451
|
Lucci A, Addanki S, Chiang YJ, Meas S, Sarli VN, Upshaw JR, Manchem M, Patel SP, Wargo JA, Gershenwald JE, Ross MI. Presence of Circulating Tumor Cells Predates Imaging Detection of Relapse in Patients with Stage III Melanoma. Cancers (Basel) 2023; 15:3630. [PMID: 37509290 PMCID: PMC10377914 DOI: 10.3390/cancers15143630] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2023] [Revised: 07/07/2023] [Accepted: 07/11/2023] [Indexed: 07/30/2023] Open
Abstract
Stage III melanoma includes nodal metastasis or in-transit disease. Five-year survival rates vary between 32% and 93%. The identification of high-risk patients is important for clinical decision making. We demonstrated previously that ≥1 circulating tumor cells (CTCs) at baseline was associated with recurrence. In this study, we investigated how frequently CTCs were identified prior to radiologically detected recurrence. Stage III patients (n = 325) had imaging at baseline and q 3 months. Baseline and q 6-12 months blood draws (7.5 mL) were performed to identify CTCs up to 3.5 years from diagnosis. CTC assessment was performed using the immunomagnetic capture of CD146-positive cells and anti-MEL-PE. The presence of one or more CTCs was considered positive. We analyzed the cohort of patients with relapse confirmed by radiologic imaging. CTC collection dates were assessed to determine the lead time for CTC detection. CTC-negative patients were significantly less likely to relapse compared to patients positive for CTCs (p-value < 0.001). Within the 325-patient cohort, 143 patients (44%) had recurrence, with a median follow-up of 52 months from diagnosis. The cohort (n = 143) with positive imaging and CTC results revealed 76% of patients (108/143) had CTC+ results before the radiological identification of relapse. The median time between positive CTC and positive imaging was 9 months. CTCs were positive in >75% of patients prior to relapse at a median of 9 months before radiologic detection.
Collapse
Affiliation(s)
- Anthony Lucci
- Departments of Breast Surgical Oncology and Surgical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Sridevi Addanki
- Departments of Breast Surgical Oncology and Surgical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Yi-Ju Chiang
- Department of Surgical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Salyna Meas
- Departments of Breast Surgical Oncology and Surgical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Vanessa N Sarli
- Departments of Breast Surgical Oncology and Surgical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Joshua R Upshaw
- Departments of Breast Surgical Oncology and Surgical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Mayank Manchem
- Departments of Breast Surgical Oncology and Surgical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Sapna P Patel
- Department of Melanoma Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Jennifer A Wargo
- Department of Surgical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Jeffrey E Gershenwald
- Department of Surgical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Merrick I Ross
- Department of Surgical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| |
Collapse
|
452
|
Ke G, Cheng N, Sun H, Meng X, Xu L. Explore the impact of hypoxia-related genes (HRGs) in Cutaneous melanoma. BMC Med Genomics 2023; 16:160. [PMID: 37422626 PMCID: PMC10329328 DOI: 10.1186/s12920-023-01587-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2022] [Accepted: 06/20/2023] [Indexed: 07/10/2023] Open
Abstract
BACKGROUND Cutaneous melanoma (CM) has an overall poor prognosis due to a high rate of metastasis. This study aimed to explore the role of hypoxia-related genes (HRGs) in CM. METHODS We first used on-negative matrix factorization consensus clustering (NMF) to cluster CM samples and preliminarily analyzed the relationship of HRGs to CM prognosis and immune cell infiltration. Subsequently, we identified prognostic-related hub genes by univariate COX regression analysis and the least absolute shrinkage and selection operator (LASSO) and constructed a prognostic model. Finally, we calculated a risk score for patients with CM and investigated the relationship between the risk score and potential surrogate markers of response to immune checkpoint inhibitors (ICIs), such as TMB, IPS values, and TIDE scores. RESULTS Through NMF clustering, we identified high expression of HRGs as a risk factor for the prognosis of CM patients, and at the same time, increased expression of HRGs also indicated a poorer immune microenvironment. Subsequently, we identified eight gene signatures (FBP1, NDRG1, GPI, IER3, B4GALNT2, BGN, PKP1, and EDN2) by LASSO regression analysis and constructed a prognostic model. CONCLUSION Our study identifies the prognostic significance of hypoxia-related genes in melanoma and shows a novel eight-gene signature to predict the potential efficacy of ICIs.
Collapse
Affiliation(s)
- Guolin Ke
- Department of Dermatology and Venereology, Yijishan Hospital, Wannan Medical College, No. 2 Zheshan West Road, Wuhu City, Anhui Province, China
| | - Nan Cheng
- Department of Dermatology and Venereology, Yijishan Hospital, Wannan Medical College, No. 2 Zheshan West Road, Wuhu City, Anhui Province, China
| | - Huiya Sun
- Department of Dermatology and Venereology, Yijishan Hospital, Wannan Medical College, No. 2 Zheshan West Road, Wuhu City, Anhui Province, China
| | - Xiumei Meng
- Department of Dermatology and Venereology, Yijishan Hospital, Wannan Medical College, No. 2 Zheshan West Road, Wuhu City, Anhui Province, China
| | - Lei Xu
- Department of Hand, Foot, and Ankle Surgery, Yijishan Hospital, Wannan Medical College, No. 2 Zheshan West Road, Wuhu City, Anhui Province, China.
