1
|
Zhao Y, Zhang F, Zhang X, Li Z, Li Q, Ni T, Wang R, Liu L, He Y, Zhao Y. Transcriptomic analysis of hepatocytes reveals the association between ubiquitin-specific peptidase 1 and yes-associated protein 1 during liver regeneration. Regen Ther 2023; 24:256-266. [PMID: 37534236 PMCID: PMC10391600 DOI: 10.1016/j.reth.2023.07.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [What about the content of this article? (0)] [Affiliation(s)] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2023] [Revised: 06/12/2023] [Accepted: 07/10/2023] [Indexed: 08/04/2023] Open
Abstract
Objectives The liver has an excellent ability to regenerate, and disrupted liver regeneration after various injuries leads to an unfavorable prognosis for patients. In this study, we sought to identify novel therapeutic hallmarks that are associated with yes-associated protein 1 (YAP1)-mediated hepatocyte proliferation during the process of liver regeneration. Methods Partial hepatectomy was conducted to induce liver regeneration in rats. Primary hepatocytes were isolated and cultured. Hepatocyte proliferation was assessed using immunohistochemistry staining, and expression of YAP1 was detected. RNA sequencing and bioinformatics analysis were used to search for potential regulators of YAP1. The association between ubiquitin-specific peptidase 1 (USP1) and YAP1 was validated using in vivo and in vitro experiments. Results YAP1 was significantly elevated in regenerative hepatocytes, especially in the nucleus. Knockdown of YAP1 using small interfering RNA or pharmacological inhibition using verteporfin significantly attenuated the proliferation of hepatocytes. The bioinformatics analysis results revealed that USP1 was associated with YAP1-mediated hepatocyte proliferation during liver regeneration. ML-323, a specific inhibitor of USP1-USP1 associated factor 1 (UAF1), significantly decreased the expression of YAP1, Cyclin D1, and proliferating cell nuclear antigen, while these decreased expressions could be rescued by YAP1 overexpression. Furthermore, ML-323 treatment significantly inhibited liver regeneration following partial hepatectomy. Conclusions In conclusion, we identified USP1 as a novel biomarker that is associated with YAP1-mediated hepatocyte proliferation in liver regeneration. Pharmacological inhibition of USP1 by ML-323 substantially impairs hepatocyte proliferation during liver regeneration.
Collapse
Affiliation(s)
- Yalei Zhao
- Department of Infectious Diseases, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, China
| | - Fen Zhang
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, China
| | - Xiaoli Zhang
- Department of Infectious Diseases, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Zuhong Li
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, China
| | - Qian Li
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, China
| | - Tianzhi Ni
- Department of Infectious Diseases, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Ruojing Wang
- Department of Infectious Diseases, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Liangru Liu
- Department of Infectious Diseases, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Yingli He
- Department of Infectious Diseases, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Yingren Zhao
- Department of Infectious Diseases, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| |
Collapse
|
2
|
Jantawong C, Chamgramol Y, Intuyod K, Priprem A, Pairojkul C, Klungsaeng S, Dangtakot R, Pongking T, Sitthirach C, Pinlaor P, Waraasawapati S, Pinlaor S. Curcumin-loaded nanocomplexes alleviate the progression of fluke-related cholangiocarcinoma in hamsters. Cancer Nanotechnol 2023. [DOI: 10.1186/s12645-023-00155-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [What about the content of this article? (0)] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Abstract
Abstract
Background
Curcumin-loaded nanocomplexes (CNCs) previously demonstrated lower toxicity and extended release better than is the case for free curcumin. Here, we evaluated the efficacy of CNCs against opisthorchiasis-associated cholangiocarcinoma (CCA) in hamsters.
