1
|
Nandi S, Guha P. Development, characterization and application of starch-based film containing polyphenols of piper betle L. waste in chicken meat storage. Food Chem 2024; 431:137103. [PMID: 37572483 DOI: 10.1016/j.foodchem.2023.137103] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [What about the content of this article? (0)] [Affiliation(s)] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2023] [Revised: 07/20/2023] [Accepted: 08/03/2023] [Indexed: 08/14/2023]
Abstract
The current study aimed to develop a sustainable solution to extend the shelf life of chicken meat by developing starch-based functional film embedded with polyphenolic extract of waste petioles of betel leaf (BLP). The results showed that loading of the extract significantly (p < 0.05) improved flexibility, thickness, water solubility, DPPH radical scavenging activity, and UV light protection ability by enhancing intermolecular interactions among potato starch, guar gum, and the extract. The developed film showed optimum mechanical and water barrier properties at a 4% BLP extract concentration computed through TOPSIS method (A multi-criteria decision-making approach). During the shelf life study, the extract embedded film maintained the quality of chicken meat for up to 12 days at refrigerated temperature. Biodegradation time of the extract-blended films was considerably decreased to 14 days from 28 days for the native film, indicating suitable alternative to non-biodegradable film for storing the raw meat.
Collapse
Affiliation(s)
- Sujosh Nandi
- Agricultural and Food Engineering Department, Indian Institute of Technology, Kharagpur, West Bengal 721302, India.
| | - Proshanta Guha
- Agricultural and Food Engineering Department, Indian Institute of Technology, Kharagpur, West Bengal 721302, India
| |
Collapse
|
2
|
Ramatsetse KE, Ramashia ES, Mashau ME. A review on health benefits, antimicrobial and antioxidant properties of Bambara groundnut ( Vigna subterranean). International Journal of Food Properties 2023. [DOI: 10.1080/10942912.2022.2153864] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [What about the content of this article? (0)] [Affiliation(s)] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Affiliation(s)
- Kgaogelo Edwin Ramatsetse
- Department of Food Science and Technology, Faculty of Science, Engineering and Agriculture, University of Venda, Thohoyandou, South Africa
| | - Eugenia Shonisani Ramashia
- Department of Food Science and Technology, Faculty of Science, Engineering and Agriculture, University of Venda, Thohoyandou, South Africa
- School of Bioengineering and Food Technology, Faculty of Applied Sciences and Biotechnology, Shoolini University, Solan, HP, India
| | - Mpho Edward Mashau
- Department of Food Science and Technology, Faculty of Science, Engineering and Agriculture, University of Venda, Thohoyandou, South Africa
| |
Collapse
|
3
|
Salama MF, Mahmoud KF, Amin AA, Abd El- Rahman NM, Seliem EI. The Influence of green extraction methods on the municipal onion extracts nano-capsules and their application in beef burger. Food and Humanity 2023; 1:471-481. [DOI: 10.1016/j.foohum.2023.06.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [What about the content of this article? (0)] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/02/2023]
|
4
|
Popyrina TN, Demina TS, Akopova TA. Polysaccharide-based films: from packaging materials to functional food. J Food Sci Technol 2023; 60:2736-2747. [PMID: 37711569 PMCID: PMC10497487 DOI: 10.1007/s13197-022-05595-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [What about the content of this article? (0)] [Affiliation(s)] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Revised: 08/23/2022] [Accepted: 09/05/2022] [Indexed: 09/16/2023]
Abstract
A wider application of naturally derived polysaccharides is of great interest as materials for food packaging industry. Biocompatibility and biodegradability of polysaccharide-based films and coatings ally with a shift from application of non-biodegradable petrochemical polymers to the more environmentally friendly ones. Due to a range of inherent features in chemical structure and bioactivity, the polysaccharide materials could bring additional functionality to food packaging. The chelating ability of the polysaccharides provides also their application as carriers of additional active components, such as nanoparticles, essential oils and polyphenols. The improved physicochemical, antibacterial and antioxidant properties of the filled films allows to consider the edible polysaccharide-based films as functional food products. This review is aimed at analysis of evolution of polysaccharide-based food packaging materials from inert one starting from cellophane to recent research works on development of multicomponent polysaccharide-based functional food films and coatings.
Collapse
Affiliation(s)
- Tatiana N. Popyrina
- Enikolopov Institute of Synthetic Polymeric Materials, Russian Academy of Sciences, 70 Profsouznaya str., Moscow, Russia 117393
| | - Tatiana S. Demina
- Enikolopov Institute of Synthetic Polymeric Materials, Russian Academy of Sciences, 70 Profsouznaya str., Moscow, Russia 117393
- Institute for Regenerative Medicine, I.M. Sechenov First Moscow State Medical University (Sechenov University), 8-2 Trubetskaya str., Moscow, Russia 119991
- Moscow Aviation Institute (National Research University), 4 Volokolamskoe shosse, Moscow, Russia 125993
| | - Tatiana A. Akopova
- Enikolopov Institute of Synthetic Polymeric Materials, Russian Academy of Sciences, 70 Profsouznaya str., Moscow, Russia 117393
| |
Collapse
|
5
|
Yu J, Hu N, Hou L, Hang F, Li K, Xie C. Effect of deacetylation of chitosan on the physicochemical, antioxidant and antibacterial properties activities of chitosan-mannose derivatives. J Sci Food Agric 2023; 103:6394-6405. [PMID: 37205788 DOI: 10.1002/jsfa.12715] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [What about the content of this article? (0)] [Affiliation(s)] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/17/2022] [Revised: 03/30/2023] [Accepted: 05/16/2023] [Indexed: 05/21/2023]
Abstract
BACKGROUND The present study investigates the physical, chemical, and antibacterial properties of water-soluble chitosan derivatives. Preparation of the water-soluble chitosan derivatives was performed by the Maillard reaction (MR) between chitosan [with the degree of deacetylation (DD) being 50%, 70%, and 90%] and mannose. No organic reagent was used in the process. Systematic evaluations of the effects of chitosan DD on the reaction extent, the structure, the composition, as well as the physicochemical properties, antioxidant properties, and bacterial inhibitory properties of the finished chitosan-mannose MR products (Mc-mrps), were carried out. RESULTS Based on the experimental data obtained from Fourier transform infrared spectroscopy, thermogravimetric analysis, X-ray diffraction, Pyrolysis-gas chromatography-mass spectrometry analysis, and 1 H-NMR, the Mc-mrps formed from chitosan with different DDs had different structures and components. An increase in the DD of chitosan led to a significant increase in the degree of reaction, color difference (△E), and solubility (P < 0.05). The zeta potential and particle size of the Mc-mrps were also influenced by the DD of chitosan. Additionally, the antimicrobial action against Gram-positive (Staphylococcus aureus and Bacillus subtilis) and Gram-negative bacteria (Escherichia coli and Salmonella typhimurium), as well as antioxidant activity, were enhanced by the incorporation of mannose. This was also achieved by the increase of the DD of chitosan. CONCLUSION The results of the present study suggest that chitosan was derived with mannose to yield a novel, water-soluble polysaccharide with better antioxidant and antimicrobial activities. The DD of chitosan had a significant effect on the properties of the Mc-mrp, which can serve as a reference point for the subsequent preparation and application of such derivatives. © 2023 Society of Chemical Industry.
Collapse
Affiliation(s)
- Junzhe Yu
- College of Light Industry and Food Engineering, Guangxi University, Nanning, China
| | - Na Hu
- College of Light Industry and Food Engineering, Guangxi University, Nanning, China
| | - Liran Hou
- College of Light Industry and Food Engineering, Guangxi University, Nanning, China
| | - Fangxue Hang
- College of Light Industry and Food Engineering, Guangxi University, Nanning, China
- Collaborative Innovation Center of Guangxi Sugarcane Industry, Guangxi University, Nanning, China
- Engineering Research Center for Sugar Industry and Comprehensive Utilization, Ministry of Education, Nanning, China
| | - Kai Li
- College of Light Industry and Food Engineering, Guangxi University, Nanning, China
- Collaborative Innovation Center of Guangxi Sugarcane Industry, Guangxi University, Nanning, China
- Engineering Research Center for Sugar Industry and Comprehensive Utilization, Ministry of Education, Nanning, China
| | - Caifeng Xie
- College of Light Industry and Food Engineering, Guangxi University, Nanning, China
- Collaborative Innovation Center of Guangxi Sugarcane Industry, Guangxi University, Nanning, China
- Engineering Research Center for Sugar Industry and Comprehensive Utilization, Ministry of Education, Nanning, China
| |
Collapse
|
6
|
Wu Y, Yu X, Ding W, Remón J, Xin M, Sun T, Wang TTY, Yu LL, Wang J. Fabrication, performance, and potential environmental impacts of polysaccharide-based food packaging materials incorporated with phytochemicals: A review. Int J Biol Macromol 2023; 249:125922. [PMID: 37482166 DOI: 10.1016/j.ijbiomac.2023.125922] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [What about the content of this article? (0)] [Affiliation(s)] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2023] [Revised: 07/16/2023] [Accepted: 07/19/2023] [Indexed: 07/25/2023]
Abstract
Although food packaging preserves food's quality, it unfortunately contributes to global climate change since the considerable carbon emissions associated with its entire life cycle. Polysaccharide-based packaging materials (PPMs) are promising options to preserve foods, potentially helping the food industry reduce its carbon footprint. PPMs incorporated with phytochemicals hold promise to address this critical issue, keep food fresh and prolong the shelf life. However, phytochemicals' health benefits are impacted by their distinct chemical structures thus the phytochemicals-incorporated PPMs generally exhibit differential performances. PPMs must be thoughtfully formulated to possess adequate physicochemical properties to meet commercial standards. Given this, this review first-time provides a comprehensive review of recent advances in the fabrication of phytochemicals incorporated PPMs. The application performances of phytochemicals-incorporated PPMs for preserving foods, as well as the intelligent monitoring of food quality, are thoroughly introduced. The possible associated environmental impacts and scalability challenges for the commercial application of these PPMs are also methodically assessed. This review seeks to provide comprehensive insights into exploring new avenues to achieve a greener and safer food industry via innovative food packaging materials. This is paramount to preserve not only food shelf life but also the environment, facilitating the eco-friendly development of the food industry.
