1
|
Tian Y, Yang X, Chen N, Li C, Yang W. Data-driven interpretable analysis for polysaccharide yield prediction. Environ Sci Ecotechnol 2024; 19:100321. [PMID: 38021368 PMCID: PMC10661693 DOI: 10.1016/j.ese.2023.100321] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [What about the content of this article? (0)] [Affiliation(s)] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/09/2023] [Revised: 09/17/2023] [Accepted: 09/17/2023] [Indexed: 12/01/2023]
Abstract
Cornstalks show promise as a raw material for polysaccharide production through xylanase. Rapid and accurate prediction of polysaccharide yield can facilitate process optimization, eliminating the need for extensive experimentation in actual production to refine reaction conditions, thereby saving time and costs. However, the intricate interplay of enzymatic factors poses challenges in predicting and optimizing polysaccharide yield accurately. Here, we introduce an innovative data-driven approach leveraging multiple artificial intelligence techniques to enhance polysaccharide production. We propose a machine learning framework to identify highly accurate polysaccharide yield prediction modeling methods and uncover optimal enzymatic parameter combinations. Notably, Random Forest (RF) and eXtreme Gradient Boost (XGB) demonstrate robust performance, achieving prediction accuracies of 93.0% and 95.6%, respectively, while an independently developed deep neural network (DNN) model achieves 91.1% accuracy. A feature importance analysis of XGB reveals the enzyme solution volume's dominant role (43.7%), followed by time (20.7%), substrate concentration (15%), temperature (15%), and pH (5.6%). Further interpretability analysis unveils complex parameter interactions and potential optimization strategies. This data-driven approach, incorporating machine learning, deep learning, and interpretable analysis, offers a viable pathway for polysaccharide yield prediction and the potential recovery of various agricultural residues.
Collapse
Affiliation(s)
- Yushi Tian
- School of Resource and Environment, Northeast Agriculture University, Harbin, 150030, PR China
| | - Xu Yang
- School of Resource and Environment, Northeast Agriculture University, Harbin, 150030, PR China
| | - Nianhua Chen
- School of Resource and Environment, Northeast Agriculture University, Harbin, 150030, PR China
| | - Chunyan Li
- School of Resource and Environment, Northeast Agriculture University, Harbin, 150030, PR China
| | - Wulin Yang
- College of Environmental Sciences and Engineering, Peking University, Beijing, 100871, PR China
| |
Collapse
|
2
|
Qu Y, Zhao Y, Yao X, Wang J, Liu Z, Hong Y, Zheng P, Wang L, Hu B. Salinity causes differences in stratigraphic methane sources and sinks. Environ Sci Ecotechnol 2024; 19:100334. [PMID: 38046178 PMCID: PMC10692758 DOI: 10.1016/j.ese.2023.100334] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [What about the content of this article? (0)] [Affiliation(s)] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 03/24/2023] [Revised: 10/09/2023] [Accepted: 10/12/2023] [Indexed: 12/05/2023]
Abstract
Methane metabolism, driven by methanogenic and methanotrophic microorganisms, plays a pivotal role in the carbon cycle. As seawater intrusion and soil salinization rise due to global environmental shifts, understanding how salinity affects methane emissions, especially in deep strata, becomes imperative. Yet, insights into stratigraphic methane release under varying salinity conditions remain sparse. Here we investigate the effects of salinity on methane metabolism across terrestrial and coastal strata (15-40 m depth) through in situ and microcosm simulation studies. Coastal strata, exhibiting a salinity level five times greater than terrestrial strata, manifested a 12.05% decrease in total methane production, but a staggering 687.34% surge in methane oxidation, culminating in 146.31% diminished methane emissions. Salinity emerged as a significant factor shaping the methane-metabolizing microbial community's dynamics, impacting the methanogenic archaeal, methanotrophic archaeal, and methanotrophic bacterial communities by 16.53%, 27.25%, and 22.94%, respectively. Furthermore, microbial interactions influenced strata system methane metabolism. Metabolic pathway analyses suggested Atribacteria JS1's potential role in organic matter decomposition, facilitating methane production via Methanofastidiosales. This study thus offers a comprehensive lens to comprehend stratigraphic methane emission dynamics and the overarching factors modulating them.
Collapse
Affiliation(s)
- Ying Qu
- Department of Environmental Engineering, Zhejiang University, Hangzhou, China
| | - Yuxiang Zhao
- Department of Environmental Engineering, Zhejiang University, Hangzhou, China
| | - Xiangwu Yao
- Department of Environmental Engineering, Zhejiang University, Hangzhou, China
| | - Jiaqi Wang
- Department of Environmental Engineering, Zhejiang University, Hangzhou, China
| | - Zishu Liu
- Department of Environmental Engineering, Zhejiang University, Hangzhou, China
| | - Yi Hong
- Ocean College, Zhejiang University, Zhoushan, China
| | - Ping Zheng
- Department of Environmental Engineering, Zhejiang University, Hangzhou, China
| | - Lizhong Wang
- Ocean College, Zhejiang University, Zhoushan, China
| | - Baolan Hu
- Department of Environmental Engineering, Zhejiang University, Hangzhou, China
- Zhejiang Province Key Laboratory for Water Pollution Control and Environmental Safety, Hangzhou, China
| |
Collapse
|
3
|
Chen Y, Gao Y, Huang X, Li S, Zhang Z, Zhan A. Incorporating adaptive genomic variation into predictive models for invasion risk assessment. Environ Sci Ecotechnol 2024; 18:100299. [PMID: 37701243 PMCID: PMC10494315 DOI: 10.1016/j.ese.2023.100299] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [What about the content of this article? (0)] [Affiliation(s)] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/29/2022] [Revised: 07/07/2023] [Accepted: 07/09/2023] [Indexed: 09/14/2023]
Abstract
Global climate change is expected to accelerate biological invasions, necessitating accurate risk forecasting and management strategies. However, current invasion risk assessments often overlook adaptive genomic variation, which plays a significant role in the persistence and expansion of invasive populations. Here we used Molgula manhattensis, a highly invasive ascidian, as a model to assess its invasion risks along Chinese coasts under climate change. Through population genomics analyses, we identified two genetic clusters, the north and south clusters, based on geographic distributions. To predict invasion risks, we employed the gradient forest and species distribution models to calculate genomic offset and species habitat suitability, respectively. These approaches yielded distinct predictions: the gradient forest model suggested a greater genomic offset to future climatic conditions for the north cluster (i.e., lower invasion risks), while the species distribution model indicated higher future habitat suitability for the same cluster (i.e, higher invasion risks). By integrating these models, we found that the south cluster exhibited minor genome-niche disruptions in the future, indicating higher invasion risks. Our study highlights the complementary roles of genomic offset and habitat suitability in assessing invasion risks under climate change. Moreover, incorporating adaptive genomic variation into predictive models can significantly enhance future invasion risk predictions and enable effective management strategies for biological invasions in the future.