Method
Dose optimization (dose and frequency) was performed over a 1-month period using hamsters, a model that is widely used for study of opisthorchiasis-associated cholangiocarcinoma. In the main experimental study, CCA was induced by a combination of fluke, Opisthorchis viverrini (OV), infection and N-nitrosodimethylamine (NDMA) treatment. Either blank (empty) nanocomplexes (BNCs) or different concentrations of CNCs (equivalent to 10 and 20 mg cur/kg bw) were given to hamsters thrice a week for 5 months. The histopathological changes, biochemical parameters, and the expression of inflammatory/oncogenic transcription factors were investigated. In addition, the role of CNCs in attenuating CCA genesis, as seen in an animal model, was also confirmed in vitro using CCA cell lines.
Results
The optimization study revealed that treatment with CNCs at a dose equivalent to 10 mg cur/kg bw, thrice a week for 1 month, led to a greater reduction of inflammation and liver injury induced in hamsters by OV + NDMA than did treatments at other dose rates. Oral administration with CNCs (10 mg cur/kg bw), thrice a week for 5 months, significantly increased survival rate, reduced CCA incidence, extent of tumor development, cholangitis, bile duct injury and cholangiofibroma. In addition, this treatment decreased serum ALP and ALT activities and suppressed expression of NF-κB, FOXM1, HMGB1, PCNA and formation of 8-nitroguanine. Treatment of CCA cell lines with CNCs also reduced cell proliferation and colony formation, similar to those treated with NF-κB and/or FOXM1 inhibitors.
Conclusion
CNCs (10 mg cur/kg bw) attenuate the progression of fluke-related CCA in hamsters partly via a NF-κB and FOXM1-mediated pathway.
Collapse
|
3
|
Maspero M, Yilmaz S, Cazzaniga B, Raj R, Ali K, Mazzaferro V, Schlegel A. The role of ischaemia-reperfusion injury and liver regeneration in hepatic tumour recurrence. JHEP Rep 2023; 5:100846. [PMID: 37771368 PMCID: PMC10523008 DOI: 10.1016/j.jhepr.2023.100846] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [What about the content of this article? (0)] [Affiliation(s)] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/17/2023] [Revised: 06/20/2023] [Accepted: 07/01/2023] [Indexed: 09/30/2023] Open
Abstract
The risk of cancer recurrence after liver surgery mainly depends on tumour biology, but preclinical and clinical evidence suggests that the degree of perioperative liver injury plays a role in creating a favourable microenvironment for tumour cell engraftment or proliferation of dormant micro-metastases. Understanding the contribution of perioperative liver injury to tumour recurrence is imperative, as these pathways are potentially actionable. In this review, we examine the key mechanisms of perioperative liver injury, which comprise mechanical handling and surgical stress, ischaemia-reperfusion injury, and parenchymal loss leading to liver regeneration. We explore how these processes can trigger downstream cascades leading to the activation of the immune system and the pro-inflammatory response, cellular proliferation, angiogenesis, anti-apoptotic signals, and release of circulating tumour cells. Finally, we discuss the novel therapies under investigation to decrease ischaemia-reperfusion injury and increase regeneration after liver surgery, including pharmaceutical agents, inflow modulation, and machine perfusion.
