1
|
Zhao H, Zhang T, Zhang H, Wang Y, Cheng L. Exercise-with-melatonin therapy improves sleep disorder and motor dysfunction in a rat model of ischemic stroke. Neural Regen Res 2024; 19:1336-1343. [PMID: 37905883 DOI: 10.4103/1673-5374.385844] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [What about the content of this article? (0)] [Affiliation(s)] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2023] [Accepted: 08/15/2023] [Indexed: 11/02/2023] Open
Abstract
Abstract
JOURNAL/nrgr/04.03/01300535-202406000-00038/inline-graphic1/v/2023-10-30T152229Z/r/image-tiff
Exercise-with-melatonin therapy has complementary and synergistic effects on spinal cord injury and Alzheimer’s disease, but its effect on stroke is still poorly understood. In this study, we established a rat model of ischemic stroke by occluding the middle cerebral artery for 60 minutes. We treated the rats with exercise and melatonin therapy for 7 consecutive days. Results showed that exercise-with-melatonin therapy significantly prolonged sleep duration in the model rats, increased delta power values, and regularized delta power rhythm. Additionally, exercise-with-melatonin therapy improved coordination, endurance, and grip strength, as well as learning and memory abilities. At the same time, it led to higher hippocampal CA1 neuron activity and postsynaptic density thickness and lower expression of glutamate receptor 2 than did exercise or melatonin therapy alone. These findings suggest that exercise-with-melatonin therapy can alleviate sleep disorder and motor dysfunction by increasing glutamate receptor 2 protein expression and regulating hippocampal CA1 synaptic plasticity.
Collapse
Affiliation(s)
- Haitao Zhao
- School of Rehabilitation Medicine, Capital Medical University, Beijing, China
- Department of Neurological Rehabilitation, Beijing Bo'ai Hospital, China Rehabilitation Research Center, Beijing, China
- School of Rehabilitation Medicine, University of Health and Rehabilitation Sciences, Qingdao, Shandong Province, China
- Laboratory of Brain Injury Repair and Rehabilitation, China Rehabilitation Science Institute, Beijing, China
| | - Tong Zhang
- School of Rehabilitation Medicine, Capital Medical University, Beijing, China
- Department of Neurological Rehabilitation, Beijing Bo'ai Hospital, China Rehabilitation Research Center, Beijing, China
- School of Rehabilitation Medicine, University of Health and Rehabilitation Sciences, Qingdao, Shandong Province, China
- Laboratory of Brain Injury Repair and Rehabilitation, China Rehabilitation Science Institute, Beijing, China
| | - Haojie Zhang
- School of Rehabilitation Medicine, Capital Medical University, Beijing, China
- Department of Neurological Rehabilitation, Beijing Bo'ai Hospital, China Rehabilitation Research Center, Beijing, China
- Laboratory of Brain Injury Repair and Rehabilitation, China Rehabilitation Science Institute, Beijing, China
| | - Yunlei Wang
- School of Rehabilitation Medicine, Capital Medical University, Beijing, China
- Department of Neurological Rehabilitation, Beijing Bo'ai Hospital, China Rehabilitation Research Center, Beijing, China
- Laboratory of Brain Injury Repair and Rehabilitation, China Rehabilitation Science Institute, Beijing, China
| | - Lingna Cheng
- School of Rehabilitation Medicine, Capital Medical University, Beijing, China
- Department of Neurological Rehabilitation, Beijing Bo'ai Hospital, China Rehabilitation Research Center, Beijing, China
- Laboratory of Brain Injury Repair and Rehabilitation, China Rehabilitation Science Institute, Beijing, China
| |
Collapse
|
2
|
Han T, Xu Y, Sun L, Hashimoto M, Wei J. Microglial response to aging and neuroinflammation in the development of neurodegenerative diseases. Neural Regen Res 2024; 19:1241-1248. [PMID: 37905870 DOI: 10.4103/1673-5374.385845] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [What about the content of this article? (0)] [Affiliation(s)] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2023] [Accepted: 07/17/2023] [Indexed: 11/02/2023] Open
Abstract
ABSTRACT Cellular senescence and chronic inflammation in response to aging are considered to be indicators of brain aging; they have a great impact on the aging process and are the main risk factors for neurodegeneration. Reviewing the microglial response to aging and neuroinflammation in neurodegenerative diseases will help understand the importance of microglia in neurodegenerative diseases. This review describes the origin and function of microglia and focuses on the role of different states of the microglial response to aging and chronic inflammation on the occurrence and development of neurodegenerative diseases, including Alzheimer's disease, Huntington's chorea, and Parkinson's disease. This review also describes the potential benefits of treating neurodegenerative diseases by modulating changes in microglial states. Therefore, inducing a shift from the neurotoxic to neuroprotective microglial state in neurodegenerative diseases induced by aging and chronic inflammation holds promise for the treatment of neurodegenerative diseases in the future.
