451
|
Dosh RH, Jordan-Mahy N, Sammon C, Le Maitre CL. Tissue Engineering Laboratory Models of the Small Intestine. TISSUE ENGINEERING PART B-REVIEWS 2018; 24:98-111. [DOI: 10.1089/ten.teb.2017.0276] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Affiliation(s)
- Rasha Hatem Dosh
- Biomolecular Sciences Research Centre, Sheffield Hallam University, Sheffield, United Kingdom
- Department of Anatomy and Histology, Faculty of Medicine, University of Kufa, Kufa, Iraq
| | - Nicola Jordan-Mahy
- Biomolecular Sciences Research Centre, Sheffield Hallam University, Sheffield, United Kingdom
| | - Christopher Sammon
- Materials and Engineering Research Institute, Sheffield Hallam University, Sheffield, United Kingdom
| | - Christine Lyn Le Maitre
- Biomolecular Sciences Research Centre, Sheffield Hallam University, Sheffield, United Kingdom
| |
Collapse
|
452
|
Otsuka K, Suzuki K, Fujimichi Y, Tomita M, Iwasaki T. Cellular responses and gene expression profiles of colonic Lgr5+ stem cells after low-dose/low-dose-rate radiation exposure. JOURNAL OF RADIATION RESEARCH 2018; 59:ii18-ii22. [PMID: 29281035 PMCID: PMC5941159 DOI: 10.1093/jrr/rrx078] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/30/2017] [Revised: 09/13/2017] [Indexed: 06/07/2023]
Abstract
We previously found that high-dose-rate radiation induced a replenishment of the colonic Lgr5+ stem cell pool, whereas low-dose-rate radiation did not. To identify key molecules that determine the dose-rate effects on this stem cell pool, we harvested colonic Lgr5+ stem cells by cell sorting at 2 weeks after exposure to 1 Gy of high-dose-rate (30 Gy/h) or low-dose-rate (0.003 Gy/h) radiation and analyzed their gene expression profiles using RNA-Seq. We found that pathways related to DNA damage response, cell growth, cell differentiation and cell death were upregulated in Lgr5+ stem cells irradiated with high dose rates, whereas pathways related to apical junctions and extracellular signaling were upregulated in low-dose-rate-irradiated colonic Lgr5+ stem cells. Interestingly, biological events involving apical junctions are known to play an important role in the exclusion of transformed cells that are surrounded by normal epithelial cells through 'cell competition'. We speculated that cell competition, through apical junctions and extracellular ligands, might contribute to the dose-rate effect on Lgr5+ cell replenishment. To understand this mechanism, we focused on 69 genes that were significantly upregulated in low-dose-rate-irradiated cells, which we named DREDGE (Dose-Rate Effect Determining GEnes). Based on these findings, we propose a possible mechanism underlying the dose-rate effect observed in the colonic stem cell pool.
Collapse
Affiliation(s)
- Kensuke Otsuka
- Radiation Safety Research Center, Nuclear Technology Research Laboratory, Central Research Institute of Electric Power Industry (CRIEPI), 2-11-1 Iwado-kita, Komae, Tokyo 201-8511, Japan
| | - Keiji Suzuki
- Department of Radiation Medical Sciences, Atomic Bomb Disease Institute, Nagasaki University, Nagasaki, Japan
| | - Yuki Fujimichi
- Radiation Safety Research Center, Nuclear Technology Research Laboratory, Central Research Institute of Electric Power Industry (CRIEPI), 2-11-1 Iwado-kita, Komae, Tokyo 201-8511, Japan
| | - Masanori Tomita
- Radiation Safety Research Center, Nuclear Technology Research Laboratory, Central Research Institute of Electric Power Industry (CRIEPI), 2-11-1 Iwado-kita, Komae, Tokyo 201-8511, Japan
| | - Toshiyasu Iwasaki
- Radiation Safety Research Center, Nuclear Technology Research Laboratory, Central Research Institute of Electric Power Industry (CRIEPI), 2-11-1 Iwado-kita, Komae, Tokyo 201-8511, Japan
| |
Collapse
|
453
|
Nguyen VT, Dawson P, Zhang Q, Harris Z, Limesand KH. Administration of growth factors promotes salisphere formation from irradiated parotid salivary glands. PLoS One 2018; 13:e0193942. [PMID: 29590144 PMCID: PMC5873995 DOI: 10.1371/journal.pone.0193942] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2017] [Accepted: 02/21/2018] [Indexed: 02/06/2023] Open
Abstract
Worldwide, 500,000 cases of head and neck cancer (HNC) are reported each year and the primary treatment for HNC is radiotherapy. Although the goal of radiotherapy is to target the tumor, secondary exposure occurs in surrounding normal tissues, such as the salivary glands. As a result, despite successful treatment of the cancer, patients are left with long-term side effects due to direct damage to the salivary glands. The effect is chronic and currently there is no treatment. Stem cells are an attractive therapeutic option for treatment of radiation-induced glandular dysfunction because of the potential to regenerate damaged cell populations and restore salivary gland function. However, limited knowledge about the endogenous stem cell population post irradiation hinders the development for stem cell-based therapies. In this study, an ex vivo sphere formation cell culture system was utilized to assess the self-renewal capacity of cells derived from parotid salivary glands at a chronic time point following radiation. Salivary glands from irradiated mice generate significantly fewer salispheres, but can be stimulated with fetal bovine serum (FBS) to generate an equivalent number of salispheres as unirradiated salivary glands. Interestingly, the number and size of salispheres formed is dependent on the concentration of FBS supplemented into the media. Salispheres derived from irradiated glands and cultured in FBS media were found to contain cells that proliferate and express progenitor and acinar cell markers such as Keratin 5, Keratin 14, Aquaporin 5, and NKCC1. Utilization of insulin-like growth factor (IGF1) injections following radiation treatment restores salivary gland function and improves salisphere generation. These findings indicate that stimulation of these cellular populations may provide a promising avenue for the development of cell-based therapies for radiation-induced salivary gland damage.
Collapse
Affiliation(s)
- Vicky T. Nguyen
- Department of Nutritional Sciences, University of Arizona, Tucson, Arizona, United States of America
| | - Peter Dawson
- Department of Biomedical Engineering, University of Arizona, Tucson, Arizona, United States of America
| | - Qionghui Zhang
- Department of Nutritional Sciences, University of Arizona, Tucson, Arizona, United States of America
| | - Zoey Harris
- Department of Nutritional Sciences, University of Arizona, Tucson, Arizona, United States of America
| | - Kirsten H. Limesand
- Department of Nutritional Sciences, University of Arizona, Tucson, Arizona, United States of America
| |
Collapse
|
454
|
Sehgal A, Donaldson DS, Pridans C, Sauter KA, Hume DA, Mabbott NA. The role of CSF1R-dependent macrophages in control of the intestinal stem-cell niche. Nat Commun 2018; 9:1272. [PMID: 29593242 PMCID: PMC5871851 DOI: 10.1038/s41467-018-03638-6] [Citation(s) in RCA: 162] [Impact Index Per Article: 23.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2016] [Accepted: 03/02/2018] [Indexed: 12/30/2022] Open
Abstract
Colony-stimulating factor 1 (CSF1) controls the growth and differentiation of macrophages.CSF1R signaling has been implicated in the maintenance of the intestinal stem cell niche and differentiation of Paneth cells, but evidence of expression of CSF1R within the crypt is equivocal. Here we show that CSF1R-dependent macrophages influence intestinal epithelial differentiation and homeostasis. In the intestinal lamina propria CSF1R mRNA expression is restricted to macrophages which are intimately associated with the crypt epithelium, and is undetectable in Paneth cells. Macrophage ablation following CSF1R blockade affects Paneth cell differentiation and leads to a reduction of Lgr5+ intestinal stem cells. The disturbances to the crypt caused by macrophage depletion adversely affect the subsequent differentiation of intestinal epithelial cell lineages. Goblet cell density is enhanced, whereas the development of M cells in Peyer's patches is impeded. We suggest that modification of the phenotype or abundance of macrophages in the gut wall alters the development of the intestinal epithelium and the ability to sample gut antigens.
Collapse
Affiliation(s)
- Anuj Sehgal
- The Roslin Institute & Royal (Dick) School of Veterinary Sciences, University of Edinburgh, Easter Bush, Midlothian, EH25 9RG, UK
| | - David S Donaldson
- The Roslin Institute & Royal (Dick) School of Veterinary Sciences, University of Edinburgh, Easter Bush, Midlothian, EH25 9RG, UK
| | - Clare Pridans
- The Roslin Institute & Royal (Dick) School of Veterinary Sciences, University of Edinburgh, Easter Bush, Midlothian, EH25 9RG, UK
- MRC Centre for Inflammation Research, University of Edinburgh, The Queen's Medical Research Institute, 47 Little France Crescent, Edinburgh, EH16 4TJ, UK
| | - Kristin A Sauter
- The Roslin Institute & Royal (Dick) School of Veterinary Sciences, University of Edinburgh, Easter Bush, Midlothian, EH25 9RG, UK
| | - David A Hume
- The Roslin Institute & Royal (Dick) School of Veterinary Sciences, University of Edinburgh, Easter Bush, Midlothian, EH25 9RG, UK
- MRC Centre for Inflammation Research, University of Edinburgh, The Queen's Medical Research Institute, 47 Little France Crescent, Edinburgh, EH16 4TJ, UK
- Mater Research-University of Queensland, Translational Research Institute, Woolloongabba, QL, 4102, Australia
| | - Neil A Mabbott
- The Roslin Institute & Royal (Dick) School of Veterinary Sciences, University of Edinburgh, Easter Bush, Midlothian, EH25 9RG, UK.
| |
Collapse
|
455
|
Flanagan DJ, Austin CR, Vincan E, Phesse TJ. Wnt Signalling in Gastrointestinal Epithelial Stem Cells. Genes (Basel) 2018; 9:genes9040178. [PMID: 29570681 PMCID: PMC5924520 DOI: 10.3390/genes9040178] [Citation(s) in RCA: 55] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2018] [Revised: 03/16/2018] [Accepted: 03/19/2018] [Indexed: 02/06/2023] Open
Abstract
Wnt signalling regulates several cellular functions including proliferation, differentiation, apoptosis and migration, and is critical for embryonic development. Stem cells are defined by their ability for self-renewal and the ability to be able to give rise to differentiated progeny. Consequently, they are essential for the homeostasis of many organs including the gastrointestinal tract. This review will describe the huge advances in our understanding of how stem cell functions in the gastrointestinal tract are regulated by Wnt signalling, including how deregulated Wnt signalling can hijack these functions to transform cells and lead to cancer.
Collapse
Affiliation(s)
- Dustin J Flanagan
- Molecular Oncology Laboratory, Victorian Infectious Diseases Reference Laboratory and the Doherty Institute, University of Melbourne, Melbourne, VIC 3000, Australia.
| | - Chloe R Austin
- Cancer and Cell Signalling Laboratory, European Cancer Stem Cell Research Institute, School of Biosciences, Cardiff University, Cardiff CF24 4HQ, Wales, UK.
| | - Elizabeth Vincan
- Molecular Oncology Laboratory, Victorian Infectious Diseases Reference Laboratory and the Doherty Institute, University of Melbourne, Melbourne, VIC 3000, Australia.
- School of Pharmacy and Biomedical Sciences, Curtin University, Perth, WA 6102, Australia.
| | - Toby J Phesse
- Cancer and Cell Signalling Laboratory, European Cancer Stem Cell Research Institute, School of Biosciences, Cardiff University, Cardiff CF24 4HQ, Wales, UK.
| |
Collapse
|
456
|
Abstract
The intestinal epithelium displays great resilience, as several cell populations can replenish the stem cell pool upon damage. Two studies in Cell Stem Cell extend this capacity to enteroendocrine cells, addressing the molecular basis underlying cellular plasticity observed in the intestine and the identities of putative reserve stem cells.
Collapse
Affiliation(s)
- Maartje van der Heijden
- Laboratory for Experimental Oncology and Radiobiology (LEXOR), Center for Experimental and Molecular Medicine (CEMM), Cancer Center Amsterdam (CCA), Amsterdam Institute for Gastroenterology & Metabolism (AGM), and Academic Medical Center, Meibergdreef 9, 1105 AZ, Amsterdam, the Netherlands
| | - Louis Vermeulen
- Laboratory for Experimental Oncology and Radiobiology (LEXOR), Center for Experimental and Molecular Medicine (CEMM), Cancer Center Amsterdam (CCA), Amsterdam Institute for Gastroenterology & Metabolism (AGM), and Academic Medical Center, Meibergdreef 9, 1105 AZ, Amsterdam, the Netherlands.
| |
Collapse
|
457
|
Huels DJ, Bruens L, Hodder MC, Cammareri P, Campbell AD, Ridgway RA, Gay DM, Solar-Abboud M, Faller WJ, Nixon C, Zeiger LB, McLaughlin ME, Morrissey E, Winton DJ, Snippert HJ, van Rheenen J, Sansom OJ. Wnt ligands influence tumour initiation by controlling the number of intestinal stem cells. Nat Commun 2018; 9:1132. [PMID: 29556067 PMCID: PMC5859272 DOI: 10.1038/s41467-018-03426-2] [Citation(s) in RCA: 65] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2016] [Accepted: 02/13/2018] [Indexed: 01/08/2023] Open
Abstract
Many epithelial stem cell populations follow a pattern of stochastic stem cell divisions called 'neutral drift'. It is hypothesised that neutral competition between stem cells protects against the acquisition of deleterious mutations. Here we use a Porcupine inhibitor to reduce Wnt secretion at a dose where intestinal homoeostasis is maintained despite a reduction of Lgr5+ stem cells. Functionally, there is a marked acceleration in monoclonal conversion, so that crypts become rapidly derived from a single stem cell. Stem cells located further from the base are lost and the pool of competing stem cells is reduced. We tested whether this loss of stem cell competition would modify tumorigenesis. Reduction of Wnt ligand secretion accelerates fixation of Apc-deficient cells within the crypt leading to accelerated tumorigenesis. Therefore, ligand-based Wnt signalling influences the number of stem cells, fixation speed of Apc mutations and the speed and likelihood of adenoma formation.