Collapse
Affiliation(s)
- Yiyong Chen
- Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China
| | - Yangchun Gao
- Guangdong Key Laboratory of Animal Conservation and Resource Utilization, Guangdong Public Laboratory of Wild Animal Conservation and Utilization, Institute of Zoology, Guangdong Academy of Science, Guangzhou, 510260, China
| | - Xuena Huang
- Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China
| | - Shiguo Li
- Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China
- University of Chinese Academy of Sciences, Chinese Academy of Sciences, Beijing, 100049, China
| | - Zhixin Zhang
- CAS Key Laboratory of Tropical Marine Bio-resources and Ecology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou, 510275, China
- Global Ocean and Climate Research Center, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou, 510275, China
| | - Aibin Zhan
- Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China
- University of Chinese Academy of Sciences, Chinese Academy of Sciences, Beijing, 100049, China
| |
Collapse
|
4
|
Bai Y, Lin H, Wang C, Wang Q, Qu J. Digitalizing river aquatic ecosystems. J Environ Sci (China) 2024; 137:677-680. [PMID: 37980050 DOI: 10.1016/j.jes.2023.03.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [What about the content of this article? (0)] [Affiliation(s)] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2022] [Revised: 03/07/2023] [Accepted: 03/08/2023] [Indexed: 11/20/2023]
Abstract
Traditional river health assessment relies on limited water quality indices and representative organism activity, but does not comprehensively obtain biotic and abiotic information of the ecosystem. Here, we propose a new approach to evaluate the ecological and health risks of river aquatic ecosystems. First, detailed physicochemical and biological characterization of a river ecosystem can be obtained through pollutant determination (especially emerging pollutants) and DNA/RNA sequencing. Second, supervised machine learning can be applied to perform classification analysis of characterization data and ascertain river ecosystem ecology and health. Our proposed methodology transforms river ecosystem health assessment and can be applied in river management.
Collapse
Affiliation(s)
- Yaohui Bai
- Key Laboratory of Drinking Water Science and Technology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China.
| | - Hui Lin
- Key Laboratory of Drinking Water Science and Technology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Chenchen Wang
- Key Laboratory of Drinking Water Science and Technology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; School of Environmental and Municipal Engineering, Tianjin Chengjian University, Tianjin 300384, China
| | - Qiaojuan Wang
- Key Laboratory of Drinking Water Science and Technology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Jiuhui Qu
- Key Laboratory of Drinking Water Science and Technology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; Center for Water and Ecology, Tsinghua University, Beijing 100084, China.
| |
Collapse
|
5
|
Wu C, Cheng Z, Gao J. Mysterious Bamboo flowering phenomenon: A literature review and new perspectives. Sci Total Environ 2024; 911:168695. [PMID: 38000754 DOI: 10.1016/j.scitotenv.2023.168695] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [What about the content of this article? (0)] [Affiliation(s)] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/04/2023] [Revised: 11/16/2023] [Accepted: 11/17/2023] [Indexed: 11/26/2023]
Abstract
Bamboo, a globally distributed non-timber forest resource, plays a critical role in local ecosystems and economies. Despite its significance, the understanding of bamboo's long and unpredictable flowering cycles remains limited. Our bibliometric analysis of bamboo flowering-related literature from the Web of Science database reveals an initial focus on regeneration studies, with a recent trend shifting towards microscopic and molecular perspectives. Furthermore, our narrative review emphasizes the importance of considering factors such as the proportion of flowering culms and the duration of flowering in classifying bamboo flowering phenomena. While numerous studies have endorsed the predator saturation hypothesis as a suitable explanation for the synchronicity of bamboo flowering, no existing theory explains bamboo's prolonged flowering cycles. We propose a new natural selection hypothesis as a potential explanation for these extraordinary cycles, underscoring the need for further research in this area. Despite the substantial volume of data accumulated on bamboo flowering, these resources have not been fully exploited in recent research. Future studies would benefit from more comprehensive data collection methods, encompassing field observations, satellite remote sensing data, and omics data. The convergence of traditional ecological studies with molecular techniques may pave the way for significant advancements in bamboo flowering research.
