1
|
Wang H, Han J, Zhang XA. Interplay of m6A RNA methylation and gut microbiota in modulating gut injury. Gut Microbes 2025; 17:2467213. [PMID: 39960310 PMCID: PMC11834532 DOI: 10.1080/19490976.2025.2467213] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/12/2024] [Revised: 12/12/2024] [Accepted: 02/10/2025] [Indexed: 02/20/2025] Open
Abstract
The gut microbiota undergoes continuous variations among individuals and across their lifespan, shaped by diverse factors encompassing diet, age, lifestyle choices, medication intake, and disease states. These microbial inhabitants play a pivotal role in orchestrating physiological metabolic pathways through the production of metabolites like bile acids, choline, short-chain fatty acids, and neurotransmitters, thereby establishing a dynamic "gut-organ axis" with the host. The intricate interplay between the gut microbiota and the host is indispensable for gut health, and RNA N6-methyladenosine modification, a pivotal epigenetic mark on RNA, emerges as a key player in this process. M6A modification, the most prevalent internal modification of eukaryotic RNA, has garnered significant attention in the realm of RNA epigenetics. Recent findings underscore its potential to influence gut microbiota diversity and intestinal barrier function by modulating host gene expression patterns. Conversely, the gut microbiota, through its impact on the epigenetic landscape of host cells, may indirectly regulate the recruitment and activity of RNA m6A-modifying enzymes. This review endeavors to delve into the biological functions of m6A modification and its consequences on intestinal injury and disease pathogenesis, elucidating the partial possible mechanisms by which the gut microbiota and its metabolites maintain host intestinal health and homeostasis. Furthermore, it also explores the intricate crosstalk between them in intestinal injury, offering a novel perspective that deepens our understanding of the mechanisms underlying intestinal diseases.
Collapse
Affiliation(s)
- Haixia Wang
- College of Exercise and Health, Shenyang Sport University, Shenyang, China
| | - Juanjuan Han
- College of Exercise and Health, Shenyang Sport University, Shenyang, China
| | - Xin-An Zhang
- College of Exercise and Health, Shenyang Sport University, Shenyang, China
| |
Collapse
|
2
|
da Silva LA, de Camargo BR, Fisch AAFMS, Santos B, Ardisson-Araújo DMP, Ribeiro BM. Identification and detection of known and new viruses in larvae of laboratory-reared fall armyworm, Spodoptera frugiperda. J Invertebr Pathol 2025; 210:108290. [PMID: 39978754 DOI: 10.1016/j.jip.2025.108290] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2024] [Revised: 02/05/2025] [Accepted: 02/17/2025] [Indexed: 02/22/2025]
Abstract
The fall armyworm (FAW), Spodoptera frugiperda, is a significant pest that causes economic losses worldwide. Many companies and research centers rear FAW to produce their microbiological-based products, such as viruses that target FAW. Nevertheless, colonies are vulnerable to collapsing, mainly due to uncontrolled and unexpected viral infections. In this work, dead FAWs exhibiting signs of viral infection were collected from unsuccessful attempts to propagate a baculovirus at a baculovirus production facility in Brazil. Total RNA was extracted and used to construct a cDNA library that was sequenced. The results showed the presence of five viruses, including three RNA viruses (alphanodavirus, rhabdovirus, and iflavirus) and two DNA viruses (densovirus and alphabaculovirus). To confirm the presence of the identified viruses in laboratory-reared FAWs, ten individual larvae from four accredited laboratories in Brazil were analyzed by RT-PCR with specific primers for each virus identified by sequencing, except the alphabaculovirus. Alphanodavirus and rhabdovirus were not detected in any of the four tested colonies, whereas the iflavirus was detected in two laboratories. A putative new densovirus was found in all samples. Accurate identification and timely detection of viruses that could disrupt the health of laboratory-reared insect colonies are crucial to ensure the production of high-quality biological products.
Collapse
Affiliation(s)
- Leonardo A da Silva
- Department of Cell Biology, Institute of Biological Sciences, University of Brasilia, Brasilia, DF, Brazil.
| | - Brenda R de Camargo
- Department of Cell Biology, Institute of Biological Sciences, University of Brasilia, Brasilia, DF, Brazil
| | - Andrews A F M S Fisch
- Department of Cell Biology, Institute of Biological Sciences, University of Brasilia, Brasilia, DF, Brazil
| | - Bráulio Santos
- Bosquiroli e Santos Ltda, Highway Pr-182, Km 320/321, 0, Km 320/321 Annex Biopark Bloc 02 Condominium Industrial Jardim Porto Alegre, 85906-300 Toledo, PR, Brazil
| | - Daniel M P Ardisson-Araújo
- Department of Cell Biology, Institute of Biological Sciences, University of Brasilia, Brasilia, DF, Brazil
| | - Bergmann M Ribeiro
- Department of Cell Biology, Institute of Biological Sciences, University of Brasilia, Brasilia, DF, Brazil.
| |
Collapse
|
3
|
Afrin MR, Upadhyaya PG, Hashim A, Bhattacharya K, Chanu NR, Das D, Khanal P, Deka S. Advanced biomarkers: Beyond amyloid and tau: Emerging non-traditional biomarkers for alzheimer`s diagnosis and progression. Ageing Res Rev 2025; 108:102736. [PMID: 40122399 DOI: 10.1016/j.arr.2025.102736] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2025] [Revised: 03/07/2025] [Accepted: 03/17/2025] [Indexed: 03/25/2025]
Abstract
Alzheimer's disease (AD) is the most common neurodegenerative disorder that leads to progressive cognitive decline and imposes a significant socio-economic burden. Traditional diagnostic methods, primarily based on amyloid-beta (Aβ) and tau biomarkers, often identify the disease at late stages, highlighting the need for more sensitive and accessible early detection tools. This review explores emerging non-traditional biomarkers, including salivary, lipid, urinary, synaptic, blood-based, microRNA (miRNA), cerebrospinal fluid (CSF), fecal, and inflammatory markers, which provide deeper insights into AD pathophysiology. These biomarkers reflect key pathological processes such as neuroinflammation, mitochondrial dysfunction, oxidative stress, synaptic damage, lipid dysregulation, and genetic factors. Non-invasive biomarkers, such as those found in saliva and urine, present promising avenues for large-scale screening, while advanced blood-based markers like neurofilament light chain (NfL) and glial fibrillary acidic protein (GFAP) offer precise monitoring of neurodegeneration and inflammation. Additionally, miRNAs and lipid biomarkers shed light on molecular alterations in neuronal health and signaling. Integrating these biomarkers with imaging techniques, proteomics, and genetic profiling enhances diagnostic accuracy and enables personalized treatment approaches. This shift toward multi-dimensional biomarker assessment not only improves early detection but also aids in tailoring therapeutic strategies to individual disease profiles. By reviewing recent advancements, this article highlights the transformative potential of emerging biomarkers in overcoming the limitations of conventional diagnostics. Standardization and validation across diverse populations will be crucial in expanding their clinical applicability, ultimately improving disease management, reducing societal burden, and enhancing the quality of life for individuals affected by AD.
Collapse
Affiliation(s)
- Meher Rijwana Afrin
- Pratiksha Institute of Pharmaceutical Sciences, Guwahati, Assam 781026, India
| | | | - Abdul Hashim
- Pratiksha Institute of Pharmaceutical Sciences, Guwahati, Assam 781026, India
| | - Kunal Bhattacharya
- Pratiksha Institute of Pharmaceutical Sciences, Guwahati, Assam 781026, India; Royal School of Pharmacy, The Assam Royal Global University, Guwahati, Assam 781035, India.
| | - Nongmaithem Randhoni Chanu
- Pratiksha Institute of Pharmaceutical Sciences, Guwahati, Assam 781026, India; Faculty of Pharmaceutical Science, Assam down town University, Sankar Madhab Path, Gandhinagar, Panikhaiti, Guwahati, Assam PIN - 781026, India
| | - Dibyajyoti Das
- Pratiksha Institute of Pharmaceutical Sciences, Guwahati, Assam 781026, India; Department of Pharmaceutical Sciences, Dibrugarh University, Dibrugarh, Assam 786004, India
| | - Pukar Khanal
- KLE College of Pharmacy Belagavi, KLE Academy of Higher Education and Research. (KAHER), Belagavi 590010, India.
| | - Satyendra Deka
- Pratiksha Institute of Pharmaceutical Sciences, Guwahati, Assam 781026, India
| |
Collapse
|
4
|
Emami A, Mahdavi Sharif P, Rezaei N. KRAS mutations in colorectal cancer: impacts on tumor microenvironment and therapeutic implications. Expert Opin Ther Targets 2025:1-23. [PMID: 40320681 DOI: 10.1080/14728222.2025.2500426] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2025] [Accepted: 04/24/2025] [Indexed: 05/08/2025]
Abstract
INTRODUCTION Despite decreasing trends in incidence, colorectal cancer (CRC) is still a major contributor to malignancy-related morbidities and mortalities. Groundbreaking advances in immunotherapies and targeted therapies benefit a subset of CRC patients, with sub-optimal outcomes. Hence, there is an unmet need to design and manufacture novel therapies, especially for advanced/metastatic disease. KRAS, the most highly mutated proto-oncogene across human malignancies, particularly in pancreatic adenocarcinoma, non-small cell lung cancer, and CRC, is an on-off switch and governs several fundamental cell signaling cascades. KRAS mutations not only propel the progression and metastasis of CRC but also critically modulate responses to targeted therapies. AREAS COVERED We discuss the impacts of KRAS mutations on the CRC's tumor microenvironment and describe novel strategies for targeting KRAS and its associated signaling cascades and mechanisms of drug resistance. EXPERT OPINION Drug development against KRAS mutations has been challenging, mainly due to structural properties (offering no appropriate binding site for small molecules), critical functions of the wild-type KRAS in non-cancerous cells, and the complex network of its downstream effector pathways (allowing malignant cells to develop resistance). Pre-clinical and early clinical data offer promises for combining KRAS inhibitors with immunotherapies and targeted therapies.
Collapse
Affiliation(s)
- Anita Emami
- Tehran University of Medical Sciences, Tehran, Iran
| | | | - Nima Rezaei
- Tehran University of Medical Sciences, Tehran, Iran
- Research Center for Immunodeficiencies, Children's Medical Center, Tehran University of Medical Sciences, Tehran, Iran
- Department of Immunology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
5
|
Qiu Z, Li J, Tian M. Identification of oxidative stress-related subgroups and signature genes for the prediction of prognosis and immune microenvironment in thyroid cancer. Mol Genet Genomics 2025; 300:46. [PMID: 40304806 PMCID: PMC12043743 DOI: 10.1007/s00438-025-02252-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2024] [Accepted: 04/17/2025] [Indexed: 05/02/2025]
Abstract
Oxidative stress plays a crucial role in cancer progression and tumor immune microenvironment (TIME) modulation. However, its impact on thyroid cancer (THCA) subtypes and prognosis remains unclear. This study aimed to identify oxidative stress-related subgroups and construct a prognostic gene signature to enhance personalized treatment strategies in THCA. Using consensus clustering analysis, we categorized TCGA-THCA patients into two subgroups based on oxidative stress-related genes (OSRGs) expression. Cluster 1 had a poorer prognosis, higher BRAF mutation rates, and a suppressive TIME with fewer CD8 T cells. Kaplan-Meier survival analysis confirmed these findings. Six key OSRGs (BMI1, CDK5, IL1RN, PDP1, TP53, UCN) that significantly predicted THCA prognosis were identified. A risk model based on these genes accurately stratified patients into high and low-risk groups, with the high-risk group showing significantly worse outcomes. The model's predictive performance was validated by ROC analysis. Nomogram revealed that higher OSRG-related risk score indicated lower survival probability in THCA patients. In vitro validation confirmed the high expression of six OSRGs in THCA cells and tissues, with most being associated with the Wnt signaling pathway. Additionally, IL1RN knockdown significantly inhibited THCA cell malignant characteristics and reduced ROS generation. This study provided a novel oxidative stress-related classification system for THCA, highlighting key signature genes with prognostic and therapeutic relevance. These results may guide future research on oxidative stress-targeted therapies and immune modulation in THCA.
Collapse
Affiliation(s)
- Zhenwei Qiu
- Breast and Thyroid Surgery, Yidu Central Hospital of Weifang, No. 5168 Jiangjunshan Road, Qingzhou, Shandong, 262500, China.
| | - Jing Li
- Breast and Thyroid Surgery, Yidu Central Hospital of Weifang, No. 5168 Jiangjunshan Road, Qingzhou, Shandong, 262500, China
| | - Mei Tian
- Breast and Thyroid Surgery, Yidu Central Hospital of Weifang, No. 5168 Jiangjunshan Road, Qingzhou, Shandong, 262500, China
| |
Collapse
|
6
|
Zhang JW, Gao XL, Wang J, Fan XL, Liang QW. Comprehensive analysis illustrating the role of HOXB8 in head and neck squamous cell carcinoma: evidence from multi-omics analysis and experiments validation. BMC Cancer 2025; 25:804. [PMID: 40307753 PMCID: PMC12042558 DOI: 10.1186/s12885-025-14205-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2023] [Accepted: 04/23/2025] [Indexed: 05/02/2025] Open
Abstract
BACKGROUND HOXB8 is implicated in various cancers. However, the effect pattern of HOXB8 in head and neck squamous cell carcinoma (HNSCC) remains unclear. METHODS Open-access transcriptional profiles, clinical information, and mutational data were downloaded from the Cancer Genome Atlas database. R software was used for all analysis based on public data through specific R packages. Western blot and real-time quantitative PCR was used to detect the protein and RNA level of HOXB8, respectively. In vivo and in vitro experiments were conducted to explore the effect of HOXB8 on HNSCC cells. RESULTS Here, we discovered that HOXB8 was upregulated in HNSCC tissue and associated with worse clinical outcomes (clinical stage and prognosis). Results indicated that HOXB8 was primarily distributed in the nucleoplasm. Results of cell lines indicated that HOXB8 is upregulated in HNSCC cells. Further experiments, both in vitro and in vivo, revealed that the suppression of HOXB8 can markedly curb the proliferation, invasion, and migration capabilities of HNSCC cells. Results of biological enrichment and western blot indicated that HOXB8 can regulate the PI3K/AKT/mTOR and EMT pathways. It also came to our attention that HOXB8 could modulate the tumor microenvironment in HNSCC. We observed that patients with high HOXB8 expression had lower infiltration levels of CD8 + T cells but higher infiltration levels of M2 macrophages. Finally, we developed a prognostic model based on molecules derived from HOXB8 (ADD2, SYT1, PXYLP1, MRPL33). CONCLUSIONS Our study contributes to the existing knowledge on HOXB8 in HNSCC, which may inform future research directions.
Collapse
Affiliation(s)
- Jun-Wei Zhang
- Longgang Center Hospital, the ninth people's hospital of shenzhen, Shenzhen, China
| | - Xi-Lin Gao
- Longgang Center Hospital, the ninth people's hospital of shenzhen, Shenzhen, China
| | - Jing Wang
- Longgang Center Hospital, the ninth people's hospital of shenzhen, Shenzhen, China
| | - Xue-Li Fan
- Longgang Center Hospital, the ninth people's hospital of shenzhen, Shenzhen, China
| | - Qi-Wei Liang
- Longgang Center Hospital, the ninth people's hospital of shenzhen, Shenzhen, China.
| |
Collapse
|
7
|
Liang H, Wang Y, Li J, Zhang K. Crotonylation deficiency of S100A7 K49 promotes psoriatic keratinocyte proliferation through enhanced interaction with RAGE. Sci Rep 2025; 15:14678. [PMID: 40287453 PMCID: PMC12033245 DOI: 10.1038/s41598-025-96874-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2025] [Accepted: 04/01/2025] [Indexed: 04/29/2025] Open
Abstract
Psoriasis is a chronic inflammatory dermatosis characterized by the hyperproliferative of keratinocytes. S100A7 plays a pivotal role in the pathogenesis of psoriasis. Lysine crotonylation of proteins is a newly identified modification that impacts diverse biological processes and its dysregulation has been implicated in autoimmune diseases. To investigate the profile of lysine crotonylation and its pathogenic role in psoriasis, we conducted a comparative analysis of crotonylation-modified proteins in psoriatic lesions versus healthy controls. Mutant keratinocytes with crotonylation deficiency of S100A7 were generated to explore its functional effects in psoriasis. Our omic analysis revealed a unique lysine crotonylation profile in psoriatic lesions, with a notable downregulation of crotonylation at lysine 49 (K49) of S100A7. In vitro studies demonstrated that S100A7-K49A crotonylation deficiency exhibited enhanced cell viability, augmented glycolytic metabolism, and upregulated expression of key metabolic enzymes. Furthermore, co-immunoprecipitation assays demonstrated that the K49 crotonylation-deficient form of S100A7 strengthens its interaction with RAGE, leading to enhanced phosphorylation of AKT and mTOR. Our findings suggest that S100A7 K49 crotonylation deficiency plays a pivotal role in promoting keratinocytes proliferation and metabolic reprogramming in psoriasis, and targeting abnormal S100A7 crotonylation as a potential therapeutic strategy for intervention in psoriasis-related pathologies.
Collapse
Affiliation(s)
- Huifang Liang
- ShanXi Key Laboratory of Stem Cells for Immunological Dermatosis, State Key Breeding Laboratory of Stem Cells for Immunological Dermatosis, Institute of Dermatology, Taiyuan City Centre Hospital, No.5, Dong San Dao Xiang, Jiefang Road, Taiyuan, 030009, China
| | - Ying Wang
- ShanXi Key Laboratory of Stem Cells for Immunological Dermatosis, State Key Breeding Laboratory of Stem Cells for Immunological Dermatosis, Institute of Dermatology, Taiyuan City Centre Hospital, No.5, Dong San Dao Xiang, Jiefang Road, Taiyuan, 030009, China
| | - Junqin Li
- ShanXi Key Laboratory of Stem Cells for Immunological Dermatosis, State Key Breeding Laboratory of Stem Cells for Immunological Dermatosis, Institute of Dermatology, Taiyuan City Centre Hospital, No.5, Dong San Dao Xiang, Jiefang Road, Taiyuan, 030009, China
| | - Kaiming Zhang
- ShanXi Key Laboratory of Stem Cells for Immunological Dermatosis, State Key Breeding Laboratory of Stem Cells for Immunological Dermatosis, Institute of Dermatology, Taiyuan City Centre Hospital, No.5, Dong San Dao Xiang, Jiefang Road, Taiyuan, 030009, China.
| |
Collapse
|
8
|
Mondal T, Chattopadhyay D, Saha Mondal P, Das S, Mondal A, Das A, Samanta S, Saha T. Fusobacterium nucleatum modulates the Wnt/β-catenin pathway in colorectal cancer development. Int J Biol Macromol 2025; 299:140196. [PMID: 39848378 DOI: 10.1016/j.ijbiomac.2025.140196] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2024] [Revised: 01/18/2025] [Accepted: 01/20/2025] [Indexed: 01/25/2025]
Abstract
The Wnt/β-catenin signalling pathway normally maintains cellular and tissue homeostasis by regulating cellular differentiation and survival in a controlled manner. An aberrantly regulated Wnt/β-catenin signalling pathway can transform into an oncogenic pathway, which is associated with Colorectal cancer (CRC) as well as other cancers. CRC is one of the most frequently occurring gastrointestinal cancers worldwide. In CRC tissues, deregulation of Wnt/β-catenin pathway is observed, which indicates that this oncogenic pathway directly promotes CRC malignancy, cell migration, angiogenesis, chemoresistance, as well as shorter lifespan of a patient. Growing evidence suggests that human commensal microbes have a strong association with carcinogenesis, particularly the prevalence and high enrichment of Fusobacterium nucleatum in CRC progression. The Wnt/β-catenin pathway is one of the targeted pathways by F. nucleatum in CRC, where Fusobacterium adhesin attaches to E-cadherin to initiate infection. Also, Wnt/β-catenin pathway can be a potential target for the treatment of both CRC and F. nucleatum-positive CRC. Here, we discuss the underlying mechanisms of F. nucleatum-positive CRC development through modulation of Wnt/β-catenin signalling and its possibility for the application in targeted therapy of F. nucleatum-positive CRC.