Collapse
Affiliation(s)
- Yanbei Wu
- China-Canada Joint Lab of Food Nutrition and Health (Beijing), School of Food and Health, Beijing Technology and Business University (BTBU), Beijing, PR China
| | - Xueling Yu
- China-Canada Joint Lab of Food Nutrition and Health (Beijing), School of Food and Health, Beijing Technology and Business University (BTBU), Beijing, PR China
| | - Wei Ding
- China Leather and Footwear Research Institute Co. Ltd., Beijing, PR China.
| | - Javier Remón
- Thermochemical Processes Group, Aragón Institute for Engineering Research (I3A), University of Zaragoza, C/Mariano Esquillor s/n, 50.018 Zaragoza, Spain
| | - Mengmeng Xin
- China-Canada Joint Lab of Food Nutrition and Health (Beijing), School of Food and Health, Beijing Technology and Business University (BTBU), Beijing, PR China
| | - Tianjun Sun
- Department of Burns and Plastic Surgery, the Fourth Medical Center of PLA General Hospital, Beijing, PR China
| | - Thomas T Y Wang
- Diet, Genomics, and Immunology Laboratory, Beltsville Human Nutrition Research Center, USDA-ARS, Beltsville, MD, USA
| | - Liangli Lucy Yu
- Department of Nutrition and Food Science, University of Maryland, College Park, MD, USA
| | - Jing Wang
- China-Canada Joint Lab of Food Nutrition and Health (Beijing), School of Food and Health, Beijing Technology and Business University (BTBU), Beijing, PR China.
| |
Collapse
|
7
|
Mohamad EA, Shehata AM, Abobah AM, Kholief AT, Ahmed MA, Abdelhakeem ME, Dawood NK, Mohammed HS. Chitosan-based films blended with moringa leaves and MgO nanoparticles for application in active food packaging. Int J Biol Macromol 2023:127045. [PMID: 37776934 DOI: 10.1016/j.ijbiomac.2023.127045] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [What about the content of this article? (0)] [Affiliation(s)] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2023] [Revised: 09/15/2023] [Accepted: 09/21/2023] [Indexed: 10/02/2023]
Abstract
This study aims to address the issue of environmental pollution caused by non-biodegradable petroleum-based food packaging by exploring the application of biodegradable films. Film casting was employed to fabricate food packaging films from chitosan (CS) and polyvinyl alcohol (PVA) polymers blended with moringa extract (MoE) and various concentrations of magnesium oxide nanoparticles (MgO NPs). The films were characterized through multiple techniques, including UV spectroscopy, Thermogravimetric Analysis (TGA), Differential Scanning Calorimetry (DSC), Scanning Electron Microscopy (SEM), Energy-Dispersive X-ray Spectroscopy (EDX), X-ray Diffraction (XRD), and Fourier-transform Infrared Spectroscopy (FTIR). The study investigated the physicomechanical properties, water solubility, water vapor transmission rate, oxygen permeability, migration test, biodegradability, contact angle, anti-fogging, antibacterial and antifungal activity, and application of the films for food packaging. The results showed that blending CS/PVA films with MoE and MgO NPs significantly improved their mechanical properties. The highest tensile strength of 98 MPa was observed in the CPMMgO-0.5 film. The solubility of the films was low, with CPMMgO-0 and CPMMgO-0.25 demonstrating the lowest solubility as weight decreased by 3.41 % and 3.47 %, respectively. The water vapor transmission rate and oxygen permeability decreased with increasing MgO NP concentrations, with the CPMMgO-0.5 film exhibiting the lowest values. The films also demonstrated good biodegradability, anti-fogging ability, antibacterial and antifungal activity, and low water solubility, enabling bead encapsulation over 14 days in good condition. Moreover, the thermal stability of the films was improved, extending the shelf life of bread. Therefore, the fabricated films provide a promising alternative to non-degradable plastic packaging, which heavily contributes to environmental pollution.
Collapse
Affiliation(s)
- Ebtesam A Mohamad
- Radiology and Medical Imaging Department, College of Applied Medical Sciences, Prince Sattam Bin Abdul-Aziz University, Al-Kharj 11942, Saudi Arabia; Biophysics Department, Faculty of Science, Cairo University, Cairo, Egypt.
| | - Asmaa M Shehata
- Biotechnology/Biomolecular Chemistry Program, Faculty of Science, Cairo University, Cairo, Egypt
| | - Aya M Abobah
- Biotechnology/Biomolecular Chemistry Program, Faculty of Science, Cairo University, Cairo, Egypt
| | - Aya T Kholief
- Biotechnology/Biomolecular Chemistry Program, Faculty of Science, Cairo University, Cairo, Egypt
| | - Manar A Ahmed
- Biotechnology/Biomolecular Chemistry Program, Faculty of Science, Cairo University, Cairo, Egypt
| | - Mariam E Abdelhakeem
- Biotechnology/Biomolecular Chemistry Program, Faculty of Science, Cairo University, Cairo, Egypt
| | - Nour K Dawood
- Biotechnology/Biomolecular Chemistry Program, Faculty of Science, Cairo University, Cairo, Egypt
| | - Haitham S Mohammed
- Biophysics Department, Faculty of Science, Cairo University, Cairo, Egypt
| |
Collapse
|
8
|
Taoka Y, Asmaa Saari R, Kida T, Yamaguchi M, Matsumura K. Enhancing the Mechanical Properties of Poly(vinyl alcohol) Fibers by Lithium Iodide Addition. ACS Omega 2023; 8:32623-32634. [PMID: 37720794 PMCID: PMC10500668 DOI: 10.1021/acsomega.3c03280] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [What about the content of this article? (0)] [Affiliation(s)] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/11/2023] [Accepted: 08/02/2023] [Indexed: 09/19/2023]
Abstract
The effect of lithium iodide (LiI) on the mechanical strength, properties, and molecular orientation of poly(vinyl alcohol) (PVA) fibers spun by wet spinning and then heat-stretched was studied. The stretchability of LiI-PVA fibers was improved, and the rupture during stretching was suppressed compared to PVA fibers. In addition, the tensile strength and elastic modulus of the thermally stretched fibers have been significantly improved. It was also found that the addition of LiI improves the molecular orientation of PVA. This was achieved because LiI reduced the hydrogen bonds between the molecular chains of PVA, resulting in reduced crystallinity. Most of the LiI in the fiber could be removed by a coagulation bath and washing during the spinning process. This means that LiI is eventually removed, and the heat-treatment strengthens the hydrogen bonds, resulting in excellent mechanical strength.
Collapse
Affiliation(s)
- Yusuke Taoka
- School of Materials Science, Japan Advanced Institute of Science and Technology, 1-1 Asahidai, Nomi, Ishikawa 923-1211, Japan
| | - Riza Asmaa Saari
- School of Materials Science, Japan Advanced Institute of Science and Technology, 1-1 Asahidai, Nomi, Ishikawa 923-1211, Japan
| | - Takumitsu Kida
- School of Materials Science, Japan Advanced Institute of Science and Technology, 1-1 Asahidai, Nomi, Ishikawa 923-1211, Japan
| | - Masayuki Yamaguchi
- School of Materials Science, Japan Advanced Institute of Science and Technology, 1-1 Asahidai, Nomi, Ishikawa 923-1211, Japan
| | - Kazuaki Matsumura
- School of Materials Science, Japan Advanced Institute of Science and Technology, 1-1 Asahidai, Nomi, Ishikawa 923-1211, Japan
| |
Collapse
|
9
|
Cao J, Yan H, Ye B, Shen Y, Liu L. Effects of Maillard reaction products on myoglobin-mediated lipid oxidation during refrigerated storage of carp. Food Chem 2023; 434:137465. [PMID: 37716148 DOI: 10.1016/j.foodchem.2023.137465] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [What about the content of this article? (0)] [Affiliation(s)] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2023] [Revised: 08/25/2023] [Accepted: 09/11/2023] [Indexed: 09/18/2023]
Abstract
Lipid oxidation is the major cause of quality deterioration in freshwater fish, especially mediated by myoglobin (Mb). This study aimed to investigate the antioxidant mechanism of Maillard reaction products (MRPs) in Mb-mediated lipid oxidation in common carp (Cyprinus carpio). MRPs exhibited promising antioxidant and antimicrobial capacities based on the reduced content of peroxide and thiobarbituric acid-reactive substances and inhibited microbial growth. MRPs inhibited the oxidation of Mb by lowering the transfer from oxymyoglobin to metmyoglobin and improving the stability of heme iron. The correlation analysis showed that MRPs regulated the formation of free radicals by maintaining the reduced structure of Mb and the integrity of heme iron, and also directly inhibited the formation of oxidation products in a chain radical reaction. The texture and electronic nose analysis indicated that MRPs could delay the structural disruption and flavor deterioration of surimi. Therefore, MRPs could effectively inhibit Mb-induced lipid oxidation and further control the resulting changes in the flavor and texture of surimi.
