucial information about the formation of hydrazone and azo tautomeric forms. The DFT simulations are computed to calculate HOMO-LUMO energy gap (3.028 eV) of TPFT along with MEP and RDG analyses. Comprehensive LFP visualization is revealed under both normal and UV light conditions (365 nm). The cyclic voltammetry (CV) and differential pulse voltammetry (DPV) were used to analyse the electrochemical behaviour of the TPFT-modified glassy carbon electrode (MGCE) and exhibited a lower detection limit of 7.89 × 10-8 M (S/N = 3) with a linear range of 0.5-8.0 μM for DA detection. The live-cell imaging study of TPFT showed a strong blue emission at 453 nm, which generally indicates the existence of fluorescence stability.
Collapse
Affiliation(s)
- Fiza Noor Zahara
- Department of PG Studies and Research in Chemistry, Kuvempu University, Shivamogga, Karnataka, India
| | - J Keshavayya
- Department of PG Studies and Research in Chemistry, Kuvempu University, Shivamogga, Karnataka, India
| | - Chethan Krishnamurthy
- Department of PG Studies and Research in Chemistry, Kuvempu University, Shivamogga, Karnataka, India
| | - K M Pallavi
- Department of Studies in Chemistry, Davangere University, Davangere, Karnataka, India
| |
Collapse
|
16
|
Al-Ghamdi SA, Khasim S, Darwish AAA, Hamdalla TA, Alsharif M, Aljohani MM, Hussain M, Fathihy K. Facile Biogenic synthesis of Europium doped lanthanum silicate nanoparticles as novel supercapacitor electrodes for efficient energy storage applications. Heliyon 2024; 10:e37943. [PMID: 39347417 PMCID: PMC11437853 DOI: 10.1016/j.heliyon.2024.e37943] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2024] [Revised: 09/12/2024] [Accepted: 09/13/2024] [Indexed: 10/01/2024] Open
Abstract
In this work, we demonstrated for the first time, use of Europium doped lanthanum silicate nanoparticles (LS NPs) as electrodes for supercapacitor applications. Europium (Eu3+) doped (5 mol%) LS NPs were synthesized by green solution combustion method using Mexican mint leaf extracts. Various analytical techniques such as High-Resolution Transmission Electron Microscopy (HRTEM), Selected Area Diffraction (SAED), Powder X-ray Diffraction (PXRD), Fourier Transform Infra-Red Spectroscopy (FTIR) and Diffuse Reflectance Spectroscopy (DRS) techniques were used to confirm the morphological and structural characteristics of the synthesized nanoparticles. The HRTEM and SAED patterns confirms the formation of NPs having agglomerated structure with a particle size less than 50 nm. The PXRD patterns reveals crystalline cubic structure for the NPs. Further, the FT-IR spectra reveal the successful doping of Europium in Lanthanum Silicate NPs. The DRS (Diffuse Reflectance Spectroscopy) studies confirm the reduced band gap for Europium (Eu3+) doped (5 mol%) LS NPs. Cyclic voltametric and electrochemical impedance spectroscopy experiments were performed in an alkaline medium to compare the electrochemical activity of Eu3+ doped LS NPs with that of their undoped counterpart. The Eu3+ doped (5 %) LS NPs electrodes attained a specific capacitance of 373.3 Fg-1 at a current density of 0.5 Ag-1 in comparison to pure LS NPs which is about 267 Fg-1. The long-term stability of the Eu3+ doped (5 %) LS NPs electrodes show excellent stability up to 4000 cycles of operation in comparison pure LS NPs electrodes. Doping of Eu3+ had a favourable effect on the conductivity and electrochemical activity of LS NPs. Due to favourable green combustion synthesis, superior electrochemical performance, these Eu3+ doped LS NPs could be potential materials for new generation supercapacitors in energy storage applications.
Collapse
Affiliation(s)
- S A Al-Ghamdi
- Advanced Materials Research Laboratory, Department of Physics, Faculty of Science, University of Tabuk, Tabuk 71491, Saudi Arabia
| | - Syed Khasim
- Advanced Materials Research Laboratory, Department of Physics, Faculty of Science, University of Tabuk, Tabuk 71491, Saudi Arabia
| | - A A A Darwish
- Advanced Materials Research Laboratory, Department of Physics, Faculty of Science, University of Tabuk, Tabuk 71491, Saudi Arabia
| | - Taymour A Hamdalla
- Advanced Materials Research Laboratory, Department of Physics, Faculty of Science, University of Tabuk, Tabuk 71491, Saudi Arabia
| | - Marwah Alsharif
- Advanced Materials Research Laboratory, Department of Physics, Faculty of Science, University of Tabuk, Tabuk 71491, Saudi Arabia
| | - Meshari M Aljohani
- Department of Chemistry, Faculty of Science, University of Tabuk, Tabuk 71491, Saudi Arabia
| | - Mohammad Hussain
- Advanced Materials Research Laboratory, Department of Physics, Faculty of Science, University of Tabuk, Tabuk 71491, Saudi Arabia
| | - K Fathihy
- Department of Physics, Faculty of Science, Ain Shams University, Cairo, Egypt
| |
Collapse
|
17
|
Ma J, Zhang Y, Lu X, Xu H, Qi C, Zhang W. A label-free ratiometric homogeneous electrochemical aptasensor based on dual catalytic hairpin self-assembly for rapid and sensitive detection of ochratoxin A in food. Food Chem 2024; 453:139651. [PMID: 38761736 DOI: 10.1016/j.foodchem.2024.139651] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2023] [Revised: 05/08/2024] [Accepted: 05/10/2024] [Indexed: 05/20/2024]
Abstract
The food contamination with Ochratoxin A (OTA) has highlighted the need to create precise, sensitive, and convenient techniques. Herein, we proposed a label-free and immobilization-free ratiometric homogeneous electrochemical aptasensor based on dual catalytic hairpin self-assembly (CHA) for OTA detection. Methylene blue (MB) and ferrocene (Fc) in solution were utilized as label-free signaling molecules, generating a response signal (IMB) and a reference signal (IFc), respectively. The ratio of IMB/IFc was utilized as a measure to quantify OTA. Dual CHA was exploited to increase the ratiometric signal and enhance the amplification efficiency. This aptasensor achieved trace-level detection for OTA over a linear range of lower concentrations (1.0 × 10-3 ng/mL-1.0 × 103 ng/mL) with LOD of 92 fg/mL. The aptasensor was successfully applied to detect OTA in cereal and wine, with comparable results of HPLC-MS/MS. This strategy provided a viable platform for rapid, sensitive, and accurate detection of OTA in food.
Collapse
Affiliation(s)
- Junna Ma
- College of Food Science and Technology, Hebei Agricultural University, Baoding 071001, China
| | - Yunzhe Zhang
- College of Food Science and Technology, Hebei Agricultural University, Baoding 071001, China
| | - Xin Lu
- College of Science and Technology, Hebei Agricultural University, Cangzhou 061100, China
| | - Hui Xu
- College of Science and Technology, Hebei Agricultural University, Cangzhou 061100, China
| | - Congyan Qi
- College of Food Science and Technology, Hebei Agricultural University, Baoding 071001, China
| | - Wei Zhang
- College of Food Science and Technology, Hebei Agricultural University, Baoding 071001, China; Hebei Provincial Key Laboratory of Analysis and Control for Zoonoses Microbial, Baoding 071001, China; College of Life Sciences, Hebei Agricultural University, Baoding 071001, China.
| |
Collapse
|
18
|
Xu C, Fu Y, Wang P, Wang L, Chen J, Li Q, Xia Y, Zhang Z, Tang Y, Liu X, Qiu S, Xue Y, Cao J, Wang Z. Self-Assembled Ultra-Long Hybrid Nanowire Formed by Simple Mixing: An Untapped Feature of Peroxydisulfate. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024:e2404143. [PMID: 39344520 DOI: 10.1002/smll.202404143] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/22/2024] [Revised: 08/23/2024] [Indexed: 10/01/2024]
Abstract
Peroxydisulfate (PDS), a popular molecule that is able to oxidize organic compounds, is garnering attention across various disciplines of chemistry, materials, pharmaceuticals, environmental remediation, and sustainability. Methylene blue (MB) is a model pollutant that can be readily oxidized by PDS-derived radicals. Unlike the conventional degradation process, here a reversible "dissolution-precipitation" phenomenon is discovered, triggered by a simple mixing of PDS and MB, revealing a novel application of PDS in fabricating self-assembled ultra-long nanowires with MB. This phenomenon is unique to PDS and MB, different from the traditional salting out or self-aggregation of dyes. Formation of nanowires facilitated by electrostatic interaction between S+ and O- moieties and π-π stacking is reversible, controlled by temperature and the solvent polarity. MB1-PDS-MB2 configuration (MB: PDS = 2:1) is theoretically predicted by density functional theory (DFT) calculations and further validated by stoichiometric ratios of carbon, sulfur, and nitrogen in the obtained precipitates (MBO). This untapped feature of PDS enables the development of colorimetric quantitative detection of PDS and sustainable dye recycling. Far more than those demonstrated cases, the potentialities of MBO as a nanomaterial merit further exploration.
Collapse
Affiliation(s)
- Chunxiao Xu
- Shanghai Key Lab for Urban Ecological Processes and Eco-Restoration, School of Ecological and Environmental Sciences, East China Normal University, Shanghai, 200241, China
| | - Yu Fu
- Shanghai Key Lab for Urban Ecological Processes and Eco-Restoration, School of Ecological and Environmental Sciences, East China Normal University, Shanghai, 200241, China
| | - Pu Wang
- Shanghai Key Lab for Urban Ecological Processes and Eco-Restoration, School of Ecological and Environmental Sciences, East China Normal University, Shanghai, 200241, China
| | - Lingli Wang
- Shanghai Key Lab for Urban Ecological Processes and Eco-Restoration, School of Ecological and Environmental Sciences, East China Normal University, Shanghai, 200241, China
| | - Jialin Chen
- Shanghai Key Lab for Urban Ecological Processes and Eco-Restoration, School of Ecological and Environmental Sciences, East China Normal University, Shanghai, 200241, China
| | - Qingchao Li
- Shanghai Key Lab for Urban Ecological Processes and Eco-Restoration, School of Ecological and Environmental Sciences, East China Normal University, Shanghai, 200241, China
| | - Yuqi Xia
- Shanghai Key Lab for Urban Ecological Processes and Eco-Restoration, School of Ecological and Environmental Sciences, East China Normal University, Shanghai, 200241, China
| | - Zhen Zhang
- Shanghai Key Lab for Urban Ecological Processes and Eco-Restoration, School of Ecological and Environmental Sciences, East China Normal University, Shanghai, 200241, China
| | - Yi Tang
- Shanghai Key Lab for Urban Ecological Processes and Eco-Restoration, School of Ecological and Environmental Sciences, East China Normal University, Shanghai, 200241, China
| | - Xiaojing Liu
- Shanghai Key Lab for Urban Ecological Processes and Eco-Restoration, School of Ecological and Environmental Sciences, East China Normal University, Shanghai, 200241, China
| | - Sifan Qiu
- Shanghai Key Lab for Urban Ecological Processes and Eco-Restoration, School of Ecological and Environmental Sciences, East China Normal University, Shanghai, 200241, China
| | - Yanna Xue
- Shanghai Key Lab for Urban Ecological Processes and Eco-Restoration, School of Ecological and Environmental Sciences, East China Normal University, Shanghai, 200241, China
| | - Jinhui Cao
- Shanghai Key Lab for Urban Ecological Processes and Eco-Restoration, School of Ecological and Environmental Sciences, East China Normal University, Shanghai, 200241, China
| | - Zhaohui Wang
- Shanghai Key Lab for Urban Ecological Processes and Eco-Restoration, School of Ecological and Environmental Sciences, East China Normal University, Shanghai, 200241, China
- Technology Innovation Center for Land Spatial Eco-restoration in Metropolitan Area, Ministry of Natural Resources, 3663 N. Zhongshan Road, Shanghai, 200062, China
- Shanghai Engineering Research Center of Biotransformation of Organic Solid Waste, Shanghai, 200241, China
| |
Collapse
|
19
|
Babu A, Dilwale S, Kurungot S. Interlayer Space Engineering-Induced Pseudocapacitive Zinc-Ion Storage in Holey Graphene Oxide-Bearing Vertically Oriented MoS 2 Nano-Wall Array Cathode for Aqueous Rechargeable Zn Metal Batteries. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024:e2406926. [PMID: 39344215 DOI: 10.1002/smll.202406926] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/10/2024] [Revised: 09/14/2024] [Indexed: 10/01/2024]
Abstract
Transition metal dichalcogenides, particularly MoS2, are acknowledged as a promising cathode material for aqueous rechargeable zinc metal batteries (ARZMBs). Nevertheless, its lack of hydrophilicity, poor electrical conductivity, significant restacking, and restricted interlayer spacing translate into inadequate capacity and rate performance. Herein, the unique porous structure and additional functional groups present in holey graphene oxide (hGO) are taken advantage of to dictate the vertical growth pattern of oxygen-doped MoS2 nanowalls (O-MoS2/NW) over the hGO surface. Compared to conventional graphene oxide (GO), the presence of nano-pores in hGO facilitates the homogeneous dispersion of Mo precursors and provides stronger interaction sites, promoting the uniform vertical alignment of O-MoS2/NW. The synergistic interaction between O-MoS2-NW and hGO translates to enhanced electron conductivity, efficient electrolyte penetration, enhanced interlayer spacing, reduced restacking, and enhanced surface area. As a consequence of precise control of various factors that decide the overall battery performance, a high discharge capacity (227 mAh g-1 at 100 mA g-1) cathode material with significantly lower charge transfer resistance (66 Ω) compared to pristine O-MoS2 (153 Ω) is developed. These findings underscore the potential of hGO as a multifunctional platform for nanoengineering high-performance cathode materials for the next generation of efficient and durable ARZMBs.
