451
|
Sun Z, Liu J, Li Y, Lin X, Chu Y, Wang W, Huang S, Li W, Peng J, Liu C, Cai L, Deng W, Sun C, Deng G. Aggregation-Induced-Emission Photosensitizer-Loaded Nano-Superartificial Dendritic Cells with Directly Presenting Tumor Antigens and Reversed Immunosuppression for Photodynamically Boosted Immunotherapy. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2023; 35:e2208555. [PMID: 36255149 DOI: 10.1002/adma.202208555] [Citation(s) in RCA: 14] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/17/2022] [Indexed: 06/16/2023]
Abstract
The success of tumor immunotherapy highlights the potential of harnessing immune system to fight cancer. Activating both native T cells and exhausted T cells is a critical step for generating effective antitumor immunity, which is determined based on the efficient presentation of tumor antigens and co-stimulatory signals by antigen-presenting cells, as well as immunosuppressive reversal. However, strategies for achieving an efficient antigen presentation process and improving the immunosuppressive microenvironment remain unresolved. Here, aggregation-induced-emission (AIE) photosensitizer-loaded nano-superartificial dendritic cells (saDC@Fs-NPs) are developed by coating superartificial dendritic cells membranes from genetically engineered 4T1 tumor cells onto nanoaggregates of AIE photosensitizers. The outer cell membranes of saDC@Fs-NPs are derived from recombinant lentivirus-infected 4T1 tumor cells in which peptide-major histocompatibility complex class I, CD86, and anti-LAG3 antibody are simultaneously anchored. These saDC@Fs-NPs could directly stimulate T-cell activation and reverse T-cell exhaustion for cancer immunotherapy. The inner AIE-active photosensitizers induce immunogenic cell death to activate dendritic cells and enhance T lymphocyte infiltration by photodynamic therapy, promoting the transformation of "cold tumors" into "hot tumors," which further boosts immunotherapy efficiency. This work presents a powerful photoactive and artificial antigen-presenting platform for activating both native T cells and exhausted T cells, as well as facilitating tumor photodynamic immunotherapy.
Collapse
Affiliation(s)
- Zhihong Sun
- School of Pharmaceutical Sciences (Shenzhen), Sun Yat-sen University, Shenzhen, 518107, P. R. China
- The Affiliated Yantai Yuhuangding Hospital of Qingdao University, Yantai, 264000, P. R. China
| | - Jie Liu
- School of Pharmaceutical Sciences (Shenzhen), Sun Yat-sen University, Shenzhen, 518107, P. R. China
| | - Yueying Li
- The Affiliated Yantai Yuhuangding Hospital of Qingdao University, Yantai, 264000, P. R. China
| | - Xun Lin
- School of Pharmaceutical Sciences (Shenzhen), Sun Yat-sen University, Shenzhen, 518107, P. R. China
| | - Yongli Chu
- The Affiliated Yantai Yuhuangding Hospital of Qingdao University, Yantai, 264000, P. R. China
| | - Wenting Wang
- The Affiliated Yantai Yuhuangding Hospital of Qingdao University, Yantai, 264000, P. R. China
| | - Shiyun Huang
- School of Pharmaceutical Sciences (Shenzhen), Sun Yat-sen University, Shenzhen, 518107, P. R. China
| | - Wei Li
- The Affiliated Yantai Yuhuangding Hospital of Qingdao University, Yantai, 264000, P. R. China
| | - Jin Peng
- School of Pharmaceutical Sciences (Shenzhen), Sun Yat-sen University, Shenzhen, 518107, P. R. China
| | - Chuyao Liu
- School of Pharmaceutical Sciences (Shenzhen), Sun Yat-sen University, Shenzhen, 518107, P. R. China
| | - Lintao Cai
- Guangdong Key Laboratory of Nanomedicine, Shenzhen Engineering Laboratory of Nanomedicine and Nanoformulations, CAS-HK Joint Lab for Biomaterials, CAS Key Lab for Health Informatics, Institute of Biomedicine and Biotechnology, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, P. R. China
| | - Wenbin Deng
- School of Pharmaceutical Sciences (Shenzhen), Sun Yat-sen University, Shenzhen, 518107, P. R. China
| | - Chengming Sun
- The Affiliated Yantai Yuhuangding Hospital of Qingdao University, Yantai, 264000, P. R. China
| | - Guanjun Deng
- School of Pharmaceutical Sciences (Shenzhen), Sun Yat-sen University, Shenzhen, 518107, P. R. China
- Guangdong Key Laboratory of Nanomedicine, Shenzhen Engineering Laboratory of Nanomedicine and Nanoformulations, CAS-HK Joint Lab for Biomaterials, CAS Key Lab for Health Informatics, Institute of Biomedicine and Biotechnology, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, P. R. China
| |
Collapse
|
452
|
Alvarez M, Molina C, Garasa S, Ochoa MC, Rodriguez-Ruiz ME, Gomis G, Cirella A, Olivera I, Glez-Vaz J, Gonzalez-Gomariz J, luri-Rey C, azpilikueta A, Bolaños E, Teijeira A, Berraondo P, Quintero M, Melero I. Intratumoral neoadjuvant immunotherapy based on the BO-112 viral RNA mimetic. Oncoimmunology 2023; 12:2197370. [PMID: 37035637 PMCID: PMC10078127 DOI: 10.1080/2162402x.2023.2197370] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/11/2023] Open
Abstract
BO-112 is a poly I:C-based viral mimetic that exerts anti-tumor efficacy when intratumorally delivered in mouse models. Intratumoral BO-112 synergizes in mice with systemic anti-PD-1 mAbs and this combination has attained efficacy in PD1-refractory melanoma patients. We sought to evaluate the anti-tumor efficacy of BO-112 pre-surgically applied in neoadjuvant settings to mouse models. We have observed that repeated intratumoral injections of BO-112 prior to surgical excision of the primary tumor significantly reduced tumor metastasis from orthotopically implanted 4T1-derived tumors and subcutaneous MC38-derived tumors in mice. Such effects were enhanced when combined with systemic anti-PD-1 mAb. The anti-tumor efficacy of this neoadjuvant immunotherapy approach depended on the presence of antigen-specific effector CD8 T cells and cDC1 antigen-presenting cells. Since BO-112 has been successful in phase-two clinical trials for metastatic melanoma, these results provide a strong rationale for translating this pre-surgical strategy into clinical settings, especially in combination with standard-of-care checkpoint inhibitors.
Collapse
Affiliation(s)
- Maite Alvarez
- Program for Immunology and Immunotherapy, CIMA, Universidad de Navarra, Pamplona, Spain
- Navarra Institute for Health Research (IdiSNA), Pamplona, Spain
- Centro de Investigación Biomédica en Red de Cáncer (CIBERONC), Madrid, Spain
- CONTACT Maite Alvarez
| | - Carmen Molina
- Program for Immunology and Immunotherapy, CIMA, Universidad de Navarra, Pamplona, Spain
- Navarra Institute for Health Research (IdiSNA), Pamplona, Spain
| | - Saray Garasa
- Program for Immunology and Immunotherapy, CIMA, Universidad de Navarra, Pamplona, Spain
- Navarra Institute for Health Research (IdiSNA), Pamplona, Spain
| | - Maria C. Ochoa
- Program for Immunology and Immunotherapy, CIMA, Universidad de Navarra, Pamplona, Spain
- Navarra Institute for Health Research (IdiSNA), Pamplona, Spain
- Centro de Investigación Biomédica en Red de Cáncer (CIBERONC), Madrid, Spain
| | - Maria E Rodriguez-Ruiz
- Departments of Immunology and Oncology (CCUN), Clínica Universidad de Navarra, Pamplona, Spain
| | - Gabriel Gomis
- Program for Immunology and Immunotherapy, CIMA, Universidad de Navarra, Pamplona, Spain
- Navarra Institute for Health Research (IdiSNA), Pamplona, Spain
| | - Assunta Cirella
- Program for Immunology and Immunotherapy, CIMA, Universidad de Navarra, Pamplona, Spain
- Navarra Institute for Health Research (IdiSNA), Pamplona, Spain
| | - Irene Olivera
- Program for Immunology and Immunotherapy, CIMA, Universidad de Navarra, Pamplona, Spain
- Navarra Institute for Health Research (IdiSNA), Pamplona, Spain
| | - Javier Glez-Vaz
- Program for Immunology and Immunotherapy, CIMA, Universidad de Navarra, Pamplona, Spain
- Navarra Institute for Health Research (IdiSNA), Pamplona, Spain
| | - Jose Gonzalez-Gomariz
- Program for Immunology and Immunotherapy, CIMA, Universidad de Navarra, Pamplona, Spain
- Navarra Institute for Health Research (IdiSNA), Pamplona, Spain
| | - carlos luri-Rey
- Program for Immunology and Immunotherapy, CIMA, Universidad de Navarra, Pamplona, Spain
- Navarra Institute for Health Research (IdiSNA), Pamplona, Spain
| | - arantza azpilikueta
- Program for Immunology and Immunotherapy, CIMA, Universidad de Navarra, Pamplona, Spain
- Navarra Institute for Health Research (IdiSNA), Pamplona, Spain
| | - Elixabet Bolaños
- Program for Immunology and Immunotherapy, CIMA, Universidad de Navarra, Pamplona, Spain
- Navarra Institute for Health Research (IdiSNA), Pamplona, Spain
| | - Alvaro Teijeira
- Program for Immunology and Immunotherapy, CIMA, Universidad de Navarra, Pamplona, Spain
- Navarra Institute for Health Research (IdiSNA), Pamplona, Spain
- Centro de Investigación Biomédica en Red de Cáncer (CIBERONC), Madrid, Spain
| | - Pedro Berraondo
- Program for Immunology and Immunotherapy, CIMA, Universidad de Navarra, Pamplona, Spain
- Navarra Institute for Health Research (IdiSNA), Pamplona, Spain
- Centro de Investigación Biomédica en Red de Cáncer (CIBERONC), Madrid, Spain
| | | | - Ignacio Melero
- Program for Immunology and Immunotherapy, CIMA, Universidad de Navarra, Pamplona, Spain
- Navarra Institute for Health Research (IdiSNA), Pamplona, Spain
- Centro de Investigación Biomédica en Red de Cáncer (CIBERONC), Madrid, Spain
- Departments of Immunology and Oncology (CCUN), Clínica Universidad de Navarra, Pamplona, Spain
- Nuffield Department of Medicine and Oxford Center for Immuno-Oncology, University of Oxford, Oxford, UK
- Ignacio Melero Program for Immunology and Immunotherapy, CIMA Universidad de Navarra, Pamplona, Spain
| |
Collapse
|
453
|
Zhou C, Yang ZF, Sun BY, Yi Y, Wang Z, Zhou J, Fan J, Gan W, Ren N, Qiu SJ. Lenvatinib Induces Immunogenic Cell Death and Triggers Toll-Like Receptor-3/4 Ligands in Hepatocellular Carcinoma. J Hepatocell Carcinoma 2023; 10:697-712. [PMID: 37138764 PMCID: PMC10149778 DOI: 10.2147/jhc.s401639] [Citation(s) in RCA: 13] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2022] [Accepted: 04/20/2023] [Indexed: 05/05/2023] Open
Abstract
Purpose Immunogenic cell death (ICD) is a cell death modality that plays a vital role in anticancer therapy. In this study, we investigated whether lenvatinib induces ICD in hepatocellular carcinoma and how it affects cancer cell behavior. Patients and Methods Hepatoma cells were treated with 0.5 μM lenvatinib for two weeks, and damage-associated molecular patterns were assessed using the expression of calreticulin, high mobility group box 1, and ATP secretion. Transcriptome sequencing was performed to investigate the effects of lenvatinib on hepatocellular carcinoma. Additionally, CU CPT 4A and TAK-242 were used to inhibit TLR3 and TLR4 expressions, respectively. Flow cytometry was used to assess PD-L1 expression. Kaplan-Meier and Cox regression models were applied for prognosis assessment. Results After treatment with lenvatinib, there was a significant increase in ICD-associated damage-associated molecular patterns, such as calreticulin on the cell membrane, extracellular ATP, and high mobility group box 1, in hepatoma cells. Following treatment with lenvatinib, there was a significant increase in the downstream immunogenic cell death receptors, including TLR3 and TLR4. Furthermore, lenvatinib increased the expression of PD-L1, which was later inhibited by TLR4. Interestingly, inhibiting TLR3 in MHCC-97H and Huh7 cells strengthened their proliferative capacity. Moreover, TLR3 inhibition was identified as an independent risk factor for overall survival and recurrence-free survival in patients with hepatocellular carcinoma. Conclusion Our study revealed that lenvatinib induced ICD in hepatocellular carcinoma and upregulated PD-L1 expression through TLR4 while promoting cell apoptosis through TLR3. Antibodies against PD-1/PD-L1 can enhance the efficacy of lenvatinib in the management of hepatocellular carcinoma.
Collapse
Affiliation(s)
- Cheng Zhou
- Department of Liver Surgery and Transplantation & Key Laboratory of Carcinogenesis and Cancer Invasion (Ministry of Education), Liver Cancer Institute, Zhongshan Hospital, Fudan University, Shanghai, People’s Republic of China
| | - Zhang-Fu Yang
- Department of Liver Surgery and Transplantation & Key Laboratory of Carcinogenesis and Cancer Invasion (Ministry of Education), Liver Cancer Institute, Zhongshan Hospital, Fudan University, Shanghai, People’s Republic of China
| | - Bao-Ye Sun
- Department of Liver Surgery and Transplantation & Key Laboratory of Carcinogenesis and Cancer Invasion (Ministry of Education), Liver Cancer Institute, Zhongshan Hospital, Fudan University, Shanghai, People’s Republic of China
| | - Yong Yi
- Department of Liver Surgery and Transplantation & Key Laboratory of Carcinogenesis and Cancer Invasion (Ministry of Education), Liver Cancer Institute, Zhongshan Hospital, Fudan University, Shanghai, People’s Republic of China
| | - Zheng Wang
- Department of Liver Surgery and Transplantation & Key Laboratory of Carcinogenesis and Cancer Invasion (Ministry of Education), Liver Cancer Institute, Zhongshan Hospital, Fudan University, Shanghai, People’s Republic of China
| | - Jian Zhou
- Department of Liver Surgery and Transplantation & Key Laboratory of Carcinogenesis and Cancer Invasion (Ministry of Education), Liver Cancer Institute, Zhongshan Hospital, Fudan University, Shanghai, People’s Republic of China
| | - Jia Fan
- Department of Liver Surgery and Transplantation & Key Laboratory of Carcinogenesis and Cancer Invasion (Ministry of Education), Liver Cancer Institute, Zhongshan Hospital, Fudan University, Shanghai, People’s Republic of China
| | - Wei Gan
- Department of Liver Surgery and Transplantation & Key Laboratory of Carcinogenesis and Cancer Invasion (Ministry of Education), Liver Cancer Institute, Zhongshan Hospital, Fudan University, Shanghai, People’s Republic of China
| | - Ning Ren
- Department of Liver Surgery and Transplantation & Key Laboratory of Carcinogenesis and Cancer Invasion (Ministry of Education), Liver Cancer Institute, Zhongshan Hospital, Fudan University, Shanghai, People’s Republic of China
- Institute of Fudan Minhang Academic Health System & Key Laboratory of Whole-Period Monitoring and Precise Intervention of Digestive Cancer, Minhang Hospital, Fudan University, Shanghai, People’s Republic of China
| | - Shuang-Jian Qiu
- Department of Liver Surgery and Transplantation & Key Laboratory of Carcinogenesis and Cancer Invasion (Ministry of Education), Liver Cancer Institute, Zhongshan Hospital, Fudan University, Shanghai, People’s Republic of China
- Correspondence: Shuang-Jian Qiu, Liver Cancer Institute and Zhongshan Hospital, Fudan University, Shanghai, 200030, People’s Republic of China, Tel +86 13916625289, Email
| |
Collapse
|
454
|
Abstract
Ferroptosis has gained interest due to it immunogenicity and the higher sensitivity of cancer cells to it. However, it was recently shown that ferroptosis in tumor-associated neutrophils leads to immunosuppression and negatively impacts therapy. Here, we discuss the potential implications of the two sides (friend versus foe) of ferroptosis in cancer immunotherapy.
Collapse
Affiliation(s)
- Robin Demuynck
- Cell Death Investigation and Therapy (CDIT) Laboratory, Department of Human Structure and Repair, Ghent University, Ghent, Belgium.,Cancer Research Institute Ghent, Ghent, Belgium
| | - Iuliia Efimova
- Cell Death Investigation and Therapy (CDIT) Laboratory, Department of Human Structure and Repair, Ghent University, Ghent, Belgium.,Cancer Research Institute Ghent, Ghent, Belgium
| | - Elena Catanzaro
- Cell Death Investigation and Therapy (CDIT) Laboratory, Department of Human Structure and Repair, Ghent University, Ghent, Belgium.,Cancer Research Institute Ghent, Ghent, Belgium
| | - Dmitri V Krysko
- Cell Death Investigation and Therapy (CDIT) Laboratory, Department of Human Structure and Repair, Ghent University, Ghent, Belgium.,Cancer Research Institute Ghent, Ghent, Belgium
| |
Collapse
|
455
|
Hensler M, Rakova J, Kasikova L, Lanickova T, Pasulka J, Holicek P, Hraska M, Hrnciarova T, Kadlecova P, Schoenenberger A, Sochorova K, Rozkova D, Sojka L, Drozenova J, Laco J, Horvath R, Podrazil M, Hongyan G, Brtnicky T, Halaska MJ, Rob L, Ryska A, Coosemans A, Vergote I, Garg AD, Cibula D, Bartunkova J, Spisek R, Fucikova J. Peripheral gene signatures reveal distinct cancer patient immunotypes with therapeutic implications for autologous DC-based vaccines. Oncoimmunology 2022; 11:2101596. [PMID: 35898703 PMCID: PMC9311316 DOI: 10.1080/2162402x.2022.2101596] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Dendritic cells (DCs) have received considerable attention as potential targets for the development of novel cancer immunotherapies. However, the clinical efficacy of DC-based vaccines remains suboptimal, largely reflecting local and systemic immunosuppression at baseline. An autologous DC-based vaccine (DCVAC) has recently been shown to improve progression-free survival and overall survival in randomized clinical trials enrolling patients with lung cancer (SLU01, NCT02470468) or ovarian carcinoma (SOV01, NCT02107937), but not metastatic castration-resistant prostate cancer (SP005, NCT02111577), despite a good safety profile across all cohorts. We performed biomolecular and cytofluorometric analyses on peripheral blood samples collected prior to immunotherapy from 1000 patients enrolled in these trials, with the objective of identifying immunological biomarkers that may improve the clinical management of DCVAC-treated patients. Gene signatures reflecting adaptive immunity and T cell activation were associated with favorable disease outcomes and responses to DCVAC in patients with prostate and lung cancer, but not ovarian carcinoma. By contrast, the clinical benefits of DCVAC were more pronounced among patients with ovarian carcinoma exhibiting reduced expression of T cell-associated genes, especially those linked to TH2-like signature and immunosuppressive regulatory T (TREG) cells. Clinical responses to DCVAC were accompanied by signs of antitumor immunity in the peripheral blood. Our findings suggest that circulating signatures of antitumor immunity may provide a useful tool for monitoring the potency of autologous DC-based immunotherapy.