Collapse
Affiliation(s)
- Jiarong Cao
- College of Food Science, Shenyang Agricultural University, No. 120 Dongling Road, Shenyang, Liaoning 110866, China
| | - Haixia Yan
- College of Food Science, Shenyang Agricultural University, No. 120 Dongling Road, Shenyang, Liaoning 110866, China
| | - Bo Ye
- College of Food Science, Shenyang Agricultural University, No. 120 Dongling Road, Shenyang, Liaoning 110866, China; Liaoning Modern Agricultural Engineering Center, Changjiang North Street No. 39, Shenyang, Liaoning 110031, China
| | - Yixiao Shen
- College of Food Science, Shenyang Agricultural University, No. 120 Dongling Road, Shenyang, Liaoning 110866, China
| | - Ling Liu
- College of Food Science, Shenyang Agricultural University, No. 120 Dongling Road, Shenyang, Liaoning 110866, China.
| |
Collapse
|
10
|
Li Z, Qu J, Qian L, Li Y, Liu J, Yao X, Zhang S, Valentin N, Song W. Multifunctional composite films based on polyvinyl alcohol, quaternary ammonium salt modified cellulose nanofibers and tannic acid-iron ion coordination complexes for food packaging. Int J Biol Macromol 2023; 253:126857. [PMID: 37703973 DOI: 10.1016/j.ijbiomac.2023.126857] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [What about the content of this article? (0)] [Affiliation(s)] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2023] [Revised: 06/06/2023] [Accepted: 09/09/2023] [Indexed: 09/15/2023]
Abstract
The development of sustainable and well-performing food packaging materials takes on critical significance, whereas it is still challenging. To overcome the shortcomings of polyvinyl alcohol (PVA) as a degradable packaging material, in this work, hydrophobic quaternary ammonium salt (QAS) modified cellulose nanofibers (CNF) and tannic acid‑iron ion coordination complexes (TA-Fe) were adopted for the preparation of functional PVA films. The modified CNF (CNF-QAS) not only improved the mechanical properties and water resistance of PVA, but also endowed it with antibacterial ability. In addition, the synergistic antibacterial capability with CNF-QAS was achieved using TA-Fe with photothermal therapy. As a result, the modulus, elongation at break, tensile strength, and water contact angle of the prepared PVA films were examined as 88 MPa, 200 %, 11.7 MPa, and 94.8°, respectively. Furthermore, with the assistance of CNF-QAS and TA-Fe, the films inhibited the growth of E. coli and S. aureus by 99.8 % and 99.7 %, respectively, and they exhibited high cell viability of 90.5 % for L929 fibroblasts. Based on the above encouraging properties, the functional PVA films could significantly extend the shelf life of oranges for over two weeks, proving the excellent application prospects in the food packaging field.
Collapse
Affiliation(s)
- Zhiqiang Li
- College of Bioresources Chemical and Materials Engineering, Shaanxi University of Science and Technology, Xi'an 710021, China
| | - Jiahui Qu
- College of Bioresources Chemical and Materials Engineering, Shaanxi University of Science and Technology, Xi'an 710021, China
| | - Liwei Qian
- College of Bioresources Chemical and Materials Engineering, Shaanxi University of Science and Technology, Xi'an 710021, China.
| | - Yan Li
- National Local Joint Engineering Research Center for Precision Surgery & Regenerative Medicine, First Affiliated Hospital of Xi'an Jiaotong University, Xi'an 710061, China
| | - Jingtao Liu
- College of Bioresources Chemical and Materials Engineering, Shaanxi University of Science and Technology, Xi'an 710021, China
| | - Xue Yao
- College of Bioresources Chemical and Materials Engineering, Shaanxi University of Science and Technology, Xi'an 710021, China
| | - Sufeng Zhang
- College of Bioresources Chemical and Materials Engineering, Shaanxi University of Science and Technology, Xi'an 710021, China.
| | - Nica Valentin
- Department of Physics, "Alexandru Ioan Cuza" University of Iasi, Carol I Blvd. 11, 700506 Iasi, Romania
| | - Wenqi Song
- Xi'an Key Laboratory of Advanced Photo-Electronics Materials and Energy Conversion Device, School of Electronic Information, Xijing University, Xi'an 710123, China.
| |
Collapse
|
11
|
Sudheer S, Bandyopadhyay S, Bhat R. Sustainable polysaccharide and protein hydrogel-based packaging materials for food products: A review. Int J Biol Macromol 2023; 248:125845. [PMID: 37473880 DOI: 10.1016/j.ijbiomac.2023.125845] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [What about the content of this article? (0)] [Affiliation(s)] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2023] [Revised: 06/09/2023] [Accepted: 07/13/2023] [Indexed: 07/22/2023]
Abstract
Sustainable food packaging is a necessary element to ensure the success of a food system, the accomplishment of which is weighed in terms of quality retention and ensured products safety. Irrespective of the raised environmental concerns regarding petroleum-based packaging materials, a sustainable analysis and a lab to land assessment should be a priority to eliminate similar fates of new material. Functionalized bio-based hydrogels are one of the smartest packaging inventions that are expected to revolutionize the food packaging industry. Although in this review, the focus relies on recent developments in the sustainable bio-based hydrogel packaging materials, natural biopolymers such as proteins and polysaccharides from which hydrogels could be obtained, the challenges encountered in hydrogel-based packaging materials and the future prospects of hydrogel-based food packaging materials are also discussed. Moreover, the need for 'Life Cycle Assessment' (LCA), stress on certifications and a sustainable waste management system is also suggested which can bring both food and packaging into the same recycling bins.
Collapse
Affiliation(s)
- Surya Sudheer
- ERA-Chair for Food (By-) Products Valorisation Technologies (VALORTECH), Estonian University of Life Sciences, Fr. R. Kreutzwaldi 1, Tartu 510014, Estonia.
| | - Smarak Bandyopadhyay
- Centre of Polymeric Systems, University Institute, Tomas Bata University in Zlin, Tř. T. Bati 5678, Zlin 76001, Czech Republic
| | - Rajeev Bhat
- ERA-Chair for Food (By-) Products Valorisation Technologies (VALORTECH), Estonian University of Life Sciences, Fr. R. Kreutzwaldi 1, Tartu 510014, Estonia.
| |
Collapse
|
12
|
Yu D, Cheng S, Li Y, Su W, Tan M. Recent advances on natural colorants-based intelligent colorimetric food freshness indicators: fabrication, multifunctional applications and optimization strategies. Crit Rev Food Sci Nutr 2023:1-25. [PMID: 37655606 DOI: 10.1080/10408398.2023.2252904] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [What about the content of this article? (0)] [Affiliation(s)] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/02/2023]
Abstract
With the increasing concerns of food safety and public health, tremendous efforts have been concentrated on the development of effective, reliable, nondestructive methods to evaluate the freshness level of different kinds of food. Natural colorants-based intelligent colorimetric indicators which are typically constructed with natural colorants and polymer matrices has been regarded as an innovative approach to notify the customers and retailers of the food quality during the storage and transportation procedure in real-time. This review briefly elucidates the mechanism of natural colorants used for intelligent colorimetric indicators and fabrication methodologies of natural colorants-based food freshness indicators. Subsequently, their multifunctional applications in intelligent food packaging systems like antioxidant packaging, antimicrobial packaging, biodegradable packaging, UV-blocking packaging and inkless packaging are well introduced. This paper also summarizes several optimizing strategies for the practical application of this advanced technology from different perspectives. Strategies like adopting a hydrophobic matrix, constructing double-layer film and encapsulation have been developed to improve the stability of the indicators. Co-pigmentation, metal ion complexation, pigment-mixing and using substrates with high surface area are proved to be effective to enhance the sensitivity of the indicators. Approaches include multi-index evaluation, machine learning and smartphone-assisted evaluation have been proven to improve the accuracy of the intelligent food freshness indicators. Finally, future research opportunities and challenges are proposed. Based on the fundamental understanding of natural colorants-based intelligent colorimetric food freshness indicators, and the latest research and findings from literature, this review article will help to develop better, lower cost and more reliable food freshness evaluation technique for modern food industry.
