451
|
Acute expression of the transcription factor Nrf2 after treatment with quinolinic acid is not induced by oxidative stress in the rat striatum. Neurotoxicology 2019; 73:120-131. [PMID: 30876764 DOI: 10.1016/j.neuro.2019.03.003] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2018] [Revised: 02/26/2019] [Accepted: 03/10/2019] [Indexed: 11/20/2022]
Abstract
Quinolinic acid (QUIN) is an excitotoxic and pro-oxidant molecule used in the study of neurodegenerative disorders because it reproduces certain biochemical characteristics present in these diseases. The use of antioxidant molecules in the QUIN model reduces cellular damage through the nuclear factor erythroid 2-related to factor 2 (Nrf2) pathway. The Nrf2 transcription factor is considered the master regulator of antioxidant genes expression, and its activation occurs by an increase in the reactive oxygen species (ROS) levels or in the presence of electrophilic compounds. However, Nrf2 activation also occurs in an oxidative stress-independent process caused by the disruption of the Keap1-Nrf2 complex by the direct interaction of Keap1 with certain proteins, such as DPP3 and p62. The aim of this study was to evaluate the effect of QUIN on Nrf2 activation over short periods of time. QUIN administration increased Nrf2 activation at 30 min in the striatum without increasing ROS production or modifying the redox cellular state. Moreover, QUIN increased Keap1 and Nrf2 nuclear levels and increased the protein-protein interaction between Keap1 and DPP3 and Keap1 and p62 30 min after QUIN administration. Finally, we found that Nrf2 activation primarily occurs in striatal neurons. Our results show that QUIN administration in vivo stimulates Nrf2 expression and activation in the absence of oxidative stress primarily in neurons and increases the interaction of p62 and DPP3 with Keap1, which could participate in Nrf2 activation.
Collapse
|
452
|
Choi CI, Koo BH, Hong D, Kwon HJ, Hoe KL, Won MH, Kim YM, Lim HK, Ryoo S. Resveratrol is an arginase inhibitor contributing to vascular smooth muscle cell vasoconstriction via increasing cytosolic calcium. Mol Med Rep 2019; 19:3767-3774. [PMID: 30896798 DOI: 10.3892/mmr.2019.10035] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2018] [Accepted: 02/28/2019] [Indexed: 11/05/2022] Open
Abstract
The contractility of vascular smooth muscle cells (VSMCs) controls the lumen diameter of vessels, thus serving a role in regulating blood pressure and organ blood flow. Although arginases are known to have numerous effects in the biological activities of VSMCs, the effects of arginase II on the constriction of VSMCs has not yet been investigated. When conducting a natural products screen for an inhibitor against arginase, the present study identified that a relatively high concentration of resveratrol (RSV) exhibited arginase inhibitory activity. Therefore, the present study investigated whether RSV could regulate VSMCs contractions and the underlying mechanism. Arginase inhibition by RSV led to an increase in the concentration of the substrate L‑Arg and an accompanying increase in the cytosol Ca2+ concentration [(Ca2+)c] in VSMCs. The increased [Ca2+]c induced by RSV and L‑Arg treatments resulted in CaMKII‑dependent MLC20 phosphorylation. The effects of RSV on VSMCs were maintained even when VSMCs were pre‑treated with sirtinol, an inhibitor of Sirt proteins. In a vascular tension assay with de‑endothelialized aortic vessels, vasoconstrictor responses, which were measured using phenylephrine (PE), were significantly enhanced in the RSV‑ and L‑Arg‑treated vessels. Therefore, although arginase inhibition has exhibited beneficial effects in various diseases, care is required when considering administration of an arginase inhibitor to patients with vessels endothelial dysfunction as RSV can induce vessel contraction.
Collapse
Affiliation(s)
- Chang Ik Choi
- Department of Anesthesiology and Pain Medicine, Yonsei University Wonju College of Medicine, Wonju, Gangwon 26426, Republic of Korea
| | - Bon Hyeock Koo
- Department of Biology, Kangwon National University, Chuncheon, Gangwon 24341, Republic of Korea
| | - Dongeui Hong
- Department of Anesthesiology and Pain Medicine, Yonsei University Wonju College of Medicine, Wonju, Gangwon 26426, Republic of Korea
| | - Hyung Joo Kwon
- Department of Microbiology, School of Medicine, Hallym University, Chuncheon, Gangwon 24252, Republic of Korea
| | - Kwang Lae Hoe
- New Drug Discovery and Development, Chungnam National University, Daejeon 34134, Republic of Korea
| | - Moo Ho Won
- Department of Neurobiology, Kangwon National University, Chuncheon, Gangwon 24341, Republic of Korea
| | - Young Myeong Kim
- Department of Molecular and Cellular Biochemistry, and Neurobiology, Kangwon National University, Chuncheon, Gangwon 24341, Republic of Korea
| | - Hyun Kyo Lim
- Department of Anesthesiology and Pain Medicine, Yonsei University Wonju College of Medicine, Wonju, Gangwon 26426, Republic of Korea
| | - Sungwoo Ryoo
- Department of Biology, Kangwon National University, Chuncheon, Gangwon 24341, Republic of Korea
| |
Collapse
|
453
|
Williams JA. Cholecystokinin (CCK) Regulation of Pancreatic Acinar Cells: Physiological Actions and Signal Transduction Mechanisms. Compr Physiol 2019; 9:535-564. [PMID: 30873601 DOI: 10.1002/cphy.c180014] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Pancreatic acinar cells synthesize and secrete about 20 digestive enzymes and ancillary proteins with the processes that match the supply of these enzymes to their need in digestion being regulated by a number of hormones (CCK, secretin and insulin), neurotransmitters (acetylcholine and VIP) and growth factors (EGF and IGF). Of these regulators, one of the most important and best studied is the gastrointestinal hormone, cholecystokinin (CCK). Furthermore, the acinar cell has become a model for seven transmembrane, heterotrimeric G protein coupled receptors to regulate multiple processes by distinct signal transduction cascades. In this review, we briefly describe the chemistry and physiology of CCK and then consider the major physiological effects of CCK on pancreatic acinar cells. The majority of the review is devoted to the physiologic signaling pathways activated by CCK receptors and heterotrimeric G proteins and the functions they affect. The pathways covered include the traditional second messenger pathways PLC-IP3-Ca2+ , DAG-PKC, and AC-cAMP-PKA/EPAC that primarily relate to secretion. Then there are the protein-protein interaction pathways Akt-mTOR-S6K, the three major MAPK pathways (ERK, JNK, and p38 MAPK), and Ca2+ -calcineurin-NFAT pathways that primarily regulate non-secretory processes including biosynthesis and growth, and several miscellaneous pathways that include the Rho family small G proteins, PKD, FAK, and Src that may regulate both secretory and nonsecretory processes but are not as well understood. © 2019 American Physiological Society. Compr Physiol 9:535-564, 2019.
Collapse
Affiliation(s)
- John A Williams
- University of Michigan, Departments of Molecular & Integrative Physiology and Internal Medicine (Gastroenterology), Ann Arbor, Michigan, USA
| |
Collapse
|
454
|
Seo JY, Pandey RP, Lee J, Sohng JK, Namkung W, Park YI. Quercetin 3-O-xyloside ameliorates acute pancreatitis in vitro via the reduction of ER stress and enhancement of apoptosis. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2019; 55:40-49. [PMID: 30668442 DOI: 10.1016/j.phymed.2018.07.011] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/13/2017] [Revised: 07/01/2018] [Accepted: 07/16/2018] [Indexed: 06/09/2023]
Abstract
BACKGROUND AND PURPOSE Glycosylation of phenolic compounds has been reported to increase water-solubility, reduce toxicity, and sometimes give improved or novel pharmacological activities. Present study was aimed to evaluate and compare the beneficial effects of quercetin aglycone (Quer) and its glycosylated derivative, quercetin 3-O-xyloside (Quer-Xyl), against acute pancreatitis (AP). METHODS The cellular acute pancreatitis model was established by treating the rat pancreatic acinar cells (AR42J) with lipopolysaccharide (10 µg/ml) and cerulein (10-7 M). The cytotoxicity of Quer or Quer-Xyl on AR42J cells was assessed by MTT assay. Calcium and ROS levels were fluorometrically determined. The ER stress levels (PERK, GRP78), expression levels of amylase and lipase, and apoptotic markers (caspase-3 and -9) were measured by RT-PCR, western blotting, or fluorometric assay. RESULTS While Quer increased the mRNA expressions of AP marker enzymes, amylase and lipase, Quer-Xyl dose-dependently reversed their expressions. Quer-Xyl suppressed intracellular ROS production and both mRNA and protein levels of GRP78 and PERK, which were significantly elevated in cerulein and LPS-treated AR42J cells. Further, RT-PCR and fluorescence assay revealed that Quer-Xyl dose-dependently augmented the mRNA expressions and activities of caspase-3 and -9. CONCLUSION These results showed that Quer-Xyl, but not Quer, has a significant anti-pancreatitis activity through attenuating intracellular ROS production and ER stress response and enhancing apoptotic cell death, suggesting that it might be useful as a potent functional ingredient in health-beneficial foods or as a therapeutic agent to prevent or treat AP.
Collapse
Affiliation(s)
- Jeong Yeon Seo
- Department of Biotechnology, Catholic University of Korea, Bucheon, Gyeonggi-do 14662, Republic of Korea
| | - Ramesh Prasad Pandey
- Department of BT-Convergent Pharmaceutical Engineering, Institute of Biomolecule Reconstruction, Sun Moon University, Asan, Chungnam 31460, Republic of Korea
| | - Jisun Lee
- Department of Biotechnology, Catholic University of Korea, Bucheon, Gyeonggi-do 14662, Republic of Korea
| | - Jae Kyung Sohng
- Department of BT-Convergent Pharmaceutical Engineering, Institute of Biomolecule Reconstruction, Sun Moon University, Asan, Chungnam 31460, Republic of Korea
| | - Wan Namkung
- Department of Integrated OMICS for Biomedical Science, Graduate School, Yonsei University, Seoul 21983, Republic of Korea
| | - Yong Il Park
- Department of Biotechnology, Catholic University of Korea, Bucheon, Gyeonggi-do 14662, Republic of Korea.
| |
Collapse
|
455
|
Pérez-González A, Castañeda-Arriaga R, Álvarez-Idaboy JR, Reiter RJ, Galano A. Melatonin and its metabolites as chemical agents capable of directly repairing oxidized DNA. J Pineal Res 2019; 66:e12539. [PMID: 30417425 DOI: 10.1111/jpi.12539] [Citation(s) in RCA: 38] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/18/2018] [Revised: 10/26/2018] [Accepted: 11/05/2018] [Indexed: 12/24/2022]
Abstract
Oxidative stress mediates chemical damage to DNA yielding a wide variety of products. In this work, the potential capability of melatonin and several of its metabolites to repair directly (chemically) oxidative lesions in DNA was explored. It was found that all the investigated molecules are capable of repairing guanine-centered radical cations by electron transfer at very high rates, that is, diffusion-limited. They are also capable of repairing C-centered radicals in the sugar moiety of 2'-deoxyguanosine (2dG) by hydrogen atom transfer. Although this was identified as a rather slow process, with rate constants ranging from 1.75 to 5.32 × 102 M-1 s-1 , it is expected to be fast enough to prevent propagation of the DNA damage. Melatonin metabolites 6-hydroxymelatonin (6OHM) and 4-hydroxymelatonin (4OHM) are also predicted to repair OH adducts in the imidazole ring. In particular, the rate constants corresponding to the repair of 8-OH-G adducts were found to be in the order of 104 M-1 s-1 and are assisted by a water molecule. The results presented here strongly suggest that the role of melatonin in preventing DNA damage might be mediated by its capability, combined with that of its metabolites, to directly repair oxidized sites in DNA through different chemical routes.
Collapse
Affiliation(s)
- Adriana Pérez-González
- CONACYT, Universidad Autónoma Metropolitana - Iztapalapa, Iztapalapa, México City, México
| | - Romina Castañeda-Arriaga
- Departamento de Química, Universidad Autónoma Metropolitana-Iztapalapa, Iztapalapa, México City, México
| | - Juan Raúl Álvarez-Idaboy
- Departamento de Física y Química Teórica, Facultad de Química, Universidad Nacional Autónoma de México, México City, México
| | - Russel J Reiter
- Department of Cellular and Structural Biology, UT Health Science Center, San Antonio, Texas
| | - Annia Galano
- Departamento de Química, Universidad Autónoma Metropolitana-Iztapalapa, Iztapalapa, México City, México
| |
Collapse
|
456
|
Verkhratsky A, Chvátal A. NMDA Receptors in Astrocytes. Neurochem Res 2019; 45:122-133. [DOI: 10.1007/s11064-019-02750-3] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2018] [Revised: 01/22/2019] [Accepted: 02/05/2019] [Indexed: 12/12/2022]
|
457
|
Liu J, Chang L, Song Y, Li H, Wu Y. The Role of NMDA Receptors in Alzheimer's Disease. Front Neurosci 2019; 13:43. [PMID: 30800052 PMCID: PMC6375899 DOI: 10.3389/fnins.2019.00043] [Citation(s) in RCA: 301] [Impact Index Per Article: 50.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2018] [Accepted: 01/16/2019] [Indexed: 12/13/2022] Open
Abstract
In Alzheimer’s disease (AD), early synaptic dysfunction is associated with the increased oligomeric amyloid-beta peptide, which causes NMDAR-dependent synaptic depression and spine elimination. Memantine, low-affinity NMDAR channel blocker, has been used in the treatment of moderate to severe AD. However, clear evidence is still deficient in demonstrating the underlying mechanisms and a relationship between NMDARs dysfunction and AD. This review focuses on not only changes in expression of different NMDAR subunits, but also some unconventional modes of NMDAR action.
Collapse
Affiliation(s)
- Jinping Liu
- School of Medicine, Tsinghua University, Beijing, China
| | - Lirong Chang
- Department of Anatomy, Ministry of Science and Technology Laboratory of Brain Disorders, Beijing Institute for Brain Disorders, Capital Medical University, Beijing, China
| | - Yizhi Song
- Department of Anatomy, Ministry of Science and Technology Laboratory of Brain Disorders, Beijing Institute for Brain Disorders, Capital Medical University, Beijing, China
| | - Hui Li
- Department of Anatomy, Ministry of Science and Technology Laboratory of Brain Disorders, Beijing Institute for Brain Disorders, Capital Medical University, Beijing, China
| | - Yan Wu
- Department of Anatomy, Ministry of Science and Technology Laboratory of Brain Disorders, Beijing Institute for Brain Disorders, Capital Medical University, Beijing, China
| |
Collapse
|
458
|
Vicente-Gutierrez C, Bonora N, Bobo-Jimenez V, Jimenez-Blasco D, Lopez-Fabuel I, Fernandez E, Josephine C, Bonvento G, Enriquez JA, Almeida A, Bolaños JP. Astrocytic mitochondrial ROS modulate brain metabolism and mouse behaviour. Nat Metab 2019; 1:201-211. [PMID: 32694785 DOI: 10.1038/s42255-018-0031-6] [Citation(s) in RCA: 125] [Impact Index Per Article: 20.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/06/2018] [Accepted: 12/20/2018] [Indexed: 12/13/2022]
Abstract
To satisfy its high energetic demand1, the brain depends on the metabolic cooperation of various cell types2-4. For example, astrocytic-derived lactate sustains memory consolidation5 by serving both as an oxidizable energetic substrate for neurons6 and as a signalling molecule7,8. Astrocytes and neurons also differ in the regulation of glycolytic enzymes9 and in the organization of their mitochondrial respiratory chain10. Unlike neurons, astrocytes rely on glycolysis for energy generation9 and, as a consequence, have a loosely assembled mitochondrial respiratory chain that is associated with a higher generation of mitochondrial reactive oxygen species (ROS)10. However, whether this abundant natural source of mitochondrial ROS in astrocytes fulfils a specific physiological role is unknown. Here we show that astrocytic mitochondrial ROS are physiological regulators of brain metabolism and neuronal function. We generated mice that inducibly overexpress mitochondrial-tagged catalase in astrocytes and show that this overexpression decreases mitochondrial ROS production in these cells during adulthood. Transcriptomic, metabolomic, biochemical, immunohistochemical and behavioural analysis of these mice revealed alterations in brain redox, carbohydrate, lipid and amino acid metabolic pathways associated with altered neuronal function and mouse behaviour. We found that astrocytic mitochondrial ROS regulate glucose utilization via the pentose-phosphate pathway and glutathione metabolism, which modulates the redox status and potentially the survival of neurons. Our data provide further molecular insight into the metabolic cooperation between astrocytes and neurons and demonstrate that mitochondrial ROS are important regulators of organismal physiology in vivo.