Collapse
Affiliation(s)
- Marianna Maspero
- Transplantation Center, Digestive Disease and Surgery Institute, Cleveland Clinic, Cleveland, OH, USA
- General Surgery and Liver Transplantation Unit, IRCCS Istituto Tumori, Milan, Italy
| | - Sumeyye Yilmaz
- Transplantation Center, Digestive Disease and Surgery Institute, Cleveland Clinic, Cleveland, OH, USA
| | - Beatrice Cazzaniga
- Transplantation Center, Digestive Disease and Surgery Institute, Cleveland Clinic, Cleveland, OH, USA
| | - Roma Raj
- Transplantation Center, Digestive Disease and Surgery Institute, Cleveland Clinic, Cleveland, OH, USA
| | - Khaled Ali
- Transplantation Center, Digestive Disease and Surgery Institute, Cleveland Clinic, Cleveland, OH, USA
| | - Vincenzo Mazzaferro
- General Surgery and Liver Transplantation Unit, IRCCS Istituto Tumori, Milan, Italy
- Department of Oncology and Hemato-Oncology, University of Milan, Italy
| | - Andrea Schlegel
- Transplantation Center, Digestive Disease and Surgery Institute, Cleveland Clinic, Cleveland, OH, USA
- Department of Immunology, Lerner Research Institute, Cleveland Clinic, Cleveland, OH, USA
| |
Collapse
|
4
|
Buyl K, Vrints M, Fernando R, Desmae T, Van Eeckhoutte T, Jans M, Van Der Schueren J, Boeckmans J, Rodrigues RM, De Boe V, Rogiers V, De Kock J, Beirinckx F, Vanhaecke T. Human skin stem cell-derived hepatic cells as in vitro drug discovery model for insulin-driven de novo lipogenesis. Eur J Pharmacol 2023; 957:175989. [PMID: 37572939 DOI: 10.1016/j.ejphar.2023.175989] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [What about the content of this article? (0)] [Affiliation(s)] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2023] [Revised: 08/10/2023] [Accepted: 08/10/2023] [Indexed: 08/14/2023]
Abstract
Metabolic dysfunction-associated steatotic liver disease (MASLD), formerly known as non-alcoholic fatty liver disease (NAFLD), is characterized by intrahepatic triglyceride accumulation and can progress to metabolic dysfunction-associated steatohepatitis (MASH) and liver fibrosis. Hepatic de novo lipogenesis (DNL), activated by glucose and insulin, is a central pathway contributing to early-stage development of MASLD. The emerging global prevalence of MASLD highlights the urgent need for pharmaceutical intervention to combat this health threat. However, the identification of novel drugs that could inhibit hepatic DNL is hampered by a lack of reliable, insulin-sensitive, human, in vitro, hepatic models. Here, we report human skin stem cell-derived hepatic cells (hSKP-HPC) as a unique in vitro model to study insulin-driven DNL (iDNL), evidenced by both gene expression and lipid accumulation readouts. Insulin-sensitive hSKP-HPC showed increased sterol regulatory element-binding protein 1c (SREBP-1c) expression, a key transcription factor for DNL. Furthermore, this physiologically relevant in vitro human steatosis model allowed both inhibition and activation of the iDNL pathway using reference inhibitors and activators, respectively. Optimisation of the lipid accumulation assay to a high-throughput, 384-well format enabled the screening of a library of annotated compounds, delivering new insights on key players in the iDNL pathway and MASLD pathophysiology. Together, these results establish the value of the hSKP-HPC model in preclinical development of antisteatotic drugs to combat MASLD.
Collapse
Affiliation(s)
- Karolien Buyl
- Department of in Vitro Toxicology and Dermato-Cosmetology (IVTD), Faculty of Medicine and Pharmacy, Vrije Universiteit Brussel (VUB), Laarbeeklaan 103, B-1090, Brussels, Belgium.
| | - Martine Vrints
- Galapagos NV, Industriepark Mechelen Noord, Generaal De Wittelaan L11 A3, B-2880, Mechelen, Belgium
| | - Ruani Fernando
- Department of in Vitro Toxicology and Dermato-Cosmetology (IVTD), Faculty of Medicine and Pharmacy, Vrije Universiteit Brussel (VUB), Laarbeeklaan 103, B-1090, Brussels, Belgium
| | - Terry Desmae
