451
|
Chao CS, Tsai CS, Chang YP, Chen JM, Chin HK, Yang SC. Hyperin inhibits nuclear factor kappa B and activates nuclear factor E2-related factor-2 signaling pathways in cisplatin-induced acute kidney injury in mice. Int Immunopharmacol 2016; 40:517-523. [DOI: 10.1016/j.intimp.2016.09.020] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2016] [Revised: 09/19/2016] [Accepted: 09/22/2016] [Indexed: 10/20/2022]
|
452
|
Moradi H, Vaziri ND. Effect of resveratrol on progression of polycystic kidney disease: a case of cautious optimism. Nephrol Dial Transplant 2016; 31:1755-1758. [PMID: 27190353 PMCID: PMC6584113 DOI: 10.1093/ndt/gfw097] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2016] [Accepted: 04/05/2016] [Indexed: 01/04/2023] Open
Affiliation(s)
- Hamid Moradi
- Division of Nephrology and Hypertension, University of
California, Irvine, 333 City Blvd West, Orange, CA
92868, USA
- Long Beach VA Healthcare System, Nephrology
Section, Long Beach, CA, USA
| | | |
Collapse
|
453
|
Vaziri ND, Khazaeli M, Nunes ACF, Harley KT, Said H, Alipour O, Lau WL, Pahl MV. Effects of end-stage renal disease and dialysis modalities on blood ammonia level. Hemodial Int 2016; 21:343-347. [PMID: 27804262 DOI: 10.1111/hdi.12510] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
INTRODUCTION Uremia results in a characteristic breath odor (uremic fetor) which is largely due to its high ammonia content. Earlier studies have shown a strong correlation between breath ammonia and blood urea levels and a 10-fold reduction in breath ammonia after hemodialysis in patients with chronic kidney disease. Potential sources of breath ammonia include: (i) local ammonia production from hydrolysis of urea in the oropharyngeal and respiratory tracts by bacterial flora, and (ii) release of circulating blood ammonia by the lungs. While the effects of uremia and hemodialysis on breath ammonia are well known their effects on blood ammonia are unknown and were explored here. METHODS Blood samples were obtained from 23 hemodialysis patients (immediately before and after dialysis), 14 peritoneal dialysis patients, and 10 healthy controls. Blood levels of ammonia, creatinine, urea, and electrolytes were measured. FINDINGS No significant difference was found in baseline blood ammonia between hemodialysis, peritoneal dialysis and control groups. Hemodialysis procedure led to a significant reduction in urea concentration (P < 0.001) which was paradoxically accompanied by a modest but significant (P < 0.05) rise in blood ammonia level in 10 of the 23 patients studied. Change in blood ammonia pre- and post-hemodialysis correlated with change in serum bicarbonate levels (r = 0.61, P < 0.01). On subgroup analysis of patients who had a rise in blood ammonia levels after dialysis, there was a strong correlation with drop in mean arterial pressure (r = 0.88, P < 0.01). The nadir intradialytic systolic blood pressure trended lower in the hemodialysis patients who had a rise in blood ammonia compared to the patients who manifested a fall in blood ammonia (124 ± 8 vs. 136 ± 6 mmHg respectively, P = 0.27). DISCUSSION Fall in blood urea following hemodialysis in ESRD patients was paradoxically accompanied by a modest rise in blood ammonia levels in 43% of the patients studied, contrasting prior reported effects of hemodialysis on breath ammonia. In this subgroup of patients, changes in blood ammonia during hemodialysis correlated with rise in blood bicarbonate and fall in mean arterial blood pressure.
Collapse
Affiliation(s)
- Nosratola D Vaziri
- Division of Nephrology and Hypertension, University of California, Irvine, Irvine, California, USA
| | - Mahyar Khazaeli
- Division of Nephrology and Hypertension, University of California, Irvine, Irvine, California, USA
| | - Ane C F Nunes
- Division of Nephrology and Hypertension, University of California, Irvine, Irvine, California, USA
| | - Kevin T Harley
- Division of Nephrology and Hypertension, University of California, Irvine, Irvine, California, USA
| | - Hyder Said
- Division of Nephrology and Hypertension, University of California, Irvine, Irvine, California, USA
| | - Omeed Alipour
- Division of Nephrology and Hypertension, University of California, Irvine, Irvine, California, USA
| | - Wei Ling Lau
- Division of Nephrology and Hypertension, University of California, Irvine, Irvine, California, USA
| | - Madeleine V Pahl
- Division of Nephrology and Hypertension, University of California, Irvine, Irvine, California, USA
| |
Collapse
|
454
|
Mohabbulla Mohib M, Fazla Rabby S, Paran TZ, Mehedee Hasan M, Ahmed I, Hasan N, Abu Taher Sagor M, Mohiuddin S. Protective role of green tea on diabetic nephropathy—A review. ACTA ACUST UNITED AC 2016. [DOI: 10.1080/23312025.2016.1248166] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Affiliation(s)
- Md. Mohabbulla Mohib
- Department of Pharmaceutical Sciences, North South University, Dhaka 1229, Bangladesh
| | - S.M. Fazla Rabby
- Department of Pharmaceutical Sciences, North South University, Dhaka 1229, Bangladesh
| | - Tasfiq Zaman Paran
- Department of Pharmaceutical Sciences, North South University, Dhaka 1229, Bangladesh
| | - Md. Mehedee Hasan
- Department of Pharmacy, State University of Bangladesh, Dhaka 1205, Bangladesh
| | - Iqbal Ahmed
- Department of Pharmaceutical Sciences, North South University, Dhaka 1229, Bangladesh
| | - Nahid Hasan
- Department of Pharmaceutical Sciences, North South University, Dhaka 1229, Bangladesh
| | - Md. Abu Taher Sagor
- Department of Pharmaceutical Sciences, North South University, Dhaka 1229, Bangladesh
| | - Sarif Mohiuddin
- Department of Anatomy, Pioneer Dental College and Hospital, Dhaka 1229, Bangladesh
| |
Collapse
|
455
|
Chen H, Lv K, Dai Z, Ji G, Wang T, Wang Y, Zhang Y, Kan G, Li Y, Qu L. Intramuscular injection of mechano growth factor E domain peptide regulated expression of memory-related sod, miR-134 and miR-125b-3p in rat hippocampus under simulated weightlessness. Biotechnol Lett 2016; 38:2071-2080. [PMID: 27623796 DOI: 10.1007/s10529-016-2210-4] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2016] [Accepted: 08/31/2016] [Indexed: 01/22/2023]
Abstract
OBJECTIVE To investigate the expression of memory-related antioxidant genes and miRNAs under simulated weightlessness and the regulation of mechano growth factor (MGF) E domain, the peptide preventing nerve damage. RESULTS Igf-iea and mgf mRNA levels, expression of antioxidant genes sod1 and sod2 and levels of miR-134 and miR-125b-3p increased in rat hippocampus after 14 days tail suspension to simulate weightlessness which was inhibited with intramuscular injection of E domain peptide. Therefore, administration of MGF E domain peptide could reverse increased expressions of memory-related igf-iea, mgf, sod1, sod2, miR-134 and miR-125b-3p in rat hippocampus under simulated weightlessness. CONCLUSIONS MGF may regulate the redox state and miRNA-targeted NR-CREB signaling, and intramuscular injection may be the alternative administration because of its safety, convenience and ability to pass through the blood brain barrier.
Collapse
Affiliation(s)
- Hailong Chen
- State Key Laboratory of Space Medicine Fundamentals and Application, China Astronaut Research and Training Center, 5132-23#, Beiqing Road 26#, Haidian District, Beijing, 100094, China.,Department of Health Technology Research and Development, Space Institute of Southern China (Shenzhen), Shamiao Road 4#, Pingdi Street, Longgang District, Shenzhen, 518117, China
| | - Ke Lv
- State Key Laboratory of Space Medicine Fundamentals and Application, China Astronaut Research and Training Center, 5132-23#, Beiqing Road 26#, Haidian District, Beijing, 100094, China
| | - Zhongquan Dai
- State Key Laboratory of Space Medicine Fundamentals and Application, China Astronaut Research and Training Center, 5132-23#, Beiqing Road 26#, Haidian District, Beijing, 100094, China
| | - Guohua Ji
- State Key Laboratory of Space Medicine Fundamentals and Application, China Astronaut Research and Training Center, 5132-23#, Beiqing Road 26#, Haidian District, Beijing, 100094, China
| | - Tingmei Wang
- State Key Laboratory of Space Medicine Fundamentals and Application, China Astronaut Research and Training Center, 5132-23#, Beiqing Road 26#, Haidian District, Beijing, 100094, China
| | - Yanli Wang
- State Key Laboratory of Space Medicine Fundamentals and Application, China Astronaut Research and Training Center, 5132-23#, Beiqing Road 26#, Haidian District, Beijing, 100094, China
| | - Yongliang Zhang
- State Key Laboratory of Space Medicine Fundamentals and Application, China Astronaut Research and Training Center, 5132-23#, Beiqing Road 26#, Haidian District, Beijing, 100094, China
| | - Guanghan Kan
- State Key Laboratory of Space Medicine Fundamentals and Application, China Astronaut Research and Training Center, 5132-23#, Beiqing Road 26#, Haidian District, Beijing, 100094, China
| | - Yinghui Li
- State Key Laboratory of Space Medicine Fundamentals and Application, China Astronaut Research and Training Center, 5132-23#, Beiqing Road 26#, Haidian District, Beijing, 100094, China.
| | - Lina Qu
- State Key Laboratory of Space Medicine Fundamentals and Application, China Astronaut Research and Training Center, 5132-23#, Beiqing Road 26#, Haidian District, Beijing, 100094, China.
| |
Collapse
|
456
|
Pekson R, Poltoratsky V, Gorasiya S, Sundaram S, Ashby CR, Vancurova I, Reznik SE. N,N-Dimethylacetamide Significantly Attenuates LPS- and TNFα-Induced Proinflammatory Responses Via Inhibition of the Nuclear Factor Kappa B Pathway. Mol Med 2016; 22:747-758. [PMID: 27782292 DOI: 10.2119/molmed.2016.00017] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2016] [Accepted: 10/18/2016] [Indexed: 12/25/2022] Open
Abstract
Previously, we have shown that N,N-dimethylacetamide (DMA) prevents inflammation-induced preterm birth in a murine model, inhibits LPS-induced increases in placental pro-inflammatory cytokines and up-regulates the anti-inflammatory cytokine Interleukin-10 (IL-10). However, DMA's mechanism of action remains to be elucidated. In the current study we investigate how DMA produces its anti-inflammatory effect. Using in vitro and ex vivo models, we show that DMA suppresses secretion of pro-inflammatory cytokines in lipopolysaccharide (LPS)-induced RAW 264.7 cells, TNFα-challenged JEG-3 cells and LPS-stimulated human placental explants. DMA significantly attenuated the secretion of TNFα, IL-6, IL-10, and granulocyte macrophage colony stimulating factor (GM-CSF) from LPS-stimulated RAW 264.7 cells, IL-6 secretion from TNFα-stimulated JEG-3 cells and TNFα, IL-6, IL-10, GM-CSF and Interleukin-8 (IL-8) from LPS-stimulated human placental explants. We further investigated if DMA's effect on cytokine expression involves the nuclear factor kappa-light-chain-enhancer of activated B cells (NF-κB) and mitogen-activated protein kinase (MAPK) pathways. DMA (10 mM) significantly inhibited nuclear factor of kappa light polypeptide gene enhancer in B-cells inhibitor, alpha (IκBα) degradation in LPS-stimulated RAW 264.7 cells, but there was no significant change in the expression of phosphorylated or native forms of downstream proteins in the MAPK pathway. In addition, DMA significantly attenuated luciferase activity in cells co-transfected with NF-κB-Luc reporter plasmid, but not with AP-1-Luc or CEBP-Luc reporters. Overall, our findings suggest that the anti-inflammatory activity of DMA is mediated by inhibition of the NF-κB pathway via decreased IκBα degradation.
Collapse
Affiliation(s)
- Ryan Pekson
- Dept of Pharmaceutical Sciences, St. John's University
| | | | | | | | | | | | - Sandra E Reznik
- Dept of Pharmaceutical Sciences, St. John's University.,Depts of Pathology and Obstetrics and Gynecology and Women's Health, Albert Einstein College of Medicine
| |
Collapse
|
457
|
Nrf2 Is an Attractive Therapeutic Target for Retinal Diseases. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2016; 2016:7469326. [PMID: 27818722 PMCID: PMC5080482 DOI: 10.1155/2016/7469326] [Citation(s) in RCA: 63] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/20/2016] [Revised: 09/07/2016] [Accepted: 09/21/2016] [Indexed: 12/21/2022]
Abstract
Nuclear factor erythroid 2-related factor 2 (Nrf2) is a redox-sensitive transcription factor that binds to antioxidant response elements located in the promoter region of genes encoding many antioxidant enzymes and phase II detoxifying enzymes. Activation of Nrf2 functions is one of the critical defensive mechanisms against oxidative stress in many species. The retina is constantly exposed to reactive oxygen species, and oxidative stress is a major contributor to age-related macular diseases. Moreover, the resulting inflammation and neuronal degeneration are also related to other retinal diseases. The well-known Nrf2 activators, bardoxolone methyl and its derivatives, have been the subject of a number of clinical trials, including those aimed at treating chronic kidney disease, pulmonary arterial hypertension, and mitochondrial myopathies. Recent studies suggest that Nrf2 activation protects the retina from retinal diseases. In particular, this is supported by the finding that Nrf2 knockout mice display age-related retinal degeneration. Moreover, the concept has been validated by the efficacy of Nrf2 activators in a number of retinal pathological models. We have also recently succeeded in generating a novel Nrf2 activator, RS9, using a biotransformation technique. This review discusses current links between retinal diseases and Nrf2 and the possibility of treating retinal diseases by activating the Nrf2 signaling pathway.