Collapse
Affiliation(s)
- Carlos Vicente-Gutierrez
- Institute of Functional Biology and Genomics (IBFG), Universidad de Salamanca, CSIC, Salamanca, Spain
- Institute of Biomedical Research of Salamanca (IBSAL), Hospital Universitario de Salamanca, Universidad de Salamanca, CSIC, Salamanca, Spain
| | - Nicoló Bonora
- Institute of Functional Biology and Genomics (IBFG), Universidad de Salamanca, CSIC, Salamanca, Spain
- Institute of Biomedical Research of Salamanca (IBSAL), Hospital Universitario de Salamanca, Universidad de Salamanca, CSIC, Salamanca, Spain
| | - Veronica Bobo-Jimenez
- Institute of Functional Biology and Genomics (IBFG), Universidad de Salamanca, CSIC, Salamanca, Spain
- Institute of Biomedical Research of Salamanca (IBSAL), Hospital Universitario de Salamanca, Universidad de Salamanca, CSIC, Salamanca, Spain
| | - Daniel Jimenez-Blasco
- Institute of Functional Biology and Genomics (IBFG), Universidad de Salamanca, CSIC, Salamanca, Spain
- Institute of Biomedical Research of Salamanca (IBSAL), Hospital Universitario de Salamanca, Universidad de Salamanca, CSIC, Salamanca, Spain
- Centro de Investigación Biomédica en Red de Fragilidad y Envejecimiento Saludable (CIBERFES), Madrid, Spain
| | - Irene Lopez-Fabuel
- Institute of Functional Biology and Genomics (IBFG), Universidad de Salamanca, CSIC, Salamanca, Spain
- Institute of Biomedical Research of Salamanca (IBSAL), Hospital Universitario de Salamanca, Universidad de Salamanca, CSIC, Salamanca, Spain
| | - Emilio Fernandez
- Institute of Functional Biology and Genomics (IBFG), Universidad de Salamanca, CSIC, Salamanca, Spain
- Institute of Biomedical Research of Salamanca (IBSAL), Hospital Universitario de Salamanca, Universidad de Salamanca, CSIC, Salamanca, Spain
- Centro de Investigación Biomédica en Red de Fragilidad y Envejecimiento Saludable (CIBERFES), Madrid, Spain
| | - Charlene Josephine
- Commissariat à l'Energie Atomique et aux Energies Alternatives (CEA), Département des Sciences du Vivant (DSV), Institut d'Imagerie Biomédicale (I2BM), Molecular Imaging Center (MIRCen), CNRS UMR 9199, Université Paris-Sud, Université Paris-Saclay, Fontenay-aux-Roses, France
| | - Gilles Bonvento
- Commissariat à l'Energie Atomique et aux Energies Alternatives (CEA), Département des Sciences du Vivant (DSV), Institut d'Imagerie Biomédicale (I2BM), Molecular Imaging Center (MIRCen), CNRS UMR 9199, Université Paris-Sud, Université Paris-Saclay, Fontenay-aux-Roses, France
| | - Jose A Enriquez
- Centro de Investigación Biomédica en Red de Fragilidad y Envejecimiento Saludable (CIBERFES), Madrid, Spain
- Centro Nacional de Investigaciones Cardiovasculares Carlos III, Madrid, Spain
| | - Angeles Almeida
- Institute of Functional Biology and Genomics (IBFG), Universidad de Salamanca, CSIC, Salamanca, Spain
- Institute of Biomedical Research of Salamanca (IBSAL), Hospital Universitario de Salamanca, Universidad de Salamanca, CSIC, Salamanca, Spain
| | - Juan P Bolaños
- Institute of Functional Biology and Genomics (IBFG), Universidad de Salamanca, CSIC, Salamanca, Spain.
- Institute of Biomedical Research of Salamanca (IBSAL), Hospital Universitario de Salamanca, Universidad de Salamanca, CSIC, Salamanca, Spain.
- Centro de Investigación Biomédica en Red de Fragilidad y Envejecimiento Saludable (CIBERFES), Madrid, Spain.
| |
Collapse
|
459
|
Martínez-Morcillo S, Pérez-López M, Soler-Rodríguez F, González A. The organophosphorus pesticide dimethoate decreases cell viability and induces changes in different biochemical parameters of rat pancreatic stellate cells. Toxicol In Vitro 2019; 54:89-97. [PMID: 30243730 DOI: 10.1016/j.tiv.2018.09.011] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2017] [Revised: 09/15/2018] [Accepted: 09/18/2018] [Indexed: 12/14/2022]
Abstract
In the present study we employed cultured pancreatic stellate cells to study the effect of the organophosphorus insecticide dimethoate on pancreatic cell physiology. Esterase activity, cell viability, reactive oxygen species generation and Ca2+ mobilization were examined. Our results show that dimethoate (0.1, 1 and 10 μM) induced a concentration-dependent inhibition of cholinesterase enzymatic activity at all concentrations tested. A drop in carboxylesterase activity was noted in the presence of 10 μM dimethoate. In the presence of the pesticide a decrease in cell viability was detected. The clearer effect could be observed when the cells had been incubated during 96 h in the presence of dimethoate. The pesticide induced a slight but statistically significant increase in the production of reactive oxygen species in the mitochondria. Incubation of cells with dimethoate, in the presence of Ca2+ in the extracellular medium, led to a slow and progressive increase in [Ca2+]c towards an elevated value over the prestimulation level. A similar behavior was observed in the absence of extracellular Ca2+, indicating that dimethoate releases Ca2+ from the intracellular stores. Our results suggest that dimethoate might alter intracellular pathways that are critical for pancreatic physiology, creating a situation potentially leading to dysfunction in the exocrine pancreas.
Collapse
Affiliation(s)
| | - Marcos Pérez-López
- Unit of Toxicology, Veterinary Faculty, University of Extremadura, Caceres, Spain.
| | | | - Antonio González
- Institute of Molecular Pathology Biomarkers, University of Extremadura, Caceres, Spain.
| |
Collapse
|
460
|
Gonçalves CA, Rodrigues L, Bobermin LD, Zanotto C, Vizuete A, Quincozes-Santos A, Souza DO, Leite MC. Glycolysis-Derived Compounds From Astrocytes That Modulate Synaptic Communication. Front Neurosci 2019; 12:1035. [PMID: 30728759 PMCID: PMC6351787 DOI: 10.3389/fnins.2018.01035] [Citation(s) in RCA: 53] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2018] [Accepted: 12/20/2018] [Indexed: 12/14/2022] Open
Abstract
Based on the concept of the tripartite synapse, we have reviewed the role of glucose-derived compounds in glycolytic pathways in astroglial cells. Glucose provides energy and substrate replenishment for brain activity, such as glutamate and lipid synthesis. In addition, glucose metabolism in the astroglial cytoplasm results in products such as lactate, methylglyoxal, and glutathione, which modulate receptors and channels in neurons. Glucose has four potential destinations in neural cells, and it is possible to propose a crossroads in “X” that can be used to describe these four destinations. Glucose-6P can be used either for glycogen synthesis or the pentose phosphate pathway on the left and right arms of the X, respectively. Fructose-6P continues through the glycolysis pathway until pyruvate is formed but can also act as the initial compound in the hexosamine pathway, representing the left and right legs of the X, respectively. We describe each glucose destination and its regulation, indicating the products of these pathways and how they can affect synaptic communication. Extracellular L-lactate, either generated from glucose or from glycogen, binds to HCAR1, a specific receptor that is abundantly localized in perivascular and post-synaptic membranes and regulates synaptic plasticity. Methylglyoxal, a product of a deviation of glycolysis, and its derivative D-lactate are also released by astrocytes and bind to GABAA receptors and HCAR1, respectively. Glutathione, in addition to its antioxidant role, also binds to ionotropic glutamate receptors in the synaptic cleft. Finally, we examined the hexosamine pathway and evaluated the effect of GlcNAc-modification on key proteins that regulate the other glucose destinations.
Collapse
Affiliation(s)
- Carlos-Alberto Gonçalves
- Department of Biochemistry, Federal University of Rio Grande do Sul (UFRGS), Porto Alegre, Brazil
| | - Letícia Rodrigues
- Department of Biochemistry, Federal University of Rio Grande do Sul (UFRGS), Porto Alegre, Brazil
| | - Larissa D Bobermin
- Department of Biochemistry, Federal University of Rio Grande do Sul (UFRGS), Porto Alegre, Brazil
| | - Caroline Zanotto
- Department of Biochemistry, Federal University of Rio Grande do Sul (UFRGS), Porto Alegre, Brazil
| | - Adriana Vizuete
- Department of Biochemistry, Federal University of Rio Grande do Sul (UFRGS), Porto Alegre, Brazil
| | - André Quincozes-Santos
- Department of Biochemistry, Federal University of Rio Grande do Sul (UFRGS), Porto Alegre, Brazil
| | - Diogo O Souza
- Department of Biochemistry, Federal University of Rio Grande do Sul (UFRGS), Porto Alegre, Brazil
| | - Marina C Leite
- Department of Biochemistry, Federal University of Rio Grande do Sul (UFRGS), Porto Alegre, Brazil
| |
Collapse
|
461
|
Skowrońska K, Obara-Michlewska M, Zielińska M, Albrecht J. NMDA Receptors in Astrocytes: In Search for Roles in Neurotransmission and Astrocytic Homeostasis. Int J Mol Sci 2019; 20:ijms20020309. [PMID: 30646531 PMCID: PMC6358855 DOI: 10.3390/ijms20020309] [Citation(s) in RCA: 76] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2018] [Revised: 01/08/2019] [Accepted: 01/10/2019] [Indexed: 12/15/2022] Open
Abstract
Studies of the last two decades have demonstrated the presence in astrocytic cell membranes of N-methyl-d-aspartate (NMDA) receptors (NMDARs), albeit their apparently low abundance makes demonstration of their presence and function more difficult than of other glutamate (Glu) receptor classes residing in astrocytes. Activation of astrocytic NMDARs directly in brain slices and in acutely isolated or cultured astrocytes evokes intracellular calcium increase, by mutually unexclusive ionotropic and metabotropic mechanisms. However, other than one report on the contribution of astrocyte-located NMDARs to astrocyte-dependent modulation of presynaptic strength in the hippocampus, there is no sound evidence for the significant role of astrocytic NMDARs in astrocytic-neuronal interaction in neurotransmission, as yet. Durable exposure of astrocytic and neuronal co-cultures to NMDA has been reported to upregulate astrocytic synthesis of glutathione, and in this way to increase the antioxidative capacity of neurons. On the other hand, overexposure to NMDA decreases, by an as yet unknown mechanism, the ability of cultured astrocytes to express glutamine synthetase (GS), aquaporin-4 (AQP4), and the inward rectifying potassium channel Kir4.1, the three astroglia-specific proteins critical for homeostatic function of astrocytes. The beneficial or detrimental effects of astrocytic NMDAR stimulation revealed in the in vitro studies remain to be proven in the in vivo setting.
Collapse
Affiliation(s)
- Katarzyna Skowrońska
- Department of Neurotoxicology, Mossakowski Medical Research Centre, Polish Academy of Sciences, 5 Pawińskiego Str., 02-106 Warsaw, Poland.
| | - Marta Obara-Michlewska
- Department of Neurotoxicology, Mossakowski Medical Research Centre, Polish Academy of Sciences, 5 Pawińskiego Str., 02-106 Warsaw, Poland.
| | - Magdalena Zielińska
- Department of Neurotoxicology, Mossakowski Medical Research Centre, Polish Academy of Sciences, 5 Pawińskiego Str., 02-106 Warsaw, Poland.
| | - Jan Albrecht
- Department of Neurotoxicology, Mossakowski Medical Research Centre, Polish Academy of Sciences, 5 Pawińskiego Str., 02-106 Warsaw, Poland.
| |
Collapse
|
462
|
Juaristi I, Llorente-Folch I, Satrústegui J, Del Arco A. Extracellular ATP and glutamate drive pyruvate production and energy demand to regulate mitochondrial respiration in astrocytes. Glia 2019; 67:759-774. [PMID: 30623988 DOI: 10.1002/glia.23574] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2018] [Revised: 11/08/2018] [Accepted: 11/13/2018] [Indexed: 12/26/2022]
Abstract
Astrocytes respond to energetic demands by upregulating glycolysis, lactate production, and respiration. This study addresses the role of respiration and calcium regulation of respiration as part of the astrocyte response to the workloads caused by extracellular ATP and glutamate. Extracellular ATP (100 μM to 1 mM) causes a Ca2+ -dependent workload and fall of the cytosolic ATP/ADP ratio which acutely increases astrocytes respiration. Part of this increase is related to a Ca2+ -dependent upregulation of cytosolic pyruvate production. Conversely, glutamate (200 μM) causes a Na+ , but not Ca2+ , dependent workload even though glutamate-induced Ca2+ signals readily reach mitochondria. The glutamate workload triggers a rapid fall in the cytosolic ATP/ADP ratio and stimulation of respiration. These effects are mimicked by D-aspartate a nonmetabolized agonist of the glutamate transporter, but not by a metabotropic glutamate receptor agonist, indicating a major role of Na+ -dependent workload in stimulated respiration. Glutamate-induced increase in respiration is linked to a rapid increase in glycolytic pyruvate production, suggesting that both glutamate and extracellular ATP cause an increase in astrocyte respiration fueled by workload-induced increase in pyruvate production. However, glutamate-induced pyruvate production is partly resistant to glycolysis blockers (iodoacetate), indicating that oxidative consumption of glutamate also contributes to stimulated respiration. As stimulation of respiration by ATP and glutamate are similar and pyruvate production smaller in the first case, the results suggest that the response to extracellular ATP is a Ca2+ -dependent upregulation of respiration added to glycolysis upregulation. The global contribution of astrocyte respiratory responses to brain oxygen consumption is an open question.