Collapse
Affiliation(s)
- Tanushree Mondal
- Department of Molecular Biology and Biotechnology, University of Kalyani, Kalyani 741235, Nadia, West Bengal, India
| | - Deepanjan Chattopadhyay
- Department of Molecular Biology and Biotechnology, University of Kalyani, Kalyani 741235, Nadia, West Bengal, India
| | - Paromita Saha Mondal
- Department of Molecular Biology and Biotechnology, University of Kalyani, Kalyani 741235, Nadia, West Bengal, India
| | - Sanjib Das
- Department of Molecular Biology and Biotechnology, University of Kalyani, Kalyani 741235, Nadia, West Bengal, India
| | - Amalesh Mondal
- Department of Molecular Biology and Biotechnology, University of Kalyani, Kalyani 741235, Nadia, West Bengal, India; Department of Physiology, Katwa Collage, Katwa, Purba Bardhaman, West Bengal 713130, India
| | - Abhishek Das
- Department of Molecular Biology and Biotechnology, University of Kalyani, Kalyani 741235, Nadia, West Bengal, India
| | - Subhasree Samanta
- Department of Molecular Biology and Biotechnology, University of Kalyani, Kalyani 741235, Nadia, West Bengal, India
| | - Tanima Saha
- Department of Molecular Biology and Biotechnology, University of Kalyani, Kalyani 741235, Nadia, West Bengal, India.
| |
Collapse
|
9
|
Liu T, Ma M, Wu Y, Asif IM, Chen D, Liu L, Zhang M, Chen Y, Li B, Wang L. Protective Effects of Fucoidan on Iodoacetamide-Induced Functional Dyspepsia via Modulation of 5-HT Metabolism and Microbiota. Int J Mol Sci 2025; 26:3273. [PMID: 40244137 PMCID: PMC11989908 DOI: 10.3390/ijms26073273] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2025] [Revised: 02/26/2025] [Accepted: 03/20/2025] [Indexed: 04/18/2025] Open
Abstract
As the major polysaccharide in brown algae, fucoidan possesses broad biological abilities and has been reported to improve gastrointestinal health. Functional dyspepsia, a common non-organic disease, is a complex of symptoms mainly characterized by pathogenesis, such as visceral hypersensitivity, gastric dysmotility, and inflammation. To date, the effects of fucoidan in regulating functional dyspepsia with visceral sensitivity remains unclear. In the current study, iodoacetamide was employed to establish a mouse model of visceral hypersensitivity. Meanwhile, fucoidan was orally administrated for fourteen days. Indicators were conducted to evaluate the potential of fucoidan as the ingredient of complementary and alternative medicine for functional dyspepsia, such as levels of serum hormones, expression of receptors, and gut microbial profile. The results show that oral administration of fucoidan led to significant reductions in the secretion of 5-hydroxytryptamine, cortisol, and corticosterone. Additionally, it decreased the expression of 5-hydroxytryptamine-3 receptors, with regulation of 5-hydroxytryptamine metabolism and improvement of gut microbial imbalance. The above results suggest fucoidan could ameliorate visceral hypersensitivity by modulating 5-HT metabolism and microbiota. The current findings indicate that fucoidan has potential as a biological component in the adjuvant treatment of functional dyspepsia and for its expanded utilization in the food and medical fields.
Collapse
Affiliation(s)
- Tianxu Liu
- College of Food Science and Technology, Huazhong Agricultural University, Wuhan 430070, China; (T.L.); (M.M.)
- Key Laboratory of Environment Correlative Dietology (Huazhong Agricultural University), Ministry of Education, Wuhan 430070, China
- Tianjin Key Laboratory of Food Science and Health, School of Medicine, Nankai University, Tianjin 300071, China
| | - Muyuan Ma
- College of Food Science and Technology, Huazhong Agricultural University, Wuhan 430070, China; (T.L.); (M.M.)
- Key Laboratory of Environment Correlative Dietology (Huazhong Agricultural University), Ministry of Education, Wuhan 430070, China
| | - Yonglin Wu
- College of Food Science and Technology, Huazhong Agricultural University, Wuhan 430070, China; (T.L.); (M.M.)
- Key Laboratory of Environment Correlative Dietology (Huazhong Agricultural University), Ministry of Education, Wuhan 430070, China
| | - Ismail Muhammad Asif
- College of Food Science and Technology, Huazhong Agricultural University, Wuhan 430070, China; (T.L.); (M.M.)
- Key Laboratory of Environment Correlative Dietology (Huazhong Agricultural University), Ministry of Education, Wuhan 430070, China
| | - Daosen Chen
- College of Food Science and Technology, Huazhong Agricultural University, Wuhan 430070, China; (T.L.); (M.M.)
- Key Laboratory of Environment Correlative Dietology (Huazhong Agricultural University), Ministry of Education, Wuhan 430070, China
| | - Lichong Liu
- College of Food Science and Technology, Huazhong Agricultural University, Wuhan 430070, China; (T.L.); (M.M.)
- Key Laboratory of Environment Correlative Dietology (Huazhong Agricultural University), Ministry of Education, Wuhan 430070, China
| | - Minghui Zhang
- College of Food Science and Technology, Huazhong Agricultural University, Wuhan 430070, China; (T.L.); (M.M.)
- Key Laboratory of Environment Correlative Dietology (Huazhong Agricultural University), Ministry of Education, Wuhan 430070, China
| | - Yijie Chen
- College of Food Science and Technology, Huazhong Agricultural University, Wuhan 430070, China; (T.L.); (M.M.)
- Key Laboratory of Environment Correlative Dietology (Huazhong Agricultural University), Ministry of Education, Wuhan 430070, China
| | - Bin Li
- College of Food Science and Technology, Huazhong Agricultural University, Wuhan 430070, China; (T.L.); (M.M.)
- Key Laboratory of Environment Correlative Dietology (Huazhong Agricultural University), Ministry of Education, Wuhan 430070, China
| | - Ling Wang
- College of Food Science and Technology, Huazhong Agricultural University, Wuhan 430070, China; (T.L.); (M.M.)
- Key Laboratory of Environment Correlative Dietology (Huazhong Agricultural University), Ministry of Education, Wuhan 430070, China
| |
Collapse
|
10
|
Tabein S, Nazarpour D, Hegazy A, Rasekh A, Furlong MJ, Etebari K. Diverse viral communities inhabit the guts of date palm rhinoceros beetles (Oryctes spp.). J Invertebr Pathol 2025; 211:108321. [PMID: 40157533 DOI: 10.1016/j.jip.2025.108321] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2024] [Revised: 03/12/2025] [Accepted: 03/19/2025] [Indexed: 04/01/2025]
Abstract
Two species of palm tree pests, Oryctes elegans and Oryctes agamemnon (Coleoptera: Scarabaeidae), cause significant damage to date palm trees (Phoenix dactylifera) in many countries in the Middle East. Despite several decades of research and the implementation of numerous control strategies, including mechanical, chemical, regulatory, and biosecurity measures, managing these pests remains challenging. Control of O. rhinoceros in the Pacific using an entomopathogenic virus is a landmark of classical biological control. In this study, we used a transcriptomic approach to examine the virome of populations of two Oryctes species across various regions in southern Iran, with the hope of discovering natural viral pathogens as potential biocontrol agents. Total RNA was extracted from a pool of larval gut samples and sequenced using the Illumina NovaSeq 6000. After analysing the RNA-Seq data, 28 novel virus sequences, including a diverse range of RNA and DNA viruses, were identified. Phylogenetic analyses revealed that these newly discovered viruses are evolutionarily linked with other closely related members in several families, including Partitiviridae, Picobirnaviridae, Totiviridae, Dicistroviridae, Tombusviridae, Nodaviridae, Potyviridae, Endornaviridae, Circoviridae and some unassigned viruses such as Negevirus and Jivivirus. Given the similarity of some of these viruses to plant viruses, and viruses reported from fungi and protists and their unclear host association, we have tentatively named them "Oryctes-associated viruses." This study uncovers the great diversity of viruses in Oryctes species; however, further studies are necessary to determine their natural incidence, geographical distribution, impact on their hosts, and their potential as biological control agents for these significant date palm pests.
Collapse
Affiliation(s)
- Saeid Tabein
- Department of Plant Protection, Faculty of Agriculture, Shahid Chamran University of Ahvaz, Ahvaz, Iran.
| | - Davood Nazarpour
- Department of Plant Protection, Faculty of Agriculture, Shahid Chamran University of Ahvaz, Ahvaz, Iran.
| | - Akram Hegazy
- School of The Environment, The University of Queensland, St Lucia, Queensland 4072, Australia; School of Agriculture and Food Sustainability, The University of Queensland, Gatton, Queensland 4343, Australia.
| | - Arash Rasekh
- Department of Plant Protection, Faculty of Agriculture, Shahid Chamran University of Ahvaz, Ahvaz, Iran.
| | - Michael J Furlong
- School of The Environment, The University of Queensland, St Lucia, Queensland 4072, Australia.
| | - Kayvan Etebari
- School of Agriculture and Food Sustainability, The University of Queensland, Gatton, Queensland 4343, Australia.
| |
Collapse
|
11
|
Pei S, Yang L, Gao H, Liu Y, Lu J, Dai EH, Meng C, Feng F, Wang Y. The association between the gut microbiome and antituberculosis drug-induced liver injury. Front Pharmacol 2025; 16:1512815. [PMID: 40129950 PMCID: PMC11931021 DOI: 10.3389/fphar.2025.1512815] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2024] [Accepted: 02/10/2025] [Indexed: 03/26/2025] Open
Abstract
Background This study aimed to explore the distinct characteristics of the gut microbiota in tuberculosis (TB) patients who experienced liver injury following anti-TB treatment compared with those who did not. Method We employed a nested case-control study design, recruiting newly diagnosed pulmonary TB patients at Tangshan Infectious Disease Hospital. Participants were categorized into the Antituberculosis Drug-Induced Liver Injury (ADLI) group and the Non-ADLI group based on the occurrence of liver injury after treatment. Both groups received identical anti-TB regimens. Stool samples were collected from patients who developed liver injury within 2-3 weeks of starting treatment, alongside matched controls during the same timeframe. The samples underwent 16S rDNA sequencing, and clinical data and blood samples were also collected for further analysis. At the same time, we constructed mouse models to explore the effects of different anti-tuberculosis drugs on gut microbiota. Results Following anti-TB treatment, we observed a decrease in microbial diversity and significant structural changes in the gut microbiota of TB patients (P < 0.05). At T1, the Non_ADLI_T1 group presented relatively high levels of Phascolarctobacterium, Anaerofustis and Mailhella. In contrast, the ADLI_ T1 group presented elevated levels of Bacteroides, Veillonella, Clavibacter, Corynebacterium, Anaerococcus, Gardnerella, Peptostreptococcus and Lautropia. At T2, the ADLI_T2 group presented increased levels of Enterococcus, Faecalibacterium, unclassified_f__Burkholderiaceae, Cardiobacterium, Ruminococcus_gnavus_group and Tyzzerella_4 than did the Non_ADLI_T2 group. Additionally, the ADLI_T2 group presented decreased levels of Prevotella_9, Akkermansia, Erysipelotrichaceae_UCG-003, Rubrobacter and norank_f__Desulfovibrionaceae than did the Non_ADLI_T2 group. In animal experiments, similar changes to those in the human population were observed in the mouse model compared to the control group. Any single anti-tuberculosis drug or two-drug combination or three-drug combination can cause dysbiosis of the mouse gut microbiota. The signature genera between groups are different and related to the type of anti-tuberculosis drug. Conclusion Anti-tuberculosis treatment induces dysbiosis in the gut microbiota of TB patients. Notably, there are significant differences in microbiota characteristics between TB patients with and without liver injury at both onset and during treatment. There are some differences in the characteristics of bacterial flora in liver injury caused by different drugs.
Collapse
Affiliation(s)
- Shengfei Pei
- Hebei Coordinated Innovation Center of Occupational Health and Safety, School of Public Health, North China University of Science of Technology, Tangshan, China
| | - Li Yang
- Hebei Key Laboratory of Immune Mechanism of Major Infectious Diseases and New Technology of Diagnosis and Treatment, The Fifth Hospital ofShijiazhuang, Shijiazhuang, China
| | - Huixia Gao
- Hebei Key Laboratory of Immune Mechanism of Major Infectious Diseases and New Technology of Diagnosis and Treatment, The Fifth Hospital ofShijiazhuang, Shijiazhuang, China
| | - Yuzhen Liu
- Hebei Key Laboratory of Immune Mechanism of Major Infectious Diseases and New Technology of Diagnosis and Treatment, The Fifth Hospital ofShijiazhuang, Shijiazhuang, China
| | - Jianhua Lu
- Hebei Key Laboratory of Immune Mechanism of Major Infectious Diseases and New Technology of Diagnosis and Treatment, The Fifth Hospital ofShijiazhuang, Shijiazhuang, China
| | - Er hei Dai
- Hebei Key Laboratory of Immune Mechanism of Major Infectious Diseases and New Technology of Diagnosis and Treatment, The Fifth Hospital ofShijiazhuang, Shijiazhuang, China
| | - Chunyan Meng
- Hebei Coordinated Innovation Center of Occupational Health and Safety, School of Public Health, North China University of Science of Technology, Tangshan, China
| | - Fumin Feng
- Hebei Coordinated Innovation Center of Occupational Health and Safety, School of Public Health, North China University of Science of Technology, Tangshan, China
| | - Yuling Wang
- Hebei Key Laboratory of Immune Mechanism of Major Infectious Diseases and New Technology of Diagnosis and Treatment, The Fifth Hospital ofShijiazhuang, Shijiazhuang, China
| |
Collapse
|
12
|
Huang Y, Liu P, Xu Y, Qian C, Wu T, Li T. Plasma Exosomes Derived from Patients with Primary Immune Thrombocytopenia Attenuate TBX21 + Regulatory T Cell-Mediated Immune Suppression via MiR-363-3p. Inflammation 2025:10.1007/s10753-025-02275-8. [PMID: 40032779 DOI: 10.1007/s10753-025-02275-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2024] [Revised: 02/14/2025] [Accepted: 02/18/2025] [Indexed: 03/05/2025]
Abstract
Primary Immune Thrombocytopenia (ITP) is characterized by reduced immunosuppressive function of regulatory T cells (Tregs), contributing to immune imbalance and decreased platelet counts. However, the mechanisms behind this reduced efficacy of Tregs remain unclear. Our study used a variety of methods, including Treg function assays, cytokine analysis, and single-cell sequencing, to explore these mechanisms. We found that exosomes from ITP patients inhibited TBX21 expression in Tregs, and impaired their ability to suppress Th1 cells. At the single-cell level, Tregs with high TBX21 expression were identified, and the activity of the TBX21 regulon was found to be enhanced in early-stage Treg subpopulations. We also discovered that ARID3A interacted with SPI1 and TBX21 gene regions, indicating a regulatory relationship between ARID3A, SPI1, and TBX21. Additionally, exosomes in ITP patients' plasma contained elevated levels of miR-363-3p, which negatively correlated with platelet count. These exosomes transferred miR-363-3p to Tregs, downregulating ARID3A, SPI1, and TBX21 expression, thereby weakening Tregs' ability to suppress conventional CD4 + T cells. In conclusion, exosomes from ITP patients reduced Treg function through the ARID3A/SPI1/TBX21 axis by miR-363-3p, diminishing their ability to regulate Th1 cells and contributing to the immune dysfunction observed in ITP.
Collapse
Affiliation(s)
- Yuanlan Huang
- Zhejiang Provincial Key Laboratory of Medical Genetics, Key Laboratory of Laboratory Medicine, Ministry of Education, School of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou, 325035, Zhejiang, China
- Department of Blood Transfusion, Naval Specialty Medical Center, Naval Medical University, Shanghai, 200000, China
| | - Peng Liu
- Department of Blood Transfusion, No.971 Hospital of the PLA Navy, Qingdao, China
| | - Ying Xu
- Zhejiang Provincial Key Laboratory of Medical Genetics, Key Laboratory of Laboratory Medicine, Ministry of Education, School of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou, 325035, Zhejiang, China
| | - Cheng Qian
- Department of Laboratory Medicine, Shanghai Municipal Hospital of Traditional Chinese Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, 200071, China
| | - Tianqin Wu
- Suzhou100 Hospital, Suzhou, 215006, China
| | - Tengda Li
- Zhejiang Provincial Key Laboratory of Medical Genetics, Key Laboratory of Laboratory Medicine, Ministry of Education, School of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou, 325035, Zhejiang, China.
| |
Collapse
|
13
|
Li J, Pan J, Wang L, Ji G, Dang Y. Colorectal Cancer: Pathogenesis and Targeted Therapy. MedComm (Beijing) 2025; 6:e70127. [PMID: 40060193 PMCID: PMC11885891 DOI: 10.1002/mco2.70127] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2024] [Revised: 02/12/2025] [Accepted: 02/13/2025] [Indexed: 04/29/2025] Open
Abstract
Colorectal cancer (CRC) ranks among the most prevalent malignant neoplasms globally. A growing body of evidence underscores the pivotal roles of genetic alterations and dysregulated epigenetic modifications in the pathogenesis of CRC. In recent years, the reprogramming of tumor cell metabolism has been increasingly acknowledged as a hallmark of cancer. Substantial evidence suggests a crosstalk between tumor cell metabolic reprogramming and epigenetic modifications, highlighting a complex interplay between metabolism and the epigenetic genome that warrants further investigation. Biomarkers associated with the pathogenesis and metabolic characteristics of CRC hold significant clinical implications. Nevertheless, elucidating the genetic, epigenetic, and metabolic landscapes of CRC continues to pose considerable challenges. Here, we attempt to summarize the key genes driving the onset and progression of CRC and the related epigenetic regulators, clarify the roles of gene expression and signaling pathways in tumor metabolism regulation, and explore the potential crosstalk between epigenetic events and tumor metabolic reprogramming, providing a comprehensive mechanistic explanation for the malignant progression of CRC. Finally, by integrating reliable targets from genetics, epigenetics, and metabolic processes that hold promise for translation into clinical practice, we aim to offer more strategies to overcome the bottlenecks in CRC treatment.
Collapse
Affiliation(s)
- Jingyuan Li
- Institute of Digestive DiseasesChina‐Canada Center of Research for Digestive DiseasesLonghua HospitalShanghai University of Traditional Chinese MedicineShanghaiChina
- State Key Laboratory of Integration and Innovation of Classic Formula and Modern Chinese Medicine (Shanghai University of Traditional Chinese Medicine)ShanghaiChina
| | - Jiashu Pan
- Institute of Digestive DiseasesChina‐Canada Center of Research for Digestive DiseasesLonghua HospitalShanghai University of Traditional Chinese MedicineShanghaiChina
- State Key Laboratory of Integration and Innovation of Classic Formula and Modern Chinese Medicine (Shanghai University of Traditional Chinese Medicine)ShanghaiChina
| | - Lisheng Wang
- Department of BiochemistryMicrobiology and ImmunologyFaculty of MedicineUniversity of OttawaOttawaOntarioCanada
- China‐Canada Centre of Research for Digestive DiseasesUniversity of OttawaOttawaOntarioCanada
| | - Guang Ji
- Institute of Digestive DiseasesChina‐Canada Center of Research for Digestive DiseasesLonghua HospitalShanghai University of Traditional Chinese MedicineShanghaiChina
- State Key Laboratory of Integration and Innovation of Classic Formula and Modern Chinese Medicine (Shanghai University of Traditional Chinese Medicine)ShanghaiChina
| | - Yanqi Dang
- Institute of Digestive DiseasesChina‐Canada Center of Research for Digestive DiseasesLonghua HospitalShanghai University of Traditional Chinese MedicineShanghaiChina
- State Key Laboratory of Integration and Innovation of Classic Formula and Modern Chinese Medicine (Shanghai University of Traditional Chinese Medicine)ShanghaiChina
| |
Collapse
|
14
|
Yang Q, Kang Y, Tang W, Li M, Zhao C. Interplay of gut microbiota in Kawasaki disease: role of gut microbiota and potential treatment strategies. Future Microbiol 2025; 20:357-369. [PMID: 40013895 PMCID: PMC11938985 DOI: 10.1080/17460913.2025.2469432] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2024] [Accepted: 02/17/2025] [Indexed: 02/28/2025] Open
Abstract
Kawasaki disease (KD) is an acute systemic immune vasculitis with predominant involvement of the medium and small arteries. It mostly affects pediatric patients, representing the most common form of pediatric vasculitis in children less than 5 years old. Numerous diseases, especially those related to the immune system, have established links with the intestinal flora. Recent studies have investigated the intestinal flora changes throughout the management of KD. There was gut microbiota dysbiosis in pediatric KD at the acute phase, particularly the downregulation of short-chain fat acids-producing microbiota and the over-proliferation of opportunistic pathogens. The relationship between the response to therapies in individuals with KD and specific microbiota remains uncertain. Targeted microbial supplements and dietary regulation may serve as potential measures to alleviate KD complications and thus improve prognosis. This review provides an overview of the current understanding of the interplay of the gut microbiota and KD. Furthermore, it discusses the possibility of altering the gut microbiota to reinstate a healthy condition.