Collapse
|
458
|
Stabilization of endogenous Nrf2 by minocycline protects against Nlrp3-inflammasome induced diabetic nephropathy. Sci Rep 2016; 6:34228. [PMID: 27721446 PMCID: PMC5056367 DOI: 10.1038/srep34228] [Citation(s) in RCA: 71] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2016] [Accepted: 09/07/2016] [Indexed: 02/06/2023] Open
Abstract
While a plethora of studies support a therapeutic benefit of Nrf2 activation and ROS inhibition in diabetic nephropathy (dNP), the Nrf2 activator bardoxolone failed in clinical studies in type 2 diabetic patients due to cardiovascular side effects. Hence, alternative approaches to target Nrf2 are required. Intriguingly, the tetracycline antibiotic minocycline, which has been in clinical use for decades, has been shown to convey anti-inflammatory effects in diabetic patients and nephroprotection in rodent models of dNP. However, the mechanism underlying the nephroprotection remains unknown. Here we show that minocycline protects against dNP in mouse models of type 1 and type 2 diabetes, while caspase -3,-6,-7,-8 and -10 inhibition is insufficient, indicating a function of minocycline independent of apoptosis inhibition. Minocycline stabilizes endogenous Nrf2 in kidneys of db/db mice, thus dampening ROS-induced inflammasome activation in the kidney. Indeed, minocycline exerts antioxidant effects in vitro and in vivo, reducing glomerular markers of oxidative stress. Minocycline reduces ubiquitination of the redox-sensitive transcription factor Nrf2 and increases its protein levels. Accordingly, minocycline mediated Nlrp3 inflammasome inhibition and amelioration of dNP are abolished in diabetic Nrf2−/− mice. Taken together, we uncover a new function of minocycline, which stabilizes the redox-sensitive transcription factor Nrf2, thus protecting from dNP.
Collapse
|
459
|
Zhang ZH, Chen H, Vaziri ND, Mao JR, Zhang L, Bai X, Zhao YY. Metabolomic Signatures of Chronic Kidney Disease of Diverse Etiologies in the Rats and Humans. J Proteome Res 2016; 15:3802-3812. [PMID: 27636000 DOI: 10.1021/acs.jproteome.6b00583] [Citation(s) in RCA: 73] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Chronic kidney disease (CKD) has emerged as a major public health problem worldwide. It frequently progresses to end-stage renal disease, which is related to very high cost and mortality. Novel biomarkers can provide insight into the novel mechanism, facilitate early detection, and monitor progression of CKD and its response to therapeutic interventions. To identify potential biomarkers, we applied an UPLC-HDMS together with univariate and multivariate statistical analyses using plasma samples from patients with CKD of diverse etiologies (100 sera in discovery set and 120 sera in validation set) and two different rat models of CKD. Using comprehensive screening and validation workflow, we identified a panel of seven metabolites that were shared by all patients and animals regardless of the underlying cause of CKD. These included ricinoleic acid, stearic acid, cytosine, LPA(16:0), LPA(18:2), 3-methylhistidine, and argininic acid. The combination of these seven biomarkers enabled the discrimination of patients with CKD from healthy subjects with a sensitivity of 83.3% and a specificity of 96.7%. In addition, these biomarkers accurately reflected improvements in renal function in response to the therapeutic interventions. Our results indicated that the identified biomarkers may improve the diagnosis of CKD and provide a novel tool for monitoring of the progression of disease and response to treatment in CKD patients.
Collapse
Affiliation(s)
- Zhi-Hao Zhang
- BioEnergy Science Center and Biosciences Division, Oak Ridge National Laboratory , Oak Ridge, Tennessee 37831, United States
| | - Hua Chen
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, the College of Life Sciences, Northwest University , No. 229 Taibai North Road, Xi'an, Shaanxi 710069, China
| | - Nosratola D Vaziri
- Division of Nephrology and Hypertension, School of Medicine, University of California Irvine , MedSci 1, C352, UCI Campus, Irvine, California 92897, United States
| | - Jia-Rong Mao
- Department of Nephrology, Affiliated Hospital of Shaanxi Institute of Traditional Chinese Medicine , No. 2 Xihuamen, Xi'an, Shaanxi 710003, China
| | - Li Zhang
- Department of Nephrology, Xi'an No. 4 Hospital , No. 21 Jiefang Road, Xi'an, Shaanxi 710004, China
| | - Xu Bai
- Solution Centre, Waters Technologies (Shanghai) Ltd. , No. 1000 Jinhai Road, Shanghai 201203, China
| | - Ying-Yong Zhao
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, the College of Life Sciences, Northwest University , No. 229 Taibai North Road, Xi'an, Shaanxi 710069, China
- Division of Nephrology and Hypertension, School of Medicine, University of California Irvine , MedSci 1, C352, UCI Campus, Irvine, California 92897, United States
| |
Collapse
|
460
|
Yu G, Liu X, Chen Z, Chen H, Wang L, Wang Z, Qiu T, Weng X. Ozone therapy could attenuate tubulointerstitial injury in adenine-induced CKD rats by mediating Nrf2 and NF-κB. IRANIAN JOURNAL OF BASIC MEDICAL SCIENCES 2016; 19:1136-1143. [PMID: 27872711 PMCID: PMC5110663] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
OBJECTIVES This study aims to determine the effects of ozone therapy on restoring impaired Nrf2 activation to ameliorate chronic tubulointerstitial injury in rats with adenine-induced CKD. MATERIALS AND METHODS Sprague-Dawley rats were fed with 0.75% adenine-containing diet to induce CKD and chronic tubulointerstitial injury. Ozone therapy was administered by rectal insufflation. After 4 weeks, serum and kidney samples were collected and analyzed. Renal function and systemic electrolyte level were detected. Pathological changes in kidney were assessed by hematoxylin-eosin staining and Masson trichrome staining. Nrf2 activation was detected by immunohistochemistry and Western blot analyses. The levels of SOD, CAT, GSH, PCO, and MDA were detected in the kidney. Immunohistochemistry, Western blot, and real-time PCR analyses were performed to evaluate the activation of the nuclear factor kappa B (NF-κB) P65 pathway and inflammation infiltration in the tubulointerstitium of the rats. RESULTS Ozone therapy improved severe renal insufficiency and tubulointerstitial morphology injury as well as restored Nrf2 activation and inhibited the NF-κB pathway in rats with adenine-induced CKD. Ozone therapy also up-regulated anti-oxidation enzymes (SOD, CAT, and GSH) and down-regulated oxidation products (PCO and MDA), as well as inflammatory cytokines (IL-1β, IL-6, TNF-α, and ICAM-1) in the kidney. CONCLUSION These findings indicated that ozone therapy could attenuate tubulointerstitial injury in rats with adenine-induced CKD by mediating Nrf2 and NF-κB.
Collapse
Affiliation(s)
- Gang Yu
- Department of Urology, Renmin Hospital of Wuhan University, Wuhan, Hubei, China
| | - Xiuheng Liu
- Department of Urology, Renmin Hospital of Wuhan University, Wuhan, Hubei, China,Corresponding author: Xiuheng Liu. Department of Urology, Renmin Hospital of Wuhan University, Jiefang Road 238, Wuhan, Hubei, China, 430060.
| | - Zhiyuan Chen
- Department of Urology, Renmin Hospital of Wuhan University, Wuhan, Hubei, China
| | - Hui Chen
- Department of Urology, Renmin Hospital of Wuhan University, Wuhan, Hubei, China
| | - Lei Wang
- Department of Urology, Renmin Hospital of Wuhan University, Wuhan, Hubei, China
| | - Zhishun Wang
- Department of Urology, Renmin Hospital of Wuhan University, Wuhan, Hubei, China
| | - Tao Qiu
- Department of Urology, Renmin Hospital of Wuhan University, Wuhan, Hubei, China
| | - Xiaodong Weng
- Department of Urology, Renmin Hospital of Wuhan University, Wuhan, Hubei, China
| |
Collapse
|
461
|
Hsu JD, Wu CC, Hung CN, Wang CJ, Huang HP. Myrciaria cauliflora extract improves diabetic nephropathy via suppression of oxidative stress and inflammation in streptozotocin-nicotinamide mice. J Food Drug Anal 2016; 24:730-737. [PMID: 28911610 PMCID: PMC9337277 DOI: 10.1016/j.jfda.2016.03.009] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2015] [Revised: 03/20/2016] [Accepted: 03/23/2016] [Indexed: 12/22/2022] Open
Abstract
Myrciaria cauliflora is a functional food rich in anthocyanins, possessing antioxidative and anti-inflammatory properties. Our previous results demonstrated M. cauliflora extract (MCE) had beneficial effects in diabetic nephropathy (DN) and via the inhibition of Ras/PI3K/Akt and kidney fibrosis-related proteins. The purpose of this study was to assess the benefit of MCE in diabetes associated with kidney inflammation and glycemic regulation in streptozotocin–nicotinamide (STZ/NA)-induced diabetic mice. Compared with the untreated diabetic group, MCE significantly improved blood glucose and serum biochemical characteristic levels. Exposure to MCE increased antioxidative enzyme activity and diminished reactive oxygen synthesis. Mice receiving MCE supplementation had reduced intercellular adhesion molecule-1 (ICAM-1), vascular cell adhesion molecule-1 (VCAM-1), monocyte chemoattractant protein 1 (MCP-1), colony stimulating factor 1 (CSF-1), interleukin-1β (IL-1β), IL-6 and tumor necrosis factor α (TNF-α) levels compared to the untreated diabetic mice. Inflammatory and fibrotic related proteins such as collagen IV, fibronectin, Janus kinase (JAK), phosphorylated signal transducer and activator of transcription 3 (STAT3), protein kinase C beta (PKC-β), and nuclear factor kappa B (NF-κB) were also inhibited by MCE treatment in STZ/NA mice. These results suggest that MCE may be used as a hypoglycemic agent and antioxidant in Type 2 diabetic mice.
Collapse
|
462
|
Koppe L, Nyam E, Vivot K, Manning Fox JE, Dai XQ, Nguyen BN, Trudel D, Attané C, Moullé VS, MacDonald PE, Ghislain J, Poitout V. Urea impairs β cell glycolysis and insulin secretion in chronic kidney disease. J Clin Invest 2016; 126:3598-612. [PMID: 27525435 DOI: 10.1172/jci86181] [Citation(s) in RCA: 102] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2015] [Accepted: 06/24/2016] [Indexed: 12/25/2022] Open
Abstract
Disorders of glucose homeostasis are common in chronic kidney disease (CKD) and are associated with increased mortality, but the mechanisms of impaired insulin secretion in this disease remain unclear. Here, we tested the hypothesis that defective insulin secretion in CKD is caused by a direct effect of urea on pancreatic β cells. In a murine model in which CKD is induced by 5/6 nephrectomy (CKD mice), we observed defects in glucose-stimulated insulin secretion in vivo and in isolated islets. Similarly, insulin secretion was impaired in normal mouse and human islets that were cultured with disease-relevant concentrations of urea and in islets from normal mice treated orally with urea for 3 weeks. In CKD mouse islets as well as urea-exposed normal islets, we observed an increase in oxidative stress and protein O-GlcNAcylation. Protein O-GlcNAcylation was also observed in pancreatic sections from CKD patients. Impairment of insulin secretion in both CKD mouse and urea-exposed islets was associated with reduced glucose utilization and activity of phosphofructokinase 1 (PFK-1), which could be reversed by inhibiting O-GlcNAcylation. Inhibition of O-GlcNAcylation also restored insulin secretion in both mouse models. These results suggest that insulin secretory defects associated with CKD arise from elevated circulating levels of urea that increase islet protein O-GlcNAcylation and impair glycolysis.
Collapse
|
463
|
Zhou S, Wang P, Qiao Y, Ge Y, Wang Y, Quan S, Yao R, Zhuang S, Wang LJ, Du Y, Liu Z, Gong R. Genetic and Pharmacologic Targeting of Glycogen Synthase Kinase 3β Reinforces the Nrf2 Antioxidant Defense against Podocytopathy. J Am Soc Nephrol 2016; 27:2289-2308. [PMID: 26647425 PMCID: PMC4978041 DOI: 10.1681/asn.2015050565] [Citation(s) in RCA: 71] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2015] [Accepted: 10/27/2015] [Indexed: 01/07/2023] Open
Abstract
Evidence suggests that the glycogen synthase kinase 3 (GSK3)-dictated nuclear exclusion and degradation of Nrf2 is pivotal in switching off the self-protective antioxidant stress response after injury. Here, we examined the mechanisms underlying this regulation in glomerular disease. In primary podocytes, doxorubicin elicited cell death and actin cytoskeleton disorganization, concomitant with overactivation of GSK3β (the predominant GSK3 isoform expressed in glomerular podocytes) and minimal Nrf2 activation. SB216763, a highly selective small molecule inhibitor of GSK3, exerted a protective effect that depended on the potentiated Nrf2 antioxidant response, marked by increased Nrf2 expression and nuclear accumulation and augmented production of the Nrf2 target heme oxygenase-1. Ectopic expression of the kinase-dead mutant of GSK3β in cultured podocytes reinforced the doxorubicin-induced Nrf2 activation and prevented podocyte injury. Conversely, a constitutively active GSK3β mutant blunted the doxorubicin-induced Nrf2 response and exacerbated podocyte injury, which could be abolished by treatment with SB216763. In murine models of doxorubicin nephropathy or nephrotoxic serum nephritis, genetic targeting of GSK3β by doxycycline-inducible podocyte-specific knockout or pharmacologic targeting by SB216763 significantly attenuated albuminuria and ameliorated histologic signs of podocyte injury, including podocytopenia, loss of podocyte markers, podocyte de novo expression of desmin, and ultrastructural lesions of podocytopathy (such as foot process effacement). This beneficial outcome was likely attributable to an enhanced Nrf2 antioxidant response in glomerular podocytes because the selective Nrf2 antagonist trigonelline abolished the proteinuria-reducing and podocyte-protective effect. Collectively, our results suggest the GSK3β-regulated Nrf2 antioxidant response as a novel therapeutic target for protecting podocytes and treating proteinuric glomerulopathies.