Collapse
Affiliation(s)
- Tingting Han
- Institute for Brain Sciences Research, School of Life Sciences, Henan University, Kaifeng, Henan Province, China
| | - Yuxiang Xu
- Institute for Brain Sciences Research, School of Life Sciences, Henan University, Kaifeng, Henan Province, China
| | - Lin Sun
- Institute for Brain Sciences Research, School of Life Sciences, Henan University, Kaifeng, Henan Province, China
- College of Chemistry and Molecular Sciences, Henan University, Kaifeng, Henan Province, China
| | - Makoto Hashimoto
- Department of Basic Technology, Tokyo Metropolitan Institute of Medical Science, Tokyo, Japan
| | - Jianshe Wei
- Institute for Brain Sciences Research, School of Life Sciences, Henan University, Kaifeng, Henan Province, China
| |
Collapse
|
3
|
Abyadeh M, Gupta V, Paulo JA, Mahmoudabad AG, Shadfar S, Mirshahvaladi S, Gupta V, Nguyen CTO, Finkelstein DI, You Y, Haynes PA, Salekdeh GH, Graham SL, Mirzaei M. Amyloid-beta and tau protein beyond Alzheimer's disease. Neural Regen Res 2024; 19:1262-1276. [PMID: 37905874 DOI: 10.4103/1673-5374.386406] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [What about the content of this article? (0)] [Affiliation(s)] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2023] [Accepted: 09/07/2023] [Indexed: 11/02/2023] Open
Abstract
ABSTRACT The aggregation of amyloid-beta peptide and tau protein dysregulation are implicated to play key roles in Alzheimer's disease pathogenesis and are considered the main pathological hallmarks of this devastating disease. Physiologically, these two proteins are produced and expressed within the normal human body. However, under pathological conditions, abnormal expression, post-translational modifications, conformational changes, and truncation can make these proteins prone to aggregation, triggering specific disease-related cascades. Recent studies have indicated associations between aberrant behavior of amyloid-beta and tau proteins and various neurological diseases, such as Alzheimer's disease, Parkinson's disease, and amyotrophic lateral sclerosis, as well as retinal neurodegenerative diseases like Glaucoma and age-related macular degeneration. Additionally, these proteins have been linked to cardiovascular disease, cancer, traumatic brain injury, and diabetes, which are all leading causes of morbidity and mortality. In this comprehensive review, we provide an overview of the connections between amyloid-beta and tau proteins and a spectrum of disorders.
Collapse
Affiliation(s)
| | - Vivek Gupta
- Department of Clinical Medicine, Faculty of Medicine, Health and Human Sciences, Macquarie Medical School, Macquarie University, Macquarie Park, North Ryde, Sydney, NSW, Australia
| | - Joao A Paulo
- Department of Cell Biology, Harvard Medical School, Boston, MA, USA
| | | | - Sina Shadfar
- Department of Clinical Medicine, Faculty of Medicine, Health and Human Sciences, Macquarie Medical School, Macquarie University, Macquarie Park, North Ryde, Sydney, NSW, Australia
| | - Shahab Mirshahvaladi
- Department of Clinical Medicine, Faculty of Medicine, Health and Human Sciences, Macquarie Medical School, Macquarie University, Macquarie Park, North Ryde, Sydney, NSW, Australia
| | - Veer Gupta
- School of Medicine, Deakin University, Geelong, VIC, Australia
| | - Christine T O Nguyen
- Department of Optometry and Vision Sciences, School of Health Sciences, Faculty of Medicine Dentistry and Health Sciences, University of Melbourne, Parkville, VIC, Australia
| | - David I Finkelstein
- The Florey Institute of Neuroscience and Mental Health, The University of Melbourne, Parkville, VIC, Australia
| | - Yuyi You
- Department of Clinical Medicine, Faculty of Medicine, Health and Human Sciences, Macquarie Medical School, Macquarie University, Macquarie Park, North Ryde, Sydney, NSW, Australia
| | - Paul A Haynes
- School of Natural Sciences, Macquarie University, Macquarie Park, NSW, Australia
| | - Ghasem H Salekdeh