Collapse
Affiliation(s)
- Qing Yang
- Department of Pediatrics, Qilu Hospital of Shandong University, Jinan, China
| | - Yaqing Kang
- Department of Pediatrics, Qilu Hospital of Shandong University, Jinan, China
| | - Wei Tang
- Department of Pediatrics, Qilu Hospital of Shandong University, Jinan, China
| | - Meng Li
- Department of Pediatrics, Qilu Hospital of Shandong University, Jinan, China
| | - Cuifen Zhao
- Department of Pediatrics, Qilu Hospital of Shandong University, Jinan, China
| |
Collapse
|
15
|
Chen F, Li G, Fu S, Zhang J. Functional Landscape of hnRNPA3 in Disease Pathogenesis. WILEY INTERDISCIPLINARY REVIEWS. RNA 2025; 16:e70010. [PMID: 40130711 DOI: 10.1002/wrna.70010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/26/2024] [Revised: 02/16/2025] [Accepted: 03/06/2025] [Indexed: 03/26/2025]
Abstract
The heterogeneous nuclear ribonucleic acid protein family participates in various intracellular reactions, such as RNA splicing, transport, DNA repair, cellular signal transduction, and gene expression regulation, and is involved in various disease processes. As a late-discovered member, heterogeneous nuclear ribonucleoprotein A3 has received increasing attention, but its main physiological functions and exact mechanisms involved in disease processes have not yet reached a consensus. In this review, we summarize the function of heterogeneous nuclear ribonucleoprotein A3 and the literature on its role in neurodegenerative and metabolic diseases, as well as in various tumors, to explore the applicability of heterogeneous nuclear ribonucleoprotein A3 as a therapeutic target and prognostic indicator.
Collapse
Affiliation(s)
- Fang Chen
- Hematology Laboratory, Shengjing Hospital of China Medical University, Shenyang, China
| | - Genghan Li
- The First Clinical Department, China Medical University, Shenyang, China
| | - Shuang Fu
- Hematology Laboratory, Shengjing Hospital of China Medical University, Shenyang, China
| | - Jihong Zhang
- Hematology Laboratory, Shengjing Hospital of China Medical University, Shenyang, China
| |
Collapse
|
16
|
Li S, Ye J, Yang K, Xu C, Qin Z, Xue Y, Yu L, Zhou T, Yin Z, Sun B, Xu J. Targeting the AURKB- MAD2L2 Axis Disrupts the DNA Damage Response and Glycolysis to Inhibit Colorectal Cancer Progression. FRONT BIOSCI-LANDMRK 2025; 30:26532. [PMID: 40018943 DOI: 10.31083/fbl26532] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2024] [Revised: 11/14/2024] [Accepted: 12/31/2024] [Indexed: 03/01/2025]
Abstract
BACKGROUND Dysregulated metabolic pathways, including glycolysis and a compromised DNA damage response (DDR), are linked to the progression of colorectal cancer (CRC). The mitotic arrest deficient-like 2 (MAD2L2) and aurora kinase B (AURKB) genes play roles in cell cycle regulation and the DDR, making them potential targets for CRC therapy. METHODS Differential expression analysis was performed using The Cancer Genome Atlas-Colon Adenocarcinoma (TCGA-COAD) and GSE47074 datasets. A predictive model was established, and gene expression levels were further analyzed. The Gene Expression Profiling Interaction Analysis database and co-immunoprecipitation experiments assessed the correlation between AURKB and MAD2L2. Knockdown experiments in CRC cell lines further investigated the role of AURKB, followed by analyses of cell behavior, oxidative stress, glycolysis, DDR, and interaction with MAD2L2. RESULTS The risk model identified six prognostic genes (BUB1 mitotic checkpoint serine/threonine kinase B (BUB1B), AURKB, aurora kinase A (AURKA), exonuclease 1 (EXO1), topoisomerase II alpha (TOP2A), cyclin A2 (CCNA2)) associated with CRC, which were significantly expressed in tumor samples from the TCGA-COAD and GSE47074 datasets. In vitro assays confirmed that AURKB knockdown inhibited CRC cell behavior, induced G1 cell cycle arrest, and increased oxidative stress and apoptosis. AURKB knockdown also impaired glycolysis, reducing lactate production, glucose uptake, and ATP levels. Overexpression of MAD2L2 partially reversed these effects, restored glycolytic activity, and mitigated the cell cycle arrest and DDR caused by AURKB knockdown. CONCLUSION AURKB regulates CRC progression by modulating glycolysis and DDR pathways. Targeting the AURKB-MAD2L2 axis offers a promising therapeutic strategy for disrupting fundamental metabolic and DNA repair mechanisms in CRC.
Collapse
Affiliation(s)
- Shengjie Li
- Department of Gastroenterology Surgery, Yichang Central People's Hospital, The First College of Clinical Medical Science, China Three Gorges University, 443000 Yichang, Hubei, China
| | - Jiayou Ye
- Department of Gastroenterology Surgery, Yichang Central People's Hospital, The First College of Clinical Medical Science, China Three Gorges University, 443000 Yichang, Hubei, China
| | - Kaifeng Yang
- Department of Gastroenterology Surgery, Yichang Central People's Hospital, The First College of Clinical Medical Science, China Three Gorges University, 443000 Yichang, Hubei, China
| | - Chengfan Xu
- Department of Gastroenterology Surgery, Yichang Central People's Hospital, The First College of Clinical Medical Science, China Three Gorges University, 443000 Yichang, Hubei, China
| | - Zhixiang Qin
- Department of Gastroenterology Surgery, Yichang Central People's Hospital, The First College of Clinical Medical Science, China Three Gorges University, 443000 Yichang, Hubei, China
| | - Yiyang Xue
- Department of Chemistry and Biochemistry, University of California, Santa Barbara, CA 93106, USA
| | - Lanjian Yu
- Department of Gastroenterology Surgery, Yichang Central People's Hospital, The First College of Clinical Medical Science, China Three Gorges University, 443000 Yichang, Hubei, China
| | - Tianyu Zhou
- Department of Gastroenterology Surgery, Yichang Central People's Hospital, The First College of Clinical Medical Science, China Three Gorges University, 443000 Yichang, Hubei, China
| | - Ziming Yin
- Department of Chemistry, University of Warwick Coventry, CV4 7AL Coventry, UK
| | - Bin Sun
- Center for Clinical Research and Translational Medicine, Yangpu Hospital, School of Medicine, Tongji University, 200438 Shanghai, China
| | - Jun Xu
- Department of Gastroenterology Surgery, Yichang Central People's Hospital, The First College of Clinical Medical Science, China Three Gorges University, 443000 Yichang, Hubei, China
| |
Collapse
|
17
|
Chen B, Qiu X. Surface-Enhanced Raman Scattering (SERS) for exosome detection. Clin Chim Acta 2025; 568:120148. [PMID: 39842651 DOI: 10.1016/j.cca.2025.120148] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2024] [Revised: 01/17/2025] [Accepted: 01/18/2025] [Indexed: 01/24/2025]
Abstract
BACKGROUND Exosomes, nanoscale extracellular vesicles secreted by various cells, are abundantly present in biological fluids. They have been identified as carriers of specific molecules, suggesting their potential role in early disease detection. However, their clinical application is hindered by several challenges, including the need for large sample volumes for enrichment, limitations of traditional detection methods, and the complexity involved in phenotype analysis and separation. OBJECTIVE This review aims to explore the application of Surface-Enhanced Raman Scattering (SERS) technology in exosome detection. SERS, known for its unique photonic properties and high sensitivity, offers a promising solution for detecting exosomes without the need for large sample volumes or extensive phenotypic analysis. This review focuses on the real-time and non-invasive assessment capabilities of SERS in exosome detection, providing insights into its potential for early disease diagnosis. CONCLUSION The review concludes by emphasizing the potential of SERS-based exosome detection in advancing early disease diagnosis. By overcoming existing challenges, SERS technology offers a promising approach for the development of sensitive and specific diagnostic assays, contributing to better patient outcomes and personalized medicine.
Collapse
Affiliation(s)
- Biqing Chen
- Gynaecology and Obstetrics, The Second Affiliated Hospital of Harbin Medical University, Harbin Medical University, Heilongjiang 150081 PR China
| | - Xiaohong Qiu
- Gynaecology and Obstetrics, The Second Affiliated Hospital of Harbin Medical University, Harbin Medical University, Heilongjiang 150081 PR China.
| |
Collapse
|
18
|
Liu F, Su D, Shi X, Xu SM, Dong YK, Li Z, Cao B, Ren DL. Cross-population tongue image features and tongue coating microbiome changes in the evolution of colorectal cancer. Front Microbiol 2025; 16:1442732. [PMID: 40012785 PMCID: PMC11863330 DOI: 10.3389/fmicb.2025.1442732] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2024] [Accepted: 01/09/2025] [Indexed: 02/28/2025] Open
Abstract
Introduction Tongue diagnosis, a cornerstone of Traditional Chinese Medicine (TCM), relies significantly on the assessment of tongue coating, which is used to evaluate Zang-fu organ functions, qi and blood dynamics, and the influence of pathogenic factors. This diagnostic method is integral to disease diagnosis and treatment in TCM. Recent research suggests a strong correlation between the characteristics of tongue coating and its microbial composition. These microbial variations may influence the formation and changes in tongue coating and are potentially linked to the progression of specific diseases. However, comprehensive research on the association between tongue coating, its microorganisms, and colorectal cancer (CRC) is limited. Notably, the quantitative aspects of tongue diagnosis and the microbial diversity in tongue coatings across different stages of colorectal cancer (from healthy individuals to colorectal adenoma (CRA) and CRC patients) are yet to be fully elucidated. By studying the cross-population characteristics of tongue image and tongue coating microorganisms during the evolution of colorectal cancer, the differences of tongue image characteristics and tongue coating microorganisms among different populations were further evaluated, providing references for early screening, diagnosis and treatment of colorectal cancer. Methods The tongue image features of the subjects were collected by DS01-B tongue surface information collection system, mainly including tongue quality and tongue coating, and the tongue image was quantitatively analyzed by color space Lab value. The microbial characteristics of tongue coating were detected by high-throughput sequencing (16SrRNA amplicon sequencing). All subjects came from the patients in the Sixth Affiliated Hospital of Sun Yat-sen University and recruited volunteers (divided into health group, CRA group and CRC group), and obtained the ethical approval of the Sixth Affiliated Hospital of Sun Yat-sen University (ethical batch number: 2021ZSLYEC-328). Results A total of 377 subjects were recruited in this study, including 56 healthy subjects, 65 colorectal adenomas and 256 colorectal cancer patients. The results showed that: in terms of texture of fur, the "thick fur" was a significant statistical difference (p < 0.05) in the 3 groups. In addition, there was also a statistical difference in "greasy fur" and "peeled fur" among the 3 groups (p < 0.05). Lab quantitative analysis of tongue color and fur color: The results showed that the L value of tongue color in healthy group was significantly different from that in CRA group and CRC group (p < 0.01), but there was no significant difference between CRA group and CRC group (p > 0.05). Tongue coating microorganisms, there was no significant difference in the richness and diversity of the three groups of subjects (p > 0.05). There were 296 species in the three groups, accounting for 44.65%, and the species in colorectal cancer population was the most, reaching 502. From the differences in community composition among the three groups, it was found that there were certain differences in bacterial community composition between healthy people, CRA and CRC, and the differences became more and more obvious with the development of the disease. Conclusion This study revealed the specific cross-population tongue image characteristics and the specificity of tongue coating microorganisms in the evolution of CRC, providing new research ideas for early screening, early diagnosis, mechanism exploration, prevention and treatment of colorectal cancer.
Collapse
Affiliation(s)
- Fang Liu
- Department of Coloproctology, The First Affiliated Hospital of Guizhou University of Chinese Medicine, Guiyang, China
| | - Dan Su
- Department of Coloproctology, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
- Guangdong Provincial Key Laboratory of Colorectal and Pelvic Floor Diseases, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Xing Shi
- The First Clinical Medical School, Guizhou University of Traditional Chinese Medicine, Guiyang, China
| | - Shu-min Xu
- Department of Coloproctology, The First Affiliated Hospital of Guizhou University of Chinese Medicine, Guiyang, China
| | - Yu-kun Dong
- Department of Coloproctology, The First Affiliated Hospital of Guizhou University of Chinese Medicine, Guiyang, China
| | - Zhi Li
- Department of Coloproctology, The First Affiliated Hospital of Guizhou University of Chinese Medicine, Guiyang, China
| | - Bo Cao
- Department of Coloproctology, The First Affiliated Hospital of Guizhou University of Chinese Medicine, Guiyang, China
| | - Dong-lin Ren
- Department of Coloproctology, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
- Guangdong Provincial Key Laboratory of Colorectal and Pelvic Floor Diseases, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| |
Collapse
|
19
|
Zheng X, Chen Q, Liang X, Xie J, Loor A, Dong H, Yang J, Zhang J. The effects of citral on the intestinal health and growth performance of American bullfrogs (Aquarana catesbeiana). BMC Vet Res 2025; 21:49. [PMID: 39901183 PMCID: PMC11789344 DOI: 10.1186/s12917-025-04498-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2024] [Accepted: 01/15/2025] [Indexed: 02/05/2025] Open
Abstract
Bullfrogs (Aquarana catesbeiana) are increasingly cultivated for their high nutritional value and adaptability to intensive aquaculture systems. However, ensuring optimal intestinal health and growth performance remains a challenge due to poor water quality and high stocking densities. This study evaluated the effects of varying dietary concentrations of citral, a natural compound from lemongrass essential oil, on the intestinal health, microbiota, antioxidant capacity, and growth performance of juvenile bullfrogs. A total of 200 juvenile bullfrogs (initial weight 6.85 ± 0.71 g) were randomly assigned into six groups, each receiving diets supplemented with citral at 0, 1, 2, 4, 8, and 16 mL/kg feed for 8 weeks. Citral supplementation significantly improved intestinal morphology, with goblet cell numbers, mucosal thickness, and villus-to-crypt ratios peaking at 2-4 mL/kg (P < 0.05). Optimal doses of 2-4 mL/kg also enhanced digestive enzyme activities, with α-amylase, lipase, and pepsin activities showing significant increases compared to the control group (P < 0.05). Antioxidant markers, including total antioxidant capacity (T-AOC) and glutathione (GSH), were highest at 2 mL/kg, while higher citral concentrations reduced superoxide dismutase (SOD) and catalase (CAT) activities, indicating potential oxidative stress at 8-16 mL/kg (P < 0.05). Citral also modulated the intestinal microbiota, increasing the relative abundance of beneficial bacteria such as Cetobacterium at 1-2 mL/kg (P < 0.05). However, microbial diversity decreased significantly at concentrations above 4 mL/kg. Growth performance analysis revealed that 4 mL/kg citral supplementation significantly improved weight gain rate (WGR), specific growth rate (SGR), carcass weight (CW), and feed efficiency (FE), while survival rates declined at 16 mL/kg (P < 0.05). A linear regression model determined the optimal dietary citral concentration to be 3.216-3.942 mL/kg. This study concludes that dietary citral at 2-4 mL/kg optimally enhances growth performance, intestinal health, and antioxidant capacity in juvenile bullfrogs, while higher concentrations may disrupt gut health and oxidative balance. These findings provide valuable insights into the use of natural compounds like citral for sustainable aquaculture practices.
Collapse
Affiliation(s)
- Xiaoting Zheng
- Key Laboratory of South China Sea Fishery Resources Exploitation & Utilization, Ministry of Agriculture and Rural Affairs, South China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou, 510300, China
- College of Fisheries and Life Science, Shanghai Ocean University, Shanghai, 201306, China
| | - Qiuyu Chen
- Key Laboratory of South China Sea Fishery Resources Exploitation & Utilization, Ministry of Agriculture and Rural Affairs, South China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou, 510300, China
| | - Xueying Liang
- Key Laboratory of South China Sea Fishery Resources Exploitation & Utilization, Ministry of Agriculture and Rural Affairs, South China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou, 510300, China
| | - Jingyi Xie
- Key Laboratory of South China Sea Fishery Resources Exploitation & Utilization, Ministry of Agriculture and Rural Affairs, South China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou, 510300, China
| | - Alfredo Loor
- Faculty of Maritime Engineering and Marine Sciences (FIMCM), Escuela Superior Politecnica del Litoral (ESPOL), Guayaquil, 09015863, Ecuador
| | - Hongbiao Dong
- Key Laboratory of South China Sea Fishery Resources Exploitation & Utilization, Ministry of Agriculture and Rural Affairs, South China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou, 510300, China
- Sanya Tropical Fisheries Research Institute, Sanya, 572018, China
| | - Jinlong Yang
- College of Fisheries and Life Science, Shanghai Ocean University, Shanghai, 201306, China
| | - Jiasong Zhang
- Key Laboratory of South China Sea Fishery Resources Exploitation & Utilization, Ministry of Agriculture and Rural Affairs, South China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou, 510300, China.
- Sanya Tropical Fisheries Research Institute, Sanya, 572018, China.
| |
Collapse
|
20
|
Oliyaei N, Zekri S, Iraji A, Oliyaei A, Tanideh R, Mussin NM, Tamadon A, Tanideh N. Health benefits of algae and marine-derived bioactive metabolites for modulating ulcerative colitis symptoms. J Funct Foods 2025; 125:106690. [DOI: 10.1016/j.jff.2025.106690] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/30/2025] Open
|
21
|
Lei J, Lv L, Zhong L, Xu F, Su W, Chen Y, Wu Z, He S, Chen Y. The Gut Microbiota Affects Anti-TNF Responsiveness by Activating the NAD + Salvage Pathway in Ulcerative Colitis. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2025; 12:e2413128. [PMID: 39739648 PMCID: PMC11848563 DOI: 10.1002/advs.202413128] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/17/2024] [Revised: 12/09/2024] [Indexed: 01/02/2025]
Abstract
Approximately 50% of the patients with ulcerative colitis (UC) are primarily nonresponsive to anti-tumor necrosis factor (TNF) therapy or lose their responsiveness over time. The gut microbiota plays an important role in the resistance of UC to anti-TNF therapy; however, the underlying mechanism remains unknown. Here, it is found that the transplantation of gut fecal microbiota from patients with UC alters the diversity of the gut microbiota in dextran sulfate sodium-induced colitis mice and may affect the therapeutic responsiveness of mice to infliximab. Furthermore, the abundances of Romboutsia and Fusobacterium increase in the tissues of patients with UC who do not respond to anti-TNF therapy. Differentially abundant metabolites are mainly enriched in nicotinate and nicotinamide metabolism in NCM460 cells after Fusobacterium nucleatum infection. Mechanistically, F. nucleatum promotes the nicotinamide adenine dinucleotide (NAD+) salvage pathway by upregulating NAMPT expression, which subsequently leads to the activation of the p38 mitogen-activated protein kinase (MAPK) signaling pathway and promotes the secretion of inflammatory factors, ultimately inhibiting the therapeutic response to anti-TNF drugs. These findings demonstrate that the gut microbiota can influence the response to anti-TNF therapy in patients with UC and highlight the therapeutic potential of targeting F. nucleatum and its associated pathways for preventing and treating drug resistance in UC.