Collapse
Affiliation(s)
- Sijie Zhou
- Department of Nephrology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China; Division of Kidney Disease and Hypertension, Department of Medicine, and
| | - Pei Wang
- Division of Kidney Disease and Hypertension, Department of Medicine, and
| | - Yingjin Qiao
- Division of Kidney Disease and Hypertension, Department of Medicine, and
| | - Yan Ge
- Division of Kidney Disease and Hypertension, Department of Medicine, and
| | - Yingzi Wang
- Department of Nephrology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Songxia Quan
- Department of Nephrology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Ricky Yao
- Division of Kidney Disease and Hypertension, Department of Medicine, and
| | - Shougang Zhuang
- Division of Kidney Disease and Hypertension, Department of Medicine, and
| | - Li Juan Wang
- Department of Pathology, Rhode Island Hospital, Brown University School of Medicine, Providence, Rhode Island; and
| | - Yong Du
- Department of Biomedical Engineering, University of Houston, Houston, Texas
| | - Zhangsuo Liu
- Department of Nephrology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China;
| | - Rujun Gong
- Division of Kidney Disease and Hypertension, Department of Medicine, and
| |
Collapse
|
464
|
Qin T, Yin S, Yang J, Zhang Q, Liu Y, Huang F, Cao W. Sinomenine attenuates renal fibrosis through Nrf2-mediated inhibition of oxidative stress and TGFβ signaling. Toxicol Appl Pharmacol 2016; 304:1-8. [PMID: 27211841 DOI: 10.1016/j.taap.2016.05.009] [Citation(s) in RCA: 56] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2016] [Revised: 05/05/2016] [Accepted: 05/16/2016] [Indexed: 02/06/2023]
Abstract
Renal fibrosis is the common feature of chronic kidney disease and mainly mediated by TGFβ-associated pro-fibrogenic signaling, which causes excessive extracellular matrix accumulation and successive loss of kidney functions. Sinomenine (SIN), an alkaloid derived from medicinal herb extensively used in treatment of rheumatoid arthritis and various inflammatory disorders, displays renal protective properties in experimental animals; however its pharmacological potency against renal fibrosis is not explored. In this study we report that SIN possesses strong anti-renal fibrosis functions in kidney cell and in mouse fibrotic kidney. SIN beneficially modulated the pro-fibrogenic protein expression in TGFβ-treated kidney cells and attenuated the renal fibrotic pathogenesis incurred by unilateral ureteral obstruction (UUO), which correlated with its activation of Nrf2 signaling - the key defender against oxidative stress with anti-fibrotic potentials. Further investigation on its regulation of Nrf2 downstream events revealed that SIN significantly balanced oxidative stress via improving the expression and activity of anti-oxidant and detoxifying enzymes, and interrupted the pro-fibrogenic signaling of TGFβ/Smad and Wnt/β-catenin. Even more impressively SIN achieved its anti-fibrotic activities in an Nrf2-dependent manner, suggesting that SIN regulation of Nrf2-associated anti-fibrotic activities constitutes a critical component of SIN's renoprotective functions. Collectively our studies have demonstrated a novel anti-fibrotic property of SIN and its upstream events and provided a molecular basis for SIN's potential applications in treatment of renal fibrosis-associated kidney disorders.
Collapse
Affiliation(s)
- Tian Qin
- School of Life Science & Technology, China Pharmaceutical University, Nanjing 210009, China
| | - Shasha Yin
- Jiangsu Key Laboratory of Molecular Medicine, Nanjing University School of Medicine, Nanjing 210093, China
| | - Jun Yang
- Jiangsu Key Laboratory of Molecular Medicine, Nanjing University School of Medicine, Nanjing 210093, China
| | - Qin Zhang
- Jiangsu Key Laboratory of Molecular Medicine, Nanjing University School of Medicine, Nanjing 210093, China
| | - Yangyang Liu
- Jiangsu Key Laboratory of Molecular Medicine, Nanjing University School of Medicine, Nanjing 210093, China
| | - Fengjie Huang
- School of Life Science & Technology, China Pharmaceutical University, Nanjing 210009, China.
| | - Wangsen Cao
- Jiangsu Key Laboratory of Molecular Medicine, Nanjing University School of Medicine, Nanjing 210093, China.
| |
Collapse
|
465
|
Atilano-Roque A, Aleksunes LM, Joy MS. Bardoxolone methyl modulates efflux transporter and detoxifying enzyme expression in cisplatin-induced kidney cell injury. Toxicol Lett 2016; 259:52-59. [PMID: 27480280 DOI: 10.1016/j.toxlet.2016.07.021] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2016] [Revised: 07/05/2016] [Accepted: 07/18/2016] [Indexed: 12/12/2022]
Abstract
Cisplatin is prescribed for the treatment of solid tumors and elicits toxicity to kidney tubules, which limits its clinical use. Nuclear factor erythroid 2-related factor 2 (Nrf2, NFE2L2) is a critical transcription factor that has been shown to protect against kidney injury through activation of antioxidant mechanisms. We aimed to evaluate the ability of short-term treatment with the Nrf2 activator bardoxolone methyl (CDDO-Me) to protect against cisplatin-induced kidney cell toxicity. Cell viability was assessed in human kidney proximal tubule epithelial cells (hPTCs) exposed to low, intermediate, and high cisplatin concentrations in the presence and absence of CDDO-Me, administered either prior to or after cisplatin. Treatment with cisplatin alone resulted in reductions in hPTC viability, while CDDO-Me administered prior to or after cisplatin exposure yielded significantly higher cell viability (17%-71%). Gene regulation (mRNA expression) studies revealed the ability of CDDO-Me to modify protective pathways including Nrf2 induced detoxifying genes [GCLC (increased 1.9-fold), NQO1 (increased 9.3-fold)], and an efflux transporter [SLC47A1 (increased 4.5-fold)] at 12h. Protein assessments were in agreement with gene expression. Immunofluorescence revealed localization of GCLC and NQO1 to the nucleus and cytosol, respectively, with CDDO-Me administered prior to or after cisplatin exposure. The findings of enhanced cell viability and increased expression of detoxifying enzymes (GCLC and NQO1) and the multidrug and toxin extrusion protein 1 (MATE1) efflux transporter (SLC47A1) in hPTCs exposed to CDDO-Me, suggest that intermittent treatment with CDDO-Me prior to or after cisplatin exposure may be a promising approach to mitigate acute kidney injury.
Collapse
Affiliation(s)
- Amandla Atilano-Roque
- Department of Pharmaceutical Sciences, Skaggs School of Pharmacy and Pharmaceutical Sciences, University of Colorado, Aurora, CO, United States
| | - Lauren M Aleksunes
- Department of Pharmacology and Toxicology, Ernest Mario School of Pharmacy, Rutgers University, Piscataway, NJ, United States
| | - Melanie S Joy
- Department of Pharmaceutical Sciences, Skaggs School of Pharmacy and Pharmaceutical Sciences, University of Colorado, Aurora, CO, United States; Division of Renal Diseases and Hypertension, University of Colorado School of Medicine, Aurora, CO, United States.
| |
Collapse
|
466
|
Protective effect of epigallocatechin-3-gallate (EGCG) via Nrf2 pathway against oxalate-induced epithelial mesenchymal transition (EMT) of renal tubular cells. Sci Rep 2016; 6:30233. [PMID: 27452398 PMCID: PMC4958994 DOI: 10.1038/srep30233] [Citation(s) in RCA: 76] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2016] [Accepted: 07/01/2016] [Indexed: 12/24/2022] Open
Abstract
This study evaluated effect of oxalate on epithelial mesenchymal transition (EMT) and potential anti-fibrotic property of epigallocatechin-3-gallate (EGCG). MDCK renal tubular cells were incubated with 0.5 mM sodium oxalate for 24-h with/without 1-h pretreatment with 25 μM EGCG. Microscopic examination, immunoblotting and immunofluorescence staining revealed that oxalate-treated cells gained mesenchymal phenotypes by fibroblast-like morphological change and increasing expression of vimentin and fibronectin, while levels of epithelial markers (E-cadherin, occludin, cytokeratin and ZO-1) were decreased. EGCG pretreatment could prevent all these changes and molecular mechanisms underlying the prevention by EGCG were most likely due to reduced production of intracellular ROS through activation of Nrf2 signaling and increased catalase anti-oxidant enzyme. Knockdown of Nrf2 by small interfering RNA (siRNA) abrogated all the effects of EGCG, confirming that the EGCG protection against oxalate-induced EMT was mediated via Nrf2. Taken together, our data indicate that oxalate turned on EMT of renal tubular cells that could be prevented by EGCG via Nrf2 pathway. These findings also shed light onto development of novel therapeutics or preventive strategies of renal fibrosis in the future.
Collapse
|
467
|
Tian XY, Wong WT, Lau CW, Wang YX, Cheang WS, Liu J, Lu Y, Huang H, Xia Y, Chen ZY, Mok CS, Lau CM, Huang Y. Melamine Impairs Renal and Vascular Function in Rats. Sci Rep 2016; 6:28041. [PMID: 27324576 PMCID: PMC4914856 DOI: 10.1038/srep28041] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2015] [Accepted: 05/26/2016] [Indexed: 12/11/2022] Open
Abstract
Melamine incident, linked to nephrotoxicity and kidney stone in infants previously exposed to melamine-contaminated milk products, was unprecedentedly grave in China in 2008 as little was known about the mechanistic process leading to renal dysfunction in affected children. This study investigates whether neonatal ingestion of melamine leads to renal and vascular dysfunction in adulthood; and whether ingestion of melamine in pregnant rats leads to renal dysfunction in their offspring. A combination of approaches employed includes functional studies in rat renal arteries, renal blood flow measurement by functional magnetic resonance imaging, assay for pro-inflammatory and fibrotic biomarkers, immunohistochemistry, and detection of plasma and renal melamine. We provide mechanistic evidence showing for the first time that melamine reduces renal blood flow and impairs renal and vascular function associated with overexpression of inflammatory markers, transforming growth factor-β1, bone morphogenic protein 4 and cyclooxygenase-2 in kidney and renal vasculature. Melamine also induces renal inflammation and fibrosis. More importantly, melamine causes nephropathies in offsprings from pregnant rat exposed to melamine during pregnancy, as well as in neonatal rat exposed to melamine afterbirth, thus supporting the clinical observations of kidney stone and acute renal failure in infants consuming melamine-contaminated milk products.
Collapse
Affiliation(s)
- Xiao Yu Tian
- School of Biomedical Sciences, Institute of Vascular Medicine and Li Ka Shing Institute of Health Sciences, Chinese University of Hong Kong, Hong Kong
| | - Wing Tak Wong
- School of Biomedical Sciences, Institute of Vascular Medicine and Li Ka Shing Institute of Health Sciences, Chinese University of Hong Kong, Hong Kong
| | - Chi Wai Lau
- School of Biomedical Sciences, Institute of Vascular Medicine and Li Ka Shing Institute of Health Sciences, Chinese University of Hong Kong, Hong Kong
| | - Yi-Xiang Wang
- Department of Diagnostic Radiology and Organ Imaging, Chinese University of Hong Kong, Hong Kong
| | - Wai San Cheang
- School of Biomedical Sciences, Institute of Vascular Medicine and Li Ka Shing Institute of Health Sciences, Chinese University of Hong Kong, Hong Kong
| | - Jian Liu
- School of Biomedical Sciences, Institute of Vascular Medicine and Li Ka Shing Institute of Health Sciences, Chinese University of Hong Kong, Hong Kong
| | - Ye Lu
- School of Biomedical Sciences, Institute of Vascular Medicine and Li Ka Shing Institute of Health Sciences, Chinese University of Hong Kong, Hong Kong
| | - Huihui Huang
- School of Biomedical Sciences, Institute of Vascular Medicine and Li Ka Shing Institute of Health Sciences, Chinese University of Hong Kong, Hong Kong
| | - Yin Xia
- School of Biomedical Sciences, Institute of Vascular Medicine and Li Ka Shing Institute of Health Sciences, Chinese University of Hong Kong, Hong Kong
| | - Zhen Yu Chen
- School of Life Sciences, Chinese University of Hong Kong, Hong Kong
| | | | | | - Yu Huang
- School of Biomedical Sciences, Institute of Vascular Medicine and Li Ka Shing Institute of Health Sciences, Chinese University of Hong Kong, Hong Kong
| |
Collapse
|
468
|
Hydrogen Sulfide Mitigates Kidney Injury in High Fat Diet-Induced Obese Mice. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2016; 2016:2715718. [PMID: 27413418 PMCID: PMC4930816 DOI: 10.1155/2016/2715718] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/28/2016] [Revised: 05/06/2016] [Accepted: 05/08/2016] [Indexed: 12/12/2022]
Abstract
Obesity is prevalent worldwide and is a major risk factor for the development and progression of kidney disease. Hydrogen sulfide (H2S) plays an important role in renal physiological and pathophysiological processes. However, whether H2S is able to mitigate kidney injury induced by obesity in mice remains unclear. In this study, we demonstrated that H2S significantly reduced the accumulation of lipids in the kidneys of high fat diet- (HFD-) induced obese mice. The results of hematoxylin and eosin, periodic acid-Schiff, and Masson's trichrome staining showed that H2S ameliorated the kidney structure, decreased the extent of interstitial injury, and reduced the degree of kidney fibrosis in HFD-induced obese mice. We found that H2S decreased the expression levels of tumor necrosis factor-α, interleukin- (IL-) 6, and monocyte chemoattractant protein-1 but increased the expression level of IL-10. Furthermore, H2S treatment decreased the protein expression of p50, p65, and p-p65 in the kidney of HFD-induced obese mice. In conclusion, H2S is able to mitigate renal injury in HFD-induced obese mice through the reduction of kidney inflammation by downregulating the expression of nuclear factor-kappa B. H2S or its releasing compounds may serve as a potential therapeutic molecule for obesity-induced kidney injury.