Collapse
Affiliation(s)
- Inés Juaristi
- Departamento de Biología Molecular, Centro de Biología Molecular Severo Ochoa, Consejo Superior de Investigaciones Científicas-Universidad Autónoma de Madrid (CSIC-UAM), Madrid, Spain.,Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), Madrid, Spain.,Instituto de Investigación Sanitaria Fundación Jiménez Díaz (IIS-FJD), Madrid, Spain
| | - Irene Llorente-Folch
- Department of Physiology & Medical Physics, Royal College of Surgeons in Ireland, Dublin, Ireland.,Center for Systems Medicine, Royal College of Surgeons in Ireland, Dublin, Ireland
| | - Jorgina Satrústegui
- Departamento de Biología Molecular, Centro de Biología Molecular Severo Ochoa, Consejo Superior de Investigaciones Científicas-Universidad Autónoma de Madrid (CSIC-UAM), Madrid, Spain.,Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), Madrid, Spain.,Instituto de Investigación Sanitaria Fundación Jiménez Díaz (IIS-FJD), Madrid, Spain
| | - Araceli Del Arco
- Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), Madrid, Spain.,Instituto de Investigación Sanitaria Fundación Jiménez Díaz (IIS-FJD), Madrid, Spain.,Facultad de Ciencias Ambientales y Bioquímica, Centro Regional de Investigaciones Biomédicas, Universidad de Castilla la Mancha, Toledo, Spain
| |
Collapse
|
463
|
Arsenyan P, Vasiljeva J, Ivanova A, Belyakov S. Unusual N,Se-heterocycles with cyclic Se–N+ bond of isoselenazolopurinium type. MENDELEEV COMMUNICATIONS 2019. [DOI: 10.1016/j.mencom.2019.01.033] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
464
|
Al-Awthan YS, Salem Bahattab O. Protective Role of Carissa edulis Ethanolic Extract Against Dimethoate-induced Hepatotoxicity in Guinea Pigs. Pak J Biol Sci 2019; 22:299-308. [PMID: 31930853 DOI: 10.3923/pjbs.2019.299.308] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
BACKGROUND AND OBJECTIVE Carissa edulis (CE) (Apocynaceae) is distributed in tropical Africa and Asia and commonly used in folk medicine to treat many diseases such as headache, cough, rheumatism and fever. The purpose of this study was to evaluate the protective role of ethanolic extract of CE, a medicinal plant locally called "Al-Arm" in Yemen, against liver injury induced by dimethoate (DM) intoxication in male guinea pigs. MATERIALS AND METHODS Animals were divided randomly into 5 groups and kept at 5 animals per group. The first group was served as a control group and administered with vehicle orally; the group II administered with DM (14 mg kg-1; 1/25 LD50) orally. Animals of group III, IV and V were administered with 100 mg kg-1 of CE extract, 200 mg kg-1 of CE extract and 100 mg kg-1 Liv-52 orally half hour before DM administration, respectively. All the previous administrations were repeated daily for 21 days. Data were analyzed by one-way ANOVA using SPSS. RESULTS The DM caused a statistically significant increase in the serum level of liver enzymes (AST, ALT, ALP) when compared to control animals, whereas CE and Liv-52 pre-treatment to the DM-intoxicated animals resulted in a significant normalization of the activities of enzymes. Similarly, a significant increase in lipid peroxidation (LPO) level, while induced significant decreases in the activities of liver catalase (CAT) and glutathione-S-transferase (GST). In contrast, co-administration of CE and Liv-52 to DM-treated animals restored most of these biochemical parameters to nearly normal levels. Histopathological examination of intoxicated animals showed many tissues alterations such as; vasodilation, hemorrhage, cytoplasmic vacuolization, inflammation and nuclear pyknosis indicating liver damage, while the animals received CE or Liv-52 showed less pathological effects when compared to animals treated with DM alone. CONCLUSION The biochemical and histological results confirmed the hepatoprotective effect of ethanolic extract of CE against DM-induced hepatotoxicity in male guinea pigs.
Collapse
|
465
|
Chen YT, Yang CC, Shao PL, Huang CR, Yip HK. Melatonin-mediated downregulation of ZNF746 suppresses bladder tumorigenesis mainly through inhibiting the AKT-MMP-9 signaling pathway. J Pineal Res 2019; 66:e12536. [PMID: 30372570 DOI: 10.1111/jpi.12536] [Citation(s) in RCA: 44] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/24/2018] [Revised: 09/20/2018] [Accepted: 10/18/2018] [Indexed: 12/12/2022]
Abstract
There still lacking effective treatment for bladder cancer. This study investigated whether melatonin (Mel) can suppress the growth and invasion of bladder cancer cells. Male C57B/L6 mice were categorized into control group (ie, subcutaneous injection of HT1197 bladder cancer cell line at the back] and treatment group [subcutaneous HT1197 cells + intraperitoneal Mel (100 mg/kg/d) from day 8 to day 21 after tumor cell injection]. In vitro Mel suppressed cell growth of four bladder cancer cell lines (ie, T24, RT4, HT1197, HT1376), cell migration in HT1197/HT1376, mitochondrial membrane potential (MMP) in T24 and colony formation in RT4 cells as well as arrested the cell cycle at G0 phase and inhibited the mitotic phase of T24 cells (all P < 0.0001). Protein expression of ZNF746 in RT4/T24 cells and protein expression phosphorylated (p)-AKT/MMP-2/MMP-9 in HT1197/HT1376 cells were reduced following Mel treatment (all P < 0.001). Transfection of T24 cells with plasmid-based shRNA (ie, ZNF746-silencing) downregulated the protein expression of MMP-9, cell growth, and invasion and attachment to endothelial cells but upregulated the colony formation (all P < 0.001). Mel suppressed oxidative stress and MMP but upregulated mitochondria mass in ZNF746-silenced T24 cells, whereas these parameters exhibited a similar patter to Mel treatment in ZNF746-silenced T24 cells (all P < 0.0001). In vivo study demonstrated that Mel treatment significantly suppressed cellular expressions of MMP-9/MMP-2, protein expressions of ZNF746/p-AKT, and tumor size (all P < 0.001). Mel treatment suppressed the growth, migration, and invasion of bladder carcinoma cells through downregulating ZNF746-regulated MMP-9/MMP-2 signaling.
Collapse
Affiliation(s)
- Yen-Ta Chen
- Division of Urology, Department of Surgery, Kaohsiung Chang Gung Memorial Hospital, Chang Gung University College of Medicine, Kaohsiung, Taiwan
| | - Chih-Chao Yang
- Division of Nephrology, Department of Internal Medicine, Kaohsiung Chang Gung Memorial Hospital, Chang Gung University College of Medicine, Kaohsiung, Taiwan
| | - Pei-Lin Shao
- Department of Nursing, Asia University, Taichung, Taiwan
| | - Chi-Ruei Huang
- Division of Cardiology, Department of Internal Medicine, Kaohsiung Chang Gung Memorial Hospital, Chang Gung University College of Medicine, Kaohsiung, Taiwan
| | - Hon-Kan Yip
- Department of Nursing, Asia University, Taichung, Taiwan
- Division of Cardiology, Department of Internal Medicine, Kaohsiung Chang Gung Memorial Hospital, Chang Gung University College of Medicine, Kaohsiung, Taiwan
- Institute for Translational Research in Biomedicine, Kaohsiung Chang Gung Memorial Hospital, Kaohsiung, Taiwan
- Center for Shockwave Medicine and Tissue Engineering, Kaohsiung Chang Gung Memorial Hospital, Kaohsiung, Taiwan
- Department of Medical Research, China Medical University Hospital, China Medical University, Taichung, Taiwan
| |
Collapse
|
466
|
Slusarczyk W, Olakowska E, Larysz-Brysz M, Woszczycka-Korczyńska I, de Carrillo DG, Węglarz WP, Lewin-Kowalik J, Marcol W. Use of ebselen as a neuroprotective agent in rat spinal cord subjected to traumatic injury. Neural Regen Res 2019; 14:1255-1261. [PMID: 30804257 PMCID: PMC6425832 DOI: 10.4103/1673-5374.251334] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023] Open
Abstract
Spinal cord injury (SCI) causes disturbances of motor skills. Free radicals have been shown to be essential for the development of spinal cord trauma. Despite some progress, until now no effective pharmacological therapies against SCI have been verified. The purpose of our experiment was to investigate the neuroprotective effects of ebselen on experimental SCI. Twenty-two rats subjected to SCI were randomly subjected to SCI with no further treatment (n = 10) or intragastric administration of ebselen (10 mg/kg) immediately and 24 hours after SCI. Behavioral changes were assessed using the Basso, Beattie, and Bresnahan locomotor scale and footprint test during 12 weeks after SCI. Histopathological and immunohistochemical analyses of spinal cords and brains were performed at 12 weeks after SCI. Magnetic resonance imaging analysis of spinal cords was also performed at 12 weeks after SCI. Rats treated with ebselen presented only limited neurobehavioral progress as well as reduced spinal cord injuries compared with the control group, namely length of lesions (cysts/scars) visualized histopathologically in the spinal cord sections was less but cavity area was very similar. The same pattern was found in T2-weighted magnetic resonance images (cavities) and diffusion-weighted images (scars). The number of FluoroGold retrogradely labeled neurons in brain stem and motor cortex was several-fold higher in ebselen-treated rats than in the control group. The findings suggest that ebselen has only limited neuroprotective effects on injured spinal cord. All exprimental procedures were approved by the Local Animal Ethics Committee for Experiments on Animals in Katowice (Katowice, Poland) (approval No. 19/2009).
Collapse
Affiliation(s)
| | - Edyta Olakowska
- Department of Physiology, Medical University of Silesia, Katowice, Poland
| | | | | | | | | | | | - Wiesław Marcol
- Department of Physiology, Medical University of Silesia, Katowice, Poland
| |
Collapse
|
467
|
Spataru A, Le Duc D, Zagrean L, Zagrean AM. Ethanol exposed maturing rat cerebellar granule cells show impaired energy metabolism and increased cell death after oxygen-glucose deprivation. Neural Regen Res 2019; 14:485-490. [PMID: 30539817 PMCID: PMC6334607 DOI: 10.4103/1673-5374.245474] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
Alcohol, a widely abused drug, has deleterious effects on the immature nervous system. This study investigates the effect of chronic in vitro ethanol exposure on the metabolism of immature rat cerebellar granular cells (CGCs) and on their response to oxygen-glucose deprivation (OGD). Primary CGC cultures were exposed to ethanol (100 mM in culture medium) or to control ethanol-free medium starting day one in vitro (DIV1). At DIV8, the expression of ATP synthase gene ATP5g3 was quantified using real-time PCR, then cultures were exposed to 3 hours of OGD or normoxic conditions. Subsequently, cellular metabolism was assessed by a resazurin assay and by ATP level measurement. ATP5g3 expression was reduced by 12-fold (P = 0.03) and resazurin metabolism and ATP level were decreased to 74.4 ± 4.6% and 55.5 ± 6.9%, respectively after chronic ethanol treatment compared to control values (P < 0.01). Additionally, after OGD exposure of ethanol-treated cultures, resazurin metabolism and ATP level were decreased to 12.7 ± 1.0% and 9.0 ± 2.0% from control values (P < 0.01). These results suggest that chronic ethanol exposure reduces the cellular ATP level, possibly through a gene expression down-regulation mechanism, and increases the vulnerability to oxygen-glucose deprivation. Thus, interventions which improve metabolic function and sustain ATP-levels could attenuate ethanol-induced neuronal dysfunction and should be addressed in future studies.
Collapse
Affiliation(s)
- Ana Spataru
- Division of Physiology and Neuroscience, Carol Davila University of Medicine and Pharmacy, Bucharest, Romania; King's College Hospital, London, UK
| | - Diana Le Duc
- Institute of Human Genetics, University of Leipzig Hospitals and Clinics, Leipzig, Germany; Department of Evolutionary Genetics, Max Planck Institute for Evolutionary Anthropology, Leipzig, Germany
| | - Leon Zagrean
- Division of Physiology and Neuroscience, Carol Davila University of Medicine and Pharmacy, Bucharest, Romania
| | - Ana-Maria Zagrean
- Division of Physiology and Neuroscience, Carol Davila University of Medicine and Pharmacy, Bucharest, Romania
| |
Collapse
|
468
|
Wang HH, Portincasa P, Wang DQH. Update on the Molecular Mechanisms Underlying the Effect of Cholecystokinin and Cholecystokinin-1 Receptor on the Formation of Cholesterol Gallstones. Curr Med Chem 2019; 26:3407-3423. [PMID: 28625150 PMCID: PMC8118134 DOI: 10.2174/0929867324666170619104801] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2016] [Revised: 05/11/2017] [Accepted: 05/11/2017] [Indexed: 02/07/2023]
Abstract
Cholecystokinin (CCK) is an important neuro-intestinal peptide hormone produced by the enteroendocrine I-cells in the upper part of small intestine. Protein- and fat-enriched food plays an important role in triggering CCK secretion from the intestine. Carbohydrates stimulate only small amounts of CCK release. The CCK-1 receptor (CCK-1R) is largely localized in the gallbladder, sphincter of Oddi, pancreas, small intestine, gastric mucosa, and pyloric sphincter, where it is responsible for CCK to regulate multiple digestive processes including gallbladder contraction, pancreatic secretion, small intestinal transit, and gastric emptying. Accumulated evidence clearly demonstrates that CCK regulates gallbladder and small intestinal motility through CCK-1R signaling cascade and the effect of CCK-1R on small intestinal transit is a physiological response for regulating intestinal cholesterol absorption. Disruption of the Cck or the Cck-1r gene in mice significantly increases the formation of cholesterol gallstones by disrupting gallbladder emptying and biliary cholesterol metabolism, as well as promoting intestinal absorption of cholesterol. Abnormalities in gallbladder motility function in response to exogenously administered CCK are found primarily in patients with cholesterol gallstones. Patients with pigment gallstones display an intermediate degree of gallbladder motility defect without gallbladder inflammation and enlarged fasting gallbladder. Dysfunctional gallbladder contractility has been found under several conditions such as pregnancy, obesity, diabetes, celiac disease, and total parenteral nutrition although gallstones are not observed. The gallbladder-specific CCK-1R-selective agonist may lead to an efficacious novel way for preventing gallstone formation by promoting gallbladder emptying, particularly for pregnant women and subjects with dysfunctional gallbladder motility function such as celiac patients, as well as patients with total parenteral nutrition.
Collapse
Affiliation(s)
- Helen H. Wang
- Department of Medicine, Division of Gastroenterology and Liver Diseases, Marion Bessin Liver Research Center, Albert Einstein College of Medicine, Bronx, NY 10461, USA
| | - Piero Portincasa
- Department of Biomedical Sciences and Human Oncology, University of Bari Medical School, Bari, Italy
| | - David Q.-H. Wang
- Department of Medicine, Division of Gastroenterology and Liver Diseases, Marion Bessin Liver Research Center, Albert Einstein College of Medicine, Bronx, NY 10461, USA
| |
Collapse
|
469
|
Erickson EK, Grantham EK, Warden AS, Harris RA. Neuroimmune signaling in alcohol use disorder. Pharmacol Biochem Behav 2018; 177:34-60. [PMID: 30590091 DOI: 10.1016/j.pbb.2018.12.007] [Citation(s) in RCA: 159] [Impact Index Per Article: 22.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/22/2018] [Revised: 10/25/2018] [Accepted: 12/20/2018] [Indexed: 02/07/2023]
Abstract
Alcohol use disorder (AUD) is a widespread disease with limited treatment options. Targeting the neuroimmune system is a new avenue for developing or repurposing effective pharmacotherapies. Alcohol modulates innate immune signaling in different cell types in the brain by altering gene expression and the molecular pathways that regulate neuroinflammation. Chronic alcohol abuse may cause an imbalance in neuroimmune function, resulting in prolonged perturbations in brain function. Likewise, manipulating the neuroimmune system may change alcohol-related behaviors. Psychiatric disorders that are comorbid with AUD, such as post-traumatic stress disorder, major depressive disorder, and other substance use disorders, may also have underlying neuroimmune mechanisms; current evidence suggests that convergent immune pathways may be involved in AUD and in these comorbid disorders. In this review, we provide an overview of major neuroimmune cell-types and pathways involved in mediating alcohol behaviors, discuss potential mechanisms of alcohol-induced neuroimmune activation, and present recent clinical evidence for candidate immune-related drugs to treat AUD.