Collapse
Affiliation(s)
- Deyang Yu
- Academy of Food Interdisciplinary Science, School of Food Science and Technology, Dalian Polytechnic University, Ganjingzi District, Dalian, China
- State Key Laboratory of Marine Food Processing and Safety Control, Dalian Polytechnic University, Dalian, Liaoning, China
| | - Shasha Cheng
- Academy of Food Interdisciplinary Science, School of Food Science and Technology, Dalian Polytechnic University, Ganjingzi District, Dalian, China
- State Key Laboratory of Marine Food Processing and Safety Control, Dalian Polytechnic University, Dalian, Liaoning, China
| | - Yu Li
- Academy of Food Interdisciplinary Science, School of Food Science and Technology, Dalian Polytechnic University, Ganjingzi District, Dalian, China
- State Key Laboratory of Marine Food Processing and Safety Control, Dalian Polytechnic University, Dalian, Liaoning, China
| | - Wentao Su
- Academy of Food Interdisciplinary Science, School of Food Science and Technology, Dalian Polytechnic University, Ganjingzi District, Dalian, China
- State Key Laboratory of Marine Food Processing and Safety Control, Dalian Polytechnic University, Dalian, Liaoning, China
| | - Mingqian Tan
- Academy of Food Interdisciplinary Science, School of Food Science and Technology, Dalian Polytechnic University, Ganjingzi District, Dalian, China
- State Key Laboratory of Marine Food Processing and Safety Control, Dalian Polytechnic University, Dalian, Liaoning, China
| |
Collapse
|
13
|
Tarek H, Cho SS, Hossain MS, Yoo JC. Attenuation of Oxidative Damage via Upregulating Nrf2/HO-1 Signaling Pathway by Protease SH21 with Exerting Anti-Inflammatory and Anticancer Properties In Vitro. Cells 2023; 12:2190. [PMID: 37681922 PMCID: PMC10486937 DOI: 10.3390/cells12172190] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [What about the content of this article? (0)] [Affiliation(s)] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2023] [Revised: 08/26/2023] [Accepted: 08/29/2023] [Indexed: 09/09/2023] Open
Abstract
Oxidative damage and inflammation are among the very significant aspects interrelated with cancer and other degenerative diseases. In this study, we investigated the biological activities of a 25 kDa protease (SH21) that was purified from Bacillus siamensis. SH21 exhibited very powerful antioxidant and reactive oxygen species (ROS) generation inhibition activity in a dose-dependent approach. The mRNA and protein levels of antioxidant enzymes such as superoxide dismutase 1 (SOD1), catalase (CAT), and glutathione peroxidase 1 (GPx-1) were enhanced in the SH21-treated sample. SH21 also increased the transcriptional and translational activities of NF-E2-related factor 2 (Nrf2) with the subsequent development of detoxifying enzyme heme oxygenase-1 (HO-1). In addition, SH21 showed potential anti-inflammatory activity via inhibition of nitric oxide (NO) and proinflammatory cytokines, such as TNF-α, IL-6, and IL-1β, production in lipopolysaccharide (LPS)-stimulated RAW 264.7 cells. At concentrations of 60, 80, and 100 μg/mL, SH21 potentially suppressed nitric oxide synthase (iNOS) and cytokine gene expressions. Furthermore, SH21 significantly released lactate dehydrogenase (LDH) enzyme in cancer cell supernatant in a concentration-dependent manner and showed strong activity against three tested cancer cell lines, including HL-60, A549, and Hela. Our results suggest that SH21 has effective antioxidant, anti-inflammatory, and anticancer effects and could be an excellent therapeutic agent against inflammation-related diseases.
Collapse
Affiliation(s)
- Hasan Tarek
- Department of Pharmacy, College of Pharmacy, Chosun University, Gwangju 61452, Republic of Korea;
| | - Seung Sik Cho
- Department of Pharmacy, College of Pharmacy, Mokpo National University, Muan 58554, Republic of Korea;
- Department of Biomedicine, Health & Life Convergence Sciences, BK21 Four, Biomedical and Healthcare Research Institute, Mokpo National University, Muan 58554, Republic of Korea
| | - Md. Selim Hossain
- Department of Biomedical Sciences, Chosun University, Gwangju 61452, Republic of Korea;
| | - Jin Cheol Yoo
- Department of Pharmacy, College of Pharmacy, Chosun University, Gwangju 61452, Republic of Korea;
| |
Collapse
|
14
|
Huang X, Song J, Xu F, Yun D, Li C, Liu J. Characterization and Application of Guar Gum/Polyvinyl Alcohol-Based Food Packaging Films Containing Betacyanins from Pokeweed ( Phytolacca acinosa Roxb.) Berries and Silver Nanoparticles. Molecules 2023; 28:6243. [PMID: 37687072 PMCID: PMC10489142 DOI: 10.3390/molecules28176243] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [What about the content of this article? (0)] [Affiliation(s)] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2023] [Revised: 08/14/2023] [Accepted: 08/23/2023] [Indexed: 09/10/2023] Open
Abstract
Food packaging films were prepared by using guar gum/polyvinyl alcohol (GP) as the film matrix, 2% Ag nanoparticles (AgNPs) as reinforcing filler and antimicrobial agent, and 1%, 2% and 3% pokeweed betacyanins (PB) as the colorant and antioxidant agent. The structures and color-changing, barrier, mechanical, thermal and antioxidant/antibacterial properties of different films were measured. The results show that the PB were pH-sensitive pigments with pink, purple and yellow colors at pH 3-8, pH 9-11 and pH 12, respectively. PB improved the compatibility of guar gum and polyvinyl alcohol through hydrogen bonds. The films with PB showed a color-changing capacity under ammonia vapor and good color stability in chilled storage. AgNPs and PB elevated the barrier capacity of GP film to light, water vapor and oxygen gas. Meanwhile, AgNPs and PB improved the stiffness, thermal stability and antioxidant/antibacterial activity of GP film. The film with AgNPs and 3% PB showed the highest barrier capacity, stiffness, thermal stability and antioxidant/antimicrobial activity. In shrimp spoilage test, the films with AgNPs and 2% and 3% PB indicated shrimp freshness through film color changes. The results reveal the potential use of the prepared films in active and smart packaging.
Collapse
Affiliation(s)
- Xiaoqian Huang
- College of Food Science and Engineering, Yangzhou University, Yangzhou 225127, China; (X.H.); (F.X.); (D.Y.); (C.L.)
| | - Jiangfeng Song
- Institute of Farm Product Processing, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, China;
| | - Fengfeng Xu
- College of Food Science and Engineering, Yangzhou University, Yangzhou 225127, China; (X.H.); (F.X.); (D.Y.); (C.L.)
| | - Dawei Yun
- College of Food Science and Engineering, Yangzhou University, Yangzhou 225127, China; (X.H.); (F.X.); (D.Y.); (C.L.)
| | - Chenchen Li
- College of Food Science and Engineering, Yangzhou University, Yangzhou 225127, China; (X.H.); (F.X.); (D.Y.); (C.L.)
| | - Jun Liu
- College of Food Science and Engineering, Yangzhou University, Yangzhou 225127, China; (X.H.); (F.X.); (D.Y.); (C.L.)
| |
Collapse
|
15
|
Rezaei F, Tajik H, Shahbazi Y. Intelligent double-layer polymers based on carboxymethyl cellulose-cellulose nanocrystals film and poly(lactic acid)-Viola odorata petal anthocyanins nanofibers to monitor food freshness. Int J Biol Macromol 2023; 252:126512. [PMID: 37633548 DOI: 10.1016/j.ijbiomac.2023.126512] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [What about the content of this article? (0)] [Affiliation(s)] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2023] [Revised: 06/14/2023] [Accepted: 08/23/2023] [Indexed: 08/28/2023]
Abstract
The present study was conducted with the aim of fabricating smart bilayer polymers based on carboxymethyl cellulose-cellulose nanocrystals film and poly(lactic acid)-Viola odorata extract nanofibers (CMC-CNC and PLA-VOE) for freshness monitoring of Pacific white shrimps, minced lamb meat, chicken fillets, and rainbow trout fillets, during refrigerated storage conditions. The fabricated indicators based on CMC-PLA-VOE 5%, CMC-CNC 1%-PLA-VOE 5%, and CMC-CNC 3%-PLA-VOE 5% presented remarkable color changes in pH 1-12 buffer solutions, including red at pH 1-6, violet at pH 7-8, green at pH 9-10, and brown at pH 11-12. Significantly lower water vapor permeability and oxygen transmission rate of prepared polymers were found in comparison with the control groups (P < 0.05). Regarding the monitoring of food samples in real-time, the samples spoiled after 3 days, evidenced by total viable count, psychrotrophic bacterial count, total volatile basic nitrogen, and pH values of 7.17-7.54 log CFU/g, 5.68-6.23 log CFU/g, 25.14-28.12 mg N/100 g, and 7.10-7.66, respectively. Meanwhile, the noticeable color change of prepared indicators from white to violet (day 3) and finally dark violet (day 7) was observed, indicating a potential application in intelligent packaging for real-time control of the freshness of perishable food samples.