Collapse
Affiliation(s)
- Jing Lei
- Department of GastroenterologyThe Second Affiliated Hospital of Chongqing Medical UniversityChongqing400010China
| | - Lin Lv
- Department of GastroenterologyThe Second Affiliated Hospital of Chongqing Medical UniversityChongqing400010China
| | - Li Zhong
- Department of GastroenterologyThe Second Affiliated Hospital of Chongqing Medical UniversityChongqing400010China
| | - Feng Xu
- Department of GastroenterologyThe Second Affiliated Hospital of Chongqing Medical UniversityChongqing400010China
| | - Wenhao Su
- Department of GastroenterologyRenmin Hospital of Wuhan UniversityHubei430060China
| | - Yan Chen
- Department of DermatovenereologyChengdu Second People's HospitalSichuan610011China
| | - Zhixuan Wu
- Department of GastroenterologyThe Second Affiliated Hospital of Chongqing Medical UniversityChongqing400010China
| | - Song He
- Department of GastroenterologyThe Second Affiliated Hospital of Chongqing Medical UniversityChongqing400010China
| | - Yongyu Chen
- Department of GastroenterologyThe Second Affiliated Hospital of Chongqing Medical UniversityChongqing400010China
| |
Collapse
|
22
|
Turocy T, Crawford JM. Bacterial small molecule metabolites implicated in gastrointestinal cancer development. Nat Rev Microbiol 2025; 23:106-121. [PMID: 39375475 DOI: 10.1038/s41579-024-01103-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/28/2024] [Indexed: 10/09/2024]
Abstract
Numerous associations have been identified between cancer and the composition and function of the human microbiome. As cancer remains the second leading global cause of mortality, investigating the carcinogenic contributions of microbiome members could advance our understanding of cancer risk and support potential therapeutic interventions. Although fluctuations in bacterial species have been associated with cancer progression, studying their small molecule metabolites offers one avenue to establish support for causal relationships and the molecular mechanisms governing host-microorganism interactions. In this Review, we explore the expanding repertoire of small molecule metabolites and their mechanisms implicated in the risk of developing gastrointestinal cancers.
Collapse
Affiliation(s)
- Tayah Turocy
- Department of Chemistry, Yale University, New Haven, CT, USA
- Institute of Biomolecular Design and Discovery, Yale University, West Haven, CT, USA
| | - Jason M Crawford
- Department of Chemistry, Yale University, New Haven, CT, USA.
- Institute of Biomolecular Design and Discovery, Yale University, West Haven, CT, USA.
- Department of Microbial Pathogenesis, Yale University School of Medicine, New Haven, CT, USA.
| |
Collapse
|
23
|
Yu J, Zhang X, Wang J, Cheng K, Yang B, Du J, Chen L, Wu Y, Li Y. Diterpene glycosides from Fructus Rubi ameliorates benign prostatic hyperplasia in rats through the androgen and TGF-β/Smad signaling pathway. JOURNAL OF ETHNOPHARMACOLOGY 2025; 337:118756. [PMID: 39222760 DOI: 10.1016/j.jep.2024.118756] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/16/2024] [Revised: 08/18/2024] [Accepted: 08/26/2024] [Indexed: 09/04/2024]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Fructus Rubi (FR), a food material with medicinal value, is used in traditional Chinese medicine (TCM) for treatment of various kidney-related problems, such as impotence, spermatorrhea, and frequent urination. It is also frequently used to produce diverse functional foods in China. AIM OF STUDY The purpose of this research was to assess the therapeutic effects of FR diterpene glycosides on RWPE-1 epithelial cell (RWPE-1), a human normal prostatic epithelial cell, and benign prostate hyperplasia (BPH) rats, both of which had been exposed to dihydrotestosterone (DHT) and testosterone propionate (TP), respectively, and to investigate the mechanism of action. METHODS Target proteins that could stably bind to certain diterpene glycosides were screened through drug affinity responsive target stability combined with mass spectrometry (DARTS/MS). DHT-induced RWPE-1 cells were used to detect drug activity. TP was subcutaneously injected to induce BPH in rats. The extract of diterpene glycosides from FR (FDS) was orally administered for 28 days. The DHT levels in the serum and prostate tissue of the rats were measured through enzyme-linked immunosorbent assay (ELISA), and to analyze cell proliferation and epithelial-mesenchymal transition (EMT), the protein expression of prostate-specific antigen (PSA), androgen receptor (AR), steroid 5α-reductase type 2 (SRD5A2), proliferating cell nuclear antigen (PCNA), S100 calcium-binding protein A2 (S100A2), transforming growth factor-β1 (TGF-β1), E-cadherin, vimentin, and Smad4 was determined through western blotting (WB), immunohistochemistry (IHC), or immunofluorescence (IF). RESULTS FDS reduced the proliferation of DHT-induced RWPE-1 cells. It also significantly inhibited rat prostate enlargement; decreased DHT levels in the serum and prostate tissue; inhibited the protein expression of AR, PSA, PCNA, S100A2, TGF-β1, E-cadherin, and Smad4; and increased the protein expression of E-cadherin. CONCLUSION The present study is the first to report that diterpene glycosides isolated from FR inhibited BPH at the cellular level, regulated the proliferation of prostate cells through the androgen signaling pathway, and prevented EMT in the prostate through the S100A2-mediated TGF-β/Smad signaling pathway. These results indicate that FDS is a promising multitarget therapy for BPH.
Collapse
Affiliation(s)
- Jundong Yu
- School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China
| | - Xue Zhang
- Nutrilite Health Institute, Amway (Shanghai) Innovation & Science Co., Ltd., Shanghai, 201203, China
| | - Jing Wang
- School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China
| | - Kaixian Cheng
- School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China
| | - Binrui Yang
- Nutrilite Health Institute, Amway (Shanghai) Innovation & Science Co., Ltd., Shanghai, 201203, China
| | - Jun Du
- Nutrilite Health Institute, Amway (Shanghai) Innovation & Science Co., Ltd., Shanghai, 201203, China
| | - Liang Chen
- Nutrilite Health Institute, Amway (Shanghai) Innovation & Science Co., Ltd., Shanghai, 201203, China.
| | - Yingchun Wu
- School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China.
| | - Yiming Li
- School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China.
| |
Collapse
|
24
|
Wang X, Hong Y, Zou J, Zhu B, Jiang C, Lu L, Tian J, Yang J, Rui K. The role of BATF in immune cell differentiation and autoimmune diseases. Biomark Res 2025; 13:22. [PMID: 39876010 PMCID: PMC11776340 DOI: 10.1186/s40364-025-00733-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2024] [Accepted: 01/17/2025] [Indexed: 01/30/2025] Open
Abstract
As a member of the Activator Protein-1 (AP-1) transcription factor family, the Basic Leucine Zipper Transcription Factor (BATF) mediates multiple biological functions of immune cells through its involvement in protein interactions and binding to DNA. Recent studies have demonstrated that BATF not only plays pivotal roles in innate and adaptive immune responses but also acts as a crucial factor in the differentiation and function of various immune cells. Lines of evidence indicate that BATF is associated with the onset and progression of allergic diseases, graft-versus-host disease, tumors, and autoimmune diseases. This review summarizes the roles of BATF in the development and function of innate and adaptive immune cells, as well as its immunoregulatory effects in the development of autoimmune diseases, which may enhance the current understanding of the pathogenesis of autoimmune diseases and facilitate the development of new therapeutic strategies.
Collapse
Affiliation(s)
- Xiaomeng Wang
- Department of Laboratory Medicine, Institute of Medical Immunology, Affiliated Hospital of Jiangsu University, Zhenjiang, China
- Department of Immunology, Jiangsu Key Laboratory of Laboratory Medicine, School of Medicine, Jiangsu University, Zhenjiang, China
| | - Yue Hong
- Department of Hematology and Oncology, Children's Hospital of Nanjing Medical University, Nanjing, China
| | - Jinmei Zou
- Department of Rheumatology, School of Medicine, Mianyang Central Hospital, University of Electronic Science and Technology of China, Mianyang, China
| | - Bo Zhu
- Department of Laboratory Medicine, Institute of Medical Immunology, Affiliated Hospital of Jiangsu University, Zhenjiang, China
| | - Chao Jiang
- Department of Orthopaedics, Affiliated Hospital of Jiangsu University, Zhenjiang, China
| | - Liwei Lu
- Department of Pathology, Shenzhen Institute of Research and Innovation, The University of Hong Kong, Hong Kong, China
| | - Jie Tian
- Department of Immunology, Jiangsu Key Laboratory of Laboratory Medicine, School of Medicine, Jiangsu University, Zhenjiang, China.
| | - Jing Yang
- Department of Rheumatology, School of Medicine, Mianyang Central Hospital, University of Electronic Science and Technology of China, Mianyang, China.
| | - Ke Rui
- Department of Laboratory Medicine, Institute of Medical Immunology, Affiliated Hospital of Jiangsu University, Zhenjiang, China.
| |
Collapse
|
25
|
Galasso L, Termite F, Mignini I, Esposto G, Borriello R, Vitale F, Nicoletti A, Paratore M, Ainora ME, Gasbarrini A, Zocco MA. Unraveling the Role of Fusobacterium nucleatum in Colorectal Cancer: Molecular Mechanisms and Pathogenic Insights. Cancers (Basel) 2025; 17:368. [PMID: 39941737 PMCID: PMC11816155 DOI: 10.3390/cancers17030368] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2024] [Revised: 01/16/2025] [Accepted: 01/20/2025] [Indexed: 02/16/2025] Open
Abstract
Fusobacterium nucleatum, a gram-negative anaerobic bacterium, has emerged as a significant player in colorectal cancer (CRC) pathogenesis. The bacterium causes a persistent inflammatory reaction in the colorectal mucosa by stimulating the release of pro-inflammatory cytokines like IL-1β, IL-6, and TNF-α, creating an environment conducive to cancer progression. F. nucleatum binds to and penetrates epithelial cells through adhesins such as FadA, impairing cell junctions and encouraging epithelial-to-mesenchymal transition (EMT), which is associated with cancer advancement. Additionally, the bacterium modulates the host immune system, suppressing immune cell activity and creating conditions favorable for tumor growth. Its interactions with the gut microbiome contribute to dysbiosis, further influencing carcinogenic pathways. Evidence indicates that F. nucleatum can inflict DNA damage either directly via reactive oxygen species or indirectly by creating a pro-inflammatory environment. Additionally, it triggers oncogenic pathways, especially the Wnt/β-catenin signaling pathway, which promotes tumor cell growth and longevity. Moreover, F. nucleatum alters the tumor microenvironment, impacting cancer cell behavior, metastasis, and therapeutic responses. The purpose of this review is to elucidate the molecular mechanisms by which F. nucleatum contributes to CRC. Understanding these mechanisms is crucial for the development of targeted therapies and diagnostic strategies for CRC associated with F. nucleatum.
Collapse
Affiliation(s)
- Linda Galasso
- Internal Medicine, Fondazione Policlinico Universitario “A.Gemelli” IRCCS, Università Cattolica del Sacro Cuore, 20123 Rome, Italy; (L.G.); (F.T.); (I.M.); (G.E.); (R.B.); (F.V.); (A.N.); (M.P.); (M.E.A.); (A.G.)
- CEMAD Digestive Disease Center, Fondazione Policlinico Universitario “A.Gemelli” IRCCS, Università Cattolica del Sacro Cuore, 20123 Rome, Italy
| | - Fabrizio Termite
- Internal Medicine, Fondazione Policlinico Universitario “A.Gemelli” IRCCS, Università Cattolica del Sacro Cuore, 20123 Rome, Italy; (L.G.); (F.T.); (I.M.); (G.E.); (R.B.); (F.V.); (A.N.); (M.P.); (M.E.A.); (A.G.)
| | - Irene Mignini
- Internal Medicine, Fondazione Policlinico Universitario “A.Gemelli” IRCCS, Università Cattolica del Sacro Cuore, 20123 Rome, Italy; (L.G.); (F.T.); (I.M.); (G.E.); (R.B.); (F.V.); (A.N.); (M.P.); (M.E.A.); (A.G.)
- CEMAD Digestive Disease Center, Fondazione Policlinico Universitario “A.Gemelli” IRCCS, Università Cattolica del Sacro Cuore, 20123 Rome, Italy
| | - Giorgio Esposto
- Internal Medicine, Fondazione Policlinico Universitario “A.Gemelli” IRCCS, Università Cattolica del Sacro Cuore, 20123 Rome, Italy; (L.G.); (F.T.); (I.M.); (G.E.); (R.B.); (F.V.); (A.N.); (M.P.); (M.E.A.); (A.G.)
- CEMAD Digestive Disease Center, Fondazione Policlinico Universitario “A.Gemelli” IRCCS, Università Cattolica del Sacro Cuore, 20123 Rome, Italy
| | - Raffaele Borriello
- Internal Medicine, Fondazione Policlinico Universitario “A.Gemelli” IRCCS, Università Cattolica del Sacro Cuore, 20123 Rome, Italy; (L.G.); (F.T.); (I.M.); (G.E.); (R.B.); (F.V.); (A.N.); (M.P.); (M.E.A.); (A.G.)
- CEMAD Digestive Disease Center, Fondazione Policlinico Universitario “A.Gemelli” IRCCS, Università Cattolica del Sacro Cuore, 20123 Rome, Italy
| | - Federica Vitale
- Internal Medicine, Fondazione Policlinico Universitario “A.Gemelli” IRCCS, Università Cattolica del Sacro Cuore, 20123 Rome, Italy; (L.G.); (F.T.); (I.M.); (G.E.); (R.B.); (F.V.); (A.N.); (M.P.); (M.E.A.); (A.G.)
| | - Alberto Nicoletti
- Internal Medicine, Fondazione Policlinico Universitario “A.Gemelli” IRCCS, Università Cattolica del Sacro Cuore, 20123 Rome, Italy; (L.G.); (F.T.); (I.M.); (G.E.); (R.B.); (F.V.); (A.N.); (M.P.); (M.E.A.); (A.G.)
| | - Mattia Paratore
- Internal Medicine, Fondazione Policlinico Universitario “A.Gemelli” IRCCS, Università Cattolica del Sacro Cuore, 20123 Rome, Italy; (L.G.); (F.T.); (I.M.); (G.E.); (R.B.); (F.V.); (A.N.); (M.P.); (M.E.A.); (A.G.)
- CEMAD Digestive Disease Center, Fondazione Policlinico Universitario “A.Gemelli” IRCCS, Università Cattolica del Sacro Cuore, 20123 Rome, Italy
| | - Maria Elena Ainora
- Internal Medicine, Fondazione Policlinico Universitario “A.Gemelli” IRCCS, Università Cattolica del Sacro Cuore, 20123 Rome, Italy; (L.G.); (F.T.); (I.M.); (G.E.); (R.B.); (F.V.); (A.N.); (M.P.); (M.E.A.); (A.G.)
- CEMAD Digestive Disease Center, Fondazione Policlinico Universitario “A.Gemelli” IRCCS, Università Cattolica del Sacro Cuore, 20123 Rome, Italy
| | - Antonio Gasbarrini
- Internal Medicine, Fondazione Policlinico Universitario “A.Gemelli” IRCCS, Università Cattolica del Sacro Cuore, 20123 Rome, Italy; (L.G.); (F.T.); (I.M.); (G.E.); (R.B.); (F.V.); (A.N.); (M.P.); (M.E.A.); (A.G.)
- CEMAD Digestive Disease Center, Fondazione Policlinico Universitario “A.Gemelli” IRCCS, Università Cattolica del Sacro Cuore, 20123 Rome, Italy
| | - Maria Assunta Zocco
- Internal Medicine, Fondazione Policlinico Universitario “A.Gemelli” IRCCS, Università Cattolica del Sacro Cuore, 20123 Rome, Italy; (L.G.); (F.T.); (I.M.); (G.E.); (R.B.); (F.V.); (A.N.); (M.P.); (M.E.A.); (A.G.)
- CEMAD Digestive Disease Center, Fondazione Policlinico Universitario “A.Gemelli” IRCCS, Università Cattolica del Sacro Cuore, 20123 Rome, Italy
| |
Collapse
|
26
|
Wu H, Ma W, Zhu L, Peng L, Huang X, Zhong L, Yang R, Li B, Ma W, Gao L, Wu X, Song J, Luo S, Bao F, Liu A. The association of gut microbiota, immunocyte dynamics, and protein-protein ratios with tuberculosis susceptibility: a Mendelian randomization analysis. Sci Rep 2025; 15:2931. [PMID: 39849060 PMCID: PMC11757989 DOI: 10.1038/s41598-025-87160-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2024] [Accepted: 01/16/2025] [Indexed: 01/25/2025] Open
Abstract
This study focused on the relationships among gut microbiota, plasma protein ratios, and tuberculosis. Given the unclear causal relationship between gut microbiota and tuberculosis and the scarcity of research on relevant plasma protein ratios in tuberculosis, Mendelian randomization analysis (MR) was employed for in-depth exploration. By analyzing the GWAS data of individuals with European ancestry (the FinnGen dataset included 409,568 controls and 2613 cases), using the two-sample MR method, we focused on evaluating the impact of immunocyte-mediated gut microbiota on tuberculosis and the associations between 2821 plasma protein-to-protein ratios and tuberculosis. Particularly, the mediation effect was emphasized in the exploration. The results showed that 19 gut microbiotas were associated with tuberculosis. An7 indirectly affected tuberculosis through immunocyte (CD4 on CM CD4+), with a masking effect ratio of 0.008, demonstrating immune cells' mediating role in the association between gut microbiota and tuberculosis. Meanwhile, the MR analysis revealed that 127 plasma protein-to-protein ratios were associated with tuberculosis. In conclusion, this study not only confirmed the impact of immunocyte-mediated gut microbiota on tuberculosis and clarified the mediating mechanism therein but also identified plasma protein-to-protein ratios related to tuberculosis, providing novel and valuable ideas for diagnosing and treating tuberculosis.
Collapse
Affiliation(s)
- Hanxin Wu
- Yunnan Provincial Key Laboratory of Children's Major Diseases Research, School of Basic Medicine, Kunming Medical University, Kunming, 650500, China
| | - Weijie Ma
- Yunnan Provincial Key Laboratory of Children's Major Diseases Research, School of Basic Medicine, Kunming Medical University, Kunming, 650500, China
| | - Liangyu Zhu
- Yunnan Provincial Key Laboratory of Children's Major Diseases Research, School of Basic Medicine, Kunming Medical University, Kunming, 650500, China
| | - Li Peng
- Yunnan Provincial Key Laboratory of Children's Major Diseases Research, School of Basic Medicine, Kunming Medical University, Kunming, 650500, China
| | - Xun Huang
- Yunnan Provincial Key Laboratory of Children's Major Diseases Research, School of Basic Medicine, Kunming Medical University, Kunming, 650500, China
| | - Lei Zhong
- Yunnan Provincial Key Laboratory of Children's Major Diseases Research, School of Basic Medicine, Kunming Medical University, Kunming, 650500, China
| | - Rui Yang
- Yunnan Provincial Key Laboratory of Children's Major Diseases Research, School of Basic Medicine, Kunming Medical University, Kunming, 650500, China
| | - Bingxue Li
- Yunnan Provincial Key Laboratory of Children's Major Diseases Research, School of Basic Medicine, Kunming Medical University, Kunming, 650500, China
- Yunnan Provincial Key Laboratory of Public Health and Biosafety, School of Public Health, Kunming Medical University, Kunming, 650500, China
| | - Weijiang Ma
- Yunnan Provincial Key Laboratory of Children's Major Diseases Research, School of Basic Medicine, Kunming Medical University, Kunming, 650500, China
| | - Li Gao
- Yunnan Provincial Key Laboratory of Children's Major Diseases Research, School of Basic Medicine, Kunming Medical University, Kunming, 650500, China
| | - Xinya Wu
- Yunnan Provincial Key Laboratory of Children's Major Diseases Research, School of Basic Medicine, Kunming Medical University, Kunming, 650500, China
| | - Jieqin Song
- Yunnan Provincial Key Laboratory of Children's Major Diseases Research, School of Basic Medicine, Kunming Medical University, Kunming, 650500, China
| | - Suyi Luo
- Yunnan Provincial Key Laboratory of Children's Major Diseases Research, School of Basic Medicine, Kunming Medical University, Kunming, 650500, China
| | - Fukai Bao
- Yunnan Provincial Key Laboratory of Children's Major Diseases Research, School of Basic Medicine, Kunming Medical University, Kunming, 650500, China.
