1
|
Zhang D, Tang W, Niu H, Tse W, Ruan HB, Dolznig H, Knösel T, Karl-Heinz F, Themanns M, Wang J, Song M, Denson L, Kenner L, Moriggl R, Zheng Y, Han X. Monogenic deficiency in murine intestinal Cdc42 leads to mucosal inflammation that induces crypt dysplasia. Genes Dis 2024; 11:413-429. [PMID: 37588188 PMCID: PMC10425749 DOI: 10.1016/j.gendis.2022.11.024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [What about the content of this article? (0)] [Affiliation(s)] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2022] [Revised: 11/22/2022] [Accepted: 11/25/2022] [Indexed: 01/04/2023] Open
Abstract
CDC42 controls intestinal epithelial (IEC) stem cell (IESC) division. How aberrant CDC42 initiates intestinal inflammation or neoplasia is unclear. We utilized models of inflammatory bowel diseases (IBD), colorectal cancer, aging, and IESC injury to determine the loss of intestinal Cdc42 upon inflammation and neoplasia. Intestinal specimens were collected to determine the levels of CDC42 in IBD or colorectal cancer. Cdc42 floxed mice were crossed with Villin-Cre, Villin-CreERT2 and/or Lgr5-eGFP-IRES-CreERT2, or Bmi1-CreERT2 mice to generate Cdc42 deficient mice. Irradiation, colitis, aging, and intestinal organoid were used to evaluate CDC42 upon mucosal inflammation, IESC/progenitor regenerative capacity, and IEC repair. Our studies revealed that increased CDC42 in colorectal cancer correlated with lower survival; in contrast, lower levels of CDC42 were found in the inflamed IBD colon. Colonic Cdc42 depletion significantly reduced Lgr5+ IESCs, increased progenitors' hyperplasia, and induced mucosal inflammation, which led to crypt dysplasia. Colonic Cdc42 depletion markedly enhanced irradiation- or chemical-induced colitis. Depletion or inhibition of Cdc42 reduced colonic Lgr5+ IESC regeneration. In conclusion, depletion of Cdc42 reduces the IESC regeneration and IEC repair, leading to prolonged mucosal inflammation. Constitutive monogenic loss of Cdc42 induces mucosal inflammation, which could result in intestinal neoplasia in the context of aging.
Collapse
Affiliation(s)
- Dongsheng Zhang
- Division of Hematology and Oncology, Division of Cancer Biology, Department of Medicine, MetroHealth Medical Center (MHMC), Case Western Reserve University (CWRU), School of Medicine, Cleveland, OH 44109, USA
- Cancer Genomics and Epigenomics Program, Case Comprehensive Cancer Center, Case Western Reserve University (CWRU), Cleveland, OH 44106, USA
- Division of Gastroenterology, Hepatology and Nutrition, Cincinnati Children's Hospital Medical Center (CCHMC), Cincinnati, OH 45229, USA
| | - Wenjuan Tang
- Division of Gastroenterology, Hepatology and Nutrition, Cincinnati Children's Hospital Medical Center (CCHMC), Cincinnati, OH 45229, USA
- Children's Hospital of Fudan University, Shanghai 201102, China
| | - Haitao Niu
- School of Medicine, Jinan University, Guangzhou, Guangdong 510632, China
- Laboratory Animal Science (ILAS), Chinese Academy of Medical Science (CAMS) and Peking Union Medical College (PUMC), Beijing 100006, China
| | - William Tse
- Division of Hematology and Oncology, Division of Cancer Biology, Department of Medicine, MetroHealth Medical Center (MHMC), Case Western Reserve University (CWRU), School of Medicine, Cleveland, OH 44109, USA
- Cancer Genomics and Epigenomics Program, Case Comprehensive Cancer Center, Case Western Reserve University (CWRU), Cleveland, OH 44106, USA
| | - Hai-Bin Ruan
- Department of Integrative Biology and Physiology, University of Minnesota Medical School, Minneapolis, MI 55455, USA
| | - Helmut Dolznig
- Institute of Medical Genetics, Medical University of Vienna, Vienna 1040, Austria
| | - Thomas Knösel
- Institute of Pathology, Ludwig-Maximilians-University Munich, Munich 80539, Germany
| | | | - Madeleine Themanns
- Laboratory Animal Pathology, University of Veterinary Medicine Vienna, Vienna 1210, Austria
| | - Jiang Wang
- Department of Pathology, University of Cincinnati, Cincinnati, OH 45221, USA