Collapse
Affiliation(s)
- Athira Babu
- Physical & Materials Chemistry Division, CSIR-National Chemical Laboratory, Pune, Maharashtra, 411008, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, Uttar Pradesh, 201002, India
| | - Swati Dilwale
- Physical & Materials Chemistry Division, CSIR-National Chemical Laboratory, Pune, Maharashtra, 411008, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, Uttar Pradesh, 201002, India
| | - Sreekumar Kurungot
- Physical & Materials Chemistry Division, CSIR-National Chemical Laboratory, Pune, Maharashtra, 411008, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, Uttar Pradesh, 201002, India
| |
Collapse
|
20
|
Wang Y, Cao J, Du P, Wang W, Hu P, Liu Y, Ma Y, Wang X, Abd El-Aty AM. Portable detection of Salmonella in food of animal origin via Cas12a-RAA combined with an LFS/PGM dual-signaling readout biosensor. Mikrochim Acta 2024; 191:631. [PMID: 39340568 DOI: 10.1007/s00604-024-06708-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2024] [Accepted: 09/13/2024] [Indexed: 09/30/2024]
Abstract
A highly specific and sensitive rapid two-signal assay was developed for the detection of Salmonella typhimurium in foods of animal origin. The invA gene of Salmonella was used as the biorecognition element and recombinase-assisted amplification (RAA) technology for signal amplification. By utilizing the specific recognition and efficient trans-cleavage activity of CRISPR/Cas12a, point-of-care testing (POCT) for S. typhimurium was achieved via lateral flow strips (LFS) and personal glucometer (PGM) biosensors as dual signal readout systems, with sensitivities of 33 CFU/mL and 20 CFU/mL, respectively. Users can select the appropriate test system on the basis of specific application requirements: LFSs are ideal for rapid onsite screening, whereas glucometer biosensors offer precise quantitative determination. This approach simplifies the use of large instruments and overcomes site constraints, demonstrating good accuracy and applicability in animal-derived samples, with significant potential for the detection of other pathogens and for use in restricted environments.
Collapse
Affiliation(s)
- Yuanshang Wang
- Institute of Food & Nutrition Science and Technology, Shandong Provincial Key Laboratory of Agro-Products Processing Technology, Key Laboratory of Novel Food Resources Processing, Ministry of Agriculture, Shandong Academy of Agricultural Sciences, Jinan, 250100, China
- College of Food Science and Technology, Huazhong Agricultural University, Wuhan, 430070, China
- Key Laboratory of Environment Correlative Dietology, Huazhong Agricultural University, Wuhan, 430070, China
| | - Jianfang Cao
- Institute of Food & Nutrition Science and Technology, Shandong Provincial Key Laboratory of Agro-Products Processing Technology, Key Laboratory of Novel Food Resources Processing, Ministry of Agriculture, Shandong Academy of Agricultural Sciences, Jinan, 250100, China
| | - Pengfei Du
- Institute of Food & Nutrition Science and Technology, Shandong Provincial Key Laboratory of Agro-Products Processing Technology, Key Laboratory of Novel Food Resources Processing, Ministry of Agriculture, Shandong Academy of Agricultural Sciences, Jinan, 250100, China.
| | - Weiting Wang
- Institute of Food & Nutrition Science and Technology, Shandong Provincial Key Laboratory of Agro-Products Processing Technology, Key Laboratory of Novel Food Resources Processing, Ministry of Agriculture, Shandong Academy of Agricultural Sciences, Jinan, 250100, China
| | - Peng Hu
- Institute of Food & Nutrition Science and Technology, Shandong Provincial Key Laboratory of Agro-Products Processing Technology, Key Laboratory of Novel Food Resources Processing, Ministry of Agriculture, Shandong Academy of Agricultural Sciences, Jinan, 250100, China
| | - Yaobo Liu
- Institute of Food & Nutrition Science and Technology, Shandong Provincial Key Laboratory of Agro-Products Processing Technology, Key Laboratory of Novel Food Resources Processing, Ministry of Agriculture, Shandong Academy of Agricultural Sciences, Jinan, 250100, China
| | - Yanli Ma
- Institute of Food & Nutrition Science and Technology, Shandong Provincial Key Laboratory of Agro-Products Processing Technology, Key Laboratory of Novel Food Resources Processing, Ministry of Agriculture, Shandong Academy of Agricultural Sciences, Jinan, 250100, China
| | - Xiaohong Wang
- College of Food Science and Technology, Huazhong Agricultural University, Wuhan, 430070, China
- Key Laboratory of Environment Correlative Dietology, Huazhong Agricultural University, Wuhan, 430070, China
| | - A M Abd El-Aty
- Department of Pharmacology, Faculty of Veterinary Medicine, Cairo University, Giza, 12211, Egypt
- Department of Medical Pharmacology, Medical Faculty, Ataturk University, 25240, Erzurum, Turkey
| |
Collapse
|
21
|
Zhang H, Sun H, Huang S, Lan J, Li H, Yue H. Biomass-Derived Carbon Materials for Electrochemical Sensing: Recent Advances and Future Perspectives. Crit Rev Anal Chem 2024:1-26. [PMID: 39331419 DOI: 10.1080/10408347.2024.2401504] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/28/2024]
Abstract
In recent years, biomass carbon materials have received widespread attention in the field of electrochemical sensors. As a new type of renewable green energy, biomass carbon has the advantages of low cost and abundant resources. After special treatment, it can be used as an ideal electrode material. Since biomass carbon materials have diverse sources and their morphology is difficult to control, researchers have conducted in-depth research on their preparation process, morphology regulation and application. This review summarizes different biomass carbon structures and their preparation methods and explores the applications of these materials in electrochemical sensors. Modification of biomass carbon materials through pretreatment, physical and chemical activation, heteroatom doping, metal compound composite and other methods can make up for the deficiencies in its pore structure, electrical conductivity and surface wettability, thereby improving its electrochemical performance. The effects of different biomass sources, functional groups, constituent elements and modification methods on the morphology, structure and electrochemical properties of biomass carbon materials are discussed, and the applications of this type of material in biological molecules, heavy metal ions and pesticide residues are reviewed. Biomass carbon-based materials show great application potential and development prospects in the field of electrochemical sensors.
Collapse
Affiliation(s)
- Haopeng Zhang
- School of Materials Science and Chemical Engineering, Harbin University of Science and Technology, Harbin, People's Republic of China
| | - Huaze Sun
- School of Materials Science and Chemical Engineering, Harbin University of Science and Technology, Harbin, People's Republic of China
| | - Shuo Huang
- Department of Neurology, The First Affiliated Hospital of Harbin Medical University, Harbin, People's Republic of China
| | - Jingming Lan
- School of Materials Science and Chemical Engineering, Harbin University of Science and Technology, Harbin, People's Republic of China
| | - Haiyang Li
- School of Materials Science and Chemical Engineering, Harbin University of Science and Technology, Harbin, People's Republic of China
| | - Hongyan Yue
- School of Materials Science and Chemical Engineering, Harbin University of Science and Technology, Harbin, People's Republic of China
| |
Collapse
|
22
|
Asif M, Korlapati NS, Khan F, Hawboldt K, Caines S. Atomistic Analysis of Sulphonamides as a Microbial Influenced Corrosion (MIC) Inhibitor. ACS OMEGA 2024; 9:38722-38732. [PMID: 39310134 PMCID: PMC11411528 DOI: 10.1021/acsomega.4c04651] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/15/2024] [Revised: 07/26/2024] [Accepted: 07/30/2024] [Indexed: 09/25/2024]
Abstract
Four sulfonamide-type microbial inhibitors were studied using density functional theory (DFT) to assess their effectiveness in controlling microbial corrosion. The experimental techniques (FTIR, SEM, EIS, EFM, and AFM) are beneficial for measuring properties such as chemical composition, bond formation, electrochemical behavior, and surface topography; however, DFT can be useful as a new method for understanding microbial corrosion. Sulfacetamide (SFC), sulfamerazine (SFM), sulfapyridine (SFP), and sulfathiazole (SFT) uniformly adsorb onto the iron surface and block the active site, reducing the corrosion rate. To study the effect on microbial activity, a 0.6 eV electric field was applied. The absolute increase in the interaction energy indicates that sulfonamides are effective microbial inhibitors. Electronic SFC, SFM, SFP, and SFT descriptors agree with the experimental inhibition efficiency. The shift of the density of state (DOS) toward a low energy level for sulfonamides indicates the stabilization of these molecules at the Fe (100) surface. The population analysis combined with atomic and molecular parameters further explains the anticorrosive mechanism of sulphonamides.