Collapse
Affiliation(s)
- Emma K Erickson
- Waggoner Center for Alcohol and Addiction Research, The University of Texas at Austin, Austin, TX 78712-01095, USA.
| | - Emily K Grantham
- Waggoner Center for Alcohol and Addiction Research, The University of Texas at Austin, Austin, TX 78712-01095, USA
| | - Anna S Warden
- Waggoner Center for Alcohol and Addiction Research, The University of Texas at Austin, Austin, TX 78712-01095, USA
| | - R A Harris
- Waggoner Center for Alcohol and Addiction Research, The University of Texas at Austin, Austin, TX 78712-01095, USA
| |
Collapse
|
470
|
d'Amora M, Giordani S. The Utility of Zebrafish as a Model for Screening Developmental Neurotoxicity. Front Neurosci 2018; 12:976. [PMID: 30618594 PMCID: PMC6305331 DOI: 10.3389/fnins.2018.00976] [Citation(s) in RCA: 129] [Impact Index Per Article: 18.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2018] [Accepted: 12/06/2018] [Indexed: 01/05/2023] Open
Abstract
The developing central nervous system and the blood brain barrier are especially vulnerable and sensitive to different chemicals, including environmental contaminants and drugs. Developmental exposure to these compounds has been involved in several neurological disorders, such as autism spectrum disorders as well as Alzheimer's and Parkinson's diseases. Zebrafish (Danio Rerio) have emerged as powerful toxicological model systems that can speed up chemical hazard assessment and can be used to extrapolate neurotoxic effects that chemicals have on humans. Zebrafish embryos and larvae are convenient for high-throughput screening of chemicals, due to their small size, low-cost, easy husbandry, and transparency. Additionally, zebrafish are homologous to other higher order vertebrates in terms of molecular signaling processes, genetic compositions, and tissue/organ structures as well as neurodevelopment. This mini review underlines the potential of the zebrafish as complementary models for developmental neurotoxicity screening of chemicals and describes the different endpoints utilized for such screening with some studies illustrating their use.
Collapse
Affiliation(s)
- Marta d'Amora
- Nano Carbon Materials, Center for Sustainable Future Technologies, Istituto Italiano di Tecnologia, Turin, Italy
| | - Silvia Giordani
- Nano Carbon Materials, Center for Sustainable Future Technologies, Istituto Italiano di Tecnologia, Turin, Italy.,School of Chemical Sciences, Dublin City University, Dublin, Ireland
| |
Collapse
|
471
|
Dwivedi DK, Kumar D, Kwatra M, Pandey SN, Choubey P, Lahkar M, Jangra A. Voluntary alcohol consumption exacerbated high fat diet-induced cognitive deficits by NF-κB-calpain dependent apoptotic cell death in rat hippocampus: Ameliorative effect of melatonin. Biomed Pharmacother 2018; 108:1393-1403. [PMID: 30372842 DOI: 10.1016/j.biopha.2018.09.173] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2018] [Revised: 09/15/2018] [Accepted: 09/29/2018] [Indexed: 12/22/2022] Open
Abstract
Modern sedentary lifestyle with altered dietary habits imposes the risk of human health towards several metabolic disorders such as obesity. The metabolic insults negatively affect the mental health status and quality life of affected individuals. Melatonin is a potent antioxidant with anti-inflammatory and neuroprotective properties. The aim of the present study was to investigate the protective effect of melatonin on the cognitive and neurochemical deficits induced by the high-fat diet (HFD) and alcohol (ALC) alone or in combination (HFD + ALC) in rats. Male Wistar rats were given ALC (3-15% i.e. increased gradually) and HFD for 12 weeks in different experimental groups. After 12 weeks, we found that simultaneous consumption of HFD and ALC exacerbates cognitive dysfunction and neurochemical anomalies. However, melatonin (10 mg/kg/day, i.p.) treatment for four weeks significantly prevented memory deficits, oxidative stress and neuroinflammation in HFD, ALC and HFD + ALC groups. RT-PCR analysis showed down-regulation of nuclear factor erythroid 2-related factor 2 (Nrf-2) and heme oxygenase-1 (HO-1) in ALC and HFD + ALC groups. Moreover, caspase-3 and nuclear factor kappa-light-chain-enhancer of activated B cells (NF-κB) mRNA expression level were found up-regulated in hippocampus of HFD, ALC and HFD + ALC groups. However, calpain expression was found up-regulated only in the hippocampus of HFD + ALC group. Chronic treatment with melatonin significantly restored the aberrant gene expression level in HFD, ALC and HFD + ALC group. In conclusion, our findings indicated that melatonin can mitigate the HFD and ALC-induced cognitive deficits via attenuation of oxidative stress and calpain-1 dependent as well as independent caspase-3 mediated neuronal cell death.
Collapse
Affiliation(s)
- Durgesh Kumar Dwivedi
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research (NIPER), Guwahati, Assam, India
| | - Dinesh Kumar
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research (NIPER), Guwahati, Assam, India
| | - Mohit Kwatra
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research (NIPER), Guwahati, Assam, India
| | - Surya Narayan Pandey
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research (NIPER), Guwahati, Assam, India
| | - Priyansha Choubey
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research (NIPER), Guwahati, Assam, India
| | - Mangala Lahkar
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research (NIPER), Guwahati, Assam, India; Department of Pharmacology, Gauhati Medical College, Guwahati, Assam, India
| | - Ashok Jangra
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research (NIPER), Guwahati, Assam, India; Department of Pharmacology, KIET School of Pharmacy, Krishna Institute of Engineering and Technology, Ghaziabad, Uttar Pradesh, India.
| |
Collapse
|
472
|
Liu L, Shen YF, Hu Y, Lu JF. Antiviral effect of 7-(4-benzimidazole-butoxy)-coumarin on rhabdoviral clearance via Nrf2 activation regulated by PKCα/β phosphorylation. FISH & SHELLFISH IMMUNOLOGY 2018; 83:386-396. [PMID: 30243774 DOI: 10.1016/j.fsi.2018.09.054] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/18/2018] [Revised: 09/17/2018] [Accepted: 09/19/2018] [Indexed: 06/08/2023]
Abstract
Coumarin forms an elite class of naturally occurring compounds that possess promising antiviral therapeutic perspectives. In the previous study, we designed and synthesized a coumarin derivative, 7-(4-benzimidazole-butoxy)-coumarin (BBC), to evaluate its antiviral activity on spring viraemia of carp virus (SVCV). In this study, our results show that BBC does not affect viral adhesion and delivery from endosomes to the cytosol, indicating BBC has no inhibitory activity in the early stage of viral infection. Further data are determined that BBC significantly declines SVCV-infected apoptosis and recovers caspase-3/8/9 activity. To reveal the pathway that affects Nrf2 translocation by BBC, we examine changes in protein kinase C (PKC) in EPC cells treated with BBC. We observe that BBC results in a higher phosphorylation of PKCα/β that is involved in the activation of erythroid 2-related factor 2 (Nrf2) phosphorylation to favor Nrf2 translocation to nucleus at 24 and 48 h. In addition, the results show that BBC also up-regulates both antiviral responses, heme oxygenase-1 (HO-1) expression and cellular IFN response. Overall, this mechanism of action provides a new therapeutic target for the treatment of SVCV infection, and these results suggest that treatment with BBC is effective in reducing SVCV infection and differently regulates SVCV-induced undesirable conditions.
Collapse
Affiliation(s)
- Lei Liu
- Laboratory of Biochemistry and Molecular Biology, School of Marine Sciences, Ningbo University, Ningbo, 315211, China; Key Laboratory of Applied Marine Biotechnology of Ministry of Education, Ningbo University, Ningbo, 315211, China.
| | - Yu-Feng Shen
- College of Animal Science and Technology, Northwest A&F University, Xinong Road 22nd, Yangling, Shaanxi, 712100, China
| | - Yang Hu
- College of Animal Science and Technology, Northwest A&F University, Xinong Road 22nd, Yangling, Shaanxi, 712100, China
| | - Jian-Fei Lu
- Laboratory of Biochemistry and Molecular Biology, School of Marine Sciences, Ningbo University, Ningbo, 315211, China; Key Laboratory of Applied Marine Biotechnology of Ministry of Education, Ningbo University, Ningbo, 315211, China
| |
Collapse
|
473
|
Montes de Oca Balderas P. Flux-Independent NMDAR Signaling: Molecular Mediators, Cellular Functions, and Complexities. Int J Mol Sci 2018; 19:ijms19123800. [PMID: 30501045 PMCID: PMC6321296 DOI: 10.3390/ijms19123800] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2018] [Revised: 11/16/2018] [Accepted: 11/19/2018] [Indexed: 12/21/2022] Open
Abstract
The glutamate (Glu) N-methyl-d-aspartate (NMDA) receptor (NMDAR) plays a critical role in synaptic communication given mainly by its ionotropic function that permeates Ca2+. This in turn activates calmodulin that triggers CaMKII, MAPK, CREB, and PI3K pathways, among others. However, NMDAR signaling is more complex. In the last two decades several groups have shown that the NMDAR also elicits flux-independent signaling (f-iNMDARs). It has been demonstrated that agonist (Glu or NMDA) or co-agonist (Glycine or d-Serine) bindings initiate intracellular events, including conformational changes, exchange of molecular interactions, release of second messengers, and signal transduction, that result in different cellular events including endocytosis, LTD, cell death, and neuroprotection, among others. Interestingly, f-iNMDARs has also been observed in pathological conditions and non-neuronal cells. Here, the molecular and cellular events elicited by these flux-independent actions (non-canonical or metabotropic-like) of the NMDAR are reviewed. Considering the NMDAR complexity, it is possible that these flux-independent events have a more relevant role in intracellular signaling that has been disregarded for decades. Moreover, considering the wide expression and function of the NMDAR in non-neuronal cells and other tissues beyond the nervous system and some evolutionary traits, f-iNMDARs calls for a reconsideration of how we understand the biology of this complex receptor.
Collapse
Affiliation(s)
- Pavel Montes de Oca Balderas
- Departamento de Neurociencia Cognitiva, Instituto de Fisiología Celular, UNAM. Av. Universidad 3000, C.U. Coyoacán, Ciudad de México. C.P. 04510, Mexico.
- Unidad de Neurobiología Dinámica, Departamento de Neuroquímica, INNN. Av. Insurgentes Sur #3877 Col. La Fama, Ciudad de México. C.P. 14269, Mexico.
| |
Collapse
|
474
|
Santofimia-Castaño P, Lan W, Bintz J, Gayet O, Carrier A, Lomberk G, Neira JL, González A, Urrutia R, Soubeyran P, Iovanna J. Inactivation of NUPR1 promotes cell death by coupling ER-stress responses with necrosis. Sci Rep 2018; 8:16999. [PMID: 30451898 PMCID: PMC6242935 DOI: 10.1038/s41598-018-35020-3] [Citation(s) in RCA: 43] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2018] [Accepted: 10/30/2018] [Indexed: 12/16/2022] Open
Abstract
It was already described that genetic inhibition of NUPR1 induces tumor growth arrest. In this paper we studied the metabolism changes after NUPR1 downregulation in pancreatic cancer cells, which results in a significant decrease of OXPHOS activity with a concomitant lower ATP production which precedes the necrotic cell death. We demonstrated that NUPR1 downregulation induces a mitochondrial failure with a loss of the mitochondrial membrane potential, a strong increase in ROS production and a concomitant relocalization of mitochondria to the vicinity of the endoplasmic reticulum (ER). In addition, the transcriptomic analysis of NUPR1-deficient cells shows a decrease in the expression of some ER stress response-associated genes. Indeed, in ER stressors-treated cells with thapsigargin, brefeldin A or tunicamycin, a greater increase in necrosis and decrease of ATP content was observed in NUPR1-defficent cells. Finally, in vivo experiments, using acute pancreatitis which induces ER stress as well as NUPR1 activation, we observed that NUPR1 expression protects acinar cells from necrosis in mice. Importantly, we also report that the cell death observed after knocking-down NUPR1 expression is completely reversed by incubation with Necrostatin-1, but not by inhibiting caspase activity with Z-VAD-FMK. Altogether, these data enable us to describe a model in which inactivation of NUPR1 in pancreatic cancer cells results in an ER stress that induces a mitochondrial malfunction, a deficient ATP production and, as consequence, the cell death mediated by a programmed necrosis.
Collapse
Affiliation(s)
- Patricia Santofimia-Castaño
- Centre de Recherche en Cancérologie de Marseille (CRCM), INSERM U1068, CNRS UMR 7258, Aix-Marseille Université and Institut Paoli-Calmettes, Parc Scientifique et Technologique de Luminy, Marseille, France
| | - Wenjun Lan
- Centre de Recherche en Cancérologie de Marseille (CRCM), INSERM U1068, CNRS UMR 7258, Aix-Marseille Université and Institut Paoli-Calmettes, Parc Scientifique et Technologique de Luminy, Marseille, France
| | - Jennifer Bintz
- Centre de Recherche en Cancérologie de Marseille (CRCM), INSERM U1068, CNRS UMR 7258, Aix-Marseille Université and Institut Paoli-Calmettes, Parc Scientifique et Technologique de Luminy, Marseille, France
| | - Odile Gayet
- Centre de Recherche en Cancérologie de Marseille (CRCM), INSERM U1068, CNRS UMR 7258, Aix-Marseille Université and Institut Paoli-Calmettes, Parc Scientifique et Technologique de Luminy, Marseille, France
| | - Alice Carrier
- Centre de Recherche en Cancérologie de Marseille (CRCM), INSERM U1068, CNRS UMR 7258, Aix-Marseille Université and Institut Paoli-Calmettes, Parc Scientifique et Technologique de Luminy, Marseille, France
| | - Gwen Lomberk
- Division of Research, Department of Surgery and the Genomic Sciences and Precision Medicine Center, Medical College of Wisconsin, Milwaukee, USA
| | - José Luis Neira
- Instituto de Biología Molecular y Celular, Universidad Miguel Hernández, Edificio Torregaitán, Avda. del Ferrocarril s/n, 03202, Elche, Alicante, Spain
| | - Antonio González
- Cell Physiology Research Group, Department of Physiology, University of Extremadura, Caceres, Spain
| | - Raul Urrutia
- Division of Research, Department of Surgery and the Genomic Sciences and Precision Medicine Center, Medical College of Wisconsin, Milwaukee, USA
| | - Philippe Soubeyran
- Centre de Recherche en Cancérologie de Marseille (CRCM), INSERM U1068, CNRS UMR 7258, Aix-Marseille Université and Institut Paoli-Calmettes, Parc Scientifique et Technologique de Luminy, Marseille, France
| | - Juan Iovanna
- Centre de Recherche en Cancérologie de Marseille (CRCM), INSERM U1068, CNRS UMR 7258, Aix-Marseille Université and Institut Paoli-Calmettes, Parc Scientifique et Technologique de Luminy, Marseille, France.
| |
Collapse
|
475
|
Hosseinzadeh A, Javad-Moosavi SA, Reiter RJ, Yarahmadi R, Ghaznavi H, Mehrzadi S. Oxidative/nitrosative stress, autophagy and apoptosis as therapeutic targets of melatonin in idiopathic pulmonary fibrosis. Expert Opin Ther Targets 2018; 22:1049-1061. [PMID: 30445883 DOI: 10.1080/14728222.2018.1541318] [Citation(s) in RCA: 64] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
INTRODUCTION Idiopathic pulmonary fibrosis (IPF) is a fatal interstitial lung disease associated with disruption of alveolar epithelial cell layer and expansion of fibroblasts/myofibroblasts. Excessive levels of oxidative/nitrosative stress, induction of apoptosis, and insufficient autophagy may be involved in IPF pathogenesis; hence, the targeting of these pathways may ameliorate IPF. Areas covered: We describe the ameliorative effect of melatonin on IPF. We summarize the research on IPF pathogenesis with a focus on oxidative/nitrosative stress, autophagy and apoptosis pathways and discuss the potential effects of melatonin on these pathways. Expert opinion: Oxidative/nitrosative stress, apoptosis and autophagy could be interesting targets for therapeutic intervention in IPF. Melatonin, as a potent antioxidant, induces the expression of antioxidant enzymes, scavenges free radicals and modulates apoptosis and autophagy pathways. The effect of melatonin in the induction of autophagy could be an important mechanism against fibrotic process in IPF lungs. Further clinical studies are necessary to determine if melatonin could be a candidate for treating IPF.