Collapse
Affiliation(s)
- D J Huels
- CRUK Beatson Institute, Glasgow, G61 1BD, UK
| | - L Bruens
- Hubrecht Institute, Royal Netherlands Academy of Arts and Sciences (KNAW) and UMC Utrecht, 3584 CT, Utrecht, The Netherlands
- Molecular Pathology, Oncode Institute, The Netherlands Cancer Institute, 1066CX, Amsterdam, The Netherlands
- Center for Molecular Medicine, Oncode Institute, University Medical Center Utrecht, 3584 CG, Utrecht, The Netherlands
| | - M C Hodder
- CRUK Beatson Institute, Glasgow, G61 1BD, UK
| | - P Cammareri
- CRUK Beatson Institute, Glasgow, G61 1BD, UK
| | | | - R A Ridgway
- CRUK Beatson Institute, Glasgow, G61 1BD, UK
| | - D M Gay
- CRUK Beatson Institute, Glasgow, G61 1BD, UK
| | | | - W J Faller
- CRUK Beatson Institute, Glasgow, G61 1BD, UK
| | - C Nixon
- CRUK Beatson Institute, Glasgow, G61 1BD, UK
| | - L B Zeiger
- CRUK Beatson Institute, Glasgow, G61 1BD, UK
| | - M E McLaughlin
- Oncology Translational Research, Novartis Institutes for Biomedical Research, Cambridge, MA, 02139, USA
| | - E Morrissey
- MRC Weatherall Institute of Molecular Medicine University of Oxford, John Radcliffe Hospital, Headington, Oxford, OX3 9DS, UK
| | - D J Winton
- CRUK Cambridge Institute, Cambridge, CB2 0RE, UK
| | - H J Snippert
- Center for Molecular Medicine, Oncode Institute, University Medical Center Utrecht, 3584 CG, Utrecht, The Netherlands
| | - J van Rheenen
- Hubrecht Institute, Royal Netherlands Academy of Arts and Sciences (KNAW) and UMC Utrecht, 3584 CT, Utrecht, The Netherlands
- Molecular Pathology, Oncode Institute, The Netherlands Cancer Institute, 1066CX, Amsterdam, The Netherlands
| | - O J Sansom
- CRUK Beatson Institute, Glasgow, G61 1BD, UK.
- Institute of Cancer Sciences (ICS), University of Glasgow, Glasgow, G12 8QQ, UK.
| |
Collapse
|
458
|
Yousefi M, Nakauka-Ddamba A, Berry CT, Li N, Schoenberger J, Bankler-Jukes D, Simeonov KP, Cedeno RJ, Yu Z, Lengner CJ. Calorie Restriction Governs Intestinal Epithelial Regeneration through Cell-Autonomous Regulation of mTORC1 in Reserve Stem Cells. Stem Cell Reports 2018; 10:703-711. [PMID: 29478893 PMCID: PMC5919411 DOI: 10.1016/j.stemcr.2018.01.026] [Citation(s) in RCA: 65] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2017] [Revised: 01/20/2018] [Accepted: 01/22/2018] [Indexed: 12/22/2022] Open
Abstract
Aging is a complex process associated with a decline in functionality of adult stem cells affecting tissue homeostasis and regeneration. Calorie restriction (CR) is the only experimental manipulation known to extend lifespan and reduce the incidence of age-related disorders across numerous species. These benefits are likely mediated, at least in part, through the preservation of stem cell function. Here, we show that CR enhances the regenerative capacity of the intestinal epithelium through preservation of an injury-resistant reserve intestinal stem cell (ISC) pool. Cell-autonomous activity of mechanistic target of rapamycin complex 1 (mTORC1) governs the sensitivity of reserve ISCs to injury. CR inhibits mTORC1 in these cells, protecting them against DNA damage, while mTORC1 stimulation, either genetically or through nutrient sensing, sensitizes reserve ISCs to injury, thus compromising regeneration of the epithelium. These data delineate a critical role for mTORC1 in epithelial regeneration and inform clinical strategies based on nutrient modulation.
Collapse
Affiliation(s)
- Maryam Yousefi
- Department of Biomedical Sciences, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA; Cell and Molecular Biology Graduate Program, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Angela Nakauka-Ddamba
- Department of Biomedical Sciences, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Corbett T Berry
- Department of Pathobiology, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Ning Li
- Department of Biomedical Sciences, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Jenna Schoenberger
- Department of Biomedical Sciences, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Devon Bankler-Jukes
- Department of Biomedical Sciences, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA; Cell and Molecular Biology Graduate Program, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Kamen P Simeonov
- Department of Biomedical Sciences, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA; Cell and Molecular Biology Graduate Program, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Ryan J Cedeno
- Department of Biomedical Sciences, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA; Cell and Molecular Biology Graduate Program, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Zhengquan Yu
- State Key Laboratories for Agrobiotechnology and Beijing Advanced Innovation Center for Food Nutrition and Human Health, College of Biological Sciences, China Agricultural University, Beijing 100193, China
| | - Christopher J Lengner
- Department of Biomedical Sciences, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA; Department of Cell and Developmental Biology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA; Cell and Molecular Biology Graduate Program, University of Pennsylvania, Philadelphia, PA 19104, USA; Institute for Regenerative Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA.
| |
Collapse
|
459
|
Smith NR, Swain JR, Davies PS, Gallagher AC, Parappilly MS, Beach CZ, Streeter PR, Williamson IA, Magness ST, Wong MH. Monoclonal Antibodies Reveal Dynamic Plasticity Between Lgr5- and Bmi1-Expressing Intestinal Cell Populations. Cell Mol Gastroenterol Hepatol 2018; 6:79-96. [PMID: 29928673 PMCID: PMC6008251 DOI: 10.1016/j.jcmgh.2018.02.007] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/01/2017] [Accepted: 02/26/2018] [Indexed: 02/07/2023]
Abstract
BACKGROUND & AIMS Continual renewal of the intestinal epithelium is dependent on active- and slow-cycling stem cells that are confined to the crypt base. Tight regulation of these stem cell populations maintains homeostasis by balancing proliferation and differentiation to support critical intestinal functions. The hierarchical relation of discrete stem cell populations in homeostasis or during regenerative epithelial repair remains controversial. Although recent studies have supported a model for the active-cycling leucine-rich repeat-containing G-protein-coupled receptor 5 (Lgr5)+ intestinal stem cell (ISC) functioning upstream of the slow-cycling B lymphoma Mo-MLV insertion region 1 homolog (Bmi1)-expressing cell, other studies have reported the opposite relation. Tools that facilitate simultaneous analyses of these populations are required to evaluate their coordinated function. METHODS We used novel monoclonal antibodies (mAbs) raised against murine intestinal epithelial cells in conjunction with ISC-green fluorescent protein (GFP) reporter mice to analyze relations between ISC populations by microscopy. Ex vivo 3-dimensional cultures, flow cytometry, and quantitative reverse-transcription polymerase chain reaction analyses were performed. RESULTS Two novel mAbs recognized distinct subpopulations of the intestinal epithelium and when used in combination permitted isolation of discrete Lgr5GFP and Bmi1GFP-enriched populations with stem activity. Growth from singly isolated Lgr5GFP ISCs gave rise to small spheroids. Spheroids did not express Lgr5GFP and instead up-regulated Bmi1GFP expression. Conversely, Bmi1-derived spheroids initiated Lgr5GFP expression as crypt domains were established. CONCLUSIONS These data showed the functional utility of murine mAbs in the isolation and investigation of Lgr5GFP and Bmi1GFP ISC-enriched populations. Ex vivo analyses showed hierarchical plasticity between different ISC-expressing states; specifically Lgr5GFP ISCs gave rise to Bmi1GFP cells, and vice versa. These data highlight the impact of temporal and physiological context on unappreciated interactions between Lgr5GFP and Bmi1GFP cells during crypt formation.
Collapse
Key Words
- 3D, 3-dimensional
- 4-OHT, 4-hydroxytamoxifen
- APC, allophycocyanin
- Bmi1
- Bmi1, B lymphoma Mo-MLV insertion region 1 homolog
- Egf, epidermal growth factor
- FACS, fluorescence-activated cell sorting
- GFP, green fluorescent protein
- HBSS, Hank’s balanced salt solution
- Hierarchy
- ISC, intestinal stem cell
- Intestinal Stem Cells
- Lgr5
- Lgr5, leucine-rich repeat-containing G-protein–coupled receptor 5
- Lyz, lysozyme
- OHSU, Oregon Health and Science University
- PBS, phosphate-buffered saline
- PE, Phycoerythrin
- Plasticity
- Rspo1, R-spondin1
- TdT, tdTomato
- Wnt, wingless-type MMTV (mouse mammary tumor virus) integration site
- cDNA, complementary DNA
- mAb, monoclonal antibody
- mRNA, messenger RNA
- qRT-PCR, quantitative reverse-transcription polymerase chain reaction
Collapse
Affiliation(s)
- Nicholas R. Smith
- Department of Cell, Developmental and Cancer Biology, Oregon Health and Science University, Portland, Oregon
| | - John R. Swain
- Department of Cell, Developmental and Cancer Biology, Oregon Health and Science University, Portland, Oregon
| | - Paige S. Davies
- Department of Cell, Developmental and Cancer Biology, Oregon Health and Science University, Portland, Oregon
| | - Alexandra C. Gallagher
- Department of Cell, Developmental and Cancer Biology, Oregon Health and Science University, Portland, Oregon
| | - Michael S. Parappilly
- Department of Cell, Developmental and Cancer Biology, Oregon Health and Science University, Portland, Oregon
| | - Catherine Z. Beach
- Department of Cell, Developmental and Cancer Biology, Oregon Health and Science University, Portland, Oregon
| | - Philip R. Streeter
- Department of Pediatrics, Oregon Health and Science University, Portland, Oregon,Oregon Health & Science University Stem Cell Center, Knight Cancer Institute, Oregon Health & Science University, Portland, Oregon
| | - Ian A. Williamson
- Department of Biomedical Engineering, Department of Medicine, Department of Cell Biology and Physiology, University of North Carolina, Chapel Hill, North Carolina
| | - Scott T. Magness
- Department of Biomedical Engineering, Department of Medicine, Department of Cell Biology and Physiology, University of North Carolina, Chapel Hill, North Carolina
| | - Melissa H. Wong
- Department of Cell, Developmental and Cancer Biology, Oregon Health and Science University, Portland, Oregon,Oregon Health & Science University Stem Cell Center, Knight Cancer Institute, Oregon Health & Science University, Portland, Oregon,Correspondence Address correspondence to: Melissa H. Wong, PhD, Department of Cell, Developmental, and Cancer Biology, Oregon Health & Science University, 3181 SW Sam Jackson Park Road, Mail Code L215, Portland, Oregon 97239. fax: (503) 494-4253.
| |
Collapse
|
460
|
Maisonneuve C, Irrazabal T, Martin A, Girardin SE, Philpott DJ. The Impact of the Gut Microbiome on Colorectal Cancer. ANNUAL REVIEW OF CANCER BIOLOGY-SERIES 2018. [DOI: 10.1146/annurev-cancerbio-030617-050240] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Charles Maisonneuve
- Department of Immunology, University of Toronto, Toronto, Ontario M5S 1A8, Canada;,
| | - Thergiory Irrazabal
- Department of Immunology, University of Toronto, Toronto, Ontario M5S 1A8, Canada;,
| | - Alberto Martin
- Department of Immunology, University of Toronto, Toronto, Ontario M5S 1A8, Canada;,
| | - Stephen E. Girardin
- Department of Immunology, University of Toronto, Toronto, Ontario M5S 1A8, Canada;,
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, Ontario M5S 1A8, Canada
| | - Dana J. Philpott
- Department of Immunology, University of Toronto, Toronto, Ontario M5S 1A8, Canada;,
| |
Collapse
|
461
|
Thorne CA, Chen IW, Sanman LE, Cobb MH, Wu LF, Altschuler SJ. Enteroid Monolayers Reveal an Autonomous WNT and BMP Circuit Controlling Intestinal Epithelial Growth and Organization. Dev Cell 2018; 44:624-633.e4. [PMID: 29503158 DOI: 10.1016/j.devcel.2018.01.024] [Citation(s) in RCA: 124] [Impact Index Per Article: 17.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2017] [Revised: 12/15/2017] [Accepted: 01/25/2018] [Indexed: 12/15/2022]
Abstract
The intestinal epithelium maintains a remarkable balance between proliferation and differentiation despite rapid cellular turnover. A central challenge is to elucidate mechanisms required for robust control of tissue renewal. Opposing WNT and BMP signaling is essential in establishing epithelial homeostasis. However, it has been difficult to disentangle contributions from multiple sources of morphogen signals in the tissue. Here, to dissect epithelial-autonomous morphogenic signaling circuits, we developed an enteroid monolayer culture system that recapitulates four key properties of the intestinal epithelium, namely the ability to maintain proliferative and differentiated zones, self-renew, polarize, and generate major intestinal cell types. We systematically perturb intrinsic and extrinsic sources of WNT and BMP signals to reveal a core morphogenic circuit that controls proliferation, tissue organization, and cell fate. Our work demonstrates the ability of intestinal epithelium, even in the absence of 3D tissue architecture, to control its own growth and organization through morphogen-mediated feedback.
Collapse
Affiliation(s)
- Curtis A Thorne
- Green Center for Systems Biology, Simmons Cancer Center, Department of Pharmacology, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA; Department of Cellular and Molecular Medicine, University of Arizona Cancer Center, University of Arizona, Tucson, AZ 85724, USA
| | - Ina W Chen
- Department of Pharmaceutical Chemistry, University of California, San Francisco, San Francisco, CA 94158, USA
| | - Laura E Sanman
- Department of Pharmaceutical Chemistry, University of California, San Francisco, San Francisco, CA 94158, USA
| | - Melanie H Cobb
- Green Center for Systems Biology, Simmons Cancer Center, Department of Pharmacology, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Lani F Wu
- Department of Pharmaceutical Chemistry, University of California, San Francisco, San Francisco, CA 94158, USA.
| | - Steven J Altschuler
- Department of Pharmaceutical Chemistry, University of California, San Francisco, San Francisco, CA 94158, USA.
| |
Collapse
|
462
|
Le Magnen C, Shen MM, Abate-Shen C. Lineage Plasticity in Cancer Progression and Treatment. ANNUAL REVIEW OF CANCER BIOLOGY 2018; 2:271-289. [PMID: 29756093 PMCID: PMC5942183 DOI: 10.1146/annurev-cancerbio-030617-050224] [Citation(s) in RCA: 69] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Historically, it has been widely presumed that differentiated cells are determined during development and become irreversibly committed to their designated fates. In certain circumstances, however, differentiated cells can display plasticity by changing their identity, either by dedifferentiation to a progenitor-like state or by transdifferentiation to an alternative differentiated cell type. Such cellular plasticity can be triggered by physiological or oncogenic stress, or it can be experimentally induced through cellular reprogramming. Notably, physiological stresses that promote plasticity, such as severe tissue damage, inflammation, or senescence, also represent hallmarks of cancer. Furthermore, key drivers of cellular plasticity include major oncogenic and tumor suppressor pathways and can be exacerbated by drug treatment. Thus, plasticity may help cancer cells evade detection and treatment. We propose that cancer can be considered as a disease of excess plasticity, a notion that has important implications for intervention and treatment.
Collapse
Affiliation(s)
- Clémentine Le Magnen
- Department of Urology and Medicine, Herbert Irving Comprehensive Cancer Center, Columbia University Medical Center, New York, NY 10032, USA
| | - Michael M Shen
- Department of Urology and Medicine, Herbert Irving Comprehensive Cancer Center, Columbia University Medical Center, New York, NY 10032, USA
- Department of Systems Biology, Columbia University Medical Center, New York, NY 10032, USA
- Department of Genetics and Development, Columbia University Medical Center, New York, NY 10032, USA
| | - Cory Abate-Shen
- Department of Urology and Medicine, Herbert Irving Comprehensive Cancer Center, Columbia University Medical Center, New York, NY 10032, USA
- Department of Systems Biology, Columbia University Medical Center, New York, NY 10032, USA
- Department of Pathology and Cell Biology, Columbia University Medical Center, New York, NY 10032, USA
| |
Collapse
|
463
|
Soteriou D, Fuchs Y. A matter of life and death: stem cell survival in tissue regeneration and tumour formation. Nat Rev Cancer 2018; 18:187-201. [PMID: 29348578 DOI: 10.1038/nrc.2017.122] [Citation(s) in RCA: 68] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
In recent years, great strides have been made in our understanding of how stem cells (SCs) govern tissue homeostasis and regeneration. The inherent longevity of SCs raises the possibility that the unique protective mechanisms in these cells might also be involved in tumorigenesis. In this Opinion article, we discuss how SCs are protected throughout their lifespan, focusing on quiescent behaviour, DNA damage response and programmed cell death. We briefly examine the roles of adult SCs and progenitors in tissue repair and tumorigenesis and explore how signals released from dying or dormant cells influence the function of healthy or aberrant SCs. Important insight into the mechanisms that regulate SC death and survival, as well as the 'legacy' imparted by departing cells, may unlock novel avenues for regenerative medicine and cancer therapy.