Collapse
Affiliation(s)
- Fatemeh Rezaei
- Department of Food Hygiene and Quality Control, Faculty of Veterinary Medicine, Urmia University, Urmia, Iran
| | - Hossein Tajik
- Department of Food Hygiene and Quality Control, Faculty of Veterinary Medicine, Urmia University, Urmia, Iran
| | - Yasser Shahbazi
- Department of Food Hygiene, Faculty of Veterinary Medicine, Razi University, Kermanshah, Iran.
| |
Collapse
|
16
|
Sul Y, Ezati P, Rhim JW. Preparation of chitosan/gelatin-based functional films integrated with carbon dots from banana peel for active packaging application. Int J Biol Macromol 2023; 246:125600. [PMID: 37390998 DOI: 10.1016/j.ijbiomac.2023.125600] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [What about the content of this article? (0)] [Affiliation(s)] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2023] [Revised: 06/25/2023] [Accepted: 06/26/2023] [Indexed: 07/02/2023]
Abstract
Carbon dots (CDs) were manufactured with banana peels using a hydrothermal method (200 °C for 6 h). The synthesized CDs were spherical particles with a size of 1-3 nm having carboxyl groups and amine groups on the surface. CDs have been impregnated into chitosan/gelatin films to synthesize multifunctional packaging films. The composite film showed a slight decrease in transparency but a significant increase in UV protection properties. The fabricated film displayed strong antioxidant efficacy showing >74 % DPPH and 99 % ABTS radical scavenging potential. The film also unveiled substantial antibacterial activity against the foodborne pathogenic bacteria, Listeria monocytogenes, fully eliminating the growth of these bacteria within 6 h of exposure. The chitosan/gelatin film containing CD was used for minced meat packaging, and the film delayed bacterial growth (< 1 Log CFU/g after 24 h) and maintained the meat color even after 24 h of storage at 20 °C. The CD-added chitosan/gelatin functional film has a high probability of application in active food packaging, especially for extending the shelf life of packaged meat and maintaining its aesthetic quality.
Collapse
Affiliation(s)
- Yoonjung Sul
- BioNanocomposite Research Center, Department of Food and Nutrition, Kyung Hee University, 26 Kyungheedae-ro, Dongdaemun-gu, Seoul 02447, Republic of Korea
| | - Parya Ezati
- BioNanocomposite Research Center, Department of Food and Nutrition, Kyung Hee University, 26 Kyungheedae-ro, Dongdaemun-gu, Seoul 02447, Republic of Korea; Department of Food Hygiene and Quality Control, Faculty of Veterinary Medicine, Urmia University, 1177 Urmia, Iran
| | - Jong-Whan Rhim
- BioNanocomposite Research Center, Department of Food and Nutrition, Kyung Hee University, 26 Kyungheedae-ro, Dongdaemun-gu, Seoul 02447, Republic of Korea.
| |
Collapse
|
17
|
Radhalakshmi V, Raman M, Joy MR. Development of active packaging film based on poly (lactic acid) incorporated with Piper betel leaf ethanolic extract and its application in the shelf-life extension of tuna meat. Int J Biol Macromol 2023; 246:125751. [PMID: 37429339 DOI: 10.1016/j.ijbiomac.2023.125751] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [What about the content of this article? (0)] [Affiliation(s)] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2023] [Revised: 06/23/2023] [Accepted: 07/07/2023] [Indexed: 07/12/2023]
Abstract
Active packaging films based on poly (lactic acid) (PLA) were developed by adding different concentrations (5 wt% and 10 wt%) of betel leaf (Piper betel) ethanolic extract (BLEE). The extract showed excellent antioxidant (80.2 %) and antimicrobial properties (18.05 and 16.05 mm against S. aureus and E. coli respectively). The films' structural, functional, and mechanical attributes were studied, along with their potential for extending the shelf life of tuna meat. The water solubility and water permeability were reduced with the incorporation of BLEE; while the tensile strength showed an inverse relationship with the concentration, 214.5 kg/cm2 (5 wt%), and to 307.6 kg/cm2 (10 wt%). The lipid oxidation in PLA-BLEE-packed tuna meat stored under refrigeration (7 days) showed a significant reduction, which could be attributed to the phenolic migration from the films. The new PLA-BLEE films with significant antibacterial and film attributes could be used in food packaging and to extend the shelf life of commodities that have been packaged.
Collapse
Affiliation(s)
- V Radhalakshmi
- Department of Food Science and Technology, Faculty of Ocean Science and Technology (FOST), Kerala University of Fisheries and Ocean Studies (KUFOS), Panangad, Kochi, Kerala, India
| | - Maya Raman
- Department of Food Science and Technology, Faculty of Ocean Science and Technology (FOST), Kerala University of Fisheries and Ocean Studies (KUFOS), Panangad, Kochi, Kerala, India.
| | - Minnu Rose Joy
- Department of Food Science and Technology, Faculty of Ocean Science and Technology (FOST), Kerala University of Fisheries and Ocean Studies (KUFOS), Panangad, Kochi, Kerala, India
| |
Collapse
|
18
|
Cejudo C, Ferreiro M, Romera I, Casas L, Mantell C. Functional, Physical, and Volatile Characterization of Chitosan/Starch Food Films Functionalized with Mango Leaf Extract. Foods 2023; 12:2977. [PMID: 37569246 PMCID: PMC10418412 DOI: 10.3390/foods12152977] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [What about the content of this article? (0)] [Affiliation(s)] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2023] [Revised: 08/03/2023] [Accepted: 08/06/2023] [Indexed: 08/13/2023] Open
Abstract
Active packaging is one of the currently thriving methods to preserve highly perishable foods. Nonetheless, the integration of active substances into the formulation of the packaging may alter their properties-particularly mass transfer properties-and therefore, the active compounds acting. Different formulations of chitosan (CH), starch (ST), and their blends (CH-ST), with the addition of mango leaf extract (MLE) have been polymerized by casting to evaluate their food preservation efficiency. A CH-ST blend with 3% MLE using 7.5 mL of the filmogenic solution proved to be the most effective formulation because of its high bioactivity (ca. 80% and 74% of inhibition growth of S. aureus and E. coli, respectively, and 40% antioxidant capacity). The formulation reduced the water solubility and water vapor permeability while increasing UV protection, properties that provide a better preservation of raspberry fruit after 13 days than the control. Moreover, a novel method of Headspace-Gas Chromatography-Ion Mobility Spectrometry to analyze the volatile profiles of the films is employed, to study the potential modification of the food in contact with the active film. These migrated compounds were shown to be closely related to both the mango extract additions and the film's formulation themselves, showing different fingerprints depending on the film.
Collapse
Affiliation(s)
- Cristina Cejudo
- Chemical Engineering and Food Technology Department, Wine and Agrifood Research Institute (IVAGRO), University of Cadiz, Avda. República Saharaui, s/n, 11510 Cadiz, Spain; (C.C.); (I.R.); (C.M.)
| | - Marta Ferreiro
- Analytical Chemistry Department, Wine and Agrifood Research Institute (IVAGRO), University of Cadiz, Avda. República Saharaui, s/n, 11510 Cadiz, Spain
| | - Irene Romera
- Chemical Engineering and Food Technology Department, Wine and Agrifood Research Institute (IVAGRO), University of Cadiz, Avda. República Saharaui, s/n, 11510 Cadiz, Spain; (C.C.); (I.R.); (C.M.)
| | - Lourdes Casas
- Chemical Engineering and Food Technology Department, Wine and Agrifood Research Institute (IVAGRO), University of Cadiz, Avda. República Saharaui, s/n, 11510 Cadiz, Spain; (C.C.); (I.R.); (C.M.)
| | - Casimiro Mantell
- Chemical Engineering and Food Technology Department, Wine and Agrifood Research Institute (IVAGRO), University of Cadiz, Avda. República Saharaui, s/n, 11510 Cadiz, Spain; (C.C.); (I.R.); (C.M.)
| |
Collapse
|
19
|
Basharat Z, Imran M, Fatima N, Sajid MW, Tariq MR, Ali SW, Umer Z, Safdar W, Garti H. Development of chicken tender pops by utilizing pomegranate peel powder. Food Sci Nutr 2023; 11:4530-4546. [PMID: 37576035 PMCID: PMC10420728 DOI: 10.1002/fsn3.3412] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [What about the content of this article? (0)] [Affiliation(s)] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2023] [Revised: 04/17/2023] [Accepted: 04/19/2023] [Indexed: 08/15/2023] Open
Abstract
Pomegranate peel powder (PPP) is a rich source of many bioactive components particularly polyphenols that are interlinked to various technological and functional properties. In the present study, chicken tender pops were developed with incorporation of PPP, and its effect on quality attributes and storage stability of the product were evaluated. The treatments were formulated using 0%, 3%, 6%, and 9% PPP in replacement of chicken. The physicochemical properties, texture profile, instrumental color, sensory attributes, and storage stability were assessed for 21 days at refrigeration temperature, at a regular interval of 7 days. The results indicated that the inclusion of PPP significantly (p < .05) increased the dietary fiber from 0.25% in T0 to 1.45% in T3 at Day 0 and WHC 43.60% ± 0.02 in T0 to 49.36% ± 0.02 in T3 at Day 0, whereas the moisture content significantly reduced from 60.05% ± 0.03 in T0 to 55.08% ± 0.01 in T3 at the start of the study. In addition, the values of TBARS were significantly (p < .05) reduced for treated samples 0.72 mg MDA/Kg in T3 as compared to control 1.17 mg MDA/Kg on the 21st day of storage, whereas a significant increase (p < .05) in TPC from 0.90 mg GAE/g to 3.87 mg GAE/g in T0 to T3 was observed at the start of the study. For TPA, a significant (p < .05) increase was noticed in hardness, chewiness, and gumminess, whereas cohesiveness and springiness showed a non-significant (p > .05) change in treated samples in relation to control, and the instrumental color (L* and a*) decreased significantly. However, pH, crude fiber, fat, ash, and protein content showed non-significant (p > .05) variations over time. The sensory evaluation suggested that chicken tender pops supplemented with 6% PPP (T2) presented high overall acceptability and balanced organoleptic properties. Hence, it can be concluded that PPP can be effectively utilized as a natural fiber source, antioxidant, and antimicrobial agent in novel functional foods.