Collapse
Affiliation(s)
| | | | | | - Tereza Lanickova
- Sotio Biotech, Prague, Czech Republic
- Department of Immunology, Charles University, 2nd Faculty of Medicine and University Hospital Motol, Prague, Czech Republic
| | | | - Peter Holicek
- Sotio Biotech, Prague, Czech Republic
- Department of Immunology, Charles University, 2nd Faculty of Medicine and University Hospital Motol, Prague, Czech Republic
| | | | | | | | | | | | | | - Ludek Sojka
- Sotio Biotech, Prague, Czech Republic
- Department of Immunology, Charles University, 2nd Faculty of Medicine and University Hospital Motol, Prague, Czech Republic
| | - Jana Drozenova
- Department of Pathology 3rd Faculty of Medicine, And University Hospital Kralovske Vinohrady, Prague, Czech Republic
| | - Jan Laco
- The Fingerland Department of Pathology, Charles University, Faculty of Medicine and University Hospital Hradec Kralove, Czech Republic
| | - Rudolf Horvath
- Department of Pediatric and Adult Rheumatology, University Hospital Motol, Prague, Czech Republic
| | - Michal Podrazil
- Sotio Biotech, Prague, Czech Republic
- Department of Immunology, Charles University, 2nd Faculty of Medicine and University Hospital Motol, Prague, Czech Republic
| | - Guo Hongyan
- Department of Gynecology and Obstetrics, Peking University Third Hospital, Beijing, Hebei Province, China
| | - Tomas Brtnicky
- Department of Gynecology and Obstetrics, 1st Faculty of Medicine, Charles University, University Hospital Bulovka, Prague, Czech Republic
| | - Michal J. Halaska
- Department of Gynecology and Obstetrics, Charles University, 3rd Faculty of Medicine and University Hospital Kralovske Vinohrady, Prague, Czech Republic
| | - Lukas Rob
- Department of Gynecology and Obstetrics, Charles University, 3rd Faculty of Medicine and University Hospital Kralovske Vinohrady, Prague, Czech Republic
| | - Ales Ryska
- The Fingerland Department of Pathology, Charles University, Faculty of Medicine and University Hospital Hradec Kralove, Czech Republic
| | - An Coosemans
- Department of Oncology, Leuven Cancer Institute, Laboratory of Tumor Immunology and Immunotherapy, KU Leuven, Belgium
| | - Ignace Vergote
- Department of Oncology, Leuven Cancer Institute, Laboratory of Tumor Immunology and Immunotherapy, KU Leuven, Belgium
- Department of Oncology, Leuven Cancer Institute, Laboratory of Gynaecologic Oncology, KU Leuven, Belgium
- Department of Gynaecology and Obstetrics, Leuven Cancer Institute, UZ Leuven, Leuven, Belgium
| | - Abhishek D. Garg
- Laboratory of Cell Stress and Immunity, Department of Cellular and Molecular Medicine, KU Leuven, Leuven, Belgium
| | - David Cibula
- Gynecologic Oncology Center, Department of Obstetrics and Gynecology, 1st Faculty of Medicine, Charles University and General University Hospital, Prague, Czech Republic
| | - Jirina Bartunkova
- Sotio Biotech, Prague, Czech Republic
- Department of Immunology, Charles University, 2nd Faculty of Medicine and University Hospital Motol, Prague, Czech Republic
| | - Radek Spisek
- Sotio Biotech, Prague, Czech Republic
- Department of Immunology, Charles University, 2nd Faculty of Medicine and University Hospital Motol, Prague, Czech Republic
| | - Jitka Fucikova
- Sotio Biotech, Prague, Czech Republic
- Department of Immunology, Charles University, 2nd Faculty of Medicine and University Hospital Motol, Prague, Czech Republic
| |
Collapse
|
456
|
Kepp O, Kroemer G. Is ferroptosis immunogenic? The devil is in the details! Oncoimmunology 2022; 11:2127273. [DOI: 10.1080/2162402x.2022.2127273] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/14/2022] Open
Affiliation(s)
- Oliver Kepp
- Metabolomics and Cell Biology Platforms, Gustave Roussy Cancer Center, Université Paris Saclay, Villejuif, France
- Centre de Recherche des Cordeliers, Equipe labellisée par la Ligue contre le cancer, Université de Paris, Sorbonne Université, Inserm U1138, Institut Universitaire de France, Paris, France
| | - Guido Kroemer
- Metabolomics and Cell Biology Platforms, Gustave Roussy Cancer Center, Université Paris Saclay, Villejuif, France
- Centre de Recherche des Cordeliers, Equipe labellisée par la Ligue contre le cancer, Université de Paris, Sorbonne Université, Inserm U1138, Institut Universitaire de France, Paris, France
- Pôle de Biologie, Institut du Cancer Paris Carpem, APHP, Hôpital Européen Georges Pompidou, Paris, France
| |
Collapse
|
457
|
Kepp O, Cerrato G, Sauvat A, Kroemer G. Nanoparticles releasing immunogenic cell death inducers upon near-infrared light exposure. Oncoimmunology 2022; 11:2131227. [DOI: 10.1080/2162402x.2022.2131227] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/10/2022] Open
Affiliation(s)
- Oliver Kepp
- Metabolomics and Cell Biology Platforms, Gustave Roussy Cancer Center, Université Paris Saclay, Villejuif, France
- Centre de Recherche des Cordeliers, Equipe labellisée par la Ligue contre le cancer, Université de Paris, Sorbonne Université, Inserm U1138, Institut Universitaire de France, Paris, France
| | - Giulia Cerrato
- Metabolomics and Cell Biology Platforms, Gustave Roussy Cancer Center, Université Paris Saclay, Villejuif, France
- Centre de Recherche des Cordeliers, Equipe labellisée par la Ligue contre le cancer, Université de Paris, Sorbonne Université, Inserm U1138, Institut Universitaire de France, Paris, France
| | - Allan Sauvat
- Metabolomics and Cell Biology Platforms, Gustave Roussy Cancer Center, Université Paris Saclay, Villejuif, France
- Centre de Recherche des Cordeliers, Equipe labellisée par la Ligue contre le cancer, Université de Paris, Sorbonne Université, Inserm U1138, Institut Universitaire de France, Paris, France
| | - Guido Kroemer
- Metabolomics and Cell Biology Platforms, Gustave Roussy Cancer Center, Université Paris Saclay, Villejuif, France
- Centre de Recherche des Cordeliers, Equipe labellisée par la Ligue contre le cancer, Université de Paris, Sorbonne Université, Inserm U1138, Institut Universitaire de France, Paris, France
- Pôle de Biologie, Institut du Cancer Paris Carpem, APHP, Hôpital Européen Georges Pompidou, Paris, France
| |
Collapse
|
458
|
Pol JG, Plantureux C, Pérez-Lanzón M, Kroemer G. PDIA3 as a potential bridge between immunogenic cell death and autoreactivity. Oncoimmunology 2022; 11:2130558. [DOI: 10.1080/2162402x.2022.2130558] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/07/2022] Open
Affiliation(s)
- Jonathan G. Pol
- Centre de Recherche des Cordeliers, Equipe labellisée par la Ligue contre le cancer, Université de Paris Cité, Sorbonne Université, Inserm U1138, Institut Universitaire de France, Paris, France
- Metabolomics and Cell Biology Platforms, Institut Gustave Roussy, Villejuif, France
| | | | - María Pérez-Lanzón
- Centre de Recherche des Cordeliers, Equipe labellisée par la Ligue contre le cancer, Université de Paris Cité, Sorbonne Université, Inserm U1138, Institut Universitaire de France, Paris, France
- Metabolomics and Cell Biology Platforms, Institut Gustave Roussy, Villejuif, France
| | - Guido Kroemer
- Institut du Cancer Paris CARPEM, Department of Biology, Hôpital Européen Georges Pompidou, Paris, France
| |
Collapse
|
459
|
Zhao Z, Dong S, Liu Y, Wang J, Ba L, Zhang C, Cao X, Wu C, Yang P. Tumor Microenvironment-Activable Manganese-Boosted Catalytic Immunotherapy Combined with PD-1 Checkpoint Blockade. ACS NANO 2022; 16:20400-20418. [PMID: 36441901 DOI: 10.1021/acsnano.2c06646] [Citation(s) in RCA: 34] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
Immune checkpoint blockade (ICB) therapy has attracted widespread attention in cancer treatment. Due to the low immunogenicity and immune suppression state in the tumor microenvironment (TME), the therapeutic effects are only moderate. Herein, a TME-activable manganese-boosted catalytic immunotherapy is designed for synergism with ICB therapy to kill tumors efficiently. The tumor cell membrane (CM)-wrapping multienzyme-mimic manganese oxide (MnOx) nanozyme termed CM@Mn showed intrinsic peroxidase and oxidase-like activities in an acidic TME. These activities can generate toxic hydroxyl (•OH) and superoxide radicals (•O2-) for tumor cell killing and evoking immunogenic cell death (ICD). Furthermore, the TME-responsive release of Mn2+ directly promotes dendritic cell maturation and macrophage M1 repolarization, resulting in the reversal of an immunosuppressive TME into an immune-activating environment. Additionally, tumor hypoxia relief caused by catalase-like activity also contributes to the process of TME reversal. Finally, a robust tumor-specific T cell-mediated antitumor response occurs with the support of the PD-1 checkpoint blockade. The proliferation of primary and metastatic tumors was inhibited, and a long-term immune memory effect was induced. The therapeutic strategy outlined here may serve as a promising candidate for tumor-integrated treatment.
Collapse
Affiliation(s)
- Zhiyu Zhao
- Department of Ultrasound, First Affiliated Hospital of Harbin Medical University, Harbin150001, People's Republic of China
| | - Shuming Dong
- Key Laboratory of Superlight Materials and Surface Technology, Ministry of Education, College of Material Sciences and Chemical Engineering, Harbin Engineering University, Harbin150001, People's Republic of China
| | - Yue Liu
- Department of Ultrasound, First Affiliated Hospital of Harbin Medical University, Harbin150001, People's Republic of China
| | - Jianxin Wang
- Department of Ultrasound, First Affiliated Hospital of Harbin Medical University, Harbin150001, People's Republic of China
| | - Li Ba
- Department of Ultrasound, First Affiliated Hospital of Harbin Medical University, Harbin150001, People's Republic of China
| | - Cong Zhang
- Department of Ultrasound, First Affiliated Hospital of Harbin Medical University, Harbin150001, People's Republic of China
| | - Xinyu Cao
- Department of Ultrasound, First Affiliated Hospital of Harbin Medical University, Harbin150001, People's Republic of China
| | - Changjun Wu
- Department of Ultrasound, First Affiliated Hospital of Harbin Medical University, Harbin150001, People's Republic of China
| | - Piaoping Yang
- Key Laboratory of Superlight Materials and Surface Technology, Ministry of Education, College of Material Sciences and Chemical Engineering, Harbin Engineering University, Harbin150001, People's Republic of China
| |
Collapse
|
460
|
Mishra AK, Banday S, Bharadwaj R, Ali A, Rashid R, Kulshreshtha A, Malonia SK. Macrophages as a Potential Immunotherapeutic Target in Solid Cancers. Vaccines (Basel) 2022; 11:55. [PMID: 36679900 PMCID: PMC9863216 DOI: 10.3390/vaccines11010055] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Revised: 12/17/2022] [Accepted: 12/18/2022] [Indexed: 12/28/2022] Open
Abstract
The revolution in cancer immunotherapy over the last few decades has resulted in a paradigm shift in the clinical care of cancer. Most of the cancer immunotherapeutic regimens approved so far have relied on modulating the adaptive immune system. In recent years, strategies and approaches targeting the components of innate immunity have become widely recognized for their efficacy in targeting solid cancers. Macrophages are effector cells of the innate immune system, which can play a crucial role in the generation of anti-tumor immunity through their ability to phagocytose cancer cells and present tumor antigens to the cells of adaptive immunity. However, the macrophages that are recruited to the tumor microenvironment predominantly play pro-tumorigenic roles. Several strategies targeting pro-tumorigenic functions and harnessing the anti-tumorigenic properties of macrophages have shown promising results in preclinical studies, and a few of them have also advanced to clinical trials. In this review, we present a comprehensive overview of the pathobiology of TAMs and their role in the progression of solid malignancies. We discuss various mechanisms through which TAMs promote tumor progression, such as inflammation, genomic instability, tumor growth, cancer stem cell formation, angiogenesis, EMT and metastasis, tissue remodeling, and immunosuppression, etc. In addition, we also discuss potential therapeutic strategies for targeting TAMs and explore how macrophages can be used as a tool for next-generation immunotherapy for the treatment of solid malignancies.
Collapse
Affiliation(s)
- Alok K. Mishra
- Department of Molecular, Cell and Cancer Biology, UMass Chan Medical School, Worcester, MA 01605, USA
| | - Shahid Banday
- Department of Molecular, Cell and Cancer Biology, UMass Chan Medical School, Worcester, MA 01605, USA
| | - Ravi Bharadwaj
- Department of Medicine, UMass Chan Medical School, Worcester, MA 01605, USA
| | - Amjad Ali
- Department of Molecular, Cell and Cancer Biology, UMass Chan Medical School, Worcester, MA 01605, USA
| | - Romana Rashid
- Department of Medicine, UMass Chan Medical School, Worcester, MA 01605, USA
| | - Ankur Kulshreshtha
- Department of Molecular, Cell and Cancer Biology, UMass Chan Medical School, Worcester, MA 01605, USA
| | - Sunil K. Malonia
- Department of Molecular, Cell and Cancer Biology, UMass Chan Medical School, Worcester, MA 01605, USA
| |
Collapse
|
461
|
Resolution Potential of Necrotic Cell Death Pathways. Int J Mol Sci 2022; 24:ijms24010016. [PMID: 36613458 PMCID: PMC9819908 DOI: 10.3390/ijms24010016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2022] [Revised: 12/13/2022] [Accepted: 12/16/2022] [Indexed: 12/24/2022] Open
Abstract
During tissue damage caused by infection or sterile inflammation, not only damage-associated molecular patterns (DAMPs), but also resolution-associated molecular patterns (RAMPs) can be activated. These dying cell-associated factors stimulate immune cells localized in the tissue environment and induce the production of inflammatory mediators or specialized proresolving mediators (SPMs). Within the current prospect of science, apoptotic cell death is considered the main initiator of resolution. However, more RAMPs are likely to be released during necrotic cell death than during apoptosis, similar to what has been observed for DAMPs. The inflammatory potential of many regulated forms of necrotic cell death modalities, such as pyroptosis, necroptosis, ferroptosis, netosis, and parthanatos, have been widely studied in necroinflammation, but their possible role in resolution is less considered. In this review, we aim to summarize the relationship between necrotic cell death and resolution, as well as present the current available data regarding the involvement of certain forms of regulated necrotic cell death in necroresolution.
Collapse
|
462
|
Cai J, Ye Z, Hu Y, Yang J, Wu L, Yuan F, Zhang L, Chen Q, Zhang S. Identification of immunogenic cell death-related gene classification patterns and immune infiltration characterization in ischemic stroke based on machine learning. Front Cell Neurosci 2022; 16:1094500. [PMID: 36601430 PMCID: PMC9806121 DOI: 10.3389/fncel.2022.1094500] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2022] [Accepted: 12/01/2022] [Indexed: 12/23/2022] Open
Abstract
Ischemic stroke (IS) accounts for more than 80% of strokes and is one of the leading causes of death and disability in the world. Due to the narrow time window for treatment and the frequent occurrence of severe bleeding, patients benefit less from early intravenous thrombolytic drug therapy. Therefore, there is an urgent need to explore the molecular mechanisms poststroke to drive the development of new therapeutic approaches. Immunogenic cell death (ICD) is a type of regulatory cell death (RCD) that is sufficient to activate the adaptive immune response of immunocompetent hosts. Although there is growing evidence that ICD regulation of immune responses and immune responses plays an important role in the development of IS, the role of ICD in the pathogenesis of IS has rarely been explored. In this study, we systematically evaluated ICD-related genes in IS. The expression profiles of ICD-related genes in IS and normal control samples were systematically explored. We conducted consensus clustering, immune infiltration analysis, and functional enrichment analysis of IS samples using ICD differentially expressed genes. The results showed that IS patients could be classified into two clusters and that the immune infiltration profile was altered in different clusters. In addition, we performed machine learning to screen nine signature genes that can be used to predict the occurrence of disease. We also constructed nomogram models based on the nine risk genes (CASP1, CASP8, ENTPD1, FOXP3, HSP90AA1, IFNA1, IL1R1, MYD88, and NT5E) and explored the immune infiltration correlation, gene-miRNA, and gene-TF regulatory network of the nine risk genes. Our study may provide a valuable reference for further elucidation of the pathogenesis of IS and provide directions for drug screening, personalized therapy, and immunotherapy for IS.
Collapse
Affiliation(s)
- Jiayang Cai
- Department of Neurosurgery, Renmin Hospital of Wuhan University, Wuhan, Hubei, China,Central Laboratory, Renmin Hospital of Wuhan University, Wuhan, Hubei, China
| | - Zhang Ye
- Department of Neurosurgery, Renmin Hospital of Wuhan University, Wuhan, Hubei, China,Central Laboratory, Renmin Hospital of Wuhan University, Wuhan, Hubei, China
| | - Yuanyuan Hu
- Department of Ophthalmology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Ji’an Yang
- Department of Neurosurgery, Renmin Hospital of Wuhan University, Wuhan, Hubei, China,Central Laboratory, Renmin Hospital of Wuhan University, Wuhan, Hubei, China
| | - Liquan Wu
- Department of Neurosurgery, Renmin Hospital of Wuhan University, Wuhan, Hubei, China
| | - Fanen Yuan
- Department of Neurosurgery, Renmin Hospital of Wuhan University, Wuhan, Hubei, China
| | - Li Zhang
- Department of Anesthesiology, Renmin Hospital of Wuhan University, Wuhan, Hubei, China
| | - Qianxue Chen
- Department of Neurosurgery, Renmin Hospital of Wuhan University, Wuhan, Hubei, China,Central Laboratory, Renmin Hospital of Wuhan University, Wuhan, Hubei, China
| | - Shenqi Zhang
- Department of Neurosurgery, Renmin Hospital of Wuhan University, Wuhan, Hubei, China,Central Laboratory, Renmin Hospital of Wuhan University, Wuhan, Hubei, China,*Correspondence: Shenqi Zhang,
| |
Collapse
|
463
|
Ma J, Kuang L, Zhao R. Establishing a signature based on immunogenic cell death-related gene pairs to predict immunotherapy and survival outcomes of patients with hepatocellular carcinoma. Aging (Albany NY) 2022; 14:9699-9714. [PMID: 36516498 PMCID: PMC9792212 DOI: 10.18632/aging.204419] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2022] [Accepted: 11/23/2022] [Indexed: 12/23/2022]
Abstract
Immunogenic cell death (ICD) is a type of regulated cell death (RCD) triggered by various stresses that are involved in activating the immune system against cancer in immunocompetent hosts. However, no previous study has investigated the regulation of ICD-related gene pairs involved in hepatocellular carcinoma (HCC). A prognostic signature composed of 8 ICD-related gene pairs was generated that was capable of reliably separating patients with HCC into low- and high-risk subgroups with differing overall survival rates. Significant correlations were observed between risk score and surgical procedure, vascular tumor cell type, recurrence status, tumor status, and stages. The risk score was confirmed to be an independent prognostic factor for HCC and subsequently was employed to construct a prognostic nomogram. Low-risk patients were characterized by higher levels of immune cell infiltration, lower stromal and immune scores, higher tumor purity, higher expression of most immune checkpoints, and higher tumor mutational burden (TMB), revealing different levels of immunological functional pathways between different risk HCC patient cohorts. Furthermore, immunophenoscore (IPS) and Tumor Immune Dysfunction and Exclusion (TIDE) scores demonstrated that patients in the low-risk group are more likely to be sensitive to immunotherapy. In conclusion, the signature conducted by ICD-related gene pairs is a promising biomarker for the prediction of HCC patient outcomes and immunotherapeutic responses.