Collapse
Affiliation(s)
- Chongyang Wu
- Key Laboratory of National Forestry and Grassland Administration, Beijing for Bamboo & Rattan Science and Technology/International Center for Bamboo and Rattan, Beijing, PR China
| | - Zhanchao Cheng
- Key Laboratory of National Forestry and Grassland Administration, Beijing for Bamboo & Rattan Science and Technology/International Center for Bamboo and Rattan, Beijing, PR China
| | - Jian Gao
- Key Laboratory of National Forestry and Grassland Administration, Beijing for Bamboo & Rattan Science and Technology/International Center for Bamboo and Rattan, Beijing, PR China.
| |
Collapse
|
6
|
Zhao J, Xie X, Jiang Y, Li J, Fu Q, Qiu Y, Fu X, Yao Z, Dai Z, Qiu Y, Chen H. Effects of simulated warming on soil microbial community diversity and composition across diverse ecosystems. Sci Total Environ 2024; 911:168793. [PMID: 37996030 DOI: 10.1016/j.scitotenv.2023.168793] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [What about the content of this article? (0)] [Affiliation(s)] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/27/2023] [Revised: 11/20/2023] [Accepted: 11/20/2023] [Indexed: 11/25/2023]
Abstract
Soil warming can directly affect the microbial community, or indirectly affect the microbial community by affecting soil moisture, nutrient availability, vegetation growth, etc. However, the response of microorganisms to soil warming is complex, and there is no uniform conclusion on the impact and mechanism of warming on microbial diversity. As the global climate gradually warms, a comprehensive assessment of warming on soil microbial community changes is essential to understand and predict the response of microbial geochemical processes to soil warming. Here, we perform a meta-analysis of studies to investigate changes in soil microbial communities along soil warming gradients and the response of soil microbes to elevated temperature in different ecosystems. We found that the α diversity index of soil microorganisms decreased significantly with the increase in temperature, and the β diversity altered with the increase in soil temperature and the shifts in ecosystem. Most bacteria only alter when the temperature rises higher. Compared to the non-warming condition, the relative abundance of Acidobacteria, Proteobacteria, Bacteroidetes, Planctomycetes and Verrucomicrobia decreased by 19 %, 11 %, 19 %, 8 % and 6 %, respectively, and the relative abundance of Firmicutes increased by 34 %. Compared to farmland, forest, grassland and tundra ecosystems, soil microorganisms in wetland ecosystems were more sensitive to temperature increase, and the changes in bacteria were consistent with the overall alterations. This meta-analysis revealed significant changes in the composition of microbial communities on soil warming. With the decrease in biodiversity under increasing temperature conditions, these dominant microbiomes, which can grow well under high-temperature conditions, will play a stronger role in regulating nutrient and energy flow. Our analysis adds a global perspective to the temperature response of soil microbes, which is critical to improving our understanding of the mechanisms of how soil microbes change in response to climate warming.
Collapse
Affiliation(s)
- Jiayi Zhao
- State Key Laboratory of Biocontrol, School of Ecology, Shenzhen Campus of Sun Yat-sen University, Shenzhen, Guangdong 518107, China
| | - Xuan Xie
- State Key Laboratory of Biocontrol, School of Ecology, Shenzhen Campus of Sun Yat-sen University, Shenzhen, Guangdong 518107, China
| | - Yuying Jiang
- State Key Laboratory of Biocontrol, School of Ecology, Shenzhen Campus of Sun Yat-sen University, Shenzhen, Guangdong 518107, China
| | - Jiaxin Li
- State Key Laboratory of Biocontrol, School of Ecology, Shenzhen Campus of Sun Yat-sen University, Shenzhen, Guangdong 518107, China
| | - Qi Fu
- State Key Laboratory of Biocontrol, School of Ecology, Shenzhen Campus of Sun Yat-sen University, Shenzhen, Guangdong 518107, China
| | - Yingbo Qiu
- State Key Laboratory of Biocontrol, School of Ecology, Shenzhen Campus of Sun Yat-sen University, Shenzhen, Guangdong 518107, China
| | - Xianheng Fu
- State Key Laboratory of Biocontrol, School of Ecology, Shenzhen Campus of Sun Yat-sen University, Shenzhen, Guangdong 518107, China
| | - Zhiyuan Yao
- School of Civil and Environmental Engineering, Ningbo University, Ningbo, Zhejiang 315211, China
| | - Zhongmin Dai
- Institute of Soil and Water Resources and Environmental Science, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou, Zhejiang 310058, China
| | - Yunpeng Qiu
- College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing, Jiangsu 210095, China
| | - Huaihai Chen
- State Key Laboratory of Biocontrol, School of Ecology, Shenzhen Campus of Sun Yat-sen University, Shenzhen, Guangdong 518107, China.
| |
Collapse
|
7
|
Wu Z, Sun J, Xu L, Zhou H, Cheng H, Chen Z, Wang Y, Yang J. Depth significantly affects plastisphere microbial evenness, assembly and co-occurrence pattern but not richness and composition. J Hazard Mater 2024; 463:132921. [PMID: 37944228 DOI: 10.1016/j.jhazmat.2023.132921] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [What about the content of this article? (0)] [Affiliation(s)] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/02/2023] [Revised: 10/12/2023] [Accepted: 11/01/2023] [Indexed: 11/12/2023]
Abstract
Microplastics have become one of the hot concerns of global marine pollution. In recent years, diversity and abiotic influence factors of plastisphere microbial communities were well documented, but our knowledge of their assembly mechanisms and co-occurrence patterns remains unclear, especially the effects of depth on them. Here, we collected microorganisms on microplastics to investigate how ocean depth affects on microbial diversity, community composition, assembly processes and co-occurrence patterns. Our results indicated that there were similar microbial richness and community compositions but microbial evenness and unique microbes were obviously different in different ocean layers. Our findings also demonstrated that deterministic processes played dominant roles in the assembly of the mesopelagic plastisphere microbial communities, while the bathypelagic microbial community assembly was mainly shaped by stochastic processes. In addition, the co-occurrence networks suggested that the relationships between microorganisms in the mesopelagic layer were more complex and stable than those in the bathypelagic layer. Simultaneously, we also found that Proteobacteria and Actinobacteriota were the most abundant keystones which played important roles in microbial co-occurrence networks at both layers. This study enhanced our understanding of microbial diversity, assembly mechanism, and co-occurrence pattern on plastisphere surfaces, and provided useful insights into microorganisms capable of degrading plastics and microbial remediation.