Collapse
Affiliation(s)
- Despina Soteriou
- Laboratory of Stem Cell Biology and Regenerative Medicine, Department of Biology, Technion Israel Institute of Technology; the Lorry Lokey Interdisciplinary Center for Life Sciences & Engineering, Technion Israel Institute of Technology; and the Technion Integrated Cancer Center, Technion Israel Institute of Technology, Haifa 3200, Israel
| | - Yaron Fuchs
- Laboratory of Stem Cell Biology and Regenerative Medicine, Department of Biology, Technion Israel Institute of Technology; the Lorry Lokey Interdisciplinary Center for Life Sciences & Engineering, Technion Israel Institute of Technology; and the Technion Integrated Cancer Center, Technion Israel Institute of Technology, Haifa 3200, Israel
| |
Collapse
|
464
|
Comparative regenerative mechanisms across different mammalian tissues. NPJ Regen Med 2018; 3:6. [PMID: 29507774 PMCID: PMC5824955 DOI: 10.1038/s41536-018-0044-5] [Citation(s) in RCA: 149] [Impact Index Per Article: 21.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2017] [Revised: 01/18/2018] [Accepted: 01/23/2018] [Indexed: 02/08/2023] Open
Abstract
Stimulating regeneration of complex tissues and organs after injury to effect complete structural and functional repair, is an attractive therapeutic option that would revolutionize clinical medicine. Compared to many metazoan phyla that show extraordinary regenerative capacity, which in some instances persists throughout life, regeneration in mammalians, particularly humans, is limited or absent. Here we consider recent insights in the elucidation of molecular mechanisms of regeneration that have come from studies of tissue homeostasis and injury repair in mammalian tissues that span the spectrum from little or no self-renewal, to those showing active cell turnover throughout life. These studies highlight the diversity of factors that constrain regeneration, including immune responses, extracellular matrix composition, age, injury type, physiological adaptation, and angiogenic and neurogenic capacity. Despite these constraints, much progress has been made in elucidating key molecular mechanisms that may provide therapeutic targets for the development of future regenerative therapies, as well as previously unidentified developmental paradigms and windows-of-opportunity for improved regenerative repair.
Collapse
|
465
|
Zou WY, Blutt SE, Zeng XL, Chen MS, Lo YH, Castillo-Azofeifa D, Klein OD, Shroyer NF, Donowitz M, Estes MK. Epithelial WNT Ligands Are Essential Drivers of Intestinal Stem Cell Activation. Cell Rep 2018; 22:1003-1015. [PMID: 29386123 DOI: 10.1016/j.celrep.2017.12.093] [Citation(s) in RCA: 52] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2017] [Revised: 11/16/2017] [Accepted: 12/24/2017] [Indexed: 12/25/2022] Open
Abstract
Intestinal stem cells (ISCs) maintain and repair the intestinal epithelium. While regeneration after ISC-targeted damage is increasingly understood, injury-repair mechanisms that direct regeneration following injuries to differentiated cells remain uncharacterized. The enteric pathogen, rotavirus, infects and damages differentiated cells while sparing all ISC populations, thus allowing the unique examination of the response of intact ISC compartments during injury-repair. Upon rotavirus infection in mice, ISC compartments robustly expand and proliferating cells rapidly migrate. Infection results specifically in stimulation of the active crypt-based columnar ISCs, but not alternative reserve ISC populations, as is observed after ISC-targeted damage. Conditional ablation of epithelial WNT secretion diminishes crypt expansion and ISC activation, demonstrating a previously unknown function of epithelial-secreted WNT during injury-repair. These findings indicate a hierarchical preference of crypt-based columnar cells (CBCs) over other potential ISC populations during epithelial restitution and the importance of epithelial-derived signals in regulating ISC behavior.
Collapse
Affiliation(s)
- Winnie Y Zou
- Department of Molecular Virology and Microbiology, Baylor College of Medicine, Houston, TX 77030, USA
| | - Sarah E Blutt
- Department of Molecular Virology and Microbiology, Baylor College of Medicine, Houston, TX 77030, USA
| | - Xi-Lei Zeng
- Department of Molecular Virology and Microbiology, Baylor College of Medicine, Houston, TX 77030, USA
| | - Min-Shan Chen
- Section of Gastroenterology and Hepatology, Department of Medicine, Baylor College of Medicine, Houston, TX 77030, USA
| | - Yuan-Hung Lo
- Section of Gastroenterology and Hepatology, Department of Medicine, Baylor College of Medicine, Houston, TX 77030, USA
| | - David Castillo-Azofeifa
- Departments of Orofacial Sciences and Pediatrics, University of California, San Francisco, San Francisco, CA 94143, USA
| | - Ophir D Klein
- Departments of Orofacial Sciences and Pediatrics, University of California, San Francisco, San Francisco, CA 94143, USA
| | - Noah F Shroyer
- Section of Gastroenterology and Hepatology, Department of Medicine, Baylor College of Medicine, Houston, TX 77030, USA
| | - Mark Donowitz
- Division of Gastroenterology and Hepatology, Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, MD 21218, USA
| | - Mary K Estes
- Department of Molecular Virology and Microbiology, Baylor College of Medicine, Houston, TX 77030, USA; Section of Gastroenterology and Hepatology, Department of Medicine, Baylor College of Medicine, Houston, TX 77030, USA.
| |
Collapse
|
466
|
Moussa L, Usunier B, Demarquay C, Benderitter M, Tamarat R, Sémont A, Mathieu N. Bowel Radiation Injury: Complexity of the Pathophysiology and Promises of Cell and Tissue Engineering. Cell Transplant 2018; 25:1723-1746. [PMID: 27197023 DOI: 10.3727/096368916x691664] [Citation(s) in RCA: 46] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Ionizing radiation is effective to treat malignant pelvic cancers, but the toxicity to surrounding healthy tissue remains a substantial limitation. Early and late side effects not only limit the escalation of the radiation dose to the tumor but may also be life-threatening in some patients. Numerous preclinical studies determined specific mechanisms induced after irradiation in different compartments of the intestine. This review outlines the complexity of the pathogenesis, highlighting the roles of the epithelial barrier in the vascular network, and the inflammatory microenvironment, which together lead to chronic fibrosis. Despite the large number of pharmacological molecules available, the studies presented in this review provide encouraging proof of concept regarding the use of mesenchymal stromal cell (MSC) therapy to treat radiation-induced intestinal damage. The therapeutic efficacy of MSCs has been demonstrated in animal models and in patients, but an enormous number of cells and multiple injections are needed due to their poor engraftment capacity. Moreover, it has been observed that although MSCs have pleiotropic effects, some intestinal compartments are less restored after a high dose of irradiation. Future research should seek to optimize the efficacy of the injected cells, particularly with regard to extending their life span in the irradiated tissue. Moreover, improving the host microenvironment, combining MSCs with other specific regenerative cells, or introducing new tissue engineering strategies could be tested as methods to treat the severe side effects of pelvic radiotherapy.
Collapse
Affiliation(s)
- Lara Moussa
- Institut de Radioprotection et de SÛreté Nucléaire (IRSN), PRP-HOM/SRBE/LR2I, Fontenay-aux-Roses, France
| | - Benoît Usunier
- Institut de Radioprotection et de SÛreté Nucléaire (IRSN), PRP-HOM/SRBE/LR2I, Fontenay-aux-Roses, France
| | - Christelle Demarquay
- Institut de Radioprotection et de SÛreté Nucléaire (IRSN), PRP-HOM/SRBE/LR2I, Fontenay-aux-Roses, France
| | - Marc Benderitter
- Institut de Radioprotection et de SÛreté Nucléaire (IRSN), PRP-HOM/SRBE/LR2I, Fontenay-aux-Roses, France
| | - Radia Tamarat
- Institut de Radioprotection et de SÛreté Nucléaire (IRSN), PRP-HOM/SRBE/LR2I, Fontenay-aux-Roses, France
| | - Alexandra Sémont
- Institut de Radioprotection et de SÛreté Nucléaire (IRSN), PRP-HOM/SRBE/LR2I, Fontenay-aux-Roses, France
| | - Noëlle Mathieu
- Institut de Radioprotection et de SÛreté Nucléaire (IRSN), PRP-HOM/SRBE/LR2I, Fontenay-aux-Roses, France
| |
Collapse
|
467
|
Gao X, Xu C, Asada N, Frenette PS. The hematopoietic stem cell niche: from embryo to adult. Development 2018; 145:145/2/dev139691. [PMID: 29358215 DOI: 10.1242/dev.139691] [Citation(s) in RCA: 161] [Impact Index Per Article: 23.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Hematopoietic stem cells (HSCs) develop in discrete anatomical niches, migrating during embryogenesis from the aorta-gonad-mesonephros (AGM) region to the fetal liver, and finally to the bone marrow, where most HSCs reside throughout adult life. These niches provide supportive microenvironments that specify, expand and maintain HSCs. Understanding the constituents and molecular regulation of HSC niches is of considerable importance as it could shed new light on the mechanistic principles of HSC emergence and maintenance, and provide novel strategies for regenerative medicine. However, controversy exists concerning the cellular complexity of the bone marrow niche, and our understanding of the different HSC niches during development remains limited. In this Review, we summarize and discuss what is known about the heterogeneity of the HSC niches at distinct stages of their ontogeny, from the embryo to the adult bone marrow, drawing predominantly on data from mouse studies.
Collapse
Affiliation(s)
- Xin Gao
- Ruth L. and David S. Gottesman Institute for Stem Cell and Regenerative Medicine Research, Albert Einstein College of Medicine, Bronx, New York, NY 10461, USA.,Departments of Medicine and Cell Biology, Albert Einstein College of Medicine, Bronx, New York, NY 10461, USA
| | - Chunliang Xu
- Ruth L. and David S. Gottesman Institute for Stem Cell and Regenerative Medicine Research, Albert Einstein College of Medicine, Bronx, New York, NY 10461, USA.,Departments of Medicine and Cell Biology, Albert Einstein College of Medicine, Bronx, New York, NY 10461, USA
| | - Noboru Asada
- Ruth L. and David S. Gottesman Institute for Stem Cell and Regenerative Medicine Research, Albert Einstein College of Medicine, Bronx, New York, NY 10461, USA.,Departments of Medicine and Cell Biology, Albert Einstein College of Medicine, Bronx, New York, NY 10461, USA
| | - Paul S Frenette
- Ruth L. and David S. Gottesman Institute for Stem Cell and Regenerative Medicine Research, Albert Einstein College of Medicine, Bronx, New York, NY 10461, USA .,Departments of Medicine and Cell Biology, Albert Einstein College of Medicine, Bronx, New York, NY 10461, USA
| |
Collapse
|
468
|
The tankyrase inhibitor G007-LK inhibits small intestine LGR5 + stem cell proliferation without altering tissue morphology. Biol Res 2018; 51:3. [PMID: 29316982 PMCID: PMC5759193 DOI: 10.1186/s40659-017-0151-6] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2017] [Accepted: 12/28/2017] [Indexed: 12/16/2022] Open
Abstract
Background The WNT pathway regulates intestinal stem cells and is frequently disrupted in intestinal adenomas. The pathway contains several potential biotargets for interference, including the poly-ADP ribosyltransferase enzymes tankyrase1 and 2. LGR5 is a known WNT pathway target gene and marker of intestinal stem cells. The LGR5+ stem cells are located in the crypt base and capable of regenerating all intestinal epithelial cell lineages. Results We treated Lgr5-EGFP-Ires-CreERT2;R26R-Confetti mice with the tankyrase inhibitor G007-LK for up to 3 weeks to assess the effect on duodenal stem cell homeostasis and on the integrity of intestinal epithelium. At the administered doses, G007-LK treatment inhibited WNT signalling in LGR5+ stem cells and reduced the number and distribution of cells traced from duodenal LGR5+ stem cells. However, the gross morphology of the duodenum remained unaltered and G007-LK-treated mice showed no signs of weight loss or any other visible morphological changes. The inhibitory effect on LGR5+ stem cell proliferation was reversible. Conclusion We show that the tankyrase inhibitor G007-LK is well tolerated by the mice, although proliferation of the LGR5+ intestinal stem cells was inhibited. Our observations suggest the presence of a tankyrase inhibitor-resistant cell population in the duodenum, able to rescue tissue integrity in the presence of G007-LK-mediated inhibition of the WNT signalling dependent LGR5+ intestinal epithelial stem cells. Electronic supplementary material The online version of this article (10.1186/s40659-017-0151-6) contains supplementary material, which is available to authorized users.
Collapse
|
469
|
Wnt, RSPO and Hippo Signalling in the Intestine and Intestinal Stem Cells. Genes (Basel) 2018; 9:genes9010020. [PMID: 29316729 PMCID: PMC5793173 DOI: 10.3390/genes9010020] [Citation(s) in RCA: 51] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2017] [Revised: 12/22/2017] [Accepted: 12/28/2017] [Indexed: 01/07/2023] Open
Abstract
In this review, we address aspects of Wnt, R-Spondin (RSPO) and Hippo signalling, in both healthy and transformed intestinal epithelium. In intestinal stem cells (ISCs), the Wnt pathway is essential for intestinal crypt formation and renewal, whereas RSPO-mediated signalling mainly affects ISC numbers. In human colorectal cancer (CRC), aberrant Wnt signalling is the driving mechanism initiating this type of neoplasia. The signalling role of the RSPO-binding transmembrane proteins, the leucine-rich-repeat-containing G-protein-coupled receptors (LGRs), is possibly more pleiotropic and not only limited to the enhancement of Wnt signalling. There is growing evidence for multiple crosstalk between Hippo and Wnt/β-catenin signalling. In the ON state, Hippo signalling results in serine/threonine phosphorylation of Yes-associated protein (YAP1) and tafazzin (TAZ), promoting formation of the β-catenin destruction complex. In contrast, YAP1 or TAZ dephosphorylation (and YAP1 methylation) results in β-catenin destruction complex deactivation and β-catenin nuclear localization. In the Hippo OFF state, YAP1 and TAZ are engaged with the nuclear β-catenin and participate in the β-catenin-dependent transcription program. Interestingly, YAP1/TAZ are dispensable for intestinal homeostasis; however, upon Wnt pathway hyperactivation, the proteins together with TEA domain (TEAD) transcription factors drive the transcriptional program essential for intestinal cell transformation. In addition, in many CRC cells, YAP1 phosphorylation by YES proto-oncogene 1 tyrosine kinase (YES1) leads to the formation of a transcriptional complex that includes YAP1, β-catenin and T-box 5 (TBX5) DNA-binding protein. YAP1/β-catenin/T-box 5-mediated transcription is necessary for CRC cell proliferation and survival. Interestingly, dishevelled (DVL) appears to be an important mediator involved in both Wnt and Hippo (YAP1/TAZ) signalling and some of the DVL functions were assigned to the nuclear DVL pool. Wnt ligands can trigger alternative signalling that directly involves some of the Hippo pathway components such as YAP1, TAZ and TEADs. By upregulating Wnt pathway agonists, the alternative Wnt signalling can inhibit the canonical Wnt pathway activity.