- School of Natural Sciences, Macquarie University, Macquarie Park, NSW, Australia
| | - Stuart L Graham
- Department of Clinical Medicine, Faculty of Medicine, Health and Human Sciences, Macquarie Medical School, Macquarie University, Macquarie Park, North Ryde, Sydney, NSW, Australia
| | - Mehdi Mirzaei
- Department of Clinical Medicine, Faculty of Medicine, Health and Human Sciences, Macquarie Medical School, Macquarie University, Macquarie Park, North Ryde, Sydney, NSW, Australia
| |
Collapse
|
4
|
Xu T, Yang J, Xu Y, Wang X, Gao X, Sun J, Zhou C, Huang Y. Post-acute ischemic stroke hyperglycemia aggravates destruction of the blood-brain barrier. Neural Regen Res 2024; 19:1344-1350. [PMID: 37905884 DOI: 10.4103/1673-5374.385851] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [What about the content of this article? (0)] [Affiliation(s)] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2023] [Accepted: 08/10/2023] [Indexed: 11/02/2023] Open
Abstract
Abstract
JOURNAL/nrgr/04.03/01300535-202406000-00039/inline-graphic1/v/2023-10-30T152229Z/r/image-tiff
Post-acute ischemic stroke hyperglycemia increases the risk of hemorrhagic transformation, which is associated with blood-brain barrier disruption. Brain microvascular endothelial cells are a major component of the blood-brain barrier. Intercellular mitochondrial transfer has emerged as a novel paradigm for repairing cells with mitochondrial dysfunction. In this study, we first investigated whether mitochondrial transfer exists between brain microvascular endothelial cells, and then investigated the effects of post-acute ischemic stroke hyperglycemia on mitochondrial transfer between brain microvascular endothelial cells. We found that healthy brain microvascular endothelial cells can transfer intact mitochondria to oxygen glucose deprivation-injured brain microvascular endothelial cells. However, post-oxygen glucose deprivation hyperglycemia hindered mitochondrial transfer and exacerbated mitochondrial dysfunction. We established an in vitro brain microvascular endothelial cell model of the blood-brain barrier. We found that post-acute ischemic stroke hyperglycemia reduced the overall energy metabolism levels of brain microvascular endothelial cells and increased permeability of the blood-brain barrier. In a clinical study, we retrospectively analyzed the relationship between post-acute ischemic stroke hyperglycemia and the severity of hemorrhagic transformation. We found that post-acute ischemic stroke hyperglycemia serves as an independent predictor of severe hemorrhagic transformation. These findings suggest that post-acute ischemic stroke hyperglycemia can aggravate disruption of the blood-brain barrier by inhibiting mitochondrial transfer.
Collapse
Affiliation(s)
- Tianqi Xu
- Department of Neurology, The First Affiliated Hospital of Ningbo University, Ningbo, Zhejiang Province, China
| | - Jianhong Yang
- Department of Neurology, The First Affiliated Hospital of Ningbo University, Ningbo, Zhejiang Province, China
| | - Yao Xu
- Department of Neurology, The First Affiliated Hospital of Ningbo University, Ningbo, Zhejiang Province, China
| | - Xiaofeng Wang
- Department of General Surgery, The First Affiliated Hospital of Ningbo University, Ningbo, Zhejiang Province, China
| | - Xiang Gao
- Department of Neurosurgery, The First Affiliated Hospital of Ningbo University, Ningbo, Zhejiang Province, China
| | - Jie Sun
- Department of Neurosurgery, The First Affiliated Hospital of Ningbo University, Ningbo, Zhejiang Province, China
| | - Chenhui Zhou
- Department of Neurosurgery, The First Affiliated Hospital of Ningbo University, Ningbo, Zhejiang Province, China
- Key Laboratory of Precision Medicine for Atherosclerotic Diseases of Zhejiang Province, Ningbo, Zhejiang Province, China
| | - Yi Huang
- Department of Neurosurgery, The First Affiliated Hospital of Ningbo University, Ningbo, Zhejiang Province, China