- Yunnan Provincial Key Laboratory of Public Health and Biosafety, School of Public Health, Kunming Medical University, Kunming, 650500, China.
| | - Aihua Liu
- Yunnan Provincial Key Laboratory of Children's Major Diseases Research, School of Basic Medicine, Kunming Medical University, Kunming, 650500, China.
- Yunnan Provincial Key Laboratory of Public Health and Biosafety, School of Public Health, Kunming Medical University, Kunming, 650500, China.
| |
Collapse
|
27
|
Wang T, Huang Y, Jiang P, Yuan X, Long Q, Yan X, Huang Y, Wang Z, Li C. Research progress on anti-inflammatory drugs for preventing colitis-associated colorectal cancer. Int Immunopharmacol 2025; 144:113583. [PMID: 39580861 DOI: 10.1016/j.intimp.2024.113583] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2024] [Revised: 11/04/2024] [Accepted: 11/05/2024] [Indexed: 11/26/2024]
Abstract
Colorectal cancer (CRC) is the third most prevalent malignancy worldwide. Inflammatory bowel diseases (IBD) encompass a group of chronic intestinal inflammatory disorders, including ulcerative colitis (UC) and Crohn's disease (CD). As a chronic inflammatory bowel disease, UC may persist and elevate the risk of malignancy, thereby contributing to the development of colorectal cancer, known as colitis-associated colorectal cancer (CAC). Chronic intestinal inflammation is a significant risk factor for colorectal cancer, and the incidence of colitis-associated colorectal cancer continues to rise. Current studies indicate that therapeutic agents targeting inflammation and key molecules or signaling pathways involved in the inflammatory process may effectively prevent and treat CAC. Mechanistically, drugs with anti-inflammatory or modulatory effects on inflammation-related pathways may exert preventive or therapeutic roles in CAC through multiple molecules or signaling pathways implicated in tumor development. Moreover, the development or discovery of novel drugs with anti-inflammatory properties to prevent or delay CAC progression is becoming an emerging field in fighting against CRC. Therefore, this review aims to summarize drugs that prevent or delay CAC through modulating anti-inflammatory pathways. First, we categorize the published studies exploring the role of anti-inflammatory in CAC prevention. Second, we highlight the specific molecular mechanisms underlying the anti-inflammatory effect of the above-mentioned drugs. Finally, we discuss the potential and challenges associated with clinical application of these drugs. It is hoped that this review offers new insights for further drug development and mechanism exploration.
Collapse
Affiliation(s)
- Tong Wang
- Institute of Blood Transfusion, Chinese Academy of Medical Sciences & Peking Union Medical College, Chengdu, Sichuan 610052, PR China
| | | | - Peng Jiang
- Institute of Blood Transfusion, Chinese Academy of Medical Sciences & Peking Union Medical College, Chengdu, Sichuan 610052, PR China
| | - Xin Yuan
- Institute of Blood Transfusion, Chinese Academy of Medical Sciences & Peking Union Medical College, Chengdu, Sichuan 610052, PR China
| | - Qian Long
- Institute of Blood Transfusion, Chinese Academy of Medical Sciences & Peking Union Medical College, Chengdu, Sichuan 610052, PR China
| | - Xiaochen Yan
- Institute of Blood Transfusion, Chinese Academy of Medical Sciences & Peking Union Medical College, Chengdu, Sichuan 610052, PR China
| | - Yuwei Huang
- Institute of Blood Transfusion, Chinese Academy of Medical Sciences & Peking Union Medical College, Chengdu, Sichuan 610052, PR China
| | - Zongkui Wang
- Institute of Blood Transfusion, Chinese Academy of Medical Sciences & Peking Union Medical College, Chengdu, Sichuan 610052, PR China.
| | - Changqing Li
- Institute of Blood Transfusion, Chinese Academy of Medical Sciences & Peking Union Medical College, Chengdu, Sichuan 610052, PR China.
| |
Collapse
|
28
|
Ali AA, Tabll AA. Unlocking potential: Virus-like particles as a promising strategy for effective HCV vaccine development. Virology 2025; 602:110307. [PMID: 39580887 DOI: 10.1016/j.virol.2024.110307] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2024] [Revised: 11/01/2024] [Accepted: 11/14/2024] [Indexed: 11/26/2024]
Abstract
Hepatitis C virus (HCV) is a leading cause of liver disease worldwide. The development of prophylactic vaccine is essential for HCV global eradication. Despite over three decades of research, no effective vaccine for HCV has been developed, primarily due to the virus's genetic diversity, immune evasion mechanisms, and incomplete understanding of protective immunity. However, Virus-Like Particles (VLPs) offer a promising approach to overcoming these challenges. VLPs mimic the structure of native virus but without the infectious genome, making them safe and non-infectious vaccines candidates. The capability of VLPs to incorporate neutralizing and conformational epitopes, and engage humoral and cellular immune responses, positions them as a promising tool for overcoming challenges associated with the HCV vaccine development. This review examines the challenges and immunological considerations for HCV vaccine development and provides an overview of the VLPs-based vaccines development. It also discusses future directions and public health implications of HCV vaccine development.
Collapse
Affiliation(s)
- Ahmed A Ali
- Molecular Biology Department, Biotechnology Research Institute, National Research Centre, (NRC), 12622, Cairo, Egypt.
| | - Ashraf A Tabll
- Microbial Biotechnology Department, Biotechnology Research Institute, National Research Centre, 12622, Cairo, Egypt; Egyptian Centre for Research and Regenerative Medicine (ECRRM), 11517, Cairo, Egypt.
| |
Collapse
|
29
|
Zhou L, Zhang S, Wang L, Liu X, Yang X, Qiu L, Zhou Y, Huang Q, Meng Y, Lei X, Wen L, Han J. PCYT2 inhibits epithelial-mesenchymal transition in colorectal cancer by elevating YAP1 phosphorylation. JCI Insight 2024; 9:e178823. [PMID: 39531326 DOI: 10.1172/jci.insight.178823] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2023] [Accepted: 10/31/2024] [Indexed: 11/16/2024] Open
Abstract
Metabolic reprogramming is a common feature in tumor progression and metastasis. Like proteins, lipids can transduce signals through lipid-protein interactions. During tumor initiation and metastasis, dysregulation of the Hippo pathway plays a critical role. Specifically, the inhibition of YAP1 phosphorylation leads to the relocation of YAP1 to the nucleus to activate transcription of genes involved in metastasis. Although recent studies reveal the involvement of phosphatidylethanolamine (PE) synthesis enzyme phosphoethanolamine cytidylyltransferase 2 (PCYT2) in tumor chemoresistance, the effect of PCYT2 on tumor metastasis remains elusive. Here, we show that PCYT2 was significantly downregulated in metastatic colorectal cancer (CRC) and acted as a tumor metastasis suppressor. Mechanistically, PCYT2 increased the interaction between PEBP1 and YAP1-phosphatase PPP2R1A, thus disrupting PPP2R1A-YAP1 association. As a result, phosphorylated YAP1 levels were increased, leading to YAP1 degradation through the ubiquitin protease pathway. YAP1 reduction in the nucleus repressed the transcription of ZEB1 and SNAIL2, eventually resulting in metastasis suppression. Our work provides insight into the role of PE synthesis in regulating metastasis and presents PCYT2 as a potential therapeutic target for CRC.
Collapse
Affiliation(s)
- Lian Zhou
- Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, and Frontiers Science Center for Disease-related Molecular Network, and
| | - Su Zhang
- Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, and Frontiers Science Center for Disease-related Molecular Network, and
| | - Lingli Wang
- Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, and Frontiers Science Center for Disease-related Molecular Network, and
| | - Xueqin Liu
- Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, and Frontiers Science Center for Disease-related Molecular Network, and
| | - Xuyang Yang
- Department of Gastrointestinal Surgery, West China Hospital, Sichuan University, Chengdu, China
| | - Lei Qiu
- Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, and Frontiers Science Center for Disease-related Molecular Network, and
| | - Ying Zhou
- Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, and Frontiers Science Center for Disease-related Molecular Network, and
| | - Qing Huang
- Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, and Frontiers Science Center for Disease-related Molecular Network, and
| | - Yang Meng
- Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, and Frontiers Science Center for Disease-related Molecular Network, and
| | - Xue Lei
- Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, and Frontiers Science Center for Disease-related Molecular Network, and
| | - Linda Wen
- Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, and Frontiers Science Center for Disease-related Molecular Network, and
| | - Junhong Han
- Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, and Frontiers Science Center for Disease-related Molecular Network, and
| |
Collapse
|
30
|
Kulmambetova G, Kurentay B, Gusmaulemova A, Utupov T, Auganova D, Tarlykov P, Mamlin M, Khamzina S, Shalekenov S, Kozhakhmetov A. Association of Fusobacterium nucleatum infection with colorectal cancer in Kazakhstani patients. Front Oncol 2024; 14:1473575. [PMID: 39726700 PMCID: PMC11669545 DOI: 10.3389/fonc.2024.1473575] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2024] [Accepted: 11/27/2024] [Indexed: 12/28/2024] Open
Abstract
Objectives Fusobacterium nucleatum is a gram-negative anaerobic bacillus associated with colorectal cancer (CRC). We aimed to determine the abundance of F. nucleatum and other CRC-associated bacteria using quantitative real-time polymerase chain reaction (qPCR) analysis to detect the possible correlations between tumor and normal tissues and the relationships between patients' clinical characteristics, diet, and CRC-associated bacteria. Methods A total of 249 biopsy samples of tumor and paired normal tissues were collected from patients with CRC. Biopsy samples were screened for detection of F. nucleatum using qPCR targeting nusG gene. Bacteroides fragilis, Escherichia coli, and Streptococcus gallolyticus were also detected in the samples using species-specific genes. Results The frequencies of detection of F. nucleatum in the tumor and normal tissues of patients with CRC were 43.37 and 24.1%, respectively (P < 0.05). Statistical analysis using cycle threshold (Ct) values from qPCR data and clinical characteristics showed that tumor size, tumor location, and processed meat consumption were significantly correlated with the abundance of F. nucleatum (P < 0.05). The significance of the prevalence of B. fragilis and E. coli in tumor tissues was marginally higher than that in normal tissues (P < 0.1), and the consumption of processed/red meat affected the prevalence of these bacteria (P < 0.05). Conclusions Our results showed an association between the presence of F. nucleatum in tumor tissues and CRC, indicating that F. nucleatum may be a potential marker for CRC diagnosis. F. nucleatum is enriched in CRC tissues and is associated with CRC development.
Collapse
Affiliation(s)
| | - Botakoz Kurentay
- Department of Genomics, National Center for Biotechnology, Astana, Kazakhstan
| | - Alua Gusmaulemova
- Department of Genomics, National Center for Biotechnology, Astana, Kazakhstan
| | - Talgat Utupov
- Department of Genomics, National Center for Biotechnology, Astana, Kazakhstan
| | - Dana Auganova
- Department of Genomics, National Center for Biotechnology, Astana, Kazakhstan
| | - Pavel Tarlykov
- Department of Genomics, National Center for Biotechnology, Astana, Kazakhstan
| | - Meiram Mamlin
- Multidisciplinary Surgery Center, National Research Oncology Center, Astana, Kazakhstan
| | - Saule Khamzina
- Multidisciplinary Surgery Center, National Research Oncology Center, Astana, Kazakhstan
| | - Sanzhar Shalekenov
- Multidisciplinary Surgery Center, National Research Oncology Center, Astana, Kazakhstan
| | - Arman Kozhakhmetov
- Department of Surgery, Nazarbayev University School of Medicine, Astana, Kazakhstan
| |
Collapse
|
31
|
Liu Z, Wang M, Li J, Liang Y, Jiang K, Hu Y, Gong W, Guo X, Guo Q, Zhu B. Hizikia fusiforme polysaccharides synergized with fecal microbiota transplantation to alleviate gut microbiota dysbiosis and intestinal inflammation. Int J Biol Macromol 2024; 283:137851. [PMID: 39566790 DOI: 10.1016/j.ijbiomac.2024.137851] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2024] [Revised: 11/10/2024] [Accepted: 11/17/2024] [Indexed: 11/22/2024]
Abstract
Ulcerative colitis (UC) is closely associated with disruptions in gut microbiota. Restoring balance to gut microbiota and reducing intestinal inflammation has become a promising therapeutic approach for UC. However, challenges remain, including limited efficacy in some treatments. This study explores the synergistic effects and underlying mechanisms of Hizikia fusiforme polysaccharides (HFP) combined with fecal microbiota transplantation (FMT) to improve UC symptoms. Seven-week-old C57/BL6J mice were induced with UC using dextran sodium sulfate (DSS). Supplementation with either FMT alone or in combination with HFP effectively alleviated UC symptoms, reduced colonic inflammation, and corrected gut microbiota imbalance. Notably, HFP combined with FMT yielded showed better effects in ameliorating DSS-induced UC in mice than did FMT alone. Enrichment of probiotics, such as Bifidobacterium, and upregulation of beneficial metabolites, such as betaine, were identified as potential mechanisms for the enhanced effects of HFP combined with FMT against DSS-induced UC. These findings suggest that the combination of Hizikia fusiforme polysaccharides with FMT has potential applications in rectifying dysbiosis and ameliorating inflammatory bowel diseases.
Collapse
Affiliation(s)
- Zhengqi Liu
- Shenzhen Key Laboratory of Food Nutrition and Health, College of Chemistry and Environmental Engineering, Institute for Innovative Development of Food Industry, Shenzhen University, Shenzhen 518060, PR China; National Engineering Research Center of Seafood, National & Local Joint Engineering Laboratory for Marine Bioactive Polysaccharide Development and Application, School of Food Science and Technology, Dalian Polytechnic University, Dalian 116034, PR China
| | - Menghui Wang
- Shenzhen Key Laboratory of Food Nutrition and Health, College of Chemistry and Environmental Engineering, Institute for Innovative Development of Food Industry, Shenzhen University, Shenzhen 518060, PR China
| | - Jinjin Li
- Shenzhen Key Laboratory of Food Nutrition and Health, College of Chemistry and Environmental Engineering, Institute for Innovative Development of Food Industry, Shenzhen University, Shenzhen 518060, PR China
| | - Yuxuan Liang
- Shenzhen Key Laboratory of Food Nutrition and Health, College of Chemistry and Environmental Engineering, Institute for Innovative Development of Food Industry, Shenzhen University, Shenzhen 518060, PR China
| | - Kaiyu Jiang
- Shenzhen Key Laboratory of Food Nutrition and Health, College of Chemistry and Environmental Engineering, Institute for Innovative Development of Food Industry, Shenzhen University, Shenzhen 518060, PR China
| | - Yuanyuan Hu
- Shenzhen Key Laboratory of Food Nutrition and Health, College of Chemistry and Environmental Engineering, Institute for Innovative Development of Food Industry, Shenzhen University, Shenzhen 518060, PR China
| | - Wei Gong
- Shenzhen Key Laboratory of Food Nutrition and Health, College of Chemistry and Environmental Engineering, Institute for Innovative Development of Food Industry, Shenzhen University, Shenzhen 518060, PR China
| | - Xiaoming Guo
- Shenzhen Key Laboratory of Food Nutrition and Health, College of Chemistry and Environmental Engineering, Institute for Innovative Development of Food Industry, Shenzhen University, Shenzhen 518060, PR China
| | - Qingbin Guo
- Shenzhen Key Laboratory of Food Nutrition and Health, College of Chemistry and Environmental Engineering, Institute for Innovative Development of Food Industry, Shenzhen University, Shenzhen 518060, PR China; National Engineering Research Center of Seafood, National & Local Joint Engineering Laboratory for Marine Bioactive Polysaccharide Development and Application, School of Food Science and Technology, Dalian Polytechnic University, Dalian 116034, PR China.
| | - Beiwei Zhu
- Shenzhen Key Laboratory of Food Nutrition and Health, College of Chemistry and Environmental Engineering, Institute for Innovative Development of Food Industry, Shenzhen University, Shenzhen 518060, PR China; National Engineering Research Center of Seafood, National & Local Joint Engineering Laboratory for Marine Bioactive Polysaccharide Development and Application, School of Food Science and Technology, Dalian Polytechnic University, Dalian 116034, PR China.
| |
Collapse
|
32
|
Kunath BJ, De Rudder C, Laczny CC, Letellier E, Wilmes P. The oral-gut microbiome axis in health and disease. Nat Rev Microbiol 2024; 22:791-805. [PMID: 39039286 DOI: 10.1038/s41579-024-01075-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/25/2024] [Indexed: 07/24/2024]
Abstract
The human body hosts trillions of microorganisms throughout many diverse habitats with different physico-chemical characteristics. Among them, the oral cavity and the gut harbour some of the most dense and diverse microbial communities. Although these two sites are physiologically distinct, they are directly connected and can influence each other in several ways. For example, oral microorganisms can reach and colonize the gastrointestinal tract, particularly in the context of gut dysbiosis. However, the mechanisms of colonization and the role that the oral microbiome plays in causing or exacerbating diseases in other organs have not yet been fully elucidated. Here, we describe recent advances in our understanding of how the oral and intestinal microbiota interplay in relation to their impact on human health and disease.
Collapse
Affiliation(s)
- Benoit J Kunath
- Luxembourg Centre for Systems Biomedicine, University of Luxembourg, Esch-sur-Alzette, Luxembourg.
| | - Charlotte De Rudder
- Luxembourg Centre for Systems Biomedicine, University of Luxembourg, Esch-sur-Alzette, Luxembourg
| | - Cedric C Laczny
- Luxembourg Centre for Systems Biomedicine, University of Luxembourg, Esch-sur-Alzette, Luxembourg
| | - Elisabeth Letellier
- Department of Life Sciences and Medicine, Faculty of Science, Technology and Medicine, University of Luxembourg, Belvaux, Luxembourg
| | - Paul Wilmes
- Luxembourg Centre for Systems Biomedicine, University of Luxembourg, Esch-sur-Alzette, Luxembourg.
- Department of Life Sciences and Medicine, Faculty of Science, Technology and Medicine, University of Luxembourg, Belvaux, Luxembourg.
| |
Collapse
|
33
|
Li C, Zhu D, Cao X, Li Y, Hao X. Knockdown of S100A2 inhibits the aggressiveness of endometrial cancer by activating STING pathway. J OBSTET GYNAECOL 2024; 44:2361849. [PMID: 38920019 DOI: 10.1080/01443615.2024.2361849] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2023] [Accepted: 05/25/2024] [Indexed: 06/27/2024]
Abstract
BACKGROUND Endometrial cancer is a kind of gynaecological cancer. S100A2 is a newfound biomarker to diagnose endometrial cancer. This study was to investigate the role of S100A2 on regulating migration and invasion of endometrial cancer. METHODS The mRNA and protein levels of S100A2 were obtained by quantitative real-time polymerase chain reaction, immunohistochemistry and western blot methods. Cell viability was measured by the Cell Counting Kit-8 assay. Cell migration and invasion were quantified using transwell assays. Western blot assay was conducted to quantify protein expressions of epithelial to mesenchymal transition-related proteins (N-cadherin and E-cadherin). Furthermore, in vivo tumour formation experiments were performed to evaluate the role of S100A2 on tumour xenografts. RESULTS S100A2 was significantly up-regulated in endometrial cancer tissues. Knockdown of S100A2 inhibited cell viability, migration and invasion of endometrial cancer cells. Meanwhile, STING pathway was activated by the inhibited S100A2. STING inhibitor C-176 significantly reversed the effects of S100A2 knockdown on aggressive behaviours of endometrial cancer cells. Inhibition of S100A2 dramatically suppresses the tumour growth in vivo. CONCLUSIONS S100A2 functions as an oncogene in endometrial cancer. Targeting S100A2 may be a promising therapeutic method to treat endometrial carcinoma.