Collapse
Affiliation(s)
- Jianying Ma
- Department of Breast Surgery, Thyroid Surgery, Huangshi Central Hospital, Affiliated Hospital of Hubei Polytechnic University, Edong Healthcare Group, Huangshi, Hubei 435000, People’s Republic of China
| | - Lianghong Kuang
- Department of Neurology, Huangshi Central Hospital, Affiliated Hospital of Hubei Polytechnic University, Edong Healthcare Group, Huangshi, Hubei 435000, People’s Republic of China
| | - Rong Zhao
- Department of Anesthesiology, Huangshi Central Hospital, Affiliated Hospital of Hubei Polytechnic University, Edong Healthcare Group, Huangshi, Hubei 435000, People’s Republic of China
| |
Collapse
|
464
|
Li Y, Feng J, Wang T, Li M, Zhang H, Rong Z, Cheng W, Duan Y, Chen Z, Hu A, Yu T, Zhang J, Shang Y, Zou Y, Ma F, Guo B. Construction of an immunogenic cell death-based risk score prognosis model in breast cancer. Front Genet 2022; 13:1069921. [PMID: 36583019 PMCID: PMC9792780 DOI: 10.3389/fgene.2022.1069921] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2022] [Accepted: 11/28/2022] [Indexed: 12/15/2022] Open
Abstract
Immunogenic cell death (ICD) is a form of regulated cell death that elicits immune response. Common inducers of ICD include cancer chemotherapy and radiation therapy. A better understanding of ICD might contribute to modify the current regimens of anti-cancer therapy, especially immunotherapy. This study aimed to identify ICD-related prognostic gene signatures in breast cancer (BC). An ICD-based gene prognostic signature was developed using Lasso-cox regression and Kaplan-Meier survival analysis based on datasets acquired from the Cancer Genome Atlas and Gene Expression Omnibus. A nomogram model was developed to predict the prognosis of BC patients. Gene Set Enrichment Analysis (GESA) and Gene Set Variation Analysis (GSVA) were used to explore the differentially expressed signaling pathways in high and low-risk groups. CIBERSORT and ESTIMATE algorithms were performed to investigate the difference of immune status in tumor microenvironment of different risk groups. Six genes (CALR, CLEC9A, BAX, TLR4, CXCR3, and PIK3CA) were selected for construction and validation of the prognosis model of BC based on public data. GSEA and GSVA analysis found that immune-related gene sets were enriched in low-risk group. Moreover, immune cell infiltration analysis showed that the immune features of the high-risk group were characterized by higher infiltration of tumor-associated macrophages and a lower proportion of CD8+ T cells, suggesting an immune evasive tumor microenvironment. We constructed and validated an ICD-based gene signature for predicting prognosis of breast cancer patients. Our model provides a tool with good discrimination and calibration abilities to predict the prognosis of BC, especially triple-negative breast cancer (TNBC).
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | | | | | | | | | | | - Fei Ma
- *Correspondence: Fei Ma, ; Baoliang Guo,
| | | |
Collapse
|
465
|
Najibi AJ, Larkin K, Feng Z, Jeffreys N, Dacus MT, Rustagi Y, Hodi FS, Mooney DJ. Chemotherapy Dose Shapes the Expression of Immune-Interacting Markers on Cancer Cells. Cell Mol Bioeng 2022; 15:535-551. [PMID: 36531864 PMCID: PMC9751245 DOI: 10.1007/s12195-022-00742-y] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2022] [Accepted: 09/21/2022] [Indexed: 11/30/2022] Open
Abstract
Introduction Tumor and immune cells interact through a variety of cell-surface proteins that can either restrain or promote tumor progression. The impacts of cytotoxic chemotherapy dose and delivery route on this interaction profile remain incompletely understood, and could support the development of more effective combination therapies for cancer treatment. Methods and Results Here, we found that exposure to the anthracycline doxorubicin altered the expression of numerous immune-interacting markers (MHC-I, PD-L1, PD-L2, CD47, Fas, and calreticulin) on live melanoma, breast cancer, and leukemia cells in a dose-dependent manner in vitro. Notably, an intermediate dose best induced immunogenic cell death and the expression of immune-activating markers without maximizing expression of markers associated with immune suppression. Bone marrow-derived dendritic cells exposed to ovalbumin-expressing melanoma treated with intermediate doxorubicin dose became activated and best presented tumor antigen. In a murine melanoma model, both the doxorubicin dose and delivery location (systemic infusion versus local administration) affected the expression of these markers on live tumor cells. Particularly, local release of doxorubicin from a hydrogel increased calreticulin expression on tumor cells without inducing immune-suppressive markers, in a manner dependent on the loaded dose. Doxorubicin exposure also altered the expression of immune-interacting markers in patient-derived melanoma cells. Conclusions Together, these results illustrate how standard-of-care chemotherapy, when administered in various manners, can lead to distinct expression of immunogenic markers on cancer cells. These findings may inform development of chemo-immunotherapy combinations for cancer treatment. Supplementary Information The online version contains supplementary material available at 10.1007/s12195-022-00742-y.
Collapse
Affiliation(s)
- Alexander J. Najibi
- John A. Paulson School of Engineering and Applied Sciences, Harvard University, Cambridge, MA 02138 USA
- Wyss Institute for Biologically Inspired Engineering at Harvard University, Boston, MA 02115 USA
| | - Kerry Larkin
- John A. Paulson School of Engineering and Applied Sciences, Harvard University, Cambridge, MA 02138 USA
- Wyss Institute for Biologically Inspired Engineering at Harvard University, Boston, MA 02115 USA
| | - Zhaoqianqi Feng
- John A. Paulson School of Engineering and Applied Sciences, Harvard University, Cambridge, MA 02138 USA
- Wyss Institute for Biologically Inspired Engineering at Harvard University, Boston, MA 02115 USA
| | - Nicholas Jeffreys
- John A. Paulson School of Engineering and Applied Sciences, Harvard University, Cambridge, MA 02138 USA
- Wyss Institute for Biologically Inspired Engineering at Harvard University, Boston, MA 02115 USA
| | - Mason T. Dacus
- John A. Paulson School of Engineering and Applied Sciences, Harvard University, Cambridge, MA 02138 USA
- Wyss Institute for Biologically Inspired Engineering at Harvard University, Boston, MA 02115 USA
| | - Yashika Rustagi
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA 02215 USA
| | - F. Stephen Hodi
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA 02215 USA
| | - David J. Mooney
- John A. Paulson School of Engineering and Applied Sciences, Harvard University, Cambridge, MA 02138 USA
- Wyss Institute for Biologically Inspired Engineering at Harvard University, Boston, MA 02115 USA
| |
Collapse
|
466
|
Calreticulin surface presentation can promote quality control of hematopoietic stem cells. Trends Immunol 2022; 43:950-952. [PMID: 36307308 DOI: 10.1016/j.it.2022.10.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2022] [Accepted: 10/17/2022] [Indexed: 11/24/2022]
Abstract
Endoplasmic reticulum stress can stimulate calreticulin (CALR) presentation on the cell surface, promoting the phagocytic uptake of stressed cells by myeloid cells. Recent findings from Wattrus et al. demonstrate that zebrafish and mouse embryonic macrophages engulf CALR-exposing nascent hematopoietic stem cells to ensure the selective survival of stem cells apt for adult hematopoiesis.
Collapse
|
467
|
Naylor G, Julian L, Watson-Bryce S, Mullin M, Nibbs RJ, Olson MF. Immunogenic Death of Hepatocellular Carcinoma Cells in Mice Expressing Caspase-Resistant ROCK1 Is Not Replicated by ROCK Inhibitors. Cancers (Basel) 2022; 14:cancers14235943. [PMID: 36497425 PMCID: PMC9740421 DOI: 10.3390/cancers14235943] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2022] [Revised: 11/25/2022] [Accepted: 11/30/2022] [Indexed: 12/03/2022] Open
Abstract
The morphological changes during apoptosis help facilitate "immunologically silent" cell death. Caspase cleavage of the ROCK1 kinase results in its activation, which drives the forceful contraction of apoptotic cells. We previously showed that when ROCK1 was mutated to render it caspase-resistant, there was greater liver damage and neutrophil recruitment after treatment with the hepatotoxin diethylnitrosamine (DEN). We now show that acute DEN-induced liver damage induced higher levels of pro-inflammatory cytokines/chemokines, indicative of immunogenic cell death (ICD), in mice expressing non-cleavable ROCK1 (ROCK1nc). Hepatocellular carcinoma (HCC) tumours in ROCK1nc mice had more neutrophils and CD8+ T cells relative to mice expressing wild-type ROCK1, indicating that spontaneous tumour cell death also was more immunogenic. Since ICD induction has been proposed to be tumour-suppressive, the effects of two distinct ROCK inhibitors on HCC tumours was examined. Both fasudil and AT13148 significantly decreased tumour numbers, areas and volumes, but neither resulted in greater numbers of neutrophils or CD8+ T cells to be recruited. In the context of acute DEN-induced liver damage, AT13148 inhibited the recruitment of dendritic, natural killer and CD8+ T cells to livers. These observations indicate that there is an important role for ROCK1 cleavage to limit immunogenic cell death, which was not replicated by systemic ROCK inhibitor administration. As a result, concomitant administration of ROCK inhibitors with cancer therapeutics would be unlikely to result in therapeutic benefit by inducing ICD to increase anti-tumour immune responses.
Collapse
Affiliation(s)
- Gregory Naylor
- Cancer Research UK Beatson Institute, Garscube Estate, Switchback Road, Glasgow G61 1BD, UK
- Institute of Cancer Sciences, University of Glasgow, Glasgow G12 8QQ, UK
| | - Linda Julian
- Cancer Research UK Beatson Institute, Garscube Estate, Switchback Road, Glasgow G61 1BD, UK
- Institute of Cancer Sciences, University of Glasgow, Glasgow G12 8QQ, UK
| | - Steven Watson-Bryce
- Cancer Research UK Beatson Institute, Garscube Estate, Switchback Road, Glasgow G61 1BD, UK
| | - Margaret Mullin
- Electron Microscopy Facility, School of Life Sciences, University of Glasgow, Glasgow G12 8QQ, UK
| | - Robert J. Nibbs
- Institute of Infection, Immunity and Inflammation, School of Life Sciences, University of Glasgow, Glasgow G12 8QQ, UK
| | - Michael F. Olson
- Department of Chemistry and Biology, Toronto Metropolitan University, 661 University Avenue Suite 1105, Toronto, ON M5G 1M1, Canada
- Correspondence:
| |
Collapse
|
468
|
Do Tumor Mechanical Stresses Promote Cancer Immune Escape? Cells 2022; 11:cells11233840. [PMID: 36497097 PMCID: PMC9740277 DOI: 10.3390/cells11233840] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2022] [Revised: 11/26/2022] [Accepted: 11/29/2022] [Indexed: 12/02/2022] Open
Abstract
Immune evasion-a well-established cancer hallmark-is a major barrier to immunotherapy efficacy. While the molecular mechanisms and biological consequences underpinning immune evasion are largely known, the role of tissue mechanical stresses in these processes warrants further investigation. The tumor microenvironment (TME) features physical abnormalities (notably, increased fluid and solid pressures applied both inside and outside the TME) that drive cancer mechanopathologies. Strikingly, in response to these mechanical stresses, cancer cells upregulate canonical immune evasion mechanisms, including epithelial-mesenchymal transition (EMT) and autophagy. Consideration and characterization of the origins and consequences of tumor mechanical stresses in the TME may yield novel strategies to combat immunotherapy resistance. In this Perspective, we posit that tumor mechanical stresses-namely fluid shear and solid stresses-induce immune evasion by upregulating EMT and autophagy. In addition to exploring the basis for our hypothesis, we also identify explicit gaps in the field that need to be addressed in order to directly demonstrate the existence and importance of this biophysical relationship. Finally, we propose that reducing or neutralizing fluid shear stress and solid stress-induced cancer immune escape may improve immunotherapy outcomes.
Collapse
|
469
|
Fabian KP, Kowalczyk JT, Reynolds ST, Hodge JW. Dying of Stress: Chemotherapy, Radiotherapy, and Small-Molecule Inhibitors in Immunogenic Cell Death and Immunogenic Modulation. Cells 2022; 11:cells11233826. [PMID: 36497086 PMCID: PMC9737874 DOI: 10.3390/cells11233826] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2022] [Revised: 11/11/2022] [Accepted: 11/26/2022] [Indexed: 12/03/2022] Open
Abstract
Innovative strategies to re-establish the immune-mediated destruction of malignant cells is paramount to the success of anti-cancer therapy. Accumulating evidence suggests that radiotherapy and select chemotherapeutic drugs and small molecule inhibitors induce immunogenic cell stress on tumors that results in improved immune recognition and targeting of the malignant cells. Through immunogenic cell death, which entails the release of antigens and danger signals, and immunogenic modulation, wherein the phenotype of stressed cells is altered to become more susceptible to immune attack, radiotherapies, chemotherapies, and small-molecule inhibitors exert immune-mediated anti-tumor responses. In this review, we discuss the mechanisms of immunogenic cell death and immunogenic modulation and their relevance in the anti-tumor activity of radiotherapies, chemotherapies, and small-molecule inhibitors. Our aim is to feature the immunological aspects of conventional and targeted cancer therapies and highlight how these therapies may be compatible with emerging immunotherapy approaches.
Collapse
|
470
|
Krysko DV, Demuynck R, Efimova I, Naessens F, Krysko O, Catanzaro E. In Vitro Veritas: From 2D Cultures to Organ-on-a-Chip Models to Study Immunogenic Cell Death in the Tumor Microenvironment. Cells 2022; 11:3705. [PMID: 36429133 PMCID: PMC9688238 DOI: 10.3390/cells11223705] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2022] [Revised: 11/16/2022] [Accepted: 11/17/2022] [Indexed: 11/23/2022] Open
Abstract
Immunogenic cell death (ICD) is a functionally unique form of cell death that promotes a T-cell-dependent anti-tumor immune response specific to antigens originating from dying cancer cells. Many anticancer agents and strategies induce ICD, but despite their robust effects in vitro and in vivo on mice, translation into the clinic remains challenging. A major hindrance in antitumor research is the poor predictive ability of classic 2D in vitro models, which do not consider tumor biological complexity, such as the contribution of the tumor microenvironment (TME), which plays a crucial role in immunosuppression and cancer evasion. In this review, we describe different tumor models, from 2D cultures to organ-on-a-chip technology, as well as spheroids and perfusion bioreactors, all of which mimic the different degrees of the TME complexity. Next, we discuss how 3D cell cultures can be applied to study ICD and how to increase the translational potential of the ICD inducers. Finally, novel research directions are provided regarding ICD in the 3D cellular context which may lead to novel immunotherapies for cancer.
Collapse
Affiliation(s)
- Dmitri V. Krysko
- Cell Death Investigation and Therapy Laboratory, Department of Human Structure and Repair, Ghent University, 9000 Ghent, Belgium
- Cancer Research Institute Ghent, 9000 Ghent, Belgium
- Institute of Biology and Biomedicine, National Research Lobachevsky State University of Nizhny Novgorod, Nizhny Novgorod 603022, Russia
| | - Robin Demuynck
- Cell Death Investigation and Therapy Laboratory, Department of Human Structure and Repair, Ghent University, 9000 Ghent, Belgium
- Cancer Research Institute Ghent, 9000 Ghent, Belgium
| | - Iuliia Efimova
- Cell Death Investigation and Therapy Laboratory, Department of Human Structure and Repair, Ghent University, 9000 Ghent, Belgium
- Cancer Research Institute Ghent, 9000 Ghent, Belgium
| | - Faye Naessens
- Cell Death Investigation and Therapy Laboratory, Department of Human Structure and Repair, Ghent University, 9000 Ghent, Belgium
- Cancer Research Institute Ghent, 9000 Ghent, Belgium
| | - Olga Krysko
- Cell Death Investigation and Therapy Laboratory, Department of Human Structure and Repair, Ghent University, 9000 Ghent, Belgium
- Institute of Biology and Biomedicine, National Research Lobachevsky State University of Nizhny Novgorod, Nizhny Novgorod 603022, Russia
| | - Elena Catanzaro
- Cell Death Investigation and Therapy Laboratory, Department of Human Structure and Repair, Ghent University, 9000 Ghent, Belgium
- Cancer Research Institute Ghent, 9000 Ghent, Belgium
| |
Collapse
|
471
|
Sagkrioti E, Biz GM, Takan I, Asfa S, Nikitaki Z, Zanni V, Kars RH, Hellweg CE, Azzam EI, Logotheti S, Pavlopoulou A, Georgakilas AG. Radiation Type- and Dose-Specific Transcriptional Responses across Healthy and Diseased Mammalian Tissues. Antioxidants (Basel) 2022; 11:2286. [PMID: 36421472 PMCID: PMC9687520 DOI: 10.3390/antiox11112286] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2022] [Revised: 11/12/2022] [Accepted: 11/15/2022] [Indexed: 08/30/2023] Open
Abstract
Ionizing radiation (IR) is a genuine genotoxic agent and a major modality in cancer treatment. IR disrupts DNA sequences and exerts mutagenic and/or cytotoxic properties that not only alter critical cellular functions but also impact tissues proximal and distal to the irradiated site. Unveiling the molecular events governing the diverse effects of IR at the cellular and organismal levels is relevant for both radiotherapy and radiation protection. Herein, we address changes in the expression of mammalian genes induced after the exposure of a wide range of tissues to various radiation types with distinct biophysical characteristics. First, we constructed a publicly available database, termed RadBioBase, which will be updated at regular intervals. RadBioBase includes comprehensive transcriptomes of mammalian cells across healthy and diseased tissues that respond to a range of radiation types and doses. Pertinent information was derived from a hybrid analysis based on stringent literature mining and transcriptomic studies. An integrative bioinformatics methodology, including functional enrichment analysis and machine learning techniques, was employed to unveil the characteristic biological pathways related to specific radiation types and their association with various diseases. We found that the effects of high linear energy transfer (LET) radiation on cell transcriptomes significantly differ from those caused by low LET and are consistent with immunomodulation, inflammation, oxidative stress responses and cell death. The transcriptome changes also depend on the dose since low doses up to 0.5 Gy are related with cytokine cascades, while higher doses with ROS metabolism. We additionally identified distinct gene signatures for different types of radiation. Overall, our data suggest that different radiation types and doses can trigger distinct trajectories of cell-intrinsic and cell-extrinsic pathways that hold promise to be manipulated toward improving radiotherapy efficiency and reducing systemic radiotoxicities.