- Key Laboratory of Precision Medicine for Atherosclerotic Diseases of Zhejiang Province, Ningbo, Zhejiang Province, China
| |
Collapse
|
5
|
Yoganandan N, Choi H, Purushothaman Y, Vedantam A, Harinathan B, Banerjee A. Comparison of Load-Sharing Responses Between Graded Posterior Cervical Foraminotomy and Conventional Fusion Using Finite Element Modeling. J Eng Sci Med Diagn Ther 2024; 7:021006. [PMID: 37860789 PMCID: PMC10583278 DOI: 10.1115/1.4063465] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [What about the content of this article? (0)] [Affiliation(s)] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/16/2023] [Revised: 08/23/2023] [Indexed: 10/21/2023]
Abstract
Following the diagnosis of unilateral cervical radiculopathy and need for surgical intervention, anterior cervical diskectomy and fusion (conventional fusion) and posterior cervical foraminotomy are common options. Although patient outcomes may be similar between the two procedures, their biomechanical effects have not been fully compared using a head-to-head approach, particularly, in relation to the amount of facet resection and internal load-sharing between spinal segments and components. The objective of this investigation was to compare load-sharing between conventional fusion and graded foraminotomy facet resections under physiological loading. A validated finite element model of the cervical spinal column was used in the study. The intact spine was modified to simulate the two procedures at the C5-C6 spinal segment. Flexion, extension, and lateral bending loads were applied to the intact, graded foraminotomy, and conventional fusion spines. Load-sharing was determined using range of motion data at the C5-C6 and immediate adjacent segments, facet loads at the three segments, and disk pressures at the adjacent segments. Results were normalized with respect to the intact spine to compare surgical options. Conventional fusion leads to increased motion, pressure, and facet loads at adjacent segments. Foraminotomy leads to increased motion and anterior loading at the index level, and motions decrease at adjacent levels. In extension, the left facet load decreases after foraminotomy. Recognizing that foraminotomy is a motion preserving alternative to conventional fusion, this study highlights various intrinsic biomechanical factors and potential instability issues with more than one-half facet resection.
Collapse
Affiliation(s)
| | - Hoon Choi
- Cleveland Clinic Florida, Weston, FL 33331
| | | | | | | | | |
Collapse
|
6
|
Liu C, Wang G, Han W, Tian Q, Li M. Ferroptosis: a potential therapeutic target for stroke. Neural Regen Res 2024; 19:988-997. [PMID: 37862200 DOI: 10.4103/1673-5374.385284] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [What about the content of this article? (0)] [Affiliation(s)] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2023] Open
Abstract
Ferroptosis is a form of regulated cell death characterized by massive iron accumulation and iron-dependent lipid peroxidation, differing from apoptosis, necroptosis, and autophagy in several aspects. Ferroptosis is regarded as a critical mechanism of a series of pathophysiological reactions after stroke because of iron overload caused by hemoglobin degradation and iron metabolism imbalance. In this review, we discuss ferroptosis-related metabolisms, important molecules directly or indirectly targeting iron metabolism and lipid peroxidation, and transcriptional regulation of ferroptosis, revealing the role of ferroptosis in the progression of stroke. We present updated progress in the intervention of ferroptosis as therapeutic strategies for stroke in vivo and in vitro and summarize the effects of ferroptosis inhibitors on stroke. Our review facilitates further understanding of ferroptosis pathogenesis in stroke, proposes new targets for the treatment of stroke, and suggests that more efforts should be made to investigate the mechanism of ferroptosis in stroke.