Collapse
Affiliation(s)
- Mohammad Asif
- Centre
for Risk, Integrity, and Safety Engineering (C-RISE), Faculty of Engineering
and Applied Science, Memorial University
of Newfoundland, St. John’s, NL A1B 3X5, Canada
| | - N.V. Saidileep Korlapati
- Mary
Kay O’Connor Process Safety Center (MKOPSC), Artie McFerrin
Department of Chemical Engineering, Texas
A&M University, College
Station, Texas 77843-3122, United States
| | - Faisal Khan
- Mary
Kay O’Connor Process Safety Center (MKOPSC), Artie McFerrin
Department of Chemical Engineering, Texas
A&M University, College
Station, Texas 77843-3122, United States
| | - Kelly Hawboldt
- Centre
for Risk, Integrity, and Safety Engineering (C-RISE), Faculty of Engineering
and Applied Science, Memorial University
of Newfoundland, St. John’s, NL A1B 3X5, Canada
| | - Susan Caines
- Centre
for Risk, Integrity, and Safety Engineering (C-RISE), Faculty of Engineering
and Applied Science, Memorial University
of Newfoundland, St. John’s, NL A1B 3X5, Canada
| |
Collapse
|
23
|
Zhang M, Wang E, Ni M, Zheng K, Ouyang M, Hu H, Wang H, Lu L, Ren D, Chen Y. A numerical analysis of metal-supported solid oxide fuel cell with a focus on temperature field. Heliyon 2024; 10:e37271. [PMID: 39290286 PMCID: PMC11407089 DOI: 10.1016/j.heliyon.2024.e37271] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2024] [Revised: 08/27/2024] [Accepted: 08/29/2024] [Indexed: 09/19/2024] Open
Abstract
Metal-supported solid oxide fuel cell (MS-SOFC) is very promising for intermediate temperature solid oxide fuel cell (SOFC) due to better mechanical strength, low materials cost, and simplified stack assembling. However, the effects of metal support on the performance and temperature field of MS-SOFC is still necessary for further study. In this study, a three-dimensional multi-physical model is developed to investigate how the use of metal support influence the electrochemical performance and the temperature field of MS-SOFC with a ceria-based electrolyte. The multi-physical model fully considers the conservation equations of mass, momentum, and energy that are coupled with mass transport and electrochemical reactions. The wall temperature in the radiation model is calculated using a discrete method. It is found that the radiation heat flux accounts for 3.13 % of the total heat flux. More importantly, the temperature difference of MS-SOFC is 3.61 % lower than that of conventional anode-supported SOFC, leading to improved temperature uniformity and cell durability.
Collapse
Affiliation(s)
- Mengru Zhang
- School of Mechanical Engineering, Beijing Institute of Technology, Beijing, 100081, China
| | - Enhua Wang
- School of Mechanical Engineering, Beijing Institute of Technology, Beijing, 100081, China
| | - Meng Ni
- Department of Building and Real Estate, Research Institute for Sustainable Urban Development (RISUD) & Research Institute for Smart Energy (RISE), The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong, China
| | - Keqing Zheng
- School of Electrical and Power Engineering, China University of Mining and Technology, Xuzhou, 221166, China
| | - Minggao Ouyang
- State Key Laboratory of Automotive Safety and Energy, Tsinghua University, Beijing, 100084, China
| | - Haoran Hu
- State Key Laboratory of Automotive Safety and Energy, Tsinghua University, Beijing, 100084, China
- Beijing Swift New Energy Technologies Co., Ltd., Beijing, 100192, China
| | - Hewu Wang
- State Key Laboratory of Automotive Safety and Energy, Tsinghua University, Beijing, 100084, China
| | - Languang Lu
- State Key Laboratory of Automotive Safety and Energy, Tsinghua University, Beijing, 100084, China
| | - Dongsheng Ren
- State Key Laboratory of Automotive Safety and Energy, Tsinghua University, Beijing, 100084, China
| | - Youpeng Chen
- Beijing Swift New Energy Technologies Co., Ltd., Beijing, 100192, China
| |
Collapse
|
24
|
Rahchamandi SYR, Mirhadi E, Gheybi F, Kazemi-Beydokhti A, Jaafari MR, Mostafavi E, Kesharwani P, Sahebkar A, Alavizadeh SH. Engineering carbon-based nanomaterials for the delivery of platinum compounds: An innovative cancer disarming frontier. ENVIRONMENTAL RESEARCH 2024; 262:119933. [PMID: 39278586 DOI: 10.1016/j.envres.2024.119933] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/10/2024] [Revised: 08/12/2024] [Accepted: 09/03/2024] [Indexed: 09/18/2024]
Abstract
Carbon-based nanomaterials have been frequently used as one of the most advanced and fascinating nanocarriers for drug delivery applications due to their unique physicochemical properties. Varying types of carbon nanomaterials (CNMs) including carbon nanotubes, graphene, graphene oxides, carbon nanohorns, fullerenes, carbon nanodots, and carbon nanodiamonds are promising candidates for designing novel systems to deliver platinum compounds. CNMs modification with various moieties renders vast bio-applications in the area of targeted and organelle-specific cancer therapy. This review featured an updated and concise summarizations of various types of CNMs, their synthesis, advantages and disadvantages including potential bio-toxicity for biomedical applications. The therapeutic utility of CNMs and their efficacy have been noticed and for the first time, this review addressed CNMs-focused applications on the delivery of platinum-derivatives to the cancer site. Collectively, the contents of this review will assist researchers to focus on the possible fabrication, bio-functionalization and designing methods of CNMs to the further development of their future biomedical implementations.
Collapse
Affiliation(s)
- Seyedeh Yasaman Rahnamaei Rahchamandi
- Nanotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran; Student Research Committee, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Elaheh Mirhadi
- Nanotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Fatemeh Gheybi
- Nanotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran; Department of Medical Biotechnology and Nanotechnology, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Amin Kazemi-Beydokhti
- Department of Chemical Engineering, School of Petroleum and Petrochemical Engineering, Hakim Sabzevari University, Sabzevar, Iran
| | - Mahmoud Reza Jaafari
- Nanotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran; Department of Pharmaceutical Nanotechnology, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Ebrahim Mostafavi
- Department of Medicine, Stanford University School of Medicine, Stanford, CA, 94305, USA
| | - Prashant Kesharwani
- Department of Pharmaceutics, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi, 110062, India.
| | - Amirhossein Sahebkar
- Center for Global Health Research, Saveetha Medical College and Hospitals, Saveetha Institute of Medical and Technical Sciences, Saveetha University, Chennai, India; Biotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran; Applied Biomedical Research Center, Mashhad University of Medical Sciences, Mashhad, Iran.
| | - Seyedeh Hoda Alavizadeh
- Nanotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran; Department of Pharmaceutical Nanotechnology, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran.
| |
Collapse
|
25
|
Chen G, Yang G, He C, Lan T, He S, Yang H, Liu L, Yang W, Jian S, Zhang Q. High Capacitive Performance of N,O-Codoped Carbon Aerogels Synthesized via a One-Step Chemical Blowing and In Situ Activation Process. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2024. [PMID: 39255345 DOI: 10.1021/acs.langmuir.4c02011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/12/2024]
Abstract
Biomass and its derivatives, with their renewable characteristics, cost-effectiveness, and controllable structural and compositional properties, are promising precursors for carbon materials. Herein, N,O-codoped carbon aerogels were synthesized by carbonization and zinc nitrate activation of histidine. The specific surface area (SSA) was markedly increased with the addition of zinc nitrate, and the maximum value achieved 853 m2 g-1 for ZHC-11 obtained with the molar ratio of 1:1 between histidine and zinc nitrate. The D/G-band intensity ratio increased from 1.55 for the histidine-derived control sample HC to 1.65 for ZHC-11, indicating the enhancement of amorphous feature. The nitrogen content increased from 6.5% for HC to 1.60 for ZHC-11. The optimized microstructure and enriched heteroatom doping are beneficial to the capacitance performance. The optimum electrode exhibited 234.1 F g-1 at 0.1 A g-1 and maintained 116.5 F g-1 at 60 A g-1 in a three-electrode system. In particular, the symmetric supercapacitor showed 121.9 F g-1 and 19.5 Wh kg-1 at 0.2 A g-1. This research offers guidance on the cost-effective synthesis of carbon materials for supercapacitors, while also providing novel insights to realize the complete utilization of biomass derivatives.
Collapse
Affiliation(s)
- Guoqing Chen
- Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, International Innovation Center for Forest Chemicals and Materials, College of Science, Nanjing Forestry University, Nanjing 210037, China
- College of Materials Science and Engineering, Nanjing Forestry University, Nanjing 210037, China
| | - Guangjie Yang
- College of Materials Science and Engineering, Nanjing Forestry University, Nanjing 210037, China
| | - Chenweijia He
- College of Materials Science and Engineering, Nanjing Forestry University, Nanjing 210037, China
| | - Tiancheng Lan
- Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, International Innovation Center for Forest Chemicals and Materials, College of Science, Nanjing Forestry University, Nanjing 210037, China
| | - Shuijian He
- Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, International Innovation Center for Forest Chemicals and Materials, College of Science, Nanjing Forestry University, Nanjing 210037, China
- College of Materials Science and Engineering, Nanjing Forestry University, Nanjing 210037, China
| | - Haoqi Yang
- College of Electrical, Energy and Power Engineering, Institute of Technology for Carbon Neutralization, Yangzhou University, Yangzhou, Jiangsu 225127, China
| | - Li Liu
- Shanghai Frontiers Science Center of Advanced Textiles, College of Textiles, Donghua University, Shanghai 201620, China
| | - Weisen Yang
- Fujian Key Laboratory of Eco-Industrial Green Technology, College of Ecology and Resources Engineering, Wuyi University, Wuyishan 354300, China
| | - Shaoju Jian
- Fujian Key Laboratory of Eco-Industrial Green Technology, College of Ecology and Resources Engineering, Wuyi University, Wuyishan 354300, China
| | - Qian Zhang
- Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, International Innovation Center for Forest Chemicals and Materials, College of Science, Nanjing Forestry University, Nanjing 210037, China
- Fujian Key Laboratory of Eco-Industrial Green Technology, College of Ecology and Resources Engineering, Wuyi University, Wuyishan 354300, China
| |
Collapse
|
26
|
Thomas ME, Schmitt LD, Lees AJ. A New, Rapid, Colorimetric Chemodosimeter, 4-(Pyrrol-1-yl)pyridine, for Nitrite Detection in Aqueous Solution. ACS OMEGA 2024; 9:37278-37287. [PMID: 39246479 PMCID: PMC11375707 DOI: 10.1021/acsomega.4c05026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/28/2024] [Revised: 07/16/2024] [Accepted: 07/19/2024] [Indexed: 09/10/2024]
Abstract
With increasing concerns over environmental impact and overall health of both the environment and its people, a need to quantify contaminants is of the utmost importance. Chemosensors with low detection limits and a relative ease of application can address this challenge. Nitrite ions are known to be detrimental to both the environment and human health. A new colorimetric chemodosimeter has been prepared from the homolytic photochemical cleavage of a reaction between pyrrole and pyridine. The product, 4-(pyrrol-1-yl)pyridine, yields a limit of detection of 0.330 (±0.09) ppm for the detection of nitrite in aqueous solution, employing a colorimetric change from yellow to pink. It is also highly selective for nitrite when various competitive anions such as SO3 2-, NO3 -, PO4 3-, SO4 -2, Cl-, F-, I-, Br-, AcO-, and CN- are present in great excess. The molecule's especially high sensitivity to nitrite is apparently the result of a complex supramolecular mechanism, characterized by both dynamic light scattering of the aggregate and the Tyndall effect. Consequently, this new sensor provides a simple, low-cost way to rapidly detect nitrite anions in aqueous solution.