Collapse
Affiliation(s)
- Zhiqiang Wu
- School of Minerals Processing and Bioengineering, Central South University, Changsha 410083, Hunan, PR China
| | - Jianxing Sun
- School of Minerals Processing and Bioengineering, Central South University, Changsha 410083, Hunan, PR China
| | - Liting Xu
- School of Minerals Processing and Bioengineering, Central South University, Changsha 410083, Hunan, PR China
| | - Hongbo Zhou
- School of Minerals Processing and Bioengineering, Central South University, Changsha 410083, Hunan, PR China; Key Laboratory of Biohydrometallurgy of Ministry of Education, Changsha 410083, Hunan, PR China
| | - Haina Cheng
- School of Minerals Processing and Bioengineering, Central South University, Changsha 410083, Hunan, PR China; Key Laboratory of Biohydrometallurgy of Ministry of Education, Changsha 410083, Hunan, PR China
| | - Zhu Chen
- School of Minerals Processing and Bioengineering, Central South University, Changsha 410083, Hunan, PR China; Key Laboratory of Biohydrometallurgy of Ministry of Education, Changsha 410083, Hunan, PR China
| | - Yuguang Wang
- School of Minerals Processing and Bioengineering, Central South University, Changsha 410083, Hunan, PR China; Key Laboratory of Biohydrometallurgy of Ministry of Education, Changsha 410083, Hunan, PR China.
| | - Jichao Yang
- College of Marine Science and Engineering, Shandong University of Science and Technology, Qingdao 266590, Shandong, PR China.
| |
Collapse
|
8
|
Gad M, Cao M, Qin D, Sun Q, Yu CP, Hu A. Development, validation, and application of a microbial community-based index of biotic integrity for assessing the ecological status of a peri-urban watershed in China. Sci Total Environ 2024; 910:168659. [PMID: 37979863 DOI: 10.1016/j.scitotenv.2023.168659] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [What about the content of this article? (0)] [Affiliation(s)] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/05/2023] [Revised: 11/09/2023] [Accepted: 11/15/2023] [Indexed: 11/20/2023]
Abstract
This study represents the pioneering effort in employing 16S rRNA-bacteria and 18S rRNA-microeukaryotes to construct the microbial community-based index of biotic integrity (MC-IBI) for assessing the ecological health of riverine ecosystems. The MC-IBI was developed, validated, and implemented using water samples from the Changle River watershed, encompassing both wet and dry seasons. A total of 205 metrics, containing microbial diversity, composition, pollution tolerance/sensitivity, and functional categories, were selected as candidates for evaluation. Following a rigorous screening process, five core metrics were identified as key indicators, namely Pielou's evenness of microeukaryotes, %Cryptophyceae, %Proteobacteria, %Oxyphotobacteria, and % 16S rRNA gene-human pathogens. Moreover, redundancy analysis revealed three metrics (i.e., Pielou's evenness, % 16S rRNA gene-human pathogens, and % Proteobacteria) were positively correlated with impairment conditions. In contrast, two metrics (i.e., %Oxyphotobacteria and %Cryptophyceae) were associated positively with reference conditions. Notably, the developed MC-IBI demonstrates clear discrimination between reference and impaired sites and significantly correlates with environmental parameters and land use patterns. A path model analysis revealed that land use patterns (i.e., build-up land, cropland) negatively impacted the MC-IBI scores. The application of the MC-IBI method yielded an assessment of the ecological conditions at the 73 sampling locations within the Changle River watershed, assigning them into categories of "Very good" (4.1 %), "Good" (4.1 %), "Moderate" (5.5 %), "Poor" (21.9 %), and "Very poor" (64.4 %). This bioassessment framework presents an innovative approach toward the preservation, maintenance, and management of riverine ecosystems.
Collapse
Affiliation(s)
- Mahmoud Gad
- CAS Key Laboratory of Urban Pollutant Conversion, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China; Fujian Key Laboratory of Watershed Ecology, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China; Water Pollution Research Department, National Research Centre, Giza 12622, Egypt
| | - Meixian Cao
- CAS Key Laboratory of Urban Pollutant Conversion, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China; Fujian Key Laboratory of Watershed Ecology, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Dan Qin
- CAS Key Laboratory of Urban Pollutant Conversion, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China; Fujian Key Laboratory of Watershed Ecology, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China
| | - Qian Sun
- CAS Key Laboratory of Urban Pollutant Conversion, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China; Fujian Key Laboratory of Watershed Ecology, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China
| | - Chang-Ping Yu
- CAS Key Laboratory of Urban Pollutant Conversion, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China
| | - Anyi Hu
- CAS Key Laboratory of Urban Pollutant Conversion, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China; Fujian Key Laboratory of Watershed Ecology, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China; University of Chinese Academy of Sciences, Beijing 100049, China.