Collapse
Affiliation(s)
- Azam Hosseinzadeh
- a Razi Drug Research Center , Iran University of Medical Sciences , Tehran , Iran
| | | | - Russel J Reiter
- c Department of Cellular and Structural Biology , UT Health , San Antonio , TX , USA
| | - Rasoul Yarahmadi
- d Department of Occupational Health , Air Pollution Research Center, Iran University of Medical Sciences , Tehran , Iran
| | - Habib Ghaznavi
- e Department of Pharmacology , School of Medicine, Zahedan University of Medical Sciences , Zahedan , Iran
| | - Saeed Mehrzadi
- a Razi Drug Research Center , Iran University of Medical Sciences , Tehran , Iran
| |
Collapse
|
476
|
Matzinger M, Fischhuber K, Heiss EH. Activation of Nrf2 signaling by natural products-can it alleviate diabetes? Biotechnol Adv 2018; 36:1738-1767. [PMID: 29289692 PMCID: PMC5967606 DOI: 10.1016/j.biotechadv.2017.12.015] [Citation(s) in RCA: 145] [Impact Index Per Article: 20.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2017] [Revised: 12/19/2017] [Accepted: 12/26/2017] [Indexed: 02/06/2023]
Abstract
Type 2 diabetes mellitus (DM) has reached pandemic proportions and effective prevention strategies are wanted. Its onset is accompanied by cellular distress, the nuclear factor erythroid 2-related factor 2 (Nrf2) is a transcription factor boosting cytoprotective responses, and many phytochemicals activate Nrf2 signaling. Thus, Nrf2 activation by natural products could presumably alleviate DM. We summarize function, regulation and exogenous activation of Nrf2, as well as diabetes-linked and Nrf2-susceptible forms of cellular stress. The reported amelioration of insulin resistance, β-cell dysfunction and diabetic complications by activated Nrf2 as well as the status quo of Nrf2 in precision medicine for DM are reviewed.
Collapse
Affiliation(s)
- Manuel Matzinger
- University of Vienna, Department of Pharmacognosy, Althanstrasse 14, 1090 Vienna, Austria
| | - Katrin Fischhuber
- University of Vienna, Department of Pharmacognosy, Althanstrasse 14, 1090 Vienna, Austria
| | - Elke H Heiss
- University of Vienna, Department of Pharmacognosy, Althanstrasse 14, 1090 Vienna, Austria.
| |
Collapse
|
477
|
Ameur FZ, Mehedi N, Kheroua O, Saïdi D, Salido GM, Gonzalez A. Sulfanilic acid increases intracellular free-calcium concentration, induces reactive oxygen species production and impairs trypsin secretion in pancreatic AR42J cells. Food Chem Toxicol 2018; 120:71-80. [PMID: 29986830 DOI: 10.1016/j.fct.2018.07.001] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2018] [Revised: 06/09/2018] [Accepted: 07/01/2018] [Indexed: 12/12/2022]
Abstract
We studied the effects of the tartrazine-metabolite sulfanilic acid on the physiology of pancreatic AR42J cells. Sulfanilic acid (1 μM-1 mM) induced a slow and progressive increase in intracellular free-calcium concentration that reached a plateau. The effect of sulfanilic acid was not concentration-dependent. Stimulation of cells with thapsigargin (1 μM) after treatment with sulfanilic acid (1 mM) induced a smaller Ca2+ response compared with that obtained with thapsigargin alone. Sulfanilic acid induced a concentration-dependent production of reactive oxygen species; however, this effect was not Ca2+-dependent. Depolarization of mitochondrial membrane potential was observed at the concentration of 1 mM sulfanilic acid. In the presence of the compound a decrease in the GSH/GSSG ratio was observed. A decrease in the expression of superoxide dismutase 2 was noted. Finally, stimulation of cells with CCK-8 led to a concentration-dependent increase of trypsin secretion that was impaired by pretreatment of cells with sulfanilic acid. Preincubation of cells with the antioxidant melatonin (100 μM) reduced the effect of sulfanilic acid on trypsin secretion. We conclude that sulfanilic acid might induce oxidative stress, which could alter Ca2+ signaling and enzyme secretion in pancreatic AR42J cells. This creates a situation potentially leading to damage of the exocrine pancreas.
Collapse
Affiliation(s)
- Fatma Zohra Ameur
- Institute of Molecular Pathology Biomarkers, University of Extremadura, Caceres, Spain; Laboratoire de Physiologie de la Nutrition et de Sécurité Alimentaire - Université d'Oran1, Ahmed BenBella, Algeria
| | - Nabila Mehedi
- Laboratoire de Physiologie de la Nutrition et de Sécurité Alimentaire - Université d'Oran1, Ahmed BenBella, Algeria
| | - Omar Kheroua
- Laboratoire de Physiologie de la Nutrition et de Sécurité Alimentaire - Université d'Oran1, Ahmed BenBella, Algeria
| | - Djamel Saïdi
- Laboratoire de Physiologie de la Nutrition et de Sécurité Alimentaire - Université d'Oran1, Ahmed BenBella, Algeria
| | - Gines M Salido
- Institute of Molecular Pathology Biomarkers, University of Extremadura, Caceres, Spain
| | - Antonio Gonzalez
- Institute of Molecular Pathology Biomarkers, University of Extremadura, Caceres, Spain.
| |
Collapse
|
478
|
Li B, Feng XJ, Hu XY, Chen YP, Sha JC, Zhang HY, Fan HG. Effect of melatonin on attenuating the isoflurane-induced oxidative damage is related to PKCα/Nrf2 signaling pathway in developing rats. Brain Res Bull 2018; 143:9-18. [PMID: 30278199 DOI: 10.1016/j.brainresbull.2018.09.018] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2018] [Revised: 09/13/2018] [Accepted: 09/27/2018] [Indexed: 11/30/2022]
Abstract
Isoflurane, an inhalational anesthesia, has frequently been used in pediatric anesthesia. However, research indicates that isoflurane can induce oxidative stress and affect neural and cognitive development. Melatonin, an endogenous hormone that exhibits antioxidant functions, can play a neuroprotective role by activating the PKCα/Nrf2 signaling pathway in response to oxidative stress. This study aims to determine whether the effect of melatonin on isoflurane-induced oxidative stress is related to activation of the PKCα/Nrf2 signaling pathway. Rat pups at postnatal day 7 were treated with control or 1.5% isoflurane for 4 h after pretreatment for 15 min with either melatonin (10 mg/kg i.p.) or 1% ethanol. The hematoxylin and eosin staining and transmission electron microscopic examination were used for observation of histopathology. The oxidative stress-related indicators were detected by using assay kits. The western blotting, immunohistochemistry and immunofluorescence were used to detect the activation of PKCα/Nrf2 signaling pathway. Results showed that isoflurane induced nerve damage in the hippocampus, and melatonin could reduce this injury. Oxidative stress-related indicators suggested that isoflurane can significantly increase reactive oxygen species and malondialdehyde levels, and decrease superoxide dismutase and glutathione activity compared with the control group, whereas melatonin ameliorated these indices. Expression of proteins associated with the PKCα/Nrf2 signaling pathway indicated that the neuroprotective effect of melatonin is related to activation of the PKCα/Nrf2 signaling pathway. These results suggest that the attenuating effect of melatonin on isoflurane-induced oxidative stress is related to activation of the PKCα/Nrf2 signaling pathway. These findings promote further research into underlying mechanisms and effective treatments to attenuate anesthesia neurotoxicity.
Collapse
Affiliation(s)
- Bei Li
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, China
| | - Xiu Jing Feng
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, China
| | - Xue Yuan Hu
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, China
| | - Yong Ping Chen
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, China
| | - Ji Chen Sha
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, China
| | - Hua Yun Zhang
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, China
| | - Hong-Gang Fan
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, China.
| |
Collapse
|
479
|
Screening a Repurposing Library for Inhibitors of Multidrug-Resistant Candida auris Identifies Ebselen as a Repositionable Candidate for Antifungal Drug Development. Antimicrob Agents Chemother 2018; 62:AAC.01084-18. [PMID: 30104269 DOI: 10.1128/aac.01084-18] [Citation(s) in RCA: 70] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2018] [Accepted: 08/07/2018] [Indexed: 12/13/2022] Open
Abstract
Since its original isolation in 2009, Candida auris has spread across the globe as a causative agent of invasive candidiasis. C. auris is typically intrinsically resistant to fluconazole and can also be resistant to echinocandins and even amphotericin B. Thus, there is an urgent need to find new treatment options against this emerging pathogen. To address this growing problem, we performed a screen of the Prestwick Chemical library, a repurposing library of 1,280 small molecules, consisting mostly of approved off-patent drugs, in search of those with activity against a multidrug-resistant C. auris isolate. Our initial screen, using standardized susceptibility testing methodologies, identified nine miscellaneous compounds with no previous clinical indication as antifungals or antiseptics that displayed activity against C. auris Confirmation and follow-up studies identified ebselen as the drug displaying the most potent activity, with 100% inhibition of growth detected at concentrations as low as 2.5 μM. We further evaluated the ability of ebselen to inhibit C. auris biofilm formation and examined the effects of combination therapies of ebselen with clinically used antifungals. We extended our studies to different C. auris strains with various susceptibility patterns and also confirmed its antifungal activity against Candida albicans and clinical isolates of multiple other Candida species. Furthermore, ebselen displayed a broad spectrum of antifungal actions on the basis of its activity against a variety of medically important fungi, including yeasts and molds. Overall, our results indicate the promise of ebselen as a repositionable agent for the treatment of candidiasis and possibly other mycoses and, in particular, for the treatment of infections refractory to conventional treatment with current antifungals.
Collapse
|
480
|
Tamtaji OR, Mirhosseini N, Reiter RJ, Behnamfar M, Asemi Z. Melatonin and pancreatic cancer: Current knowledge and future perspectives. J Cell Physiol 2018; 234:5372-5378. [PMID: 30229898 DOI: 10.1002/jcp.27372] [Citation(s) in RCA: 42] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2018] [Accepted: 08/17/2018] [Indexed: 12/13/2022]
Abstract
Pancreatic cancer has a high mortality rate due to the absence of early symptoms and subsequent late diagnosis; additionally, pancreatic cancer has a high resistance to radio- and chemotherapy. Multiple inflammatory pathways are involved in the pathophysiology of pancreatic cancer. Melatonin an indoleamine produced in the pineal gland mediated and receptor-independent action is the pancreas and other where has both receptors. Melatonin is a potent antioxidant and tissue protector against inflammation and oxidative stress. In vivo and in vitro studies have shown that melatonin supplementation is an appropriate therapeutic approach for pancreatic cancer. Melatonin may be an effective apoptosis inducer in cancer cells through regulation of a large number of molecular pathways including oxidative stress, heat shock proteins, and vascular endothelial growth factor. Limited clinical studies, however, have evaluated the role of melatonin in pancreatic cancer. This review summarizes what is known regarding the effects of melatonin on pancreatic cancer and the mechanisms involved.
Collapse
Affiliation(s)
- Omid Reza Tamtaji
- Physiology Research Center, Kashan University of Medical Sciences, Kashan, Iran
| | | | - Russel J Reiter
- Department of Cellular and Structural Biology, University of Texas Health Science, Center, San Antonio, Texas
| | - Morteza Behnamfar
- Student Research Committee, School of Medicine, North Khorasan University of Medical Sciences, Bojnurd, Iran
| | - Zatollah Asemi
- Research Center for Biochemistry and Nutrition in Metabolic Diseases, Kashan University of Medical Sciences, Kashan, Iran
| |
Collapse
|
481
|
Skowrońska K, Obara-Michlewska M, Czarnecka A, Dąbrowska K, Zielińska M, Albrecht J. Persistent Overexposure to N-Methyl-D-Aspartate (NMDA) Calcium-Dependently Downregulates Glutamine Synthetase, Aquaporin 4, and Kir4.1 Channel in Mouse Cortical Astrocytes. Neurotox Res 2018; 35:271-280. [PMID: 30220059 PMCID: PMC6313349 DOI: 10.1007/s12640-018-9958-3] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2017] [Revised: 08/31/2018] [Accepted: 09/07/2018] [Indexed: 11/25/2022]
Abstract
Astrocytes express N-methyl-d-aspartate (NMDA) receptor (NMDAR) but its functions in these cells are not well defined. This study shows that the sustained exposure (8–72 h) of mouse astrocytes to NMDA decreases the expression of the functional astroglia-specific proteins, glutamine synthetase (GS), and the water channel protein aquaporin-4 (AQP4) and also reduces GS activity. Similar to rat astrocytes (Obara-Michlewska et al. Neurochem Int 88:20–25, 2015), the exposure of mouse astrocytes to NMDA also decreased the expression of the inward rectifying potassium channel Kir4.1. NMDA failed to elicit the effects in those cells incubated in the absence of Ca2+ and in those in which the GluN1 subunit of the NMDAR was silenced with GluN1 siRNA. The downregulation of GS, AQP4, and Kir4.1 observed in vitro may reflect NMDAR-mediated alterations of astrocytic functions noted in central nervous system pathologies associated with increased glutamate (Glu) release and excitotoxic tissue damage.