- Department of in Vitro Toxicology and Dermato-Cosmetology (IVTD), Faculty of Medicine and Pharmacy, Vrije Universiteit Brussel (VUB), Laarbeeklaan 103, B-1090, Brussels, Belgium
| | - Thomas Van Eeckhoutte
- Galapagos NV, Industriepark Mechelen Noord, Generaal De Wittelaan L11 A3, B-2880, Mechelen, Belgium
| | - Mia Jans
- Galapagos NV, Industriepark Mechelen Noord, Generaal De Wittelaan L11 A3, B-2880, Mechelen, Belgium
| | - Jan Van Der Schueren
- Galapagos NV, Industriepark Mechelen Noord, Generaal De Wittelaan L11 A3, B-2880, Mechelen, Belgium
| | - Joost Boeckmans
- Department of in Vitro Toxicology and Dermato-Cosmetology (IVTD), Faculty of Medicine and Pharmacy, Vrije Universiteit Brussel (VUB), Laarbeeklaan 103, B-1090, Brussels, Belgium
| | - Robim M Rodrigues
- Department of in Vitro Toxicology and Dermato-Cosmetology (IVTD), Faculty of Medicine and Pharmacy, Vrije Universiteit Brussel (VUB), Laarbeeklaan 103, B-1090, Brussels, Belgium
| | - Veerle De Boe
- Department of Urology, Universitair Ziekenhuis Brussel (UZ-Brussel), Laarbeeklaan 101, B-1090, Brussels, Belgium
| | - Vera Rogiers
- Department of in Vitro Toxicology and Dermato-Cosmetology (IVTD), Faculty of Medicine and Pharmacy, Vrije Universiteit Brussel (VUB), Laarbeeklaan 103, B-1090, Brussels, Belgium
| | - Joery De Kock
- Department of in Vitro Toxicology and Dermato-Cosmetology (IVTD), Faculty of Medicine and Pharmacy, Vrije Universiteit Brussel (VUB), Laarbeeklaan 103, B-1090, Brussels, Belgium
| | - Filip Beirinckx
- Galapagos NV, Industriepark Mechelen Noord, Generaal De Wittelaan L11 A3, B-2880, Mechelen, Belgium
| | - Tamara Vanhaecke
- Department of in Vitro Toxicology and Dermato-Cosmetology (IVTD), Faculty of Medicine and Pharmacy, Vrije Universiteit Brussel (VUB), Laarbeeklaan 103, B-1090, Brussels, Belgium
| |
Collapse
|
5
|
Hu Y, Wang R, Liu J, Wang Y, Dong J. Lipid droplet deposition in the regenerating liver: A promoter, inhibitor, or bystander? Hepatol Commun 2023; 7:e0267. [PMID: 37708445 PMCID: PMC10503682 DOI: 10.1097/hc9.0000000000000267] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [What about the content of this article? (0)] [Affiliation(s)] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/18/2023] [Accepted: 07/29/2023] [Indexed: 09/16/2023] Open
Abstract
Liver regeneration (LR) is a complex process involving intricate networks of cellular connections, cytokines, and growth factors. During the early stages of LR, hepatocytes accumulate lipids, primarily triacylglycerol, and cholesterol esters, in the lipid droplets. Although it is widely accepted that this phenomenon contributes to LR, the impact of lipid droplet deposition on LR remains a matter of debate. Some studies have suggested that lipid droplet deposition has no effect or may even be detrimental to LR. This review article focuses on transient regeneration-associated steatosis and its relationship with the liver regenerative response.
Collapse
Affiliation(s)
- Yuelei Hu
- Department of Hepatobiliary and Pancreatic Surgery, The First Hospital of Jilin University, Jilin University, Changchun, China
| | - Ruilin Wang
- Department of Cadre’s Wards Ultrasound Diagnostics. Ultrasound Diagnostic Center, The First Hospital of Jilin University, Jilin University, Changchun, China
| | - Juan Liu
- Research Unit of Precision Hepatobiliary Surgery Paradigm, Chinese Academy of Medical Sciences, Beijing, China
- Hepatopancreatobiliary Center, Beijing Tsinghua Changgung Hospital, School of Clinical Medicine, Tsinghua University, Beijing, China
- Institute for Organ Transplant and Bionic Medicine, Tsinghua University, Beijing, China
- Clinical Translational Science Center, Beijing Tsinghua Changgung Hospital, Tsinghua University, Beijing, China
| | - Yunfang Wang
- Research Unit of Precision Hepatobiliary Surgery Paradigm, Chinese Academy of Medical Sciences, Beijing, China
- Hepatopancreatobiliary Center, Beijing Tsinghua Changgung Hospital, School of Clinical Medicine, Tsinghua University, Beijing, China
- Institute for Organ Transplant and Bionic Medicine, Tsinghua University, Beijing, China