Collapse
Affiliation(s)
- Mallory E Thomas
- Department of Chemistry, Binghamton University, Binghamton, New York 13902-6000, United States
| | - Lynn D Schmitt
- Department of Chemistry, SUNY Cortland, Cortland, New York 13045, United States
| | - Alistair J Lees
- Department of Chemistry, Binghamton University, Binghamton, New York 13902-6000, United States
| |
Collapse
|
27
|
Chinchilla-Cárdenas DJ, Cruz-Méndez JS, Petano-Duque JM, García RO, Castro LR, Lobo-Castañón MJ, Cancino-Escalante GO. Current developments of SELEX technologies and prospects in the aptamer selection with clinical applications. J Genet Eng Biotechnol 2024; 22:100400. [PMID: 39179327 PMCID: PMC11338109 DOI: 10.1016/j.jgeb.2024.100400] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2024] [Revised: 06/28/2024] [Accepted: 07/12/2024] [Indexed: 08/26/2024]
Abstract
Aptamers are single-stranded oligonucleotide sequences capable of binding to specific ligands with high affinity. In this manner, they are like antibodies but have advantages such as lower manufacturing costs, lower immunogenicity, fewer batch-to-batch differences, a longer shelf life, high tolerance to different molecular milieus, and a greater number of potential targets. Due to their special features, they have been used in drug delivery, biosensor technology, therapy, and diagnostics. The methodology that allowed its production was the "Systematic Evolution of Ligands by Exponential enrichment" (SELEX). Unfortunately, the traditional protocol is time-consuming and laborious. Therefore, numerous variants with considerable optimization steps have been developed, nonetheless, there are still challenges to achieving real applications in the clinical field. Among them, are control of in vivo activities, fast renal filtration, degradation by nucleases and toxicity testing. This review focuses on current technologies based on SELEX, the critical factors for successful aptamer selection, and its upcoming biomedical and biotechnological applications.
Collapse
Affiliation(s)
- Danny Jair Chinchilla-Cárdenas
- Laboratorio de Biología Molecular y Genética Animal Mascolab, Calle 49 Sur # 45ª-300, Oficina 1202, Centro Empresarial S48 Tower, Envigado 055422, Antioquia, Colombia.
| | - Juan Sebastian Cruz-Méndez
- Laboratorio de Biología Molecular y Genética Animal Mascolab, Calle 49 Sur # 45ª-300, Oficina 1202, Centro Empresarial S48 Tower, Envigado 055422, Antioquia, Colombia.
| | - Julieth Michel Petano-Duque
- Laboratorio de Biología Molecular y Genética Animal Mascolab, Calle 49 Sur # 45ª-300, Oficina 1202, Centro Empresarial S48 Tower, Envigado 055422, Antioquia, Colombia; Group of Biosocial Studies of the Body-EBSC, Faculty of Dentistry, Universidad de Antioquia, La Candelaria, Medellín 050010, Antioquia, Colombia.
| | | | - Lyda R Castro
- Grupo de investigación Evolución, Sistemática y Ecología Molecular (GIESEMOL), Universidad del Magdalena, Santa Marta, Colombia.
| | - María Jesús Lobo-Castañón
- Departamento de Química Física y Analítica, Universidad de Oviedo, Av. Julián Clavería 8, 33006 Oviedo, Spain.
| | | |
Collapse
|
28
|
Jensen IM, Clark V, Kirby HL, Arroyo-Currás N, Jenkins DM. Tuning N-heterocyclic carbene wingtips to form electrochemically stable adlayers on metals. MATERIALS ADVANCES 2024; 5:7052-7060. [PMID: 39156595 PMCID: PMC11325317 DOI: 10.1039/d4ma00648h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/25/2024] [Accepted: 08/08/2024] [Indexed: 08/20/2024]
Abstract
Self-assembled monolayers (SAMs) are employed in electrochemical biosensors to passivate and functionalize electrode surfaces. These monolayers prevent the occurrence of undesired electrochemical reactions and act as scaffolds for coupling bioaffinity reagents. Thiols are the most common adlayer used for this application; however, the thiol-gold bond is susceptible to competitive displacement by naturally occurring solvated thiols in biological fluids, as well as to desorption under continuous voltage interrogation. To overcome these issues, N-heterocyclic carbene (NHC) monolayers have been proposed as an alternative for electrochemical biosensor applications due to the strong carbon-gold bond. To maximize the effectiveness of NHCs for SAMs, a thorough understanding of both the steric effects of wingtip substituents and NHC precursor type to the passivation of electrode surfaces is required. In this study, five different NHC wingtips as well as two kinds of NHC precursors were evaluated. The best performing NHC adlayers can be cycled continuously for four days (over 30 000 voltammetric cycles) without appreciably desorbing from the electrode surface. Benchmark thiol monolayers, in contrast, rapidly desorb after only twelve hours. Investigations also show NHC adlayer formation on other biosensor-relevant electrodes such as platinum and palladium.
Collapse
Affiliation(s)
- Isabel M Jensen
- Department of Chemistry University of Tennessee Knoxville Knoxville TN 37996 USA
| | - Vincent Clark
- Chemistry-Biology Interface Program Johns Hopkins University Baltimore MD 21218 USA
| | - Harper L Kirby
- Department of Chemistry University of Tennessee Knoxville Knoxville TN 37996 USA
| | - Netzahualcóyotl Arroyo-Currás
- Chemistry-Biology Interface Program Johns Hopkins University Baltimore MD 21218 USA
- Department of Pharmacology and Molecular Sciences Johns Hopkins University School of Medicine Baltimore MD 21205 USA
| | - David M Jenkins
- Department of Chemistry University of Tennessee Knoxville Knoxville TN 37996 USA
| |
Collapse
|
29
|
El Housse M, Hadfi A, Alossaimi MA, Karmal I, Ibrahimi BEL, Ben-Aazza S, Belattar M, Abd-El-Khalek DE, Riadi Y, Iberache N, Ammayen I, Nassiri M, Darbal S, Driouiche A. Green and sustainable strategies to control scaling in industrial plants: investigation of the efficacy of Rosmarinus officinalis L. Extract against CaCO 3 scale using experimental and theoretical approaches. ENVIRONMENTAL TECHNOLOGY 2024:1-14. [PMID: 39167056 DOI: 10.1080/09593330.2024.2391074] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/19/2024] [Accepted: 08/03/2024] [Indexed: 08/23/2024]
Abstract
In recent years, plant extracts have attracted increased interest as green alternatives to conventional anti-scaling. This is because they contain a wide range of bioactive compounds with high performance against inorganic scale. Additionally, they are biodegradable and pose minimal risks to human health and ecosystems. The present study aimed to assess the protection offered by the Rosmarinus officinalis L. leaf extract for industrial plant surfaces against the CaCO3 scale. Before assessing the anti-scaling performance of the Rosmarinus extract, phytochemical characterisation was performed by quantitative assays and HPLC-DAD analysis. Subsequently, the inhibition potential of the extract was studied using the conductivity and LCEE tests at 25°C and TH = 40°f. In addition, SEM and XRD analysis were used to assess the effect of the extract on scale morphology and crystalline phases. Finally, DFT calculations and Monte Carlo simulation were carried out to enhance knowledge of the interaction between inhibitor molecules and CaCO3(104) and (110) surfaces and optimise [extract molecule - Ca]2+ complexes. Phytochemical analysis revealed the presence of several phenolic compounds (rosmarinic acid, vanillic acid, cinnamic acid, rutin, kaempferol, trans chalcone and quercetin). Further LCEE studies demonstrated the promising anti-scaling activity of the extract at an effective concentration of 54 mg/L. SEM micrographs and XRD diffractograms revealed a significant change in the morphology and phases of precipitated CaCO3 scales upon the addition of the inhibitor. In addition, the computational approach strongly supported the experimental results. These results underlined the Rosmarinus extract's potential as a valuable green and sustainable scaling inhibitor source.
Collapse
Affiliation(s)
- Mohamed El Housse
- Process Engineering Laboratory, Team "Materials and Physico-Chemistry of Water" Faculty of Sciences, Ibn Zohr University, Agadir, Morocco
| | - Abdallah Hadfi
- Process Engineering Laboratory, Team "Materials and Physico-Chemistry of Water" Faculty of Sciences, Ibn Zohr University, Agadir, Morocco
| | - Manal A Alossaimi
- Department of Pharmaceutical Chemistry, College of Pharmacy, Prince Sattam bin Abdulaziz University, Al-Kharj, Saudi Arabia
| | - Ilham Karmal
- Process Engineering Laboratory, Team "Materials and Physico-Chemistry of Water" Faculty of Sciences, Ibn Zohr University, Agadir, Morocco
| | - Brahim E L Ibrahimi
- Team of Physical Chemistry and Environment, Faculty of Science, Ibn Zohr University, Agadir, Morocco
| | - Said Ben-Aazza
- Process Engineering Laboratory, Team "Materials and Physico-Chemistry of Water" Faculty of Sciences, Ibn Zohr University, Agadir, Morocco
| | - M'barek Belattar
- Process Engineering Laboratory, Team "Materials and Physico-Chemistry of Water" Faculty of Sciences, Ibn Zohr University, Agadir, Morocco
| | - D E Abd-El-Khalek
- National Institute of Oceanography and Fisheries (NIOF), Cairo, Egypt
| | - Yassine Riadi
- Department of Pharmaceutical Chemistry, College of Pharmacy, Prince Sattam bin Abdulaziz University, Al-Kharj, Saudi Arabia
| | - Noureddine Iberache
- Process Engineering Laboratory, Team "Materials and Physico-Chemistry of Water" Faculty of Sciences, Ibn Zohr University, Agadir, Morocco
| | - Imane Ammayen
- Process Engineering Laboratory, Team "Materials and Physico-Chemistry of Water" Faculty of Sciences, Ibn Zohr University, Agadir, Morocco
| | - Mustapha Nassiri
- Process Engineering Laboratory, Team "Materials and Physico-Chemistry of Water" Faculty of Sciences, Ibn Zohr University, Agadir, Morocco
| | - Sara Darbal
- Process Engineering Laboratory, Team "Materials and Physico-Chemistry of Water" Faculty of Sciences, Ibn Zohr University, Agadir, Morocco
| | - Ali Driouiche
- Process Engineering Laboratory, Team "Materials and Physico-Chemistry of Water" Faculty of Sciences, Ibn Zohr University, Agadir, Morocco
| |
Collapse
|
30
|
Yang Z, Zhang H. An interpretable capacity prediction method for lithium-ion battery considering environmental interference. Sci Rep 2024; 14:19110. [PMID: 39154060 PMCID: PMC11330511 DOI: 10.1038/s41598-024-68886-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2024] [Accepted: 07/29/2024] [Indexed: 08/19/2024] Open
Abstract
Predicting the capacity of lithium-ion battery (LIB) plays a crucial role in ensuring the safe operation of LIBs and prolonging their lifespan. However, LIBs are easily affected by environmental interference, which may impact the precision of predictions. Furthermore, interpretability in the process of predicting LIB capacity is also important for users to understand the model, identify issues, and make decisions. In this study, an interpretable method considering environmental interference (IM-EI) for predicting LIB capacity is introduced. Spearman correlation coefficients, interpretability principles, belief rule base (BRB), and interpretability constraints are used to improve the prediction precision and interpretability of IM-EI. Dynamic attribute reliability is introduced to minimize the effect of environmental interference. The experimental results show that IM-EI model has good interpretability and high precision compared to the other models. Under interference conditions, the model still has good precision and robustness.
Collapse
Affiliation(s)
- Zijiang Yang
- College of Electronic Engineering, Heilongjiang University, Harbin, 150080, China
- Heilongjiang Agricultural Engineering Vocational College, Harbin, 150088, China
| | - Hongquan Zhang
- College of Electronic Engineering, Heilongjiang University, Harbin, 150080, China.