Collapse
Affiliation(s)
- Katarzyna Skowrońska
- Department of Neurotoxicology, Mossakowski Medical Research Centre, Polish Academy of Sciences, Pawińskiego St. 5, 02-106, Warsaw, Poland
| | - Marta Obara-Michlewska
- Department of Neurotoxicology, Mossakowski Medical Research Centre, Polish Academy of Sciences, Pawińskiego St. 5, 02-106, Warsaw, Poland
| | - Anna Czarnecka
- Department of Neurotoxicology, Mossakowski Medical Research Centre, Polish Academy of Sciences, Pawińskiego St. 5, 02-106, Warsaw, Poland
| | - Katarzyna Dąbrowska
- Department of Neurotoxicology, Mossakowski Medical Research Centre, Polish Academy of Sciences, Pawińskiego St. 5, 02-106, Warsaw, Poland
| | - Magdalena Zielińska
- Department of Neurotoxicology, Mossakowski Medical Research Centre, Polish Academy of Sciences, Pawińskiego St. 5, 02-106, Warsaw, Poland
| | - Jan Albrecht
- Department of Neurotoxicology, Mossakowski Medical Research Centre, Polish Academy of Sciences, Pawińskiego St. 5, 02-106, Warsaw, Poland.
| |
Collapse
|
482
|
Kostenko S, Heu CC, Yaron JR, Singh G, de Oliveira C, Muller WJ, Singh VP. c-Src regulates cargo transit via the Golgi in pancreatic acinar cells. Sci Rep 2018; 8:11903. [PMID: 30093675 PMCID: PMC6085363 DOI: 10.1038/s41598-018-30370-4] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2018] [Accepted: 07/17/2018] [Indexed: 12/11/2022] Open
Abstract
The exocrine pancreatic acinar cell is unique for its rapid protein synthesis and packaging in zymogen granules (ZGs). However, while crucial to the pathogenesis of pancreatitis, the signaling involved in the transit of proteins via the Golgi is poorly understood in these cells. Noting the evidence of c-Src in regulating transit of cargo via the Golgi in other systems, we explored this in acinar cells. Stimulation of ZG formation with dexamethasone activated Src and increased the Golgi area in acinar cells. c-Src localized to the microsomes of acinar cells on immunofluorescence and subcellular fractionation. While other Src family members had no effect on the Golgi markers P115 and GM130, active c-Src increased the Golgi area these stained, extending them into the ER. Src inhibition reduced amylase staining outside the Golgi and increased it in a stack like Golgi morphology. In vivo pharmacologic inhibition or acinar specific genetic deletion of c-Src reduced ZG number and staining of amylase in ZGs along with increasing amylase retention in the microsomal fraction. Morphologically this was associated with smaller Golgi stacks, and dilation of the endoplasmic reticulum. Therefore the role c-Src regulated Golgi function, ZG formation and microsomal zymogen transit in acinar cells needs to be explored in pancreatitis.
Collapse
Affiliation(s)
- Sergiy Kostenko
- Department of Medicine, Mayo Clinic, Scottsdale, Arizona, USA
| | - Chan C Heu
- Department of Medicine, Mayo Clinic, Scottsdale, Arizona, USA
| | - Jordan R Yaron
- Department of Medicine, Mayo Clinic, Scottsdale, Arizona, USA
| | - Garima Singh
- Department of Medicine, Mayo Clinic, Scottsdale, Arizona, USA
| | | | - William J Muller
- Goodman Cancer Research Center and Department of Biology, McGill University, Montreal, QC, H3A 1A3, Canada
| | - Vijay P Singh
- Department of Medicine, Mayo Clinic, Scottsdale, Arizona, USA.
| |
Collapse
|
483
|
Saba J, Turati J, Ramírez D, Carniglia L, Durand D, Lasaga M, Caruso C. Astrocyte truncated tropomyosin receptor kinase B mediates brain-derived neurotrophic factor anti-apoptotic effect leading to neuroprotection. J Neurochem 2018; 146:686-702. [DOI: 10.1111/jnc.14476] [Citation(s) in RCA: 47] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2018] [Revised: 05/22/2018] [Accepted: 05/25/2018] [Indexed: 12/19/2022]
Affiliation(s)
- Julieta Saba
- Instituto de Investigaciones Biomédicas (INBIOMED) UBA-CONICET; Paraguay 2155; Facultad de Medicina; Universidad de Buenos Aires; Buenos Aires Argentina
| | - Juan Turati
- Instituto de Investigaciones Biomédicas (INBIOMED) UBA-CONICET; Paraguay 2155; Facultad de Medicina; Universidad de Buenos Aires; Buenos Aires Argentina
| | - Delia Ramírez
- Instituto de Investigaciones Biomédicas (INBIOMED) UBA-CONICET; Paraguay 2155; Facultad de Medicina; Universidad de Buenos Aires; Buenos Aires Argentina
| | - Lila Carniglia
- Instituto de Investigaciones Biomédicas (INBIOMED) UBA-CONICET; Paraguay 2155; Facultad de Medicina; Universidad de Buenos Aires; Buenos Aires Argentina
| | - Daniela Durand
- Instituto de Investigaciones Biomédicas (INBIOMED) UBA-CONICET; Paraguay 2155; Facultad de Medicina; Universidad de Buenos Aires; Buenos Aires Argentina
| | - Mercedes Lasaga
- Instituto de Investigaciones Biomédicas (INBIOMED) UBA-CONICET; Paraguay 2155; Facultad de Medicina; Universidad de Buenos Aires; Buenos Aires Argentina
| | - Carla Caruso
- Instituto de Investigaciones Biomédicas (INBIOMED) UBA-CONICET; Paraguay 2155; Facultad de Medicina; Universidad de Buenos Aires; Buenos Aires Argentina
| |
Collapse
|
484
|
Fernandez-Fernandez S, Bobo-Jimenez V, Requejo-Aguilar R, Gonzalez-Fernandez S, Resch M, Carabias-Carrasco M, Ros J, Almeida A, Bolaños JP. Hippocampal neurons require a large pool of glutathione to sustain dendrite integrity and cognitive function. Redox Biol 2018; 19:52-61. [PMID: 30107295 PMCID: PMC6092450 DOI: 10.1016/j.redox.2018.08.003] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2018] [Revised: 07/13/2018] [Accepted: 08/06/2018] [Indexed: 01/19/2023] Open
Abstract
Loss of brain glutathione has been associated with cognitive decline and neuronal death during aging and neurodegenerative diseases. However, whether decreased glutathione precedes or follows neuronal dysfunction has not been unambiguously elucidated. Previous attempts to address this issue were approached by fully eliminating glutathione, a strategy causing abrupt lethality or premature neuronal death that led to multiple interpretations. To overcome this drawback, here we aimed to moderately decrease glutathione content by genetically knocking down the rate-limiting enzyme of glutathione biosynthesis in mouse neurons in vivo. Biochemical and morphological analyses of the brain revealed a modest glutathione decrease and redox stress throughout the hippocampus, although neuronal dendrite disruption and glial activation was confined to the hippocampal CA1 layer. Furthermore, the behavioral characterization exhibited signs consistent with cognitive impairment. These results indicate that the hippocampal neurons require a large pool of glutathione to sustain dendrite integrity and cognitive function.
Collapse
Affiliation(s)
| | - Veronica Bobo-Jimenez
- Institute of Functional Biology and Genomics (IBFG), Universidad de Salamanca, Spain; Institute of Biomedical Research of Salamanca (IBSAL), Hospital Universitario de Salamanca, Spain
| | - Raquel Requejo-Aguilar
- Institute of Functional Biology and Genomics (IBFG), Universidad de Salamanca, Spain; Córdoba Maimónides Institute for Biomedical Research (IMIBIC), University of Cordoba, Spain
| | | | - Monica Resch
- Institute of Functional Biology and Genomics (IBFG), Universidad de Salamanca, Spain
| | | | - Joaquim Ros
- Departamento de Ciències Mèdiques Bàsiques, IRBLleida, Universitat de Lleida, Spain
| | - Angeles Almeida
- Institute of Functional Biology and Genomics (IBFG), Universidad de Salamanca, Spain; Institute of Biomedical Research of Salamanca (IBSAL), Hospital Universitario de Salamanca, Spain
| | - Juan P Bolaños
- Institute of Functional Biology and Genomics (IBFG), Universidad de Salamanca, Spain; Institute of Biomedical Research of Salamanca (IBSAL), Hospital Universitario de Salamanca, Spain; CIBERFES, Instituto de Salud Carlos, III, Madrid, Spain.
| |
Collapse
|
485
|
Ranjit S, Patters BJ, Gerth KA, Haque S, Choudhary S, Kumar S. Potential neuroprotective role of astroglial exosomes against smoking-induced oxidative stress and HIV-1 replication in the central nervous system. Expert Opin Ther Targets 2018; 22:703-714. [PMID: 30015535 DOI: 10.1080/14728222.2018.1501473] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
INTRODUCTION HIV-1-infected smokers are at risk of oxidative damage to neuronal cells in the central nervous system by both HIV-1 and cigarette smoke. Since neurons have a weak antioxidant defense system, they mostly depend on glial cells, particularly astrocytes, for protection against oxidative damage and neurotoxicity. Astrocytes augment the neuronal antioxidant system by supplying cysteine-containing products for glutathione synthesis, antioxidant enzymes such as SOD and catalase, glucose for antioxidant regeneration via the pentose-phosphate pathway, and by recycling of ascorbic acid. Areas covered: The transport of antioxidants and energy substrates from astrocytes to neurons could possibly occur via extracellular nanovesicles called exosomes. This review highlights the neuroprotective potential of exosomes derived from astrocytes against smoking-induced oxidative stress, HIV-1 replication, and subsequent neurotoxicity observed in HIV-1-positive smokers. Expert opinion: During stress conditions, the antioxidants released from astrocytes either via extracellular fluid or exosomes to neurons may not be sufficient to provide neuroprotection. Therefore, we put forward a novel strategy to combat oxidative stress in the central nervous system, using synthetically developed exosomes loaded with antioxidants such as glutathione and the anti-aging protein Klotho.
Collapse
Affiliation(s)
- Sabina Ranjit
- a Department of Pharmaceutical Sciences , University of Tennessee Health Science Center , Memphis , TN , United States
| | - Benjamin J Patters
- a Department of Pharmaceutical Sciences , University of Tennessee Health Science Center , Memphis , TN , United States
| | - Kelli A Gerth
- a Department of Pharmaceutical Sciences , University of Tennessee Health Science Center , Memphis , TN , United States
| | - Sanjana Haque
- a Department of Pharmaceutical Sciences , University of Tennessee Health Science Center , Memphis , TN , United States
| | - Sanjeev Choudhary
- b Department of Internal Medicine , University of Texas Medical Branch , Galveston , TX , United States
| | - Santosh Kumar
- a Department of Pharmaceutical Sciences , University of Tennessee Health Science Center , Memphis , TN , United States
| |
Collapse
|
486
|
Ramos-Alvarez I, Jensen RT. P21-activated kinase 4 in pancreatic acinar cells is activated by numerous gastrointestinal hormones/neurotransmitters and growth factors by novel signaling, and its activation stimulates secretory/growth cascades. Am J Physiol Gastrointest Liver Physiol 2018; 315:G302-G317. [PMID: 29672153 PMCID: PMC6139648 DOI: 10.1152/ajpgi.00005.2018] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/03/2018] [Revised: 04/06/2018] [Accepted: 04/12/2018] [Indexed: 01/31/2023]
Abstract
p21-activated kinases (PAKs) are highly conserved serine/threonine protein kinases, which are divided into two groups: group-I (PAKs1-3) and group-II (PAKs4-6). In various tissues, Group-II PAKs play important roles in cytoskeletal dynamics and cell growth as well as neoplastic development/progression. However, little is known about Group-II PAK's role in a number of physiological events, including their ability to be activated by gastrointestinal (GI) hormones/neurotransmitters/growth factors (GFs). We used rat pancreatic acini to explore the ability of GI hormones/neurotransmitters/GFs to activate Group-II-PAKs and the signaling cascades involved. Only PAK4 was detected in pancreatic acini. PAK4 was activated by endothelin, secretagogues-stimulating phospholipase C (bombesin, CCK-8, and carbachol), by pancreatic GFs (insulin, insulin-like growth factor 1, hepatocyte growth factor, epidermal growth factor, basic fibroblast growth factor, and platelet-derived growth factor), and by postreceptor stimulants (12-O-tetradecanoylphobol-13-acetate and A23187 ). CCK-8 activation of PAK4 required both high- and low-affinity CCK1-receptor state activation. It was reduced by PKC-, Src-, p44/42-, or p38-inhibition but not with phosphatidylinositol 3-kinase-inhibitors and only minimally by thapsigargin. A protein kinase D (PKD)-inhibitor completely inhibited CCK-8-stimulated PKD-activation; however, stimulated PAK4 phosphorylation was only inhibited by 60%, demonstrating that it is both PKD-dependent and PKD-independent. PF-3758309 and LCH-7749944, inhibitors of PAK4, decreased CCK-8-stimulated PAK4 activation but not PAK2 activation. Each inhibited ERK1/2 activation and amylase release induced by CCK-8 or bombesin. These results show that PAK4 has an important role in modulating signal cascades activated by a number of GI hormones/neurotransmitters/GFs that have been shown to mediate both physiological/pathological responses in acinar cells. Therefore, in addition to the extensive studies on PAK4 in pancreatic cancer, PAK4 should also be considered an important signaling molecule for pancreatic acinar physiological responses and, in the future, should be investigated for a possible role in pancreatic acinar pathophysiological responses, such as in pancreatitis. NEW & NOTEWORTHY This study demonstrates that the only Group-II p21-activated kinase (PAK) in rat pancreatic acinar cells is PAK4, and thus differs from islets/pancreatic cancer. Both gastrointestinal hormones/neurotransmitters stimulating PLC and pancreatic growth factors activate PAK4. With cholecystokinin (CCK), activation is PKC-dependent/-independent, requires both CCK1-R affinity states, Src, p42/44, and p38 activation. PAK4 activation is required for CCK-mediated p42/44 activation/amylase release. These results show PAK4 plays an important role in mediating CCK physiological signal cascades and suggest it may be a target in pancreatic acinar diseases besides cancer.
Collapse
Affiliation(s)
- Irene Ramos-Alvarez
- Digestive Diseases Branch, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health , Bethesda, Maryland
| | - R T Jensen
- Digestive Diseases Branch, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health , Bethesda, Maryland
| |
Collapse
|
487
|
Bondy SC, Campbell A. Mechanisms Underlying Tumor Suppressive Properties of Melatonin. Int J Mol Sci 2018; 19:ijms19082205. [PMID: 30060531 PMCID: PMC6121612 DOI: 10.3390/ijms19082205] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2018] [Revised: 07/19/2018] [Accepted: 07/24/2018] [Indexed: 12/14/2022] Open
Abstract
There is considerable evidence that melatonin may be of use in the prevention and treatment of cancer. This manuscript will review some of the human, animal and cellular studies that provide evidence that melatonin has oncostatic properties. Confirmation that melatonin mitigates pathogenesis of cancer will be described from both direct study of its effects on carcinogenesis, and from indirect findings implicating disruption of the circadian cycle. A distinction is made between the role of melatonin in preventing the initiation of the tumorigenic pathway and the ability of melatonin to retard the progression of cancer. Melatonin appears to slow down the rate of advancement of established tumors and there is evidence that it constitutes a valuable complement to standard pharmacological and radiation treatment modalities. There are instances of the beneficial outcomes in cancer treatment which utilize a range of hormones and vitamins, melatonin being among the constituents of the mix. While these complex blends are empirically promising, they are only briefly mentioned here in view of the confounding influence of a multiplicity of agents studied simultaneously. The last section of this review examines the molecular mechanisms that potentially underlie the oncostatic effects of melatonin. Alterations in gene expression following activation of various transcription factors, are likely to be an important mediating event. These changes in gene activity not only relate to cancer but also to the aging process which underlies the onset of most tumors. In addition, epigenetic events such as modulation of histone acetylation and DNA methylation patterns throughout the lifespan of organisms need to be considered. The antioxidant and immunoregulatory roles of melatonin may also contribute to its cancer modulatory properties. Naturally, these mechanisms overlap and interact extensively. Nevertheless, in the interest of clarity and ease of reading, each is discussed as a separate topic section. The report ends with some general conclusions concerning the clinical value of melatonin which has been rather overlooked and understudied.