| |
Collapse
|
453
|
Dagar G, Gupta A, Masoodi T, Nisar S, Merhi M, Hashem S, Chauhan R, Dagar M, Mirza S, Bagga P, Kumar R, Akil ASAS, Macha MA, Haris M, Uddin S, Singh M, Bhat AA. Harnessing the potential of CAR-T cell therapy: progress, challenges, and future directions in hematological and solid tumor treatments. J Transl Med 2023; 21:449. [PMID: 37420216 PMCID: PMC10327392 DOI: 10.1186/s12967-023-04292-3] [Citation(s) in RCA: 70] [Impact Index Per Article: 35.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2023] [Accepted: 06/21/2023] [Indexed: 07/09/2023] Open
Abstract
Traditional cancer treatments use nonspecific drugs and monoclonal antibodies to target tumor cells. Chimeric antigen receptor (CAR)-T cell therapy, however, leverages the immune system's T-cells to recognize and attack tumor cells. T-cells are isolated from patients and modified to target tumor-associated antigens. CAR-T therapy has achieved FDA approval for treating blood cancers like B-cell acute lymphoblastic leukemia, large B-cell lymphoma, and multiple myeloma by targeting CD-19 and B-cell maturation antigens. Bi-specific chimeric antigen receptors may contribute to mitigating tumor antigen escape, but their efficacy could be limited in cases where certain tumor cells do not express the targeted antigens. Despite success in blood cancers, CAR-T technology faces challenges in solid tumors, including lack of reliable tumor-associated antigens, hypoxic cores, immunosuppressive tumor environments, enhanced reactive oxygen species, and decreased T-cell infiltration. To overcome these challenges, current research aims to identify reliable tumor-associated antigens and develop cost-effective, tumor microenvironment-specific CAR-T cells. This review covers the evolution of CAR-T therapy against various tumors, including hematological and solid tumors, highlights challenges faced by CAR-T cell therapy, and suggests strategies to overcome these obstacles, such as utilizing single-cell RNA sequencing and artificial intelligence to optimize clinical-grade CAR-T cells.
Collapse
Affiliation(s)
- Gunjan Dagar
- Department of Medical Oncology (Lab.), Dr. BRAIRCH, All India Institute of Medical Sciences (AIIMS), New Delhi, Delhi, 110029, India
| | - Ashna Gupta
- Department of Medical Oncology (Lab.), Dr. BRAIRCH, All India Institute of Medical Sciences (AIIMS), New Delhi, Delhi, 110029, India
| | - Tariq Masoodi
- Laboratory of Cancer Immunology and Genetics, Sidra Medicine, Doha, Qatar
| | - Sabah Nisar
- Department of Diagnostic Imaging, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Maysaloun Merhi
- National Center for Cancer Care and Research, Hamad Medical Corporation, 3050, Doha, Qatar
| | - Sheema Hashem
- Department of Human Genetics, Sidra Medicine, Doha, Qatar
| | - Ravi Chauhan
- Department of Medical Oncology (Lab.), Dr. BRAIRCH, All India Institute of Medical Sciences (AIIMS), New Delhi, Delhi, 110029, India
| | - Manisha Dagar
- Shiley Eye Institute, University of California San Diego, San Diego, CA, USA
| | - Sameer Mirza
- Department of Chemistry, College of Sciences, United Arab Emirates University, Al-Ain, United Arab Emirates
| | - Puneet Bagga
- Department of Diagnostic Imaging, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Rakesh Kumar
- School of Biotechnology, Shri Mata Vaishno Devi University, Katra, Jammu and Kashmir, 182320, India
| | - Ammira S Al-Shabeeb Akil
- Department of Human Genetics-Precision Medicine in Diabetes, Obesity and Cancer Program, Sidra Medicine, P.O. Box 26999, Doha, Qatar
| | - Muzafar A Macha
- Watson-Crick Centre for Molecular Medicine, Islamic University of Science and Technology, Pulwama, Jammu and Kashmir, India
| | - Mohammad Haris
- Center for Advanced Metabolic Imaging in Precision Medicine, Department of Radiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, USA
- Laboratory Animal Research Center, Qatar University, Doha, Qatar
| | - Shahab Uddin
- Laboratory Animal Research Center, Qatar University, Doha, Qatar.
- Translational Research Institute, Academic Health System, Hamad Medical Corporation, P.O. Box 3050, Doha, Qatar.
| | - Mayank Singh
- Department of Medical Oncology (Lab.), Dr. BRAIRCH, All India Institute of Medical Sciences (AIIMS), New Delhi, Delhi, 110029, India.
| | - Ajaz A Bhat
- Department of Human Genetics-Precision Medicine in Diabetes, Obesity and Cancer Program, Sidra Medicine, P.O. Box 26999, Doha, Qatar.
| |
Collapse
|
454
|
Smithy JW, Luke JJ. CD16+ Macrophages: An Emerging Biomarker for Combined CTLA-4 and PD-1 Blockade. Clin Cancer Res 2023; 29:2345-2347. [PMID: 37097465 PMCID: PMC10330271 DOI: 10.1158/1078-0432.ccr-23-0490] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2023] [Revised: 03/28/2023] [Accepted: 04/10/2023] [Indexed: 04/26/2023]
Abstract
In a retrospective analysis of patients with unresectable melanoma, higher pretreatment tissue densities of CD16+ macrophages were associated with clinical benefit from combined CTLA-4 and PD-1 blockade. With further validation, this biomarker could serve as a tool in selecting between immune checkpoint inhibitor regimens. See related article by Lee et al., p. 2513.