Collapse
|
469
|
Zhang W, Li Y, Ding H, Du Y, Wang L. Hydrogen peroxide prevents vascular calcification induced ROS production by regulating Nrf-2 pathway. Ren Fail 2016; 38:1099-106. [PMID: 27300444 DOI: 10.1080/0886022x.2016.1194143] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
BACKGROUND Although vascular calcification in end-stage renal disease (ESRD) represents a ubiquitous human health problem, effective therapies with limited side effects are still lacking, and the precise mechanisms are not fully understood. The Nrf-2/ARE pathway is a pivotal to regulate anti-oxidative responses in vascular calcification upon ESRD. Although Nrf-2 plays a crucial role in atherosclerosis, pulmonary fibrosis, and brain ischemia, the effect of Nrf-2 and oxidative stress on vascular calcification in ESRD patients is still unclear. The aim of this research was to study the protective role of hydrogen peroxide in vascular calcification and the mechanism of Nrf-2 and oxidative stress on vascular calcification. MATERIALS AND METHODS Here we used the rat vascular smooth muscle cell model of β-glycerophosphate-induced calcification resembling vascular calcification in ESRD to investigate the therapeutic effect of 0.01 mM hydrogen peroxide on vascular calcification and further explores the possible underlying mechanisms. RESULTS Our current report shows the in vitro role of 0.01 mM hydrogen peroxide in protecting against intracellular ROS accumulation upon vascular calcification. Both hydrogen peroxide and sulforaphane pretreatment reduced ROS production, increased the expression of Nrf-2, and decreased the expression of Runx2 following calcification. CONCLUSION Our study demonstrates that 0.01 mM hydrogen peroxide can effectively protect rat aortic vascular smooth muscle cells against oxidative stress by preventing vascular calcification induced ROS production through Nrf-2 pathway. These data might define an antioxidant role of hydrogen peroxide in vascular calcification upon ESRD.
Collapse
Affiliation(s)
- Wensong Zhang
- a Department of Nephrology , University of Electronic Science and Technology, Sichuan Academy of Sciences & Sichuan Provincial People's Hospital , Chengdu , China
| | - Yi Li
- a Department of Nephrology , University of Electronic Science and Technology, Sichuan Academy of Sciences & Sichuan Provincial People's Hospital , Chengdu , China
| | - Hanlu Ding
- a Department of Nephrology , University of Electronic Science and Technology, Sichuan Academy of Sciences & Sichuan Provincial People's Hospital , Chengdu , China
| | - Yaqin Du
- a Department of Nephrology , University of Electronic Science and Technology, Sichuan Academy of Sciences & Sichuan Provincial People's Hospital , Chengdu , China
| | - Li Wang
- a Department of Nephrology , University of Electronic Science and Technology, Sichuan Academy of Sciences & Sichuan Provincial People's Hospital , Chengdu , China
| |
Collapse
|
470
|
Cheng F, Zhang Q, Yan FF, Wan JF, Lin CS. Lutein protects against ischemia/reperfusion injury in rat skeletal muscle by modulating oxidative stress and inflammation. Immunopharmacol Immunotoxicol 2016; 37:329-34. [PMID: 26250522 DOI: 10.3109/08923973.2015.1049704] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
BACKGROUND Lutein is an antioxidant compound with potential biological effects. The present study investigated the protective role of Lutein against I/R injury in skeletal muscle. METHODS Animals were divided into three groups. Group I - sham operated; Group II- IR injury- Hind limb ischemia was induced by clamping the common femoral artery and vein. After 4 h of ischemia, the clamp was removed and the animals underwent 2 h of reperfusion. Group III-Lutein + IR injury- Rats with Lutein treatment received intraperitoneal injection 1 h before reperfusion. The skeletal tissues were analyzed for oxidative stress parameters (reactive oxygen species, protein carbonylation and sulfhydryls, lipid peroxidation). Antioxidant status was determined by evaluating Nrf-2 levels and antioxidant enzyme activities. The inflammatory mechanism was determined through NF-κB and COX-2 expressions. Pro-inflammatory cytokines were determined by ELISA. RESULTS The results showed that Lutein treatment significantly decreased the oxidative stress by reducing reactive oxygen species, protein carbonylation and sulphydryls, lipid peroxidation. Further, the levels of Nrf-2 and antioxidant status was significantly declined during IR injury compared to sham operated rats. Lutein treatment reduced the oxidative stress by enhancing Nrf-2 levels and antioxidant status. Skeletal IR injury enhanced the inflammatory signaling by up regulating NF-κB, COX-2 and various pro-inflammatory cytokines. NF-κB, COX-2 expressions were down regulated by Lutein treatment. CONCLUSION The study shows that Lutein protects against skeletal IR injury by down regulating oxidative stress and inflammatory mechanisms.
Collapse
Affiliation(s)
- Fang Cheng
- Department of Anesthesiology, Nanfang Hospital, Southern Medical University , Guangzhou , China
| | | | | | | | | |
Collapse
|
471
|
Hayakawa S, Ohashi K, Shibata R, Takahashi R, Otaka N, Ogawa H, Ito M, Kanemura N, Hiramatsu-Ito M, Ikeda N, Murohara T, Ouchi N. Association of Circulating Follistatin-Like 1 Levels with Inflammatory and Oxidative Stress Markers in Healthy Men. PLoS One 2016; 11:e0153619. [PMID: 27145224 PMCID: PMC4856269 DOI: 10.1371/journal.pone.0153619] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2016] [Accepted: 03/31/2016] [Indexed: 12/28/2022] Open
Abstract
Objectives Follistatin-like 1 (Fstl1) is a circulating glycoprotein that plays a crucial role in cardiovascular diseases and inflammation-related disorders. We have shown that Fstl1 acts as an anti-inflammatory factor that protects against ischemic heart disease and chronic kidney disease. Here we examined whether plasma level of Fstl1 associates with markers of inflammation and oxidative stress in apparently healthy Japanese men. Methods and Results Plasma Fstl1 levels were measured by enzyme-linked immunosorbent assay. Circulating Fstl1 concentrations positively correlated with levels of fasting immune-reactive insulin (FIRI), high-sensitive CRP (hsCRP) and derivatives of reactive oxidative metabolites (dROMs), an indicator of oxidative stress. The levels of hsCRP positively associated with Fstl1, body mass index (BMI), triglyceride, FIRI and dROMs levels. dROMs levels positively associated with Fstl1, Hemoglobin A1c and hsCRP levels. Multiple regression analysis with confounding factors revealed that Fstl1 levels, together with BMI and FIRI, correlated with hsCRP and that Fstl1 levels correlated with dROMs. Conclusion Our observations indicate that measurement of plasma Fstl1 levels can be valuable for assessment of pro-inflammatory and oxidative stress conditions.
Collapse
Affiliation(s)
- Satoko Hayakawa
- Department of Cardiology, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Koji Ohashi
- Molecular Cardiovascular Medicine, Nagoya University Graduate School of Medicine, Nagoya, Japan
- * E-mail: (NO); (KO)
| | - Rei Shibata
- Department of Advanced Cardiovascular Therapeutics, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | | | - Naoya Otaka
- Department of Cardiology, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Hayato Ogawa
- Department of Cardiology, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Masanori Ito
- Department of Cardiology, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Noriyoshi Kanemura
- Department of Cardiology, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Mizuho Hiramatsu-Ito
- Department of Cardiology, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Nobuo Ikeda
- Department of Cardiology, Chunichi Hospital, Nagoya, Japan
| | - Toyoaki Murohara
- Department of Cardiology, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Noriyuki Ouchi
- Molecular Cardiovascular Medicine, Nagoya University Graduate School of Medicine, Nagoya, Japan
- * E-mail: (NO); (KO)
| |
Collapse
|
472
|
Vaziri ND, Zhao YY, Pahl MV. Altered intestinal microbial flora and impaired epithelial barrier structure and function in CKD: the nature, mechanisms, consequences and potential treatment. Nephrol Dial Transplant 2016; 31:737-746. [PMID: 25883197 DOI: 10.1093/ndt/gfv095] [Citation(s) in RCA: 270] [Impact Index Per Article: 30.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2015] [Accepted: 03/16/2015] [Indexed: 02/06/2023] Open
Abstract
Chronic kidney disease (CKD) results in systemic inflammation and oxidative stress which play a central role in CKD progression and its adverse consequences. Although many of the causes and consequences of oxidative stress and inflammation in CKD have been extensively explored, little attention had been paid to the intestine and its microbial flora as a potential source of these problems. Our recent studies have revealed significant disruption of the colonic, ileal, jejunal and gastric epithelial tight junction in different models of CKD in rats. Moreover, the disruption of the epithelial barrier structure and function found in uremic animals was replicated in cultured human colonocytes exposed to uremic human plasma in vitro We have further found significant changes in the composition and function of colonic bacterial flora in humans and animals with advanced CKD. Together, uremia-induced impairment of the intestinal epithelial barrier structure and function and changes in composition of the gut microbiome contribute to the systemic inflammation and uremic toxicity by accommodating the translocation of endotoxin, microbial fragments and other noxious luminal products in the circulation. In addition, colonic bacteria are the main source of several well-known pro-inflammatory uremic toxins such as indoxyl sulfate, p-cresol sulfate, trimethylamine-N-oxide and many as-yet unidentified retained compounds in end-stage renal disease patients. This review is intended to provide an overview of the effects of CKD on the gut microbiome and intestinal epithelial barrier structure and their role in the pathogenesis of systemic inflammation and uremic toxicity. In addition, potential interventions aimed at mitigating these abnormalities are briefly discussed.
Collapse
Affiliation(s)
- Nosratola D Vaziri
- Division of Nephrology and Hypertension, Department of Medicine, University of California, Irvine Medical Center, Orange, CA, USA
| | - Ying-Yong Zhao
- Division of Nephrology and Hypertension, Department of Medicine, University of California, Irvine Medical Center, Orange, CA, USA
| | - Madeleine V Pahl
- Division of Nephrology and Hypertension, Department of Medicine, University of California, Irvine Medical Center, Orange, CA, USA
| |
Collapse
|
473
|
Wong FN, Chua KH, Kuppusamy UR, Wong CM, Lim SK, Tan JAMA. Association of the receptor for advanced glycation end-products (RAGE) gene polymorphisms in Malaysian patients with chronic kidney disease. PeerJ 2016; 4:e1908. [PMID: 27114872 PMCID: PMC4841215 DOI: 10.7717/peerj.1908] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2015] [Accepted: 03/17/2016] [Indexed: 11/20/2022] Open
Abstract
Background: Chronic kidney disease (CKD) is a condition associated with progressive loss of kidney function and kidney damage. The two common causes of CKD are diabetes mellitus and hypertension. Other causes of CKD also include polycystic kidney disease, obstructive uropathy and primary glomerulonephritis. The receptor for advanced glycation end-products (RAGE) is a multi-ligand cell surface receptor of the immunoglobulin superfamily and it has been associated with kidney disease in both non-diabetic and diabetic patients. Presently, data on the association between RAGE polymorphisms and CKD in the Malaysian population is limited, while numerous studies have reported associations of RAGE polymorphisms with diabetic complications in other populations. The present study aims to explore the possibility of using RAGE polymorphisms as candidate markers of CKD in Malaysian population by using association analysis. Methods: A total of 102 non-diabetic CKD patients, 204 diabetic CKD patients and 345 healthy controls were enrolled in the study. DNA isolated from blood samples were subjected to genotyping of RAGE G82S, −374T/A, −429T/C, 1704G/T and 2184A/G polymorphisms using real-time polymerase chain reaction (PCR). The 63-bp deletion, a polymorphism in the RAGE gene promoter, was genotyped using conventional PCR method and visualized using agarose gel electrophoresis. The collective frequencies of genotypes with at least one copy of the minor alleles of the four polymorphisms were compared between the non-diabetic CKD patients, diabetic CKD patients and healthy controls. Results: After adjustment of age, gender and ethnic groups in binary logistic regression analysis, the G82S CT + TT genotypes were associated with non-diabetic CKD patients when compared with diabetic CKD patients (p = 0.015, OR = 1.896, 95% CI = 1.132–3.176). After further adjustment of CKD comorbidities, the G82S CT + TT genotypes were still associated with non-diabetic CKD patients when compared with diabetic CKD patients (p = 0.011, OR = 2.024, 95% CI = 1.178–3.476). However, it cannot be suggested that G82S polymorphism was associated with CKD in non-diabetic patients in this study. This is because there were no significant differences in the frequencies of G82S CT + TT genotypes between non-diabetic CKD patients and healthy controls. In addition, the RAGE −374T/A, −429T/C, 1704G/T, 2184A/G and 63-bp deletion polymorphisms were also not associated with non-diabetic CKD patients and diabetic CKD patients in this study. Conclusion: The G82S, −374T/A, −429T/C, 1704G/T, 2184A/G and 63-bp deletion polymorphisms examined in this study were not associated with chronic kidney disease in the Malaysian patients.