Collapse
Affiliation(s)
- Stephen C Bondy
- Center for Occupational and Environmental Health, Department of Medicine, University of California, Irvine, CA 92697, USA.
| | - Arezoo Campbell
- Department of Pharmaceutical Sciences, Western University of Health Sciences, Pomona, CA 91766, USA.
| |
Collapse
|
488
|
Morgan MT, Yang B, Harankhedkar S, Nabatilan A, Bourassa D, McCallum AM, Sun F, Wu R, Forest CR, Fahrni CJ. Stabilization of Aliphatic Phosphines by Auxiliary Phosphine Sulfides Offers Zeptomolar Affinity and Unprecedented Selectivity for Probing Biological Cu I. Angew Chem Int Ed Engl 2018; 57:9711-9715. [PMID: 29885022 PMCID: PMC6105516 DOI: 10.1002/anie.201804072] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2018] [Revised: 06/01/2018] [Indexed: 01/06/2023]
Abstract
Full elucidation of the functions and homeostatic pathways of biological copper requires tools that can selectively recognize and manipulate this trace nutrient within living cells and tissues, where it exists primarily as CuI . Buffered at attomolar concentrations, intracellular CuI is, however, not readily accessible to commonly employed amine and thioether-based chelators. Herein, we reveal a chelator design strategy in which phosphine sulfides aid in CuI coordination while simultaneously stabilizing aliphatic phosphine donors, producing a charge-neutral ligand with low-zeptomolar dissociation constant and 1017 -fold selectivity for CuI over ZnII , FeII , and MnII . As illustrated by reversing ATP7A trafficking in cells and blocking long-term potentiation of neurons in mouse hippocampal brain tissue, the ligand is capable of intercepting copper-dependent processes. The phosphine sulfide-stabilized phosphine (PSP) design approach, which confers resistance towards protonation, dioxygen, and disulfides, could be readily expanded towards ligands and probes with tailored properties for exploring CuI in a broad range of biological systems.
Collapse
Affiliation(s)
- M. Thomas Morgan
- Prof. Dr. C.J. Fahrni, Prof. Dr. R. Wu, Dr. M.T. Morgan, Dr. S Harankhedkar, A. Nabatilan, Dr. D. Bourassa, Dr. A.M. McCallum, F. Sun School of Chemistry and Biochemistry, Petit Institute for Bioengineering and Bioscience, Georgia Institute of Technology 901 Atlantic Drive, Atlanta, GA 30332, USA,
| | - Bo Yang
- Prof. Dr. C.R. Forest, Dr. B. Yang G. W. Woodruff School of Mechanical Engineering, Georgia Institute of Technology 315 Ferst Drive, Atlanta, GA 30332, USA,
| | - Shefali Harankhedkar
- Prof. Dr. C.J. Fahrni, Prof. Dr. R. Wu, Dr. M.T. Morgan, Dr. S Harankhedkar, A. Nabatilan, Dr. D. Bourassa, Dr. A.M. McCallum, F. Sun School of Chemistry and Biochemistry, Petit Institute for Bioengineering and Bioscience, Georgia Institute of Technology 901 Atlantic Drive, Atlanta, GA 30332, USA,
| | - Arielle Nabatilan
- Prof. Dr. C.J. Fahrni, Prof. Dr. R. Wu, Dr. M.T. Morgan, Dr. S Harankhedkar, A. Nabatilan, Dr. D. Bourassa, Dr. A.M. McCallum, F. Sun School of Chemistry and Biochemistry, Petit Institute for Bioengineering and Bioscience, Georgia Institute of Technology 901 Atlantic Drive, Atlanta, GA 30332, USA,
| | - Daisy Bourassa
- Prof. Dr. C.J. Fahrni, Prof. Dr. R. Wu, Dr. M.T. Morgan, Dr. S Harankhedkar, A. Nabatilan, Dr. D. Bourassa, Dr. A.M. McCallum, F. Sun School of Chemistry and Biochemistry, Petit Institute for Bioengineering and Bioscience, Georgia Institute of Technology 901 Atlantic Drive, Atlanta, GA 30332, USA,
| | - Adam M. McCallum
- Prof. Dr. C.J. Fahrni, Prof. Dr. R. Wu, Dr. M.T. Morgan, Dr. S Harankhedkar, A. Nabatilan, Dr. D. Bourassa, Dr. A.M. McCallum, F. Sun School of Chemistry and Biochemistry, Petit Institute for Bioengineering and Bioscience, Georgia Institute of Technology 901 Atlantic Drive, Atlanta, GA 30332, USA,
| | - Fangxu Sun
- Prof. Dr. C.J. Fahrni, Prof. Dr. R. Wu, Dr. M.T. Morgan, Dr. S Harankhedkar, A. Nabatilan, Dr. D. Bourassa, Dr. A.M. McCallum, F. Sun School of Chemistry and Biochemistry, Petit Institute for Bioengineering and Bioscience, Georgia Institute of Technology 901 Atlantic Drive, Atlanta, GA 30332, USA,
| | - Ronghu Wu
- Prof. Dr. C.J. Fahrni, Prof. Dr. R. Wu, Dr. M.T. Morgan, Dr. S Harankhedkar, A. Nabatilan, Dr. D. Bourassa, Dr. A.M. McCallum, F. Sun School of Chemistry and Biochemistry, Petit Institute for Bioengineering and Bioscience, Georgia Institute of Technology 901 Atlantic Drive, Atlanta, GA 30332, USA,
| | - Craig R. Forest
- Prof. Dr. C.R. Forest, Dr. B. Yang G. W. Woodruff School of Mechanical Engineering, Georgia Institute of Technology 315 Ferst Drive, Atlanta, GA 30332, USA,
| | - Christoph J. Fahrni
- Prof. Dr. C.J. Fahrni, Prof. Dr. R. Wu, Dr. M.T. Morgan, Dr. S Harankhedkar, A. Nabatilan, Dr. D. Bourassa, Dr. A.M. McCallum, F. Sun School of Chemistry and Biochemistry, Petit Institute for Bioengineering and Bioscience, Georgia Institute of Technology 901 Atlantic Drive, Atlanta, GA 30332, USA,
| |
Collapse
|
489
|
McGann JC, Mandel G. Neuronal activity induces glutathione metabolism gene expression in astrocytes. Glia 2018; 66:2024-2039. [PMID: 30043519 DOI: 10.1002/glia.23455] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2017] [Revised: 04/03/2018] [Accepted: 04/24/2018] [Indexed: 12/30/2022]
Abstract
The idea that astrocytes provide support for neurons has a long history, but whether neurons play an instructive role in these processes is poorly understood. To address this question, we co-culture astrocytes with genetically labeled neurons, permitting their separation by flow cytometry, and test whether the presence of neurons influences the astrocyte transcriptome. We find that numerous pathways are regulated in the co-cultured astrocytes, in a time-dependent matter coincident with synaptic maturation. In particular, the induction of glutathione metabolic genes is prominent, resulting in increased glutathione production. We show that the induction of the glutathione pathway is mediated by astrocytic metabotropic glutamate receptors. Using a candidate approach, we identify direct binding of the nuclear factor E2-related factor, NRF2, to several of the induced genes. Blocking nuclear accumulation of astrocytic NRF2 abolishes neuron-induced glutathione gene induction and glutathione production. Our results suggest that astrocyte transcriptional and metabolic profiles are tightly coupled to the activity of neurons, consistent with the model that astrocytes dynamically support healthy brain function.
Collapse
Affiliation(s)
- James C McGann
- Oregon Health and Science, Sam Jackson Park Road, Ortland, Oregon 97239
| | - Gail Mandel
- Oregon Health and Science, Sam Jackson Park Road, Ortland, Oregon 97239
| |
Collapse
|
490
|
Morgan MT, Yang B, Harankhedkar S, Nabatilan A, Bourassa D, McCallum AM, Sun F, Wu R, Forest CR, Fahrni CJ. Stabilization of Aliphatic Phosphines by Auxiliary Phosphine Sulfides Offers Zeptomolar Affinity and Unprecedented Selectivity for Probing Biological Cu
I. Angew Chem Int Ed Engl 2018. [DOI: 10.1002/ange.201804072] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Affiliation(s)
- M. Thomas Morgan
- School of Chemistry and Biochemistry Petit Institute for Bioengineering and Bioscience Georgia Institute of Technology 901 Atlantic Drive Atlanta GA 30332 USA
| | - Bo Yang
- G. W. Woodruff School of Mechanical Engineering Georgia Institute of Technology 315 Ferst Drive Atlanta GA 30332 USA
| | - Shefali Harankhedkar
- School of Chemistry and Biochemistry Petit Institute for Bioengineering and Bioscience Georgia Institute of Technology 901 Atlantic Drive Atlanta GA 30332 USA
| | - Arielle Nabatilan
- School of Chemistry and Biochemistry Petit Institute for Bioengineering and Bioscience Georgia Institute of Technology 901 Atlantic Drive Atlanta GA 30332 USA
| | - Daisy Bourassa
- School of Chemistry and Biochemistry Petit Institute for Bioengineering and Bioscience Georgia Institute of Technology 901 Atlantic Drive Atlanta GA 30332 USA
| | - Adam M. McCallum
- School of Chemistry and Biochemistry Petit Institute for Bioengineering and Bioscience Georgia Institute of Technology 901 Atlantic Drive Atlanta GA 30332 USA
| | - Fangxu Sun
- School of Chemistry and Biochemistry Petit Institute for Bioengineering and Bioscience Georgia Institute of Technology 901 Atlantic Drive Atlanta GA 30332 USA
| | - Ronghu Wu
- School of Chemistry and Biochemistry Petit Institute for Bioengineering and Bioscience Georgia Institute of Technology 901 Atlantic Drive Atlanta GA 30332 USA
| | - Craig R. Forest
- G. W. Woodruff School of Mechanical Engineering Georgia Institute of Technology 315 Ferst Drive Atlanta GA 30332 USA
| | - Christoph J. Fahrni
- School of Chemistry and Biochemistry Petit Institute for Bioengineering and Bioscience Georgia Institute of Technology 901 Atlantic Drive Atlanta GA 30332 USA
| |
Collapse
|
491
|
Astrocytes activation contributes to the antidepressant-like effect of ketamine but not scopolamine. Pharmacol Biochem Behav 2018; 170:1-8. [DOI: 10.1016/j.pbb.2018.05.001] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/04/2018] [Revised: 04/25/2018] [Accepted: 05/02/2018] [Indexed: 12/15/2022]
|
492
|
Sánchez-Rubio F, Fernández-Santos MR, Castro-Vázquez L, García-Álvarez O, Maroto-Morales A, Soler AJ, Martínez-Pastor F, Garde JJ. Cinnamtannin B-1, a novel antioxidant for sperm in red deer. Anim Reprod Sci 2018; 195:44-52. [PMID: 29776697 DOI: 10.1016/j.anireprosci.2018.05.004] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2018] [Revised: 04/19/2018] [Accepted: 05/03/2018] [Indexed: 01/14/2023]
Abstract
Cinnamtannin B-1 (CNB-1) is a naturally occurring trimeric A-type proanthocyanidin contained in several plants such as cinnamon (Cinnamomum zeylanicum). It is considered to be a potent antioxidant. The protective effect of CNB-1 against oxidative stress was assessed in red deer epididymal sperm incubated at 37 °C. Cryopreserved sperm from six stags were thawed, pooled and extended to 400 × 106 sperm/ml in BGM (bovine gamete medium). After being aliquoted, the samples were supplemented with different concentrations of CNB-1 (0, 0.1, 1, 10 and 100 μg/mL), with or without induced oxidative stress (100 μM Fe2+/ascorbate). The samples were evaluated after 0, 2 and 4 h of incubation at 37 °C. This experiment was replicated six times. Spermmotility (CASA), viability, mitochondrial membrane potential, acrosomal status, lipoperoxidation (C11 BODIPY 581/591), intracellular reactive oxygen species (ROS) production and DNA status (TUNEL) were assessed. After 4 h of incubation, CNB-1 prevented the deleterious effects of oxidative stress, thus improved sperm progressivity and velocity (P<0.05). Furthermore, 1 and 10 μM CNB-1 improved sperm linearity, even when compared to those samples that had not been subjected to oxidative stress (P<0.05). The greatest concentration, 100 μM, prevented sperm lipoperoxidation and reduced ROS production in samples subjected to oxidative stress.
Collapse
Affiliation(s)
- F Sánchez-Rubio
- SaBio IREC (CSIC - UCLM - JCCM), Albacete, Spain; Servicio de Farmacia. Complejo Hospitalario Universitario de Albacete. GAI. Albacete, Spain
| | - M R Fernández-Santos
- SaBio IREC (CSIC - UCLM - JCCM), Albacete, Spain; Faculty of Pharmacy (UCLM), Albacete, Spain.
| | | | - O García-Álvarez
- Biomedical Center, Medical Faculty in Pilsen, Pilsen, Czech Republic
| | | | - A J Soler
- SaBio IREC (CSIC - UCLM - JCCM), Albacete, Spain
| | - F Martínez-Pastor
- Department of Molecular Biology (Cell Biology) and Institute for Animal Health and Cattle Development (INDEGSAL), University of León, León, Spain
| | - J J Garde
- SaBio IREC (CSIC - UCLM - JCCM), Albacete, Spain
| |
Collapse
|
493
|
Nitric Oxide Is Required for Melatonin-Enhanced Tolerance against Salinity Stress in Rapeseed ( Brassica napus L.) Seedlings. Int J Mol Sci 2018; 19:ijms19071912. [PMID: 29966262 PMCID: PMC6073977 DOI: 10.3390/ijms19071912] [Citation(s) in RCA: 95] [Impact Index Per Article: 13.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2018] [Revised: 06/26/2018] [Accepted: 06/27/2018] [Indexed: 12/26/2022] Open
Abstract
Although melatonin (N-acetyl-5-methoxytryptamine) could alleviate salinity stress in plants, the downstream signaling pathway is still not fully characterized. Here, we report that endogenous melatonin and thereafter nitric oxide (NO) accumulation was successively increased in NaCl-stressed rapeseed (Brassica napus L.) seedling roots. Application of melatonin and NO-releasing compound not only counteracted NaCl-induced seedling growth inhibition, but also reestablished redox and ion homeostasis, the latter of which are confirmed by the alleviation of reactive oxygen species overproduction, the decreases in thiobarbituric acid reactive substances production, and Na⁺/K⁺ ratio. Consistently, the related antioxidant defense genes, sodium hydrogen exchanger (NHX1), and salt overly sensitive 2 (SOS2) transcripts are modulated. The involvement S-nitrosylation, a redox-based posttranslational modification triggered by NO, is suggested. Further results show that in response to NaCl stress, the increased NO levels are strengthened by the addition of melatonin in seedling roots. Above responses are abolished by the removal of NO by NO scavenger. We further discover that the removal of NO does not alter endogenous melatonin content in roots supplemented with NaCl alone or together with melatonin, thus excluding the possibility of NO-triggered melatonin production. Genetic evidence reveals that, compared with wild-type Arabidopsis, the hypersensitivity to NaCl in nia1/2 and noa1 mutants (exhibiting null nitrate reductase activity and indirectly reduced endogenous NO level, respectively) cannot be rescued by melatonin supplementation. The reestablishment of redox homeostasis and induction of SOS signaling are not observed. In summary, above pharmacological, molecular, and genetic data conclude that NO operates downstream of melatonin promoting salinity tolerance.