Collapse
|
470
|
Sanz-Navarro M, Seidel K, Sun Z, Bertonnier-Brouty L, Amendt BA, Klein OD, Michon F. Plasticity within the niche ensures the maintenance of a Sox2+ stem cell population in the mouse incisor. Development 2018; 145:dev.155929. [PMID: 29180573 DOI: 10.1242/dev.155929] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2017] [Accepted: 11/15/2017] [Indexed: 12/16/2022]
Abstract
In mice, the incisors grow throughout the animal's life, and this continuous renewal is driven by dental epithelial and mesenchymal stem cells. Sox2 is a principal marker of the epithelial stem cells that reside in the mouse incisor stem cell niche, called the labial cervical loop, but relatively little is known about the role of the Sox2+ stem cell population. In this study, we show that conditional deletion of Sox2 in the embryonic incisor epithelium leads to growth defects and impairment of ameloblast lineage commitment. Deletion of Sox2 specifically in Sox2+ cells during incisor renewal revealed cellular plasticity that leads to the relatively rapid restoration of a Sox2-expressing cell population. Furthermore, we show that Lgr5-expressing cells are a subpopulation of dental Sox2+ cells that also arise from Sox2+ cells during tooth formation. Finally, we show that the embryonic and adult Sox2+ populations are regulated by distinct signalling pathways, which is reflected in their distinct transcriptomic signatures. Together, our findings demonstrate that a Sox2+ stem cell population can be regenerated from Sox2- cells, reinforcing its importance for incisor homeostasis.
Collapse
Affiliation(s)
- Maria Sanz-Navarro
- Helsinki Institute of Life Sciences, Institute of Biotechnology, University of Helsinki, 00014 Helsinki, Finland.,Orthodontics, Department of Oral and Maxillofacial Diseases, University of Helsinki, 00290 Helsinki, Finland
| | - Kerstin Seidel
- Department of Orofacial Sciences and Program in Craniofacial Biology, UCSF, San Francisco, CA 94143, USA
| | - Zhao Sun
- Department of Anatomy and Cell Biology, and the Craniofacial Anomalies Research Center, The University of Iowa, Iowa City, IA 52242, USA
| | - Ludivine Bertonnier-Brouty
- Helsinki Institute of Life Sciences, Institute of Biotechnology, University of Helsinki, 00014 Helsinki, Finland.,Département de Biologie, École Normale Supérieure de Lyon, Université de Lyon, 69007 Lyon, France
| | - Brad A Amendt
- Department of Anatomy and Cell Biology, and the Craniofacial Anomalies Research Center, The University of Iowa, Iowa City, IA 52242, USA.,College of Dentistry, The University of Iowa, Iowa City, IA 52242, USA
| | - Ophir D Klein
- Department of Orofacial Sciences and Program in Craniofacial Biology, UCSF, San Francisco, CA 94143, USA.,Department of Pediatrics and Institute for Human Genetics, University of California San Francisco, San Francisco, CA 94143, USA
| | - Frederic Michon
- Helsinki Institute of Life Sciences, Institute of Biotechnology, University of Helsinki, 00014 Helsinki, Finland .,Keele Medical School and Institute for Science and Technology in Medicine, Keele University, Keele ST5 5BG, UK
| |
Collapse
|
471
|
Chemical Modulation of WNT Signaling in Cancer. PROGRESS IN MOLECULAR BIOLOGY AND TRANSLATIONAL SCIENCE 2018; 153:245-269. [DOI: 10.1016/bs.pmbts.2017.11.008] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|
472
|
Young MA, Daly CS, Taylor E, James R, Clarke AR, Reed KR. Subtle Deregulation of the Wnt-Signaling Pathway Through Loss of Apc2 Reduces the Fitness of Intestinal Stem Cells. Stem Cells 2018; 36:114-122. [PMID: 29027285 PMCID: PMC5765519 DOI: 10.1002/stem.2712] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2017] [Revised: 09/08/2017] [Accepted: 09/13/2017] [Indexed: 12/31/2022]
Abstract
The importance of the Wnt-signaling pathway on the regulation and maintenance of the intestinal stem cell (ISC) population is well recognized. However, our current knowledge base is founded on models using systems of gross deregulation of the Wnt-signaling pathway. Given the importance of this signaling pathway on intestinal homeostasis, there is a need to explore the role of more subtle alterations in Wnt-signaling levels within this tissue. Herein, we have used a model of Apc2 loss to meet this aim. Apc2 is a homolog of Apc which can also form a destruction complex capable of binding β-catenin, albeit less efficiently than Apc. We show that systemic loss of Apc2 results in an increase in the number of cells displaying nuclear β-catenin at the base of the intestinal crypt. This subsequently impacts the expression levels of several ISC markers and the fitness of ISCs as assessed by organoid formation efficiency. This work provides the first evidence that the function and fitness of ISCs can be altered by even minor misregulation of the Wnt-signaling pathway. Our data highlights the importance of correct maintenance of this crucial signaling pathway in the maintenance and function of the ISC population. Stem Cells 2018;36:114-122.
Collapse
Affiliation(s)
- Madeleine A. Young
- Cardiff School of BiosciencesEuropean Cancer Stem Cell Research InstituteCardiffWalesUnited Kingdom
| | - Carl S. Daly
- Cardiff School of BiosciencesEuropean Cancer Stem Cell Research InstituteCardiffWalesUnited Kingdom
- Department of Health and Applied ScienceUniversity of the West of EnglandBristolUnited Kingdom
| | - Elaine Taylor
- Cardiff School of BiosciencesEuropean Cancer Stem Cell Research InstituteCardiffWalesUnited Kingdom
| | - Rhiannon James
- Cardiff School of BiosciencesEuropean Cancer Stem Cell Research InstituteCardiffWalesUnited Kingdom
| | - Alan Richard Clarke
- Cardiff School of BiosciencesEuropean Cancer Stem Cell Research InstituteCardiffWalesUnited Kingdom
| | - Karen Ruth Reed
- Cardiff School of BiosciencesEuropean Cancer Stem Cell Research InstituteCardiffWalesUnited Kingdom
| |
Collapse
|
473
|
Wnt Ligands as a Part of the Stem Cell Niche in the Intestine and the Liver. PROGRESS IN MOLECULAR BIOLOGY AND TRANSLATIONAL SCIENCE 2018; 153:1-19. [DOI: 10.1016/bs.pmbts.2017.11.011] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|
474
|
Tan SH, Barker N. Wnt Signaling in Adult Epithelial Stem Cells and Cancer. PROGRESS IN MOLECULAR BIOLOGY AND TRANSLATIONAL SCIENCE 2018; 153:21-79. [PMID: 29389518 DOI: 10.1016/bs.pmbts.2017.11.017] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Wnt/β-catenin signaling is integral to the homeostasis and regeneration of many epithelial tissues due to its critical role in adult stem cell regulation. It is also implicated in many epithelial cancers, with mutations in core pathway components frequently present in patient tumors. In this chapter, we discuss the roles of Wnt/β-catenin signaling and Wnt-regulated stem cells in homeostatic, regenerative and cancer contexts of the intestines, stomach, skin, and liver. We also examine the sources of Wnt ligands that form part of the stem cell niche. Despite the diversity in characteristics of various tissue stem cells, the role(s) of Wnt/β-catenin signaling is generally coherent in maintaining stem cell fate and/or promoting proliferation. It is also likely to play similar roles in cancer stem cells, making the pathway a salient therapeutic target for cancer. While promising progress is being made in the field, deeper understanding of the functions and signaling mechanisms of the pathway in individual epithelial tissues will expedite efforts to modulate Wnt/β-catenin signaling in cancer treatment and tissue regeneration.
Collapse
Affiliation(s)
- Si Hui Tan
- A*STAR Institute of Medical Biology, Singapore
| | - Nick Barker
- A*STAR Institute of Medical Biology, Singapore; Kanazawa University, Kanazawa, Japan; Centre for Regenerative Medicine, University of Edinburgh, Edinburgh, United Kingdom.
| |
Collapse
|
475
|
Frau C, Godart M, Plateroti M. Thyroid hormone regulation of intestinal epithelial stem cell biology. Mol Cell Endocrinol 2017; 459:90-97. [PMID: 28288904 DOI: 10.1016/j.mce.2017.03.002] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/18/2017] [Revised: 02/28/2017] [Accepted: 03/02/2017] [Indexed: 01/08/2023]
Abstract
The gastrointestinal tract is a well-characterized target of thyroid hormones and thyroid hormone nuclear receptors TRs, as extensively described in the literature. The paradigm is its important remodelling in amphibians during thyroid hormone-dependent metamorphosis. Interestingly, several studies have described the conservation of this hormonal signal during intestinal development in mammals. Additional data suggested that it may also play a role in intestinal homeostasis, stem cell physiology and progenitor commitment as well as in tumour development. It is worth underlining that in the mammalian intestine the functionality of the TRα1 receptor is coordinated and integrated with other signalling pathways, such as Wnt and Notch, specifically at the level of stem/progenitor cell populations. Here, we summarize these data and concepts and discuss this new role for thyroid hormones and the TRα1 receptor in the biology of intestinal epithelial precursor cells.
Collapse
Affiliation(s)
- Carla Frau
- Centre de Recherche en Cancérologie de Lyon, INSERM U1052, CNRS UMR5286, Université de Lyon, Université Lyon 1, Centre Léon Bérard, Département de La Recherche, 69000 Lyon, France
| | - Matthias Godart
- Centre de Recherche en Cancérologie de Lyon, INSERM U1052, CNRS UMR5286, Université de Lyon, Université Lyon 1, Centre Léon Bérard, Département de La Recherche, 69000 Lyon, France
| | - Michelina Plateroti
- Centre de Recherche en Cancérologie de Lyon, INSERM U1052, CNRS UMR5286, Université de Lyon, Université Lyon 1, Centre Léon Bérard, Département de La Recherche, 69000 Lyon, France.
| |
Collapse
|
476
|
JAK/STAT-1 Signaling Is Required for Reserve Intestinal Stem Cell Activation during Intestinal Regeneration Following Acute Inflammation. Stem Cell Reports 2017; 10:17-26. [PMID: 29276155 PMCID: PMC5768934 DOI: 10.1016/j.stemcr.2017.11.015] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2016] [Revised: 11/16/2017] [Accepted: 11/17/2017] [Indexed: 01/26/2023] Open
Abstract
The intestinal epithelium serves as an essential barrier to the outside world and is maintained by functionally distinct populations of rapidly cycling intestinal stem cells (CBC ISCs) and slowly cycling, reserve ISCs (r-ISCs). Because disruptions in the epithelial barrier can result from pathological activation of the immune system, we sought to investigate the impact of inflammation on ISC behavior during the regenerative response. In a murine model of αCD3 antibody-induced small-intestinal inflammation, r-ISCs proved highly resistant to injury, while CBC ISCs underwent apoptosis. Moreover, r-ISCs were induced to proliferate and functionally contribute to intestinal regeneration. Further analysis revealed that the inflammatory cytokines interferon gamma and tumor necrosis factor alpha led to r-ISC activation in enteroid culture, which could be blocked by the JAK/STAT inhibitor, tofacitinib. These results highlight an important role for r-ISCs in response to acute intestinal inflammation and show that JAK/STAT-1 signaling is required for the r-ISC regenerative response.
Collapse
|
477
|
Dumont-Lagacé M, Gerbe H, Daouda T, Laverdure JP, Brochu S, Lemieux S, Gagnon É, Perreault C. Detection of Quiescent Radioresistant Epithelial Progenitors in the Adult Thymus. Front Immunol 2017; 8:1717. [PMID: 29259606 PMCID: PMC5723310 DOI: 10.3389/fimmu.2017.01717] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2017] [Accepted: 11/21/2017] [Indexed: 11/13/2022] Open
Abstract
Thymic aging precedes that of other organs and is initiated by the gradual loss of thymic epithelial cells (TECs). Based on in vitro culture and transplantation assays, recent studies have reported on the presence of thymic epithelial progenitor cells (TEPCs) in young adult mice. However, the physiological role and properties of TEPC populations reported to date remain unclear. Using an in vivo label-retention assay, we previously identified a population of quiescent but non-senescent TECs. The goals of this study were therefore (i) to evaluate the contribution of these quiescent TECs to thymic regeneration following irradiation-induced acute thymic injury and (ii) to characterize their phenotypic and molecular profiles using flow cytometry, immunohistology, and transcriptome sequencing. We report that while UEA1+ cells cycle the most in steady state, they are greatly affected by irradiation, leading to cell loss and proliferative arrest following acute thymic involution. On the opposite, the UEA1– subset of quiescent TECs is radioresistant and proliferate in situ following acute thymic involution, thereby contributing to thymic regeneration in 28- to 30-week-old mice. UEA1– quiescent TECs display an undifferentiated phenotype (co-expression of K8 and K5 cytokeratins) and express high levels of genes that regulate stem cell activity in different tissues (e.g., Podxl and Ptprz1). In addition, two features suggest that UEA1– quiescent TECs occupy discrete stromal niches: (i) their preferential location in clusters adjacent to the cortico-medullary junction and (ii) their high expression of genes involved in cross talk with mesenchymal cells. The ability of UEA1– quiescent TECs to participate to TEC regeneration qualifies them as in vivo progenitor cells particularly relevant in the context of regeneration following acute thymic injury.