Collapse
Affiliation(s)
- Chengcheng Li
- Gynaecology and Obstetrics, The Second Affiliated Hospital of Xuzhou Medical University, Xuzhou, China
| | - Dandan Zhu
- Gynaecology and Obstetrics, The Second Affiliated Hospital of Xuzhou Medical University, Xuzhou, China
| | - Xun Cao
- Rehabilitation Medicine Department, The Second Affiliated Hospital of Xuzhou Medical University, Xuzhou, China
| | - Ying Li
- Gynaecology and Obstetrics, The Second Affiliated Hospital of Xuzhou Medical University, Xuzhou, China
| | - Xiaoyuan Hao
- Gynaecology and Obstetrics, The Second Affiliated Hospital of Xuzhou Medical University, Xuzhou, China
| |
Collapse
|
34
|
Luo W, Han J, Peng X, Zhou X, Gong T, Zheng X. The role of Fusobacterium nucleatum in cancer and its implications for clinical applications. Mol Oral Microbiol 2024; 39:417-432. [PMID: 38988217 DOI: 10.1111/omi.12475] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2023] [Revised: 05/18/2024] [Accepted: 05/23/2024] [Indexed: 07/12/2024]
Abstract
Fusobacterium nucleatum, a gram-negative anaerobic bacterium abundantly found in the human oral cavity, is widely recognized as a key pathobiont responsible for the initiation and progression of periodontal diseases due to its remarkable aggregative capabilities. Numerous clinical studies have linked F. nucleatum with unfavorable prognostic outcomes in various malignancies. In further research, scholars have partially elucidated the mechanisms underlying F. nucleatum's impact on various types of cancer, thus gaining a certain comprehension of the role played by F. nucleatum in cancer. In this comprehensive review, we present an in-depth synthesis of the interplay between F. nucleatum and different cancers, focusing on aspects such as tumor initiation, metastasis, chemoresistance, and modulation of the tumor immune microenvironment and immunotherapy. The implications for cancer diagnosis and treatment are also summarized. The objective of this review is to enhance our comprehension of the intricate relationship between F. nucleatum and oncogenic pathogenesis, while emphasizing potential therapeutic strategies.
Collapse
Affiliation(s)
- Wanyi Luo
- State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, P. R. China
- Department of Cariology and Endodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, P. R. China
| | - Juxi Han
- State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, P. R. China
| | - Xian Peng
- State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, P. R. China
| | - Xuedong Zhou
- State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, P. R. China
- Department of Cariology and Endodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, P. R. China
| | - Tao Gong
- State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, P. R. China
| | - Xin Zheng
- State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, P. R. China
- Department of Cariology and Endodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, P. R. China
| |
Collapse
|
35
|
Hou JY, Wang XL, Chang HJ, Wang XX, Hao SL, Gao Y, Li G, Gao LJ, Zhang FP, Wang ZJ, Shi JY, Li N, Cao JM. PTBP1 crotonylation promotes colorectal cancer progression through alternative splicing-mediated upregulation of the PKM2 gene. J Transl Med 2024; 22:995. [PMID: 39497094 PMCID: PMC11536555 DOI: 10.1186/s12967-024-05793-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2024] [Accepted: 10/22/2024] [Indexed: 11/06/2024] Open
Abstract
BACKGROUND Aerobic glycolysis is a tumor cell phenotype and a hallmark in cancer research. The alternative splicing of the pyruvate kinase M (PKM) gene regulates the expressions of PKM1/2 isoforms and the aerobic glycolysis of tumors. Polypyrimidine tract binding protein (PTBP1) is critical in this process; however, its impact and underlying mechanisms in colorectal cancer (CRC) remain unclear. This study aimed to investigate the role of PTBP1 crotonylation in CRC progression. METHODS The crotonylation levels of PTBP1 in human CRC tissues and cell lines were analyzed using crotonylation proteomics and immunoprecipitation. The main crotonylation sites were identified by immunoprecipitation and immunofluorescent staining. The glycolytic capacities of CRC cells were evaluated by measuring the glucose uptake, lactate production, extracellular acidification rate, and glycolytic proton efflux rate. The role and mechanism of PTBP1 crotonylation in PKM alternative splicing were determined by Western blot, quantitative real-time PCR (RT-qPCR), RNA immunoprecipitation, and immunoprecipitation. The effects of PTBP1 crotonylation on the behaviors of CRC cells and CRC progression were assessed using CCK-8, colony formation, cell invasion, wound healing assays, xenograft model construction, and immunohistochemistry. RESULTS The crotonylation level of PTBP1 was elevated in human CRC tissues compared to peritumor tissues. In CRC tissues and cells, PTBP1 was mainly crotonylated at K266 (PTBP1 K266-Cr), and lysine acetyltransferase 2B (KAT2B) acted as the crotonyltranferase. PTBP1 K266-Cr promoted glycolysis and lactic acid production, increasing the PKM2/PKM1 ratio in CRC tissues and cells. Mechanistically, PTBP1 K266-Cr enhanced the interaction of PTBP1 with heterogeneous nuclear ribonucleoprotein A1 and A2 (hnRNPA1/2), thus affecting the PKM alternative splicing. PTBP1 K266-Cr facilitated CRC cell proliferation, migration, and metastasis in vitro and in vivo. Pathologically, a high level of PTBP1 K266-Cr was associated with poor prognosis in CRC patients. CONCLUSIONS Crotonylation of PTBP1 coordinates tumor cell glycolysis and promotes CRC progression by regulating PKM alternative splicing and increasing PKM2 expression.
Collapse
Affiliation(s)
- Jia-Yi Hou
- Department of Clinical Laboratory, Shanxi Provincial Academy of Traditional Chinese Medicine, Taiyuan, China
| | - Xiao-Ling Wang
- Department of Clinical Laboratory, Shanxi Provincial Academy of Traditional Chinese Medicine, Taiyuan, China
| | - Hai-Jiao Chang
- Department of Clinical Laboratory, Shanxi Provincial Academy of Traditional Chinese Medicine, Taiyuan, China
| | - Xi-Xing Wang
- Department of Oncology, Shanxi Provincial Academy of Traditional Chinese Medicine, Taiyuan, China
| | - Shu-Lan Hao
- Department of Oncology, Shanxi Provincial Academy of Traditional Chinese Medicine, Taiyuan, China
| | - Yu Gao
- Department of Oncology, Shanxi Provincial Academy of Traditional Chinese Medicine, Taiyuan, China
| | - Gang Li
- Department of General Surgery, Shanxi Provincial Academy of Traditional Chinese Medicine, Taiyuan, China
| | - Li-Juan Gao
- Key Laboratory of Cellular Physiology at Shanxi Medical University, Ministry of Education, Key Laboratory of Cellular Physiology of Shanxi Province, and the Department of Physiology, Shanxi Medical University, Taiyuan, China
| | - Fu-Peng Zhang
- National Clinical Research Base of Traditional Chinese Medicine, Shanxi Province Hospital of Traditional Chinese Medicine, Taiyuan, China
| | - Zhi-Jie Wang
- Department of Oncology, Shanxi Provincial Academy of Traditional Chinese Medicine, Taiyuan, China
| | - Jian-Yun Shi
- Key Laboratory of Cellular Physiology at Shanxi Medical University, Ministry of Education, Key Laboratory of Cellular Physiology of Shanxi Province, and the Department of Physiology, Shanxi Medical University, Taiyuan, China.
| | - Ning Li
- Department of Gastrointestinal and Pancreatic Surgery & Hernia and Abdominal Surgery, Shanxi Provincial People's Hospital, Taiyuan, China.
| | - Ji-Min Cao
- Key Laboratory of Cellular Physiology at Shanxi Medical University, Ministry of Education, Key Laboratory of Cellular Physiology of Shanxi Province, and the Department of Physiology, Shanxi Medical University, Taiyuan, China.
| |
Collapse
|
36
|
Biswas I, Precilla S D, Kuduvalli SS, K B, R S, T S A. Ultrastructural and immunohistochemical insights on the anti-glioma effects of a dual-drug cocktail in an in vivo experimental model. J Chemother 2024; 36:593-606. [PMID: 38240036 DOI: 10.1080/1120009x.2024.2302741] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2023] [Revised: 12/27/2023] [Accepted: 01/03/2024] [Indexed: 10/23/2024]
Abstract
Glioma coined as 'butterfly tumor' exhibits intense heterogeneity at the molecular and cellular levels. Although, Temozolomide exerted a long-ranging and prevailing therapeutic effect against glioma, albeit it has provided modest survival outcome. Fucoidan, (marine brown algal derivative) has demonstrated potent anti-tumor effects including glioma. Nevertheless, there is paucity of studies conducted on Fucoidan to enhance the anti-glioma efficacy of Temozolomide. The present study aimed to explore the plausible synergistic anti-glioma efficacy of Fucoidan in combination with Temozolomide in an in vivo experimental model. The dual-drug combination significantly inhibited tumor growth in in vivo and prolonged the survival rate when compared with the other treatment and tumor-control groups, via down-regulation of inflammatory cascade- IL-6/T LR4 and JAK/STAT3 as per the immunohistochemistry findings. Furthermore, the ultrastructural analysis indicated that the combinatorial treatment had restored the normal neuronal architecture of glioma-induced rats. Overall, the dual-drug cocktail might enhance the therapeutic outcome in glioma patients.
Collapse
Affiliation(s)
- Indrani Biswas
- Mahatma Gandhi Medical Advanced Research Institute (MGMARI), Sri Balaji Vidyapeeth (Deemed to-be University), Puducherry, India
| | - Daisy Precilla S
- Mahatma Gandhi Medical Advanced Research Institute (MGMARI), Sri Balaji Vidyapeeth (Deemed to-be University), Puducherry, India
| | - Shreyas S Kuduvalli
- Mahatma Gandhi Medical Advanced Research Institute (MGMARI), Sri Balaji Vidyapeeth (Deemed to-be University), Puducherry, India
| | - Bhavani K
- Department of Pathology, Mahatma Gandhi Medical College and Research Institute (MGMCRI), Sri Balaji Vidyapeeth (Deemed to-be University), Puducherry, India
| | | | - Anitha T S
- Mahatma Gandhi Medical Advanced Research Institute (MGMARI), Sri Balaji Vidyapeeth (Deemed to-be University), Puducherry, India
| |
Collapse
|
37
|
Yang M, Ke Z, Wang D. Heterogeneous nuclear ribonucleoprotein K is a potential target for enhancing the chemosensitivity of nasopharyngeal carcinoma. Open Life Sci 2024; 19:20220975. [PMID: 39479349 PMCID: PMC11524390 DOI: 10.1515/biol-2022-0975] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2024] [Revised: 07/19/2024] [Accepted: 09/03/2024] [Indexed: 11/02/2024] Open
Abstract
The resistance of tumor cells to chemotherapy drugs is a critical determinant in the recurrence and metastasis of nasopharyngeal carcinoma (NPC). Therefore, it is crucial to identify effective biotargets that can enhance the sensitivity of NPC cells to chemotherapy drugs. Heterogeneous nuclear ribonucleoprotein K (hnRNPK) plays a central role in regulating chemotherapy resistance across various tumor types. However, its specific function in NPC cells remains unclear. This study reveals that hnRNPK is overexpressed in NPC tissues while weakly expressed in normal nasopharyngeal tissues. The expression level of hnRNPK is negatively associated with NPC patient survival. Importantly, hnRNPK is a key inducer of chemotherapy resistance in NPC, as evidenced by the significant increase in NPC cell sensitivity to cisplatin following hnRNPK knockdown. Mechanistically, hnRNPK induces chemotherapy resistance in NPC cells by suppressing the activation of the Akt/caspase 3 pathway. In NPC tumor-bearing mice, hnRNPK knockdown enhances the efficacy of cisplatin chemotherapy. Consequently, this work identifies a potential target for enhancing the sensitivity of NPC cells to chemotherapy.
Collapse
Affiliation(s)
- Ming Yang
- Department of Otorhinolaryngology, Shenzhen People’s Hospital (The Second Clinical Medical College, Jinan University, The First Affiliated Hospital, Southern University of Science and Technology), Shenzhen, Guangdong, 518020, China
| | - Zhaoyang Ke
- Department of Otorhinolaryngology, Shenzhen People’s Hospital (The Second Clinical Medical College, Jinan University, The First Affiliated Hospital, Southern University of Science and Technology), Shenzhen, Guangdong, 518020, China
| | - Daji Wang
- Shenzhen Institute of Synthetic Biology, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, Guangdong, 518055, China
| |
Collapse
|
38
|
La Vecchia M, Sala G, Sculco M, Aspesi A, Dianzani I. Genetics, diet, microbiota, and metabolome: partners in crime for colon carcinogenesis. Clin Exp Med 2024; 24:248. [PMID: 39470880 PMCID: PMC11522171 DOI: 10.1007/s10238-024-01505-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2024] [Accepted: 10/15/2024] [Indexed: 11/01/2024]
Abstract
Colorectal cancer (CRC) ranks among the most prevalent malignant tumors worldwide, with a multifactorial etiology encompassing genetic, environmental, and life-style factors, as well as the intestinal microbiota and its metabolome. These risk factors often work together in specific groups of patients, influencing how CRC develops and progresses. Importantly, alterations in the gut microbiota act as a critical nexus in this interplay, significantly affecting susceptibility to CRC. This review highlights recent insights into unmodifiable and modifiable risk factors for CRC and how they might interact with the gut microbiota and its metabolome. Understanding the mechanisms of these interactions will help us develop targeted, precision-medicine strategies that can adjust the composition of the gut microbiota to meet individual health needs, preventing or treating CRC more effectively.
Collapse
Affiliation(s)
- Marta La Vecchia
- Department of Health Sciences, Università del Piemonte Orientale, 28100, Novara, Italy
| | - Gloria Sala
- Department of Health Sciences, Università del Piemonte Orientale, 28100, Novara, Italy
| | - Marika Sculco
- Department of Health Sciences, Università del Piemonte Orientale, 28100, Novara, Italy
| | - Anna Aspesi
- Department of Health Sciences, Università del Piemonte Orientale, 28100, Novara, Italy
| | - Irma Dianzani
- Department of Health Sciences, Università del Piemonte Orientale, 28100, Novara, Italy.
| |
Collapse
|
39
|
Yang C, Wusigale, You L, Li X, Kwok LY, Chen Y. Inflammation, Gut Microbiota, and Metabolomic Shifts in Colorectal Cancer: Insights from Human and Mouse Models. Int J Mol Sci 2024; 25:11189. [PMID: 39456970 PMCID: PMC11508446 DOI: 10.3390/ijms252011189] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2024] [Revised: 10/09/2024] [Accepted: 10/13/2024] [Indexed: 10/28/2024] Open
Abstract
Colorectal cancer (CRC) arises from aberrant mutations in colorectal cells, frequently linked to chronic inflammation. This study integrated human gut metagenome analysis with an azoxymethane and dextran sulfate sodium-induced CRC mouse model to investigate the dynamics of inflammation, gut microbiota, and metabolomic profiles throughout tumorigenesis. The analysis of stool metagenome data from 30 healthy individuals and 40 CRC patients disclosed a significant escalation in both gut microbiota diversity and abundance in CRC patients compared to healthy individuals (p < 0.05). Marked structural disparities were identified between the gut microbiota of healthy individuals and those with CRC (p < 0.05), characterized by elevated levels of clostridia and diminished bifidobacteria in CRC patients (p < 0.05). In the mouse model, CRC mice exhibited distinct gut microbiota structures and metabolite signatures at early and advanced tumor stages, with subtle variations noted during the intermediate phase. Additionally, inflammatory marker levels increased progressively during tumor development in CRC mice, in contrast to their stable levels in healthy counterparts. These findings suggest that persistent inflammation might precipitate gut dysbiosis and altered microbial metabolism. Collectively, this study provides insights into the interplay between inflammation, gut microbiota, and metabolite changes during CRC progression, offering potential biomarkers for diagnosis. While further validation with larger cohorts is warranted, the data obtained support the development of CRC prevention and diagnosis strategies.
Collapse
Affiliation(s)
- Chengcong Yang
- Key Laboratory of Dairy Biotechnology and Engineering, Ministry of Education, Inner Mongolia Agricultural University, Hohhot 010018, China; (C.Y.); (W.); (L.Y.); (X.L.); (L.-Y.K.)
- Key Laboratory of Dairy Products Processing, Ministry of Agriculture and Rural Affairs, Hohhot 010018, China
- Inner Mongolia Key Laboratory of Dairy Biotechnology and Engineering, Inner Mongolia Agricultural University, Hohhot 010018, China
| | - Wusigale
- Key Laboratory of Dairy Biotechnology and Engineering, Ministry of Education, Inner Mongolia Agricultural University, Hohhot 010018, China; (C.Y.); (W.); (L.Y.); (X.L.); (L.-Y.K.)
- Key Laboratory of Dairy Products Processing, Ministry of Agriculture and Rural Affairs, Hohhot 010018, China
- Inner Mongolia Key Laboratory of Dairy Biotechnology and Engineering, Inner Mongolia Agricultural University, Hohhot 010018, China
| | - Lijun You
- Key Laboratory of Dairy Biotechnology and Engineering, Ministry of Education, Inner Mongolia Agricultural University, Hohhot 010018, China; (C.Y.); (W.); (L.Y.); (X.L.); (L.-Y.K.)
- Key Laboratory of Dairy Products Processing, Ministry of Agriculture and Rural Affairs, Hohhot 010018, China
- Inner Mongolia Key Laboratory of Dairy Biotechnology and Engineering, Inner Mongolia Agricultural University, Hohhot 010018, China
| | - Xiang Li
- Key Laboratory of Dairy Biotechnology and Engineering, Ministry of Education, Inner Mongolia Agricultural University, Hohhot 010018, China; (C.Y.); (W.); (L.Y.); (X.L.); (L.-Y.K.)
- Key Laboratory of Dairy Products Processing, Ministry of Agriculture and Rural Affairs, Hohhot 010018, China
- Inner Mongolia Key Laboratory of Dairy Biotechnology and Engineering, Inner Mongolia Agricultural University, Hohhot 010018, China
| | - Lai-Yu Kwok
- Key Laboratory of Dairy Biotechnology and Engineering, Ministry of Education, Inner Mongolia Agricultural University, Hohhot 010018, China; (C.Y.); (W.); (L.Y.); (X.L.); (L.-Y.K.)
- Key Laboratory of Dairy Products Processing, Ministry of Agriculture and Rural Affairs, Hohhot 010018, China
- Inner Mongolia Key Laboratory of Dairy Biotechnology and Engineering, Inner Mongolia Agricultural University, Hohhot 010018, China
| | - Yongfu Chen
- Key Laboratory of Dairy Biotechnology and Engineering, Ministry of Education, Inner Mongolia Agricultural University, Hohhot 010018, China; (C.Y.); (W.); (L.Y.); (X.L.); (L.-Y.K.)