Collapse
|
494
|
Huang K, Ma K, Hung Y, Lo L, Lin K, Liu P, Hu M, Chueh S. A new copper ionophore DPMQ protects cells against ultraviolet B irradiation by inhibiting the TRPV1 channel. J Cell Physiol 2018; 233:9594-9610. [DOI: 10.1002/jcp.26861] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2018] [Accepted: 05/23/2018] [Indexed: 12/11/2022]
Affiliation(s)
- Kuo‐Feng Huang
- Division of Plastic Surgery, Department of Surgery Chi Mei Medical Center Tainan Taiwan Republic of China
| | - Kuo‐Hsing Ma
- Department of Biology and Anatomy National Defense Medical Center Taipei Taiwan Republic of China
| | - Yu‐Chien Hung
- Department of Biochemistry National Defense Medical Center Taipei Taiwan Republic of China
| | - Liang‐Chuan Lo
- Department of Biochemistry National Defense Medical Center Taipei Taiwan Republic of China
| | - Kuo‐Chen Lin
- Department of Biochemistry National Defense Medical Center Taipei Taiwan Republic of China
| | - Pei‐Shan Liu
- Department of Microbiology Soochow University Taipei Taiwan Republic of China
| | - Ming‐Kuan Hu
- Department of Medicinal Chemistry School of Pharmacy, National Defense Medical Center Taipei Taiwan Republic of China
| | - Sheau‐Huei Chueh
- Department of Biochemistry National Defense Medical Center Taipei Taiwan Republic of China
| |
Collapse
|
495
|
Garza-Lombó C, Posadas Y, Quintanar L, Gonsebatt ME, Franco R. Neurotoxicity Linked to Dysfunctional Metal Ion Homeostasis and Xenobiotic Metal Exposure: Redox Signaling and Oxidative Stress. Antioxid Redox Signal 2018; 28:1669-1703. [PMID: 29402131 PMCID: PMC5962337 DOI: 10.1089/ars.2017.7272] [Citation(s) in RCA: 130] [Impact Index Per Article: 18.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
SIGNIFICANCE Essential metals such as copper, iron, manganese, and zinc play a role as cofactors in the activity of a wide range of processes involved in cellular homeostasis and survival, as well as during organ and tissue development. Throughout our life span, humans are also exposed to xenobiotic metals from natural and anthropogenic sources, including aluminum, arsenic, cadmium, lead, and mercury. It is well recognized that alterations in the homeostasis of essential metals and an increased environmental/occupational exposure to xenobiotic metals are linked to several neurological disorders, including neurodegeneration and neurodevelopmental alterations. Recent Advances: The redox activity of essential metals is key for neuronal homeostasis and brain function. Alterations in redox homeostasis and signaling are central to the pathological consequences of dysfunctional metal ion homeostasis and increased exposure to xenobiotic metals. Both redox-active and redox-inactive metals trigger oxidative stress and damage in the central nervous system, and the exact mechanisms involved are starting to become delineated. CRITICAL ISSUES In this review, we aim to appraise the role of essential metals in determining the redox balance in the brain and the mechanisms by which alterations in the homeostasis of essential metals and exposure to xenobiotic metals disturb the cellular redox balance and signaling. We focus on recent literature regarding their transport, metabolism, and mechanisms of toxicity in neural systems. FUTURE DIRECTIONS Delineating the specific mechanisms by which metals alter redox homeostasis is key to understand the pathological processes that convey chronic neuronal dysfunction in neurodegenerative and neurodevelopmental disorders. Antioxid. Redox Signal. 28, 1669-1703.
Collapse
Affiliation(s)
- Carla Garza-Lombó
- 1 Redox Biology Center and School of Veterinary Medicine and Biomedical Sciences, University of Nebraska-Lincoln , Lincoln, Nebraska.,2 Departamento de Medicina Genómica y Toxicología Ambiental, Instituto de Investigaciones Biomédicas , Universidad Nacional Autónoma de México, Mexico City, México
| | - Yanahi Posadas
- 3 Departamentos de Farmacología y de, Centro de Investigación y de Estudios Avanzados (CINVESTAV) , Mexico City, México .,4 Departamentos de Química, Centro de Investigación y de Estudios Avanzados (CINVESTAV) , Mexico City, México
| | - Liliana Quintanar
- 4 Departamentos de Química, Centro de Investigación y de Estudios Avanzados (CINVESTAV) , Mexico City, México
| | - María E Gonsebatt
- 2 Departamento de Medicina Genómica y Toxicología Ambiental, Instituto de Investigaciones Biomédicas , Universidad Nacional Autónoma de México, Mexico City, México
| | - Rodrigo Franco
- 1 Redox Biology Center and School of Veterinary Medicine and Biomedical Sciences, University of Nebraska-Lincoln , Lincoln, Nebraska
| |
Collapse
|
496
|
Wang YF, Parpura V. Astroglial Modulation of Hydromineral Balance and Cerebral Edema. Front Mol Neurosci 2018; 11:204. [PMID: 29946238 PMCID: PMC6007284 DOI: 10.3389/fnmol.2018.00204] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2018] [Accepted: 05/22/2018] [Indexed: 12/11/2022] Open
Abstract
Maintenance of hydromineral balance (HB) is an essential condition for life activity at cellular, tissue, organ and system levels. This activity has been considered as a function of the osmotic regulatory system that focuses on hypothalamic vasopressin (VP) neurons, which can reflexively release VP into the brain and blood to meet the demand of HB. Recently, astrocytes have emerged as an essential component of the osmotic regulatory system in addition to functioning as a regulator of the HB at cellular and tissue levels. Astrocytes express all the components of osmoreceptors, including aquaporins, molecules of the extracellular matrix, integrins and transient receptor potential channels, with an operational dynamic range allowing them to detect and respond to osmotic changes, perhaps more efficiently than neurons. The resultant responses, i.e., astroglial morphological and functional plasticity in the supraoptic and paraventricular nuclei, can be conveyed, physically and chemically, to adjacent VP neurons, thereby influencing HB at the system level. In addition, astrocytes, particularly those in the circumventricular organs, are involved not only in VP-mediated osmotic regulation, but also in regulation of other osmolality-modulating hormones, including natriuretic peptides and angiotensin. Thus, astrocytes play a role in local/brain and systemic HB. The adaptive astrocytic reactions to osmotic challenges are associated with signaling events related to the expression of glial fibrillary acidic protein and aquaporin 4 to promote cell survival and repair. However, prolonged osmotic stress can initiate inflammatory and apoptotic signaling processes, leading to glial dysfunction and a variety of brain diseases. Among many diseases of brain injury and hydromineral disorders, cytotoxic and osmotic cerebral edemas are the most common pathological manifestation. Hyponatremia is the most common cause of osmotic cerebral edema. Overly fast correction of hyponatremia could lead to central pontine myelinolysis. Ischemic stroke exemplifies cytotoxic cerebral edema. In this review, we summarize and analyze the osmosensory functions of astrocytes and their implications in cerebral edema.
Collapse
Affiliation(s)
- Yu-Feng Wang
- Department of Physiology, School of Basic Medical Sciences, Harbin Medical University, Harbin, China
| | - Vladimir Parpura
- Department of Neurobiology, The University of Alabama at Birmingham, Birmingham, AL, United States
| |
Collapse
|
497
|
Li Y, Li S, Zhou Y, Meng X, Zhang JJ, Xu DP, Li HB. Melatonin for the prevention and treatment of cancer. Oncotarget 2018; 8:39896-39921. [PMID: 28415828 PMCID: PMC5503661 DOI: 10.18632/oncotarget.16379] [Citation(s) in RCA: 252] [Impact Index Per Article: 36.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2017] [Accepted: 03/09/2017] [Indexed: 12/17/2022] Open
Abstract
The epidemiological studies have indicated a possible oncostatic property of melatonin on different types of tumors. Besides, experimental studies have documented that melatonin could exert growth inhibition on some human tumor cells in vitro and in animal models. The underlying mechanisms include antioxidant activity, modulation of melatonin receptors MT1 and MT2, stimulation of apoptosis, regulation of pro-survival signaling and tumor metabolism, inhibition on angiogenesis, metastasis, and induction of epigenetic alteration. Melatonin could also be utilized as adjuvant of cancer therapies, through reinforcing the therapeutic effects and reducing the side effects of chemotherapies or radiation. Melatonin could be an excellent candidate for the prevention and treatment of several cancers, such as breast cancer, prostate cancer, gastric cancer and colorectal cancer. This review summarized the anticancer efficacy of melatonin, based on the results of epidemiological,experimental and clinical studies, and special attention was paid to the mechanisms of action.
Collapse
Affiliation(s)
- Ya Li
- Guangdong Provincial Key Laboratory of Food, Nutrition and Health, Department of Nutrition, School of Public Health, Sun Yat-Sen University, Guangzhou, China
| | - Sha Li
- School of Chinese Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, China
| | - Yue Zhou
- Guangdong Provincial Key Laboratory of Food, Nutrition and Health, Department of Nutrition, School of Public Health, Sun Yat-Sen University, Guangzhou, China
| | - Xiao Meng
- Guangdong Provincial Key Laboratory of Food, Nutrition and Health, Department of Nutrition, School of Public Health, Sun Yat-Sen University, Guangzhou, China
| | - Jiao-Jiao Zhang
- Guangdong Provincial Key Laboratory of Food, Nutrition and Health, Department of Nutrition, School of Public Health, Sun Yat-Sen University, Guangzhou, China
| | - Dong-Ping Xu
- Guangdong Provincial Key Laboratory of Food, Nutrition and Health, Department of Nutrition, School of Public Health, Sun Yat-Sen University, Guangzhou, China
| | - Hua-Bin Li
- Guangdong Provincial Key Laboratory of Food, Nutrition and Health, Department of Nutrition, School of Public Health, Sun Yat-Sen University, Guangzhou, China.,South China Sea Bioresource Exploitation and Utilization Collaborative Innovation Center, Sun Yat-Sen University, Guangzhou, China
| |
Collapse
|
498
|
Jia ZQ, Li SQ, Qiao WQ, Xu WZ, Xing JW, Liu JT, Song H, Gao ZY, Xing BW, He XJ. Ebselen protects mitochondrial function and oxidative stress while inhibiting the mitochondrial apoptosis pathway after acute spinal cord injury. Neurosci Lett 2018; 678:110-117. [PMID: 29733976 DOI: 10.1016/j.neulet.2018.05.007] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2018] [Revised: 04/20/2018] [Accepted: 05/03/2018] [Indexed: 10/17/2022]
Abstract
Ebselen is a fat-soluble small molecule and organic selenium compound that regulates the activity of glutathione peroxidase to alleviate mitochondrial oxidative stress and improve mitochondrial function. In the present study, we aimed to investigate the effects of ebselen on mitochondrial oxidative stress response, mitochondrial apotosis, and motor behaviors after spinal cord injury (SCI). We found that ebselen significantly increased the BBB score in motor behavior, thus suggesting a rescue effect of ebselen on motor function after SCI in rats. Meanwhile, we revealed that ebselen can increase glutathione (GSH) content as well as superoxide dismutase (SOD) and catalase (CAT) activities after SCI-this suggests ebselen has an antioxidant effect. Furthermore, the ATP content and Na+-K+-ATPase activity in mitochondria were increased by ebselen after SCI, while the mitochondrial membrane potential (MMP) was decreased by ebselen. The Cytochrome C and Smac release from mitochondria were reduced by ebselen after SCI, thus indicating improved membrane permeability by ebselen. Moreover, the alterations in caspase-3, Bax and Bcl-2 protein expression, as well as the proportion of cell apoptosis were improved by ebselen treatment, which together suggested that ebselen has an inhibitory effect on mitochondrial apotosis pathways after SCI. Taken together, our results suggest that ebselen can inhibit secondary damage caused by spinal cord injury. Indeed it plays a neuroprotective role in spinal cord injury perhaps by improving mitochondrial function and inhibiting the mitochondrial apoptosis pathway.
Collapse
Affiliation(s)
- Zhi-Qiang Jia
- Department of Orthopedics, The Second Affiliated Hospital of Xi'an Jiaotong University, Xian 710004, PR China; Department of Spinal Surgery, The Second Affiliated Hospital of Henan University of Science and Technology, Luoyang 471000, PR China.
| | - San-Qiang Li
- Medical College, Henan University of Science and Technology, Luoyang 471003, PR China
| | - Wei-Qiang Qiao
- Department of Breast Surgery, The First Affiliated Hospital, College of Clinical Medicine of Henan University of Science and Technology, Luoyang, PR China
| | - Wen-Zhong Xu
- Department of Spinal Surgery, The Second Affiliated Hospital of Henan University of Science and Technology, Luoyang 471000, PR China
| | - Jian-Wu Xing
- Department of Spinal Surgery, The Second Affiliated Hospital of Henan University of Science and Technology, Luoyang 471000, PR China
| | - Jian-Tao Liu
- Department of Orthopedics, The Second Affiliated Hospital of Xi'an Jiaotong University, Xian 710004, PR China
| | - Hui Song
- Department of Orthopedics, The Second Affiliated Hospital of Xi'an Jiaotong University, Xian 710004, PR China
| | - Zhong-Yang Gao
- Department of Orthopedics, The Second Affiliated Hospital of Xi'an Jiaotong University, Xian 710004, PR China
| | - Bing-Wen Xing
- Medical College, Henan University of Science and Technology, Luoyang 471003, PR China
| | - Xi-Jing He
- Department of Orthopedics, The Second Affiliated Hospital of Xi'an Jiaotong University, Xian 710004, PR China.
| |
Collapse
|
499
|
Majkutewicz I, Kurowska E, Podlacha M, Myślińska D, Grembecka B, Ruciński J, Pierzynowska K, Wrona D. Age-dependent effects of dimethyl fumarate on cognitive and neuropathological features in the streptozotocin-induced rat model of Alzheimer’s disease. Brain Res 2018; 1686:19-33. [DOI: 10.1016/j.brainres.2018.02.016] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2017] [Revised: 01/29/2018] [Accepted: 02/12/2018] [Indexed: 12/12/2022]
|
500
|
Bylicky MA, Mueller GP, Day RM. Mechanisms of Endogenous Neuroprotective Effects of Astrocytes in Brain Injury. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2018; 2018:6501031. [PMID: 29805731 PMCID: PMC5901819 DOI: 10.1155/2018/6501031] [Citation(s) in RCA: 112] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/27/2017] [Accepted: 02/19/2018] [Indexed: 12/11/2022]
Abstract
Astrocytes, once believed to serve only as "glue" for the structural support of neurons, have been demonstrated to serve critical functions for the maintenance and protection of neurons, especially under conditions of acute or chronic injury. There are at least seven distinct mechanisms by which astrocytes protect neurons from damage; these are (1) protection against glutamate toxicity, (2) protection against redox stress, (3) mediation of mitochondrial repair mechanisms, (4) protection against glucose-induced metabolic stress, (5) protection against iron toxicity, (6) modulation of the immune response in the brain, and (7) maintenance of tissue homeostasis in the presence of DNA damage. Astrocytes support these critical functions through specialized responses to stress or toxic conditions. The detoxifying activities of astrocytes are essential for maintenance of the microenvironment surrounding neurons and in whole tissue homeostasis. Improved understanding of the mechanisms by which astrocytes protect the brain could lead to the development of novel targets for the development of neuroprotective strategies.
Collapse
Affiliation(s)
- Michelle A. Bylicky
- Department of Anatomy, Physiology, and Genetics, The Uniformed Services University of the Health Sciences, 4301 Jones Bridge Road, Bethesda, MD 20814, USA
| | - Gregory P. Mueller
- Department of Anatomy, Physiology, and Genetics, The Uniformed Services University of the Health Sciences, 4301 Jones Bridge Road, Bethesda, MD 20814, USA
| | - Regina M. Day
- Department of Pharmacology and Molecular Therapeutics, The Uniformed Services University of the Health Sciences, 4301 Jones Bridge Road, Bethesda, MD 20814, USA
| |
Collapse
|