Collapse
Affiliation(s)
- Maude Dumont-Lagacé
- Institute for Research in Immunology and Cancer, Montreal, QC, Canada.,Department of Medicine, Université de Montréal, Montréal, QC, Canada
| | - Hervé Gerbe
- Institute for Research in Immunology and Cancer, Montreal, QC, Canada
| | - Tariq Daouda
- Institute for Research in Immunology and Cancer, Montreal, QC, Canada.,Department of Biochemistry, Université de Montréal, Montréal, QC, Canada
| | | | - Sylvie Brochu
- Institute for Research in Immunology and Cancer, Montreal, QC, Canada
| | - Sébastien Lemieux
- Institute for Research in Immunology and Cancer, Montreal, QC, Canada.,Department of Informatics and Operational Research, Université de Montréal, Montréal, QC, Canada
| | - Étienne Gagnon
- Institute for Research in Immunology and Cancer, Montreal, QC, Canada.,Department of Microbiology, Infectiology and Immunology, Université de Montréal, Montréal, QC, Canada
| | - Claude Perreault
- Institute for Research in Immunology and Cancer, Montreal, QC, Canada.,Department of Medicine, Université de Montréal, Montréal, QC, Canada
| |
Collapse
|
478
|
Major depletion of SOX2 + stem cells in the adult pituitary is not restored which does not affect hormonal cell homeostasis and remodelling. Sci Rep 2017; 7:16940. [PMID: 29208952 PMCID: PMC5717068 DOI: 10.1038/s41598-017-16796-2] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2017] [Accepted: 11/17/2017] [Indexed: 12/15/2022] Open
Abstract
The pituitary gland contains SOX2-expressing stem cells. However, their functional significance remains largely unmapped. We investigated their importance by depleting SOX2+ cells through diphtheria toxin (DT)-mediated ablation. DT treatment of adult Sox2CreERT2/+;R26iDTR/+ mice (after tamoxifen-induced expression of DT receptor in SOX2+ cells) resulted in 80% obliteration of SOX2+ cells in the endocrine pituitary, coinciding with reduced pituisphere-forming activity. Counterintuitively for a stem cell population, the SOX2+ cell compartment did not repopulate. Considering the more active phenotype of the stem cells during early-postnatal pituitary maturation, SOX2+ cell ablation was also performed in 4- and 1-week-old animals. Ablation grade diminished with decreasing age and was accompanied by a proliferative reaction of the SOX2+ cells, suggesting a rescue attempt. Despite this activation, SOX2+ cells did also not recover. Finally, the major SOX2+ cell depletion in adult mice did not affect the homeostatic maintenance of pituitary hormonal cell populations, nor the corticotrope remodelling response to adrenalectomy challenge. Taken together, our study shows that pituitary SOX2+ fail to regenerate after major depletion which does not affect adult endocrine cell homeostasis and remodelling. Thus, pituitary SOX2+ cells may constitute a copious stem cell reserve or may have other critical role(s) still to be clearly defined.
Collapse
|
479
|
Fischer MM, Yeung VP, Cattaruzza F, Hussein R, Yen WC, Murriel C, Evans JW, O'Young G, Brunner AL, Wang M, Cain J, Cancilla B, Kapoun A, Hoey T. RSPO3 antagonism inhibits growth and tumorigenicity in colorectal tumors harboring common Wnt pathway mutations. Sci Rep 2017; 7:15270. [PMID: 29127379 PMCID: PMC5681666 DOI: 10.1038/s41598-017-15704-y] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2017] [Accepted: 10/31/2017] [Indexed: 01/09/2023] Open
Abstract
Activating mutations in the Wnt pathway are a characteristic feature of colorectal cancer (CRC). The R-spondin (RSPO) family is a group of secreted proteins that enhance Wnt signaling and RSPO2 and RSPO3 gene fusions have been reported in CRC. We have previously shown that Wnt pathway blockers exhibit potent combinatorial activity with taxanes to inhibit tumor growth. Here we show that RSPO3 antagonism synergizes with paclitaxel based chemotherapies in patient-derived xenograft models (PDX) with RSPO3 fusions and in tumors with common CRC mutations such as APC, β-catenin, or RNF43. In these latter types of tumors that represent over 90% of CRC, RSPO3 is produced by stromal cells in the tumor microenvironment and the activating mutations appear to sensitize the tumors to Wnt-Rspo synergy. The combination of RSPO3 inhibition and taxane treatment provides an approach to effectively target oncogenic WNT signaling in a significant number of patients with colorectal and other intestinal cancers.
Collapse
Affiliation(s)
- Marcus M Fischer
- OncoMed Pharmaceuticals, Inc. 800 Chesapeake Drive, Redwood City, CA, 94063, USA
| | - V Pete Yeung
- OncoMed Pharmaceuticals, Inc. 800 Chesapeake Drive, Redwood City, CA, 94063, USA
| | - Fiore Cattaruzza
- OncoMed Pharmaceuticals, Inc. 800 Chesapeake Drive, Redwood City, CA, 94063, USA
| | - Rajaa Hussein
- OncoMed Pharmaceuticals, Inc. 800 Chesapeake Drive, Redwood City, CA, 94063, USA
| | - Wan-Ching Yen
- OncoMed Pharmaceuticals, Inc. 800 Chesapeake Drive, Redwood City, CA, 94063, USA
| | - Christopher Murriel
- OncoMed Pharmaceuticals, Inc. 800 Chesapeake Drive, Redwood City, CA, 94063, USA
| | - James W Evans
- OncoMed Pharmaceuticals, Inc. 800 Chesapeake Drive, Redwood City, CA, 94063, USA
| | - Gilbert O'Young
- OncoMed Pharmaceuticals, Inc. 800 Chesapeake Drive, Redwood City, CA, 94063, USA
| | - Alayne L Brunner
- OncoMed Pharmaceuticals, Inc. 800 Chesapeake Drive, Redwood City, CA, 94063, USA
| | - Min Wang
- OncoMed Pharmaceuticals, Inc. 800 Chesapeake Drive, Redwood City, CA, 94063, USA
| | - Jennifer Cain
- OncoMed Pharmaceuticals, Inc. 800 Chesapeake Drive, Redwood City, CA, 94063, USA
| | - Belinda Cancilla
- OncoMed Pharmaceuticals, Inc. 800 Chesapeake Drive, Redwood City, CA, 94063, USA
| | - Ann Kapoun
- OncoMed Pharmaceuticals, Inc. 800 Chesapeake Drive, Redwood City, CA, 94063, USA
| | - Timothy Hoey
- OncoMed Pharmaceuticals, Inc. 800 Chesapeake Drive, Redwood City, CA, 94063, USA.
| |
Collapse
|
480
|
Dempsey PJ. Role of ADAM10 in intestinal crypt homeostasis and tumorigenesis. BIOCHIMICA ET BIOPHYSICA ACTA. MOLECULAR CELL RESEARCH 2017; 1864:2228-2239. [PMID: 28739265 PMCID: PMC5632589 DOI: 10.1016/j.bbamcr.2017.07.011] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/14/2017] [Revised: 07/19/2017] [Accepted: 07/20/2017] [Indexed: 12/17/2022]
Abstract
A disintegrin and metalloproteinases (ADAMs) are a family of mSultidomain, membrane-anchored proteases that regulate diverse cellular functions, including cell adhesion, migration, proteolysis and other cell signaling events. Catalytically-active ADAMs act as ectodomain sheddases that proteolytically cleave type I and type II transmembrane proteins and some GPI-anchored proteins from the cellular surface. ADAMs can also modulate other cellular signaling events through a process known as regulated intramembrane proteolysis (RIP). Through their proteolytic activity, ADAMs can rapidly modulate key cell signaling pathways in response to changes in the extracellular environment (e.g. inflammation) and play a central role in coordinating intercellular communication. Dysregulation of these processes through aberrant expression, or sustained ADAM activity, is linked to chronic inflammation, inflammation-associated cancer and tumorigenesis. ADAM10 was the first disintegrin-metalloproteinase demonstrated to have proteolytic activity and is the prototypic ADAM associated with RIP activity (e.g. sequential Notch receptor processing). ADAM10 is abundantly expressed throughout the gastrointestinal tract and during normal intestinal homeostasis ADAM10 regulates many cellular processes associated with intestinal development, cell fate specification and maintenance of intestinal stem cell/progenitor populations. In addition, several signaling pathways that undergo ectodomain shedding by ADAM10 (e.g. Notch, EGFR/ErbB, IL-6/sIL-6R) help control intestinal injury/regenerative responses and may drive intestinal inflammation and colon cancer initiation and progression. Here, I review some of the proposed functions of ADAM10 associated with intestinal crypt homeostasis and tumorigenesis within the gastrointestinal tract in vivo. This article is part of a Special Issue entitled: Proteolysis as a Regulatory Event in Pathophysiology edited by Stefan Rose-John.
Collapse
Affiliation(s)
- Peter J Dempsey
- Graduate Program in Cell Biology, Stem Cells, and Development Program, University of Colorado Medical School, Aurora, CO 80045, United States; Division of Gastroenterology, Hepatology and Nutrition, Department of Pediatrics, University of Colorado Medical School, Aurora, CO 80045, United States.
| |
Collapse
|
481
|
Kraft CL, Rappaport JA, Snook AE, Pattison AM, Lynch JP, Waldman SA. GUCY2C maintains intestinal LGR5 + stem cells by opposing ER stress. Oncotarget 2017; 8:102923-102933. [PMID: 29262534 PMCID: PMC5732700 DOI: 10.18632/oncotarget.22084] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2017] [Accepted: 10/11/2017] [Indexed: 12/22/2022] Open
Abstract
Long-lived multipotent stem cells (ISCs) at the base of intestinal crypts adjust their phenotypes to accommodate normal maintenance and post-injury regeneration of the epithelium. Their long life, lineage plasticity, and proliferative potential underlie the necessity for tight homeostatic regulation of the ISC compartment. In that context, the guanylate cyclase C (GUCY2C) receptor and its paracrine ligands regulate intestinal epithelial homeostasis, including proliferation, lineage commitment, and DNA damage repair. However, a role for this axis in maintaining ISCs remains unknown. Transgenic mice enabling analysis of ISCs (Lgr5-GFP) in the context of GUCY2C elimination (Gucy2c–/–) were combined with immunodetection techniques and pharmacological treatments to define the role of the GUCY2C signaling axis in supporting ISCs. ISCs were reduced in Gucy2c–/– mice, associated with loss of active Lgr5+ cells but a reciprocal increase in reserve Bmi1+ cells. GUCY2C was expressed in crypt base Lgr5+ cells in which it mediates canonical cyclic (c) GMP-dependent signaling. Endoplasmic reticulum (ER) stress, typically absent from ISCs, was elevated throughout the crypt base in Gucy2c–/– mice. The chemical chaperone tauroursodeoxycholic acid resolved this ER stress and restored the balance of ISCs, an effect mimicked by the GUCY2C effector 8Br-cGMP. Reduced ISCs in Gucy2c–/–mice was associated with greater epithelial injury and impaired regeneration following sub-lethal doses of irradiation. These observations suggest that GUCY2C provides homeostatic signals that modulate ER stress and cell vulnerability as part of the machinery contributing to the integrity of ISCs.
Collapse
Affiliation(s)
- Crystal L Kraft
- Department of Pharmacology and Experimental Therapeutics, Thomas Jefferson University, Philadelphia, United States of America, PA, USA
| | - Jeffrey A Rappaport
- Department of Pharmacology and Experimental Therapeutics, Thomas Jefferson University, Philadelphia, United States of America, PA, USA
| | - Adam E Snook
- Department of Pharmacology and Experimental Therapeutics, Thomas Jefferson University, Philadelphia, United States of America, PA, USA
| | - Amanda M Pattison
- Department of Pharmacology and Experimental Therapeutics, Thomas Jefferson University, Philadelphia, United States of America, PA, USA
| | - John P Lynch
- Division of Gastroenterology, Department of Medicine, Abramson Cancer Center, University of Pennsylvania, Philadelphia, United States of America, PA, USA
| | - Scott A Waldman
- Department of Pharmacology and Experimental Therapeutics, Thomas Jefferson University, Philadelphia, United States of America, PA, USA
| |
Collapse
|
482
|
Szaryńska M, Olejniczak A, Kobiela J, Spychalski P, Kmieć Z. Therapeutic strategies against cancer stem cells in human colorectal cancer. Oncol Lett 2017; 14:7653-7668. [PMID: 29250169 PMCID: PMC5727596 DOI: 10.3892/ol.2017.7261] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2017] [Accepted: 09/01/2017] [Indexed: 12/16/2022] Open
Abstract
Colorectal cancer (CRC) is the third most frequent malignancy and represents the fourth most common cause of cancer-associated mortalities in the world. Despite many advances in the treatment of CRC, the 5-year survival rate of patients with CRC remains unsatisfactory due to tumor recurrence and metastases. Recently, cancer stem cells (CSCs), have been suggested to be responsible for the initiation and relapse of the disease, and have been identified in CRC. Due to their basic biological features, which include self-renewal and pluripotency, CSCs may be novel therapeutic targets for CRC and other cancer types. Conventional therapeutics only act on proliferating and mature cancer cells, while quiescent CSCs survive and often become resistant to chemotherapy. In this review, markers of CRC-CSCs are evaluated and the recently introduced experimental therapies that specifically target these cells by inducing CSC proliferation, differentiation and sensitization to apoptotic signals via molecules including Dickkopf-1, bone morphogenetic protein 4, Kindlin-1, tankyrases, and p21-activated kinase 1, are discussed. In addition, novel strategies aimed at inhibiting some crucial processes engaged in cancer progression regulated by the Wnt, transforming growth factor β and Notch signaling pathways (pyrvinium pamoate, silibinin, PRI-724, P17, and P144 peptides) are also evaluated. Although the metabolic alterations in cancer were first described decades ago, it is only recently that the concept of targeting key regulatory molecules of cell metabolism, such as sirtuin 1 (miR-34a) and AMPK (metformin), has emerged. In conclusion, the discovery of CSCs has resulted in the definition of novel therapeutic targets and the development of novel experimental therapies for CRC. However, further investigations are required in order to apply these novel drugs in human CRC.
Collapse
Affiliation(s)
- Magdalena Szaryńska
- Department of Histology, Medical University of Gdańsk, 80-210 Gdańsk; Gdańsk, Poland
| | - Agata Olejniczak
- Department of Histology, Medical University of Gdańsk, 80-210 Gdańsk; Gdańsk, Poland
| | - Jarosław Kobiela
- Department of General, Endocrine and Transplant Surgery, Invasive Medicine Center, Medical University of Gdańsk, 80-214 Gdańsk, Poland
| | - Piotr Spychalski
- Department of General, Endocrine and Transplant Surgery, Invasive Medicine Center, Medical University of Gdańsk, 80-214 Gdańsk, Poland
| | - Zbigniew Kmieć
- Department of Histology, Medical University of Gdańsk, 80-210 Gdańsk; Gdańsk, Poland
| |
Collapse
|
483
|
Thalheim T, Buske P, Przybilla J, Rother K, Loeffler M, Galle J. Stem cell competition in the gut: insights from multi-scale computational modelling. J R Soc Interface 2017; 13:rsif.2016.0218. [PMID: 27534699 PMCID: PMC5014057 DOI: 10.1098/rsif.2016.0218] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2016] [Accepted: 07/21/2016] [Indexed: 12/14/2022] Open
Abstract
Three-dimensional (3D) computational tissue models can provide a comprehensive description of tissue dynamics at the molecular, cellular and tissue level. Moreover, they can support the development of hypotheses about cellular interactions and about synergies between major signalling pathways. We exemplify these capabilities by simulation of a 3D single-cell-based model of mouse small intestinal crypts. We analyse the impact of lineage specification, distribution and cellular lifespan on clonal competition and study effects of Notch- and Wnt activation on fixation of mutations within the tissue. Based on these results, we predict that experimentally observed synergistic effects between autonomous Notch- and Wnt signalling in triggering intestinal tumourigenesis originate in the suppression of Wnt-dependent secretory lineage specification by Notch, giving rise to an increased fixation probability of Wnt-activating mutations. Our study demonstrates that 3D computational tissue models can support a mechanistic understanding of long-term tissue dynamics under homeostasis and during transformation.