| |
Collapse
|
9
|
Beca-Carretero P, Winters G, Teichberg M, Procaccini G, Schneekloth F, Zambrano RH, Chiquillo K, Reuters H. Climate change and the presence of invasive species will threaten the persistence of the Mediterranean seagrass community. Sci Total Environ 2024; 910:168675. [PMID: 37981144 DOI: 10.1016/j.scitotenv.2023.168675] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [What about the content of this article? (0)] [Affiliation(s)] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/08/2023] [Revised: 11/14/2023] [Accepted: 11/16/2023] [Indexed: 11/21/2023]
Abstract
The Mediterranean Sea has been experiencing rapid increases in temperature and salinity triggering its tropicalization. Additionally, its connection with the Red Sea has been favouring the establishment of non-native species. In this study, we investigated the effects of predicted climate change and the introduction of invasive seagrass species (Halophila stipulacea) on the native Mediterranean seagrass community (Posidonia oceanica and Cymodocea nodosa) by applying a novel ecological and spatial model with different configurations and parameter settings based on a Cellular Automata (CA). The proposed models use a discrete (stepwise) representation of space and time by executing deterministic and probabilistic rules that develop complex dynamic processes. Model applications were run under two climate scenarios (RCP 2.6 and RCP 8.5) projected from 2020 to 2100 in four different regions within the Mediterranean. Results indicate that the slow-growing P. oceanica will be highly vulnerable to climate change, suffering vast declines in its abundance. However, the results also show that western and colder areas of the Mediterranean Sea might represent refuge areas for this species. Cymodocea nodosa has been reported to exhibit resilience to predicted climate scenarios; however, it has shown habitat regression in the warmest predicted regions in the easternmost part of the basin. Our models indicate that H. stipulacea will thrive under projected climate scenarios, facilitating its spread across the basin. Also, H. stipulacea grew at the expense of C. nodosa, limiting the distribution of the latter, and eventually displacing this native species. Additionally, simulations demonstrated that areas from which P. oceanica meadows disappear would be partially covered by C. nodosa and H. stipulacea. These outcomes project that the Mediterranean seagrass community will experience a transition from long-lived, large and slow-growing species to small and fast-growing species as climate change progresses.
Collapse
Affiliation(s)
- Pedro Beca-Carretero
- Department of Theoretical Ecology and Modelling, Leibniz Centre for Tropical Marine Research, Bremen, Germany; Dead Sea-Arava Science Center, Masada, Israel.
| | | | - Mirta Teichberg
- The Ecosystems Center, Marine Biological Laboratory (MBL), Woods Hole, MA, USA
| | - Gabriele Procaccini
- Stazione Zoologica Anton Dohrn, Naples, Italy; National Biodiversity Future Centre (NBFC), Palermo, Italy
| | - Fabian Schneekloth
- Department of Theoretical Ecology and Modelling, Leibniz Centre for Tropical Marine Research, Bremen, Germany
| | - Ramon H Zambrano
- Facultad de Ciencias Naturales, University of Guayaquil, Ecuador
| | - Kelcie Chiquillo
- Department of Ecology and Evolutionary Biology, University of California, Los Angeles, CA, USA
| | - Hauke Reuters
- Department of Theoretical Ecology and Modelling, Leibniz Centre for Tropical Marine Research, Bremen, Germany
| |
Collapse
|
10
|
Zhang J, Shu L, Peng Z. Adaptive evolution of mitochondrial genomes in Triplophysa cavefishes. Gene 2024; 893:147947. [PMID: 37923093 DOI: 10.1016/j.gene.2023.147947] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [What about the content of this article? (0)] [Affiliation(s)] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2023] [Revised: 10/27/2023] [Accepted: 10/30/2023] [Indexed: 11/07/2023]
Abstract
Extreme conditions in caves pose survival challenges for cave dwellers, who gradually develop adaptive survival features. Cavefishes are one of the most successful animals among cave dwellers. Triplophysa cavefishes are an important group of cavefishes, and they show remarkable adaptability to the extreme environments of caves. However, there is a limited understanding of their adaptation mechanisms. In this study, eight complete mitochondrial genomes of Triplophysa cavefishes were newly obtained, and their genomic characteristics, including the base composition, base bias, and codon usage, were analyzed. Phylogenetic analysis was carried out based on 13 mitochondrial protein-coding genes from 44 Nemacheilidae species. This showed that Triplophysa cavefishes and non-cavefishes separate into two reciprocally monophyletic clades, suggesting a single origin of the cave phenotype. Positive selection analysis strongly suggested that the selection pressure in cavefishes is higher than that in non-cavefishes. Furthermore, the ND5 gene in cavefishes showed evidence of positive selection, which suggests that the gene may play an important role in the adaptation of cavefishes to the cave environment. Protein structure analysis of the ND5 subunit implied that the sites of positive selection in cavefishes might allow them to acquire lower ND5 protein stability, compared to that in non-cavefishes, which might help the accumulation of nonsynonymous (mildly deleterious) mutations. Together, our study revealed the genetic signatures of cave adaptation in Triplophysa cavefishes from the perspective of energy metabolism.