- Key Laboratory of Dairy Products Processing, Ministry of Agriculture and Rural Affairs, Hohhot 010018, China
- Inner Mongolia Key Laboratory of Dairy Biotechnology and Engineering, Inner Mongolia Agricultural University, Hohhot 010018, China
| |
Collapse
|
40
|
Yang X, Zheng F, Yan P, Liu X, Chen X, Du X, Zhang Y, Wang P, Chen C, Lu H, Bai Y. S100A2 activation promotes interstitial fibrosis in kidneys by FoxO1-mediated epithelial-mesenchymal transition. Cell Biol Toxicol 2024; 40:86. [PMID: 39382800 PMCID: PMC11464619 DOI: 10.1007/s10565-024-09929-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2024] [Accepted: 10/02/2024] [Indexed: 10/10/2024]
Abstract
BACKGROUND Renal interstitial fibrosis (RIF) is a common feature of chronic kidney diseases (CKD), with epithelial-mesenchymal transition (EMT) being one of its important mechanisms. S100A2 is a protein associated with cell proliferation and differentiation, but its specific functions and molecular mechanisms in RIF remain to be determined. METHODS S100A2 levels were evaluated in three mouse models, including unilateral ureteral obstruction (UUO), ischemia-reperfusion injury (IRI), and aristolochic acid nephropathy (AAN), as well as in TGF-β1- treated HK-2 cells and in kidney tissue samples. Furthermore, the role of S100A2 and its interaction with FoxO1 was investigated using RT-qPCR, immunoblotting, immunofluorescence staining, co-immunoprecipitation (Co-IP), transcriptome sequencing, and gain- or loss-of-function approaches in vitro. RESULTS Elevated expression levels of S100A2 were observed in three mouse models and TGF-β1-treated HK2 cells, as well as in kidney tissue samples. Following siRNA silencing of S100A2, exposure to TGF-β1 in cultured HK-2 cells suppressed EMT process and extracellular matrix (ECM) accumulation. Conversely, Overexpression of S100A2 induced EMT and ECM deposition. Notably, we identified that S100A2-mediated EMT depends on FoxO1. Immunofluorescence staining indicated that S100A2 and FoxO1 colocalized in the nucleus and cytoplasm, and their interaction was verified in Co-IP assay. S100A2 knockdown decreased TGF-β1-induced phosphorylation of FoxO1 and increased its protein expression, whereas S100A2 overexpression hampered FoxO1 activation. Furthermore, pharmacological blockade of FoxO1 rescued the induction of TGF-β1 on EMT and ECM deposition in S100A2 siRNA-treated cells. CONCLUSION S100A2 activation exacerbates interstitial fibrosis in kidneys by facilitating FoxO1-mediated EMT.
Collapse
Affiliation(s)
- Xuejia Yang
- Zhejiang Key Laboratory of Intelligent Cancer Biomarker Discovery and Translation, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325035, China
| | - Fan Zheng
- Zhejiang Key Laboratory of Intelligent Cancer Biomarker Discovery and Translation, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325035, China
| | - Penghua Yan
- Department of Laboratory Medicine, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325035, China
| | - Xueting Liu
- Department of Nephrology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325035, China
| | - Xuanwen Chen
- Department of Nephrology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325035, China
| | - Xinyu Du
- Department of Nephrology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325035, China
| | - Yin Zhang
- Department of Pathology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325035, China
| | - Peilei Wang
- Department of Pathology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325035, China
| | - Chaosheng Chen
- Department of Nephrology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325035, China.
- Institute of Chronic Nephropathy, Wenzhou Medical University, Wenzhou, 325035, China.
| | - Hong Lu
- Department of Laboratory Medicine, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325035, China.
| | - Yongheng Bai
- Zhejiang Key Laboratory of Intelligent Cancer Biomarker Discovery and Translation, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325035, China.
- Institute of Chronic Nephropathy, Wenzhou Medical University, Wenzhou, 325035, China.
| |
Collapse
|
41
|
Zhang H, Yan S, Du R, Xue Y, Yao W, Teligun, Zhao Y, Li Y, Bao H, Cao S, Li X, Bao S, Song Y. Cadmium exposure promotes inflammation through the PPAR signaling pathway in the small intestine and colon of Hu sheep. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2024; 284:117004. [PMID: 39270416 DOI: 10.1016/j.ecoenv.2024.117004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/06/2024] [Revised: 08/27/2024] [Accepted: 09/02/2024] [Indexed: 09/15/2024]
Abstract
With the increase of cadmium content in the environment, the losses caused by cadmium-induced intestinal diseases to animal husbandry are increasing year by year. However, most of the on-going research activities focus on zoonotic diseases rather than exploring the mechanisms of animal disease occurrence from an anthropogenic environmental perspective. In this study, stressed Hu sheep under cadmium environmental exposure were selected to explore the mechanism of inflammatory bowel disease development. 16 s, untargeted metabolomics and transcriptomic multiomics were used to analyze the changes of their intestinal tract and intestinal contents. The results showed that the beneficial microorganisms (s_Ruminococcus_sp) in the Cd group were significantly decreased and the potentially harmful microorganisms were significantly enriched, and the changes of these microorganisms affected the changes of metabolites (caprylic acid) to a certain extent, resulting in a decrease in fatty acids in the intestine. Due to the combined effect of cadmium ion and fatty acid reduction, the PPAR signaling pathway was inhibited, and the fatty acid transport and binding were further reduced, causing very serious damage to the intestine. We revealed for the first time the mechanism of intestinal injury in Hu sheeps under cadmium environmental exposure and provided new prevention and treatment methods of intestinal diseases under the environmental exposure to trace metals.
Collapse
Affiliation(s)
- Huimin Zhang
- Research Center for Animal Genetic Resources of Mongolia Plateau, College of Life Sciences, Inner Mongolia University, Hohhot 010020, China; The State Key Laboratory of Reproductive Regulation and Breeding of Grassland Livestock, College of Life Sciences, Inner Mongolia University, Hohhot 010020, China
| | - Shuo Yan
- Research Center for Animal Genetic Resources of Mongolia Plateau, College of Life Sciences, Inner Mongolia University, Hohhot 010020, China; The State Key Laboratory of Reproductive Regulation and Breeding of Grassland Livestock, College of Life Sciences, Inner Mongolia University, Hohhot 010020, China
| | - Ruilin Du
- Research Center for Animal Genetic Resources of Mongolia Plateau, College of Life Sciences, Inner Mongolia University, Hohhot 010020, China; The State Key Laboratory of Reproductive Regulation and Breeding of Grassland Livestock, College of Life Sciences, Inner Mongolia University, Hohhot 010020, China
| | - Yue Xue
- Research Center for Animal Genetic Resources of Mongolia Plateau, College of Life Sciences, Inner Mongolia University, Hohhot 010020, China; The State Key Laboratory of Reproductive Regulation and Breeding of Grassland Livestock, College of Life Sciences, Inner Mongolia University, Hohhot 010020, China
| | - Wenna Yao
- Research Center for Animal Genetic Resources of Mongolia Plateau, College of Life Sciences, Inner Mongolia University, Hohhot 010020, China; The State Key Laboratory of Reproductive Regulation and Breeding of Grassland Livestock, College of Life Sciences, Inner Mongolia University, Hohhot 010020, China
| | - Teligun
- Research Center for Animal Genetic Resources of Mongolia Plateau, College of Life Sciences, Inner Mongolia University, Hohhot 010020, China; The State Key Laboratory of Reproductive Regulation and Breeding of Grassland Livestock, College of Life Sciences, Inner Mongolia University, Hohhot 010020, China
| | - Yulong Zhao
- Research Center for Animal Genetic Resources of Mongolia Plateau, College of Life Sciences, Inner Mongolia University, Hohhot 010020, China; The State Key Laboratory of Reproductive Regulation and Breeding of Grassland Livestock, College of Life Sciences, Inner Mongolia University, Hohhot 010020, China
| | - Yongfa Li
- Research Center for Animal Genetic Resources of Mongolia Plateau, College of Life Sciences, Inner Mongolia University, Hohhot 010020, China; The State Key Laboratory of Reproductive Regulation and Breeding of Grassland Livestock, College of Life Sciences, Inner Mongolia University, Hohhot 010020, China
| | - Hanggai Bao
- Research Center for Animal Genetic Resources of Mongolia Plateau, College of Life Sciences, Inner Mongolia University, Hohhot 010020, China; The State Key Laboratory of Reproductive Regulation and Breeding of Grassland Livestock, College of Life Sciences, Inner Mongolia University, Hohhot 010020, China
| | - Shuo Cao
- Research Center for Animal Genetic Resources of Mongolia Plateau, College of Life Sciences, Inner Mongolia University, Hohhot 010020, China; The State Key Laboratory of Reproductive Regulation and Breeding of Grassland Livestock, College of Life Sciences, Inner Mongolia University, Hohhot 010020, China
| | - Xihe Li
- Research Center for Animal Genetic Resources of Mongolia Plateau, College of Life Sciences, Inner Mongolia University, Hohhot 010020, China; The State Key Laboratory of Reproductive Regulation and Breeding of Grassland Livestock, College of Life Sciences, Inner Mongolia University, Hohhot 010020, China; Inner Mongolia Saikexing Institute of Breeding and Reproductive Biotechnology in Domestic Animal, Hohhot 011517, China.
| | - Siqin Bao
- Research Center for Animal Genetic Resources of Mongolia Plateau, College of Life Sciences, Inner Mongolia University, Hohhot 010020, China; The State Key Laboratory of Reproductive Regulation and Breeding of Grassland Livestock, College of Life Sciences, Inner Mongolia University, Hohhot 010020, China.
| | - Yongli Song
- Research Center for Animal Genetic Resources of Mongolia Plateau, College of Life Sciences, Inner Mongolia University, Hohhot 010020, China; The State Key Laboratory of Reproductive Regulation and Breeding of Grassland Livestock, College of Life Sciences, Inner Mongolia University, Hohhot 010020, China.
| |
Collapse
|
42
|
Chen X, Li D, Su Q, Ling X, Yang Y, Liu Y, Zhu X, He A, Ding S, Xu R, Liu Z, Long X, Zhang J, Yang Z, Qi Y, Wu H. SENP3 mediates the deSUMOylation and degradation of YAP1 to regulate the progression of triple-negative breast cancer. J Biol Chem 2024; 300:107764. [PMID: 39270822 PMCID: PMC11490879 DOI: 10.1016/j.jbc.2024.107764] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2024] [Revised: 07/23/2024] [Accepted: 08/15/2024] [Indexed: 09/15/2024] Open
Abstract
Triple-negative breast cancer (TNBC) is a prevalent malignancy in women, casting a formidable shadow on their well-being. Positioned within the nucleolus, SUMO-specific protease 3 (SENP3) assumes a pivotal role in the realms of development and tumorigenesis. However, the participation of SENP3 in TNBC remains a mystery. Here, we elucidate that SENP3 exerts inhibitory effects on migration and invasion capacities, as well as on the stem cell-like phenotype, within TNBC cells. Further experiments showed that YAP1 is the downstream target of SENP3, and SENP3 regulates tumorigenesis in a YAP1-dependent manner. YAP1 is found to be SUMOylated and SENP3 deconjugates SUMOylated YAP1 and promotes degradation mediated by the ubiquitin-proteasome system. More importantly, YAP1 with a mutation at the SUMOylation site impedes the capacity of WT YAP1 in TNBC tumorigenesis. Taken together, our findings firmly establish the pivotal role of SENP3 in the modulation of YAP1 deSUMOylation, unveiling novel mechanistic insight into the important role of SENP3 in the regulation of TNBC tumorigenesis in a YAP1-dependent manner.
Collapse
Affiliation(s)
- Xu Chen
- College of Life Sciences, Shaanxi Normal University, Xi'an, Shaanxi, China
| | - Danqing Li
- College of Life Sciences, Shaanxi Normal University, Xi'an, Shaanxi, China
| | - Qi Su
- College of Life Sciences, Shaanxi Normal University, Xi'an, Shaanxi, China
| | - Xing Ling
- College of Life Sciences, Shaanxi Normal University, Xi'an, Shaanxi, China
| | - Yanyan Yang
- College of Life Sciences, Shaanxi Normal University, Xi'an, Shaanxi, China
| | - Yuhang Liu
- College of Life Sciences, Shaanxi Normal University, Xi'an, Shaanxi, China
| | - Xinjie Zhu
- College of Life Sciences, Shaanxi Normal University, Xi'an, Shaanxi, China
| | - Anqi He
- College of Life Sciences, Shaanxi Normal University, Xi'an, Shaanxi, China
| | - Siyu Ding
- College of Life Sciences, Shaanxi Normal University, Xi'an, Shaanxi, China
| | - Runxiao Xu
- College of Life Sciences, Shaanxi Normal University, Xi'an, Shaanxi, China
| | - Zhaoxia Liu
- College of Life Sciences, Shaanxi Normal University, Xi'an, Shaanxi, China
| | - Xiaojun Long
- College of Life Sciences, Shaanxi Normal University, Xi'an, Shaanxi, China
| | - Jinping Zhang
- Department of Pathology, The Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan, China
| | - Zhihui Yang
- Department of Pathology, The Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan, China
| | - Yitao Qi
- College of Life Sciences, Shaanxi Normal University, Xi'an, Shaanxi, China.
| | - Hongmei Wu
- College of Life Sciences, Shaanxi Normal University, Xi'an, Shaanxi, China.
| |
Collapse
|
43
|
Wu YJ, Xiong JF, Zhan CN, Xu H. Gut microbiota alterations in colorectal adenoma-carcinoma sequence based on 16S rRNA gene sequencing: A systematic review and meta-analysis. Microb Pathog 2024; 195:106889. [PMID: 39197689 DOI: 10.1016/j.micpath.2024.106889] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2024] [Revised: 08/12/2024] [Accepted: 08/25/2024] [Indexed: 09/01/2024]
Abstract
BACKGROUND Most sporadic colorectal cancers (CRC) develop through the adenoma-carcinoma sequence. While dysbiosis of the intestinal flora contributes to CRC's pathogenesis, precise microbial taxa closely associated with the colorectal adenoma-carcinoma sequence remain elusive. This meta-analysis aimed to summarize the features of intestinal flora in patients with AD and CRC. METHODS PubMed, Embase, Cochrane Library, and Web of Science were searched for case-control studies comparing the relative abundance of gut microbiota in the feces of patients with AD, CRC, and healthy controls (HC) from inception to January 2024. The weighted mean difference (WMD) with a 95 % confidence interval (CI) was used to display the results. The Newcastle-Ottawa Scale (NOS) was used to assess the quality of the entailed literature. Publication bias was evaluated with the Egger's and Begg's tests. RESULTS Eleven studies were included, involving 477 CRC patients, 628 AD patients, and 864 healthy controls. Compared with HC, the patients with AD had a significantly lower Chao 1 index (WMD = -30.17, 95 % CI [-41.10, -19.23], P < 0.001) and Shannon index (WMD = -0.11 95 % CI [-0.18, -0.04], P = 0.002). Compared with AD, the CRC patients had a significantly higher Chao1 index (WMD = 22.09, 95 % CI [7.59, 36.00], P = 0.003) and Shannon index (WMD = 0.08, 95 % CI [0.00, 0.15], P = 0.037). Enterobacteriaceae (WMD = 0.03 95 % CI [0.00,0.05], P = 0.047; WMD = 0.02 95 % CI [0.00,0.04], P = 0.027) significantly increased in the order of Control-AD-CRC, while that of Blautia (WMD = -0.00 95 % CI [-0.01, -0.00], P = 0.001; WMD = -0.00 95 % CI [-0.00, -0.00], P = 0.002) was reduced. Compared with HC, the relative abundance of Proteobacteria (WMD = 0.05 95 % CI [0.03,0.07], P < 0.001), Fusobacteria (WMD = 0.02 95 % CI [0.00,0.03], P = 0.042), Streptococcaceae (WMD = 0.03 95 % CI [0.01,0.05], P = 0.017), Prevotellaceae (WMD = 0.02 95 % CI [0.00,0.04], P = 0.040), and Escherichia-Shigella (WMD = 0.06 95 % CI [0.01, 0.11], P = 0.021) was enriched in the CRC group. The relative abundance of Alistipes (WMD = 0.00 95 % CI [0.00,0.01], P = 0.032) and Streptococcus (WMD = 0.00 95 % CI [0.00,0.00], P = 0.001) was increased in the AD vs HC. The relative abundance of Firmicutes (WMD = -0.07 95 % CI [-0.12, -0.03], P = 0.003), Bifidobacteria (WMD = -0.03 95 % CI [-0.05, -0.01], P = 0.016), and Klebsiella (WMD = -0.01 95 % CI [-0.01, -0.00], P = 0.001) was decreased in the CRC vs HC. Compared with AD, the relative abundance of Firmicutes (WMD = -0.04 95 % CI [-0.07, -0.02], P = 0.002), Peptostreptococcaceae (WMD = -0.03 95 % CI [-0.05, -0.00], P = 0.021), Lachnospiraceae (WMD = -0.04 95 % CI [-0.08,-0.00], P = 0.037), Ruminococcaceae (WMD = -0.06 95 % CI [-0.09,-0.03], P < 0.001), Faecalibacterium (WMD = -0.01 95 % CI [-0.02, -0.01], P = 0.001), and Lachnoclostridium (WMD = -0.02 95 % CI [-0.03, -0.00], P = 0.040) was decreased in the CRC group, while Proteobacteria (WMD = 0.04 95 % CI [0.02,0.05], P < 0.001) was increased. CONCLUSIONS The dysbiosis characterized by reduced levels of short-chain fatty acid (SCFA)-producing bacteria, decreased anti-inflammatory bacteria, increased pro-inflammatory bacteria, and an elevation of bacteria with cytotoxic effects damaging to DNA may represent the specific microbial signature of colorectal adenoma/carcinoma. Further research is required to elucidate the mechanisms by which gut dysbiosis leads to the progression from AD to CRC and to explore the potential of specific microbiota markers in clinical treatment and non-invasive screening.
Collapse
Affiliation(s)
- Yi-Jun Wu
- The Second Clinical Medical College, Zhejiang Chinese Medical University, Hangzhou, China
| | - Jing-Fang Xiong
- Department of Geriatrics, Hangzhou Red Cross Hospital, Hangzhou, China
| | - Cheng-Nan Zhan
- Medical Service Community, Hangzhou Xiaoshan Hospital of TCM, Hangzhou, China
| | - Hong Xu
- Department of Gastroenterology and Hepatology, Hangzhou Red Cross Hospital, Hangzhou, China.
| |
Collapse
|
44
|
Yuan F, Zhang T, Jia S, Zhao J, Wan B, Liu G. Fine mapping-based multi-omics analysis interprets the gut-lung axis function of SGLT2 inhibitors. Front Cell Infect Microbiol 2024; 14:1447327. [PMID: 39318474 PMCID: PMC11420167 DOI: 10.3389/fcimb.2024.1447327] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2024] [Accepted: 08/21/2024] [Indexed: 09/26/2024] Open
Abstract
Background Currently, Sodium-glucose cotransporter 2 (SGLT2) inhibitors demonstrate additional effects beyond glucose control on the gut microbiota and circulating metabolites. The gut microbiota and metabolites have been found to be useful in elucidating potential biological mechanisms of pulmonary diseases. Therefore, our study aims to investigate the effects of gut microbiota and metabolites mediating SGLT2 inhibition in 10 pulmonary diseases through Mendelian randomization (MR) research. Methods We conducted a two-sample, two-step MR study to assess the association between SGLT2 inhibition and 10 pulmonary diseases and to investigate the mediating effects of gut microbiota and metabolite. Gene-fine mapping and annotation of mediators by FUMA and Magma analyses were performed, and causal associations of mapped genes with diseases were assessed by muti-omics MR analyses. Possible side effects of SGLT2 inhibition were assessed by PheWAS analysis. Results SGLT2 inhibition was linked to a reduced risk of T2DM, Interstitial lung disease (ILD), Pneumoconiosis, Pulmonary tuberculosis, and Asthma(OR=0.457, 0.054, 0.002, 0.280, 0.706). The family Enterobacteriaceae and order Enterobacteriales were associated with SGLT2 inhibition and ILD(95% CI:0.079-0.138). The family Alcaligenaceae and X-12719 were linked to pneumoconiosis (95% CI: 0.042-0.120, 0.050-0.099). The genus Phascolarctobacterium was connected to pulmonary tuberculosis (95% CI: 0.236-0.703).The degree of unsaturation (Fatty Acids), ratio of docosahexaenoic acid to total fatty acids, and 4-androsten-3beta,17beta-diol disulfate 2, were associated with asthma(95% CI: 0.042-0.119, 0.039-0.101, 0.181-0.473). Furthermore, Fuma and Magma analyses identified target genes for the four diseases, and proteomic MR analysis revealed six overlapping target genes in asthma. PheWAS analysis also highlighted potential side effects of SGLT2 inhibition. Conclusions This comprehensive study strongly supports a multi-omics association between SGLT2 inhibition and reduced risk of interstitial lung disease, tuberculosis, pneumoconiosis, and asthma. Four identified gut microbiota, four metabolites, sixteen metabolic pathways, and six target genes appear to play a potential role in this association. The results of the comprehensive phenome-wide association analysis also identified the full effect of SGLT2 inhibitors.