Collapse
Affiliation(s)
- Chengli Liu
- Department of Neurosurgery, Renmin Hospital of Wuhan University, Wuhan, Hubei Province, China
| | - Guijun Wang
- Department of Neurosurgery, Renmin Hospital of Wuhan University, Wuhan, Hubei Province, China
| | - Wenrui Han
- Department of Neurosurgery, Renmin Hospital of Wuhan University, Wuhan, Hubei Province, China
| | - Qi Tian
- Department of Neurosurgery, Renmin Hospital of Wuhan University, Wuhan, Hubei Province, China
| | - Mingchang Li
- Department of Neurosurgery, Renmin Hospital of Wuhan University, Wuhan, Hubei Province, China
| |
Collapse
|
7
|
Ma JX, Wang X, Pan YR, Wang ZY, Guo X, Liu J, Ren NQ, Butler D. Data-driven systematic analysis of waterborne viruses and health risks during the wastewater reclamation process. Environ Sci Ecotechnol 2024; 19:100328. [PMID: 37965045 PMCID: PMC10641159 DOI: 10.1016/j.ese.2023.100328] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [What about the content of this article? (0)] [Affiliation(s)] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/13/2023] [Revised: 09/27/2023] [Accepted: 09/27/2023] [Indexed: 11/16/2023]
Abstract
Waterborne viral epidemics are a major threat to public health. Increasing interest in wastewater reclamation highlights the importance of understanding the health risks associated with potential microbial hazards, particularly for reused water in direct contact with humans. This study focused on identifying viral epidemic patterns in municipal wastewater reused for recreational applications based on long-term, spatially explicit global literature data during 2000-2021, and modelled human health risks from multiple exposure pathways using a well-established quantitative microbial risk assessment methodology. Global median viral loads in municipal wastewater ranged from 7.92 × 104 to 1.4 × 106 GC L-1 in the following ascending order: human adenovirus (HAdV), norovirus (NoV) GII, enterovirus (EV), NoV GI, rotavirus (RV), and severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). Following secondary or tertiary wastewater treatment, NoV GI, NoV GII, EV, and RV showed a relatively higher and more stable log reduction value with medians all above 0.8 (84%), whereas SARS-CoV-2 and HAdV showed a relatively lower reduction, with medians ranging from 0.33 (53%) to 0.55 (72%). A subsequent disinfection process effectively enhanced viral removal to over 0.89-log (87%). The predicted event probability of virus-related gastrointestinal illness and acute febrile respiratory illnesses in reclaimed recreational water exceeded the World Health Organization recommended recreational risk benchmark (5% and 1.9%, respectively). Overall, our results provided insights on health risks associated with reusing wastewater for recreational purposes and highlighted the need for establishing a regulatory framework ensuring the safety management of reclaimed waters.
Collapse
Affiliation(s)
- Jia-Xin Ma
- Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China
- State Key Laboratory of Urban Water Resource and Environment, School of Civil and Environmental Engineering, Harbin Institute of Technology, Shenzhen, Shenzhen, 518055, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Xu Wang
- State Key Laboratory of Urban Water Resource and Environment, School of Civil and Environmental Engineering, Harbin Institute of Technology, Shenzhen, Shenzhen, 518055, China
- Centre for Water Systems, College of Engineering, Mathematics and Physical Sciences, University of Exeter, Exeter, EX4 4QF, United Kingdom
| | - Yi-Rong Pan
- Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China
- State Key Laboratory of Urban Water Resource and Environment, School of Civil and Environmental Engineering, Harbin Institute of Technology, Shenzhen, Shenzhen, 518055, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Zhao-Yue Wang
- State Key Laboratory of Urban Water Resource and Environment, School of Civil and Environmental Engineering, Harbin Institute of Technology, Shenzhen, Shenzhen, 518055, China
| | - Xuesong Guo
- Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China
| | - Junxin Liu
- Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China
| | - Nan-Qi Ren
- State Key Laboratory of Urban Water Resource and Environment, School of Civil and Environmental Engineering, Harbin Institute of Technology, Shenzhen, Shenzhen, 518055, China
| | - David Butler
- Centre for Water Systems, College of Engineering, Mathematics and Physical Sciences, University of Exeter, Exeter, EX4 4QF, United Kingdom
| |
Collapse
|
8
|
Qi Y, Qiu Z, Li L, Zhao R, Xiang L, Gong X, Zheng Z, Qiao X. Developing garlic polysaccharide-Fe (III) complexes using garlic pomace to provide enhanced iron-supplementing activity in vivo. Food Chem 2024; 437:137819. [PMID: 37922796 DOI: 10.1016/j.foodchem.2023.137819] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [What about the content of this article? (0)] [Affiliation(s)] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2023] [Revised: 09/11/2023] [Accepted: 10/18/2023] [Indexed: 11/07/2023]
Abstract
This study investigated the potential of garlic polysaccharides (GPs) from garlic pomace as iron carriers. The obtained GP-Fe (III) complexes had a higher molecular weight (5646 Da) and more fructose (90.46 %) than the GPs did and contained 9.7 % Fe (III). GPs were mainly composed of → 2)-β-d-Fruf (1 → and → 2)-β-d-Fruf (6 → residues, and their interactions with Fe (III) reduced the crystallinity, increased the thermal stability, and altered the morphological features through targeting the OH stretching vibrations of the hydroxyl groups and affecting the COC and OCO structures. The GP-Fe (III) complexes had high stability under simulated gastrointestinal digestion system and showed better therapeutic effects on iron deficiency anemia in mice than FeSO4 did, evidenced by improved hematological parameters, restored iron levels, and attenuated oxidative damage. Thus, GP-Fe (III) complexes are promising as novel Fe (III) supplements for Fe-deficient individuals, and promote the high-value utilization of garlic pomace.