Collapse
Affiliation(s)
- Foo Nian Wong
- Department of Biomedical Science, Faculty of Medicine, University of Malaya , Kuala Lumpur , Malaysia
| | - Kek Heng Chua
- Department of Biomedical Science, Faculty of Medicine, University of Malaya , Kuala Lumpur , Malaysia
| | - Umah Rani Kuppusamy
- Department of Biomedical Science, Faculty of Medicine, University of Malaya , Kuala Lumpur , Malaysia
| | - Chew Ming Wong
- Department of Medicine, Faculty of Medicine, University of Malaya , Kuala Lumpur , Malaysia
| | - Soo Kun Lim
- Department of Medicine, Faculty of Medicine, University of Malaya , Kuala Lumpur , Malaysia
| | - Jin Ai Mary Anne Tan
- Department of Biomedical Science, Faculty of Medicine, University of Malaya , Kuala Lumpur , Malaysia
| |
Collapse
|
474
|
López-López AL, Jaime HB, Escobar Villanueva MDC, Padilla MB, Palacios GV, Aguilar FJA. Chronic unpredictable mild stress generates oxidative stress and systemic inflammation in rats. Physiol Behav 2016; 161:15-23. [PMID: 27063246 DOI: 10.1016/j.physbeh.2016.03.017] [Citation(s) in RCA: 79] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2015] [Revised: 11/06/2015] [Accepted: 03/14/2016] [Indexed: 01/01/2023]
Abstract
Stress is considered to be a causal agent of chronic degenerative diseases, such as cardiovascular disease, diabetes mellitus, arthritis and Alzheimer's. Chronic glucocorticoid and catecholamine release into the circulation during the stress response has been suggested to activate damage mechanisms, which in the long term produce metabolic alterations associated with oxidative stress and inflammation. However, the consequences of stress in animal models for periods longer than 40days have not been explored. The goal of this work was to determine whether chronic unpredictable mild stress (CUMS) produced alterations in the redox state and the inflammatory profile of rats after 20, 40, and 60days. CUMS consisted of random exposure of the animals to different stressors. The following activities were measured in the liver and pancreas: reduced glutathione (GSH), lipid peroxidation (LPO), superoxide dismutase (SOD), catalase (CAT), total antioxidant capacity (TAC), and protein oxidation. Similarly, serum cytokine levels (IL-6, TNF-α, IL-1β, and IL-10) were determined. CUMS activated the stress response from day 20 until day 60. In the liver and pancreas, GHS levels were decreased from day 40, whereas protein lipid peroxidation and protein oxidation were increased. This is the first work to report that the pancreas redox state is subject to chronic stress conditions. The TAC was constant in the liver and reduced in the pancreas. An increase in the TNF-α, IL-1β, and IL-6 inflammatory markers and a decrease in the IL-10 level due to CUMS was shown, thereby resulting in the generation of a systemic inflammation state after 60days of treatment. Together, the CUMS consequences on day 60 suggest that both processes can contribute to the development of chronic degenerative diseases, such as cardiovascular disease and diabetes mellitus. CUMS is an animal model that in addition to avoiding habituation activates damage mechanisms such as oxidative stress and low-grade chronic inflammation, which allows the study of physio-pathological stress aspects over prolonged time periods of at least 60days.
Collapse
Affiliation(s)
- Ana Laura López-López
- Posgrado en Biología Experimental Biological and Health Sciences Division (DCBS), Universidad Autónoma Metropolitana Unidad Iztapalapa (UAMI), CP 09340, México, D.F., Mexico.
| | - Herlinda Bonilla Jaime
- Behavioral and Reproductive Pharmacology Laboratory, DCBS, UAMI, CP 09340, México, D.F., Mexico
| | | | - Malinalli Brianza Padilla
- Posgrado en Biología Experimental Biological and Health Sciences Division (DCBS), Universidad Autónoma Metropolitana Unidad Iztapalapa (UAMI), CP 09340, México, D.F., Mexico
| | - Gonzalo Vázquez Palacios
- College of Science and Technology, Universidad Autónoma de la Ciudad de México-San Lorenzo Tezonco, CP 09790, México, D.F., Mexico
| | | |
Collapse
|
475
|
Vanholder R, Fouque D, Glorieux G, Heine GH, Kanbay M, Mallamaci F, Massy ZA, Ortiz A, Rossignol P, Wiecek A, Zoccali C, London GM. Clinical management of the uraemic syndrome in chronic kidney disease. Lancet Diabetes Endocrinol 2016; 4:360-73. [PMID: 26948372 DOI: 10.1016/s2213-8587(16)00033-4] [Citation(s) in RCA: 77] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/26/2015] [Revised: 12/03/2015] [Accepted: 01/13/2016] [Indexed: 12/22/2022]
Abstract
The clinical picture of the uraemic syndrome is a complex amalgam of accelerated ageing and organ dysfunction, which progress in parallel to chronic kidney disease. The uraemic syndrome is associated with cardiovascular disease, metabolic bone disease, inflammation, protein energy wasting, intestinal dysbiosis, anaemia, and neurological and endocrine dysfunction. In this Review, we summarise specific, modern management options for the uraemic syndrome in chronic kidney disease. Although large randomised controlled trials are scarce, based on data from randomised controlled trials and observational studies, as well as pathophysiological reasoning, a therapeutic algorithm can be developed for this complex and multifactorial condition, with interventions targeting several modifiable factors simultaneously.
Collapse
Affiliation(s)
- Raymond Vanholder
- Nephrology Section, Department of Internal Medicine, Ghent University Hospital, Ghent, Belgium.
| | - Denis Fouque
- Department of Nephrology-Nutrition-Dialysis, Centre Hospitalier Lyon Sud, Carmen-CENS, Université Claude Bernard Lyon 1, Lyon, France; Investigation Network Initiative Cardiovascular and Renal Clinical Trialists (INI-CRCT), French Clinical Research Infrastructure Network (F-CRIN), Nancy, France
| | - Griet Glorieux
- Nephrology Section, Department of Internal Medicine, Ghent University Hospital, Ghent, Belgium
| | - Gunnar H Heine
- Department of Internal Medicine IV, Saarland University Medical Centre, Homburg, Germany
| | - Mehmet Kanbay
- Department of Medicine, Division of Nephrology, Koc University School of Medicine, Istanbul, Turkey
| | - Francesca Mallamaci
- Nephrology, Dialysis and Transplantation Unit, and CNR-IFC Clinical Epidemiology and Pathophysiology of Renal Diseases and Hypertension, Ospedali Riuniti, Reggio Calabria, Italy
| | - Ziad A Massy
- Investigation Network Initiative Cardiovascular and Renal Clinical Trialists (INI-CRCT), French Clinical Research Infrastructure Network (F-CRIN), Nancy, France; Division of Nephrology, Ambroise Paré University Hospital (APHP), University of Paris Ouest, Versailles-Saint-Quentin-en-Yvelines (UVSQ), Boulogne-Billancourt, Paris, France; INSERM U1018, Research Centre in Epidemiology and Population Health (CESP), UVSQ, Villejuif, France
| | - Alberto Ortiz
- Division of Nephrology, IIS-Fundacion Jimenez Diaz, Madrid, Spain
| | - Patrick Rossignol
- Investigation Network Initiative Cardiovascular and Renal Clinical Trialists (INI-CRCT), French Clinical Research Infrastructure Network (F-CRIN), Nancy, France; INSERM Centre d'Investigations Cliniques (CIC)-1433, and INSERM U1116, Nancy, France; Institut Lorrain du Cœur et des Vaisseaux, CHU Nancy, Vandoeuvre lès Nancy, France; Université de Lorraine, Nancy, France; Association Lorraine pour le Traitement de l'Insuffisance Rénale, Vandoeuvre lès Nancy, France
| | - Andrzej Wiecek
- Department of Nephrology, Transplantation and Internal Medicine, Medical University of Silesia, Katowice, Poland
| | - Carmine Zoccali
- Nephrology, Dialysis and Transplantation Unit, and CNR-IFC Clinical Epidemiology and Pathophysiology of Renal Diseases and Hypertension, Ospedali Riuniti, Reggio Calabria, Italy
| | - Gérard Michel London
- Investigation Network Initiative Cardiovascular and Renal Clinical Trialists (INI-CRCT), French Clinical Research Infrastructure Network (F-CRIN), Nancy, France; INSERM U970, Hôpital Européen Georges Pompidou, Paris
| | | | | | | |
Collapse
|
476
|
Ekanger LA, Polin LA, Shen Y, Haacke EM, Allen MJ. Evaluation of Eu(II) -based positive contrast enhancement after intravenous, intraperitoneal, and subcutaneous injections. CONTRAST MEDIA & MOLECULAR IMAGING 2016; 11:299-303. [PMID: 27028559 DOI: 10.1002/cmmi.1692] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/18/2015] [Revised: 02/16/2016] [Accepted: 02/23/2016] [Indexed: 12/30/2022]
Abstract
Eu(II) -based contrast agents offer physiologically relevant, metal-based redox sensing that is unachievable with Gd(III) -based contrast agents. To evaluate the in vivo contrast enhancement of Eu(II) as a function of injection type, we performed intravenous, intraperitoneal, and subcutaneous injections in mice. Our data reveal a correlation between reported oxygen content and expected rates of diffusion with the persistence of Eu(II) -based contrast enhancement. Biodistribution studies revealed europium clearance through the liver and kidneys for intravenous and intraperitoneal injections, but no contrast enhancement was observed in organs associated with clearance. These data represent a step toward understanding the behavior of Eu(II) -based complexes in vivo. Copyright © 2016 John Wiley & Sons, Ltd.
Collapse
Affiliation(s)
- Levi A Ekanger
- Department of Chemistry, Wayne State University, 5101 Cass Avenue, Detroit, MI, 48202, USA
| | - Lisa A Polin
- Department of Oncology, Wayne State University School of Medicine, Detroit, MI, 4820, USA.,Barbara Ann Karmanos Cancer Institute, Detroit, MI, 48201, USA
| | - Yimin Shen
- Department of Radiology, Wayne State University School of Medicine, Detroit, MI, 48201
| | - E Mark Haacke
- Barbara Ann Karmanos Cancer Institute, Detroit, MI, 48201, USA.,Department of Radiology, Wayne State University School of Medicine, Detroit, MI, 48201
| | - Matthew J Allen
- Department of Chemistry, Wayne State University, 5101 Cass Avenue, Detroit, MI, 48202, USA.,Barbara Ann Karmanos Cancer Institute, Detroit, MI, 48201, USA
| |
Collapse
|
477
|
Zoja C, Zanchi C, Benigni A. Key pathways in renal disease progression of experimental diabetes. Nephrol Dial Transplant 2016. [PMID: 26209738 DOI: 10.1093/ndt/gfv036] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Diabetic nephropathy (DN) is one of the major microvascular complications of diabetes mellitus and the leading cause of end-stage kidney disease. Both diabetes and chronic kidney disease are risk factors for cardiovascular disease, and diabetic patients with renal involvement are three times more likely to eventually die of cardiovascular disease than diabetic patients without signs of renal failure. In type 2 diabetes, microalbuminuria is a marker of renal dysfunction and a crucial predictor of cardiovascular disease. Inhibitors of angiotensin II synthesis/activity, while preventing micro- or macroalbuminuria, also reduced cardiovascular events in diabetic patients. However, the effectiveness of renin angiotensin system blocking agents depends on the time when treatment is started, and imperfect renoprotection may occur if therapy begins at an advanced disease phase. This raises the need to identify novel multidrug approaches that simultaneously inhibit additional pathways other than angiotensin II for those diabetic patients who remain at high risk of both poor renal and cardiovascular outcomes. Studies in animal models of diabetes have contributed to defining relevant cellular mechanisms underlying the pathogenesis of DN that could represent possible targets for therapies. The pathogenesis of DN is multifactorial, involving a complex series of molecular processes. In this review, we report evidence obtained in experimental models of DN on some specific processes and pathways implicated in DN that may be crucial for managing this disease.
Collapse
Affiliation(s)
- Carlamaria Zoja
- IRCCS-Istituto di Ricerche Farmacologiche Mario Negri, Centro Anna Maria Astori, Science and Technology Park Kilometro Rosso, Bergamo, Italy
| | - Cristina Zanchi
- IRCCS-Istituto di Ricerche Farmacologiche Mario Negri, Centro Anna Maria Astori, Science and Technology Park Kilometro Rosso, Bergamo, Italy
| | - Ariela Benigni
- IRCCS-Istituto di Ricerche Farmacologiche Mario Negri, Centro Anna Maria Astori, Science and Technology Park Kilometro Rosso, Bergamo, Italy
| |
Collapse
|
478
|
Zhaleh F, Amiri F, Mohammadzadeh-Vardin M, Bahadori M, Harati MD, Roudkenar MH, Saki S. Nuclear factor erythroid-2 related factor 2 overexpressed mesenchymal stem cells transplantation, improves renal function, decreases injuries markers and increases repair markers in glycerol-induced Acute kidney injury rats. IRANIAN JOURNAL OF BASIC MEDICAL SCIENCES 2016; 19:323-9. [PMID: 27114803 PMCID: PMC4834123] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
OBJECTIVES Recently cell therapy is a promising therapeutic modality for many types of disease including acute kidney injury (AKI). Due to the unique biological properties, mesenchymal stem cells (MSCs) are attractive cells in this regard. This study aims to transplant MSCs equipped with nuclear factor E2-related factor 2 (Nrf2) in rat experimental models of acute kidney and evaluate regeneration potential of injured kidney especially expression of injury and repaired biomarkers. MATERIALS AND METHODS Nrf2 was overexpressed in bone marrow-derived MSCs by pcDNA.3.1 plasmid. AKI was induced using glycerol in rat models. The regenerative potential of Nrf2-overexpressed MSCs was evaluated in AKI-Induced animal models using biochemical and histological methods after transplantation. Expression of repaired genes, AQP1 and CK-18, as well as injury markers, Kim-1 and Cystatin C, was also assayed in engrafted kidney sections. RESULTS Our results revealed that transplantation of Nrf2-overexpressed MSCs into AKI-induced rats decreased blood urea nitrogen and creatinine and ameliorated kidney regeneration throughout 14 days. Upregulation of repaired markers and downregulation of injury markers were considerable 14 days after transplantation. CONCLUSIONS Overexpression of Nrf2 in MSCs suggests a new strategy to increase efficiency of MSC-based cell therapy in AKI.