- Clinical Translational Science Center, Beijing Tsinghua Changgung Hospital, Tsinghua University, Beijing, China
| | - Jiahong Dong
- Department of Hepatobiliary and Pancreatic Surgery, The First Hospital of Jilin University, Jilin University, Changchun, China
- Research Unit of Precision Hepatobiliary Surgery Paradigm, Chinese Academy of Medical Sciences, Beijing, China
- Hepatopancreatobiliary Center, Beijing Tsinghua Changgung Hospital, School of Clinical Medicine, Tsinghua University, Beijing, China
- Institute for Organ Transplant and Bionic Medicine, Tsinghua University, Beijing, China
| |
Collapse
|
6
|
da Silva Nunes Barreto R, da Silva Júnior LN, Henrique Doná Rodrigues Almeida G, de Oliveira Horvath-Pereira B, da Silva TS, Garcia JM, Smith LC, Carreira ACO, Miglino MA. Placental scaffolds as a potential biological platform for embryonic stem cells differentiation into hepatic-like cells lineage: A pilot study. Tissue Cell 2023; 84:102181. [PMID: 37515966 DOI: 10.1016/j.tice.2023.102181] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [What about the content of this article? (0)] [Affiliation(s)] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2023] [Revised: 07/20/2023] [Accepted: 07/21/2023] [Indexed: 07/31/2023]
Abstract
Hepatic microenvironment plays an essential role in liver regeneration, providing the necessary conditions for cell proliferation, differentiation and tissue rearrangement. One of the key factors for hepatic tissue reconstruction is the extracellular matrix (ECM), which through collagenous and non-collagenous proteins provide a three-dimensional structure that confers support for cell adhesion and assists on their survival and maintenance. In this scenario, placental ECM may be eligible for hepatic tissue reconstruction, once these scaffolds hold the major components required for cell support. Therefore, this preliminary study aimed to access the possibility of mouse embryonic stem cells differentiation into hepatocyte-like cells on placental scaffolds in a three-dimensional dynamic system using a Rotary Cell Culture System. Following a four-phase differentiation protocol that simulates liver embryonic development events, the preliminary results showed that a significant quantity of cells adhered and interacted with the scaffold through outer and inner surfaces. Positive immunolabelling for alpha fetus protein and CK7 suggest presence of hepatoblast phenotype cells, and CK18 and Albumin positive immunolabelling suggest the presence of hepatocyte-like phenotype cells, demonstrating the presence of a heterogeneous population into the recellularized scaffolds. Periodic Acid Schiff-Diastase staining confirmed the presence of glycogen storage, indicating that differentiate cells acquired a hepatic-like phenotype. In conclusion, these preliminary results suggested that mouse placental scaffolds might be used as a biological platform for stem cells differentiation into hepatic-like cells and their establishment, which may be a promissing biomaterial for hepatic tissue reconstruction.
Collapse
Affiliation(s)
| | | | | | | | - Thamires Santos da Silva
- Department of Surgery, School of Veterinary Medicine and Animal Science, University of São Paulo, São Paulo, SP, Brazil
| | - Joaquim Mansano Garcia
- Department of Preventive Veterinary Medicine and Animal Reproduction, Faculty of Agricultural and Veterinary Sciences, State University of São Paulo, Jaboticabal, SP, Brazil
| | - Lawrence Charles Smith
- Centre de Recherche en Reproduction et Fertilité, University of Montreal, Montreal, QC, Canada
| | - Ana Claudia Oliveira Carreira
- Department of Surgery, School of Veterinary Medicine and Animal Science, University of São Paulo, São Paulo, SP, Brazil; Centre of Human and Natural Sciences, Federal University of ABC, Santo André, SP, Brazil
| | - Maria Angelica Miglino
- Department of Surgery, School of Veterinary Medicine and Animal Science, University of São Paulo, São Paulo, SP, Brazil.