Collapse
Affiliation(s)
- Eftychia Sagkrioti
- DNA Damage Laboratory, Physics Department, School of Applied Mathematical and Physical Sciences, National Technical University of Athens (NTUA), Zografou, 15780 Athens, Greece
- Biology Department, National and Kapodistrian University of Athens (NKUA), 15784 Athens, Greece
| | - Gökay Mehmet Biz
- Department of Technical Programs, Izmir Vocational School, Dokuz Eylül University, Buca, Izmir 35380, Turkey
| | - Işıl Takan
- Izmir Biomedicine and Genome Center (IBG), Balcova, Izmir 35340, Turkey
- Izmir International Biomedicine and Genome Institute, Dokuz Eylül University, Balcova, Izmir 35340, Turkey
| | - Seyedehsadaf Asfa
- Izmir Biomedicine and Genome Center (IBG), Balcova, Izmir 35340, Turkey
- Izmir International Biomedicine and Genome Institute, Dokuz Eylül University, Balcova, Izmir 35340, Turkey
| | - Zacharenia Nikitaki
- DNA Damage Laboratory, Physics Department, School of Applied Mathematical and Physical Sciences, National Technical University of Athens (NTUA), Zografou, 15780 Athens, Greece
| | - Vassiliki Zanni
- DNA Damage Laboratory, Physics Department, School of Applied Mathematical and Physical Sciences, National Technical University of Athens (NTUA), Zografou, 15780 Athens, Greece
| | - Rumeysa Hanife Kars
- Department of Biomedical Engineering, Istanbul Medipol University, Istanbul 34810, Turkey
| | - Christine E. Hellweg
- German Aerospace Center (DLR), Institute of Aerospace Medicine, Radiation Biology, Linder Höhe, D-51147 Köln, Germany
| | | | - Stella Logotheti
- DNA Damage Laboratory, Physics Department, School of Applied Mathematical and Physical Sciences, National Technical University of Athens (NTUA), Zografou, 15780 Athens, Greece
| | - Athanasia Pavlopoulou
- Izmir Biomedicine and Genome Center (IBG), Balcova, Izmir 35340, Turkey
- Izmir International Biomedicine and Genome Institute, Dokuz Eylül University, Balcova, Izmir 35340, Turkey
| | - Alexandros G. Georgakilas
- DNA Damage Laboratory, Physics Department, School of Applied Mathematical and Physical Sciences, National Technical University of Athens (NTUA), Zografou, 15780 Athens, Greece
| |
Collapse
|
472
|
Mitrofanova A, Fontanella AM, Burke GW, Merscher S, Fornoni A. Mitochondrial Contribution to Inflammation in Diabetic Kidney Disease. Cells 2022; 11:3635. [PMID: 36429063 PMCID: PMC9688941 DOI: 10.3390/cells11223635] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2022] [Revised: 11/10/2022] [Accepted: 11/14/2022] [Indexed: 11/18/2022] Open
Abstract
Diabetes is the leading cause of chronic kidney disease worldwide. Despite the burden, the factors contributing to the development and progression of diabetic kidney disease (DKD) remain to be fully elucidated. In recent years, increasing evidence suggests that mitochondrial dysfunction is a pathological mediator in DKD as the kidney is a highly metabolic organ rich in mitochondria. Furthermore, low grade chronic inflammation also contributes to the progression of DKD, and several inflammatory biomarkers have been reported as prognostic markers to risk-stratify patients for disease progression and all-cause mortality. Interestingly, the term "sterile inflammation" appears to be used in the context of DKD describing the development of intracellular inflammation in the absence of bacterial or viral pathogens. Therefore, a link between mitochondrial dysfunction and inflammation in DKD exists and is a hot topic in both basic research and clinical investigations. This review summarizes how mitochondria contribute to sterile inflammation in renal cells in DKD.
Collapse
Affiliation(s)
- Alla Mitrofanova
- Katz Family Division of Nephrology and Hypertension, Department of Medicine, University of Miami Miller School of Medicine, Miami, FL 33136, USA
- Peggy and Harold Katz Family Drug Discovery Center, University of Miami Miller School of Medicine, Miami, FL 33136, USA
| | - Antonio M. Fontanella
- Katz Family Division of Nephrology and Hypertension, Department of Medicine, University of Miami Miller School of Medicine, Miami, FL 33136, USA
- Peggy and Harold Katz Family Drug Discovery Center, University of Miami Miller School of Medicine, Miami, FL 33136, USA
| | - George W. Burke
- Department of Surgery, University of Miami Miller School of Medicine, Miami, FL 33136, USA
| | - Sandra Merscher
- Katz Family Division of Nephrology and Hypertension, Department of Medicine, University of Miami Miller School of Medicine, Miami, FL 33136, USA
- Peggy and Harold Katz Family Drug Discovery Center, University of Miami Miller School of Medicine, Miami, FL 33136, USA
| | - Alessia Fornoni
- Katz Family Division of Nephrology and Hypertension, Department of Medicine, University of Miami Miller School of Medicine, Miami, FL 33136, USA
- Peggy and Harold Katz Family Drug Discovery Center, University of Miami Miller School of Medicine, Miami, FL 33136, USA
| |
Collapse
|
473
|
Li Z, Xiang J, Zhang Q, Zhao M, Meng Y, Zhong J, Li T, Jia L, Li K, Lu X, Ao Z, Han D. An engineered hydrogel with low-dose antitumor drugs enhances tumor immunotherapy through tumor interstitial wrap. Front Bioeng Biotechnol 2022; 10:1072393. [PMID: 36452209 PMCID: PMC9701709 DOI: 10.3389/fbioe.2022.1072393] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2022] [Accepted: 10/31/2022] [Indexed: 11/15/2022] Open
Abstract
Stimulating immunogenic cell death (ICD) is the key to tumor immunotherapy. However, traditional chemoradiotherapy has limited effect on stimulating immunity and often requires repeated administration, which greatly reduces the tumor-killing effect. In this article, we created a sodium alginate hydrogel sustained-release system containing low-dose doxorubicin (Dox) and immune adjuvant R837, which were injected into the interstitial space to wrap around the tumor in situ, achieving a sustained release and long-lasting immune response. Cooperating with immune checkpoint blockade, Dox induced ICD, activated dendritic cells (DCs) and converted immunosuppressive M2-type tumor-associated macrophages (TAM) to tumor-killing M1-type TAMs. Simultaneously, it greatly promoted T cell proliferation and infiltration, and reduced tumor immunosuppressive factors, triggering a robust immune response to suppress tumors in vivo. In conclusion, this anti-tumor strategy based on interstitial injection can achieve continuous local immune stimulation by low-dose chemotherapy drugs, providing a potential approach for tumor immunotherapy.
Collapse
Affiliation(s)
- Zhongxian Li
- CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Jiawei Xiang
- CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Qiang Zhang
- Hebei Key Lab of Nano-Biotechnology, Hebei Key Lab of Applied Chemistry, Yanshan University, Qinhuangdao, China
| | - Mingyuan Zhao
- CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Yuan Meng
- CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Jie Zhong
- CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Tingting Li
- College of Life Sciences, Bejing University of Chinese Medicine, Beijing, China
| | - Lanxin Jia
- University of Chinese Academy of Sciences, Beijing, China
- CAS Key Laboratory of Bio-Inspired Materials and Interfacial Science, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing, China
| | - Kai Li
- College of Life Sciences, Bejing University of Chinese Medicine, Beijing, China
| | - Xi Lu
- College of Life Sciences, Bejing University of Chinese Medicine, Beijing, China
| | - Zhuo Ao
- CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing, China
- *Correspondence: Zhuo Ao, ; Dong Han,
| | - Dong Han
- CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
- College of Life Sciences, Bejing University of Chinese Medicine, Beijing, China
- *Correspondence: Zhuo Ao, ; Dong Han,
| |
Collapse
|
474
|
Faria SS, Fernando AJ, de Lima VCC, Rossi AG, de Carvalho JMA, Magalhães KG. Induction of pyroptotic cell death as a potential tool for cancer treatment. J Inflamm (Lond) 2022; 19:19. [PMID: 36376979 PMCID: PMC9664674 DOI: 10.1186/s12950-022-00316-9] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2022] [Accepted: 10/14/2022] [Indexed: 11/16/2022] Open
Abstract
Cancer is a complex pathological disease and the existing strategies for introducing chemotherapeutic agents have restricted potential due to a lack of cancer cell targeting specificity, cytotoxicity, bioavailability, and induction of multi-drug resistance. As a prospective strategy in tackling cancer, regulating the inflammatory pyroptosis cell death pathway has been shown to successfully inhibit the proliferation and metastasis of various cancer cell types. Activation of inflammasomes such as the NLRP3 results in pyroptosis through cleavage of gasdermins, which forms pores in the cell membranes, inducing membrane breakage, cell rupture, and death. Furthermore, pyroptotic cells release pro-inflammatory cytokines such as IL-1β and IL-18 along with various DAMPs that prime an auxiliary anti-tumor immune response. Thus, regulation of pyroptosis in cancer cells is a way to enhance their immunogenicity. However, immune escape involving myeloid-derived suppressor cells has limited the efficacy of most pyroptosis-based immunotherapy strategies. In this review, we comprehensively summarize the cellular and molecular mechanisms involved in the inflammasome-mediated pyroptosis pathways in cancer cells, exploring how it could modulate the tumor microenvironment and be beneficial in anti-cancer treatments. We discuss various existing therapeutic strategies against cancer, including immunotherapy, oncolytic virus therapy, and nanoparticle-based therapies that could be guided to trigger and regulate pyroptosis cell death in cancer cells, and reduce tumor growth and spread. These pyroptosis-based cancer therapies may open up fresh avenues for targeted cancer therapy approaches in the future and their translation into the clinic.
Collapse
Affiliation(s)
- Sara Socorro Faria
- Laboratory of Immunology and Inflammation, Department of Cell Biology, University of Brasilia, DF Brasilia, Brazil
| | - Anuruddika Jayawanthi Fernando
- Edinburgh BioQuarter, University of Edinburgh Centre for Inflammation Research, Queen’s Medical Research. Institute, University of Edinburgh, Edinburgh, UK
| | | | - Adriano Giorgio Rossi
- Laboratory of Immunology and Inflammation, Department of Cell Biology, University of Brasilia, DF Brasilia, Brazil
| | | | - Kelly Grace Magalhães
- Laboratory of Immunology and Inflammation, Department of Cell Biology, University of Brasilia, DF Brasilia, Brazil
| |
Collapse
|
475
|
Tong L, Jiménez-Cortegana C, Tay AHM, Wickström S, Galluzzi L, Lundqvist A. NK cells and solid tumors: therapeutic potential and persisting obstacles. Mol Cancer 2022; 21:206. [PMID: 36319998 PMCID: PMC9623927 DOI: 10.1186/s12943-022-01672-z] [Citation(s) in RCA: 63] [Impact Index Per Article: 31.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2022] [Revised: 09/10/2022] [Accepted: 09/24/2022] [Indexed: 11/05/2022] Open
Abstract
Natural killer (NK) cells, which are innate lymphocytes endowed with potent cytotoxic activity, have recently attracted attention as potential anticancer therapeutics. While NK cells mediate encouraging responses in patients with leukemia, the therapeutic effects of NK cell infusion in patients with solid tumors are limited. Preclinical and clinical data suggest that the efficacy of NK cell infusion against solid malignancies is hampered by several factors including inadequate tumor infiltration and persistence/activation in the tumor microenvironment (TME). A number of metabolic features of the TME including hypoxia as well as elevated levels of adenosine, reactive oxygen species, and prostaglandins negatively affect NK cell activity. Moreover, cancer-associated fibroblasts, tumor-associated macrophages, myeloid-derived suppressor cells, and regulatory T cells actively suppress NK cell-dependent anticancer immunity. Here, we review the metabolic and cellular barriers that inhibit NK cells in solid neoplasms as we discuss potential strategies to circumvent such obstacles towards superior therapeutic activity.
Collapse
Affiliation(s)
- Le Tong
- Department of Oncology-Pathology, Karolinska Institute, Stockholm, Sweden
| | - Carlos Jiménez-Cortegana
- Department of Radiation Oncology, Weill Cornell Medical College, New York, NY, USA
- Department of Medical Biochemistry, Molecular Biology and Immunology, Faculty of Medicine, University of Seville, Seville, Spain
| | - Apple H M Tay
- Department of Oncology-Pathology, Karolinska Institute, Stockholm, Sweden
- Department of Biological Science, Nanyang Technological University, Singapore, Singapore
| | - Stina Wickström
- Department of Oncology-Pathology, Karolinska Institute, Stockholm, Sweden
| | - Lorenzo Galluzzi
- Department of Radiation Oncology, Weill Cornell Medical College, New York, NY, USA.
- Sandra and Edward Meyer Cancer Center, New York, NY, USA.
- Caryl and Israel Englander Institute for Precision Medicine, New York, NY, USA.
| | - Andreas Lundqvist
- Department of Oncology-Pathology, Karolinska Institute, Stockholm, Sweden.
| |
Collapse
|
476
|
Salvagno C, Mandula JK, Rodriguez PC, Cubillos-Ruiz JR. Decoding endoplasmic reticulum stress signals in cancer cells and antitumor immunity. Trends Cancer 2022; 8:930-943. [PMID: 35817701 PMCID: PMC9588488 DOI: 10.1016/j.trecan.2022.06.006] [Citation(s) in RCA: 30] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2022] [Revised: 06/09/2022] [Accepted: 06/10/2022] [Indexed: 12/24/2022]
Abstract
The tumor microenvironment (TME) provokes endoplasmic reticulum (ER) stress in malignant cells and infiltrating immune populations. Sensing and responding to ER stress is coordinated by the unfolded protein response (UPR), an integrated signaling pathway governed by three ER stress sensors: activating transcription factor (ATF6), inositol-requiring enzyme 1α (IRE1α), and protein kinase R (PKR)-like ER kinase (PERK). Persistent UPR activation modulates malignant progression, tumor growth, metastasis, and protective antitumor immunity. Hence, therapies targeting ER stress signaling can be harnessed to elicit direct tumor killing and concomitant anticancer immunity. We highlight recent findings on the role of the ER stress responses in onco-immunology, with an emphasis on genetic vulnerabilities that render tumors highly sensitive to therapeutic UPR modulation.
Collapse
Affiliation(s)
- Camilla Salvagno
- Department of Obstetrics and Gynecology, Weill Cornell Medicine, New York, NY, USA; Sandra and Edward Meyer Cancer Center, Weill Cornell Medicine, New York, NY, USA
| | - Jessica K Mandula
- Department of Immunology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL, USA
| | - Paulo C Rodriguez
- Department of Immunology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL, USA.
| | - Juan R Cubillos-Ruiz
- Department of Obstetrics and Gynecology, Weill Cornell Medicine, New York, NY, USA; Sandra and Edward Meyer Cancer Center, Weill Cornell Medicine, New York, NY, USA; Weill Cornell Graduate School of Medical Sciences, Cornell University, New York, NY, USA.
| |
Collapse
|
477
|
Fu J, Zhang W, Jiang T. Immunogenic cell death mediation patterns reveal novel paradigm for characterizing the immune microenvironment and immunotherapeutic responses in bladder cancer. Front Genet 2022; 13:1035484. [PMID: 36386817 PMCID: PMC9640952 DOI: 10.3389/fgene.2022.1035484] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2022] [Accepted: 10/14/2022] [Indexed: 11/07/2023] Open
Abstract
Background: Immunogenic cell death (ICD) plays an important role in several malignancies. However, the role of ICD-mediated patterns in bladder cancer (BCA) remains unknown. Methods: For assessing the ICD-mediated patterns based on the expression of IRGs, 4 large BCA cohorts were obtained. The ICD-mediated patterns of individual samples were quantified as an ICD score by principal component analysis. The correlations of the ICD-mediated patterns with the tumor immune microenvironment (TIME) and responses to immunotherapy were comprehensively evaluated. The IRGs with predictive prognostic values were further validated by in vitro loss of function assays. Results: Two distinct ICD-mediated patterns were established, showing distinct clinical features and immune microenvironment features. Although ICD cluster A was associated with a poor prognosis with a high ICD score, it showed an immune activation state with a more favorable response to immunotherapy and treatment that induced ICD. The ICD-related gene, CALR, was significantly upregulated in the T24 BCA cell line relative to the control SV-HUC-1 cells. Knocking down CALR suppressed T24 cell viability and caused ER stress. Conclusion: We identified the existence of distinct ICD-mediated patterns in BCA closely associated with the remodeling of the TIME. Further in-depth examination of ICD-related features is warranted to obtain a broader prospect for therapeutic innovations and improved prognosis of BCA.
Collapse
Affiliation(s)
- Jialei Fu
- Department of Radiation Oncology, The Affiliated Hospital of Qingdao University, Qingdao, China
| | - Wei Zhang
- Department of Urology, Beijing Hospital, National Center of Gerontology, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, Beijing, China
| | - Tao Jiang
- Department of Radiation Oncology, The Affiliated Hospital of Qingdao University, Qingdao, China
| |
Collapse
|
478
|
Liu J, Yu Y, Liu C, Gao C, Zhuang J, Liu L, Wu Q, Ma W, Zhang Q, Sun C. Combinatorial regimens of chemotherapeutic agents: A new perspective on raising the heat of the tumor immune microenvironment. Front Pharmacol 2022; 13:1035954. [PMID: 36304169 PMCID: PMC9593050 DOI: 10.3389/fphar.2022.1035954] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2022] [Accepted: 09/29/2022] [Indexed: 11/13/2022] Open
Abstract
Harnessing the broad immunostimulatory capabilities of chemotherapy in combination with immune checkpoint inhibitors has improved immunotherapy outcomes in patients with cancer. Certain chemotherapeutic agents can extensively modify the tumor microenvironment (TME), resulting in the reprogramming of local immune responses. Although chemotherapeutic agents with an enhanced generation of potent anti-tumor immune responses have been tested in preclinical animal models and clinical trials, this strategy has not yet shown substantial therapeutic efficacy in selected difficult-to-treat cancer types. In addition, the efficacy of chemotherapeutic agent-based monotherapy in eliciting a long-term anti-tumor immune response is restricted by the immunosuppressive TME. To enhance the immunomodulatory effect of chemotherapy, researchers have made many attempts, mainly focusing on improving the targeted distribution of chemotherapeutic agents and designing combination therapies. Here, we focused on the mechanisms of the anti-tumor immune response to chemotherapeutic agents and enumerated the attempts to advance the use of chemo-immunotherapy. Furthermore, we have listed the important considerations in designing combinations of these drugs to maximize efficacy and improve treatment response rates in patients with cancer.
Collapse
Affiliation(s)
- Jingyang Liu
- College of First Clinical Medicine, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Yang Yu
- College of Traditional Chinese Medicine, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Cun Liu
- College of Traditional Chinese Medicine, Weifang Medical University, Weifang, China
| | - Chundi Gao
- College of First Clinical Medicine, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Jing Zhuang
- Department of Oncology, Weifang Traditional Chinese Hospital, Weifang, China
| | - Lijuan Liu
- Department of Oncology, Weifang Traditional Chinese Hospital, Weifang, China
- Department of Special Medicine, School of Basic Medicine, Qingdao University, Qingdao, China
| | - Qibiao Wu
- Faculty of Chinese Medicine, Macau University of Science and Technology, Macau, Macau SAR, China
| | - Wenzhe Ma
- State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Macau, Macau SAR, China
| | - Qiming Zhang
- College of First Clinical Medicine, Shandong University of Traditional Chinese Medicine, Jinan, China
- Department of Experimental Research Center, China Academy of Chinese Medical Sciences, Beijing, China
- *Correspondence: Qiming Zhang, ; Changgang Sun,
| | - Changgang Sun
- College of Traditional Chinese Medicine, Weifang Medical University, Weifang, China
- Department of Oncology, Weifang Traditional Chinese Hospital, Weifang, China
- *Correspondence: Qiming Zhang, ; Changgang Sun,
| |
Collapse
|
479
|
Mandula JK, Chang S, Mohamed E, Jimenez R, Sierra-Mondragon RA, Chang DC, Obermayer AN, Moran-Segura CM, Das S, Vazquez-Martinez JA, Prieto K, Chen A, Smalley KSM, Czerniecki B, Forsyth P, Koya RC, Ruffell B, Cubillos-Ruiz JR, Munn DH, Shaw TI, Conejo-Garcia JR, Rodriguez PC. Ablation of the endoplasmic reticulum stress kinase PERK induces paraptosis and type I interferon to promote anti-tumor T cell responses. Cancer Cell 2022; 40:1145-1160.e9. [PMID: 36150390 PMCID: PMC9561067 DOI: 10.1016/j.ccell.2022.08.016] [Citation(s) in RCA: 40] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/03/2022] [Revised: 06/20/2022] [Accepted: 08/16/2022] [Indexed: 11/18/2022]
Abstract
Activation of unfolded protein responses (UPRs) in cancer cells undergoing endoplasmic reticulum (ER) stress promotes survival. However, how UPR in tumor cells impacts anti-tumor immune responses remains poorly described. Here, we investigate the role of the UPR mediator pancreatic ER kinase (PKR)-like ER kinase (PERK) in cancer cells in the modulation of anti-tumor immunity. Deletion of PERK in cancer cells or pharmacological inhibition of PERK in melanoma-bearing mice incites robust activation of anti-tumor T cell immunity and attenuates tumor growth. PERK elimination in ER-stressed malignant cells triggers SEC61β-induced paraptosis, thereby promoting immunogenic cell death (ICD) and systemic anti-tumor responses. ICD induction in PERK-ablated tumors stimulates type I interferon production in dendritic cells (DCs), which primes CCR2-dependent tumor trafficking of common-monocytic precursors and their intra-tumor commitment into monocytic-lineage inflammatory Ly6C+CD103+ DCs. These findings identify how tumor cell-derived PERK promotes immune evasion and highlight the potential of PERK-targeting therapies in cancer immunotherapy.