Collapse
Affiliation(s)
- Torsten Thalheim
- Interdisciplinary Center for Bioinformatics, Leipzig University, Haertelstr. 16-18, 04107 Leipzig, Germany
| | - Peter Buske
- Interdisciplinary Center for Bioinformatics, Leipzig University, Haertelstr. 16-18, 04107 Leipzig, Germany
| | - Jens Przybilla
- Interdisciplinary Center for Bioinformatics, Leipzig University, Haertelstr. 16-18, 04107 Leipzig, Germany
| | - Karen Rother
- Interdisciplinary Center for Bioinformatics, Leipzig University, Haertelstr. 16-18, 04107 Leipzig, Germany
| | - Markus Loeffler
- Interdisciplinary Center for Bioinformatics, Leipzig University, Haertelstr. 16-18, 04107 Leipzig, Germany Institute for Medical Informatics, Statistics and Epidemiology, Leipzig University, Haertelstr. 16-18, 04107 Leipzig, Germany
| | - Joerg Galle
- Interdisciplinary Center for Bioinformatics, Leipzig University, Haertelstr. 16-18, 04107 Leipzig, Germany
| |
Collapse
|
484
|
Batlle E, Clevers H. Cancer stem cells revisited. Nat Med 2017; 23:1124-1134. [PMID: 28985214 DOI: 10.1038/nm.4409] [Citation(s) in RCA: 1857] [Impact Index Per Article: 232.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2017] [Accepted: 08/23/2017] [Indexed: 02/06/2023]
Abstract
The cancer stem cell (CSC) concept was proposed four decades ago, and states that tumor growth, analogous to the renewal of healthy tissues, is fueled by small numbers of dedicated stem cells. It has gradually become clear that many tumors harbor CSCs in dedicated niches, and yet their identification and eradication has not been as obvious as was initially hoped. Recently developed lineage-tracing and cell-ablation strategies have provided insights into CSC plasticity, quiescence, renewal, and therapeutic response. Here we discuss new developments in the CSC field in relationship to changing insights into how normal stem cells maintain healthy tissues. Expectations in the field have become more realistic, and now, the first successes of therapies based on the CSC concept are emerging.
Collapse
Affiliation(s)
- Eduard Batlle
- Institute for Research in Biomedicine (IRB Barcelona), The Barcelona Institute of Science and Technology, Barcelona, Spain.,Institució Catalana de Recerca i Estudis Avançats (ICREA), Barcelona, Spain.,CiberONC, Centro de Investigación Biomédica en Red de Cáncer (CIBERONC), Barcelona, Spain
| | - Hans Clevers
- Hubrecht Institute, Royal Netherlands Academy of Arts and Sciences, University Medical Center Utrecht and Princess Maxima Center, Utrecht, the Netherlands
| |
Collapse
|
485
|
Kim CK, Yang VW, Bialkowska AB. The Role of Intestinal Stem Cells in Epithelial Regeneration Following Radiation-Induced Gut Injury. CURRENT STEM CELL REPORTS 2017; 3:320-332. [PMID: 29497599 PMCID: PMC5818549 DOI: 10.1007/s40778-017-0103-7] [Citation(s) in RCA: 70] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Purpose of Review Intestinal epithelial cells show remarkable plasticity in regenerating the epithelium following radiation injury. In this review, we explore the regenerative capacity and mechanisms of various populations of intestinal stem cells (ISCs) in response to ionizing radiation. Recent Findings Ionizing radiation targets mitotic cells that include “active” ISCs and progenitor cells. Lineage-tracing experiments showed that several different cell types identified by a single or combination of markers are capable of regenerating the epithelium, confirming that ISCs exhibit a high degree of plasticity. However, the identities of the contributing cells marked by various markers require further validation. Summary Following radiation injury, quiescent and/or radioresistant cells become active stem cells to regenerate the epithelium. Looking forward, understanding the mechanisms by which ISCs govern tissue regeneration is crucial to determine therapeutic approaches to promote intestinal epithelial regeneration following injury.
Collapse
Affiliation(s)
- Chang-Kyung Kim
- 1Department of Medicine, Stony Brook University School of Medicine, HSC T-17, Rm. 090, Stony Brook, NY 11794 USA
| | - Vincent W Yang
- 1Department of Medicine, Stony Brook University School of Medicine, HSC T-17, Rm. 090, Stony Brook, NY 11794 USA.,2Department of Physiology and Biophysics, Stony Brook University School of Medicine, Stony Brook, NY 11794 USA
| | - Agnieszka B Bialkowska
- 1Department of Medicine, Stony Brook University School of Medicine, HSC T-17, Rm. 090, Stony Brook, NY 11794 USA
| |
Collapse
|
486
|
Middelhoff M, Westphalen CB, Hayakawa Y, Yan KS, Gershon MD, Wang TC, Quante M. Dclk1-expressing tuft cells: critical modulators of the intestinal niche? Am J Physiol Gastrointest Liver Physiol 2017; 313:G285-G299. [PMID: 28684459 PMCID: PMC5668570 DOI: 10.1152/ajpgi.00073.2017] [Citation(s) in RCA: 66] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/28/2017] [Revised: 06/20/2017] [Accepted: 06/22/2017] [Indexed: 01/31/2023]
Abstract
Dclk1-expressing tuft cells constitute a unique intestinal epithelial lineage that is distinct from enterocytes, Paneth cells, goblet cells, and enteroendocrine cells. Tuft cells express taste-related receptors and distinct transcription factors and interact closely with the enteric nervous system, suggesting a chemosensory cell lineage. In addition, recent work has shown that tuft cells interact closely with cells of the immune system, with a critical role in the cellular regulatory network governing responses to luminal parasites. Importantly, ablation of tuft cells severely impairs epithelial proliferation and tissue regeneration after injury, implicating tuft cells in the modulation of epithelial stem/progenitor function. Finally, tuft cells expand during chronic inflammation and in preneoplastic tissues, suggesting a possible early role in inflammation-associated tumorigenesis. Hence, we outline and discuss emerging evidence that strongly supports tuft cells as key regulatory cells in the complex network of the intestinal microenvironment.
Collapse
Affiliation(s)
- Moritz Middelhoff
- 1Division of Digestive and Liver Diseases, Department of Medicine, Columbia University Medical Center, New York, New York; ,2II. Medizinische Klinik, Klinikum Rechts der Isar, Technische Universität München, Munich, Germany;
| | - C. Benedikt Westphalen
- 3Medizinische Klinik und Poliklinik III, Klinikum der Universität München, Munich, Germany;
| | - Yoku Hayakawa
- 4Department of Gastroenterology, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan;
| | - Kelley S. Yan
- 1Division of Digestive and Liver Diseases, Department of Medicine, Columbia University Medical Center, New York, New York; ,5Department of Genetics and Development, Columbia University Medical Center, New York, New York; and
| | - Michael D. Gershon
- 6Department of Pathology and Cell Biology, Columbia University Medical Center, New York, New York
| | - Timothy C. Wang
- 1Division of Digestive and Liver Diseases, Department of Medicine, Columbia University Medical Center, New York, New York;
| | - Michael Quante
- II. Medizinische Klinik, Klinikum Rechts der Isar, Technische Universität München, Munich, Germany;
| |
Collapse
|
487
|
Cao W, Chen K, Bolkestein M, Yin Y, Verstegen MMA, Bijvelds MJC, Wang W, Tuysuz N, Ten Berge D, Sprengers D, Metselaar HJ, van der Laan LJW, Kwekkeboom J, Smits R, Peppelenbosch MP, Pan Q. Dynamics of Proliferative and Quiescent Stem Cells in Liver Homeostasis and Injury. Gastroenterology 2017; 153:1133-1147. [PMID: 28716722 DOI: 10.1053/j.gastro.2017.07.006] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/04/2016] [Revised: 07/05/2017] [Accepted: 07/06/2017] [Indexed: 01/10/2023]
Abstract
BACKGROUND & AIMS Adult liver stem cells are usually maintained in a quiescent/slow-cycling state. However, a proliferative population, marked by leucine-rich repeat-containing G-protein coupled receptor 5 (LGR5), was recently identified as an important liver stem cell population. We aimed to investigate the dynamics and functions of proliferative and quiescent stem cells in healthy and injured livers. METHODS We studied LGR5-positive stem cells using diphtheria toxin receptor and green fluorescent protein (GFP) knock-in mice. In these mice, LGR5-positive cells specifically coexpress diphtheria toxin receptor and the GFP reporter. Lineage-tracing experiments were performed in mice in which LGR5-positive stem cells and their daughter cells expressed a yellow fluorescent protein/mTmG reporter. Slow-cycling stem cells were investigated using GFP-based, Tet-on controlled transgenic mice. We studied the dynamics of both stem cell populations during liver homeostasis and injury induced by carbon tetrachloride. Stem cells were isolated from mouse liver and organoid formation assays were performed. We analyzed hepatocyte and cholangiocyte lineage differentiation in cultured organoids. RESULTS We did not detect LGR5-expressing stem cells in livers of mice at any stage of a lifespan, but only following liver injury induced by carbon tetrachloride. In the liver stem cell niche, where the proliferating LGR5+ cells are located, we identified a quiescent/slow-cycling cell population, called label-retaining cells (LRCs). These cells were present in the homeostatic liver, capable of retaining the GFP label over 1 year, and expressed a panel of progenitor/stem cell markers. Isolated single LRCs were capable of forming organoids that could be carried in culture, expanded for months, and differentiated into hepatocyte and cholangiocyte lineages in vitro, demonstrating their bona fide stem cell properties. More interestingly, LRCs responded to liver injury and gave rise to LGR5-expressing stem cells, as well as other potential progenitor/stem cell populations, including SOX9- and CD44-positive cells. CONCLUSIONS Proliferative LGR5 cells are an intermediate stem cell population in the liver that emerge only during tissue injury. In contrast, LRCs are quiescent stem cells that are present in homeostatic liver, respond to tissue injury, and can give rise to LGR5 stem cells, as well as SOX9- and CD44-positive cells.
Collapse
Affiliation(s)
- Wanlu Cao
- Department of Gastroenterology and Hepatology, Erasmus MC-University Medical Center, Rotterdam, The Netherlands
| | - Kan Chen
- Department of Gastroenterology and Hepatology, Erasmus MC-University Medical Center, Rotterdam, The Netherlands; College of Life Sciences, Zhejiang Sci-Tech University, Hangzhou, China
| | - Michiel Bolkestein
- Department of Cell Biology, Erasmus MC-University Medical Center, Rotterdam, The Netherlands; Department of Surgery, Erasmus MC-University Medical Center, Rotterdam, The Netherlands
| | - Yuebang Yin
- Department of Gastroenterology and Hepatology, Erasmus MC-University Medical Center, Rotterdam, The Netherlands
| | - Monique M A Verstegen
- Department of Surgery, Erasmus MC-University Medical Center, Rotterdam, The Netherlands
| | - Marcel J C Bijvelds
- Department of Gastroenterology and Hepatology, Erasmus MC-University Medical Center, Rotterdam, The Netherlands
| | - Wenshi Wang
- Department of Gastroenterology and Hepatology, Erasmus MC-University Medical Center, Rotterdam, The Netherlands
| | - Nesrin Tuysuz
- Department of Cell Biology, Erasmus MC-University Medical Center, Rotterdam, The Netherlands
| | - Derk Ten Berge
- Department of Cell Biology, Erasmus MC-University Medical Center, Rotterdam, The Netherlands
| | - Dave Sprengers
- Department of Gastroenterology and Hepatology, Erasmus MC-University Medical Center, Rotterdam, The Netherlands
| | - Herold J Metselaar
- Department of Gastroenterology and Hepatology, Erasmus MC-University Medical Center, Rotterdam, The Netherlands
| | - Luc J W van der Laan
- Department of Surgery, Erasmus MC-University Medical Center, Rotterdam, The Netherlands
| | - Jaap Kwekkeboom
- Department of Gastroenterology and Hepatology, Erasmus MC-University Medical Center, Rotterdam, The Netherlands
| | - Ron Smits
- Department of Gastroenterology and Hepatology, Erasmus MC-University Medical Center, Rotterdam, The Netherlands
| | - Maikel P Peppelenbosch
- Department of Gastroenterology and Hepatology, Erasmus MC-University Medical Center, Rotterdam, The Netherlands
| | - Qiuwei Pan
- Department of Gastroenterology and Hepatology, Erasmus MC-University Medical Center, Rotterdam, The Netherlands.
| |
Collapse
|
488
|
Cancer stem cells revisited. Nat Med 2017. [DOI: 10.1038/nm.4409 order by 12749--] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
489
|
Phesse TJ, Durban VM, Sansom OJ. Defining key concepts of intestinal and epithelial cancer biology through the use of mouse models. Carcinogenesis 2017; 38:953-965. [PMID: 28981588 PMCID: PMC5862284 DOI: 10.1093/carcin/bgx080] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2016] [Revised: 07/12/2017] [Accepted: 08/01/2017] [Indexed: 12/18/2022] Open
Abstract
Over the past 20 years, huge advances have been made in modelling human diseases such as cancer using genetically modified mice. Accurate in vivo models are essential to examine the complex interaction between cancer cells, surrounding stromal cells, tumour-associated inflammatory cells, fibroblast and blood vessels, and to recapitulate all the steps involved in metastasis. Elucidating these interactions in vitro has inherent limitations, and thus animal models are a powerful tool to enable researchers to gain insight into the complex interactions between signalling pathways and different cells types. This review will focus on how advances in in vivo models have shed light on many aspects of cancer biology including the identification of oncogenes, tumour suppressors and stem cells, epigenetics, cell death and context dependent cell signalling.