- College of Intelligent Systems Science and Engineering, Harbin Engineering University, Harbin, 150001, China.
| |
Collapse
|
31
|
Quy Huong D, Le My Linh N, Quoc Thang L, Quang DT. Corrosion inhibition ability of L-tryptophan and 5-hydroxy-L-tryptophan for mild steel: a combination of experimental and theoretical methods. Phys Chem Chem Phys 2024; 26:21712-21726. [PMID: 39099433 DOI: 10.1039/d4cp02181a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/06/2024]
Abstract
An investigation into the corrosion inhibition properties of L-tryptophan (TP) and 5-hydroxy-L-tryptophan (5-OH-TP) for mild steel in a 1.0 M HCl acidic medium was conducted using experimental and theoretical methods. Results obtained from polarization curve measurements reveal that TP and 5-OH-TP are effective mixed-type inhibitors, exhibiting the highest inhibition efficiencies of 91.22% and 94.05%, respectively, at a temperature of 293 K and a concentration of 10-2 M. However, their inhibition efficiencies gradually decline with increasing temperature, reaching the lowest values of 70.65% for TP and 73.55% for 5-OH-TP at a concentration of 10-4 M and a temperature of 323 K. The adsorption of TP and 5-OH-TP on the steel surface follows the Langmuir isotherm, suggesting monolayer adsorption. Electrochemical impedance spectroscopy analysis indicates that the adsorbed inhibitors form a protective film, effectively shielding the steel from corrosive agents in the solution. Notably, 5-OH-TP consistently exhibits superior inhibition efficiency compared to TP, attributed to the presence of polar OH groups that facilitate stronger bonding of the inhibitor molecule with the metal surface. Quantum chemical parameters and molecular dynamics simulations further confirm the superior corrosion inhibition ability of 5-OH-TP over TP in acidic environments. In particular, the binding energies of protonated TP at the N3 position and 5-OH-TP at the N4 position are 556.40 and 579.27 kJ mol-1, respectively.
Collapse
Affiliation(s)
- Dinh Quy Huong
- Department of Chemistry, University of Education, Hue University, Hue, Vietnam.
| | - Nguyen Le My Linh
- Department of Chemistry, University of Education, Hue University, Hue, Vietnam.
| | - Le Quoc Thang
- Department of Chemistry, University of Education, Hue University, Hue, Vietnam.
| | - Duong Tuan Quang
- Department of Chemistry, University of Education, Hue University, Hue, Vietnam.
| |
Collapse
|
32
|
Galleguillos Madrid FM, Soliz A, Cáceres L, Bergendahl M, Leiva-Guajardo S, Portillo C, Olivares D, Toro N, Jimenez-Arevalo V, Páez M. Green Corrosion Inhibitors for Metal and Alloys Protection in Contact with Aqueous Saline. MATERIALS (BASEL, SWITZERLAND) 2024; 17:3996. [PMID: 39203174 PMCID: PMC11356518 DOI: 10.3390/ma17163996] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/12/2024] [Revised: 08/01/2024] [Accepted: 08/08/2024] [Indexed: 09/03/2024]
Abstract
Corrosion is an inevitable and persistent issue that affects various metallic infrastructures, leading to significant economic losses and safety concerns, particularly in areas near or in contact with saline solutions such as seawater. Green corrosion inhibitors are compounds derived from natural sources that are biodegradable in various environments, offering a promising alternative to their conventional counterparts. Despite their potential, green corrosion inhibitors still face several limitations and challenges when exposed to NaCl environments. This comprehensive review delves into these limitations and associated challenges, shedding light on the progress made in addressing these issues and potential future developments as tools in corrosion management. Explicitly the following aspects are covered: (1) attributes of corrosion inhibitors, (2) general corrosion mechanism, (3) mechanism of corrosion inhibition in NaCl, (4) typical electrochemical and surface characterization techniques, (5) theoretical simulations by Density Functional Theory, and (6) corrosion testing standards and general guidelines for corrosion inhibitor selection. This review is expected to advance the knowledge of green corrosion inhibitors and promote further research and applications.
Collapse
Affiliation(s)
- Felipe M. Galleguillos Madrid
- Centro de Desarrollo Energético de Antofagasta, Universidad de Antofagasta, Av. Universidad de Antofagasta 02800, Antofagasta 1271155, Chile; (M.B.); (S.L.-G.); (C.P.); (D.O.)
| | - Alvaro Soliz
- Departamento de Ingeniería en Metalurgia, Universidad de Atacama, Av. Copayapu 485, Copiapó 1530000, Chile
| | - Luis Cáceres
- Departamento de Ingeniería Química y Procesos de Minerales, Universidad de Antofagasta, Av. Universidad de Antofagasta 02800, Antofagasta 1271155, Chile;
| | - Markus Bergendahl
- Centro de Desarrollo Energético de Antofagasta, Universidad de Antofagasta, Av. Universidad de Antofagasta 02800, Antofagasta 1271155, Chile; (M.B.); (S.L.-G.); (C.P.); (D.O.)
| | - Susana Leiva-Guajardo
- Centro de Desarrollo Energético de Antofagasta, Universidad de Antofagasta, Av. Universidad de Antofagasta 02800, Antofagasta 1271155, Chile; (M.B.); (S.L.-G.); (C.P.); (D.O.)
| | - Carlos Portillo
- Centro de Desarrollo Energético de Antofagasta, Universidad de Antofagasta, Av. Universidad de Antofagasta 02800, Antofagasta 1271155, Chile; (M.B.); (S.L.-G.); (C.P.); (D.O.)
| | - Douglas Olivares
- Centro de Desarrollo Energético de Antofagasta, Universidad de Antofagasta, Av. Universidad de Antofagasta 02800, Antofagasta 1271155, Chile; (M.B.); (S.L.-G.); (C.P.); (D.O.)
| | - Norman Toro
- Facultad de Ingeniería y Arquitectura, Universidad Arturo Prat, Av. Arturo Prat 2120, Iquique 1110939, Chile;
| | - Victor Jimenez-Arevalo
- Departamento de Química de los Materiales, Facultad de Química y Biología, Universidad de Santiago de Chile, Av. Libertador B. O’Higgins 3363, Santiago 9170022, Chile; (V.J.-A.); (M.P.)
| | - Maritza Páez
- Departamento de Química de los Materiales, Facultad de Química y Biología, Universidad de Santiago de Chile, Av. Libertador B. O’Higgins 3363, Santiago 9170022, Chile; (V.J.-A.); (M.P.)
| |
Collapse
|
33
|
Zhao FM, Gao DX, Cheng YM, Yang Q. Estimation of lithium-ion battery health state using MHATTCN network with multi-health indicators inputs. Sci Rep 2024; 14:18391. [PMID: 39117700 PMCID: PMC11310493 DOI: 10.1038/s41598-024-69424-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2024] [Accepted: 08/05/2024] [Indexed: 08/10/2024] Open
Abstract
Accurately predicting the state of health (SOH) of lithium-ion batteries is fundamental in estimating their remaining lifespan. Various parameters such as voltage, current, and temperature significantly influence the battery's SOH. However, existing data-driven methods necessitate substantial data from the target domain for training, which hampers the assessment of lithium-ion battery health at the initial stage. To address these challenges, this paper introduces the multi-head attention-time convolution network (MHAT-TCN), amalgamating multi-head attention learning with random block dropout techniques. Additionally, it employs grey relational analysis (GRA) to select health indicators (HIs) highly correlated with battery capacity, thereby enhancing the accuracy of the model training. Employing leave-one-out crossvalidation (LOOCV), the MHAT-TCN network is pre-trained using data from batteries of the same model to facilitate comprehensive prediction of the target battery throughout its operational period. Results demonstrate that the MHAT-TCN network trained on HIs outperforms other models, enabling precise predictions across the entire operational period.
Collapse
Affiliation(s)
- Feng-Ming Zhao
- Department of Automation and Electronic Engineering, Qingdao University of Science and Technology, Qingdao, 266061, China
| | - De-Xin Gao
- Department of Automation and Electronic Engineering, Qingdao University of Science and Technology, Qingdao, 266061, China.
| | - Yuan-Ming Cheng
- Department of Automation and Electronic Engineering, Qingdao University of Science and Technology, Qingdao, 266061, China
| | - Qing Yang
- Department of Computer Science and Technology, Qingdao University of Science and Technology, Qingdao, 266061, China
| |
Collapse
|
34
|
Zhong M, Chen Y, Jian H, Gao F, Wang X, Li H. Helmet-Roled Molecules Carrying Double Metronidazole Frameworks and Phenyl Ring for Strengthening Adsorption and Anticorrosion on Mild Steel. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2024; 40:16615-16634. [PMID: 39052933 DOI: 10.1021/acs.langmuir.4c02206] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/27/2024]
Abstract
This study prepared new helmet-roled molecules (HMs) carrying metronidazole frameworks and a phenyl ring for strengthening adsorption and anticorrosion on mild steel. The adsorption of the HMs on the copper surface was understood by material simulation computation. Furthermore, the surface analysis experiments suggest that the studied molecules could be adsorbed to a mild steel surface through the chemical coordination bonding. The remarkable corrosion resistance of the HMs for mild steel in HCl was surveyed by potentiodynamic polarization and electrochemical impedance spectroscopy at 298 K. The HMs including two metronidazole skeletons displayed the stronger corrosion inhibition effect on mild steel than the HM1 bearing one single metronidazole part (the corrosion inhibition efficiency, HM3, 98.03%, HM2, 95.14%, HM1, 88.72%). The results presented in this study provided an efficient strategy to develop new clinical medicine-based corrosion inhibitors for metal in acid medium through molecular preconstruction.
Collapse
Affiliation(s)
- Minghui Zhong
- College of Chemistry and Chemical Engineering, Chongqing University, Chongqing, 400044, China
| | - Yufeng Chen
- College of Chemistry and Chemical Engineering, Chongqing University, Chongqing, 400044, China
| | - Huilong Jian
- College of Chemistry and Chemical Engineering, Chongqing University, Chongqing, 400044, China
| | - Fang Gao
- College of Chemistry and Chemical Engineering, Chongqing University, Chongqing, 400044, China
| | - Xinchao Wang
- College of Chemistry and Chemical Engineering, Chongqing University, Chongqing, 400044, China
- College of Pharmacy, Heze University, Heze, Shandong Province 274000, China
| | - Hongru Li
- College of Chemistry and Chemical Engineering, Chongqing University, Chongqing, 400044, China
| |
Collapse
|
35
|
Wahyuni WT, Rahman HA, Afifah S, Anindya W, Hidayat RA, Khalil M, Fan B, Putra BR. Comparison of the analytical performance of two different electrochemical sensors based on a composite of gold nanorods with carbon nanomaterials and PEDOT:PSS for the sensitive detection of nitrite in processed meat products. RSC Adv 2024; 14:24856-24873. [PMID: 39119281 PMCID: PMC11307257 DOI: 10.1039/d4ra04629c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2024] [Accepted: 08/01/2024] [Indexed: 08/10/2024] Open
Abstract
Herein, two platforms for electrochemical sensors were developed based on a combination of gold nanorods (AuNRs) with electrochemically reduced graphene oxide (ErGO) or with multiwalled carbon nanotubes (MWCNTs) and PEDOT:PSS for nitrite detection. The first and second electrodes were denoted as AuNRs/ErGO/PEDOT:PSS/GCE and AuNRs/MWCNT/PEDOT:PSS/GCE, respectively. Both materials for electrode modifiers were then characterized using UV-Vis and Raman spectroscopy, SEM, and HR-TEM. In addition, both sensors exhibit good electrochemical and electroanalytical performance for nitrite detection when investigated using voltammetric techniques. The synergistic effect between the AuNRs and their composites enhanced the electrocatalytic activity toward nitrite oxidation compared with the unmodified electrode, and the electroanalytical performance of the second electrode was superior to the first electrode. This is because the high surface area and conductivity of the MWCNTs in the second electrode provide the highest electrochemically active area (0.1510 cm2) among the other electrodes. Moreover, the second electrode exhibited a higher value for the surface coverage and the diffusion coefficient than the first electrode for nitrite detection. The electroanalytical performances of the first and second electrode for nitrite detection in terms of concentration range are 0.8-100 μM and 0.2-100 μM, limit of detection (0.2 μM and 0.08 μM), and measurement sensitivity (0.0451 μA μM-1 cm-2 and 0.0634 μA μM-1 cm-2). Good selectivity was also shown from both sensors in the presence of NaCl, Na2SO4, Na3PO4, MgSO4, NaHCO3, NaNO3, glucose, and ascorbic acid as interfering species for nitrite detection. Furthermore, both sensors were employed to detect nitrite as a food preservative in the beef sample, and the results showed no significant difference compared with the spectrophotometric technique. These results indicate that both proposed nitrite sensors may be further applied as promising electrochemical sensing platforms for in situ nitrite detection.