Collapse
Affiliation(s)
- Fateme Zhaleh
- Blood Transfusion Research Center, High Institute for Research and Education in Transfusion Medicine, Tehran, Iran
| | - Fatemeh Amiri
- Blood Transfusion Research Center, High Institute for Research and Education in Transfusion Medicine, Tehran, Iran
| | - Mohammad Mohammadzadeh-Vardin
- Department of Anatomical Sciences and Pathology, School of Medicine, Ardabil University of Medical Sciences, Ardabil, Iran
| | - Marzie Bahadori
- Blood Transfusion Research Center, High Institute for Research and Education in Transfusion Medicine, Tehran, Iran
| | | | - Mehryar Habibi Roudkenar
- Blood Transfusion Research Center, High Institute for Research and Education in Transfusion Medicine, Tehran, Iran
| | - Sasan Saki
- Department of Medical Laboratory Sciences, Faculty of Medical Sciences, Islamic Azad University, Arak Branch, Arak, Iran,Corresponding author: Sasan Saki. Department of Medical Laboratory Sciences, Faculty of Medical sciences, Islamic Azad University, Arak Branch, Arak, Iran. Tel: +086-33412508;
| |
Collapse
|
479
|
Hori M, Kinoshita Y, Taguchi M, Fukumoto S. Phosphate enhances Fgf23 expression through reactive oxygen species in UMR-106 cells. J Bone Miner Metab 2016; 34:132-9. [PMID: 25792238 DOI: 10.1007/s00774-015-0651-9] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/23/2014] [Accepted: 01/12/2015] [Indexed: 12/20/2022]
Abstract
Fibroblast growth factor 23 (FGF23) has been shown to work as a phosphotropic hormone. Although FGF23 reduces the serum phosphate level, it has not been established that phosphate directly regulates FGF23 production. In this study, we investigated whether phosphate can enhance Fgf23 expression using the rat osteoblastic cell line UMR-106, which has been shown to express Fgf23 in response to 1,25-dihydroxyvitamin D [1,25(OH)2D]. Phosphate increased Fgf23 expression in a dose- and time-dependent manner in the presence of 1,25(OH)2D. Phosphate also increased Fgf23 promoter activity, but showed no effect on the half-life of Fgf23 messenger RNA. Phosphonoformic acid and PD98059, an inhibitor of MEK, inhibited the effects of phosphate on Fgf23 expression and promoter activity. In addition, phosphate enhanced production of reactive oxygen species (ROS) in UMR-106 cells, and hydrogen peroxide enhanced FGF23 production in a dose- and time-dependent manner. Hydrogen peroxide also enhanced Elk1 reporter activity, a target of the MEK-extracellular-signal-regulated kinase (ERK) pathway. Furthermore, the effect of phosphate on ROS production and Fgf23 expression was inhibited by apocynin, an inhibitor of NADPH oxidase. These results indicate that phosphate directly enhances Fgf23 transcription without affecting the stability of Fgf23 messenger RNA by stimulating NADPH-induced ROS production and the MEK-ERK pathway in UMR-106 cells.
Collapse
Affiliation(s)
- Michiko Hori
- Division of Nephrology and Endocrinology, Department of Medicine, University of Tokyo Hospital, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-8655, Japan
| | - Yuka Kinoshita
- Division of Nephrology and Endocrinology, Department of Medicine, University of Tokyo Hospital, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-8655, Japan
| | - Manabu Taguchi
- Division of Nephrology and Endocrinology, Department of Medicine, University of Tokyo Hospital, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-8655, Japan
| | - Seiji Fukumoto
- Division of Nephrology and Endocrinology, Department of Medicine, University of Tokyo Hospital, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-8655, Japan.
| |
Collapse
|
480
|
Chan GC, Tang SC. Diabetic nephropathy: landmark clinical trials and tribulations. Nephrol Dial Transplant 2016; 31:359-368. [DOI: 10.1093/ndt/gfu411] [Citation(s) in RCA: 76] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/30/2023] Open
|
481
|
Lo SM, Dal Lin FT, Soares MF, Hauser AB, Pecoits-Filho R, Nakao LS. Lipoic acid does not improve renal function markers in 5/6 nephrectomy model: possible role of Nrf2 inactivation. Ren Fail 2016; 38:558-63. [PMID: 26904958 DOI: 10.3109/0886022x.2016.1148725] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Chronic kidney disease (CKD) progression and complications are associated with increased oxidative stress, as well as with Nrf2 inactivation. Lipoic acid (LA) has been considered an inducer of Nrf2 antioxidant response. We tested whether oral administration of LA provides beneficial effects in experimental CKD in rats. Wistar rats underwent 5/6 nephrectomy (CKD group) or sham laparotomy. Seven days later, CKD group was divided into three subgroups that received: (i) LA continuously in the drinking water (100 mg/kg/day), (ii) LA by gavage every other day (100 mg/kg), or (iii) no LA treatment. LA treatment lasted until day 60. Plasma urea and creatinine, 24 h-proteinuria, glomerulosclerosis, interstitial fibrosis/tubular atrophy, and Nrf2 activation were analyzed. All parameters measured were significantly altered in the untreated CKD group, compared with the sham group, as expected. Oral LA administration, either in the drinking water or by gavage, did not improve significantly any parameter, comparing the treated-groups with the untreated CKD group. These results indicate that oral LA administration for 53 days was ineffective to reactivate Nrf2 in the remnant kidney of uremic rats, likely preventing improvements in biochemical and histopathological markers of renal function.
Collapse
Affiliation(s)
- Sze M Lo
- a Departamento de Patologia Básica , Universidade Federal do Paraná, Centro Politécnico , Curitiba , Brazil
| | - Fernando T Dal Lin
- a Departamento de Patologia Básica , Universidade Federal do Paraná, Centro Politécnico , Curitiba , Brazil
| | - Maria F Soares
- b Departamento de Patologia Médica , Setor de Ciências da Saúde, Universidade Federal do Paraná , Curitiba , Brazil
| | - Aline B Hauser
- c Departamento de Análises Clínicas , Setor Ciências da Saúde, Universidade Federal do Paraná , Curitiba , Brazil
| | - Roberto Pecoits-Filho
- d School of Medicine , Pontifícia Universidade Católica do Paraná , Curitiba , Brazil
| | - Lia S Nakao
- a Departamento de Patologia Básica , Universidade Federal do Paraná, Centro Politécnico , Curitiba , Brazil
| |
Collapse
|
482
|
Abstract
The consumption of ethanol can have both beneficial and detrimental effects on the function of the heart and cardiovascular system, depending on the amount consumed. Low-to-moderate amounts of ethanol intake are associated with improvements in cardiac function and vascular health. On the other hand, ethanol chronically consumed in large amounts acts as a toxin to the heart and vasculature. The cardiac injury produced by chronic alcohol abuse can progress to heart failure and eventual death. Furthermore, alcohol abuse may exacerbate preexisting heart conditions, such as hypertension and cardiomyopathy. This article focuses on the molecular mechanisms and pathophysiology of both the beneficial and detrimental cardiac effects of alcohol.
Collapse
Affiliation(s)
- Jason D Gardner
- Department of Physiology, Alcohol and Drugs of Abuse Center of Excellence, Louisiana State University Health Sciences Center, New Orleans, Louisiana, USA
| | | |
Collapse
|
483
|
Association between plasma soluble RAGE and renal function is unaffected by medication usage and enzymatic antioxidants in chronic kidney disease with type 2 diabetes. Clin Chim Acta 2016; 453:56-61. [DOI: 10.1016/j.cca.2015.12.002] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2015] [Revised: 12/02/2015] [Accepted: 12/02/2015] [Indexed: 11/23/2022]
|
484
|
Machowska A, Carrero JJ, Lindholm B, Stenvinkel P. Therapeutics targeting persistent inflammation in chronic kidney disease. Transl Res 2016; 167:204-13. [PMID: 26173187 DOI: 10.1016/j.trsl.2015.06.012] [Citation(s) in RCA: 83] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/03/2015] [Revised: 06/16/2015] [Accepted: 06/18/2015] [Indexed: 12/24/2022]
Abstract
Systemic inflammation is a condition intrinsically linked to chronic kidney disease (CKD) and its other typical sequelae, such as acquired immune dysfunction, protein-energy wasting (PEW), and accelerated vascular aging that promote premature cardiovascular disease (CVD) and infections, the two leading causes of death in CKD patients. Inflammation is a major contributor to complications in CKD, and inflammatory markers, such as C-reactive protein and pro- and anti-inflammatory cytokines, correlate with underlying causes and consequences of the inflamed uremic phenotype, such as oxidative stress, endothelial dysfunction, CVD, PEW, and infections, and are sensitive and independent predictors of outcome in CKD. Therefore, inflammation appears to be a logical target for potential preventive and therapeutic interventions in patients with CKD. Putative anti-inflammatory therapy strategies aiming at preventing complications and improving outcomes in CKD span over several areas: (1) dealing with the source of inflammation (such as cardiovascular, gastrointestinal or periodontal disease and depression); (2) providing nonspecific immune modulatory effects by promoting healthy dietary habits and other lifestyle changes; (3) promoting increased use of recognized pharmacologic interventions that have pleiotropic effects; and, (4) introducing novel targeted anticytokine interventions. This review provides a brief update on inflammatory biomarkers and possible therapeutic approaches targeting inflammation and the uremic inflammatory milieu in patients with CKD.
Collapse
Affiliation(s)
- Anna Machowska
- Divisions of Renal Medicine and Baxter Novum, Department of Clinical Science, Intervention and Technology, Karolinska Institutet, Karolinska University Hospital Huddinge, Stockholm, Sweden
| | - Juan Jesus Carrero
- Divisions of Renal Medicine and Baxter Novum, Department of Clinical Science, Intervention and Technology, Karolinska Institutet, Karolinska University Hospital Huddinge, Stockholm, Sweden
| | - Bengt Lindholm
- Divisions of Renal Medicine and Baxter Novum, Department of Clinical Science, Intervention and Technology, Karolinska Institutet, Karolinska University Hospital Huddinge, Stockholm, Sweden
| | - Peter Stenvinkel
- Divisions of Renal Medicine and Baxter Novum, Department of Clinical Science, Intervention and Technology, Karolinska Institutet, Karolinska University Hospital Huddinge, Stockholm, Sweden.
| |
Collapse
|
485
|
Stenvinkel P, Kooman JP, Shiels PG. Nutrients and ageing: what can we learn about ageing interactions from animal biology? Curr Opin Clin Nutr Metab Care 2016; 19:19-25. [PMID: 26485336 DOI: 10.1097/mco.0000000000000234] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
PURPOSE OF REVIEW Many prevalent clinical conditions, such as chronic kidney disease, diabetes mellitus, chronic obstructive pulmonary, and cardiovascular disease associate with features of premature ageing, such as muscle wasting, hypogonadism, osteoporosis, and arteriosclerosis. Studies on various animal models have shown that caloric restriction prolongs lifespan. Studies of animals with unusual long or short life for their body size may also contribute to better understanding of ageing processes. The aim of the present article is to review what we can learn about nutritional modulations and ageing interactions from animal biology. RECENT FINDINGS Caloric restriction is a powerful intervention that increases longevity in animals ranging from short-lived species, such as worms and flies, to primates. As long-term studies on caloric restriction are not feasible to conduct in humans, much interest has focused on the impact of caloric restriction mimetics, such as resveratrol, on ageing processes. Recent data from studies on the long-lived naked mole rat have provided important novel information on metabolic alterations and antioxidative defense mechanisms that characterize longevity. SUMMARY Better understanding of the biology of exceptionally long-lived animals will contribute to better understanding of ageing processes and novel interventions to extend lifespan also in humans.
Collapse
Affiliation(s)
- Peter Stenvinkel
- aDivision of Renal Medicine, Karolinska University Hospital at Huddinge, Karolinska Institutet Stockholm, Sweden bDivision of Nephrology, Department of Internal Medicine, University Hospital Maastricht, the Netherlands cInstitute of Cancer Sciences, Wolfson Wohl Translational Research Center, University of Glasgow, Glasgow, UK
| | | | | |
Collapse
|
486
|
Camer D, Yu Y, Szabo A, Wang H, Dinh CH, Huang XF. Bardoxolone methyl prevents the development and progression of cardiac and renal pathophysiologies in mice fed a high-fat diet. Chem Biol Interact 2016; 243:10-8. [DOI: 10.1016/j.cbi.2015.11.018] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2015] [Revised: 10/21/2015] [Accepted: 11/13/2015] [Indexed: 02/07/2023]
|
487
|
Khan MI. Plant Betalains: Safety, Antioxidant Activity, Clinical Efficacy, and Bioavailability. Compr Rev Food Sci Food Saf 2015; 15:316-330. [PMID: 33371594 DOI: 10.1111/1541-4337.12185] [Citation(s) in RCA: 132] [Impact Index Per Article: 13.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2015] [Revised: 11/23/2015] [Accepted: 11/25/2015] [Indexed: 12/25/2022]
Abstract
Betalains are accepted food additives derived from vacuoles of plants belonging to about 17 families in the order Caryophyllales. These pigments are composed of a nitrogenous core structure, betalamic acid [4-(2-oxoethylidene)-1,2,3,4-tetrahydropyridine-2,6-dicarboxylic acid]. Betalamic acid condenses with imino compounds (cyclo-DOPA and/or its glucosyl derivatives) or amines and/or their derivatives to form violet betacyanins (for example, betanin) and yellow betaxanthins (for example, indicaxanthin), respectively. Till date, structures of 75 betalains have been elucidated from plants under the order Caryophyllales. The extracted betalains are safe to consume and they act as micronutrients in the body. In vitro studies to highlight radical-scavenging activity, cell culture studies to assess cytotoxicity and absorption of betalains, and proven clinical efficacies are compiled in this review. The literature on biological activity has not been analyzed for a synthesis of safety, clinical efficacy, and bioavailability to arrive at the concentrations required for the purported health benefits. Most betalains are under-utilized in pharmaceutical and cosmetic preparations due to poor stability and lack of scientific reports highlighting their superior tinctorial strength including flourescence, water solubility, and functional value alongside their bioavailability. This is the first comprehensive review on the dietary safety, biological activity and bioavailability of betalains. Based on this review, for future debate and input from health professionals, a human daily intake of betanin and indicaxanthin can be proposed at 100 and 50 mg, respectively.