Collapse
Affiliation(s)
- Toby J Phesse
- European Cancer Stem Cell Research Institute, Cardiff University, Cardiff, South Glamorgan, CF24 4HQ, UK
| | - Victoria Marsh Durban
- European Cancer Stem Cell Research Institute, Cardiff University, Cardiff, South Glamorgan, CF24 4HQ, UK
- ReNeuron, Pencoed Business Park, Pencoed, Bridgend, CF35 5HY, UK and
| | - Owen J Sansom
- Cancer Research UK Beatson Institute, Garscube Estate, Bearsden, Glasgow, G61 1BD, UK
| |
Collapse
|
490
|
Joosten SPJ, Zeilstra J, van Andel H, Mijnals RC, Zaunbrecher J, Duivenvoorden AAM, van de Wetering M, Clevers H, Spaargaren M, Pals ST. MET Signaling Mediates Intestinal Crypt-Villus Development, Regeneration, and Adenoma Formation and Is Promoted by Stem Cell CD44 Isoforms. Gastroenterology 2017; 153:1040-1053.e4. [PMID: 28716720 DOI: 10.1053/j.gastro.2017.07.008] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/26/2016] [Revised: 06/12/2017] [Accepted: 07/05/2017] [Indexed: 02/07/2023]
Abstract
BACKGROUND & AIMS Resistance of metastatic human colorectal cancer cells to drugs that block epidermal growth factor (EGF) receptor signaling could be caused by aberrant activity of other receptor tyrosine kinases, activating overlapping signaling pathways. One of these receptor tyrosine kinases could be MET, the receptor for hepatocyte growth factor (HGF). We investigated how MET signaling, and its interaction with CD44 (a putative MET coreceptor regulated by Wnt signaling and highly expressed by intestinal stem cells [ISCs] and adenomas) affects intestinal homeostasis, regeneration, and adenoma formation in mini-gut organoids and mice. METHODS We established organoid cultures from ISCs stimulated with HGF or EGF and assessed intestinal differentiation by immunohistochemistry. Mice with total epithelial disruption of MET (AhCre/Metfl/fl/LacZ) or ISC-specific disruption of MET (Lgr5Creert2/Metfl/fl/LacZ) and control mice (AhCre/Met+/+/LacZ, Lgr5Creert2/Met+/+/LacZ) were exposed to 10 Gy total body irradiation; intestinal tissues were collected, and homeostasis and regeneration were assessed by immunohistochemistry. We investigated adenoma organoid expansion stimulated by HGF or EGF using adenomas derived from Lgr5Creert2/Metfl/fl/Apcfl/fl and Lgr5Creert2/Met+/+/Apcfl/fl mice. The same mice were evaluated for adenoma prevalence and size. We also quantified adenomas in AhCre/Metfl/fl/Apcfl/+ mice compared with AhCre/Met+/+/Apcfl/+ control mice. We studied expansion of organoids generated from crypts and adenomas, stimulated by HGF or EGF, that were derived from mice expressing different CD44 splice variants (Cd44+/+, Cd44-/-, Cd44s/s, or Cd44v4-10/v4-10 mice). RESULTS Crypts incubated with EGF or HGF expanded into self-organizing mini-guts with similar levels of efficacy and contained all differentiated cell lineages. MET-deficient mice did not have defects in intestinal homeostasis. Total body irradiation reduced numbers of proliferating crypts in AhCre/Metfl/fl/LacZ mice. Lgr5Creert2/Metfl/fl/LacZ mice had impaired regeneration of MET-deficient ISCs. Adenoma organoids stimulated with EGF or HGF expanded to almost twice the size of nonstimulated organoids. MET-deficient adenoma organoids did not respond to HGF stimulation, but did respond to EGF. ISC-specific disruption of Met (Lgr5Creert2/Metfl/fl/Apcfl/fl mice) caused a twofold increase in apoptosis in microadenomas, resulting in an approximately 50% reduction of microadenoma numbers and significantly reduced average adenoma size. Total epithelial disruption of Met (AhCre/Metfl/fl/Apcfl/+ mice) resulted in an approximate 50% reduction in (micro)adenoma numbers. Intestinal crypts from Cd44-/- mice did not expand to the same extent as crypts from Cd44+/+ mice on stimulation with HGF, but had the same response to EGF. The negative effect on HGF-mediated growth was overcome by expression of CD44v4-10, but not by CD44s. Similarly, HGF-mediated expansion of adenoma organoids required CD44v4-10. CONCLUSIONS In studies of intestinal organoid cultures and mice with inducible deletion of MET, we found HGF receptor signaling to regulate intestinal homeostasis and regeneration, as well as adenoma formation. These activities of MET are promoted by the stem cell CD44 isoform CD44v4-10. Our findings provide rationale for targeting signaling via MET and CD44 during anti-EGF receptor therapy of patients with colorectal cancer or in patients resistant to EGF receptor inhibitors.
Collapse
Affiliation(s)
- Sander P J Joosten
- Department of Pathology, Academic Medical Center, University of Amsterdam, Amsterdam, The Netherlands
| | - Jurrit Zeilstra
- Department of Pathology, Academic Medical Center, University of Amsterdam, Amsterdam, The Netherlands
| | - Harmen van Andel
- Department of Pathology, Academic Medical Center, University of Amsterdam, Amsterdam, The Netherlands
| | - R Clinton Mijnals
- Department of Pathology, Academic Medical Center, University of Amsterdam, Amsterdam, The Netherlands
| | - Joost Zaunbrecher
- Department of Pathology, Academic Medical Center, University of Amsterdam, Amsterdam, The Netherlands
| | - Annet A M Duivenvoorden
- Department of Pathology, Academic Medical Center, University of Amsterdam, Amsterdam, The Netherlands
| | - Marc van de Wetering
- Hubrecht Institute and University Medical Center Utrecht, Utrecht, The Netherlands
| | - Hans Clevers
- Hubrecht Institute and University Medical Center Utrecht, Utrecht, The Netherlands
| | - Marcel Spaargaren
- Department of Pathology, Academic Medical Center, University of Amsterdam, Amsterdam, The Netherlands
| | - Steven T Pals
- Department of Pathology, Academic Medical Center, University of Amsterdam, Amsterdam, The Netherlands.
| |
Collapse
|
491
|
Morgenstern Y, Das Adhikari U, Ayyash M, Elyada E, Tóth B, Moor A, Itzkovitz S, Ben-Neriah Y. Casein kinase 1-epsilon or 1-delta required for Wnt-mediated intestinal stem cell maintenance. EMBO J 2017; 36:3046-3061. [PMID: 28963394 DOI: 10.15252/embj.201696253] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2016] [Revised: 08/09/2017] [Accepted: 08/11/2017] [Indexed: 01/01/2023] Open
Abstract
The intestinal epithelium holds an immense regenerative capacity mobilized by intestinal stem cells (ISCs), much of it supported by Wnt pathway activation. Several unique regulatory mechanisms ensuring optimal levels of Wnt signaling have been recognized in ISCs. Here, we identify another Wnt signaling amplifier, CKIε, which is specifically upregulated in ISCs and is essential for ISC maintenance, especially in the absence of its close isoform CKIδ. Co-ablation of CKIδ/ε in the mouse gut epithelium results in rapid ISC elimination, with subsequent growth arrest, crypt-villous shrinking, and rapid mouse death. Unexpectedly, Wnt activation is preserved in all CKIδ/ε-deficient enterocyte populations, with the exception of Lgr5+ ISCs, which exhibit Dvl2-dependent Wnt signaling attenuation. CKIδ/ε-depleted gut organoids cease proliferating and die rapidly, yet survive and resume self-renewal upon reconstitution of Dvl2 expression. Our study underscores a unique regulation mode of the Wnt pathway in ISCs, possibly providing new means of stem cell enrichment for regenerative medicine.
Collapse
Affiliation(s)
- Yael Morgenstern
- The Lautenberg Center for Immunology, Institute of Medical Research, Hebrew University-Hadassah Medical School, Jerusalem, Israel
| | - Upasana Das Adhikari
- The Lautenberg Center for Immunology, Institute of Medical Research, Hebrew University-Hadassah Medical School, Jerusalem, Israel
| | - Muneef Ayyash
- The Lautenberg Center for Immunology, Institute of Medical Research, Hebrew University-Hadassah Medical School, Jerusalem, Israel
| | - Ela Elyada
- The Lautenberg Center for Immunology, Institute of Medical Research, Hebrew University-Hadassah Medical School, Jerusalem, Israel
| | - Beáta Tóth
- Department of Molecular Cell Biology, Weizmann Institute of Science, Rehovot, Israel
| | - Andreas Moor
- Department of Molecular Cell Biology, Weizmann Institute of Science, Rehovot, Israel
| | - Shalev Itzkovitz
- Department of Molecular Cell Biology, Weizmann Institute of Science, Rehovot, Israel
| | - Yinon Ben-Neriah
- The Lautenberg Center for Immunology, Institute of Medical Research, Hebrew University-Hadassah Medical School, Jerusalem, Israel
| |
Collapse
|
492
|
Varga J, Greten FR. Cell plasticity in epithelial homeostasis and tumorigenesis. Nat Cell Biol 2017; 19:1133-1141. [PMID: 28945230 DOI: 10.1038/ncb3611] [Citation(s) in RCA: 160] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2016] [Accepted: 08/11/2017] [Indexed: 02/06/2023]
Abstract
The adult organism is characterized by remarkable plasticity, which enables efficient regeneration and restoration of homeostasis after damage. When aberrantly activated, this plasticity contributes to tumour initiation and progression. Here we review recent advances in this field with a focus on cell fate changes and the epithelial-mesenchymal transition-two distinct, yet closely related, forms of plasticity with fundamental roles in homeostasis and cancer.
Collapse
Affiliation(s)
- Julia Varga
- Institute for Tumor Biology and Experimental Therapy, Georg-Speyer-Haus, Paul-Ehrlich-Str. 42-44, 60596 Frankfurt/Main, Germany
| | - Florian R Greten
- Institute for Tumor Biology and Experimental Therapy, Georg-Speyer-Haus, Paul-Ehrlich-Str. 42-44, 60596 Frankfurt/Main, Germany.,German Cancer Consortium (DKTK) and German Cancer Research Center (DKFZ), 69120 Heidelberg, Germany
| |
Collapse
|
493
|
Huang PY, Kandyba E, Jabouille A, Sjolund J, Kumar A, Halliwill K, McCreery M, DelRosario R, Kang HC, Wong CE, Seibler J, Beuger V, Pellegrino M, Sciambi A, Eastburn DJ, Balmain A. Lgr6 is a stem cell marker in mouse skin squamous cell carcinoma. Nat Genet 2017; 49:1624-1632. [PMID: 28945253 PMCID: PMC5662105 DOI: 10.1038/ng.3957] [Citation(s) in RCA: 44] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2017] [Accepted: 08/25/2017] [Indexed: 12/11/2022]
Abstract
The G-protein-coupled receptors Lgr4/5/6 are Wnt signalling mediators, but their functions in squamous carcinomas (SCCs) are unclear. Using lineage tracing in Lgr5-EGFP-CreERT2- and Lgr6-EGFP-CreERT2- Rosa26/Tomato reporter mice, we demonstrate that Lgr6, but not Lgr5, acts as an epithelial stem cell marker in vivo in SCCs. We identify, by single molecule in situ hybridisation and cell sorting, rare Lgr6-positive cells in immortalised keratinocytes, and show that their frequency increases in advanced SCCs. Lgr6 expression is enriched in cells with stem cell characteristics, and Lgr6 downregulation in vivo causes increased epidermal proliferation, with expanded lineage tracing from Lgr6+ epidermal stem cells. Surprisingly, Lgr6 germline knockout mice are predisposed to SCC development, by a mechanism that includes compensatory upregulation of Lgr5. These data provide a model for human patients with germline loss of function mutations in WNT pathway genes RSPO1 or LGR4, who show increased susceptibility to squamous tumour development.
Collapse
Affiliation(s)
- Phillips Y Huang
- Helen Diller Family Comprehensive Cancer Center University of California, San Francisco, San Francisco, California, USA.,Genome Institute of Singapore, Singapore
| | - Eve Kandyba
- Helen Diller Family Comprehensive Cancer Center University of California, San Francisco, San Francisco, California, USA
| | - Arnaud Jabouille
- Helen Diller Family Comprehensive Cancer Center University of California, San Francisco, San Francisco, California, USA
| | - Jonas Sjolund
- Division of Translational Cancer Research, University of Lund, Lund, Sweden
| | - Atul Kumar
- Helen Diller Family Comprehensive Cancer Center University of California, San Francisco, San Francisco, California, USA
| | - Kyle Halliwill
- Helen Diller Family Comprehensive Cancer Center University of California, San Francisco, San Francisco, California, USA
| | - Melissa McCreery
- Helen Diller Family Comprehensive Cancer Center University of California, San Francisco, San Francisco, California, USA
| | - Reyno DelRosario
- Helen Diller Family Comprehensive Cancer Center University of California, San Francisco, San Francisco, California, USA
| | | | | | | | | | | | - Adam Sciambi
- Mission Bio, Inc., San Francisco, California, USA
| | | | - Allan Balmain
- Helen Diller Family Comprehensive Cancer Center University of California, San Francisco, San Francisco, California, USA.,Department of Biochemistry and Biophysics, University of California San Francisco, San Francisco, California, USA
| |
Collapse
|
494
|
Cedeno RJ, Nakauka-Ddamba A, Yousefi M, Sterling S, Leu NA, Li N, Pehrson JR, Lengner CJ. The histone variant macroH2A confers functional robustness to the intestinal stem cell compartment. PLoS One 2017; 12:e0185196. [PMID: 28934364 PMCID: PMC5608326 DOI: 10.1371/journal.pone.0185196] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2017] [Accepted: 09/07/2017] [Indexed: 12/20/2022] Open
Abstract
A stem cell's epigenome directs cell fate during development, homeostasis, and regeneration. Epigenetic dysregulation can lead to inappropriate cell fate decisions, aberrant cell function, and even cancer. The histone variant macroH2A has been shown to influence gene expression, guide cell fate, and safeguard against genotoxic stress. Interestingly, mice lacking functional macroH2A histones (hereafter referred to as macroH2A DKO) are viable and fertile; yet suffer from increased perinatal death and reduced weight and size compared to wildtype (WT). Here, we ask whether the ostensible reduced vigor of macroH2A DKO mice extends to intestinal stem cell (ISC) function during homeostasis, regeneration, and oncogenesis. Lgr5-eGFP-IRES-CreERT2 or Hopx-CreERT2::Rosa26-LSL-tdTomato ISC reporter mice or the C57BL/6J-Apcmin/J murine intestinal adenoma model were bred into a macroH2A DKO or strain-matched WT background and assessed for ISC functionality, regeneration and tumorigenesis. High-dose (12Gy) whole-body γ-irradiation was used as an injury model. We show that macroH2A is dispensable for intestinal homeostasis and macroH2A DKO mice have similar numbers of active crypt-base columnar ISCs (CBCs). MacroH2A DKO intestine exhibits impaired regeneration following injury, despite having significantly more putative reserve ISCs. DKO reserve ISCs disproportionately undergo apoptosis compared to WT after DNA damage infliction. Interestingly, a macroH2A DKO background does not significantly increase tumorigenesis in the Apcmin model of intestinal adenoma. We conclude that macroH2A influences reserve ISC number and function during homeostasis and regeneration. These data suggest macroH2A enhances reserve ISC survival after DNA damage and thus confers functional robustness to the intestinal epithelium.