Collapse
Affiliation(s)
- Jessica K Mandula
- Department of Immunology, H. Lee Moffitt Cancer Center, Tampa, FL 33612, USA
| | - Shiun Chang
- Department of Immunology, H. Lee Moffitt Cancer Center, Tampa, FL 33612, USA
| | - Eslam Mohamed
- California Northstate University, Elk Grove, CA 95757, USA
| | - Rachel Jimenez
- Department of Immunology, H. Lee Moffitt Cancer Center, Tampa, FL 33612, USA
| | | | - Darwin C Chang
- Department of Immunology, H. Lee Moffitt Cancer Center, Tampa, FL 33612, USA
| | - Alyssa N Obermayer
- Department of Biostatistics and Bioinformatics, H. Lee Moffitt Cancer Center, Tampa, FL 33612, USA
| | | | - Satyajit Das
- Department of Immunology, H. Lee Moffitt Cancer Center, Tampa, FL 33612, USA
| | | | - Karol Prieto
- Department of Immunology, H. Lee Moffitt Cancer Center, Tampa, FL 33612, USA
| | - Ann Chen
- Department of Biostatistics and Bioinformatics, H. Lee Moffitt Cancer Center, Tampa, FL 33612, USA
| | - Keiran S M Smalley
- Department of Tumor Biology, H. Lee Moffitt Cancer Center, Tampa, FL 33612, USA
| | - Brian Czerniecki
- Department of Immunology, H. Lee Moffitt Cancer Center, Tampa, FL 33612, USA
| | - Peter Forsyth
- Department of NeuroOncology, H. Lee Moffitt Cancer Center, Tampa, FL 33612, USA
| | - Richard C Koya
- Department of Obstetrics and Gynecology, University of Chicago, Chicago, IL 60637, USA
| | - Brian Ruffell
- Department of Immunology, H. Lee Moffitt Cancer Center, Tampa, FL 33612, USA
| | - Juan R Cubillos-Ruiz
- Department of Obstetrics and Gynecology, Weill Cornell Medicine, New York, NY 10065, USA; Sandra and Edward Meyer Cancer Center, Weill Cornell Medicine, New York, NY 10065, USA
| | - David H Munn
- Department of Pediatrics, Georgia Cancer Center, Augusta University, Augusta, GA 30912, USA
| | - Timothy I Shaw
- Department of Biostatistics and Bioinformatics, H. Lee Moffitt Cancer Center, Tampa, FL 33612, USA
| | | | - Paulo C Rodriguez
- Department of Immunology, H. Lee Moffitt Cancer Center, Tampa, FL 33612, USA.
| |
Collapse
|
480
|
Zhou Y, Hu F, Cui Y, Wu H, Hu S, Wei W. Bibliometric analysis of research on immunogenic cell death in cancer. Front Pharmacol 2022; 13:1029020. [PMID: 36278159 PMCID: PMC9582244 DOI: 10.3389/fphar.2022.1029020] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2022] [Accepted: 09/23/2022] [Indexed: 11/18/2022] Open
Abstract
Background: Immunotherapy is changing the way we treat cancer. Immunogenic cell death (ICD) has received considerable attention in the treatments of various cancer types, due to the long-lasting antitumor responses elicited in human body. However, to date, no relevant bibliometric research has been reported. Methods: Publications related to ICD in cancer research were collected from the Web of Science Core Collection. Using CiteSpace, VOSviewer and an online platform, the analyses of co-author, co-citation, and co-occurrence of terms retrieved from literatures were carried out. Results: A total of 1,577 publications were included in this study. The global research literatures on ICD in cancer research have been increasing from 2005 to 2021. China, the United States and France dominated in this area and had close collaborations with many countries. Six of the top 10 most contributive institutions were from France. When it comes to author analysis, Kroemer G, Zitvogel L, Kepp O, Garg AD and Galluzzi L were in both the top 10 most productive authors and top 10 most co-cited authors lists. The co-occurring author keywords could be grouped into three clusters: “biomarkers of ICD”, “nanoparticles” and “combination therapy”. In terms of promising hotspots, keywords (author keywords and KeyWords Plus) with recent citation bursts could be summarized into two aspects: “tumor microenvironment” and “nanoparticles”. Conclusion: Increased attention has been paid to ICD in cancer treatment. However, there are still many unresolved domains in the field of ICD, such as clinical application and molecular mechanisms of this cell death process. ICD-inducing modalities combined with nanotechnology could potentiate the current immunotherapies, and will be hotspots for future research.
Collapse
Affiliation(s)
- Yan Zhou
- Clinical College of Neurology, Neurosurgery and Neurorehabilitation, Tianjin Medical University, Tianjin, China
| | - Fen Hu
- Department of Oncology, XiangYang Central Hospital, Hubei University of Arts and Science, XiangYang, China
- Institute of Oncology, XiangYang Central Hospital, Hubei University of Arts and Science, XiangYang, China
| | - Yang Cui
- Department of Neurosurgery, Hebei Yanda Hospital, Langfang, China
| | - Haiyang Wu
- Clinical College of Neurology, Neurosurgery and Neurorehabilitation, Tianjin Medical University, Tianjin, China
| | - Shunan Hu
- Department of Neurosurgery, XiangYang Central Hospital, Hubei University of Arts and Science, XiangYang, China
- *Correspondence: Shunan Hu, ; Wei Wei,
| | - Wei Wei
- Department of Oncology, XiangYang Central Hospital, Hubei University of Arts and Science, XiangYang, China
- Institute of Oncology, XiangYang Central Hospital, Hubei University of Arts and Science, XiangYang, China
- *Correspondence: Shunan Hu, ; Wei Wei,
| |
Collapse
|
481
|
Massa D, Tosi A, Rosato A, Guarneri V, Dieci MV. Multiplexed In Situ Spatial Protein Profiling in the Pursuit of Precision Immuno-Oncology for Patients with Breast Cancer. Cancers (Basel) 2022; 14:4885. [PMID: 36230808 PMCID: PMC9562913 DOI: 10.3390/cancers14194885] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2022] [Revised: 09/29/2022] [Accepted: 10/04/2022] [Indexed: 11/16/2022] Open
Abstract
Immune checkpoint inhibitors (ICIs) have revolutionized the treatment of many solid tumors. In breast cancer (BC), immunotherapy is currently approved in combination with chemotherapy, albeit only in triple-negative breast cancer. Unfortunately, most patients only derive limited benefit from ICIs, progressing either upfront or after an initial response. Therapeutics must engage with a heterogeneous network of complex stromal-cancer interactions that can fail at imposing cancer immune control in multiple domains, such as in the genomic, epigenomic, transcriptomic, proteomic, and metabolomic domains. To overcome these types of heterogeneous resistance phenotypes, several combinatorial strategies are underway. Still, they can be predicted to be effective only in the subgroups of patients in which those specific resistance mechanisms are effectively in place. As single biomarker predictive performances are necessarily suboptimal at capturing the complexity of this articulate network, precision immune-oncology calls for multi-omics tumor microenvironment profiling in order to identify unique predictive patterns and to proactively tailor combinatorial treatments. Multiplexed single-cell spatially resolved tissue analysis, through precise epitope colocalization, allows one to infer cellular functional states in view of their spatial organization. In this review, we discuss-through the lens of the cancer-immunity cycle-selected, established, and emerging markers that may be evaluated in multiplexed spatial protein panels to help identify prognostic and predictive patterns in BC.
Collapse
Affiliation(s)
- Davide Massa
- Department of Surgery, Oncology and Gastroenterology, University of Padova, 35128 Padova, Italy
- Division of Oncology 2, Istituto Oncologico Veneto IRCCS, 35128 Padova, Italy
| | - Anna Tosi
- Immunology and Molecular Oncology Diagnostics, Istituto Oncologico Veneto IRCCS, 35128 Padova, Italy
| | - Antonio Rosato
- Department of Surgery, Oncology and Gastroenterology, University of Padova, 35128 Padova, Italy
- Immunology and Molecular Oncology Diagnostics, Istituto Oncologico Veneto IRCCS, 35128 Padova, Italy
| | - Valentina Guarneri
- Department of Surgery, Oncology and Gastroenterology, University of Padova, 35128 Padova, Italy
- Division of Oncology 2, Istituto Oncologico Veneto IRCCS, 35128 Padova, Italy
| | - Maria Vittoria Dieci
- Department of Surgery, Oncology and Gastroenterology, University of Padova, 35128 Padova, Italy
- Division of Oncology 2, Istituto Oncologico Veneto IRCCS, 35128 Padova, Italy
| |
Collapse
|
482
|
Turhon M, Maimaiti A, Gheyret D, Axier A, Rexiati N, Kadeer K, Su R, Wang Z, Chen X, Cheng X, Zhang Y, Aisha M. An immunogenic cell death-related regulators classification patterns and immune microenvironment infiltration characterization in intracranial aneurysm based on machine learning. Front Immunol 2022; 13:1001320. [PMID: 36248807 PMCID: PMC9556730 DOI: 10.3389/fimmu.2022.1001320] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2022] [Accepted: 09/12/2022] [Indexed: 11/13/2022] Open
Abstract
Background Immunogenic Cell Death (ICD) is a novel way to regulate cell death and can sufficiently activate adaptive immune responses. Its role in immunity is still emerging. However, the involvement of ICD in Intracranial Aneurysms (IA) remains unclear. This study aimed to identify biomarkers associated with ICDs and determine the relationship between them and the immune microenvironment during the onset and progression of IA Methods The IA gene expression profiles were obtained from the Gene Expression Omnibus (GEO) database. The differentially expressed genes (DEGs) in IA were identified and the effects of the ICD on immune microenvironment signatures were studied. Techniques like Lasso, Bayes, DT, FDA, GBM, NNET, RG, SVM, LR, and multivariate analysis were used to identify the ICD gene signatures in IA. A consensus clustering algorithm was used for conducting the unsupervised cluster analysis of the ICD patterns in IA. Furthermore, enrichment analysis was carried out for investigating the various immune responses and other functional pathways. Along with functional annotation, the weighted gene co-expression network analysis (WGCNA), protein-protein interaction (PPI) network and module construction, identification of the hub gene, and co-expression analysis were also carried out. Results The above techniques were used for establishing the ICD gene signatures of HMGB1, HMGN1, IL33, BCL2, HSPA4, PANX1, TLR9, CLEC7A, and NLRP3 that could easily distinguish IA from normal samples. The unsupervised cluster analysis helped in identifying three ICD gene patterns in different datasets. Gene enrichment analysis revealed that the IA samples showed many differences in pathways such as the cytokine-cytokine receptor interaction, regulation of actin cytoskeleton, chemokine signaling pathway, NOD-like receptor signaling pathway, viral protein interaction with the cytokines and cytokine receptors, and a few other signaling pathways compared to normal samples. In addition, the three ICD modification modes showed obvious differences in their immune microenvironment and the biological function pathways. Eight ICD-regulators were identified and showed meaningful associations with IA, suggesting they could severe as potential prognostic biomarkers. Conclusions A new gene signature for IA based on ICD features was created. This signature shows that the ICD pattern and the immune microenvironment are closely related to IA and provide a basis for optimizing risk monitoring, clinical decision-making, and developing novel treatment strategies for patients with IA.
Collapse
Affiliation(s)
- Mirzat Turhon
- Department of Neurointerventional Surgery, Beijing Neurosurgical Institute, Capital Medical University, Beijing, China
- Department of Neurointerventional Surgery, Beijing Tiantan hospital, Capital Medical University, Beijing, China
| | - Aierpati Maimaiti
- Department of Neurosurgery, Neurosurgery Centre, The First Affiliated Hospital of Xinjiang Medical University, Urumqi, China
| | - Dilmurat Gheyret
- Department of Neurosurgery, Neurosurgery Centre, The First Affiliated Hospital of Xinjiang Medical University, Urumqi, China
| | - Aximujiang Axier
- Department of Neurosurgery, Neurosurgery Centre, The First Affiliated Hospital of Xinjiang Medical University, Urumqi, China
| | - Nizamidingjiang Rexiati
- Department of Neurosurgery, Neurosurgery Centre, The First Affiliated Hospital of Xinjiang Medical University, Urumqi, China
| | - Kaheerman Kadeer
- Department of Neurosurgery, Neurosurgery Centre, The First Affiliated Hospital of Xinjiang Medical University, Urumqi, China
| | - Riqing Su
- Department of Neurosurgery, Neurosurgery Centre, The First Affiliated Hospital of Xinjiang Medical University, Urumqi, China
| | - Zengliang Wang
- Department of Neurosurgery, Neurosurgery Centre, The First Affiliated Hospital of Xinjiang Medical University, Urumqi, China
| | - Xiaohong Chen
- Department of Neurosurgery, Neurosurgery Centre, The First Affiliated Hospital of Xinjiang Medical University, Urumqi, China
| | - Xiaojiang Cheng
- Department of Neurosurgery, Neurosurgery Centre, The First Affiliated Hospital of Xinjiang Medical University, Urumqi, China
- *Correspondence: Maimaitili Aisha, ; Yisen Zhang, ; Xiaojiang Cheng,
| | - Yisen Zhang
- Department of Neurointerventional Surgery, Beijing Neurosurgical Institute, Capital Medical University, Beijing, China
- Department of Neurointerventional Surgery, Beijing Tiantan hospital, Capital Medical University, Beijing, China
- *Correspondence: Maimaitili Aisha, ; Yisen Zhang, ; Xiaojiang Cheng,
| | - Maimaitili Aisha
- Department of Neurosurgery, Neurosurgery Centre, The First Affiliated Hospital of Xinjiang Medical University, Urumqi, China
- *Correspondence: Maimaitili Aisha, ; Yisen Zhang, ; Xiaojiang Cheng,
| |
Collapse
|
483
|
Gao X, Huang H, Pan C, Mei Z, Yin S, Zhou L, Zheng S. Disulfiram/Copper Induces Immunogenic Cell Death and Enhances CD47 Blockade in Hepatocellular Carcinoma. Cancers (Basel) 2022; 14:cancers14194715. [PMID: 36230638 PMCID: PMC9564202 DOI: 10.3390/cancers14194715] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2022] [Revised: 09/23/2022] [Accepted: 09/24/2022] [Indexed: 11/16/2022] Open
Abstract
Some chemotherapeutic agents have been found to enhance antitumor immunity by inducing immunogenic cell death (ICD). The combination of disulfiram (DSF) and copper (Cu) has demonstrated anti-tumor effects in a range of malignancies including hepatocellular carcinoma (HCC). However, the potential of DSF/Cu as an ICD inducer and whether it can enhance the efficacy of the immune checkpoint blockade in HCC remains unknown. Here, we showed that DSF/Cu-treated HCC cells exhibited characteristics of ICD in vitro, such as calreticulin (CRT) exposure, ATP secretion, and high mobility group box 1 (HMGB1) release. DSF/Cu-treated HCC cells elicited significant immune memory in a vaccination assay. DSF/Cu treatment promoted dendritic cell activation and maturation. The combination of DSF/Cu and CD47 blockade further facilitated DC maturation and subsequently enhanced CD8+ T cell cytotoxicity. Mechanically, DSF/Cu promoted the nuclear accumulation and aggregation of nuclear protein localization protein 4 (NPL4) to inhibit the ubiquitin-proteasome system; thus, inducing endoplasmic reticulum (ER) stress. The inhibition of NPL4 induced ICD-associated damage-associated molecular patterns. Collectively, our findings demonstrated that DSF/Cu-induced ICD-mediated immune activation in HCC enhanced the efficacy of CD47 blockade.