Collapse
Affiliation(s)
- James W. Smithy
- Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY
| | - Jason J. Luke
- UPMC Hillman Cancer Center, Pittsburgh, PA
- Department of Medicine, University of Pittsburgh, Pittsburgh, PA
| |
Collapse
|
455
|
Pi F, Tang G, Xie C, Cao Y, Yang S, Wei Z. Pathologic complete response to TNT + camrelizumab for rectal cancer with surgical anus-preservation: case report and literature review. Front Surg 2023; 10:1192569. [PMID: 37470045 PMCID: PMC10352850 DOI: 10.3389/fsurg.2023.1192569] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2023] [Accepted: 05/17/2023] [Indexed: 07/21/2023] Open
Abstract
Background This case report demonstrates the efficacy of total neoadjuvant therapy (TNT) based on pathological complete response (PCR). We also discuss the surgical approach to preserving the anus and its perioperative management. Case presentaion The patient was a 26-year-old woman, with blood in the stool and stool thinning for over two months. Preoperative examination revealed locally advanced rectal cancer invading the left anal raphe and enlarged lymph nodes adjacent to the left internal iliac vessels. The lesion was preoperatively classified as T4bN1bM0 IIIC. Considering the size and depth of the tumor, it was difficult to have sufficient margins for radical resection, and the tumor was too close to the anal orifice. Considering the patient's youth and strong desire to preserve the anus, it was decided to use TNT combined with a camrelizumab regimen. After the entire course of neoadjuvant radiotherapy, the tumor size significantly reduced in fibrotic manifestations, and no enlargement of the lymph nodes adjacent to the left internal iliac vessels was observed. She underwent robotic laparoscopic ultra-low anterior rectal resection, left lateral lymph node dissection, and temporary ileostomy, and no significant residue was observed after all bowel tubes were taken for examination, nor was there cancerous involvement at the distal or radial cut edges, or metastasis. The patient was discharged nine days postoperatively, and no major complications were detected. Follow-up was performed without adjuvant chemotherapy. Conclusions TNT may be a better surgical option for preserving the anus and for complete radical resection in patients with LARC for whom Miles' resection is indicated.
Collapse
|
456
|
Alouani E, Gazzah A, Mercier S, Bahleda R, Hollebecque A, Michot JM, Baldini C, Ammari S, Champiat S, Marabelle A, Postel-Vinay S, Ribrag V, Loriot Y, Aix SP, Mahjoubi L. Profile and outcome of cancer patients enrolled in contemporary phase I trials. Eur J Cancer 2023; 188:1-7. [PMID: 37178645 DOI: 10.1016/j.ejca.2023.04.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2023] [Revised: 04/14/2023] [Accepted: 04/15/2023] [Indexed: 05/15/2023]
Abstract
BACKGROUND Phase I trials historically involved heavily pretreated patients (pts) with no more effective therapeutic options available and with poor expected outcomes. There are scare data regarding profile and outcomes of pts enrolled into modern phase I trials. Here, we sought to provide an overview of pts' profile and outcome into phase I trials at Gustave Roussy (GR). METHODS This is a monocentric retrospective study, including all pts enrolled into phase I trials at GR from 2017 to 2021. Data regarding pts' demographics, tumour types, investigational treatments and survival outcomes were collected. RESULTS In total, 9482 pts were referred for early phase trials; 2478 pts were screened, among which 449 (18.1%) failed screening; 1693 pts finally received at least one treatment dose as part of a phase I trial. Median age of pts was 59 years old (range, 18-88) and most common tumour types included gastrointestinal (25.3%), haematological (15%), lung (13.6%), genitourinary (10.5%) and gynaecologic cancers (9.4%). Amongst all pts treated and evaluable for response (1634 pts), objective response rate was 15.9% and disease control rate was 45.4%. Median progression-free survival and overall survival were, respectively, 2.6 months (95% confidence interval [95% CI], 2.3; 2.8) and 12.4 months (95% CI, 11.7; 13.6). CONCLUSION As compared with historical data, our study shows that outcomes of pts included into modern phase I trials have improved and that these trials constitute nowadays a valid and safe therapeutic option. These updated data provide facts for adapting the methodology, role and place of phase I trials over the next years.