Collapse
Affiliation(s)
- Ryan James Cedeno
- Department of Biomedical Sciences, University of Pennsylvania School of Veterinary Medicine, Philadelphia, Pennsylvania, United States of America.,Cell and Molecular Biology Graduate Program, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, United States of America
| | - Angela Nakauka-Ddamba
- Department of Biomedical Sciences, University of Pennsylvania School of Veterinary Medicine, Philadelphia, Pennsylvania, United States of America
| | - Maryam Yousefi
- Department of Biomedical Sciences, University of Pennsylvania School of Veterinary Medicine, Philadelphia, Pennsylvania, United States of America.,Cell and Molecular Biology Graduate Program, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, United States of America
| | - Stephanie Sterling
- Department of Biomedical Sciences, University of Pennsylvania School of Veterinary Medicine, Philadelphia, Pennsylvania, United States of America.,Center for Animal Transgenesis, University of Pennsylvania School of Veterinary Medicine, Philadelphia, Pennsylvania, United States of America
| | - Nicolae Adrian Leu
- Department of Biomedical Sciences, University of Pennsylvania School of Veterinary Medicine, Philadelphia, Pennsylvania, United States of America.,Center for Animal Transgenesis, University of Pennsylvania School of Veterinary Medicine, Philadelphia, Pennsylvania, United States of America
| | - Ning Li
- Department of Biomedical Sciences, University of Pennsylvania School of Veterinary Medicine, Philadelphia, Pennsylvania, United States of America
| | - John R Pehrson
- Department of Biomedical Sciences, University of Pennsylvania School of Veterinary Medicine, Philadelphia, Pennsylvania, United States of America
| | - Christopher Joachim Lengner
- Department of Biomedical Sciences, University of Pennsylvania School of Veterinary Medicine, Philadelphia, Pennsylvania, United States of America.,Center for Animal Transgenesis, University of Pennsylvania School of Veterinary Medicine, Philadelphia, Pennsylvania, United States of America.,Center for Molecular Studies in Digestive and Liver Disease, University of Pennsylvania, Philadelphia, Pennsylvania, United States of America.,Institute for Regenerative Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
| |
Collapse
|
495
|
Sachs N, Tsukamoto Y, Kujala P, Peters PJ, Clevers H. Intestinal epithelial organoids fuse to form self-organizing tubes in floating collagen gels. Development 2017; 144:1107-1112. [PMID: 28292848 DOI: 10.1242/dev.143933] [Citation(s) in RCA: 87] [Impact Index Per Article: 10.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2016] [Accepted: 01/16/2017] [Indexed: 12/30/2022]
Abstract
Multiple recent examples highlight how stem cells can self-organize in vitro to establish organoids that closely resemble their in vivo counterparts. Single Lgr5+ mouse intestinal stem cells can be cultured under defined conditions forming ever-expanding epithelial organoids that retain cell polarization, cell type diversity and anatomical organization of the in vivo epithelium. Although exhibiting a remarkable level of self-organization, the so called 'mini-guts' have a closed cystic structure of microscopic size. Here, we describe a simple protocol to generate macroscopic intestinal tubes from small cystic organoids. Embedding proliferating organoids within a contracting floating collagen gel allows them to align and fuse to generate macroscopic hollow structures ('tubes') that are lined with a simple epithelium containing all major cell types (including functional stem cells) of the small intestine. Cells lining the central contiguous lumen closely resemble the epithelial cells on luminal villi in vivo, whereas buds that protrude from the main tube into the surrounding matrix closely resemble crypts. Thus, the remarkable self-organizing properties of Lgr5+ stem cells extend beyond the level of the microscopic cystic organoid to the next, macroscopic, level of tube formation.
Collapse
Affiliation(s)
- Norman Sachs
- Hubrecht Institute, Royal Netherlands Academy of Arts and Sciences (KNAW), and University Medical Center Utrecht, Uppsalalaan 8, Utrecht 3584 CT, The Netherlands
| | - Yoshiyuki Tsukamoto
- Hubrecht Institute, Royal Netherlands Academy of Arts and Sciences (KNAW), and University Medical Center Utrecht, Uppsalalaan 8, Utrecht 3584 CT, The Netherlands
| | - Pekka Kujala
- The Netherlands Cancer Institute, Antoni van Leeuwenhoek Hospital, Plesmanlaan 121, Amsterdam 1066 CX, The Netherlands
| | - Peter J Peters
- The Maastricht Multimodal Molecular Imaging Institute, Universiteitssingel 50, Maastricht 6229 ER, The Netherlands
| | - Hans Clevers
- Hubrecht Institute, Royal Netherlands Academy of Arts and Sciences (KNAW), and University Medical Center Utrecht, Uppsalalaan 8, Utrecht 3584 CT, The Netherlands
| |
Collapse
|
496
|
Intestinal Stem Cell Niche Insights Gathered from Both In Vivo and Novel In Vitro Models. Stem Cells Int 2017; 2017:8387297. [PMID: 29081810 PMCID: PMC5610807 DOI: 10.1155/2017/8387297] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2017] [Accepted: 07/03/2017] [Indexed: 12/12/2022] Open
Abstract
Intestinal stem cells are located at the base of the crypts and are surrounded by a complex structure called niche. This environment is composed mainly of epithelial cells and stroma which provides signals that govern cell maintenance, proliferation, and differentiation. Understanding how the niche regulates stem cell fate by controlling developmental signaling pathways will help us to define how stem cells choose between self-renewal and differentiation and how they maintain their undifferentiated state. Tractable in vitro assay systems, which reflect the complexity of the in vivo situation but provide higher level of control, would likely be crucial in identifying new players and mechanisms controlling stem cell function. Knowledge of the intestinal stem cell niche gathered from both in vivo and novel in vitro models may help us improve therapies for tumorigenesis and intestinal damage and make autologous intestinal transplants a feasible clinical practice.
Collapse
|
497
|
Tian Y, Ma X, Lv C, Sheng X, Li X, Zhao R, Song Y, Andl T, Plikus MV, Sun J, Ren F, Shuai J, Lengner CJ, Cui W, Yu Z. Stress responsive miR-31 is a major modulator of mouse intestinal stem cells during regeneration and tumorigenesis. eLife 2017; 6. [PMID: 28870287 PMCID: PMC5584991 DOI: 10.7554/elife.29538] [Citation(s) in RCA: 58] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2017] [Accepted: 07/07/2017] [Indexed: 12/15/2022] Open
Abstract
Intestinal regeneration and tumorigenesis are believed to be driven by intestinal stem cells (ISCs). Elucidating mechanisms underlying ISC activation during regeneration and tumorigenesis can help uncover the underlying principles of intestinal homeostasis and disease including colorectal cancer. Here we show that miR-31 drives ISC proliferation, and protects ISCs against apoptosis, both during homeostasis and regeneration in response to ionizing radiation injury. Furthermore, miR-31 has oncogenic properties, promoting intestinal tumorigenesis. Mechanistically, miR-31 acts to balance input from Wnt, BMP, TGFβ signals to coordinate control of intestinal homeostasis, regeneration and tumorigenesis. We further find that miR-31 is regulated by the STAT3 signaling pathway in response to radiation injury. These findings identify miR-31 as a critical modulator of ISC biology, and a potential therapeutic target for a broad range of intestinal regenerative disorders and cancers. Cells lining the inner wall of the gut help to absorb nutrients and to protect the body against harmful microbes and substances. Being on the front line of defense means that these cells often sustain injuries. Specialized cells called intestinal stem cells keep the tissues healthy by replacing the damaged and dying cells. The intestinal stem cells can produce copies of themselves and generate precursors of the gut cells. They also have specific mechanism to protect themselves from cell death. These processes are regulated by different signals that are generated by the cell themselves or the neighboring cells. If these processes get out of control, cells can easily be depleted or develop into cancer cells. Until now, it remained unclear how intestinal stem cells can differentiate between and respond to multiple and simultaneous signals. It is known that short RNA molecules called microRNA play an important role in the signaling pathways of damaged cells and during cancer development. In the gut, different microRNAs, including microRNA-31,help to keep the gut lining intact. However, previous research has shown that bowel cancer cells also contain high amounts of microRNA-31. To see whether microRNA-31 plays a role in controlling the signaling systems in intestinal stem cells, Tian, Ma, Lv et al. looked at genetically modified mice that either had too much microRNA-31 or none. Mice with too much microRNA-31 produced more intestinal stem cells and were able to better repair any cell damage. Mice without microRNA-31 gave rise to fewer intestinal stem cellsand had no damage repair, but were able to stop cancer cells in the gut from growing. The results showed that microRNA-31 in intestinal stem cells helps the cells to divide and to protect themselves from cell death. It controlled and balanced the different types of cell signaling by either repressing or activating various signals. When Tian et al. damaged the stem cells using radiation, the cells increased their microRNA-31 levels as a defense mechanism. This helped the cells to survive and to activate repair mechanisms. Furthermore, Tian et al. discovered that microRNA-31 can enhance the growth of tumors. These results indicate that microRNA-31 plays an important role both in repairing gut linings and furthering tumor development. A next step will be to see whether cancer cells use microRNA-31 to protect themselves from chemo- and radiation therapy. This could help scientists find new ways to render cancerous cells more susceptible to existing cancer therapies.
Collapse
Affiliation(s)
- Yuhua Tian
- Beijing Advanced Innovation Center for Food Nutrition and Human Health and State Key Laboratories for Agrobiotechnology, College of Biological Sciences, China Agricultural University, Beijing, China
| | - Xianghui Ma
- Beijing Advanced Innovation Center for Food Nutrition and Human Health and State Key Laboratories for Agrobiotechnology, College of Biological Sciences, China Agricultural University, Beijing, China
| | - Cong Lv
- Beijing Advanced Innovation Center for Food Nutrition and Human Health and State Key Laboratories for Agrobiotechnology, College of Biological Sciences, China Agricultural University, Beijing, China
| | - Xiaole Sheng
- Beijing Advanced Innovation Center for Food Nutrition and Human Health and State Key Laboratories for Agrobiotechnology, College of Biological Sciences, China Agricultural University, Beijing, China
| | - Xiang Li
- Beijing Advanced Innovation Center for Food Nutrition and Human Health and State Key Laboratories for Agrobiotechnology, College of Biological Sciences, China Agricultural University, Beijing, China
| | - Ran Zhao
- Beijing Advanced Innovation Center for Food Nutrition and Human Health and State Key Laboratories for Agrobiotechnology, College of Biological Sciences, China Agricultural University, Beijing, China
| | - Yongli Song
- Beijing Advanced Innovation Center for Food Nutrition and Human Health and State Key Laboratories for Agrobiotechnology, College of Biological Sciences, China Agricultural University, Beijing, China
| | - Thomas Andl
- Vanderbilt University Medical Center, Nashville, United States
| | - Maksim V Plikus
- Department of Developmental and Cell Biology, Sue and Bill Gross Stem Cell Research Center, Center for Complex Biological Systems, University of California, Irvine, Irvine, United States
| | - Jinyue Sun
- Institute of Agro-Food Science and Technology, Shandong Academy of Agricultural Sciences, Jinan, China
| | - Fazheng Ren
- Beijing Advanced Innovation Center for Food Nutrition and Human Health and State Key Laboratories for Agrobiotechnology, College of Biological Sciences, China Agricultural University, Beijing, China
| | - Jianwei Shuai
- Department of Physics and State Key Laboratory of Cellular Stress Biology, Innovation Center for Cell Signaling Network, Xiamen University, Xiamen, China
| | - Christopher J Lengner
- Department of Biomedical Sciences, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, United States.,Institute for Regenerative Medicine, University of Pennsylvania, Philadelphia, United States
| | - Wei Cui
- Institute of Reproductive and Developmental Biology, Faculty of Medicine, Imperial College London, London, United Kingdom
| | - Zhengquan Yu
- Beijing Advanced Innovation Center for Food Nutrition and Human Health and State Key Laboratories for Agrobiotechnology, College of Biological Sciences, China Agricultural University, Beijing, China
| |
Collapse
|
498
|
The Stem Cell Marker Lgr5 Defines a Subset of Postmitotic Neurons in the Olfactory Bulb. J Neurosci 2017; 37:9403-9414. [PMID: 28847812 DOI: 10.1523/jneurosci.0500-17.2017] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2017] [Revised: 07/31/2017] [Accepted: 08/14/2017] [Indexed: 01/10/2023] Open
Abstract
Lgr5, leucine-rich repeat-containing G-protein coupled receptor 5, is a bona fide biomarker for stem cells in multiple tissues. Lgr5 is also expressed in the brain, but the identities and properties of these Lgr5+ cells are still elusive. Using an Lgr5-EGFP reporter mouse line, we found that, from early development to adulthood, Lgr5 is highly expressed in the olfactory bulb (OB), an area with ongoing neurogenesis. Immunostaining with stem cell, glial, and neuronal markers reveals that Lgr5 does not label stem cells in the OB but instead labels a heterogeneous population of neurons with preference in certain subtypes. Patch-clamp recordings in OB slices reveal that Lgr5-EGFP+ cells fire action potentials and display spontaneous excitatory postsynaptic events, indicating that these neurons are integrated into OB circuits. Interestingly, R-spondin 3, a potential ligand of Lgr5, is also expressed in the adult OB. Collectively, our data indicate that Lgr5-expressing cells in the OB are fully differentiated neurons and imply distinct roles of Lgr5 and its ligand in postmitotic cells.SIGNIFICANCE STATEMENT Lgr5 (leucine-rich repeat-containing G-protein coupled receptor 5) is a bona fide stem cell marker in many body organs. Here we report that Lgr5 is also highly expressed in the olfactory bulb (OB), the first relay station in the brain for processing odor information and one of the few neural structures that undergo continuous neurogenesis. Surprisingly, Lgr5 is not expressed in the OB stem cells, but instead in a few subtypes of terminally differentiated neurons, which are incorporated into the OB circuit. This study reveals that Lgr5+ cells in the brain represent a nonstem cell lineage, implying distinct roles of Lgr5 in postmitotic neurons.
Collapse
|
499
|
Stromal R-spondin orchestrates gastric epithelial stem cells and gland homeostasis. Nature 2017; 548:451-455. [PMID: 28813421 DOI: 10.1038/nature23642] [Citation(s) in RCA: 155] [Impact Index Per Article: 19.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2016] [Accepted: 07/07/2017] [Indexed: 12/16/2022]
Abstract
The constant regeneration of stomach epithelium is driven by long-lived stem cells, but the mechanism that regulates their turnover is not well understood. We have recently found that the gastric pathogen Helicobacter pylori can activate gastric stem cells and increase epithelial turnover, while Wnt signalling is known to be important for stem cell identity and epithelial regeneration in several tissues. Here we find that antral Wnt signalling, marked by the classic Wnt target gene Axin2, is limited to the base and lower isthmus of gastric glands, where the stem cells reside. Axin2 is expressed by Lgr5+ cells, as well as adjacent, highly proliferative Lgr5- cells that are able to repopulate entire glands, including the base, upon depletion of the Lgr5+ population. Expression of both Axin2 and Lgr5 requires stroma-derived R-spondin 3 produced by gastric myofibroblasts proximal to the stem cell compartment. Exogenous R-spondin administration expands and accelerates proliferation of Axin2+/Lgr5- but not Lgr5+ cells. Consistent with these observations, H. pylori infection increases stromal R-spondin 3 expression and expands the Axin2+ cell pool to cause hyperproliferation and gland hyperplasia. The ability of stromal niche cells to control and adapt epithelial stem cell dynamics constitutes a sophisticated mechanism that orchestrates epithelial regeneration and maintenance of tissue integrity.
Collapse
|
500
|
A distinct role for Lgr5 + stem cells in primary and metastatic colon cancer. Nature 2017; 543:676-680. [PMID: 28358093 DOI: 10.1038/nature21713] [Citation(s) in RCA: 574] [Impact Index Per Article: 71.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2016] [Accepted: 02/18/2017] [Indexed: 12/21/2022]
Abstract
Cancer stem cells (CSCs) have been hypothesized to represent the driving force behind tumour progression and metastasis, making them attractive cancer targets. However, conclusive experimental evidence for their functional relevance is still lacking for most malignancies. Here we show that the leucine-rich repeat-containing G-protein-coupled receptor 5 (Lgr5) identifies intestinal CSCs in mouse tumours engineered to recapitulate the clinical progression of human colorectal cancer. We demonstrate that selective Lgr5+ cell ablation restricts primary tumour growth, but does not result in tumour regression. Instead, tumours are maintained by proliferative Lgr5- cells that continuously attempt to replenish the Lgr5+ CSC pool, leading to rapid re-initiation of tumour growth upon treatment cessation. Notably, CSCs are critical for the formation and maintenance of liver metastasis derived from colorectal cancers. Together, our data highlight distinct CSC dependencies for primary versus metastasic tumour growth, and suggest that targeting CSCs may represent a therapeutic opportunity for managing metastatic disease.
Collapse
|