Collapse
Affiliation(s)
- Zunaira Basharat
- Department of Food SciencesUniversity of the Punjab, Quid‐i‐Azam CampusLahorePakistan
| | - Maryam Imran
- Sharif Medical and Dental College LahoreLahorePakistan
| | | | - Muhammad Wasim Sajid
- Department of BiosciencesCOMSATS University Islamabad, Sahiwal CampusSahiwalPakistan
| | - Muhammad Rizwan Tariq
- Department of Food SciencesUniversity of the Punjab, Quid‐i‐Azam CampusLahorePakistan
| | - Shinawar Waseem Ali
- Department of Food SciencesUniversity of the Punjab, Quid‐i‐Azam CampusLahorePakistan
| | - Zujaja Umer
- Department of Food SciencesUniversity of the Punjab, Quid‐i‐Azam CampusLahorePakistan
| | - Waseem Safdar
- Department of Biological SciencesNational University of Medical SciencesRawalpindiPakistan
| | - Humphrey Garti
- Department of Nutritional SciencesUniversity for Development StudiesTamaleGhana
| |
Collapse
|
20
|
Ranjbar M, Azizi Tabrizzad MH, Asadi G, Ahari H. Investigating the microbial properties of sodium alginate/chitosan edible film containing red beetroot anthocyanin extract for smart packaging in chicken fillet as a pH indicator. Heliyon 2023; 9:e18879. [PMID: 37609408 PMCID: PMC10440462 DOI: 10.1016/j.heliyon.2023.e18879] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [What about the content of this article? (0)] [Affiliation(s)] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2023] [Revised: 07/24/2023] [Accepted: 08/01/2023] [Indexed: 08/24/2023] Open
Abstract
The current trend in the production of smart films involves the use of pH-responsive color indicators derived from natural sources. In line with this trend, the aim of this research is to produce edible films from sodium alginate (A) and chitosan (Ch) incorporating red beet anthocyanin (Ac) extract, and to assess the properties of these films and their use as coatings for chicken fillets. The study employed a factorial design to evaluate the effects of treatments C (control), A25%-ch75% (films consisting of 25% sodium alginate and 75% chitosan), and A25%-ch75%-Ac (films consisting of 25% sodium alginate, 75% chitosan, and red beet anthocyanin). The findings indicate that the inclusion of red beet anthocyanin extract did not result in any discernible differences in the FTIR spectra of the film samples. Analysis of the XRD results revealed that the addition of the extract led to a reduction in the crystal structure of the film. Moreover, SEM results demonstrated that the extract caused alterations in the polymer chains and an increase in the porosity of the film matrix. With regard to the chicken fillet samples coated with the film, over time, there was an increase in microbial analysis (total microorganism count and Staphylococcus aureus coagulase-positive) and chemical properties (pH, peroxide, thiobarbituric acid, and nitrogen compounds) for all samples. However, this trend was significantly lower in the samples coated with the Ac extract (P < 0.05). Texture analysis results revealed that the hardness parameter of all samples decreased over the storage period, while the samples containing the Ac extract demonstrated a significant increase in this parameter (P < 0.05). Additionally, the color changes of the pH sensor corresponded to the anthocyanin structure. Based on the results, the smart film composed of sodium alginate/chitosan incorporating red beet anthocyanin extract has the potential to enhance the quality, prolong the shelf life, and decrease the microbial load of chicken fillet when used as a coating. Furthermore, red beet anthocyanin can serve as a suitable indicator for spoilage changes in packaged food products.
Collapse
Affiliation(s)
- Milad Ranjbar
- Department of Food Science and Technology, Science and Research Branch, Islamic Azad University, Tehran, Iran
| | | | - Gholamhassan Asadi
- Assistant Professor of the Department of Food Science and Technology, Science and Research Branch, Islamic Azad University, Tehran, Iran
| | - Hamed Ahari
- Professor of the Department of Food Science and Technology, Science and Research Branch, Islamic Azad University, Tehran, Iran
| |
Collapse
|
21
|
Sadiq A, Arshad MS, Amjad RB, Munir H, Rohi M, Khalid W, Nadeem MT, Suleria HAR. Impact of gamma irradiation and guava leaf extract on the quality and storage stability of chicken patties. Food Sci Nutr 2023; 11:4485-4501. [PMID: 37576041 PMCID: PMC10420856 DOI: 10.1002/fsn3.3174] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [What about the content of this article? (0)] [Affiliation(s)] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Revised: 11/24/2022] [Accepted: 11/26/2022] [Indexed: 08/15/2023] Open
Abstract
The current investigation was carried out to evaluate the impact of gamma irradiation and guava leaf extract (GLE) on chicken meat patties. The effects of treatments on chicken meat patties were determined by physicochemical, stability (oxidative and microbial), and antioxidant status during different packaging (aerobic and vacuum) at storage intervals (0, 5, and 10 days). The changes in physicochemical parameters of chicken patties were observed on various treatments, storage intervals, and different packaging. The TBARS and POV were found to increase significantly (p < .05) on 2 kGy and with the passage of storage time. The results of microbial load in samples were found to decrease on gamma irradiation with and without GLE. The antioxidant profile in chicken patties was with respect to control. Slight changes were seen in sensory parameters on different treatments at storage intervals. It is concluded that gamma irradiation eliminated the microbes and different concentrations of GLE improve the stability and antioxidant profile of chicken patties.
Collapse
Affiliation(s)
- Anam Sadiq
- Department of Food Science, Faculty of Life SciencesGovernment College UniversityFaisalabadPakistan
| | - Muhammad Sajid Arshad
- Department of Food Science, Faculty of Life SciencesGovernment College UniversityFaisalabadPakistan
| | | | - Haroon Munir
- Department of Food Science, Faculty of Life SciencesGovernment College UniversityFaisalabadPakistan
| | - Madiha Rohi
- Department of Food Science and TechnologyGovernment College Women University FaisalabadFaisalabadPakistan
| | - Waseem Khalid
- University Institute of Food Science and TechnologyThe University of LahoreLahorePakistan
| | - Muhammad Tahir Nadeem
- Department of Food Science, Faculty of Life SciencesGovernment College UniversityFaisalabadPakistan
- Grand Asian University SialkotSialkotPakistan
| | - Hafiz Ansar Rasul Suleria
- School of Agriculture and Food, Faculty of Veterinary and Agricultural SciencesThe University of MelbourneParkvilleVic.Australia
| |
Collapse
|
22
|
Özpak Akkuş Ö, Metin U, Çamlık Z. The effects of pomegranate peel added bread on anthropometric measurements, metabolic and oxidative parameters in individuals with type 2 diabetes: a double-blind, randomized, placebo-controlled study. Nutr Res Pract 2023; 17:698-716. [PMID: 37529273 PMCID: PMC10375327 DOI: 10.4162/nrp.2023.17.4.698] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [What about the content of this article? (0)] [Affiliation(s)] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2022] [Revised: 11/26/2022] [Accepted: 02/08/2023] [Indexed: 08/03/2023] Open
Abstract
BACKGROUND/OBJECTIVES The aim of this study was to evaluate the sensory properties of antioxidant-rich bread made by adding pomegranate peels and their effects on anthropometric measurements and metabolic and oxidative parameters of individuals with type 2 diabetes after consumption. SUBJECTS/METHODS This randomized, double-blind, placebo-controlled study was conducted with 22 individuals aged between 19 and 64 years who had been diagnosed with type 2 diabetes for at least 5 years, used only metformin, did not lose more than 10% of their body weight in the last 6 months, and had a body mass index of ≥ 25.0 kg/m2. While the study group (n = 11) consumed bread containing 500 mg pomegranate peel daily for 8 wk, the control group (n = 11) consumed standard bread. Anthropometric measurements and metabolic and oxidative parameters of individuals were evaluated at the beginning and end of the study. RESULTS Decreases were detected in the waist circumference, waist/hip and waist/height ratios, body fat percentages, blood pressure, and serum insulin, triglyceride, and total cholesterol levels in the individuals in the treatment group, compared with those in the control group (P < 0.05). CONCLUSIONS Pomegranate peel consumption by individuals with type 2 diabetes may have positive effects on anthropometric measurements and glycemic and lipid parameters.
Collapse
Affiliation(s)
- Özlem Özpak Akkuş
- Department of Nutrition and Dietetics, Toros University, Mersin 33140, Turkey
| | - Uğurcan Metin
- Department of Culinary, Toros University, Mersin 33140, Turkey
| | - Zeynep Çamlık
- Department of Nutrition and Dietetic, City Hospital, Mersin 33330, Turkey
| |
Collapse
|
23
|
Guo Q, Yuan Y, He M, Zhang X, Li L, Zhang Y, Li B. Development of a multifunctional food packaging for meat products by incorporating carboxylated cellulose nanocrystal and beetroot extract into sodium alginate films. Food Chem 2023; 415:135799. [PMID: 36868063 DOI: 10.1016/j.foodchem.2023.135799] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [What about the content of this article? (0)] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2022] [Revised: 02/07/2023] [Accepted: 02/24/2023] [Indexed: 03/03/2023]
Abstract
Consumers' pursuit for safe meat products is challenging to develop smart food packaging with proper mechanical properties and multifunctional properties. Therefore, this work attempted to introduce carboxylated cellulose nanocrystal (C-CNC) and beetroot extract (BTE) into sodium alginate (SA) matrix films to enhance their mechanical properties and endow them with antioxidant properties and pH-responsive capacity. The rheological results showed the C-CNC and BTE were consistently dispersed in the SA matrix. The incorporation of C-CNC made the surface and cross-section of the films rough but still dense, thus significantly improving the mechanical properties of the films. The integration of BTE provided antioxidant properties and pH responsiveness without significantly changing the thermal stability of the film. The highest tensile strength (55.74 ± 4.52 MPa) and strongest antioxidant capacities were achieved for the SA-based film with BTE and 10 wt% C-CNC. Additionally, the films possessed higher UV-light barrier properties after incorporating BTE and C-CNC. More notably, the pH-responsive films discolored when TVB-N value exceeded 18.0 mg/100 g during storage of pork at 4 °C and 20 °C, respectively. Therefore, the SA-based film with enhanced mechanical and functional properties has a high potential for quality detection in smart food packaging applications.