Collapse
Affiliation(s)
- Emily Alouani
- Drug Development Department (DITEP), Gustave Roussy Cancer Campus, Villejuif, France; Digestive Medical Oncology Department, IUCT-Rangueil, Toulouse Hospital University, Toulouse, France.
| | - Anas Gazzah
- Drug Development Department (DITEP), Gustave Roussy Cancer Campus, Villejuif, France.
| | - Sandrine Mercier
- Drug Development Department (DITEP), Gustave Roussy Cancer Campus, Villejuif, France.
| | - Ratislav Bahleda
- Drug Development Department (DITEP), Gustave Roussy Cancer Campus, Villejuif, France.
| | - Antoine Hollebecque
- Drug Development Department (DITEP), Gustave Roussy Cancer Campus, Villejuif, France.
| | - Jean-Marie Michot
- Drug Development Department (DITEP), Gustave Roussy Cancer Campus, Villejuif, France.
| | - Capucine Baldini
- Drug Development Department (DITEP), Gustave Roussy Cancer Campus, Villejuif, France.
| | - Samy Ammari
- Drug Development Department (DITEP), Gustave Roussy Cancer Campus, Villejuif, France.
| | - Stephane Champiat
- Drug Development Department (DITEP), Gustave Roussy Cancer Campus, Villejuif, France.
| | - Aurelien Marabelle
- Drug Development Department (DITEP), Gustave Roussy Cancer Campus, Villejuif, France.
| | - Sophie Postel-Vinay
- Drug Development Department (DITEP), Gustave Roussy Cancer Campus, Villejuif, France.
| | - Vincent Ribrag
- Drug Development Department (DITEP), Gustave Roussy Cancer Campus, Villejuif, France.
| | - Yohann Loriot
- Drug Development Department (DITEP), Gustave Roussy Cancer Campus, Villejuif, France.
| | - Santiago Ponce Aix
- Drug Development Department (DITEP), Gustave Roussy Cancer Campus, Villejuif, France.
| | - Linda Mahjoubi
- Drug Development Department (DITEP), Gustave Roussy Cancer Campus, Villejuif, France.
| |
Collapse
|
457
|
Guven DC, Yekeduz E, Erul E, Yazgan SC, Sahin TK, Karatas G, Aksoy S, Erman M, Yalcin S, Urun Y, Kilickap S. The benefit of treatment beyond progression with immune checkpoint inhibitors: a multi-center retrospective cohort study. J Cancer Res Clin Oncol 2023; 149:3599-3606. [PMID: 35960374 DOI: 10.1007/s00432-022-04268-8] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2022] [Accepted: 08/04/2022] [Indexed: 10/15/2022]
Abstract
OBJECTIVE Treatment beyond progression (TBP) with immune checkpoint inhibitors (ICIs) is an evolving field due to the limitations of conventional imaging in response evaluation. However, real-life data on the benefit of TBP is scarce, especially from the limited resource settings and patients treated in the later lines. Therefore, we aimed to investigate the survival benefit of TBP with ICIs in patients with advanced tumors from a limited resource setting. METHODS For this multi-center retrospective cohort study, we included 282 patients treated with ICIs and had radiological progression according to RECIST 1.1 criteria. We evaluated post-progression survival according to the use of TBP (TBP and non-TBP groups) with univariate and multivariate analyses. RESULTS The cohort's median age was 61, and 84.4% were treated in the second or later lines. 82 (29.1%) of 282 patients continued on ICIs following the initial progression. In multivariate analyses, patients in the TBP group had improved post-progression survival compared to non-TBP (13.18 vs. 4.63 months, HR: 0.500, 95% CI: 0.349-0.717, p < 0.001). The benefit of the TBP was independent of the tumor type, treatment line, and age. Furthermore, TBP with ICIs remained associated with improved post-progression survival (HR: 0.600, 95% CI: 0.380-0.947, p = 0.028) after excluding the patients with no further treatment after progression in the non-TBP arm. CONCLUSIONS In this study, we observed that patients receiving ICIs beyond progression had considerably longer survival. Continuation of ICIs after progression should be considered a reasonable management option for patients with advanced cancer, specifically for patients with limited alternative options.
Collapse
Affiliation(s)
- Deniz Can Guven
- Department of Medical Oncology, Hacettepe University Cancer Institute, Sihhiye, 06100, Ankara, Turkey.
| | - Emre Yekeduz
- Department of Medical Oncology, Faculty of Medicine, Ankara University, Ankara, Turkey
| | - Enes Erul
- Department of Internal Medicine, Faculty of Medicine, Hacettepe University, Ankara, Turkey
| | - Sati Coskun Yazgan
- Department of Internal Medicine, Faculty of Medicine, Ankara University, Ankara, Turkey
| | - Taha Koray Sahin
- Department of Internal Medicine, Faculty of Medicine, Hacettepe University, Ankara, Turkey
| | - Gokturk Karatas
- Department of Internal Medicine, Faculty of Medicine, Ankara University, Ankara, Turkey
| | - Sercan Aksoy
- Department of Medical Oncology, Hacettepe University Cancer Institute, Sihhiye, 06100, Ankara, Turkey
| | - Mustafa Erman
- Department of Medical Oncology, Hacettepe University Cancer Institute, Sihhiye, 06100, Ankara, Turkey
| | - Suayib Yalcin
- Department of Medical Oncology, Hacettepe University Cancer Institute, Sihhiye, 06100, Ankara, Turkey
| | - Yuksel Urun
- Department of Medical Oncology, Faculty of Medicine, Ankara University, Ankara, Turkey
| | - Saadettin Kilickap
- Faculty of Medicine, Istinye University, Istanbul, Turkey
- Medical Oncology Unit, Liv Hospital Ankara, Ankara, Turkey
| |
Collapse
|
458
|
Mahdiabadi S, Momtazmanesh S, Karimi A, Rezaei N. Immune checkpoint inhibitors in advanced cutaneous melanoma: a systematic review and meta-analysis of efficacy and review of characteristics. Expert Rev Anticancer Ther 2023; 23:1281-1293. [PMID: 37908134 DOI: 10.1080/14737140.2023.2278509] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2023] [Accepted: 10/22/2023] [Indexed: 11/02/2023]