Collapse
|
488
|
Wang W, Li C, Yang T. Protection of nitro-fatty acid against kidney diseases. Am J Physiol Renal Physiol 2015; 310:F697-F704. [PMID: 26719362 DOI: 10.1152/ajprenal.00321.2015] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2015] [Accepted: 12/08/2015] [Indexed: 01/03/2023] Open
Abstract
Nitrated derivatives of unsaturated fatty acids are endogenously formed under oxidative and nitrative stress condition and are defined as electrophilic fatty acids containing a nitro group to a carbon-carbon double bond. Among the most studied nitro derivatives of unsaturated fatty acids are nitro-oleic acid (OA-NO2) and nitro-linoleic acid (LNO2). These products exhibit novel protective actions in a variety of rodent disease models. Diverse signaling events are responsible for effects of nitrated fatty acid, including activating peroxisome proliferator-activated receptor-dependent gene expression, suppressing NF-κB-induced inflammation, inhibiting oxidative stress, and increasing both endothelial nitric oxide synthase- and Nrf2-dependent gene regulation. Nitrated fatty acids have been emerging not only as a unique class of signaling molecules produced endogenously and but also as multipotent modulators of cell signaling pathways in cardiovascular and renal diseases. In this review, we discuss biochemical properties of nitrated fatty acid and its signaling pathways in the modulation of cellular events. A major focus is to review recent knowledge of nitrated fatty acid on the treatment of kidney diseases and its therapeutic potential for inflammation and metabolic disorders, with special emphasis on acute kidney injury and diabetic kidney disease.
Collapse
Affiliation(s)
- Weidong Wang
- Institute of Hypertension, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China; and
| | - Chunling Li
- Institute of Hypertension, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China; and
| | - Tianxin Yang
- Institute of Hypertension, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China; and .,Department of Medicine, University of Utah and Veterans Affairs Medical Center, Salt Lake City, Utah
| |
Collapse
|
489
|
Luo WM, Kong J, Gong Y, Liu XQ, Yang RX, Zhao YX. Tongxinluo Protects against Hypertensive Kidney Injury in Spontaneously-Hypertensive Rats by Inhibiting Oxidative Stress and Activating Forkhead Box O1 Signaling. PLoS One 2015; 10:e0145130. [PMID: 26673167 PMCID: PMC4686063 DOI: 10.1371/journal.pone.0145130] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2015] [Accepted: 11/27/2015] [Indexed: 12/18/2022] Open
Abstract
Hypertension is an independent risk factor for the progression of chronic renal failure, and oxidative stress plays a critical role in hypertensive renal damage. Forkbox O1(FoxO1) signaling protects cells against oxidative stress and may be a useful target for treating oxidative stress-induced hypertension. Tongxinluo is a traditional Chinese medicine with cardioprotective and renoprotective functions. Therefore, this study aimed to determine the effects of Tongxinluo in hypertensive renal damage in spontaneously hypertensive rats(SHRs)and elucidate the possible involvement of oxidative stress and FoxO1 signaling in its molecular mechanisms. SHRs treated with Tongxinluo for 12 weeks showed a reduction in systolic blood pressure. In addition to increasing creatinine clearance, Tongxinluo decreased urinary albumin excretion, oxidative stress injury markers including malondialdehyde and protein carbonyls, and expression of nicotinamide adenine dinucleotide phosphate oxidase subunits and its activity in SHR kidneys. While decreasing phosphorylation of FoxO1, Tongxinluo also inhibited the phosphorylation of extracellular signal-regulated kinase1/2 and p38 and enhanced manganese superoxide dismutase and catalase activities in SHR kidneys. Furthermore, histology revealed attenuation of glomerulosclerosis and renal podocyte injury, while Tongxinluo decreased the expression of α-smooth muscle actin, extracellular matrixprotein, transforming growth factor β1 and small mothers against decapentaplegic homolog 3,and improved tubulointerstitial fibrosis in SHR kidneys. Finally, Tongxinluo inhibited inflammatory cell infiltration as well as expression of tumor necrosis factor-α and interleukin-6. In conclusion, Tongxinluo protected SHRs against hypertension-induced renal injury by exerting antioxidant, antifibrotic, and anti-inflammatory activities. Moreover, the underlying mechanisms of these effects may involve inhibition of oxidative stress and functional activation of FoxO1 signaling.
Collapse
Affiliation(s)
- Wei-min Luo
- Key Laboratory of Cardiovascular Remodeling and Function Research, Qilu Hospital, Shandong University, Jinan, Shandong, China
- Department of Traditional Chinese Medicine, Qilu Hospital, Shandong University, Jinan, Shandong, China
| | - Jing Kong
- Key Laboratory of Cardiovascular Remodeling and Function Research, Qilu Hospital, Shandong University, Jinan, Shandong, China
| | - Yan Gong
- Department of Magnetic Resonance Imaging, Jinan hospital of infectious diseases, Jinan, Shandong, China
| | - Xiao-qiong Liu
- Department of Cardiology, Qilu Hospital, Shandong University, Jinan, Shandong, China
| | - Rui-xue Yang
- Department of Cardiology, Qilu Hospital, Shandong University, Jinan, Shandong, China
| | - Yu-xia Zhao
- Department of Traditional Chinese Medicine, Qilu Hospital, Shandong University, Jinan, Shandong, China
- * E-mail:
| |
Collapse
|
490
|
Wang X, Hai C. Redox modulation of adipocyte differentiation: hypothesis of "Redox Chain" and novel insights into intervention of adipogenesis and obesity. Free Radic Biol Med 2015; 89:99-125. [PMID: 26187871 DOI: 10.1016/j.freeradbiomed.2015.07.012] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/29/2015] [Revised: 06/19/2015] [Accepted: 07/08/2015] [Indexed: 02/08/2023]
Abstract
In view of the global prevalence of obesity and obesity-associated disorders, it is important to clearly understand how adipose tissue forms. Accumulating data from various laboratories implicate that redox status is closely associated with energy metabolism. Thus, biochemical regulation of the redox system may be an attractive alternative for the treatment of obesity-related disorders. In this work, we will review the current data detailing the role of the redox system in adipocyte differentiation, as well as identifying areas for further research. The redox system affects adipogenic differentiation in an extensive way. We propose that there is a complex and interactive "redox chain," consisting of a "ROS-generating enzyme chain," "combined antioxidant chain," and "transcription factor chain," which contributes to fine-tune the regulation of ROS level and subsequent biological consequences. The roles of the redox system in adipocyte differentiation are paradoxical. The redox system exerts a "tridimensional" mechanism in the regulation of adipocyte differentiation, including transcriptional, epigenetic, and posttranslational modulations. We suggest that redoxomic techniques should be extensively applied to understand the biological effects of redox alterations in a more integrated way. A stable and standardized "redox index" is urgently needed for the evaluation of the general redox status. Therefore, more effort should be made to establish and maintain a general redox balance rather than to conduct simple prooxidant or antioxidant interventions, which have comprehensive implications.
Collapse
Affiliation(s)
- Xin Wang
- Department of Toxicology, Shaanxi Key Lab of Free Radical Biology and Medicine, the Ministry of Education Key Lab of Hazard Assessment and Control in Special Operational Environment, School of Public Health, Fourth Military Medical University, Xi'an, 710032, China.
| | - Chunxu Hai
- Department of Toxicology, Shaanxi Key Lab of Free Radical Biology and Medicine, the Ministry of Education Key Lab of Hazard Assessment and Control in Special Operational Environment, School of Public Health, Fourth Military Medical University, Xi'an, 710032, China.
| |
Collapse
|
491
|
Bardoxolone Methyl Prevents Mesenteric Fat Deposition and Inflammation in High-Fat Diet Mice. ScientificWorldJournal 2015; 2015:549352. [PMID: 26618193 PMCID: PMC4651788 DOI: 10.1155/2015/549352] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2015] [Accepted: 10/18/2015] [Indexed: 12/15/2022] Open
Abstract
Mesenteric fat belongs to visceral fat. An increased deposition of mesenteric fat contributes to obesity associated complications such as type 2 diabetes and cardiovascular diseases. We have investigated the therapeutic effects of bardoxolone methyl (BARD) on mesenteric adipose tissue of mice fed a high-fat diet (HFD). Male C57BL/6J mice were administered oral BARD during HFD feeding (HFD/BARD), only fed a high-fat diet (HFD), or fed low-fat diet (LFD) for 21 weeks. Histology and immunohistochemistry were used to analyse mesenteric morphology and macrophages, while Western blot was used to assess the expression of inflammatory, oxidative stress, and energy expenditure proteins. Supplementation of drinking water with BARD prevented mesenteric fat deposition, as determined by a reduction in large adipocytes. BARD prevented inflammation as there were fewer inflammatory macrophages and reduced proinflammatory cytokines (interleukin-1 beta and tumour necrosis factor alpha). BARD reduced the activation of extracellular signal-regulated kinase (ERK) and Akt, suggesting an antioxidative stress effect. BARD upregulates energy expenditure proteins, judged by the increased activity of tyrosine hydroxylase (TH) and AMP-activated protein kinase (AMPK) and increased peroxisome proliferator-activated receptor gamma coactivator 1-alpha (PGC-1α), and uncoupling protein 2 (UCP2) proteins. Overall, BARD induces preventive effect in HFD mice through regulation of mesenteric adipose tissue.
Collapse
|
492
|
Yamaguchi J, Tanaka T, Nangaku M. Recent advances in understanding of chronic kidney disease. F1000Res 2015; 4:F1000 Faculty Rev-1212. [PMID: 26937272 PMCID: PMC4752023 DOI: 10.12688/f1000research.6970.1] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 11/04/2015] [Indexed: 12/20/2022] Open
Abstract
Chronic kidney disease (CKD) is defined as any condition that causes reduced kidney function over a period of time. Fibrosis, tubular atrophy and interstitial inflammation are the hallmark of pathological features in CKD. Regardless of initial insult, CKD has some common pathways leading CKD to end-stage kidney disease, including hypoxia in the tubulointerstitium and proteinuria. Recent advances in genome editing technologies and stem cell research give great insights to understand the pathogenesis of CKD, including identifications of the origins of renal myofibroblasts and tubular epithelial cells upon injury. Environmental factors such as hypoxia, oxidative stress, and epigenetic factors in relation to CKD are also discussed.
Collapse
Affiliation(s)
- Junna Yamaguchi
- Division of Nephrology and Endocrinology, The University of Tokyo Graduate School of Medicine, Tokyo, 113-0033, Japan
| | - Tetsuhiro Tanaka
- Division of Nephrology and Endocrinology, The University of Tokyo Graduate School of Medicine, Tokyo, 113-0033, Japan
| | - Masaomi Nangaku
- Division of Nephrology and Endocrinology, The University of Tokyo Graduate School of Medicine, Tokyo, 113-0033, Japan
| |
Collapse
|
493
|
Akram M, Syed AS, Kim KA, Lee JS, Chang SY, Kim CY, Bae ON. Heme oxygenase 1-mediated novel anti-inflammatory activities of Salvia plebeia and its active components. JOURNAL OF ETHNOPHARMACOLOGY 2015; 174:322-330. [PMID: 26319962 DOI: 10.1016/j.jep.2015.08.028] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/14/2015] [Revised: 08/06/2015] [Accepted: 08/23/2015] [Indexed: 06/04/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Salvia plebeia R. Br. (SP) has been widely used as a traditional folk medicine for the treatment of infectious diseases and pain. An anti-inflammatory potential of SP has remains largely unknown. AIM OF THE STUDY We tried to elucidate the principle mechanism and the active ingredients underlying the anti-inflammatory activities of SP. MATERIALS AND METHODS We investigated the protective activities of SP methanolic extract (SPME) and seven representative ingredients against inflammation. Quantitative analysis using HPLC-DAD-ESI/MS was conducted to determine the relative amounts of these seven active ingredients in SPME. Both in vitro murine macrophages and in vivo mouse models were employed to elucidate SP- and active ingredient-mediated anti-inflammatory effects. RESULTS SPME significantly reduced inflammatory processes both in vivo in a TPA-induced ear edema model and in vitro in lipopolysaccharide (LPS)-activated macrophages. SPME decreased the release of nitric oxide (NO) and prostaglandin E2 (PGE2) and expression of inducible nitric oxide synthase (iNOS). Seven active components (luteoloside (C1), nepitrin (C2), homoplantagenin (C3), luteolin (C4), nepetin (C5), hispidulin (C6), and eupatorin (C7)) of SPME were analyzed and their relative concentrations were determined, demonstrating that C2, C3, C5 and C6 were present in higher amounts than were C1, C4, and C7. These major compounds inhibited NO and PGE2 production, and iNOS and COX-II protein expression through heme oxygenase-1 (HO-1) induction via activation of nuclear factor erythroid 2-related factor2 (Nrf2). CONCLUSION Our data demonstrate that SPME possesses potent in vitro and in vivo anti-inflammatory activities. Nepetin and hispidulin, and their glycosides are the major active compounds in SPME, and their effects are mediated by Nrf2/HO-1 signaling. Taken together, we propose that SPME and its active ingredients may serve as novel therapeutic candidates for diseases associated with excessive inflammation.
Collapse
Affiliation(s)
- Muhammad Akram
- College of Pharmacy Institute of Pharmaceutical Science and Technology, Hanyang University, Ansan, Republic of Korea
| | - Ahmed Shah Syed
- College of Pharmacy Institute of Pharmaceutical Science and Technology, Hanyang University, Ansan, Republic of Korea
| | - Kyeong-A Kim
- College of Pharmacy Institute of Pharmaceutical Science and Technology, Hanyang University, Ansan, Republic of Korea
| | - Jong Soo Lee
- CL Institute Korea (CLIK), Ansan, Republic of Korea; Department of Chemistry, Ajou University, Suwon, Republic of Korea
| | - Sun-Young Chang
- College of Pharmacy, Ajou University, Suwon, Republic of Korea
| | - Chul Young Kim
- College of Pharmacy Institute of Pharmaceutical Science and Technology, Hanyang University, Ansan, Republic of Korea.
| | - Ok-Nam Bae
- College of Pharmacy Institute of Pharmaceutical Science and Technology, Hanyang University, Ansan, Republic of Korea.
| |
Collapse
|
494
|
Montero RM, Covic A, Gnudi L, Goldsmith D. Diabetic nephropathy: What does the future hold? Int Urol Nephrol 2015; 48:99-113. [PMID: 26438328 PMCID: PMC4705119 DOI: 10.1007/s11255-015-1121-y] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2015] [Accepted: 09/19/2015] [Indexed: 12/24/2022]
Abstract
The consensus management of diabetic nephropathy (DN) in 2015 involves good control of glycaemia, dyslipidaemia and blood pressure (BP). Blockade of the renin-angiotensin-aldosterone system using angiotensin-converting enzyme inhibitors, angiotensin-2 receptor blockers or mineralocorticoid inhibitors are key therapeutic approaches, shown to be beneficial once overt nephropathy is manifest, as either, or both, of albuminuria and loss of glomerular filtration rate. Some significant additional clinical benefits in slowing the progression of DN was reported from the Remission clinic experience, where simultaneous intensive control of BP, tight glycaemic control, weight loss, exercise and smoking cessation were prioritised in the management of DN. This has not proved possible to translate to more conventional clinical settings. This review briefly looks over the history and limitations of current therapy from landmark papers and expert reviews, and following an extensive PubMed search identifies the most promising clinical biomarkers (both established and proposed). Many challenges need to be addressed urgently as in order to obtain novel therapies in the clinic; we also need to examine what we mean by remission, stability and progression of DN in the modern era.