Collapse
Affiliation(s)
- Jiatong Zhang
- Key Laboratory of Freshwater Fish Reproduction and Development (Ministry of Education), Southwest University School of Life Sciences, Chongqing 400715, China
| | - Lu Shu
- Key Laboratory of Freshwater Fish Reproduction and Development (Ministry of Education), Southwest University School of Life Sciences, Chongqing 400715, China
| | - Zuogang Peng
- Key Laboratory of Freshwater Fish Reproduction and Development (Ministry of Education), Southwest University School of Life Sciences, Chongqing 400715, China; Academy of Plateau Science and Sustainability, Qinghai Normal University, Xining 810008, China.
| |
Collapse
|
11
|
Pałka I, Saniewska D, Bielecka L, Kobos J, Grzybowski W. Uptake and trophic transfer of selenium into phytoplankton and zooplankton of the southern Baltic Sea. Sci Total Environ 2024; 909:168312. [PMID: 37926260 DOI: 10.1016/j.scitotenv.2023.168312] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [What about the content of this article? (0)] [Affiliation(s)] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/27/2023] [Revised: 10/30/2023] [Accepted: 11/01/2023] [Indexed: 11/07/2023]
Abstract
Selenium (Se) is an essential trace element and displays a narrow range of concentration between essentiality and toxicity. Se plays an important role in ameliorating mercury toxicity in organisms. Despite this there are only a few reports concerning Se concentration in plankton, the first link in the trophic chain that determines the uptake and transfer of Se to subsequent trophic levels. This paper aimed to determine Se concentration in water, phytoplankton, and zooplankton in the Baltic Sea, and factors affecting Se absorption from the environment and its transfer to higher trophic levels. Sea water and plankton samples were collected from the Gulf of Gdańsk during 5 cruises (4 seasons: 2019-2022) at 4 research stations. An additional cruise was undertaken in July 2020 in the open waters of the southern Baltic Sea. The median Se concentrations in the Gulf of Gdańsk was 0.25 μg·dm-3. While the median of Se concentration in phytoplankton was 1.11 μg·g-1 and in zooplankton was 1.25 μg·g-1. The biomass of organisms in the phytoplankton and zooplankton in the Gulf of Gdańsk showed an important role in shaping Se concentration. Seasonal trends in Se concentration in zooplankton could be the result of taxa composition changes, changes to dietary intake of Se, changes in growth dilution, or potentially some combination of factors. The highest biomagnification rate occurred in the summer. In contrast, in autumn and winter, when plankton biomass was dominated by the ciliate species Mesodinium rubrum, the highest Se concentration in plankton was measured. Further scientific studies are needed into the active biocomponents of the Se concentration process, including Se speciation, to more fully understand the dynamics of Se concentrations in the pelagic food webs of this and other freshwater and marine systems.
Collapse
Affiliation(s)
- Izabela Pałka
- Institute of Oceanology, Polish Academy of Sciences, Marine Chemistry and Biochemistry Department, Powstańców Warszawy 55, 81-712 Sopot, Poland
| | - Dominika Saniewska
- University of Gdańsk, Faculty of Oceanography and Geography, Division of Marine Chemistry and Environmental Protection, Al. Marszałka Piłsudskiego 46, 81-378 Gdynia, Poland.
| | - Luiza Bielecka
- University of Gdańsk, Faculty of Oceanography and Geography, Division of Marine Ecosystems Functioning, Al. Marszałka Piłsudskiego 46, 81-378 Gdynia, Poland
| | - Justyna Kobos
- University of Gdańsk, Faculty of Oceanography and Geography, Division of Marine Biotechnology, Al. Marszałka Piłsudskiego 46, 81-378 Gdynia, Poland
| | - Waldemar Grzybowski
- University of Gdańsk, Faculty of Oceanography and Geography, Division of Marine Chemistry and Environmental Protection, Al. Marszałka Piłsudskiego 46, 81-378 Gdynia, Poland
| |
Collapse
|
12
|
Centenaro G, de-Miguel S, Bonet JA, Martínez Peña F, De Gomez REG, Ponce Á, Dashevskaya S, Alday JG. Spatially-explicit effects of small-scale clear-cutting on soil fungal communities in Pinus sylvestris stands. Sci Total Environ 2024; 909:168628. [PMID: 37979846 DOI: 10.1016/j.scitotenv.2023.168628] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [What about the content of this article? (0)] [Affiliation(s)] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/26/2023] [Revised: 11/14/2023] [Accepted: 11/14/2023] [Indexed: 11/20/2023]
Abstract
Clear-cutting is a common silvicultural practice. Although temporal changes in the soil fungal community after clear-cutting have been widely investigated, little is known about stand-level variations in the spatial distribution of soil fungi, particularly at the clear-cut edge. We performed spatial soil sampling in three clear-cuts (0.5 ha), edge habitats, and surrounding forests 8 years after clear-cutting to examine the impact of clear-cutting on the soil fungal community (diversity, composition, guilds, and biomass) and soil properties in a managed Pinus sylvestris forest in northern Spain. Our analyses showed small differences in the composition of the soil fungal community between edge, forest, and clear-cut zones, with <4 % of the species strictly associated with one or two zones. The richness, diversity, and evenness of the fungal community in the edge zone was not significantly different to that in the forest or clear-cut zones, although the clear-cut core had approximately a third fewer ectomycorrhizal species than the edge or the forest. Saprotrophic fungi were widespread across the clear-cut-forest gradient. Soil fungal biomass varied significantly between zones, ranging from 4 to 5 mg g-1 dry soil in the forest and at the forest edge to 1.7 mg g-1 dry soil in the clear-cut area. Soil organic matter, pH, nitrogen, and phosphorus did not differ significantly between edge, forest, and clear-cutting zones and were not significantly related to the fungal community composition. Overall, our study showed that small-scale clear-cut treatments are optimal to guarantee, in the medium-term, soil fungal communities within harvested areas and at the forest edge that are comparable to soil fungal communities in the forest, even though the amount of fungal biomass in the clear-cut zone is lower than at the forest edge or in the forest.