Abstract
OBJECTIVES Immune checkpoint inhibitors (ICIs) are one of the most promising approaches toward advanced melanoma. Here, we aimed to perform a meta-analysis of randomized controlled trials (RCTs) to evaluate the efficacy of all studied ICIs. METHODS We conducted a comprehensive search to identify the relevant publications (PROSPERO registration ID: CRD42023470649). Then we performed a meta-analysis to evaluate the efficacy of different ICIs for metastatic melanoma. We used Cochrane's tool to assess the quality of studies. The outcome measures were overall survival (OS), progression-free survival (PFS), and recurrence-free survival (RFS). RESULTS Twenty reports of RCTs entered our systematic review, 18 of which were included in our data analysis. ICIs showed improved survival compared with control group (hazard ratio (HR) = 0.57; 95% CI: 0.43-0.71; P<0.001). Using a meta-regression, we found a significant relation between patients' mean age and their OS (P<0.001, R 2 = 100.00%). Also, our analysis revealed greater HR for CTLA-4 inhibitors than PD-1/PD-L1 inhibitors (HR = 0.71, 95%CI: 0.63-0.79, P<0.001 vs. HR = 0.63, 95%CI: 0.46-0.79, P<0.001). The effect sizes of different types of PD-1/PD-L1 inhibitors were comparable. CONCLUSION Our results suggest that ICI-based immunotherapy is associated with enhanced OS, PFS, and RFS (P < 0.001) and will assist clinicians in choosing the optimal approach toward treating metastatic melanoma.
Collapse
Affiliation(s)
- Sara Mahdiabadi
- School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
- Network of Immunity in Infection, Malignancy and Autoimmunity (NIIMA), Universal Scientific Education and Research Network (USERN), Tehran, Iran
- Network of Dermatology Research (NDR), Universal Scientific Education and Research Network (USERN), Tehran, Iran
- Research Center for Immunodeficiencies, Children's Medical Center, Tehran University of Medical Sciences, Tehran, Iran
| | - Sara Momtazmanesh
- School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
- Network of Immunity in Infection, Malignancy and Autoimmunity (NIIMA), Universal Scientific Education and Research Network (USERN), Tehran, Iran
- Research Center for Immunodeficiencies, Children's Medical Center, Tehran University of Medical Sciences, Tehran, Iran
| | - Amirali Karimi
- School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Nima Rezaei
- Network of Immunity in Infection, Malignancy and Autoimmunity (NIIMA), Universal Scientific Education and Research Network (USERN), Tehran, Iran
- Network of Dermatology Research (NDR), Universal Scientific Education and Research Network (USERN), Tehran, Iran
- Research Center for Immunodeficiencies, Children's Medical Center, Tehran University of Medical Sciences, Tehran, Iran
- Department of Immunology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
459
|
Boutros A, Tanda ET, Croce E, Catalano F, Ceppi M, Bruzzone M, Cecchi F, Arecco L, Fraguglia M, Pronzato P, Genova C, Del Mastro L, Lambertini M, Spagnolo F. Activity and safety of first-line treatments for advanced melanoma: A network meta-analysis. Eur J Cancer 2023; 188:64-79. [PMID: 37196485 DOI: 10.1016/j.ejca.2023.04.010] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2022] [Revised: 03/27/2023] [Accepted: 04/11/2023] [Indexed: 05/19/2023]
Abstract
BACKGROUND Treatment options for advanced melanoma have increased with the US Food and Drug Administration approval of the anti-LAG3 plus anti-PD-1 relatlimab/nivolumab combination. To date, ipilimumab/nivolumab is the benchmark of overall survival, despite a high toxicity profile. Furthermore, in BRAF-mutant patients, BRAF/MEK inhibitors and the atezolizumab/vemurafenib/cobimetinib triplet are also available treatments, making the first-line therapy selection more complex. To address this issue, we conducted a systematic review and network meta-analysis of the available first-line treatment options in advanced melanoma. METHODS Randomised clinical trials of previously untreated, advanced melanoma were included if at least one intervention arm contained a BRAF/MEK or an immune-checkpoint inhibitor (ICI). The aim was to indirectly compare the ICIs combinations ipilimumab/nivolumab and relatlimab/nivolumab, and these combinations with all the other first-line treatment options for advanced melanoma (irrespective of BRAF status) in terms of activity and safety. The coprimary end-points were progression-free survival (PFS), overall response rate (ORR) and grade ≥3 treatment-related adverse events (≥ G3 TRAEs) rate, defined according to Common Terminology Criteria for Adverse Events. RESULTS A total of 9070 metastatic melanoma patients treated in 18 randomised clinical trials were included in the network meta-analysis. No difference in PFS and ORR was observed between ipilimumab/nivolumab and relatlimab/nivolumab (HR = 0.99 [95% CI 0.75-1.31] and RR = 0.99 [95% CI 0.78-1.27], respectively). The PD-(L)1/BRAF/MEK inhibitors triplet combinations were superior to ipilimumab/nivolumab in terms of both PFS (HR = 0.56 [95% CI 0.37-0.84]) and ORR (RR = 3.07 [95% CI 1.61-5.85]). Ipilimumab/nivolumab showed the highest risk of developing ≥ G3 TRAEs. Relatlimab/nivolumab trended to a lower risk of ≥ G3 TRAEs (RR = 0.71 [95% CI 0.30-1.67]) versus ipilimumab/nivolumab. CONCLUSION Relatlimab/nivolumab showed similar PFS and ORR compared to ipilimumab/nivolumab, with a trend for a better safety profile.