Collapse
Affiliation(s)
- R M Montero
- Renal, Dialysis and Transplantation Unit, Guy's and St Thomas' Hospital, London, UK.
| | - A Covic
- Hospital "C.I.Parhon" and University of Medicine "Grigore T Popa", Iasi, Romania
| | - L Gnudi
- Cardiovascular Division, Department of Diabetes and Endocrinology, Guy's and St Thomas' Hospital, School of Medicine and Life Science, King's College London, London, UK
| | - D Goldsmith
- Renal, Dialysis and Transplantation Unit, Guy's and St Thomas' Hospital, London, UK
| |
Collapse
|
495
|
Integrated transcriptomic and proteomic analyses uncover regulatory roles of Nrf2 in the kidney. Kidney Int 2015; 88:1261-1273. [PMID: 26422507 PMCID: PMC4676083 DOI: 10.1038/ki.2015.286] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2014] [Revised: 07/07/2015] [Accepted: 07/31/2015] [Indexed: 12/26/2022]
Abstract
The transcription factor Nrf2 exerts protective effects in numerous experimental models of acute kidney injury, and is a promising therapeutic target in chronic kidney disease. To provide a detailed insight into the regulatory roles of Nrf2 in the kidney, we performed integrated transcriptomic and proteomic analyses of kidney tissue from wild-type and Nrf2 knockout mice treated with the Nrf2 inducer methyl-2-cyano-3,12-dioxooleano-1,9-dien-28-oate (CDDO-Me, also known as bardoxolone methyl). After 24 hours, analyses identified 2561 transcripts and 240 proteins that were differentially expressed in the kidneys of Nrf2 knockout mice, compared to wild-type counterparts, and 3122 transcripts and 68 proteins that were differentially expressed in wild-type mice treated with CDDO-Me, compared to vehicle control. In light of their sensitivity to genetic and pharmacological modulation of renal Nrf2 activity, genes/proteins that regulate xenobiotic disposition, redox balance, the intra/extracellular transport of small molecules, and the supply of NADPH and other cellular fuels were found to be positively regulated by Nrf2 in the kidney. This was verified by qPCR, immunoblotting, pathway analysis and immunohistochemistry. In addition, the levels of NADPH and glutathione were found to be significantly decreased in the kidneys of Nrf2 knockout mice. Thus, Nrf2 regulates genes that coordinate homeostatic processes in the kidney, highlighting its potential as a novel therapeutic target.
Collapse
|
496
|
Stinghen AEM, Massy ZA, Vlassara H, Striker GE, Boullier A. Uremic Toxicity of Advanced Glycation End Products in CKD. J Am Soc Nephrol 2015; 27:354-70. [PMID: 26311460 DOI: 10.1681/asn.2014101047] [Citation(s) in RCA: 173] [Impact Index Per Article: 17.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
Advanced glycation end products (AGEs), a heterogeneous group of compounds formed by nonenzymatic glycation reactions between reducing sugars and amino acids, lipids, or DNA, are formed not only in the presence of hyperglycemia, but also in diseases associated with high levels of oxidative stress, such as CKD. In chronic renal failure, higher circulating AGE levels result from increased formation and decreased renal clearance. Interactions between AGEs and their receptors, including advanced glycation end product-specific receptor (RAGE), trigger various intracellular events, such as oxidative stress and inflammation, leading to cardiovascular complications. Although patients with CKD have a higher burden of cardiovascular disease, the relationship between AGEs and cardiovascular disease in patients with CKD is not fully characterized. In this paper, we review the various deleterious effects of AGEs in CKD that lead to cardiovascular complications and the role of these AGEs in diabetic nephropathy. We also discuss potential pharmacologic approaches to circumvent these deleterious effects by reducing exogenous and endogenous sources of AGEs, increasing the breakdown of existing AGEs, or inhibiting AGE-induced inflammation. Finally, we speculate on preventive and therapeutic strategies that focus on the AGE-RAGE axis to prevent vascular complications in patients with CKD.
Collapse
Affiliation(s)
- Andréa E M Stinghen
- Institut National de la Santé et de la Recherche Médicale (INSERM) U-1088, Jules Verne University of Picardie, Amiens, France
| | - Ziad A Massy
- Institut National de la Santé et de la Recherche Médicale (INSERM) U-1088, Jules Verne University of Picardie, Amiens, France; Division of Nephrology, Ambroise Paré University Medical Center, Assistance Publique-Hôpitaux de Paris (APHP), University of Paris Ouest, University Versailles-Saint Quentin, Boulogne Billancourt/Paris, France
| | - Helen Vlassara
- Division of Experimental Diabetes and Aging, Departments of Geriatrics and Palliative Care and Medicine and Division of Experimental Diabetes and Aging, Department of Geriatrics and Aging and Division of Nephrology, Department of Medicine, Icahn School of Medicine, New York, New York; and
| | - Gary E Striker
- Division of Experimental Diabetes and Aging, Departments of Geriatrics and Palliative Care and Medicine and Division of Experimental Diabetes and Aging, Department of Geriatrics and Aging and Division of Nephrology, Department of Medicine, Icahn School of Medicine, New York, New York; and
| | - Agnès Boullier
- Institut National de la Santé et de la Recherche Médicale (INSERM) U-1088, Jules Verne University of Picardie, Amiens, France; Biochemistry Laboratory, Amiens University Medical Center, Amiens, France
| |
Collapse
|
497
|
Zhao YY, Wang HL, Cheng XL, Wei F, Bai X, Lin RC, Vaziri ND. Metabolomics analysis reveals the association between lipid abnormalities and oxidative stress, inflammation, fibrosis, and Nrf2 dysfunction in aristolochic acid-induced nephropathy. Sci Rep 2015; 5:12936. [PMID: 26251179 PMCID: PMC4528220 DOI: 10.1038/srep12936] [Citation(s) in RCA: 138] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2015] [Accepted: 07/13/2015] [Indexed: 12/31/2022] Open
Abstract
Alternative medicines are commonly used for the disease prevention and treatment worldwide. Aristolochic acid (AAI) nephropathy (AAN) is a common and rapidly progressive interstitial nephropathy caused by ingestion of Aristolochia herbal medications. Available data on pathophysiology and molecular mechanisms of AAN are limited and were explored here. SD rats were randomized to AAN and control groups. AAN group was treated with AAI by oral gavage for 12 weeks and observed for additional 12 weeks. Kidneys were processed for histological evaluation, Western blotting, and metabolomics analyses using UPLC-QTOF/HDMS. The concentrations of two phosphatidylcholines, two diglycerides and two acyl-carnitines were significantly altered in AAI treated rats at week 4 when renal function and histology were unchanged. Data obtained on weeks 8 to 24 revealed progressive tubulointerstitial fibrosis, inflammation, renal dysfunction, activation of NF-κB, TGF-β, and oxidative pathways, impaired Nrf2 system, and profound changes in lipid metabolites including numerous PC, lysoPC, PE, lysoPE, ceramides and triglycerides. In conclusion, exposure to AAI results in dynamic changes in kidney tissue fatty acid, phospholipid, and glycerolipid metabolisms prior to and after the onset of detectable changes in renal function or histology. These findings point to participation of altered tissue lipid metabolism in the pathogenesis of AAN.
Collapse
Affiliation(s)
- Ying-Yong Zhao
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, the College of Life Sciences, Northwest University, No. 229 Taibai North Road, Xi’an, Shaanxi 710069, China
- Division of Nephrology and Hypertension, School of Medicine, University of California, Irvine, MedSci 1, C352, UCI Campus, Irvine, California, 92897, USA
| | - Hui-Ling Wang
- Department of nephrology, Shanghai Jimin Hospital, No. 338 Huaihai West Road, Shanghai 200052, China
| | - Xian-Long Cheng
- National Institutes for Food and Drug Control, State Food and Drug Administration, No. 2 Tiantan Xili, Beijing, 100050, China
| | - Feng Wei
- National Institutes for Food and Drug Control, State Food and Drug Administration, No. 2 Tiantan Xili, Beijing, 100050, China
| | - Xu Bai
- Solution Centre, Waters Technologies (Shanghai) Ltd., No. 1000 Jinhai Road, Shanghai 201203, China
| | - Rui-Chao Lin
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, No. 11 North Third Ring Road, Beijing 100029, China
| | - Nosratola D. Vaziri
- Division of Nephrology and Hypertension, School of Medicine, University of California, Irvine, MedSci 1, C352, UCI Campus, Irvine, California, 92897, USA
| |
Collapse
|
498
|
Abstract
Previous study has demonstrated that oleanolic acid (OA) possessing the anti-inflammatory and anti-oxidant properties blunted high-glucose-induced diabetic cardiomyopathy and ameliorated experimental autoimmune myocarditis in mice. However, little is known about its effects on pressure overload-induced cardiac remodeling. Herein, we investigated the effect of OA on cardiac remodeling and underlying mechanism. Mice, subjected to aortic banding (AB), were randomly assigned into control group and experimental group. OA premixed in diets was administered to mice after 3 days of AB. Echocardiography and catheter-based measurements of hemodynamic parameters were performed after 8 weeks' treatment of OA. Histologic examination and molecular analyses were used to assess cardiac hypertrophy and tissue fibrosis. In addition, the inhibitory effects of OA on H9c2 cardiomyocytes and cardiac primary fibroblast responded to the stimulation of AngII were also investigated. OA ameliorated the systolic and diastolic dysfunction induced by pressure overload evidenced by echocardiography and catheter-based measurements. OA also decreased the mRNA expression of cardiac hypertrophy and fibrosis markers evidenced by RT-PCR. It has been shown in our study that pressure overload activated the phosphorylations of Akt, mTOR, p70s6k, S6, GSK3β, and FoxO3a, and treatment of OA attenuated the phosphorylation of these proteins. In addition, hypertrophy of cardiomyocytes and fibrosis markers induced by AngII was inhibited by OA in vitro. Our findings uncover that OA suppressed AB-induced cardiac hypertrophy, partly by inhibiting the activity of Akt/mTOR pathway, and suggest that treatment of OA may have a benefit on retarding the progress of cardiac remodeling under long terms of pressure overload.
Collapse
|
499
|
Therapeutic potential of digitoflavone on diabetic nephropathy: nuclear factor erythroid 2-related factor 2-dependent anti-oxidant and anti-inflammatory effect. Sci Rep 2015. [PMID: 26205695 PMCID: PMC4513300 DOI: 10.1038/srep12377] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Nuclear factor erythroid 2-related factor 2 (Nrf2) has emerged as a therapeutic target in many diseases, because it can induce antioxidant enzymes and other cytoprotective enzymes. Moreover, some Nrf2 activators have strong anti-inflammatory activities. Oxidative stress and inflammation are major components involved in the pathology of diabetic nephropathy. In the present study, we evaluated the Nrf2-dependent anti-oxidative and anti-inflammatory effects of digitoflavone in streptozotocin-induced diabetic nephropathy. The molecular mechanisms of digitoflavone were investigated in vitro using SV40-transformed mouse mesangial cells (SV40-Mes13). For the in vivo experiment, diabetes was induced in Nrf2+/+ and Nrf2-/- mice by STZ injection, and digitoflavone was administered 2 weeks after the STZ injection. Digitoflavone induced Nrf2 activation and decreased oxidative damage, inflammation, TGF-β1 expression, extracellular matrix protein expression, and mesangial cell hyperplasia in SV40-Mes13 cells. Digitoflavone-treated Nrf2+/+ mice, but not Nrf2-/- mice, showed attenuated common metabolic disorder symptoms, improved renal performance, minimized pathological alterations, and decreased oxidative damage, inflammatory gene expression, inflammatory cell infiltration, TGF-β1 expression, and extracellular matrix protein expression. Our results show that the anti-oxidative and anti-inflammatory effects of digitoflavone are mediated by Nrf2 activation and that digitoflavone can be used therapeutically to improve metabolic disorders and relieve renal damage induced by diabetes.
Collapse
|
500
|
Betjes MGH, Litjens NHR. Chronic kidney disease and premature ageing of the adaptive immune response. Curr Urol Rep 2015; 16:471. [PMID: 25404185 DOI: 10.1007/s11934-014-0471-9] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
Los of renal function is associated with uremia-associated immune deficiency, which contributes significantly to the mortality and morbidity of end-stage renal disease (ESRD) patients. In this review, the effect of ESRD on the adaptive cellular immune system is discussed. Progressive loss of renal function causes a preferential loss of number and function of lymphoid cells. More in depth analysis of these changes reveals a loss of thymic function, attrition of telomeres, and expanded memory T cell population, which is compatible with the concept of premature immunological ageing. Latency for cytomegalovirus is associated with more profound changes and the expansion of a unique pro-inflammatory, cytotoxic subset of CD4-positive CD28null T cells. Epigenetically, modifications in hematopoietic stem cells may underlie uremia-associated immunological ageing, which is not reversed by kidney transplantation. Possible therapeutic options to reverse or halt uremia-associated immunological ageing are discussed.
Collapse
Affiliation(s)
- Michiel G H Betjes
- Department of Internal Medicine, Division of Nephrology and Transplantation, Erasmus Medical Centre, P.O. Box 2040, 3000, CA, Rotterdam, The Netherlands,
| | | |
Collapse
|