Collapse
Affiliation(s)
- Xingxing Gao
- Division of Hepatobiliary and Pancreatic Surgery, Department of Surgery, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310003, China
- NHC Key Laboratory of Combined Multi-Organ Transplantation, Hangzhou 310003, China
- Key Laboratory of the Diagnosis and Treatment of Organ Transplantation, Research Unit of Collaborative Diagnosis and Treatment for Hepatobiliary and Pancreatic Cancer, Chinese Academy of Medical Sciences, Hangzhou 310003, China
- Key Laboratory of Organ Transplantation, Research Center for Diagnosis and Treatment of Hepatobiliary Diseases, Hangzhou 310003, China
| | - Hechen Huang
- Division of Hepatobiliary and Pancreatic Surgery, Department of Surgery, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310003, China
- NHC Key Laboratory of Combined Multi-Organ Transplantation, Hangzhou 310003, China
- Key Laboratory of the Diagnosis and Treatment of Organ Transplantation, Research Unit of Collaborative Diagnosis and Treatment for Hepatobiliary and Pancreatic Cancer, Chinese Academy of Medical Sciences, Hangzhou 310003, China
- Key Laboratory of Organ Transplantation, Research Center for Diagnosis and Treatment of Hepatobiliary Diseases, Hangzhou 310003, China
| | - Caixu Pan
- Division of Hepatobiliary and Pancreatic Surgery, Department of Surgery, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310003, China
- NHC Key Laboratory of Combined Multi-Organ Transplantation, Hangzhou 310003, China
- Key Laboratory of the Diagnosis and Treatment of Organ Transplantation, Research Unit of Collaborative Diagnosis and Treatment for Hepatobiliary and Pancreatic Cancer, Chinese Academy of Medical Sciences, Hangzhou 310003, China
- Key Laboratory of Organ Transplantation, Research Center for Diagnosis and Treatment of Hepatobiliary Diseases, Hangzhou 310003, China
| | - Zhibin Mei
- Division of Hepatobiliary and Pancreatic Surgery, Department of Surgery, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310003, China
- NHC Key Laboratory of Combined Multi-Organ Transplantation, Hangzhou 310003, China
- Key Laboratory of the Diagnosis and Treatment of Organ Transplantation, Research Unit of Collaborative Diagnosis and Treatment for Hepatobiliary and Pancreatic Cancer, Chinese Academy of Medical Sciences, Hangzhou 310003, China
- Key Laboratory of Organ Transplantation, Research Center for Diagnosis and Treatment of Hepatobiliary Diseases, Hangzhou 310003, China
| | - Shengyong Yin
- Division of Hepatobiliary and Pancreatic Surgery, Department of Surgery, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310003, China
- NHC Key Laboratory of Combined Multi-Organ Transplantation, Hangzhou 310003, China
- Key Laboratory of the Diagnosis and Treatment of Organ Transplantation, Research Unit of Collaborative Diagnosis and Treatment for Hepatobiliary and Pancreatic Cancer, Chinese Academy of Medical Sciences, Hangzhou 310003, China
- Key Laboratory of Organ Transplantation, Research Center for Diagnosis and Treatment of Hepatobiliary Diseases, Hangzhou 310003, China
| | - Lin Zhou
- Division of Hepatobiliary and Pancreatic Surgery, Department of Surgery, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310003, China
- NHC Key Laboratory of Combined Multi-Organ Transplantation, Hangzhou 310003, China
- Key Laboratory of the Diagnosis and Treatment of Organ Transplantation, Research Unit of Collaborative Diagnosis and Treatment for Hepatobiliary and Pancreatic Cancer, Chinese Academy of Medical Sciences, Hangzhou 310003, China
- Key Laboratory of Organ Transplantation, Research Center for Diagnosis and Treatment of Hepatobiliary Diseases, Hangzhou 310003, China
- Correspondence: (L.Z.); (S.Z.); Tel.: +86-571-87236626 (L.Z.); +86-571-87236570 (S.Z.)
| | - Shusen Zheng
- Division of Hepatobiliary and Pancreatic Surgery, Department of Surgery, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310003, China
- NHC Key Laboratory of Combined Multi-Organ Transplantation, Hangzhou 310003, China
- Key Laboratory of the Diagnosis and Treatment of Organ Transplantation, Research Unit of Collaborative Diagnosis and Treatment for Hepatobiliary and Pancreatic Cancer, Chinese Academy of Medical Sciences, Hangzhou 310003, China
- Key Laboratory of Organ Transplantation, Research Center for Diagnosis and Treatment of Hepatobiliary Diseases, Hangzhou 310003, China
- Correspondence: (L.Z.); (S.Z.); Tel.: +86-571-87236626 (L.Z.); +86-571-87236570 (S.Z.)
| |
Collapse
|
484
|
Chiaravalli M, Spring A, Agostini A, Piro G, Carbone C, Tortora G. Immunogenic Cell Death: An Emerging Target in Gastrointestinal Cancers. Cells 2022; 11:cells11193033. [PMID: 36230995 PMCID: PMC9563749 DOI: 10.3390/cells11193033] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2022] [Revised: 09/23/2022] [Accepted: 09/25/2022] [Indexed: 11/23/2022] Open
Abstract
Immunogenic cell death (ICD) is a regulated form of cell death that induces the activation of both innate and adaptive immune responses through the release of damage-associated molecular patterns (DAMPs) and their subsequent recognition by pattern-recognition receptors (PRRs), generating specific CD8+ T lymphocytes. Thus, ICD inducers (such as certain chemotherapeutic agents, targeted therapies, radiation, and oncolytic viruses) could become a potential cancer treatment by providing antitumour immunity and cancer vaccination. Moreover, their combination with immunotherapy, especially with immune checkpoint inhibitors, could overcome the immunosuppressive tumour microenvironment that characterises certain cancers, including gastrointestinal cancers. This review will provide insights into the role of ICD induction in colorectal, gastric, pancreatic, and hepatocellular carcinomas. Specifically, we will discuss the main mechanisms involved in ICD, their potential application in gastrointestinal cancer treatment, and the latest clinical trial updates.
Collapse
Affiliation(s)
- Marta Chiaravalli
- Medical Oncology, Fondazione Policlinico Universitario Agostino Gemelli, IRCCS, 00168 Rome, Italy
| | - Alexia Spring
- Medical Oncology, Fondazione Policlinico Universitario Agostino Gemelli, IRCCS, 00168 Rome, Italy
| | - Antonio Agostini
- Medical Oncology, Fondazione Policlinico Universitario Agostino Gemelli, IRCCS, 00168 Rome, Italy
| | - Geny Piro
- Medical Oncology, Fondazione Policlinico Universitario Agostino Gemelli, IRCCS, 00168 Rome, Italy
| | - Carmine Carbone
- Medical Oncology, Fondazione Policlinico Universitario Agostino Gemelli, IRCCS, 00168 Rome, Italy
- Correspondence:
| | - Giampaolo Tortora
- Medical Oncology, Fondazione Policlinico Universitario Agostino Gemelli, IRCCS, 00168 Rome, Italy
- Medical Oncology, Università Cattolica del Sacro Cuore, 00168 Rome, Italy
| |
Collapse
|
485
|
Hofer SJ, Kroemer G, Kepp O. Autophagy-inducing nutritional interventions in experimental and clinical oncology. INTERNATIONAL REVIEW OF CELL AND MOLECULAR BIOLOGY 2022; 373:125-158. [PMID: 36283765 DOI: 10.1016/bs.ircmb.2022.08.003] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
Numerous pro-autophagic dietary interventions are being investigated for their potential cancer-preventive or therapeutic effects. This applies to different fasting regimens, methionine restriction and ketogenic diets. In addition, the supplementation of specific micronutrients such as nicotinamide (vitamin B3) or spermidine induces autophagy. In humans, leanness, plant-based diets (that may lead to partial methionine restriction) and high dietary uptake of spermidine are associated with a low incidence of cancers. Moreover, clinical trials have demonstrated the capacity of nicotinamide to prevent non-melanoma skin carcinogenesis. Multiple interventional trials are evaluating the capacity of autophagy-inducing regimens to improve the outcome of chemotherapy and immunotherapy. Here, we discuss the mechanistic underpinnings of autophagy induction by nutritional interventions, as well as the mechanisms through which autophagy induction in malignant or immune cells improves anticancer immunosurveillance.
Collapse
Affiliation(s)
- Sebastian J Hofer
- Metabolomics and Cell Biology Platforms, Gustave Roussy Cancer Center, Université Paris Saclay, Villejuif, France; Centre de Recherche des Cordeliers, Equipe labellisée par la Ligue contre le cancer, Université de Paris Cité, Sorbonne Université, Inserm U1138, Paris, France; Institute of Molecular Biosciences, University of Graz, Graz, Austria
| | - Guido Kroemer
- Metabolomics and Cell Biology Platforms, Gustave Roussy Cancer Center, Université Paris Saclay, Villejuif, France; Centre de Recherche des Cordeliers, Equipe labellisée par la Ligue contre le cancer, Université de Paris Cité, Sorbonne Université, Inserm U1138, Paris, France; Institut du Cancer Paris Carpem, Department of Biology, APHP, Hôpital Européen Georges Pompidou, Paris, France.
| | - Oliver Kepp
- Metabolomics and Cell Biology Platforms, Gustave Roussy Cancer Center, Université Paris Saclay, Villejuif, France; Centre de Recherche des Cordeliers, Equipe labellisée par la Ligue contre le cancer, Université de Paris Cité, Sorbonne Université, Inserm U1138, Paris, France.
| |
Collapse
|
486
|
Feng S, Liang X, Li J, Wang Z, Zhang H, Dai Z, Luo P, Liu Z, Zhang J, Xiao X, Cheng Q. Immunogenic cell death related risk model to delineate ferroptosis pathway and predict immunotherapy response of patients with GBM. Front Immunol 2022; 13:992855. [PMID: 36248827 PMCID: PMC9554879 DOI: 10.3389/fimmu.2022.992855] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2022] [Accepted: 08/25/2022] [Indexed: 11/13/2022] Open
Abstract
Immunogenic cell death (ICD) is a type of cell death that leads to the regulation and activation of the immune response, which is marked by the exposure and delivery of damage‐associated molecular patterns (DAMPs) in the tumor microenvironment. Accumulating evidence has revealed the significance of ICD-related genes in tumor progression and therapeutic response. In this study, we obtained two ICD-related clusters for glioblastoma (GBM) by applying consensus clustering, and further constructed a risk signature on account of the prognostic ICD genes. Based on the risk signature, we found that higher risk scores were associated with worse patient prognosis. Besides, the results illustrated that ferroptosis regulators/markers were highly enriched the high-risk group, and ferroptosis were correlated with cytokine signaling pathway and other immune-related pathways. We also discovered that high-risk scores were correlated to specific immune infiltration patterns and good response to immune checkpoint blockade (ICB) treatment. In conclusion, our study highlights the significance of ICD-related genes as prognostic biomarkers and immune response indicators in GBM. And the risk signature integrating prognostic genes possessed significant potential value to predict the prognosis of patients and the efficacy of ICB treatment.
Collapse
Affiliation(s)
- Songshan Feng
- Department of Neurosurgery, Xiangya Hospital, Central South University, Changsha, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China
- Xiangya Cancer Center, Xiangya Hospital, Central South University, Changsha, China
- Key Laboratory of Molecular Radiation Oncology Hunan Province, Changsha, China
| | - Xisong Liang
- Department of Neurosurgery, Xiangya Hospital, Central South University, Changsha, China
| | - Jing Li
- Department of Rehabilitation, The Second Xiangya Hospital, Central South University, Changsha, China
| | - Zeyu Wang
- Department of Neurosurgery, Xiangya Hospital, Central South University, Changsha, China
| | - Hao Zhang
- Department of Neurosurgery, Xiangya Hospital, Central South University, Changsha, China
| | - Ziyu Dai
- Department of Neurosurgery, Xiangya Hospital, Central South University, Changsha, China
| | - Peng Luo
- Department of Oncology, Zhujiang Hospital, Southern Medical University, Guangzhou, China
| | - Zaoqu Liu
- Department of Interventional Radiology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Jian Zhang
- Department of Oncology, Zhujiang Hospital, Southern Medical University, Guangzhou, China
| | - Xiaoxiong Xiao
- Department of Thoracic Surgery, Xiangya Hospital, Central South University, Changsha, China
- *Correspondence: Quan Cheng, ; Xiaoxiong Xiao,
| | - Quan Cheng
- Department of Neurosurgery, Xiangya Hospital, Central South University, Changsha, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China
- Department of Clinical Pharmacology, Xiangya Hospital, Central South University, Changsha, China
- *Correspondence: Quan Cheng, ; Xiaoxiong Xiao,
| |
Collapse
|
487
|
Zanoni M, Pegoraro A, Adinolfi E, De Marchi E. Emerging roles of purinergic signaling in anti-cancer therapy resistance. Front Cell Dev Biol 2022; 10:1006384. [PMID: 36200041 PMCID: PMC9527280 DOI: 10.3389/fcell.2022.1006384] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2022] [Accepted: 08/29/2022] [Indexed: 11/20/2022] Open
Abstract
Cancer is a complex disease with a rapid growing incidence and often characterized by a poor prognosis. Although impressive advances have been made in cancer treatments, resistance to therapy remains a critical obstacle for the improvement of patients outcome. Current treatment approaches as chemo-, radio-, and immuno-therapy deeply affect the tumor microenvironment (TME), inducing an extensive selective pressure on cancer cells through the activation of the immune system, the induction of cell death and the release of inflammatory and damage-associated molecular patterns (DAMPS), including nucleosides (adenosine) and nucleotides (ATP and ADP). To survive in this hostile environment, resistant cells engage a variety of mitigation pathways related to metabolism, DNA repair, stemness, inflammation and resistance to apoptosis. In this context, purinergic signaling exerts a pivotal role being involved in mitochondrial function, stemness, inflammation and cancer development. The activity of ATP and adenosine released in the TME depend upon the repertoire of purinergic P2 and adenosine receptors engaged, as well as, by the expression of ectonucleotidases (CD39 and CD73) on tumor, immune and stromal cells. Besides its well established role in the pathogenesis of several tumors and in host–tumor interaction, purinergic signaling has been recently shown to be profoundly involved in the development of therapy resistance. In this review we summarize the current advances on the role of purinergic signaling in response and resistance to anti-cancer therapies, also describing the translational applications of combining conventional anticancer interventions with therapies targeting purinergic signaling.
Collapse
Affiliation(s)
- Michele Zanoni
- Biosciences Laboratory, IRCCS Istituto Romagnolo per lo Studio dei Tumori (IRST) “Dino Amadori”, Meldola, Italy
- *Correspondence: Michele Zanoni,
| | - Anna Pegoraro
- Department of Medical Sciences, Section of Experimental Medicine, University of Ferrara, Ferrara, Italy
| | - Elena Adinolfi
- Department of Medical Sciences, Section of Experimental Medicine, University of Ferrara, Ferrara, Italy
| | - Elena De Marchi
- Department of Medical Sciences, Section of Experimental Medicine, University of Ferrara, Ferrara, Italy
| |
Collapse
|
488
|
Bravo-San Pedro JM, Pietrocola F. Fasting and cancer responses to therapy. INTERNATIONAL REVIEW OF CELL AND MOLECULAR BIOLOGY 2022; 373:107-123. [PMID: 36283764 DOI: 10.1016/bs.ircmb.2022.08.002] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
The therapeutic outcome of multiple anticancer regimens relies upon a fine balance between tumor intrinsic and host-related factors. In this context, qualitative changes in dietary composition as well as alterations in total calorie supply influence essential aspects of cancer biology, spanning from tumor initiation to metastatic spreading. On the one hand, circumstances of nutritional imbalance or excessive calorie intake promote oncogenesis, accelerate tumor progression, and hamper the efficacy of anticancer treatments. On the other hand, approaches based on bulk (e.g., fasting, fasting mimicking diets) or selective (e.g., amino acids) shortage of nutrients are currently in the spotlight for their ability to potentiate the effect of anticancer drugs. While the chemosensitizing effect of fasting has long been attributed to the overdemanding metabolic requirements of neoplastic cells, recent findings suggest that caloric restriction improves the efficacy of chemotherapy and immunotherapy by boosting anticancer immunosurveillance. Here, we provide a critical overview of current preclinical and clinical studies that address the impact of nutritional interventions on the response to cancer therapy, laying particular emphasis on fasting-related interventions.
Collapse
Affiliation(s)
- José Manuel Bravo-San Pedro
- Departamento de Fisiología, Facultad de Medicina, Universidad Complutense de Madrid, Plaza Ramón y Cajal s/n, Ciudad Universitaria, Madrid, Spain
| | - Federico Pietrocola
- Department of Biosciences and Nutrition, Karolinska Institute, Neo Blickagången 16, Huddinge, Sweden.
| |
Collapse
|
489
|
Grillone K, Riillo C, Rocca R, Ascrizzi S, Spanò V, Scionti F, Polerà N, Maruca A, Barreca M, Juli G, Arbitrio M, Di Martino MT, Caracciolo D, Tagliaferri P, Alcaro S, Montalbano A, Barraja P, Tassone P. The New Microtubule-Targeting Agent SIX2G Induces Immunogenic Cell Death in Multiple Myeloma. Int J Mol Sci 2022; 23:ijms231810222. [PMID: 36142133 PMCID: PMC9499408 DOI: 10.3390/ijms231810222] [Citation(s) in RCA: 23] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2022] [Revised: 08/30/2022] [Accepted: 09/01/2022] [Indexed: 12/31/2022] Open
Abstract
Microtubule-targeting agents (MTAs) are effective drugs for cancer treatment. A novel diaryl [1,2]oxazole class of compounds binding the colchicine site was synthesized as cis-restricted-combretastatin-A-4-analogue and then chemically modified to have improved solubility and a wider therapeutic index as compared to vinca alkaloids and taxanes. On these bases, a new class of tricyclic compounds, containing the [1,2]oxazole ring and an isoindole moiety, has been synthetized, among which SIX2G emerged as improved MTA. Several findings highlighted the ability of some chemotherapeutics to induce immunogenic cell death (ICD), which is defined by the cell surface translocation of Calreticulin (CALR) via dissociation of the PP1/GADD34 complex. In this regard, we computationally predicted the ability of SIX2G to induce CALR exposure by interacting with the PP1 RVxF domain. We then assessed both the potential cytotoxic and immunogenic activity of SIX2G on in vitro models of multiple myeloma (MM), which is an incurable hematological malignancy characterized by an immunosuppressive milieu. We found that the treatment with SIX2G inhibited cell viability by inducing G2/M phase cell cycle arrest and apoptosis. Moreover, we observed the increase of hallmarks of ICD such as CALR exposure, ATP release and phospho-eIF2α protein level. Through co-culture experiments with immune cells, we demonstrated the increase of (i) CD86 maturation marker on dendritic cells, (ii) CD69 activation marker on cytotoxic T cells, and (iii) phagocytosis of tumor cells following treatment with SIX2G, confirming the onset of an immunogenic cascade. In conclusion, our findings provide a framework for further development of SIX2G as a new potential anti-MM agent.
Collapse
Affiliation(s)
- Katia Grillone
- Department of Experimental and Clinical Medicine, Magna Graecia University of Catanzaro, 88100 Catanzaro, Italy
| | - Caterina Riillo
- Department of Experimental and Clinical Medicine, Magna Graecia University of Catanzaro, 88100 Catanzaro, Italy
| | - Roberta Rocca
- Department of Experimental and Clinical Medicine, Magna Graecia University of Catanzaro, 88100 Catanzaro, Italy
- Net4Science s.r.l., Academic Spinoff, Magna Graecia University of Catanzaro, 88100 Catanzaro, Italy
| | - Serena Ascrizzi
- Department of Experimental and Clinical Medicine, Magna Graecia University of Catanzaro, 88100 Catanzaro, Italy
| | - Virginia Spanò
- Department of Biological, Chemical and Pharmaceutical Sciences and Technologies (STEBICEF), University of Palermo, 90128 Palermo, Italy
| | - Francesca Scionti
- Institute of Research and Biomedical Innovation (IRIB), Italian National Council (CNR), 98122 Messina, Italy
| | - Nicoletta Polerà
- Department of Experimental and Clinical Medicine, Magna Graecia University of Catanzaro, 88100 Catanzaro, Italy
| | - Annalisa Maruca
- Net4Science s.r.l., Academic Spinoff, Magna Graecia University of Catanzaro, 88100 Catanzaro, Italy
| | - Marilia Barreca
- Department of Biological, Chemical and Pharmaceutical Sciences and Technologies (STEBICEF), University of Palermo, 90128 Palermo, Italy
| | - Giada Juli
- Department of Experimental and Clinical Medicine, Magna Graecia University of Catanzaro, 88100 Catanzaro, Italy
| | - Mariamena Arbitrio
- Institute of Research and Biomedical Innovation (IRIB), Italian National Council (CNR), 98122 Messina, Italy
| | - Maria Teresa Di Martino
- Department of Experimental and Clinical Medicine, Magna Graecia University of Catanzaro, 88100 Catanzaro, Italy
| | - Daniele Caracciolo
- Department of Experimental and Clinical Medicine, Magna Graecia University of Catanzaro, 88100 Catanzaro, Italy
| | - Pierosandro Tagliaferri
- Department of Experimental and Clinical Medicine, Magna Graecia University of Catanzaro, 88100 Catanzaro, Italy
| | - Stefano Alcaro
- Net4Science s.r.l., Academic Spinoff, Magna Graecia University of Catanzaro, 88100 Catanzaro, Italy
- Institute of Research and Biomedical Innovation (IRIB), Italian National Council (CNR), 88100 Catanzaro, Italy
| | - Alessandra Montalbano
- Department of Biological, Chemical and Pharmaceutical Sciences and Technologies (STEBICEF), University of Palermo, 90128 Palermo, Italy
- Correspondence: (A.M.); (P.T.); Tel.: +39-0912-389682 (A.M.); +39-0961-364-7029 (P.T.)
| | - Paola Barraja
- Department of Biological, Chemical and Pharmaceutical Sciences and Technologies (STEBICEF), University of Palermo, 90128 Palermo, Italy
| | - Pierfrancesco Tassone
- Department of Experimental and Clinical Medicine, Magna Graecia University of Catanzaro, 88100 Catanzaro, Italy
- Correspondence: (A.M.); (P.T.); Tel.: +39-0912-389682 (A.M.); +39-0961-364-7029 (P.T.)
| |
Collapse
|
490
|
Musella M, Guarracino A, Manduca N, Galassi C, Ruggiero E, Potenza A, Maccafeo E, Manic G, Mattiello L, Soliman Abdel Rehim S, Signore M, Pietrosanto M, Helmer-Citterich M, Pallocca M, Fanciulli M, Bruno T, De Nicola F, Corleone G, Di Benedetto A, Ercolani C, Pescarmona E, Pizzuti L, Guidi F, Sperati F, Vitale S, Macchia D, Spada M, Schiavoni G, Mattei F, De Ninno A, Businaro L, Lucarini V, Bracci L, Aricò E, Ziccheddu G, Facchiano F, Rossi S, Sanchez M, Boe A, Biffoni M, De Maria R, Vitale I, Sistigu A. Type I IFNs promote cancer cell stemness by triggering the epigenetic regulator KDM1B. Nat Immunol 2022; 23:1379-1392. [PMID: 36002648 PMCID: PMC9477743 DOI: 10.1038/s41590-022-01290-3] [Citation(s) in RCA: 61] [Impact Index Per Article: 30.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2021] [Accepted: 07/17/2022] [Indexed: 12/14/2022]
Abstract
Cancer stem cells (CSCs) are a subpopulation of cancer cells endowed with high tumorigenic, chemoresistant and metastatic potential. Nongenetic mechanisms of acquired resistance are increasingly being discovered, but molecular insights into the evolutionary process of CSCs are limited. Here, we show that type I interferons (IFNs-I) function as molecular hubs of resistance during immunogenic chemotherapy, triggering the epigenetic regulator demethylase 1B (KDM1B) to promote an adaptive, yet reversible, transcriptional rewiring of cancer cells towards stemness and immune escape. Accordingly, KDM1B inhibition prevents the appearance of IFN-I-induced CSCs, both in vitro and in vivo. Notably, IFN-I-induced CSCs are heterogeneous in terms of multidrug resistance, plasticity, invasiveness and immunogenicity. Moreover, in breast cancer (BC) patients receiving anthracycline-based chemotherapy, KDM1B positively correlated with CSC signatures. Our study identifies an IFN-I → KDM1B axis as a potent engine of cancer cell reprogramming, supporting KDM1B targeting as an attractive adjunctive to immunogenic drugs to prevent CSC expansion and increase the long-term benefit of therapy.