Collapse
Affiliation(s)
- Andrea Boutros
- Department of Medical Oncology, Oncologia Medica 2, IRCCS Ospedale Policlinico San Martino, Genoa, Italy; Department of Internal Medicine and Medical Specialties (DiMI), School of Medicine, University of Genova, Genoa, Italy.
| | - Enrica Teresa Tanda
- Department of Medical Oncology, Oncologia Medica 2, IRCCS Ospedale Policlinico San Martino, Genoa, Italy
| | - Elena Croce
- Department of Medical Oncology, Oncologia Medica 2, IRCCS Ospedale Policlinico San Martino, Genoa, Italy; Department of Internal Medicine and Medical Specialties (DiMI), School of Medicine, University of Genova, Genoa, Italy
| | - Fabio Catalano
- Department of Medical Oncology, Oncologia Medica 2, IRCCS Ospedale Policlinico San Martino, Genoa, Italy; Department of Internal Medicine and Medical Specialties (DiMI), School of Medicine, University of Genova, Genoa, Italy
| | - Marcello Ceppi
- Clinical Epidemiology Unit, IRCCS Ospedale Policlinico San Martino, Genoa, Italy
| | - Marco Bruzzone
- Clinical Epidemiology Unit, IRCCS Ospedale Policlinico San Martino, Genoa, Italy
| | - Federica Cecchi
- Department of Medical Oncology, Oncologia Medica 2, IRCCS Ospedale Policlinico San Martino, Genoa, Italy
| | - Luca Arecco
- Department of Internal Medicine and Medical Specialties (DiMI), School of Medicine, University of Genova, Genoa, Italy; Department of Medical Oncology, U.O.C. Clinica di Oncologia Medica, IRCCS Ospedale Policlinico San Martino, Genoa, Italy
| | - Matteo Fraguglia
- Department of Internal Medicine and Medical Specialties (DiMI), School of Medicine, University of Genova, Genoa, Italy
| | - Paolo Pronzato
- Department of Medical Oncology, Oncologia Medica 2, IRCCS Ospedale Policlinico San Martino, Genoa, Italy
| | - Carlo Genova
- Department of Internal Medicine and Medical Specialties (DiMI), School of Medicine, University of Genova, Genoa, Italy; Department of Medical Oncology, U.O.C. Clinica di Oncologia Medica, IRCCS Ospedale Policlinico San Martino, Genoa, Italy
| | - Lucia Del Mastro
- Department of Internal Medicine and Medical Specialties (DiMI), School of Medicine, University of Genova, Genoa, Italy; Department of Medical Oncology, U.O.C. Clinica di Oncologia Medica, IRCCS Ospedale Policlinico San Martino, Genoa, Italy
| | - Matteo Lambertini
- Department of Internal Medicine and Medical Specialties (DiMI), School of Medicine, University of Genova, Genoa, Italy; Department of Medical Oncology, U.O.C. Clinica di Oncologia Medica, IRCCS Ospedale Policlinico San Martino, Genoa, Italy
| | - Francesco Spagnolo
- Department of Medical Oncology, Oncologia Medica 2, IRCCS Ospedale Policlinico San Martino, Genoa, Italy; Department of Surgical Sciences and Integrated Diagnostics (DISC), Plastic Surgery, University of Genova, Genoa, Italy
| |
Collapse
|
460
|
Zaremba A, Mohr P, Gutzmer R, Meier F, Pföhler C, Weichenthal M, Terheyden P, Forschner A, Leiter U, Ulrich J, Utikal J, Welzel J, Kaatz M, Gebhardt C, Herbst R, Sindrilaru A, Dippel E, Sachse M, Meiss F, Heinzerling L, Haferkamp S, Weishaupt C, Löffler H, Kreft S, Griewank K, Livingstone E, Schadendorf D, Ugurel S, Zimmer L. Immune checkpoint inhibition in patients with NRAS mutated and NRAS wild type melanoma: a multicenter Dermatologic Cooperative Oncology Group study on 637 patients from the prospective skin cancer registry ADOREG. Eur J Cancer 2023; 188:140-151. [PMID: 37245442 DOI: 10.1016/j.ejca.2023.04.008] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2023] [Revised: 04/13/2023] [Accepted: 04/15/2023] [Indexed: 05/30/2023]
Abstract
BACKGROUND Melanomas frequently harbour somatic mutations in BRAF (40%) or NRAS (20%). Impact of NRAS mutations on the therapeutic outcome of immune checkpoint inhibitors (ICI) remains controversial. Potential correlation of the NRAS mutational status and programmed cell death ligand-1 (PD-L1) expression in melanoma is unknown. PATIENTS AND METHODS Advanced, non-resectable melanoma patients with known NRAS mutation status treated with first-line ICI between 06/2014 and 05/2020 in the prospective multicenter skin cancer registry ADOREG were included. Overall response rate (ORR), progression-free survival (PFS), and overall survival (OS) according to NRAS status were analysed. A multivariate Cox model was used to analyse factors associated with PFS and OS; survival was analysed using the Kaplan-Meier approach. RESULTS Among 637 BRAF wild-type patients, 310 (49%) had an NRAS mutation with Q61R (41%) and Q61K (32%). NRAS-mutated (NRASmut) melanomas were significantly more often located on the lower extremities and trunk (p = 0.001); nodular melanoma was the most common subtype (p < 0.0001). No significant differences were found for PFS and OS for anti-PD1 monotherapy (2-year PFS 39%, [95% confidence interval (CI), 33-47] in NRASmut patients and 41% [95% CI, 35-48] in NRAS-wild type (NRASwt) patients; 2-year OS was 54% [95% CI, 48-61] in NRASmut patients and 57% [95% CI, 50-64] in NRASwt patients) and anti-PD1 plus anti-CTLA4 therapy between both cohorts (2-year PFS was 54% [95% CI, 44-66] in NRASmut patients and 53% [95% CI, 41-67] in NRASwt patients; 2-year OS was 58% [95% CI, 49-70] in NRASmut patients and 62% [95% CI, 51-75] in NRASwt patients). The ORR to anti-PD1 was 35% for NRASwt patients and 26% for NRASmut patients and 34% compared to 32% for combinational therapy. Data on PD-L1 expression was available in 82 patients (13%). PD-L1 expression (>5%) was not correlated to NRAS mutational status. In multivariate analysis, elevated lactate dehydrogenase, Eastern Cooperative Oncology Group performance status ≥ 1, and brain metastases were significantly associated with a higher risk of death in all patients. CONCLUSIONS The PFS and OS were not affected by NRAS mutational status in patients treated with anti-PD1-based ICI. Similar ORR was seen in NRASwt and NRASmut patients. Tumour PD-L1 expression did not correlate with NRAS mutational status.
Collapse
Affiliation(s)
- Anne Zaremba
- Department of Dermatology, University Hospital Essen, Essen, Germany.
| | - Peter Mohr
- Department of Dermatology, Elbe Clinic Buxtehude, Buxtehude, Germany
| | - Ralf Gutzmer
- Department of Dermatology, Hannover Medical School, Skin Cancer Centre Hannover, Hannover, Germany
| | - Friedegund Meier
- Skin Cancer Center at the University Cancer Centre Dresden and National Center for Tumor Diseases, Dresden, Germany; Department of Dermatology, University Hospital Carl Gustav Carus, TU Dresden, Dresden, Germany; National Center for Tumor Diseases Dresden (NCT/UCC), Dresden, Germany; German Cancer Research Center (DKFZ), Heidelberg, Germany; Faculty of Medicine and University Hospital Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany; Helmholtz-Zentrum Dresden-Rossendorf (HZDR), Dresden, Germany
| | - Claudia Pföhler
- Saarland University Medical Center, Department of Dermatology, Homburg, Saarland, Germany
| | - Michael Weichenthal
- Department of Dermatology, University Hospital of Schleswig-Holstein, Kiel, Germany
| | | | - Andrea Forschner
- Division of Dermatooncology, Department of Dermatology, University Medical Center, Tuebingen, Germany
| | - Ulrike Leiter
- Division of Dermatooncology, Department of Dermatology, University Medical Center, Tuebingen, Germany
| | - Jens Ulrich
- Department of Dermatology, Harz Clinic Quedlinburg, Quedlinburg, Germany
| | - Jochen Utikal
- Skin Cancer Unit, German Cancer Research Center (DKFZ), Heidelberg, Germany; Department of Dermatology, Venereology and Allergology, University Medical Center Mannheim, Ruprecht-Karl University of Heidelberg, Mannheim, Germany; DKFZ Hector Cancer Institute at the University Medical Center Mannheim, Mannheim, Germany
| | - Julia Welzel
- Department of Dermatology and Allergology, University Hospital Augsburg, Augsburg, Germany
| | - Martin Kaatz
- Department of Dermatology, Wald-Klinikum Gera, Gera, Germany
| | - Christoffer Gebhardt
- Department of Dermatology, University Hospital Medical Center Hamburg-Eppendorf (UKE), Hamburg, Germany
| | - Rudolf Herbst
- Department of Dermatology, Helios Klinikum Erfurt GmbH, Erfurt, Germany
| | - Anca Sindrilaru
- Department of Dermatology, University Hospital Ulm, Ulm, Germany
| | - Edgar Dippel
- Department of Dermatology, Clinic of the City of Ludwigshafen on the Rhine gGmbH, Ludwigshafen am Rhein, Germany
| | - Michael Sachse
- Department of Dermatology, Bremerhaven Reinkenheide Hospital gGmbH, Bremerhaven, Germany
| | - Frank Meiss
- Department of Dermatology and Venereology, Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Lucie Heinzerling
- Department of Dermatology, University Hospital Munich, Munich, Germany; Department of Dermatology, University Hospital Erlangen, Erlangen, Germany
| | - Sebastian Haferkamp
- Department of Dermatology, University Hospital Regensburg, Regensburg, Germany
| | - Carsten Weishaupt
- Department of Dermatology, University Hospital Münster, Münster, Germany
| | - Harald Löffler
- Department of Dermatology, SLK Hospital Heilbronn, Heilbronn, Germany
| | - Sophia Kreft
- Department of Dermatology, University Hospital Essen, Essen, Germany
| | - Klaus Griewank
- Department of Dermatology, University Hospital Essen, Essen, Germany