Collapse
Affiliation(s)
- Wulan Tri Wahyuni
- Department of Chemistry, Analytical Chemistry Division, Faculty of Mathematics and Natural Sciences, IPB University Bogor 16680 Indonesia
- Tropical Biopharmaca Research Center, IPB University Bogor 16680 Indonesia
| | - Hemas Arif Rahman
- Department of Chemistry, Analytical Chemistry Division, Faculty of Mathematics and Natural Sciences, IPB University Bogor 16680 Indonesia
| | - Salmi Afifah
- Department of Chemistry, Analytical Chemistry Division, Faculty of Mathematics and Natural Sciences, IPB University Bogor 16680 Indonesia
| | - Weni Anindya
- Department of Chemistry, Analytical Chemistry Division, Faculty of Mathematics and Natural Sciences, IPB University Bogor 16680 Indonesia
| | - Rayyan Azzahra Hidayat
- Department of Chemistry, Analytical Chemistry Division, Faculty of Mathematics and Natural Sciences, IPB University Bogor 16680 Indonesia
| | - Munawar Khalil
- Department of Chemistry, Faculty of Mathematics and Natural Sciences, University of Indonesia Depok 16424 Indonesia
| | - Bingbing Fan
- School of Material Science and Engineering, Zhengzhou University Zhengzhou 450001 China
| | - Budi Riza Putra
- Research Center for Metallurgy, National Research and Innovation Agency (BRIN) PUSPIPTEK Gd. 470 South Tangerang Banten 15315 Indonesia
| |
Collapse
|
36
|
Jiang H, Zhao Y, Li J, Zhao M, Deng J, Bai X. Quantitative detection of aflatoxin B 1 in peanuts using Raman spectra and multivariate analysis methods. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2024; 316:124322. [PMID: 38663134 DOI: 10.1016/j.saa.2024.124322] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/06/2023] [Revised: 03/03/2024] [Accepted: 04/19/2024] [Indexed: 05/15/2024]
Abstract
Aflatoxin B1 (AFB1), among the identified aflatoxins, exhibits the highest content, possesses the most potent toxicity, and poses the gravest threat. It is commonly found in peanuts and their derivatives. This study employs Raman spectroscopy to monitor the AFB1 levels in moldy peanuts, providing a reliable theoretical basis for peanut storage management. Firstly, different degrees of moldy peanuts are spectrally characterized using a portable Raman spectrometer. Subsequently, a two-step hybrid strategy for feature selection is proposed, combining backward interval partial least squares (BiPLS) and variable combination population analysis (VCPA), aiming to simplify model complexity and enhance predictive accuracy. Finally, partial least squares (PLS) regression models are constructed based on different feature intervals and wavelength points. The research results reveal that the PLS regression model using the optimized feature intervals and wavelength points exhibits improved predictive capability and generalization performance. Notably, the BiPLS-VCPA-PLS model, established through the two-step optimization, selects nine wavelength variables, achieving a root mean square error of prediction (RMSEP) of 33.3147 μg∙kg-1, a correlation coefficient of the prediction set (RP) of 0.9558, and a relative percent deviation (RPD) of 3.4896. These findings demonstrate that the two-step feature optimization method, combining feature interval selection and feature wavelength selection, can more accurately identify optimal variables, thus enhancing detection efficiency and predictive precision.
Collapse
Affiliation(s)
- Hui Jiang
- School of Electrical and Information Engineering, Jiangsu University, Zhenjiang 212013, PR China.
| | - Yongqin Zhao
- School of Electrical and Information Engineering, Jiangsu University, Zhenjiang 212013, PR China
| | - Jian Li
- School of Electrical and Information Engineering, Jiangsu University, Zhenjiang 212013, PR China
| | - Mingxing Zhao
- School of Electrical and Information Engineering, Jiangsu University, Zhenjiang 212013, PR China
| | - Jihong Deng
- School of Electrical and Information Engineering, Jiangsu University, Zhenjiang 212013, PR China
| | - Xue Bai
- School of Electrical and Information Engineering, Jiangsu University, Zhenjiang 212013, PR China
| |
Collapse
|
37
|
Garg N, Deep A, Sharma AL. Recent Trends and Advances in Porous Metal-Organic Framework Nanostructures for the Electrochemical and Optical Sensing of Heavy Metals in Water. Crit Rev Anal Chem 2024; 54:1121-1145. [PMID: 35968634 DOI: 10.1080/10408347.2022.2106543] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
With the expansion and advancement in agricultural and chemical industries, various toxic heavy metals such as lead, cadmium, mercury, zinc, copper, arsenic etc. are continuously released into the environment. Intake of sources contaminated with such toxic metals leads to various health issues. Keeping the serious effects of these toxic metal ions in view, various organic-inorganic nanomaterials based sensors have been exploited for their detection via optical, electrochemical and colorimetric approaches. Since a chemical sensor works on the principle of interaction between the sensing layer and the analytes, a sensor material with large surface area is required to enable the largest possible interaction with the target molecules and hence the sensitivity of the chemical sensor. However, commonly employed materials such as metal oxides and conducting polymers tend to feature relatively low surface areas, and hence resulting in low sensitivity of the sensor. Metal-Organic Frameworks (MOFs) nanostructures are another category of organic-inorganic materials endowed with large surface area, ultra-high and tunable porosity, post-synthesis modification features, readily available active sites, catalytic activity, and chemical/thermal stability. These properties provide high sensitivity to the MOF based sensors due to the adsorption of large number of target analytes. The current review article focuses on MOFs based optical and electrochemical sensors for the detection of heavy metals.
Collapse
Affiliation(s)
- Naini Garg
- CSIO Analytical Facility (CAF) Division, CSIR-Central Scientific Instruments Organisation, Chandigarh 160030, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Akash Deep
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
- Materials Science & Sensor Applications (MSSA) Division, CSIR-Central Scientific Instruments Organisation, Chandigarh 160030, India
| | - Amit L Sharma
- CSIO Analytical Facility (CAF) Division, CSIR-Central Scientific Instruments Organisation, Chandigarh 160030, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| |
Collapse
|
38
|
Billowria K, Ali R, Rangra NK, Kumar R, Chawla PA. Bioactive Flavonoids: A Comprehensive Review on Pharmacokinetics and Analytical Aspects. Crit Rev Anal Chem 2024; 54:1002-1016. [PMID: 35930461 DOI: 10.1080/10408347.2022.2105641] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/16/2022]
Abstract
Flavonoids are a diversified group of natural substances which were discovered to provide a variety of health benefits in human beings. Vegetables, fruits, wine and tea are the primary flavonoid dietary sources for humans and as the flavonoids are so closely connected to human dietary items and health, it is vital to explore the structural-activity connection. The arrangement, replacement of functional groups, and total number of hydroxyl groups around flavonoid's nucleus structure affect their biological activity, metabolism, and bioavailability. Various flavonoids have been proven to have hepatoprotective properties, that help in the prevention of coronary heart disease. Similarly, these flavonoids also possess anticancer, and anti-inflammatory activities. Flavonoids have been found to have a functional and structural link with their enzyme inhibitory action, that appears to have antiviral effect through acting as antioxidants, damaging cell membranes, blocking enzymes, activating mechanisms of host self-defense, and limiting virus penetration and attaching to cells. Identification, characterization, isolation, and biological role of flavonoids, as well as their uses on health advantages, are all major topics in research and development currently. This review represents a summary of various sources of flavonoids, class, subclass, their chemical structures, biological activities, the pharmacokinetics of flavonoids and various analytical, bioanalytical and electrochemical methods for determination of flavonoids from different matrices.
Collapse
Affiliation(s)
- Koushal Billowria
- Department of Pharmaceutical Analysis, ISF College of Pharmacy, Moga, India
| | - Rouchan Ali
- Department of Pharmaceutical Analysis, ISF College of Pharmacy, Moga, India
| | | | - Ram Kumar
- Department of Pharmaceutical Analysis, ISF College of Pharmacy, Moga, India
| | - Pooja A Chawla
- Department of Pharmaceutical Analysis, ISF College of Pharmacy, Moga, India
| |
Collapse
|
39
|
Ruiz-Barriga P, Serralta J, Bouzas A, Carrillo-Abad J. Boosting nutrient recovery from AnMBR effluent by means of electrodialysis technology: Operating parameters assessing. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2024; 366:121712. [PMID: 39003898 DOI: 10.1016/j.jenvman.2024.121712] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/09/2024] [Revised: 05/31/2024] [Accepted: 07/02/2024] [Indexed: 07/16/2024]
Abstract
This work describes a comprehensive assessment of operating parameters of a bench-scale electrodialysis (ED) plant for nutrient concentration from an Anaerobic Membrane BioReactor (AnMBR) effluent. The ED bench-scale plant serves a dual purpose. Firstly, to generate a concentrated stream with a high nutrient content, and secondly, to produce high-quality reclaimed water in the diluted stream, both sourced from real wastewater coming from the effluent of an AnMBR. Two sets of experiments were conducted: 1) short-term experiments to study the effect of some parameters such as the applied current and the type of anionic exchange membrane (AEM), among others, and 2) a long-term experiment to verify the feasibility of the process using the selected parameters. The results showed that ED produced concentrated ammonium and phosphate streams using a 10-cell pair stack with 64 cm2 of unitary effective membrane area, working in galvanostatic mode at 0.24 A, and operating with an Acid-100-OT anionic exchange membrane. Concentrations up to 740 mg/L and 50 mg/L for NH4-N and PO4-P, respectively, were achieved in the concentrated stream along with removal efficiencies of 70% for ammonium and 60% for phosphate in the diluted stream. The average energy consumption was around 0.47 kWh·m-3.
Collapse
Affiliation(s)
- P Ruiz-Barriga
- CALAGUA - Unitat Mixta UV-UPV, Institut Universitari d'Investigació d'Enginyeria de l'Aigua i Medi Ambient - IIAMA, Universitat Politècnica de Valencia, Camí de Vera S/n, 46022 Valencia, Spain.
| | - J Serralta
- CALAGUA - Unitat Mixta UV-UPV, Institut Universitari d'Investigació d'Enginyeria de l'Aigua i Medi Ambient - IIAMA, Universitat Politècnica de Valencia, Camí de Vera S/n, 46022 Valencia, Spain
| | - A Bouzas
- CALAGUA - Unitat Mixta UV-UPV, Departament d'Enginyeria Química, Universitat de València, Avinguda de la Universitat S/n, 46100 Burjassot, Valencia, Spain
| | - J Carrillo-Abad
- CALAGUA - Unitat Mixta UV-UPV, Departament d'Enginyeria Química, Universitat de València, Avinguda de la Universitat S/n, 46100 Burjassot, Valencia, Spain
| |
Collapse
|
40
|
Ma L, Hou W, Ji Z, Sun Z, Li M, Lian B. Wearable Electrochemical Sensor for Sweat-Based Potassium Ion and Glucose Detection in Exercise Health Monitoring. ChemistryOpen 2024; 13:e202300217. [PMID: 38441499 PMCID: PMC11319218 DOI: 10.1002/open.202300217] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2023] [Revised: 01/30/2024] [Indexed: 08/15/2024] Open
Abstract
The increasing prevalence of wearable devices has sparked a growing interest in real-time health monitoring and physiological parameter tracking. This study focuses on the development of a cost-effective sweat analysis device, utilizing microfluidic technology and selective electrochemical electrodes for non-invasive monitoring of glucose and potassium ions. The device, through real-time monitoring of glucose and potassium ion levels in sweat during physical activity, issues a warning signal when reaching experimentally set thresholds (K+ concentration at 7.5 mM, glucose concentrations at 60 μM and 120 μM). This alerts users to potential dehydration and hypoglycemic conditions. Through the integration of microfluidic devices and precise electrochemical analysis techniques, the device enables accurate and real-time monitoring of glucose and potassium ions in sweat. This advancement in wearable technology holds significant potential for personalized health management and preventive care, promoting overall well-being, and optimizing performance during physical activities.