Collapse
Affiliation(s)
- Martina Musella
- Dipartimento di Medicina e Chirurgia Traslazionale, Università Cattolica del Sacro Cuore, Rome, Italy
| | - Andrea Guarracino
- Department of Biology, University of Rome 'Tor Vergata', Rome, Italy
- Genomics Research Centre, Human Technopole, Milan, Italy
| | - Nicoletta Manduca
- Dipartimento di Medicina e Chirurgia Traslazionale, Università Cattolica del Sacro Cuore, Rome, Italy
| | - Claudia Galassi
- Dipartimento di Medicina e Chirurgia Traslazionale, Università Cattolica del Sacro Cuore, Rome, Italy
- Department of Radiation Oncology, Weill Cornell Medical College, New York, NY, USA
| | - Eliana Ruggiero
- Experimental Hematology Unit, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Alessia Potenza
- Experimental Hematology Unit, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Ester Maccafeo
- Dipartimento di Medicina e Chirurgia Traslazionale, Università Cattolica del Sacro Cuore, Rome, Italy
| | - Gwenola Manic
- Italian Institute for Genomic Medicine (IIGM), Candiolo, Italy
- Candiolo Cancer Institute, FPO - IRCCS, Candiolo, Italy
| | - Luca Mattiello
- Italian Institute for Genomic Medicine (IIGM), Candiolo, Italy
- Candiolo Cancer Institute, FPO - IRCCS, Candiolo, Italy
| | - Sara Soliman Abdel Rehim
- Department of Biology, University of Rome 'Tor Vergata', Rome, Italy
- Italian Institute for Genomic Medicine (IIGM), Candiolo, Italy
| | - Michele Signore
- RPPA Unit, Proteomics Area, Core Facilities, Istituto Superiore di Sanità, Rome, Italy
| | - Marco Pietrosanto
- Department of Biology, University of Rome 'Tor Vergata', Rome, Italy
| | | | - Matteo Pallocca
- UOSD Clinical Trial Center, Biostatistics and Bioinformatics, IRCCS Regina Elena National Cancer Institute, Rome, Italy
| | | | - Tiziana Bruno
- SAFU Unit, IRCCS Regina Elena National Cancer Institute, Rome, Italy
| | | | - Giacomo Corleone
- SAFU Unit, IRCCS Regina Elena National Cancer Institute, Rome, Italy
| | - Anna Di Benedetto
- Pathology Unit, IRCCS Regina Elena National Cancer Institute, Rome, Italy
| | - Cristiana Ercolani
- Pathology Unit, IRCCS Regina Elena National Cancer Institute, Rome, Italy
| | - Edoardo Pescarmona
- Pathology Unit, IRCCS Regina Elena National Cancer Institute, Rome, Italy
| | - Laura Pizzuti
- Division of Medical Oncology 2, IRCCS Regina Elena National Cancer Institute, Rome, Italy
| | - Francesco Guidi
- Dipartimento di Medicina e Chirurgia Traslazionale, Università Cattolica del Sacro Cuore, Rome, Italy
- Fondazione Policlinico Universitario 'A. Gemelli' - IRCCS, Rome, Italy
| | - Francesca Sperati
- UOSD Clinical Trial Center, Biostatistics and Bioinformatics, IRCCS San Gallicano Dermatological Institute, Rome, Italy
| | - Sara Vitale
- Dipartimento di Medicina e Chirurgia Traslazionale, Università Cattolica del Sacro Cuore, Rome, Italy
| | - Daniele Macchia
- Center of Animal Research and Welfare, Istituto Superiore di Sanità, Rome, Italy
| | - Massimo Spada
- Center of Animal Research and Welfare, Istituto Superiore di Sanità, Rome, Italy
| | - Giovanna Schiavoni
- Department of Oncology and Molecular Medicine, Istituto Superiore di Sanità, Rome, Italy
| | - Fabrizio Mattei
- Department of Oncology and Molecular Medicine, Istituto Superiore di Sanità, Rome, Italy
| | - Adele De Ninno
- Institute for Photonics and Nanotechnologies, Italian National Research Council, Rome, Italy
| | - Luca Businaro
- Institute for Photonics and Nanotechnologies, Italian National Research Council, Rome, Italy
| | - Valeria Lucarini
- Department of Paediatric Haematology/Oncology and of Cell and Gene Therapy, Ospedale Pediatrico Bambino Gesù, IRCCS, Rome, Italy
| | - Laura Bracci
- Department of Oncology and Molecular Medicine, Istituto Superiore di Sanità, Rome, Italy
| | - Eleonora Aricò
- FaBioCell, Core Facilities, Istituto Superiore di Sanità, Rome, Italy
| | - Giovanna Ziccheddu
- Oncogenomics and Epigenetics, IRCCS Regina Elena National Cancer Institute, Rome, Italy
| | - Francesco Facchiano
- Department of Oncology and Molecular Medicine, Istituto Superiore di Sanità, Rome, Italy
| | - Stefania Rossi
- Department of Oncology and Molecular Medicine, Istituto Superiore di Sanità, Rome, Italy
| | - Massimo Sanchez
- Cytometry Unit, Core Facilities, Istituto Superiore di Sanità, Rome, Italy
| | - Alessandra Boe
- Cytometry Unit, Core Facilities, Istituto Superiore di Sanità, Rome, Italy
| | - Mauro Biffoni
- Department of Oncology and Molecular Medicine, Istituto Superiore di Sanità, Rome, Italy
| | - Ruggero De Maria
- Dipartimento di Medicina e Chirurgia Traslazionale, Università Cattolica del Sacro Cuore, Rome, Italy.
- Fondazione Policlinico Universitario 'A. Gemelli' - IRCCS, Rome, Italy.
| | - Ilio Vitale
- Italian Institute for Genomic Medicine (IIGM), Candiolo, Italy.
- Candiolo Cancer Institute, FPO - IRCCS, Candiolo, Italy.
| | - Antonella Sistigu
- Dipartimento di Medicina e Chirurgia Traslazionale, Università Cattolica del Sacro Cuore, Rome, Italy.
- Fondazione Policlinico Universitario 'A. Gemelli' - IRCCS, Rome, Italy.
- Tumor Immunology and Immunotherapy Unit, IRCCS Regina Elena National Cancer Institute, Rome, Italy.
| |
Collapse
|
491
|
Immuno-epigenetic escape of cancer stem cells. Nat Immunol 2022; 23:1300-1302. [PMID: 36002649 DOI: 10.1038/s41590-022-01293-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
492
|
Jinesh GG, Brohl AS. Classical epithelial-mesenchymal transition (EMT) and alternative cell death process-driven blebbishield metastatic-witch (BMW) pathways to cancer metastasis. Signal Transduct Target Ther 2022; 7:296. [PMID: 35999218 PMCID: PMC9399134 DOI: 10.1038/s41392-022-01132-6] [Citation(s) in RCA: 23] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2022] [Revised: 07/14/2022] [Accepted: 07/24/2022] [Indexed: 12/13/2022] Open
Abstract
Metastasis is a pivotal event that accelerates the prognosis of cancer patients towards mortality. Therapies that aim to induce cell death in metastatic cells require a more detailed understanding of the metastasis for better mitigation. Towards this goal, we discuss the details of two distinct but overlapping pathways of metastasis: a classical reversible epithelial-to-mesenchymal transition (hybrid-EMT)-driven transport pathway and an alternative cell death process-driven blebbishield metastatic-witch (BMW) transport pathway involving reversible cell death process. The knowledge about the EMT and BMW pathways is important for the therapy of metastatic cancers as these pathways confer drug resistance coupled to immune evasion/suppression. We initially discuss the EMT pathway and compare it with the BMW pathway in the contexts of coordinated oncogenic, metabolic, immunologic, and cell biological events that drive metastasis. In particular, we discuss how the cell death environment involving apoptosis, ferroptosis, necroptosis, and NETosis in BMW or EMT pathways recruits immune cells, fuses with it, migrates, permeabilizes vasculature, and settles at distant sites to establish metastasis. Finally, we discuss the therapeutic targets that are common to both EMT and BMW pathways.
Collapse
Affiliation(s)
- Goodwin G Jinesh
- Department of Molecular Oncology, 12902 USF Magnolia Drive, H. Lee Moffitt Cancer Center & Research Institute, Tampa, 33612, FL, USA. .,Sarcoma Department, 12902 USF Magnolia Drive, H. Lee Moffitt Cancer Center & Research Institute, Tampa, 33612, FL, USA.
| | - Andrew S Brohl
- Department of Molecular Oncology, 12902 USF Magnolia Drive, H. Lee Moffitt Cancer Center & Research Institute, Tampa, 33612, FL, USA. .,Sarcoma Department, 12902 USF Magnolia Drive, H. Lee Moffitt Cancer Center & Research Institute, Tampa, 33612, FL, USA.
| |
Collapse
|
493
|
Johnstone M, Vinaixa D, Turi M, Morelli E, Anderson KC, Gulla A. Promises and Challenges of Immunogenic Chemotherapy in Multiple Myeloma. Cells 2022; 11:cells11162519. [PMID: 36010596 PMCID: PMC9406519 DOI: 10.3390/cells11162519] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2022] [Revised: 08/10/2022] [Accepted: 08/11/2022] [Indexed: 11/30/2022] Open
Abstract
Immunological tolerance of myeloma cells represents a critical obstacle in achieving long-term disease-free survival for multiple myeloma (MM) patients. Over the past two decades, remarkable preclinical efforts to understand MM biology have led to the clinical approval of several targeted and immunotherapeutic agents. Among them, it is now clear that chemotherapy can also make cancer cells “visible” to the immune system and thus reactivate anti-tumor immunity. This knowledge represents an important resource in the treatment paradigm of MM, whereas immune dysfunction constitutes a clear obstacle to the cure of the disease. In this review, we highlight the importance of defining the immunological effects of chemotherapy in MM with the goal of enhancing the clinical management of patients. This area of investigation will open new avenues of research to identify novel immunogenic anti-MM agents and inform the optimal integration of chemotherapy with immunotherapy.
Collapse
Affiliation(s)
- Megan Johnstone
- Jerome Lipper Multiple Myeloma Center, LeBow Institute for Myeloma Therapeutics, Dana-Farber Cancer Institute, Boston, MA 02215, USA
| | - Delaney Vinaixa
- Jerome Lipper Multiple Myeloma Center, LeBow Institute for Myeloma Therapeutics, Dana-Farber Cancer Institute, Boston, MA 02215, USA
| | - Marcello Turi
- Jerome Lipper Multiple Myeloma Center, LeBow Institute for Myeloma Therapeutics, Dana-Farber Cancer Institute, Boston, MA 02215, USA
- Faculty of Science, University of Ostrava, 70100 Ostrava, Czech Republic
- Faculty of Medicine, University of Ostrava, 70300 Ostrava, Czech Republic
- Department of Hematooncology, University Hospital Ostrava, 70800 Ostrava, Czech Republic
| | - Eugenio Morelli
- Jerome Lipper Multiple Myeloma Center, LeBow Institute for Myeloma Therapeutics, Dana-Farber Cancer Institute, Boston, MA 02215, USA
- Harvard Medical School, Boston, MA 02115, USA
| | - Kenneth Carl Anderson
- Jerome Lipper Multiple Myeloma Center, LeBow Institute for Myeloma Therapeutics, Dana-Farber Cancer Institute, Boston, MA 02215, USA
- Harvard Medical School, Boston, MA 02115, USA
- Correspondence: (K.C.A.); (A.G.); Tel.: +1-617-632-2144 (K.C.A.); +1-617-632-6638 (A.G.); Fax: +1-617-632-2140 (K.C.A. & A.G.)
| | - Annamaria Gulla
- Jerome Lipper Multiple Myeloma Center, LeBow Institute for Myeloma Therapeutics, Dana-Farber Cancer Institute, Boston, MA 02215, USA
- Harvard Medical School, Boston, MA 02115, USA
- Correspondence: (K.C.A.); (A.G.); Tel.: +1-617-632-2144 (K.C.A.); +1-617-632-6638 (A.G.); Fax: +1-617-632-2140 (K.C.A. & A.G.)
| |
Collapse
|
494
|
Warner K, Ghaedi M, Chung DC, Jacquelot N, Ohashi PS. Innate lymphoid cells in early tumor development. Front Immunol 2022; 13:948358. [PMID: 36032129 PMCID: PMC9411809 DOI: 10.3389/fimmu.2022.948358] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2022] [Accepted: 07/26/2022] [Indexed: 12/20/2022] Open
Abstract
Innate and adaptive immune cells monitor, recognize, and eliminate transformed cells. Innate lymphoid cells (ILCs) are innate counterparts of T cells that play a key role in many facets of the immune response and have a profound impact on disease states, including cancer. ILCs regulate immune responses by responding and integrating a wide range of signals within the local microenvironment. As primarily tissue-resident cells, ILCs are ideally suited to sense malignant transformation and initiate anti-tumor immunity. However, as ILCs have been associated with anti-tumor and pro-tumor activities in established tumors, they could potentially have dual functions during carcinogenesis by promoting or suppressing the malignant outgrowth of premalignant lesions. Here we discuss emerging evidence that shows that ILCs can impact early tumor development by regulating immune responses against transformed cells, as well as the environmental cues that potentially induce ILC activation in premalignant lesions.
Collapse
Affiliation(s)
- Kathrin Warner
- Princess Margaret Cancer Centre, University Health Network, University of Toronto, Toronto, ON, Canada
| | - Maryam Ghaedi
- Princess Margaret Cancer Centre, University Health Network, University of Toronto, Toronto, ON, Canada
| | - Douglas C. Chung
- Princess Margaret Cancer Centre, University Health Network, University of Toronto, Toronto, ON, Canada
- Department of Immunology, University of Toronto, Toronto, ON, Canada
| | - Nicolas Jacquelot
- Princess Margaret Cancer Centre, University Health Network, University of Toronto, Toronto, ON, Canada
| | - Pamela S. Ohashi
- Princess Margaret Cancer Centre, University Health Network, University of Toronto, Toronto, ON, Canada
- Department of Immunology, University of Toronto, Toronto, ON, Canada
| |
Collapse
|
495
|
Song H, Sun H, He N, Xu C, Wang Y, Du L, Liu Y, Wang Q, Ji K, Wang J, Zhang M, Gu Y, Zhang Y, Feng L, Tillement O, Wang W, Liu Q. Gadolinium-based ultra-small nanoparticles augment radiotherapy-induced T-cell response to synergize with checkpoint blockade immunotherapy. NANOSCALE 2022; 14:11429-11442. [PMID: 35904053 DOI: 10.1039/d2nr02620a] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Radiotherapy suffers from its high-dose radiation-induced systemic toxicity and radioresistance caused by the immunosuppressive tumor microenvironment. Immunotherapy using checkpoint blocking in solid tumors shows limited anticancer efficacy due to insufficient T-cell infiltration and inadequate systemic immune responses. Activation and guiding of irradiation by X-ray (AGuIX) nanoparticles with sizes below 5 nm have entered a phase III clinical trial as efficient radiosensitizers. This study aimed to develop a unique synergistic strategy based on AGuIX-mediated radiotherapy and immune checkpoint blockade to further improve the efficiency for B16 tumor therapy. AGuIX exacerbated radiation-induced DNA damage, cell cycle arrest, and apoptosis on B16 cells. More importantly, it could efficiently induce the immunogenic cell death of irradiated B16 tumor cells, and consequently trigger the maturation of dendritic cells and activation of systemic T-cell responses. Combining AGuIX-mediated radiotherapy with programmed cell death protein 1 blockade demonstrated excellent synergistic therapeutic effects in both bilateral and metastatic B16 tumor models, as indicated by a significant increase in the infiltration of effector CD8+ T cells and effective alleviation of the immunosuppressive tumor microenvironment. Our findings indicate that the synergy between radiosensitization and immunomodulation provides a new and powerful therapy regimen to achieve durable antitumor T-cell responses, which is promising for cancer treatment.