Collapse
Affiliation(s)
- Giada Centenaro
- Department of Agricultural and Forest Sciences and Engineering, University of Lleida, Av. Alcalde Rovira Roure 191, E-25198 Lleida, Spain; Joint Research Unit CTFC - AGROTECNIO - CERCA, Av. Alcalde Rovira Roure 191, E-25198 Lleida, Spain.
| | - Sergio de-Miguel
- Department of Agricultural and Forest Sciences and Engineering, University of Lleida, Av. Alcalde Rovira Roure 191, E-25198 Lleida, Spain; Joint Research Unit CTFC - AGROTECNIO - CERCA, Av. Alcalde Rovira Roure 191, E-25198 Lleida, Spain
| | - José Antonio Bonet
- Department of Agricultural and Forest Sciences and Engineering, University of Lleida, Av. Alcalde Rovira Roure 191, E-25198 Lleida, Spain; Joint Research Unit CTFC - AGROTECNIO - CERCA, Av. Alcalde Rovira Roure 191, E-25198 Lleida, Spain
| | - Fernando Martínez Peña
- Agrifood Research and Technology Centre of Aragon CITA, Avda Montañana 930, E-50059 Zaragoza, Spain; European Mycological Institute EGTC-EMI, E-42003 Soria, Spain
| | | | - Ángel Ponce
- Department of Agricultural and Forest Sciences and Engineering, University of Lleida, Av. Alcalde Rovira Roure 191, E-25198 Lleida, Spain; Joint Research Unit CTFC - AGROTECNIO - CERCA, Av. Alcalde Rovira Roure 191, E-25198 Lleida, Spain
| | - Svetlana Dashevskaya
- Department of Agricultural and Forest Sciences and Engineering, University of Lleida, Av. Alcalde Rovira Roure 191, E-25198 Lleida, Spain; Joint Research Unit CTFC - AGROTECNIO - CERCA, Av. Alcalde Rovira Roure 191, E-25198 Lleida, Spain
| | - Josu G Alday
- Department of Agricultural and Forest Sciences and Engineering, University of Lleida, Av. Alcalde Rovira Roure 191, E-25198 Lleida, Spain; Joint Research Unit CTFC - AGROTECNIO - CERCA, Av. Alcalde Rovira Roure 191, E-25198 Lleida, Spain
| |
Collapse
|
13
|
Sun X, Wang X, Han Q, Yu Q, Wanyan R, Li H. Bibliometric analysis of papers on antibiotic resistance genes in aquatic environments on a global scale from 2012 to 2022: Evidence from universality, development and harmfulness. Sci Total Environ 2024; 909:168597. [PMID: 37981129 DOI: 10.1016/j.scitotenv.2023.168597] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [What about the content of this article? (0)] [Affiliation(s)] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/09/2023] [Revised: 11/12/2023] [Accepted: 11/13/2023] [Indexed: 11/21/2023]
Abstract
Antibiotic resistance genes (ARGs), emerging pollutants, are widely distributed in aquatic environments, and are tightly linked to human health. However, the research progress and trends in recent years on ARGs of aquatic environments are still unclear. This paper made a comprehensive understanding of the research advance, study trends and key topics of 1592 ARGs articles from 2012 to 2022 by bibliometrics. Publications on ARGs increased rapidly from 2012 to 2022, and scholars paid closer attention to the field of Environmental Sciences & Ecology. The most influential country and institution was mainly China and Chinese Academy of Sciences, respectively. The most articles (14.64 %) were published in the journal Science of the total environment. China and USA had the most cooperation, and USA was more inclined to international cooperation. PCR-based methods for water ARG research were the most widely used, followed by metagenomics. The most studied ARG types were sulfonamides, tetracyclines. Moreover, ARGs from wastewater and rivers were popularly concerned. Current topics mainly included pollution investigation, characteristics, transmission, reduction and risk identification of ARGs. Additionally, future research directions were proposed. Generally, by bibliometrics, this paper reviews the research hotspots and future directions of ARGs on a global scale, and summarizes the more important categories of ARGs, the pollution degree of ARGs in the relevant water environment and the research methods, which can provide a more comprehensive information for the future breakthrough of resistance mechanism, prevention and control standard formulation of ARGs.
Collapse
Affiliation(s)
- Xiaofang Sun
- School of Public Health, Lanzhou University, Lanzhou 730000, China
| | - Xiaochen Wang
- School of Public Health, Lanzhou University, Lanzhou 730000, China
| | - Qian Han
- School of Public Health, Lanzhou University, Lanzhou 730000, China
| | - Qiaoling Yu
- State Key Laboratory of Grassland Agro-Ecosystems, Center for Grassland Microbiome, College of Pastoral Agriculture Science and Technology, Lanzhou University, Lanzhou 730000, China
| | - Ruijun Wanyan
- School of Public Health, Lanzhou University, Lanzhou 730000, China
| | - Huan Li
- School of Public Health, Lanzhou University, Lanzhou 730000, China; State Key Laboratory of Grassland Agro-Ecosystems, Center for Grassland Microbiome, College of Pastoral Agriculture Science and Technology, Lanzhou University, Lanzhou 730000, China.