| |
Collapse
|
7
|
Stravitz RT, Fontana RJ, Karvellas C, Durkalski V, McGuire B, Rule JA, Tujios S, Lee WM. Future directions in acute liver failure. Hepatology 2023; 78:1266-1289. [PMID: 37183883 PMCID: PMC10521792 DOI: 10.1097/hep.0000000000000458] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [What about the content of this article? (0)] [Affiliation(s)] [Abstract] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/10/2023] [Accepted: 04/20/2023] [Indexed: 05/16/2023]
Abstract
Acute liver failure (ALF) describes a clinical syndrome of rapid hepatocyte injury leading to liver failure manifested by coagulopathy and encephalopathy in the absence of pre-existing cirrhosis. The hallmark diagnostic features are a prolonged prothrombin time (ie, an international normalized ratio of prothrombin time of ≥1.5) and any degree of mental status alteration (HE). As a rare, orphan disease, it seemed an obvious target for a multicenter network. The Acute Liver Failure Study Group (ALFSG) began in 1997 to more thoroughly study and understand the causes, natural history, and management of ALF. Over the course of 22 years, 3364 adult patients were enrolled in the study registry (2614 ALF and 857 acute liver injury-international normalized ratio 2.0 but no encephalopathy-ALI) and >150,000 biosamples collected, including serum, plasma, urine, DNA, and liver tissue. Within the Registry study sites, 4 prospective substudies were conducted and published, 2 interventional ( N -acetylcysteine and ornithine phenylacetate), 1 prognostic [ 13 C-methacetin breath test (MBT)], and 1 mechanistic (rotational thromboelastometry). To review ALFSG's accomplishments and consider next steps, a 2-day in-person conference was held at UT Southwestern Medical Center, Dallas, TX, entitled "Acute Liver Failure: Science and Practice," in May 2022. To summarize the important findings in the field, this review highlights the current state of understanding of ALF and, more importantly, asks what further studies are needed to improve our understanding of the pathogenesis, natural history, and management of this unique and dramatic condition.
Collapse
Affiliation(s)
| | | | | | - Valerie Durkalski
- Medical University of South Carolina, Charleston, South Carolina, USA
| | | | - Jody A. Rule
- University of Texas Southwestern Medical Center at Dallas, Dallas, Texas, USA
| | - Shannan Tujios
- University of Texas Southwestern Medical Center at Dallas, Dallas, Texas, USA
| | - William M. Lee
- University of Texas Southwestern Medical Center at Dallas, Dallas, Texas, USA
| |
Collapse
|
8
|
Campreciós G, Anton A, Oncins A, Montironi C, Ruart M, Montañés R, García-Calderó H, García-Pagán JC, Hernández-Gea V. Lack of endothelial autophagy does not impair liver regeneration after partial hepatectomy in mice. Liver Int 2023; 43:2302-2308. [PMID: 37461159 DOI: 10.1111/liv.15677] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [What about the content of this article? (0)] [Affiliation(s)] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/15/2022] [Revised: 06/30/2023] [Accepted: 07/02/2023] [Indexed: 09/19/2023]
Abstract
Liver sinusoidal endothelial cells (LSEC) are key elements in regulating the liver response to injury and regeneration. While endothelial autophagy is essential to protect endothelial cells from injury-induced oxidative stress and fibrosis, its role in liver regeneration has not been elucidated. This study was intended to investigate the role of endothelial autophagy in liver regeneration in the context of partial hepatectomy (PHx). Analysis of autophagy levels in rat LSEC after PHx indicated a tendency to decrease activity the first 2 days after surgery. PHx performed in mice with impaired endothelial autophagy (Atg7flox/flox ;VE-Cadherin-Cre+ ) and their littermate controls showed no differences neither in liver-to-body weight ratio, histological analysis, hepatocyte proliferation nor vascular integrity during the first 7 days after PH and liver regeneration was completely achieved. Our results indicate that endothelial autophagy does not play an essential role in the coordination of the liver regeneration process after PHx.
Collapse
|