Collapse
|
24
|
Li BL, Chen JY, Hu JJ, Fan YW, Ao ZY, Zhang WJ, Lian X, Liang HJ, Li QR, Guan XX, Wu JW, Yuan J, Jiang DX. Three stilbenes from pigeon pea with promising anti-methicillin-resistant Staphylococcus aureus biofilm formation activity. Int Microbiol 2023:10.1007/s10123-023-00413-6. [PMID: 37505307 DOI: 10.1007/s10123-023-00413-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [What about the content of this article? (0)] [Affiliation(s)] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2023] [Revised: 07/17/2023] [Accepted: 07/22/2023] [Indexed: 07/29/2023]
Abstract
Cajaninstilbene acid (CSA), longistylin A (LLA), and longistylin C (LLC) are three characteristic stilbenes isolated from pigeon pea. The objective of this study was to evaluate the antibacterial activity of these stilbenes against Staphylococcus aureus and even methicillin-resistant Staphylococcus aureus (MRSA) and test the possibility of inhibiting biofilm formation. The minimum inhibitory concentrations (MICs) and minimum bactericidal concentrations (MBCs) of these stilbenes were evaluated. And the results showed that LLA was most effective against tested strains with MIC and MBC values of 1.56 μg/mL followed by LLC with MIC and MBC values of 3.12 μg/mL and 6.25 μg/mL as well as CSA with MIC and MBC values of 6.25 μg/mL and 6.25-12.5 μg/mL. Through growth curve and cytotoxicity analysis, the concentrations of these stilbenes were determined to be set at their respective 1/4 MIC in the follow-up research. In an anti-biofilm formation assay, these stilbenes were found to be effectively inhibited bacterial proliferation, biofilm formation, and key gene expressions related to the adhesion and virulence of MRSA. It is the first time that the anti-S. aureus and MRSA activities of the three stilbenes have been systematically reported. Conclusively, these findings provide insight into the anti-MRSA mechanism of stilbenes from pigeon pea, indicating these compounds may be used as antimicrobial agents or additives for food with health functions, and contribute to the development as well as application of pigeon pea in food science.
Collapse
Affiliation(s)
- Bai-Lin Li
- School of Pharmaceutical Science, Guangzhou University of Chinese Medicine, Guangzhou, 510006, P. R. China
- Key Laboratory of South China Agricultural Plant Molecular Analysis and Genetic Improvement, Core Botanical Garden, South China Botanical Garden, Chinese Academy of Sciences, Guangdong Provincial Key Laboratory of Applied Botany, Guangzhou, 510650, P. R. China
| | - Jia-Yan Chen
- School of Pharmaceutical Science, Guangzhou University of Chinese Medicine, Guangzhou, 510006, P. R. China
| | - Juan-Juan Hu
- Laboratory for Functional Foods and Human Health, Center for Excellence in Post-Harvest Technologies, North Carolina Agricultural and Technical State University, Kannapolis, NC, 28081, USA
| | - Yu-Wen Fan
- School of Pharmaceutical Science, Guangzhou University of Chinese Medicine, Guangzhou, 510006, P. R. China
| | - Zhuo-Yi Ao
- School of Pharmaceutical Science, Guangzhou University of Chinese Medicine, Guangzhou, 510006, P. R. China
| | - Wei-Jie Zhang
- School of Pharmaceutical Science, Guangzhou University of Chinese Medicine, Guangzhou, 510006, P. R. China
| | - Xin Lian
- School of Pharmaceutical Science, Guangzhou University of Chinese Medicine, Guangzhou, 510006, P. R. China
| | - Hui-Jun Liang
- School of Pharmaceutical Science, Guangzhou University of Chinese Medicine, Guangzhou, 510006, P. R. China
| | - Qian-Ran Li
- School of Pharmaceutical Science, Guangzhou University of Chinese Medicine, Guangzhou, 510006, P. R. China
| | - Xiao-Xian Guan
- School of Pharmaceutical Science, Guangzhou University of Chinese Medicine, Guangzhou, 510006, P. R. China
| | - Jie-Wei Wu
- School of Pharmaceutical Science, Guangzhou University of Chinese Medicine, Guangzhou, 510006, P. R. China
| | - Jie Yuan
- School of Pharmaceutical Science, Guangzhou University of Chinese Medicine, Guangzhou, 510006, P. R. China.
| | - Dong-Xu Jiang
- School of Pharmaceutical Science, Guangzhou University of Chinese Medicine, Guangzhou, 510006, P. R. China
| |
Collapse
|
25
|
Xu F, Yun D, Huang X, Sun B, Tang C, Liu J. Preparation, Characterization, and Application of pH-Response Color-Changeable Films Based on Pullulan, Cooked Amaranth ( Amaranthus tricolor L.) Juice, and Bergamot Essential Oil. Foods 2023; 12:2779. [PMID: 37509872 PMCID: PMC10379735 DOI: 10.3390/foods12142779] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [What about the content of this article? (0)] [Affiliation(s)] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2023] [Revised: 07/18/2023] [Accepted: 07/20/2023] [Indexed: 07/30/2023] Open
Abstract
Pullulan-based smart packaging films were prepared by mixing cooked amaranth juice and bergamot essential oil. The impact of cooked amaranth juice and bergamot essential oil on the color-changeability, structural characterization, and barrier, antioxidant, mechanical and thermal properties of pullulan-based films was determined. Results showed the cooked amaranth juice contained pH-response color-changing betacyanins. The pullulan films containing cooked amaranth juice were color-changeable in pH 9-12 buffers and in ammonia vapor. The color-changeable property of betacyanins in cooked amaranth juice was unaffected by bergamot essential oils. The inner structure of pullulan films was greatly affected by cooked amaranth juice, forming big and ordered humps in film cross-sections. The crystallinity of pullulan films was improved by the combined addition of cooked amaranth juice and bergamot essential oil. Among the films, the pullulan film containing cooked amaranth juice and 6% bergamot essential oil showed the highest UV-vis light barrier property, antioxidant activity, and tensile strength; while the pullulan film containing cooked amaranth juice and 4% bergamot essential oil showed the highest oxygen barrier property and thermal stability. Moreover, the pullulan films containing cooked amaranth juice were able to monitor the freshness of shrimp by presenting color changes from reddish purple to dark red.
Collapse
Affiliation(s)
- Fengfeng Xu
- College of Food Science and Engineering, Yangzhou University, Yangzhou 225127, China
| | - Dawei Yun
- College of Food Science and Engineering, Yangzhou University, Yangzhou 225127, China
| | - Xiaoqian Huang
- College of Food Science and Engineering, Yangzhou University, Yangzhou 225127, China
| | - Bixue Sun
- College of Food Science and Engineering, Yangzhou University, Yangzhou 225127, China
| | - Chao Tang
- College of Food Science and Engineering, Yangzhou University, Yangzhou 225127, China
| | - Jun Liu
- College of Food Science and Engineering, Yangzhou University, Yangzhou 225127, China
| |
Collapse
|
26
|
Pažarauskaitė A, Noriega Fernández E, Sone I, Sivertsvik M, Sharmin N. Combined Effect of Citric Acid and Polyphenol-Rich Grape Seed Extract towards Bioactive Smart Food Packaging Systems. Polymers (Basel) 2023; 15:3118. [PMID: 37514506 PMCID: PMC10385157 DOI: 10.3390/polym15143118] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [What about the content of this article? (0)] [Affiliation(s)] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2023] [Revised: 06/29/2023] [Accepted: 07/07/2023] [Indexed: 07/30/2023] Open
Abstract
Alginate films (2% w·v-1) were prepared with varying concentrations (5-20% w/w) of citric acid and aqueous grape seed extract (GSE) filtrate (11.66 ± 1.32 g GAE/L) using the solvent-evaporation method. Crosslinking alginate via ester bonds (FTIR analysis) with citric acid up to 10% (w/w) led to a 33% increase in tensile strength, a 34% reduction in water vapor transmission rate (WVTR), and had no impact on elongation at break. Crosslinking alginate with citric acid in the presence of GSE increased the tensile strength by 17%, decreased WVTR by 21%, and significantly improved DPPH scavenging activity. Moreover, after incubation for 24 h at 37 °C, the film-forming solutions exhibited increased antimicrobial activity, resulting in 0.5- and 2.5-log reductions for Escherichia coli and Staphylococcus aureus, respectively, compared to the values obtained without the addition of GSE. The stronger inhibitory effect observed against Gram-positive bacteria can be attributed to the unique composition and structure of their cell walls, which creates a barrier that restricts the penetration of polyphenols into the cells. The pH adjustment of the GSE film-forming solution from 2.0 to 10.0 shifted the UV/VIS absorption spectra, resulting in a colour change from yellow to red. The findings of this study have showcased the potential of combining GSE and citric acid to enhance the functionality and bioactivity of alginate films for applications in smart food packaging.