| |
Collapse
|
14
|
Yang J, Ye Y, Yi R, Bi D, Zhang S, Han S, Kan X. A new perspective on codon usage, selective pressure, and phylogenetic implications of the plastomes in the Telephium clade (Crassulaceae). Gene 2024; 892:147871. [PMID: 37797779 DOI: 10.1016/j.gene.2023.147871] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [What about the content of this article? (0)] [Affiliation(s)] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2023] [Revised: 09/13/2023] [Accepted: 10/02/2023] [Indexed: 10/07/2023]
Abstract
The Telephium clade of the Crassulaceae family contains many medicinal, ornamental, and ecologically restorative plants. However, the phylogenetic relationships within the clade remain debated, and comprehensive analyses of codon usage and selection pressure in Telephium plastomes are limited. In this study, we assembled and annotated four plastomes and performed extensive analyses. The plastomes exhibited a typical quadripartite structure and high conservation. The lengths ranged from 151,357 bp to 151,641 bp with 134 genes identified. The GC content was the highest within IR, followed by LSC, and lowest in the SSC region. Meanwhile, a unique inversion was observed within the LSC region of Meterostachys sikokianus. Polymorphisms analysis revealed minimum nucleotide diversity in the IR regions, with over ten highly polymorphic regions identified. Phylogenetically, two subclades formed within the monophyletic Telephium clade, with Umbilicus as the sister group to the remaining Hylotelephium subclade members. Notably, no significant positive selection was found among the 79 plastid genes, which showed varying evolutionary patterns. However, 19 genes contained codons under positive selection. The specific functions of these sites require further investigation. Synonymous codon usage was biased and conserved across the tested plastomes, shaped by natural selection, mutations and other factors of varying influence. We also identified 34 taxon-specific codon aversion motifs from 49 plastid genes. Our plastomic analyses elucidate phylogenetic relationships and evolutionary patterns in this medicinal clade, providing a foundation for further research on these ecologically and pharmaceutically important plants.
Collapse
Affiliation(s)
- Jianke Yang
- Anhui Provincial Key Laboratory of the Conservation and Exploitation of Biological Resources, College of Life Sciences, Anhui Normal University, Wuhu, Anhui, China; School of Basic Medical Sciences, Wannan Medical College, Wuhu, Anhui, China
| | - Yuanxin Ye
- Anhui Provincial Key Laboratory of the Conservation and Exploitation of Biological Resources, College of Life Sciences, Anhui Normal University, Wuhu, Anhui, China
| | - Ran Yi
- Anhui Provincial Key Laboratory of the Conservation and Exploitation of Biological Resources, College of Life Sciences, Anhui Normal University, Wuhu, Anhui, China
| | - De Bi
- College of Landscape Engineering, Suzhou Polytechnic Institute of Agriculture, Suzhou, Jiangsu, China
| | - Sijia Zhang
- Anhui Provincial Key Laboratory of the Conservation and Exploitation of Biological Resources, College of Life Sciences, Anhui Normal University, Wuhu, Anhui, China
| | - Shiyun Han
- Anhui Provincial Key Laboratory of the Conservation and Exploitation of Biological Resources, College of Life Sciences, Anhui Normal University, Wuhu, Anhui, China
| | - Xianzhao Kan
- Anhui Provincial Key Laboratory of the Conservation and Exploitation of Biological Resources, College of Life Sciences, Anhui Normal University, Wuhu, Anhui, China; The Institute of Bioinformatics, College of Life Sciences, Anhui Normal University, Wuhu, Anhui, China.
| |
Collapse
|
15
|
Bilgen N, Güvendi M, Sezgin E, Can H, Köseoğlu AE, Erkunt Alak S, Döşkaya M, Ün C. Mitotyping of random bred cats and pure breed cats (Turkish Angora and Turkish Van) using non-repetitive mitochondrial DNA control region. Gene 2024; 892:147849. [PMID: 37776989 DOI: 10.1016/j.gene.2023.147849] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [What about the content of this article? (0)] [Affiliation(s)] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2023] [Revised: 08/29/2023] [Accepted: 09/26/2023] [Indexed: 10/02/2023]
Abstract
The Fertile Crescent appears to be the most plausible region where the domestication of cats commenced through a mutually beneficial relationship between wild cats and early agrarian societies. These domesticated cats then journeyed across the globe mirroring the paths of human migration. An examination of mitochondrial DNA (mtDNA) control region-based mitotyping suggested that a significant majority, exceeding 80%, of globally sampled random-bred and pure-bred cats could be categorized into 12 predominant mitotypes. However, the extent of mitotype diversity within random-bred cats from regions proximate to the Fertile Crescent remains inadequately explored. In light of this we aimed to investigate the mitotype diversity in random bred cats sampled from various regions across Turkey. Additionally, we sought to establish a comparison with the mitotype profiles of locally recognized pure breeds, namely the Turkish Angora and Turkish Van. To unravel their evolutionary narratives, we engaged in comprehensive population genetics analyses at both the individual and mitotype-based levels. Our study encompassed a sample size of 240 specimens, forming the basis for both mitotyping and population genetics scrutiny. Our analysis yielded the identification of nine 'universal' mitotypes (A-J), alongside an 'outlier' mitotype group I. Notably mitotypes A and D emerged as particularly prevalent in contrast to the lesser occurrence mitotypes C, G, and H. With the realm of random bred cats the structure of haplotypes exhibited remarkable diversity presenting distinctions from Turkish Angora and Van breeds. Nucleotide diversity was higher compared to previous reports from Turkey and was one of the highest among reported world cat population estimates. Intriguingly, our investigations did not unveil any pronounced instances of strong selection, population expansions or contractions within any specific population or mitotype. To conclude, our study represents a pioneering effort in uncovering the mitotype profiles and haplotype structures inherent to both random-bred and pure breed cats in Turkey. This endeavor not only broadens our understanding of the feline genetic landscape within the region but also lays the foundation for future inquiries into the evolutionary trajectories and genetic legacies of these feline populations.
Collapse
|