Collapse
Affiliation(s)
- Lei Ma
- Department School of Information Science and TechnologyNantong University 9#Seyuan road, Chongchuan districtNantongChina
| | - Wenhao Hou
- Department School of Information Science and TechnologyNantong University 9#Seyuan road, Chongchuan districtNantongChina
| | - Zhi Ji
- Department School of Information Science and TechnologyNantong University 9#Seyuan road, Chongchuan districtNantongChina
| | - Ziheng Sun
- Department School of Information Science and TechnologyNantong University 9#Seyuan road, Chongchuan districtNantongChina
| | - Muxi Li
- Department School of Information Science and TechnologyNantong University 9#Seyuan road, Chongchuan districtNantongChina
| | - Bolin Lian
- Department School of Life scienceNantong University 9#Seyuan road, Chongchuan districtNantongChina
| |
Collapse
|
41
|
Brycht M, Poltorak L, Baluchová S, Sipa K, Borgul P, Rudnicki K, Skrzypek S. Electrochemistry as a Powerful Tool for Investigations of Antineoplastic Agents: A Comprehensive Review. Crit Rev Anal Chem 2024; 54:1017-1108. [PMID: 35968923 DOI: 10.1080/10408347.2022.2106117] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/15/2022]
Abstract
Cancer is most frequently treated with antineoplastic agents (ANAs) that are hazardous to patients undergoing chemotherapy and the healthcare workers who handle ANAs in the course of their duties. All aspects related to hazardous oncological drugs illustrate that the monitoring of ANAs is essential to minimize the risks associated with these drugs. Among all analytical techniques used to test ANAs, electrochemistry holds an important position. This review, for the first time, comprehensively describes the progress done in electrochemistry of ANAs by means of a variety of bare or modified (bio)sensors over the last four decades (in the period of 1982-2021). Attention is paid not only to the development of electrochemical sensing protocols of ANAs in various biological, environmental, and pharmaceutical matrices but also to achievements of electrochemical techniques in the examination of the interactions of ANAs with deoxyribonucleic acid (DNA), carcinogenic cells, biomimetic membranes, peptides, and enzymes. Other aspects, including the enantiopurity studies, differentiation between single-stranded and double-stranded DNA without using any label or tag, studies on ANAs degradation, and their pharmacokinetics, by means of electrochemical techniques are also commented. Finally, concluding remarks that underline the existence of a significant niche for the basic electrochemical research that should be filled in the future are presented.
Collapse
Affiliation(s)
- Mariola Brycht
- Faculty of Chemistry, Department of Inorganic and Analytical Chemistry, University of Lodz, Lodz, Poland
| | - Lukasz Poltorak
- Faculty of Chemistry, Department of Inorganic and Analytical Chemistry, University of Lodz, Lodz, Poland
| | - Simona Baluchová
- Faculty of Science, Department of Analytical Chemistry, UNESCO Laboratory of Environmental Electrochemistry, Charles University, Prague 2, Czechia
- Department of Precision and Microsystems Engineering, Delft University of Technology, Delft, The Netherlands
| | - Karolina Sipa
- Faculty of Chemistry, Department of Inorganic and Analytical Chemistry, University of Lodz, Lodz, Poland
| | - Paulina Borgul
- Faculty of Chemistry, Department of Inorganic and Analytical Chemistry, University of Lodz, Lodz, Poland
| | - Konrad Rudnicki
- Faculty of Chemistry, Department of Inorganic and Analytical Chemistry, University of Lodz, Lodz, Poland
| | - Sławomira Skrzypek
- Faculty of Chemistry, Department of Inorganic and Analytical Chemistry, University of Lodz, Lodz, Poland
| |
Collapse
|
42
|
Meskher H, Achi F. Electrochemical Sensing Systems for the Analysis of Catechol and Hydroquinone in the Aquatic Environments: A Critical Review. Crit Rev Anal Chem 2024; 54:1354-1367. [PMID: 36007064 DOI: 10.1080/10408347.2022.2114784] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/07/2022]
Abstract
Because of their unique physical, chemical, and biological characteristics, conductive nanomaterials have a lot of potential for applications in materials science, energy storage, environmental science, biomedicine, sensors/biosensors, and other fields. Recent breakthroughs in the manufacture of carbon materials, conductive polymers, metals, and metal oxide nanoparticles based electrochemical sensors and biosensors for applications in environmental monitoring by detection of catechol (CC) and hydroquinone (HQ) are presented in this review. To achieve this goal, we first introduced recent works that discuss the effects of phenolic compounds and the need for accurate, inexpensive, and quick monitoring, and then we focused on the use of the most important applications of nanomaterials, such as carbon-based materials, metals, and metal oxides nanoparticles, and conductive polymers, to develop sensors to monitor catechol and hydroquinone. Finally, we identified challenges and limits in the field of sensors and biosensors, as well as possibilities and recommendations for developing the field for better future applications. Meanwhile, electrochemical sensors and biosensors for catechol and hydroquinone measurement and monitoring were highlighted and discussed particularly. This review, we feel, will aid in the promotion of nanomaterials for the development of innovative electrical sensors and nanodevices for environmental monitoring.
Collapse
Affiliation(s)
- Hicham Meskher
- Laboratory of Valorization and Promotion of Saharian Ressources (VPSR), Kasdi-Merbah University, Ouargla, Algeria
| | - Fethi Achi
- Laboratory of Valorization and Promotion of Saharian Ressources (VPSR), Kasdi-Merbah University, Ouargla, Algeria
| |
Collapse
|
43
|
Ozcelikay G, Cetinkaya A, Kaya SI, Yence M, Canavar Eroğlu PE, Unal MA, Ozkan SA. Novel Sensor Approaches of Aflatoxins Determination in Food and Beverage Samples. Crit Rev Anal Chem 2024; 54:982-1001. [PMID: 35917408 DOI: 10.1080/10408347.2022.2105136] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/16/2022]
Abstract
The rapid quantification of toxins in food and beverage products has become a significant issue in overcoming and preventing many life-threatening diseases. Aflatoxin-contaminated food is one of the reasons for primary liver cancer and induces some tumors and cancer types. Advancements in biosensors technology have brought out different analysis methods. Therefore, the sensing performance has been improved for agricultural and beverage industries or food control processes. Nanomaterials are widely used for the enhancement of sensing performance. The enzymes, molecularly imprinted polymers (MIP), antibodies, and aptamers can be used as biorecognition elements. The transducer part of the biosensor can be selected, such as optical, electrochemical, and mass-based. This review explains the classification of major types of aflatoxins, the importance of nanomaterials, electrochemical, optical biosensors, and QCM and their applications for the determination of aflatoxins.
Collapse
Affiliation(s)
- Goksu Ozcelikay
- Department of Analytical Chemistry, Faculty of Pharmacy, Ankara University, Yenimahalle, Ankara, Turkey
| | - Ahmet Cetinkaya
- Department of Analytical Chemistry, Faculty of Pharmacy, Ankara University, Yenimahalle, Ankara, Turkey
| | - S Irem Kaya
- Department of Analytical Chemistry, Gulhane Faculty of Pharmacy, University of Health Sciences, Kecioren, Ankara, Turkey
| | - Merve Yence
- Department of Analytical Chemistry, Faculty of Pharmacy, Ankara University, Yenimahalle, Ankara, Turkey
| | | | | | - Sibel A Ozkan
- Department of Analytical Chemistry, Faculty of Pharmacy, Ankara University, Yenimahalle, Ankara, Turkey
| |
Collapse
|
44
|
R. Holla B, Mahesh R, Manjunath H, Anjanapura VR. Plant extracts as green corrosion inhibitors for different kinds of steel: A review. Heliyon 2024; 10:e33748. [PMID: 39113992 PMCID: PMC11304013 DOI: 10.1016/j.heliyon.2024.e33748] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2023] [Revised: 06/26/2024] [Accepted: 06/26/2024] [Indexed: 08/10/2024] Open
Abstract
Corrosion significantly threatens the structural integrity of steel-based constructions like buildings and industrial units. Traditional corrosion inhibitors, such as chromates, are associated with environmental and health risks. This has led to a growing interest in environmentally sustainable alternatives, with plant extracts emerging as promising candidates. These extracts are widely available, sustainable, and eco-friendly. This review aims to explore the potential of plant extracts as corrosion inhibitors for various types of steel. After examining current scientific literature, over 40 plant extracts have been identified that exhibit corrosion inhibition properties. These extracts have been thoroughly analyzed to understand their effectiveness in preventing corrosion. The review elucidates the mechanisms by which these extracts interact with metal surfaces to form protective layers, effectively hindering the corrosion process. In this review, we focus on the challenges associated with utilizing plant extracts as inhibitors, including optimal extract concentration and temperature considerations.
Collapse
Affiliation(s)
- Bhoomika R. Holla
- Department of Chemical Engineering, RV College of Engineering, Bangalore, 560059, India
| | - R. Mahesh
- Department of Chemistry, RV College of Engineering, Bangalore, 560059, India
| | - H.R. Manjunath
- Department of Physics, Faculty of Engineering and Technology, JAIN (Deemed-to-be University), 562112, Bengalore, India
| | - V. Raghu Anjanapura
- Department of Basic Sciences, Faculty of Engineering and Technology, CMR University, 562149, Bengalore, India
| |
Collapse
|
45
|
Tabassum R, Sarkar PP, Jalal AH, Ashraf A, Islam N. Laser-Induced Electrochemical Biosensor Modified with Graphene-Based Ink for Label-Free Detection of Alpha-Fetoprotein and 17β-Estradiol. Polymers (Basel) 2024; 16:2069. [PMID: 39065385 PMCID: PMC11280801 DOI: 10.3390/polym16142069] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2024] [Revised: 07/07/2024] [Accepted: 07/15/2024] [Indexed: 07/28/2024] Open
Abstract
In this research, a novel electrochemical biosensor is proposed based on inducing graphene formation on polyimide substrate via laser engraving. Graphene polyaniline (G-PANI) conductive ink was synthesized by planetary mixing and applied to the working zone of the developed sensor to effectively enhance the electrical signals. The laser-induced graphene (LIG) sensor was used to detect alpha-fetoprotein (AFP) and 17β-Estradiol (E2) in the phosphate buffer saline (PBS) buffer and human serum. The electrochemical performance of the biosensor in determining these biomarkers was investigated by differential pulse voltammetry (DPV) and chronoamperometry (CA). In a buffer environment, alpha-fetoprotein (AFP) and 17β-Estradiol detection range were 4-400 ng/mL and 20-400 pg/mL respectively. The experimental results showed a limit of detection (LOD) of 1.15 ng/mL and 0.96 pg/mL for AFP and estrogen, respectively, with an excellent linear range (R2 = 0.98 and 0.99). In addition, the designed sensor was able to detect these two types of biomarkers in human serum successfully. The proposed sensor exhibited excellent reproducibility, repeatability, and good stability (relative standard deviation, RSD = 0.96%, 1.12%, 2.92%, respectively). The electrochemical biosensor proposed herein is easy to prepare and can be successfully used for low-cost, rapid detection of AFP and E2. This approach provides a promising platform for clinical detection and is advantageous to healthcare applications.