| | - Mingquan Song
- Department of Gastroenterology, The Affiliated Hospital of Qingdao University, Qingdao, Shandong 266005, China
| | - Lee Denson
- Division of Gastroenterology, Hepatology and Nutrition, Cincinnati Children's Hospital Medical Center (CCHMC), Cincinnati, OH 45229, USA
| | - Lukas Kenner
- Department of Pathology, Medical University of Vienna, Vienna 1040, Austria
| | - Richard Moriggl
- Ludwig Boltzmann Institute for Cancer Research, Vienna 1090, Austria
- Medical University of Vienna, Vienna 1040, Austria
- Institute of Animal Breeding and Genetics, University of Veterinary Medicine Vienna, Vienna 1210, Austria
| | - Yi Zheng
- Division of Experimental Hematology, CCHMC, Cincinnati, OH 45229, USA
| | - Xiaonan Han
- Division of Hematology and Oncology, Division of Cancer Biology, Department of Medicine, MetroHealth Medical Center (MHMC), Case Western Reserve University (CWRU), School of Medicine, Cleveland, OH 44109, USA
- Cancer Genomics and Epigenomics Program, Case Comprehensive Cancer Center, Case Western Reserve University (CWRU), Cleveland, OH 44106, USA
| |
Collapse
|
2
|
Danhof HA, Lee J, Thapa A, Britton RA, Di Rienzi SC. Microbial stimulation of oxytocin release from the intestinal epithelium via secretin signaling. Gut Microbes 2023; 15:2256043. [PMID: 37698879 PMCID: PMC10498800 DOI: 10.1080/19490976.2023.2256043] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [What about the content of this article? (0)] [Affiliation(s)] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/26/2023] [Revised: 08/11/2023] [Accepted: 09/01/2023] [Indexed: 09/13/2023] Open
Abstract
Intestinal microbes impact the health of the intestine and organs distal to the gut. Limosilactobacillus reuteri is a human intestinal microbe that promotes normal gut transit, the anti-inflammatory immune system, wound healing, normal social behavior in mice, and prevents bone reabsorption. Oxytocin impacts these functions and oxytocin signaling is required for L. reuteri-mediated wound healing and social behavior; however, the events in the gut leading to oxytocin stimulation and beneficial effects are unknown. Here we report evolutionarily conserved oxytocin production in the intestinal epithelium through analysis of single-cell RNA-Seq datasets and imaging of human and mouse intestinal tissues. Moreover, human intestinal organoids produce oxytocin, demonstrating that the intestinal epithelium is sufficient to produce oxytocin. We find that L. reuteri facilitates oxytocin secretion from human intestinal tissue and human intestinal organoids. Finally, we demonstrate that stimulation of oxytocin secretion by L. reuteri is dependent on the gut hormone secretin, which is produced in enteroendocrine cells, while oxytocin itself is produced in enterocytes. Altogether, this work demonstrates that oxytocin is produced and secreted from enterocytes in the intestinal epithelium in response to secretin stimulated by L. reuteri. This work thereby identifies oxytocin as an intestinal hormone and provides mechanistic insight into avenues by which gut microbes promote host health.
Collapse
Affiliation(s)
- Heather A. Danhof
- Department of Molecular Virology and Microbiology, Baylor College of Medicine, Houston, TX, USA
- Alkek Center for Metagenomics and Microbiome Research, Baylor College of Medicine, Houston, TX, USA
| | - Jihwan Lee
- Department of Neuroscience, Baylor College of Medicine, Houston, TX, USA
| | - Aanchal Thapa
- Department of Molecular Virology and Microbiology, Baylor College of Medicine, Houston, TX, USA
| | - Robert A. Britton
- Department of Molecular Virology and Microbiology, Baylor College of Medicine, Houston, TX, USA
- Alkek Center for Metagenomics and Microbiome Research, Baylor College of Medicine, Houston, TX, USA
| | - Sara C. Di Rienzi
- Department of Molecular Virology and Microbiology, Baylor College of Medicine, Houston, TX, USA
- Alkek Center for Metagenomics and Microbiome Research, Baylor College of Medicine, Houston, TX, USA
| |
Collapse
|