Collapse
Affiliation(s)
- Huijuan Song
- Institute of Radiation Medicine, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin 300192, China.
| | - Hao Sun
- Institute of Radiation Medicine, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin 300192, China.
| | - Ningning He
- Institute of Radiation Medicine, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin 300192, China.
| | - Chang Xu
- Institute of Radiation Medicine, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin 300192, China.
| | - Yan Wang
- Institute of Radiation Medicine, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin 300192, China.
| | - Liqing Du
- Institute of Radiation Medicine, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin 300192, China.
| | - Yang Liu
- Institute of Radiation Medicine, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin 300192, China.
| | - Qin Wang
- Institute of Radiation Medicine, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin 300192, China.
| | - Kaihua Ji
- Institute of Radiation Medicine, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin 300192, China.
| | - Jinhan Wang
- Institute of Radiation Medicine, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin 300192, China.
| | - Manman Zhang
- Institute of Radiation Medicine, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin 300192, China.
| | - Yeqing Gu
- Institute of Radiation Medicine, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin 300192, China.
| | - Yumin Zhang
- Institute of Radiation Medicine, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin 300192, China.
| | - Li Feng
- Department of Ultrasound, The First Affiliated Hospital of Shandong First Medical University & Shandong Provincial Qianfoshan Hospital, Jinan 250014, China
| | | | - Weiwei Wang
- Tianjin Key Laboratory of Biomaterial Research, Institute of Biomedical Engineering, Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin 300192, China.
| | - Qiang Liu
- Institute of Radiation Medicine, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin 300192, China.
| |
Collapse
|
496
|
Wang S, Wang G, Wu W, Xu Z, Yang J, Cao M, Wang Q, Wang J, Yang C, Zhang W. Autophagy activation by dietary piceatannol enhances the efficacy of immunogenic chemotherapy. Front Immunol 2022; 13:968686. [PMID: 35979349 PMCID: PMC9376326 DOI: 10.3389/fimmu.2022.968686] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2022] [Accepted: 07/11/2022] [Indexed: 11/13/2022] Open
Abstract
Immunogenic cell death (ICD) promotes the immune antitumor response via releasing damage-associated molecular patterns (DAMPs) from dying tumor cells. The induction of autophagy improves the efficacy of multiple immunogenic chemotherapies. Here, we show that piceatannol, a dietary phenolic compound that is widely distributed in multiple fruits and vegetables such as grapes, blueberries, and mushrooms, induces autophagy and enhances oxaliplatin (OXA)-induced anticancer immune response. Specifically, piceatannol enhanced OXA-induced release of DAMPs, several key hallmarks of ICD including ATP release, cell surface exposure of calreticulin, and high-mobility group box 1 (HMGB1) release. Mechanistically, piceatannol promoted autophagy via activating TFEB/TFE3, two key transcription factors of the autophagy-lysosome pathway, and inhibiting autophagy attenuated piceatannol plus OXA-induced ATP release. Furthermore, piceatannol induced endoplasmic reticulum stress, which is critical for its role in enhancing OXA-induced cell surface exposure of calreticulin, another key hallmark of ICD. Consistently, the combination of piceatannol with OXA promoted the anticancer effects in immunocompetent mice. Taken together, our results indicate the importance and great potential of dietary piceatannol in cancer immunotherapy. Therefore, piceatannol may be used as an ICD enhancer that improves the efficacy of chemotherapeutics such as OXA in cancer treatment with minimized toxicity.
Collapse
Affiliation(s)
- Shuang Wang
- Department of Geriatrics, Shenzhen People’s Hospital, The Second Clinical Medical College, Jinan University, The First Affiliated Hospital, Southern University of Science and Technology, Shenzhen, China
| | - Guangsuo Wang
- Department of Thoracic Surgery, Shenzhen People’s Hospital, The Second Clinical Medical College, Jinan University, The First Affiliated Hospital, Southern University of Science and Technology, Shenzhen, China
| | - Weiqing Wu
- Department of Health Management, Shenzhen People’s Hospital, The Second Clinical Medical College, Jinan University, The First Affiliated Hospital, Southern University of Science and Technology, Shenzhen, China
| | - Zhenglei Xu
- Department of Gastroenterology, Shenzhen People’s Hospital, The Second Clinical Medical College, Jinan University, The First Affiliated Hospital, Southern University of Science and Technology, Shenzhen, China
| | - Jing Yang
- Department of Geriatrics, Shenzhen People’s Hospital, The Second Clinical Medical College, Jinan University, The First Affiliated Hospital, Southern University of Science and Technology, Shenzhen, China
| | - Min Cao
- Department of Geriatrics, Shenzhen People’s Hospital, The Second Clinical Medical College, Jinan University, The First Affiliated Hospital, Southern University of Science and Technology, Shenzhen, China
| | - Qi Wang
- Shenzhen People’s Hospital, The Second Clinical Medical College, Jinan University, The First Affiliated Hospital, Southern University of Science and Technology, Shenzhen, China
- *Correspondence: Wei Zhang, ; Chuanbin Yang, ; Jigang Wang, ; Qi Wang,
| | - Jigang Wang
- Department of Geriatrics, Shenzhen People’s Hospital, The Second Clinical Medical College, Jinan University, The First Affiliated Hospital, Southern University of Science and Technology, Shenzhen, China
- Artemisinin Research Center, Institute of Chinese Materia Medica, Chinese Academy of Chinese Medical Sciences, Beijing, China
- *Correspondence: Wei Zhang, ; Chuanbin Yang, ; Jigang Wang, ; Qi Wang,
| | - Chuanbin Yang
- Department of Geriatrics, Shenzhen People’s Hospital, The Second Clinical Medical College, Jinan University, The First Affiliated Hospital, Southern University of Science and Technology, Shenzhen, China
- *Correspondence: Wei Zhang, ; Chuanbin Yang, ; Jigang Wang, ; Qi Wang,
| | - Wei Zhang
- Department of Geriatrics, Shenzhen People’s Hospital, The Second Clinical Medical College, Jinan University, The First Affiliated Hospital, Southern University of Science and Technology, Shenzhen, China
- Integrated Chinese and Western Medicine Postdoctoral Research Station, Jinan University, Guangzhou, China
- *Correspondence: Wei Zhang, ; Chuanbin Yang, ; Jigang Wang, ; Qi Wang,
| |
Collapse
|
497
|
Li Z, Lai X, Fu S, Ren L, Cai H, Zhang H, Gu Z, Ma X, Luo K. Immunogenic Cell Death Activates the Tumor Immune Microenvironment to Boost the Immunotherapy Efficiency. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2022; 9:e2201734. [PMID: 35652198 PMCID: PMC9353475 DOI: 10.1002/advs.202201734] [Citation(s) in RCA: 165] [Impact Index Per Article: 82.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/24/2022] [Revised: 04/21/2022] [Indexed: 02/05/2023]
Abstract
Tumor immunotherapy is only effective in a fraction of patients due to a low response rate and severe side effects, and these challenges of immunotherapy in clinics can be addressed through induction of immunogenic cell death (ICD). ICD is elicited from many antitumor therapies to release danger associated molecular patterns (DAMPs) and tumor-associated antigens to facilitate maturation of dendritic cells (DCs) and infiltration of cytotoxic T lymphocytes (CTLs). The process can reverse the tumor immunosuppressive microenvironment to improve the sensitivity of immunotherapy. Nanostructure-based drug delivery systems (NDDSs) are explored to induce ICD by incorporating therapeutic molecules for chemotherapy, photosensitizers (PSs) for photodynamic therapy (PDT), photothermal conversion agents for photothermal therapy (PTT), and radiosensitizers for radiotherapy (RT). These NDDSs can release loaded agents at a right dose in the right place at the right time, resulting in greater effectiveness and lower toxicity. Immunotherapeutic agents can also be combined with these NDDSs to achieve the synergic antitumor effect in a multi-modality therapeutic approach. In this review, NDDSs are harnessed to load multiple agents to induce ICD by chemotherapy, PDT, PTT, and RT in combination of immunotherapy to promote the therapeutic effect and reduce side effects associated with cancer treatment.
Collapse
Affiliation(s)
- Zhilin Li
- Department of BiotherapyHuaxi MR Research Center (HMRRC)Day Surgery CenterDepartment of RadiologyCancer CenterResearch Core Facilities of West China HospitalNational Clinical Research Center for GeriatricsFrontiers Science Center for Disease‐Related Molecular NetworkState Key Laboratory of BiotherapyWest China HospitalSichuan UniversityChengdu610041China
| | - Xiaoqin Lai
- Department of BiotherapyHuaxi MR Research Center (HMRRC)Day Surgery CenterDepartment of RadiologyCancer CenterResearch Core Facilities of West China HospitalNational Clinical Research Center for GeriatricsFrontiers Science Center for Disease‐Related Molecular NetworkState Key Laboratory of BiotherapyWest China HospitalSichuan UniversityChengdu610041China
| | - Shiqin Fu
- Department of BiotherapyHuaxi MR Research Center (HMRRC)Day Surgery CenterDepartment of RadiologyCancer CenterResearch Core Facilities of West China HospitalNational Clinical Research Center for GeriatricsFrontiers Science Center for Disease‐Related Molecular NetworkState Key Laboratory of BiotherapyWest China HospitalSichuan UniversityChengdu610041China
| | - Long Ren
- Department of BiotherapyHuaxi MR Research Center (HMRRC)Day Surgery CenterDepartment of RadiologyCancer CenterResearch Core Facilities of West China HospitalNational Clinical Research Center for GeriatricsFrontiers Science Center for Disease‐Related Molecular NetworkState Key Laboratory of BiotherapyWest China HospitalSichuan UniversityChengdu610041China
| | - Hao Cai
- Department of BiotherapyHuaxi MR Research Center (HMRRC)Day Surgery CenterDepartment of RadiologyCancer CenterResearch Core Facilities of West China HospitalNational Clinical Research Center for GeriatricsFrontiers Science Center for Disease‐Related Molecular NetworkState Key Laboratory of BiotherapyWest China HospitalSichuan UniversityChengdu610041China
| | - Hu Zhang
- Department of BiotherapyHuaxi MR Research Center (HMRRC)Day Surgery CenterDepartment of RadiologyCancer CenterResearch Core Facilities of West China HospitalNational Clinical Research Center for GeriatricsFrontiers Science Center for Disease‐Related Molecular NetworkState Key Laboratory of BiotherapyWest China HospitalSichuan UniversityChengdu610041China
- Amgen Bioprocessing CentreKeck Graduate InstituteClaremontCA91711USA
| | - Zhongwei Gu
- Department of BiotherapyHuaxi MR Research Center (HMRRC)Day Surgery CenterDepartment of RadiologyCancer CenterResearch Core Facilities of West China HospitalNational Clinical Research Center for GeriatricsFrontiers Science Center for Disease‐Related Molecular NetworkState Key Laboratory of BiotherapyWest China HospitalSichuan UniversityChengdu610041China
| | - Xuelei Ma
- Department of BiotherapyHuaxi MR Research Center (HMRRC)Day Surgery CenterDepartment of RadiologyCancer CenterResearch Core Facilities of West China HospitalNational Clinical Research Center for GeriatricsFrontiers Science Center for Disease‐Related Molecular NetworkState Key Laboratory of BiotherapyWest China HospitalSichuan UniversityChengdu610041China
| | - Kui Luo
- Department of BiotherapyHuaxi MR Research Center (HMRRC)Day Surgery CenterDepartment of RadiologyCancer CenterResearch Core Facilities of West China HospitalNational Clinical Research Center for GeriatricsFrontiers Science Center for Disease‐Related Molecular NetworkState Key Laboratory of BiotherapyWest China HospitalSichuan UniversityChengdu610041China
- Functional and Molecular Imaging Key Laboratory of Sichuan Provinceand Research Unit of PsychoradiologyChinese Academy of Medical SciencesChengdu610041China
| |
Collapse
|
498
|
Zhong J, Wang Z, Hounye AH, Liu J, Zhang J, Qi M, Hou M. A novel pyroptosis-related LncRNA signature predicts prognosis and indicates tumor immune microenvironment in skin cutaneous melanoma. Life Sci 2022; 307:120832. [DOI: 10.1016/j.lfs.2022.120832] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2022] [Revised: 07/01/2022] [Accepted: 07/19/2022] [Indexed: 12/14/2022]
|
499
|
Rodrigues MC, Morais JAV, Ganassin R, Oliveira GRT, Costa FC, Morais AAC, Silveira AP, Silva VCM, Longo JPF, Muehlmann LA. An Overview on Immunogenic Cell Death in Cancer Biology and Therapy. Pharmaceutics 2022; 14:pharmaceutics14081564. [PMID: 36015189 PMCID: PMC9413301 DOI: 10.3390/pharmaceutics14081564] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2022] [Revised: 07/22/2022] [Accepted: 07/25/2022] [Indexed: 11/28/2022] Open
Abstract
Immunogenic cell death (ICD) is a modality of regulated cell death that is sufficient to promote an adaptive immune response against antigens of the dying cell in an immunocompetent host. An important characteristic of ICD is the release and exposure of damage-associated molecular patterns, which are potent endogenous immune adjuvants. As the induction of ICD can be achieved with conventional cytotoxic agents, it represents a potential approach for the immunotherapy of cancer. Here, different aspects of ICD in cancer biology and treatment are reviewed.
Collapse
Affiliation(s)
- Mosar Corrêa Rodrigues
- Faculty of Ceilandia, University of Brasilia, Brasilia 72220-275, Brazil; (M.C.R.); (J.A.V.M.); (R.G.); (G.R.T.O.); (F.C.C.)
- Laboratory of Nanobiotechnology, Department of Genetics and Morphology, Institute of Biological Sciences, University of Brasilia, Brasilia 70910-900, Brazil; (A.A.C.M.); (A.P.S.); (V.C.M.S.); (J.P.F.L.)
| | - José Athayde Vasconcelos Morais
- Faculty of Ceilandia, University of Brasilia, Brasilia 72220-275, Brazil; (M.C.R.); (J.A.V.M.); (R.G.); (G.R.T.O.); (F.C.C.)
- Laboratory of Nanobiotechnology, Department of Genetics and Morphology, Institute of Biological Sciences, University of Brasilia, Brasilia 70910-900, Brazil; (A.A.C.M.); (A.P.S.); (V.C.M.S.); (J.P.F.L.)
| | - Rayane Ganassin
- Faculty of Ceilandia, University of Brasilia, Brasilia 72220-275, Brazil; (M.C.R.); (J.A.V.M.); (R.G.); (G.R.T.O.); (F.C.C.)
- Laboratory of Nanobiotechnology, Department of Genetics and Morphology, Institute of Biological Sciences, University of Brasilia, Brasilia 70910-900, Brazil; (A.A.C.M.); (A.P.S.); (V.C.M.S.); (J.P.F.L.)
| | - Giulia Rosa Tavares Oliveira
- Faculty of Ceilandia, University of Brasilia, Brasilia 72220-275, Brazil; (M.C.R.); (J.A.V.M.); (R.G.); (G.R.T.O.); (F.C.C.)
- Laboratory of Nanobiotechnology, Department of Genetics and Morphology, Institute of Biological Sciences, University of Brasilia, Brasilia 70910-900, Brazil; (A.A.C.M.); (A.P.S.); (V.C.M.S.); (J.P.F.L.)
| | - Fabiana Chagas Costa
- Faculty of Ceilandia, University of Brasilia, Brasilia 72220-275, Brazil; (M.C.R.); (J.A.V.M.); (R.G.); (G.R.T.O.); (F.C.C.)
- Laboratory of Nanobiotechnology, Department of Genetics and Morphology, Institute of Biological Sciences, University of Brasilia, Brasilia 70910-900, Brazil; (A.A.C.M.); (A.P.S.); (V.C.M.S.); (J.P.F.L.)
| | - Amanda Alencar Cabral Morais
- Laboratory of Nanobiotechnology, Department of Genetics and Morphology, Institute of Biological Sciences, University of Brasilia, Brasilia 70910-900, Brazil; (A.A.C.M.); (A.P.S.); (V.C.M.S.); (J.P.F.L.)
| | - Ariane Pandolfo Silveira
- Laboratory of Nanobiotechnology, Department of Genetics and Morphology, Institute of Biological Sciences, University of Brasilia, Brasilia 70910-900, Brazil; (A.A.C.M.); (A.P.S.); (V.C.M.S.); (J.P.F.L.)
| | - Victor Carlos Mello Silva
- Laboratory of Nanobiotechnology, Department of Genetics and Morphology, Institute of Biological Sciences, University of Brasilia, Brasilia 70910-900, Brazil; (A.A.C.M.); (A.P.S.); (V.C.M.S.); (J.P.F.L.)
| | - João Paulo Figueiró Longo
- Laboratory of Nanobiotechnology, Department of Genetics and Morphology, Institute of Biological Sciences, University of Brasilia, Brasilia 70910-900, Brazil; (A.A.C.M.); (A.P.S.); (V.C.M.S.); (J.P.F.L.)
| | - Luis Alexandre Muehlmann
- Faculty of Ceilandia, University of Brasilia, Brasilia 72220-275, Brazil; (M.C.R.); (J.A.V.M.); (R.G.); (G.R.T.O.); (F.C.C.)
- Laboratory of Nanobiotechnology, Department of Genetics and Morphology, Institute of Biological Sciences, University of Brasilia, Brasilia 70910-900, Brazil; (A.A.C.M.); (A.P.S.); (V.C.M.S.); (J.P.F.L.)
- Correspondence:
| |
Collapse
|
500
|
Xiang Y, Liu M, Yang Y, Wang Y, Qiu Y, Tu S, Jiang Y, Nan Y, Zhang X, Huang Q. Nanodrugs Manipulating Endoplasmic Reticulum Stress for Highly Effective Antitumor Therapy. Front Pharmacol 2022; 13:949001. [PMID: 35903337 PMCID: PMC9315921 DOI: 10.3389/fphar.2022.949001] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2022] [Accepted: 06/09/2022] [Indexed: 12/30/2022] Open
Abstract
Cancer is one of the leading causes of death worldwide due to high morbidity and mortality. Many attempts and efforts have been devoted to fighting cancer. Owing to the significant role of the endoplasmic reticulum (ER) in cell function, inducing ER stress can be promising for cancer treatment. However, the sustained activation of cytoprotective unfolded protein response (UPR) presents a tremendous obstacle for drugs in inducing unsolved ER stress in tumor cells, especially small-molecule drugs with poor bioavailability. Therefore, many emerging nanodrugs inducing and amplifying ER stress have been developed for efficient cancer treatment. More importantly, the novel discovery of ER stress in immunogenic cell death (ICD) makes it possible to repurpose antitumor drugs for immunotherapy through nanodrug-based strategies amplifying ER stress. Therefore, this mini-review aims to provide a comprehensive summary of the latest developments of the strategies underlying nanodrugs in the treatment of cancer via manipulating ER stress. Meanwhile, the prospects of ER stress–inducing nanodrugs for cancer treatment are systematically discussed, which provide a sound platform for novel therapeutic insights and inspiration for the design of nanodrugs in treating cancer.
Collapse
Affiliation(s)
- Yuting Xiang
- Xiangya School of Pharmaceutical Sciences, Central South University, Changsha, China
- Hunan Provincial Key Laboratory of Cardiovascular Research, Xiangya School of Pharmaceutical Sciences, Central South University, Changsha, China
| | - Min Liu
- Department of Pharmacy, Xiangya Hospital, Central South University, Changsha, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China
| | - Yunrong Yang
- Department of Pharmacy, Xiangya Hospital, Central South University, Changsha, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China
| | - Yubo Wang
- Xiangya School of Pharmaceutical Sciences, Central South University, Changsha, China
- Hunan Provincial Key Laboratory of Cardiovascular Research, Xiangya School of Pharmaceutical Sciences, Central South University, Changsha, China
| | - Yige Qiu
- Xiangya School of Pharmaceutical Sciences, Central South University, Changsha, China
- Hunan Provincial Key Laboratory of Cardiovascular Research, Xiangya School of Pharmaceutical Sciences, Central South University, Changsha, China
| | - Shiqi Tu
- Xiangya School of Pharmaceutical Sciences, Central South University, Changsha, China
- Hunan Provincial Key Laboratory of Cardiovascular Research, Xiangya School of Pharmaceutical Sciences, Central South University, Changsha, China
| | - Yitian Jiang
- Xiangya School of Pharmaceutical Sciences, Central South University, Changsha, China
| | - Yayun Nan
- Geriatric Medical Center, People’s Hospital of Ningxia Hui Autonomous Region, Yinchuan, China
| | - Xiaojie Zhang
- Xiangya School of Pharmaceutical Sciences, Central South University, Changsha, China
- Hunan Provincial Key Laboratory of Cardiovascular Research, Xiangya School of Pharmaceutical Sciences, Central South University, Changsha, China
- *Correspondence: Qiong Huang, ; Xiaojie Zhang,
| | - Qiong Huang
- Department of Pharmacy, Xiangya Hospital, Central South University, Changsha, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China
- *Correspondence: Qiong Huang, ; Xiaojie Zhang,
| |
Collapse
|