Collapse
Affiliation(s)
- Fengqin Yuan
- Department of Infection Control, the Fourth Affiliated Hospital of School of Medicine, and International School of Medicine, International Institutes of Medicine, Zhejiang University, Yiwu, China
| | - Tianlong Zhang
- Department of Critical Care Medicine, the Fourth Affiliated Hospital of School of Medicine, and International School of Medicine, International Institutes of Medicine, Zhejiang University, Yiwu, China
| | - Sixiang Jia
- Department of Cardiology, the Fourth Affiliated Hospital of School of Medicine, and International School of Medicine, International Institutes of Medicine, Zhejiang University, Yiwu, China
| | - Jianqiang Zhao
- Department of Cardiology, the Fourth Affiliated Hospital of School of Medicine, and International School of Medicine, International Institutes of Medicine, Zhejiang University, Yiwu, China
| | - Binbin Wan
- Department of Immunization Planning, Yiwu Center for Disease Control and Prevention, Yiwu, Zhejiang, China
| | - Gang Liu
- Department of Infection Control, the Fourth Affiliated Hospital of School of Medicine, and International School of Medicine, International Institutes of Medicine, Zhejiang University, Yiwu, China
| |
Collapse
|
45
|
Wang X, Baster Z, Azizi L, Li L, Rajfur Z, Hytönen VP, Huang C. Talin2 binds to non-muscle myosin IIa and regulates cell attachment and fibronectin secretion. Sci Rep 2024; 14:20175. [PMID: 39215026 PMCID: PMC11364542 DOI: 10.1038/s41598-024-70866-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2024] [Accepted: 08/22/2024] [Indexed: 09/04/2024] Open
Abstract
Talin2 is localized to large focal adhesions and is indispensable for traction force generation, invadopodium formation, cell invasion as well as metastasis. Talin2 has a higher affinity toward β-integrin tails than talin1. Moreover, disruption of the talin2-β-integrin interaction inhibits traction force generation, invadopodium formation and cell invasion, indicating that a strong talin2-β-integrin interaction is required for talin2 to fulfill these functions. Nevertheless, the role of talin2 in mediation of these processes remains unknown. Here we show that talin2 binds to the N-terminus of non-muscle myosin IIA (NMIIA) through its F3 subdomain. Moreover, talin2 co-localizes with NMIIA at cell edges as well as at some cytoplasmic spots. Talin2 also co-localizes with cortactin, an invadopodium marker. Furthermore, overexpression of NMIIA promoted the talin2 head binding to the β1-integrin tail, whereas knockdown of NMIIA reduced fibronectin and matrix metalloproteinase secretion as well as inhibited cell attachment on fibronectin-coated substrates. These results suggest that talin2 binds to NMIIA to control the secretion of extracellular matrix proteins and this interaction modulates cell adhesion.
Collapse
Affiliation(s)
- Xiaochuan Wang
- The Second Hospital of Shandong University, Jinan, 250033, Shandong, China.
| | - Zbigniew Baster
- Markey Cancer Center, University of Kentucky, Lexington, KY, 40506, USA
- Institute of Physics, Faculty of Physics, Astronomy and Applied Computer Science, Jagiellonian University, 30-348, Kraków, Poland
| | - Latifeh Azizi
- Faculty of Medicine and Health Technology, Tampere University, 33520, Tampere, Finland
- Fimlab Laboratories, Tampere, Finland
| | - Liqing Li
- Markey Cancer Center, University of Kentucky, Lexington, KY, 40506, USA
| | - Zenon Rajfur
- Institute of Physics, Faculty of Physics, Astronomy and Applied Computer Science, Jagiellonian University, 30-348, Kraków, Poland
- Jagiellonian Center of Biomedical Imaging, Jagiellonian University, 30-348, Kraków, Poland
| | - Vesa P Hytönen
- Faculty of Medicine and Health Technology, Tampere University, 33520, Tampere, Finland.
- Fimlab Laboratories, Tampere, Finland.
| | - Cai Huang
- Markey Cancer Center, University of Kentucky, Lexington, KY, 40506, USA.
- Doer Biologics Inc, 2nd Floor, Building 3, Hexiang Science and Technology Center, Medicine Port Town, Qiantang District, Hangzhou, Zhejiang Province, China.
| |
Collapse
|
46
|
Chi XX, Ye P, Cao NQ, Hwang WL, Cha JH, Hung MC, Hsu KW, Yan XW, Yang WH. PPIH as a poor prognostic factor increases cell proliferation and m6A RNA methylation in hepatocellular carcinoma. Am J Cancer Res 2024; 14:3733-3756. [PMID: 39267679 PMCID: PMC11387852 DOI: 10.62347/nzij5785] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2024] [Accepted: 08/07/2024] [Indexed: 09/15/2024] Open
Abstract
RNA-binding proteins (RBPs) play a crucial role in the biological processes of liver hepatocellular carcinoma (LIHC). Peptidyl-prolyl cis-trans isomerase H (PPIH), an RBP, possesses prolyl isomerase activity and functions as a protein chaperone. The relationship between PPIH and LIHC has not yet been fully elucidated. This study elucidated potential mechanisms through which PPIH affects the prognosis of LIHC. Bioinformatics analysis and in vitro experiments revealed that PPIH expression was higher in LIHC tissues than in normal tissues. PPIH was identified as an independent prognostic factor, with high PPIH expression being associated with worse prognoses. Moreover, PPIH increased the m6A RNA methylation level and promoted cell proliferation by modulating DNA replication and the expression of cell cycle-related genes in LIHC cells. Bioinformatics analysis also revealed that PPIH expression increased immune cell infiltration and the expression of immune checkpoint proteins. Collectively, these findings indicate that PPIH might promote LIHC progression by enhancing the m6A RNA methylation level, increasing cell proliferation, and altering the tumor immune microenvironment. Our study demonstrates that PPIH, as a poor prognostic factor, may lead to LIHC malignancy through multiple pathways. Further in-depth research on this topic is warranted.
Collapse
Affiliation(s)
- Xiao-Xia Chi
- Affiliated Cancer Hospital and Institute, Guangzhou Medical University Guangzhou 510095, Guangdong, China
- Department of Family Medicine, The University of Hong Kong-Shenzhen Hospital Shenzhen 518053, Guangdong, China
| | - Peng Ye
- Infection Medicine Research Institute of Panyu District, The Affiliated Panyu Central Hospital of Guangzhou Medical University Guangzhou 511400, Guangdong, China
| | - Neng-Qi Cao
- Department of General Surgery, Nanjing Lishui People's Hospital Nanjing 211200, Jiangsu, China
| | - Wei-Lun Hwang
- Department of Biotechnology and Laboratory Science in Medicine, and Cancer Progression Research Center, National Yang Ming Chiao Tung University Taipei 112304, Taiwan
| | - Jong-Ho Cha
- Department of Biomedical Science and Engineering, Graduate School, Inha University Incheon 22212, The Republic of Korea
| | - Mien-Chie Hung
- Graduate Institute of Biomedical Sciences, Institute of Biochemistry and Molecular Biology, Research Center for Cancer Biology, Cancer Biology and Precision Therapeutics Center, and Center for Molecular Medicine, China Medical University Taichung 406040, Taiwan
| | - Kai-Wen Hsu
- Institute of Translational Medicine and New Drug Development, China Medical University Taichung 404328, Taiwan
| | - Xiu-Wen Yan
- Affiliated Cancer Hospital and Institute, Guangzhou Medical University Guangzhou 510095, Guangdong, China
| | - Wen-Hao Yang
- Graduate Institute of Cell Biology, and Cancer Biology and Precision Therapeutics Center, China Medical University Taichung 404327, Taiwan
| |
Collapse
|
47
|
Hamamah S, Lobiuc A, Covasa M. Antioxidant Role of Probiotics in Inflammation-Induced Colorectal Cancer. Int J Mol Sci 2024; 25:9026. [PMID: 39201713 PMCID: PMC11354872 DOI: 10.3390/ijms25169026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2024] [Revised: 08/15/2024] [Accepted: 08/16/2024] [Indexed: 09/03/2024] Open
Abstract
Colorectal cancer (CRC) continues to be a significant contributor to global morbidity and mortality. Emerging evidence indicates that disturbances in gut microbial composition, the formation of reactive oxygen species (ROS), and the resulting inflammation can lead to DNA damage, driving the pathogenesis and progression of CRC. Notably, bacterial metabolites can either protect against or contribute to oxidative stress by modulating the activity of antioxidant enzymes and influencing signaling pathways that govern ROS-induced inflammation. Additionally, microbiota byproducts, when supplemented through probiotics, can affect tumor microenvironments to enhance treatment efficacy and selectively mediate the ROS-induced destruction of CRC cells. This review aims to discuss the mechanisms by which taxonomical shifts in gut microbiota and related metabolites such as short-chain fatty acids, secondary bile acids, and trimethylamine-N-oxide influence ROS concentrations to safeguard or promote the onset of inflammation-mediated CRC. Additionally, we focus on the role of probiotic species in modulating ROS-mediated signaling pathways that influence both oxidative status and inflammation, such as Nrf2-Keap1, NF-κB, and NLRP3 to mitigate carcinogenesis. Overall, a deeper understanding of the role of gut microbiota on oxidative stress may aid in delaying or preventing the onset of CRC and offer new avenues for adjunct, CRC-specific therapeutic interventions such as cancer immunotherapy.
Collapse
Affiliation(s)
- Sevag Hamamah
- Department of Basic Medical Sciences, College of Osteopathic Medicine, Western University of Health Sciences, Pomona, CA 91766, USA;
- Department of Internal Medicine, Scripps Mercy Hospital, San Diego, CA 92103, USA
| | - Andrei Lobiuc
- Department of Medicine and Biomedical Sciences, College of Medicine and Biological Science, University of Suceava, 7200229 Suceava, Romania;
| | - Mihai Covasa
- Department of Basic Medical Sciences, College of Osteopathic Medicine, Western University of Health Sciences, Pomona, CA 91766, USA;
- Department of Medicine and Biomedical Sciences, College of Medicine and Biological Science, University of Suceava, 7200229 Suceava, Romania;
| |
Collapse
|
48
|
Ren Y, Sun X, Chen X, Shao S, Tang J, Xu Z, Xu Y, Kang H, Wang L. The transcription factor ZNF248 promotes colorectal cancer metastasis by binding to ZEB1. J Cancer 2024; 15:5440-5450. [PMID: 39247604 PMCID: PMC11375549 DOI: 10.7150/jca.92886] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2023] [Accepted: 07/05/2024] [Indexed: 09/10/2024] Open
Abstract
Colorectal cancer (CRC) is one of the most common malignant tumors globally, with metastasis emerging as the leading cause of mortality in CRC patients. Transcription factors play pivotal roles in the metastatic process. Using bioinformatics tools, we analyzed the TCGA-COAD and GES146587 datasets and identified ZNF248 participating in tumor progression. By analyzing 100 CRC patient tissues, it is found that ZNF248 is highly expressed in cancer tissue as well as in CRC cell lines identified by qRT-PCR. Our study discovered that ZNF248 enhances CRC cell migratory and invasive capabilities. A positive correlation was found between ZNF248 and epithelial-mesenchymal transition (EMT)-related markers (ZEB1, snail1), while E-cadherin exhibited a negative correlation with ZNF248. In addition, the analysis of the TCGA dataset demonstrated a strong correlation between the mRNA level of ZNF248 and ZEB1 expressions. Furthermore, it is found that the overexpression of ZEB1 could reverse CRC cell invasion and migration, along with the inhibition on EMT marker expressions induced by the RNA interference with ZNF248. Immunohistochemical analysis indicated a substantial association of ZNF248 expression with the lymph node metastasis, and with the liver metastasis (P =0.01, P =0.01), and a positive correlation between ZNF248 and ZEB1 expression (P =0.021) was also identified. Using Chip-PCR assay, it is found that ZNF248 bound to the ZEB1 promoter region. These findings showed that ZNF248 promotes CRC metastasis in vivo, revealed its role as an oncogene in CRC by targeting ZEB1 and activating the EMT pathway, which provided novel and promising biomarkers for CRC therapy through targeting ZEB1.
Collapse
Affiliation(s)
- Yanying Ren
- The Second Hospital of Dalian Medical University, Dalian, Liaoning Province, China
- Dalian Medical University, Dalian, Liaoning Province, China
| | - Xiaoxu Sun
- Dalian Medical University, Dalian, Liaoning Province, China
| | - Xin Chen
- The Second Hospital of Dalian Medical University, Dalian, Liaoning Province, China
| | - Shuai Shao
- The Second Hospital of Dalian Medical University, Dalian, Liaoning Province, China
| | - JingTong Tang
- Department of Gastrointestinal Surgery, the first Hospital of China Medical University, Shenyang, Liaoning Province, China
| | - Zhaohui Xu
- The Second Hospital of Dalian Medical University, Dalian, Liaoning Province, China
| | - Yang Xu
- The Second Hospital of Dalian Medical University, Dalian, Liaoning Province, China
- Dalian Medical University, Dalian, Liaoning Province, China
| | - Haonan Kang
- The Second Hospital of Dalian Medical University, Dalian, Liaoning Province, China
- Dalian Medical University, Dalian, Liaoning Province, China
| | - Liming Wang
- The Second Hospital of Dalian Medical University, Dalian, Liaoning Province, China
- Dalian Medical University, Dalian, Liaoning Province, China
| |
Collapse
|
49
|
Zeng T, Ren W, Zeng H, Wang D, Wu X, Xu G. TFAP2A Activates S100A2 to Mediate Glutamine Metabolism and Promote Lung Adenocarcinoma Metastasis. THE CLINICAL RESPIRATORY JOURNAL 2024; 18:e13825. [PMID: 39187936 PMCID: PMC11347387 DOI: 10.1111/crj.13825] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/15/2024] [Revised: 07/03/2024] [Accepted: 07/29/2024] [Indexed: 08/28/2024]
Abstract
BACKGROUND Lung adenocarcinoma (LUAD) is a fatal disease with metabolic abnormalities. The dysregulation of S100 calcium-binding protein A2 (S100A2), a member of the S100 protein family, is connected to the development of various cancers. The impact of S100A2 on the LUAD occurrence and metastasis, however, has not yet been reported. The functional mechanism of S100A2 on LUAD cell metastasis was examined in this article. METHODS The expression of TFAP2A and S100A2 in LUAD tissues and cells was analyzed by bioinformatics and qRT-PCR, respectively. The enrichment pathway analysis was performed on S100A2. Bioinformatics analysis determined the binding relationship between TFAP2A and S100A2, and their interaction was validated through dual-luciferase and chromatin immunoprecipitation experiments. Cell viability was determined using cell counting kit-8 (CCK-8). A transwell assay was performed to analyze the invasion and migration of cells. Immunofluorescence was conducted to obtain vimentin and E-cadherin expression, and a western blot was used to detect the expression of MMP-2, MMP-9, GLS, and GLUD1. The kits measured the NADPH/NADP ratio, glutathione (GSH)/glutathione disulfide (GSSG) levels, and the contents of glutamine, α-KG, and glutamate. RESULTS S100A2 was upregulated in LUAD tissues and cells, and S100A2 mediated glutamine metabolism to induce LUAD metastasis. Additionally, the transcriptional regulator TFAP2A was discovered upstream of S100A2, and TFAP2A expression was upregulated in LUAD, which indicated that TFAP2A promoted the S100A2 expression. The rescue experiment found that upregulation of S100A2 could reverse the inhibitory effects of silencing TFAP2A on glutamine metabolism and cell metastasis. CONCLUSION In conclusion, by regulating glutamine metabolism, the TFAP2A/S100A2 axis facilitated LUAD metastasis. This suggested that targeting S100A2 could be beneficial for LUAD treatment.
Collapse
Affiliation(s)
- Tao Zeng
- Department of Cardiothoracic SurgerySichuan Mianyang 404 HospitalMianyang CitySichuan ProvinceChina
| | - Wangsheng Ren
- Department of Cardiothoracic SurgerySichuan Mianyang 404 HospitalMianyang CitySichuan ProvinceChina
| | - Hang Zeng
- Department of Cardiothoracic SurgerySichuan Mianyang 404 HospitalMianyang CitySichuan ProvinceChina
| | - Dachun Wang
- Department of Cardiothoracic SurgerySichuan Mianyang 404 HospitalMianyang CitySichuan ProvinceChina
| | - Xianyu Wu
- Department of Cardiothoracic SurgerySichuan Mianyang 404 HospitalMianyang CitySichuan ProvinceChina
| | - Guo Xu
- Department of Cardiothoracic SurgerySichuan Mianyang 404 HospitalMianyang CitySichuan ProvinceChina
| |
Collapse
|
50
|
Kyriazi AA, Karaglani M, Agelaki S, Baritaki S. Intratumoral Microbiome: Foe or Friend in Reshaping the Tumor Microenvironment Landscape? Cells 2024; 13:1279. [PMID: 39120310 PMCID: PMC11312414 DOI: 10.3390/cells13151279] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2024] [Revised: 07/23/2024] [Accepted: 07/25/2024] [Indexed: 08/10/2024] Open
Abstract
The role of the microbiome in cancer and its crosstalk with the tumor microenvironment (TME) has been extensively studied and characterized. An emerging field in the cancer microbiome research is the concept of the intratumoral microbiome, which refers to the microbiome residing within the tumor. This microbiome primarily originates from the local microbiome of the tumor-bearing tissue or from translocating microbiome from distant sites, such as the gut. Despite the increasing number of studies on intratumoral microbiome, it remains unclear whether it is a driver or a bystander of oncogenesis and tumor progression. This review aims to elucidate the intricate role of the intratumoral microbiome in tumor development by exploring its effects on reshaping the multileveled ecosystem in which tumors thrive, the TME. To dissect the complexity and the multitude of layers within the TME, we distinguish six specialized tumor microenvironments, namely, the immune, metabolic, hypoxic, acidic, mechanical and innervated microenvironments. Accordingly, we attempt to decipher the effects of the intratumoral microbiome on each specialized microenvironment and ultimately decode its tumor-promoting or tumor-suppressive impact. Additionally, we portray the intratumoral microbiome as an orchestrator in the tumor milieu, fine-tuning the responses in distinct, specialized microenvironments and remodeling the TME in a multileveled and multifaceted manner.
Collapse
Affiliation(s)
- Athina A. Kyriazi
- Laboratory of Experimental Oncology, Division of Surgery, School of Medicine, University of Crete, 71500 Heraklion, Greece;
| | - Makrina Karaglani
- Laboratory of Pharmacology, Department of Medicine, Democritus University of Thrace, 68100 Alexandroupolis, Greece;
- Laboratory of Hygiene and Environmental Protection, Democritus University of Thrace, 68100 Alexandroupolis, Greece
| | - Sofia Agelaki
- Laboratory of Translational Oncology, School of Medicine, University of Crete, 71500 Heraklion, Greece;
| | - Stavroula Baritaki
- Laboratory of Experimental Oncology, Division of Surgery, School of Medicine, University of Crete, 71500 Heraklion, Greece;
| |
Collapse
|