Collapse
Affiliation(s)
- Akvilė Pažarauskaitė
- Department of Chemistry, Bioscience and Environmental Engineering, University of Stavanger, Richard Johnsensgate 4, 4021 Stavanger, Norway
| | - Estefanía Noriega Fernández
- Department of Processing Technology, Nofima AS, Richard Johnsensgate 4, 4021 Stavanger, Norway
- European Food Safety Authority, Via Carlo Magno 1A, 43126 Parma, Italy
| | - Izumi Sone
- Department of Processing Technology, Nofima AS, Richard Johnsensgate 4, 4021 Stavanger, Norway
| | - Morten Sivertsvik
- Department of Processing Technology, Nofima AS, Richard Johnsensgate 4, 4021 Stavanger, Norway
| | - Nusrat Sharmin
- Department of Food Safety and Quality, Nofima AS, Osloveien 1, 1430 Ås, Norway
| |
Collapse
|
27
|
Abd El-Ghany WA. A Natural Feed Additive Phytobiotic, Pomegranate ( Punica granatum L.), and the Health Status of Poultry. Macedonian Veterinary Review 2023; 0. [DOI: 10.2478/macvetrev-2023-0022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [What about the content of this article? (0)] [Affiliation(s)] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/01/2023] Open
Abstract
Abstract
The addition of antibiotic growth promotors in poultry diets results in a development of resistant bacterial strains and accumulation of drug residues in the meat and eggs. The new trend in poultry industry is the dietary addition of natural feed additives including phytobiotics. Pomegranate (Punica granatum L.) is a natural cheap feed source that has been extensively used in the livestock production. In poultry production system, pomegranate by-products such as peel powder or extract, seed oil, or juice showed high nutritional values, several health benefits, and good economic profits. Pomegranate displays a growth promoting effect and an enhancement of carcass traits of broilers, along with an improvement of the egg production traits parameters. Moreover, dietary pomegranate by-products showed a potential antioxidant and antimicrobial effects on the treated birds. Modulation of both humeral and cell mediated immune response, hypo-lipidemia, as well as enhancement of liver functions have been proved following dietary treatment with different pomegranate by-products. Therefore, this review article was designed to present the different effects of dietary pomegranate by-products on the production indices of broilers and layers, the antioxidant, antimicrobial, and immune status, as well as the blood parameters.
Collapse
Affiliation(s)
- Wafaa A. Abd El-Ghany
- 1 Poultry Diseases Department, Faculty of Veterinary Medicine , Cairo University , Giza , Egypt
| |
Collapse
|
28
|
Jiang S, Qiao C, Liu R, Liu Q, Xu J, Yao J. Structure and properties of citric acid cross-linked chitosan/poly(vinyl alcohol) composite films for food packaging applications. Carbohydr Polym 2023; 312:120842. [PMID: 37059567 DOI: 10.1016/j.carbpol.2023.120842] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [What about the content of this article? (0)] [Affiliation(s)] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2022] [Revised: 03/14/2023] [Accepted: 03/20/2023] [Indexed: 03/29/2023]
Abstract
In this study, the composite films of poly(vinyl alcohol) and citric acid cross-linked chitosan were prepared, and the effect of mass ratio on their structure and properties was investigated in detail. Chitosan was cross-linked by citric acid via an amidation reaction at an elevated temperature, which was confirmed by infrared spectra and X-ray photoelectron spectra. Chitosan is miscible with PVA due to the formation of strong hydrogen bonds between them. Among these composite films, 1:1 CS/PVA film showed excellent mechanical properties, good creep resistance, and shape recovery ability, attributing to its high crosslinking degree. In addition, this film possessed hydrophobicity, excellent self-adhesion property, and the lowest WVP, and it was successfully used as a packaging material for cherry. These observations indicate that the cooperative effects of crosslinking and hydrogen bonds control the structure and properties of chitosan/PVA composite film, which is a very potential material for food packaging and preservation.
Collapse
Affiliation(s)
- Song Jiang
- School of Materials Science and Engineering, Qilu University of Technology, Shandong Academy of Sciences, Jinan 250353, PR China
| | - Congde Qiao
- School of Materials Science and Engineering, Qilu University of Technology, Shandong Academy of Sciences, Jinan 250353, PR China.
| | - Runpeng Liu
- School of Materials Science and Engineering, Qilu University of Technology, Shandong Academy of Sciences, Jinan 250353, PR China
| | - Qinze Liu
- School of Materials Science and Engineering, Qilu University of Technology, Shandong Academy of Sciences, Jinan 250353, PR China
| | - Jing Xu
- School of Chemistry and Chemical Engineering, Qilu University of Technology, Shandong Academy of Sciences, Jinan 250353, PR China
| | - Jinshui Yao
- School of Materials Science and Engineering, Qilu University of Technology, Shandong Academy of Sciences, Jinan 250353, PR China
| |
Collapse
|
29
|
Ahammed S, Easdani M, Liu F, Zhong F. Encapsulation of Tea Polyphenol in Zein through Complex Coacervation Technique to Control the Release of the Phenolic Compound from Gelatin-Zein Composite Film. Polymers (Basel) 2023; 15:2882. [PMID: 37447526 DOI: 10.3390/polym15132882] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [What about the content of this article? (0)] [Affiliation(s)] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2023] [Revised: 06/25/2023] [Accepted: 06/26/2023] [Indexed: 07/15/2023] Open
Abstract
Green tea polyphenol (TP) was encapsulated in zein and fabricated into a gelatin-zein composite film by complex coacervation. Transglutaminase (TG) crosslinking was employed to obtain a compact structural orientation of the film to prolong the release of bioactive compounds. The encapsulation efficiency of zein and the TP release rate from the composite film were investigated. The retention rate was over 30% and 80% after film fabrication and storage, respectively. Crosslinking decreased the diffusion coefficient by half, thus improving the release of TP from the film. The antioxidant properties were satisfactory after discharge from the film detected by DPPH/ABTS scavenging. The value of crosslinking degree (~60%) and increased molecular weight of the protein were investigated by SDS-PAGE, indicating the compatibility of TP and TG treatment. According to physicomechanical findings, the TG2TP1 film exhibited the best characteristics. Tensile strength and water solubility properties were ameliorated by the TG treatment of TP-encapsulated films compared to the control film. TG and TP-loaded gelatin-zein composite film had better thermal stability than the control film. Moreover, the TP loading reduced the transparency value and improved the light-barrier properties of the film. The films showed significant antimicrobial activities against two food-borne bacteria, including Staphylococcus aureus BCTC13962 and Escherichia coli BCRC10675. The result obtained shows that the encapsulation of TP and TG treatment may be used to fabricate gelatin-zein composite film with controlled release of phenolic compounds for active packaging applications.
Collapse
Affiliation(s)
- Shabbir Ahammed
- Key Laboratory of Synthetic and Biological Colloids, Ministry of Education, Jiangnan University, Wuxi 214122, China
- Science Center for Future Foods, Jiangnan University, Wuxi 214122, China
- School of Food Science and Technology, Jiangnan University, Wuxi 214122, China
- Jiaxing Institute of Future Food, Jiaxing 314050, China
| | - Md Easdani
- Key Laboratory of Synthetic and Biological Colloids, Ministry of Education, Jiangnan University, Wuxi 214122, China
- Science Center for Future Foods, Jiangnan University, Wuxi 214122, China
- School of Food Science and Technology, Jiangnan University, Wuxi 214122, China
- Jiaxing Institute of Future Food, Jiaxing 314050, China
| | - Fei Liu
- Key Laboratory of Synthetic and Biological Colloids, Ministry of Education, Jiangnan University, Wuxi 214122, China
- Science Center for Future Foods, Jiangnan University, Wuxi 214122, China
- School of Food Science and Technology, Jiangnan University, Wuxi 214122, China
- Jiaxing Institute of Future Food, Jiaxing 314050, China
| | - Fang Zhong
- Key Laboratory of Synthetic and Biological Colloids, Ministry of Education, Jiangnan University, Wuxi 214122, China
- Science Center for Future Foods, Jiangnan University, Wuxi 214122, China
- School of Food Science and Technology, Jiangnan University, Wuxi 214122, China
- Jiaxing Institute of Future Food, Jiaxing 314050, China
| |
Collapse
|
30
|
Benedetti G, Zabini F, Tagliavento L, Meneguzzo F, Calderone V, Testai L. An Overview of the Health Benefits, Extraction Methods and Improving the Properties of Pomegranate. Antioxidants (Basel) 2023; 12:1351. [PMID: 37507891 PMCID: PMC10376364 DOI: 10.3390/antiox12071351] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [What about the content of this article? (0)] [Affiliation(s)] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2023] [Revised: 06/24/2023] [Accepted: 06/26/2023] [Indexed: 07/30/2023] Open
|