Collapse
Affiliation(s)
- Ridma Tabassum
- Graduate Research Assistant, The University of Texas Rio Grande Valley, Edinburg, TX 78539, USA; (R.T.); (P.P.S.)
| | - Pritu Parna Sarkar
- Graduate Research Assistant, The University of Texas Rio Grande Valley, Edinburg, TX 78539, USA; (R.T.); (P.P.S.)
| | - Ahmed Hasnain Jalal
- Department of Electrical & Computer Engineering, The University of Texas Rio Grande Valley, Edinburg, TX 78539, USA;
| | - Ali Ashraf
- Department of Mechanical Engineering, The University of Texas Rio Grande Valley, Edinburg, TX 78539, USA;
| | - Nazmul Islam
- Department of Electrical & Computer Engineering, The University of Texas Rio Grande Valley, Edinburg, TX 78539, USA;
| |
Collapse
|
46
|
Ghazizadeh E, Naseri Z, Deigner HP, Rahimi H, Altintas Z. Approaches of wearable and implantable biosensor towards of developing in precision medicine. Front Med (Lausanne) 2024; 11:1390634. [PMID: 39091290 PMCID: PMC11293309 DOI: 10.3389/fmed.2024.1390634] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2024] [Accepted: 04/30/2024] [Indexed: 08/04/2024] Open
Abstract
In the relentless pursuit of precision medicine, the intersection of cutting-edge technology and healthcare has given rise to a transformative era. At the forefront of this revolution stands the burgeoning field of wearable and implantable biosensors, promising a paradigm shift in how we monitor, analyze, and tailor medical interventions. As these miniature marvels seamlessly integrate with the human body, they weave a tapestry of real-time health data, offering unprecedented insights into individual physiological landscapes. This log embarks on a journey into the realm of wearable and implantable biosensors, where the convergence of biology and technology heralds a new dawn in personalized healthcare. Here, we explore the intricate web of innovations, challenges, and the immense potential these bioelectronics sentinels hold in sculpting the future of precision medicine.
Collapse
Affiliation(s)
- Elham Ghazizadeh
- Department of Bioinspired Materials and Biosensor Technologies, Faculty of Engineering, Institute of Materials Science, Kiel University, Kiel, Germany
- Department of Medical Biotechnology, School of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Zahra Naseri
- Department of Medical Biotechnology, School of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Hans-Peter Deigner
- Institute of Precision Medicine, Furtwangen University, Villingen-Schwenningen, Germany
- Fraunhofer Institute IZI (Leipzig), Rostock, Germany
- Faculty of Science, Eberhard-Karls-University Tuebingen, Tuebingen, Germany
| | - Hossein Rahimi
- Department of Medicine, University of Pittsburgh, Pittsburgh, PA, United States
| | - Zeynep Altintas
- Department of Bioinspired Materials and Biosensor Technologies, Faculty of Engineering, Institute of Materials Science, Kiel University, Kiel, Germany
| |
Collapse
|
47
|
Robby AI, Jiang S, Jin EJ, Park SY. Coenzyme-A-Responsive Nanogel-Coated Electrochemical Sensor for Osteoarthritis-Detection-Based Genetic Models. Gels 2024; 10:451. [PMID: 39057474 PMCID: PMC11276253 DOI: 10.3390/gels10070451] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2024] [Revised: 07/01/2024] [Accepted: 07/08/2024] [Indexed: 07/28/2024] Open
Abstract
An electrochemical sensor sensitive to coenzyme A (CoA) was designed using a CoA-responsive polyallylamine-manganese oxide-polymer dot nanogel coated on the electrode surface to detect various genetic models of osteoarthritis (OA). The CoA-responsive nanogel sensor responded to the abundance of CoA in OA, causing the breakage of MnO2 in the nanogel, thereby changing the electroconductivity and fluorescence of the sensor. The CoA-responsive nanogel sensor was capable of detecting CoA depending on the treatment time and distinguishing the response towards different OA genetic models that contained different levels of CoA (wild type/WT, NudT7 knockout/N7KO, and Acot12 knockout/A12KO). The WT, N7KO, and A12KO had distinct resistances, which further increased as the incubation time were changed from 12 h (R12h = 2.11, 2.40, and 2.68 MΩ, respectively) to 24 h (R24h = 2.27, 2.59, and 2.92 MΩ, respectively) compared to the sensor without treatment (Rcontrol = 1.63 MΩ). To simplify its application, the nanogel sensor was combined with a wireless monitoring device to allow the sensing data to be directly transmitted to a smartphone. Furthermore, OA-indicated anabolic (Acan) and catabolic (Adamts5) factor transcription levels in chondrocytes provided evidence regarding CoA and nanogel interactions. Thus, this sensor offers potential usage in simple and sensitive OA diagnostics.
Collapse
Affiliation(s)
- Akhmad Irhas Robby
- Chemical Industry Institute, Korea National University of Transportation, Chungju 27469, Chungcheongbuk-do, Republic of Korea;
- Department of Chemical & Biological Engineering, Korea National University of Transportation, Chungju 27469, Chungcheongbuk-do, Republic of Korea
| | - Songling Jiang
- Integrated Omics Institute, Wonkwang University, Iksan 54538, Jeonbuk, Republic of Korea;
| | - Eun-Jung Jin
- Integrated Omics Institute, Wonkwang University, Iksan 54538, Jeonbuk, Republic of Korea;
- Department of Biological Sciences, College of Health Sciences, Wonkwang University, Iksan 54538, Jeonbuk, Republic of Korea
| | - Sung Young Park
- Chemical Industry Institute, Korea National University of Transportation, Chungju 27469, Chungcheongbuk-do, Republic of Korea;
- Department of Chemical & Biological Engineering, Korea National University of Transportation, Chungju 27469, Chungcheongbuk-do, Republic of Korea
| |
Collapse
|
48
|
Saleh MGA, Alfakeer M, Felaly RN, Al-Sharif MS, Al-Juaid SS, Soliman KA, Hegazy MA, Nooh S, Abdallah M, El Wanees SA. Retardation of the C-Steel Destruction in Hydrochloric Acid Media Utilizing an Effective Schiff Base Inhibitor: Experimental and Theoretical Computations. ACS OMEGA 2024; 9:29666-29681. [PMID: 39005820 PMCID: PMC11238229 DOI: 10.1021/acsomega.4c03135] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/01/2024] [Revised: 05/17/2024] [Accepted: 05/28/2024] [Indexed: 07/16/2024]
Abstract
The corrosion inhibition of (N 1 E)-N 1,N 2-bis(4-(dimethylamino)benzylidene)-ethane-1,2-diamine, DMAB, against the destruction of C-steel in dilute HCl media (1.0 M) was examined. The techniques of gravimetry, gasometry, potentiodynamic, and electrochemical impedance spectroscopy are utilized. The rate of corrosion is found to decrease with more additions of the DMAB compound. The inhibition efficacy increases with concentrations to reach 97.7% at 5.0 mM and 298 K. The protection of metal destruction is controlled by the adsorption of the DMAB molecules on the metallic surface obeying Langmuir's pattern. The computed ΔG°ads values are characterized by negative sign, explaining the spontaneity of the adsorption process. These values vary between -38.70 and -35.13 kJ mol-1 depending on the temperature, which proves the physio- and chemisorption mechanisms. The reduction in K ads values with T can be attributed to the desorption of some DMAB molecules from the electrode surface. Theoretical quantum computation confirms the adsorption of the DMAB compound in concurrence with the data obtained by practical techniques.
Collapse
Affiliation(s)
| | - Majda Alfakeer
- Chemistry
Department, College of Science, Princess
Nourah Bint Abdulrahman University, Riyadh 11564, Saudi Arabia
| | - Rasha N. Felaly
- Chemistry
Department, Faculty of Science, Umm Al-Qura
University, Makkah 24382, Saudi Arabia
| | - Merfat S. Al-Sharif
- Chemistry
Department, College of Science, Taif University, P.O. Box 11099, Taif 21944, Saudi Arabia
| | - Salih S. Al-Juaid
- Chemistry
Department, Faculty of Science, King Abdulaziz
University, Jeddah 21589, Saudi Arabia
| | - Kamal A. Soliman
- Chemistry
Department, Faculty of Science, Benha University, Benha 13518, Egypt
| | | | - Sameer Nooh
- Department
of Information Systems, Faculty of Computing and Information Technology, King Abdulaziz University, Jeddah 21589, Saudi Arabia
| | - Metwally Abdallah
- Chemistry
Department, Faculty of Science, Benha University, Benha 13518, Egypt
- Chemistry
Department, Faculty of Applied Science, Umm Al-Qura University, Makkah 24382, Saudi Arabia
| | - Salah Abd El Wanees
- Faculty
College of Umluj, Umluj, University of Tabuk, Tabuk 47713, Saudi Arabia
| |
Collapse
|
49
|
Mirabootalebi SO, Liu Y. Recent advances in nanomaterial-based solid-contact ion-selective electrodes. Analyst 2024; 149:3694-3710. [PMID: 38885067 DOI: 10.1039/d4an00334a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/20/2024]
Abstract
Solid-contact ion-selective electrodes (SC-ISEs) are advanced potentiometric sensors with great capability to detect a wide range of ions for the monitoring of industrial processes and environmental pollutants, as well as the determination of electrolytes for clinical analysis. Over the past decades, the innovative design of ion-selective electrodes (ISEs), specifically SC-ISEs, to improve potential stability and miniaturization for in situ/real-time analysis, has attracted considerable interest. Recently, the utilisation of nanomaterials was particularly prominent in SC-ISEs due to their excellent physical and chemical properties. In this article, we review the recent applications of various types of nanostructured materials that are composed of carbon, metals and polymers for the development of SC-ISEs. The challenges and opportunities in this field, along with the prospects for future applications of nanomaterials in SC-ISEs are also discussed.
Collapse
Affiliation(s)
| | - Yang Liu
- College of Science and Engineering, James Cook University, Townsville, Queensland 4811, Australia.
| |
Collapse
|
50
|
Xia C, Shen X. Analysis of factors influencing on Electro-Fenton and research on combination technology (II): a review. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024; 31:46910-46948. [PMID: 38995339 DOI: 10.1007/s11356-024-34159-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/27/2023] [Accepted: 06/24/2024] [Indexed: 07/13/2024]
Abstract
The principle of Fenton reagent is to produce ·OH by mixing H2O2 and Fe2+ to realize the oxidation of organic pollutants, although Fenton reagent has the advantages of non-toxicity and short reaction time, but there are its related defects. The Fenton-like technology has been widely studied because of its various forms and better results than the traditional Fenton technology in terms of pollutant degradation efficiency. This paper reviews the electro-Fenton technology among the Fenton-like technologies and provides an overview of the homogeneous electro-Fenton. It also focuses on summarizing the effects of factors such as H2O2, reactant concentration, reactor volume and electrode quality, reaction time and voltage (potential) on the efficiency of electro-Fenton process. It is shown that appropriate enhancement of H2O2 concentration, voltage (potential) and reaction volume can help to improve the process efficiency; the process efficiency also can be improved by increasing the reaction time and electrode quality. Feeding modes of H2O2 have different effects on process efficiency. Finally, a considerable number of experimental studies have shown that the combination of electro-Fenton with ultrasound, anodic oxidation and electrocoagulation technologies is superior to the single electro-Fenton process in terms of pollutant degradation.
Collapse
Affiliation(s)
- Chongjie Xia
- School of Environmental and Chemical Engineering, Shenyang University of Technology, 110870, Shenyang, People's Republic of China
| | - Xinjun Shen
- School of Environmental and Chemical Engineering, Shenyang University of Technology, 110870, Shenyang, People's Republic of China.
| |
Collapse
|