Collapse
Affiliation(s)
- Yongqiu Qi
- Key Laboratory of Food Nutrition and Health in Universities of Shandong, College of Food Science and Engineering, Shandong Agricultural University, 61 Daizong Street, Tai'an, Shandong 271018, PR China.
| | - Zhichang Qiu
- Key Laboratory of Food Nutrition and Health in Universities of Shandong, College of Food Science and Engineering, Shandong Agricultural University, 61 Daizong Street, Tai'an, Shandong 271018, PR China.
| | - Lingyu Li
- Key Laboratory of Food Nutrition and Health in Universities of Shandong, College of Food Science and Engineering, Shandong Agricultural University, 61 Daizong Street, Tai'an, Shandong 271018, PR China.
| | - Renjie Zhao
- Key Laboratory of Food Nutrition and Health in Universities of Shandong, College of Food Science and Engineering, Shandong Agricultural University, 61 Daizong Street, Tai'an, Shandong 271018, PR China.
| | - Lu Xiang
- Key Laboratory of Food Nutrition and Health in Universities of Shandong, College of Food Science and Engineering, Shandong Agricultural University, 61 Daizong Street, Tai'an, Shandong 271018, PR China.
| | - Xulin Gong
- Key Laboratory of Food Nutrition and Health in Universities of Shandong, College of Food Science and Engineering, Shandong Agricultural University, 61 Daizong Street, Tai'an, Shandong 271018, PR China.
| | - Zhenjia Zheng
- Key Laboratory of Food Nutrition and Health in Universities of Shandong, College of Food Science and Engineering, Shandong Agricultural University, 61 Daizong Street, Tai'an, Shandong 271018, PR China.
| | - Xuguang Qiao
- Key Laboratory of Food Nutrition and Health in Universities of Shandong, College of Food Science and Engineering, Shandong Agricultural University, 61 Daizong Street, Tai'an, Shandong 271018, PR China.
| |
Collapse
|
9
|
Cui Y, Liu J, Lei X, Liu S, Chen H, Wei Z, Li H, Yang Y, Zheng C, Li Z. Dual-directional regulation of spinal cord injury and the gut microbiota. Neural Regen Res 2024; 19:548-556. [PMID: 37721283 PMCID: PMC10581592 DOI: 10.4103/1673-5374.380881] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [What about the content of this article? (0)] [Affiliation(s)] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2023] [Revised: 04/17/2023] [Accepted: 06/05/2023] [Indexed: 09/19/2023] Open
Abstract
There is increasing evidence that the gut microbiota affects the incidence and progression of central nervous system diseases via the brain-gut axis. The spinal cord is a vital important part of the central nervous system; however, the underlying association between spinal cord injury and gut interactions remains unknown. Recent studies suggest that patients with spinal cord injury frequently experience intestinal dysfunction and gut dysbiosis. Alterations in the gut microbiota can cause disruption in the intestinal barrier and trigger neurogenic inflammatory responses which may impede recovery after spinal cord injury. This review summarizes existing clinical and basic research on the relationship between the gut microbiota and spinal cord injury. Our research identified three key points. First, the gut microbiota in patients with spinal cord injury presents a key characteristic and gut dysbiosis may profoundly influence multiple organs and systems in patients with spinal cord injury. Second, following spinal cord injury, weakened intestinal peristalsis, prolonged intestinal transport time, and immune dysfunction of the intestine caused by abnormal autonomic nerve function, as well as frequent antibiotic treatment, may induce gut dysbiosis. Third, the gut microbiota and associated metabolites may act on central neurons and affect recovery after spinal cord injury; cytokines and the Toll-like receptor ligand pathways have been identified as crucial mechanisms in the communication between the gut microbiota and central nervous system. Fecal microbiota transplantation, probiotics, dietary interventions, and other therapies have been shown to serve a neuroprotective role in spinal cord injury by modulating the gut microbiota. Therapies targeting the gut microbiota or associated metabolites are a promising approach to promote functional recovery and improve the complications of spinal cord injury.
Collapse
|