| | | | - Dirk Schadendorf
- Department of Dermatology, University Hospital Essen, Essen, Germany; German Cancer Consortium (DKTK), partner site Essen/Düsseldorf, Dresden, Germany
| | - Selma Ugurel
- Department of Dermatology, University Hospital Essen, Essen, Germany; German Cancer Consortium (DKTK), partner site Essen/Düsseldorf, Dresden, Germany
| | - Lisa Zimmer
- Department of Dermatology, University Hospital Essen, Essen, Germany
| |
Collapse
|
461
|
Wang B, Han Y, Zhang Y, Zhao Q, Wang H, Wei J, Meng L, Xin Y, Jiang X. Overcoming acquired resistance to cancer immune checkpoint therapy: potential strategies based on molecular mechanisms. Cell Biosci 2023; 13:120. [PMID: 37386520 DOI: 10.1186/s13578-023-01073-9] [Citation(s) in RCA: 35] [Impact Index Per Article: 17.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2022] [Accepted: 06/15/2023] [Indexed: 07/01/2023] Open
Abstract
Immune checkpoint inhibitors (ICIs) targeting CTLA-4 and PD-1/PD-L1 to boost tumor-specific T lymphocyte immunity have opened up new avenues for the treatment of various histological types of malignancies, with the possibility of durable responses and improved survival. However, the development of acquired resistance to ICI therapy over time after an initial response remains a major obstacle in cancer therapeutics. The potential mechanisms of acquired resistance to ICI therapy are still ambiguous. In this review, we focused on the current understanding of the mechanisms of acquired resistance to ICIs, including the lack of neoantigens and effective antigen presentation, mutations of IFN-γ/JAK signaling, and activation of alternate inhibitory immune checkpoints, immunosuppressive tumor microenvironment, epigenetic modification, and dysbiosis of the gut microbiome. Further, based on these mechanisms, potential therapeutic strategies to reverse the resistance to ICIs, which could provide clinical benefits to cancer patients, are also briefly discussed.
Collapse
Affiliation(s)
- Bin Wang
- Department of Radiation Oncology, The First Hospital of Jilin University, 71 Xinmin Street, Changchun, 130021, China
- Medical Oncology, Cancer Center, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Yin Han
- Cancer Prevention and Treatment Institute of Chengdu, Department of Pathology, Chengdu Fifth People's Hospital (The Second Clinical Medical College, Affiliated Fifth People's Hospital of Chengdu University of Traditional Chinese Medicine), Chengdu, 611137, China
| | - Yuyu Zhang
- Department of Radiation Oncology, The First Hospital of Jilin University, 71 Xinmin Street, Changchun, 130021, China
- Jilin Provincial Key Laboratory of Radiation Oncology & Therapy, The First Hospital of Jilin University, Changchun, 130021, China
- NHC Key Laboratory of Radiobiology, School of Public Health, Jilin University, Changchun, 130021, China
| | - Qin Zhao
- Department of Radiation Oncology, The First Hospital of Jilin University, 71 Xinmin Street, Changchun, 130021, China
- Medical Oncology, Cancer Center, West China Hospital, Sichuan University, Chengdu, 610041, China
- Cancer Prevention and Treatment Institute of Chengdu, Department of Pathology, Chengdu Fifth People's Hospital (The Second Clinical Medical College, Affiliated Fifth People's Hospital of Chengdu University of Traditional Chinese Medicine), Chengdu, 611137, China
| | - Huanhuan Wang
- Department of Radiation Oncology, The First Hospital of Jilin University, 71 Xinmin Street, Changchun, 130021, China
- Jilin Provincial Key Laboratory of Radiation Oncology & Therapy, The First Hospital of Jilin University, Changchun, 130021, China
- NHC Key Laboratory of Radiobiology, School of Public Health, Jilin University, Changchun, 130021, China
| | - Jinlong Wei
- Department of Radiation Oncology, The First Hospital of Jilin University, 71 Xinmin Street, Changchun, 130021, China
- Jilin Provincial Key Laboratory of Radiation Oncology & Therapy, The First Hospital of Jilin University, Changchun, 130021, China
- NHC Key Laboratory of Radiobiology, School of Public Health, Jilin University, Changchun, 130021, China
| | - Lingbin Meng
- Department of Hematology and Medical Oncology, Moffitt Cancer Center, Tampa, FL, 33612, USA
| | - Ying Xin
- Key Laboratory of Pathobiology, Ministry of Education, Jilin University, 126 Xinmin Street, Changchun, 130021, China.
| | - Xin Jiang
- Department of Radiation Oncology, The First Hospital of Jilin University, 71 Xinmin Street, Changchun, 130021, China.
- Jilin Provincial Key Laboratory of Radiation Oncology & Therapy, The First Hospital of Jilin University, Changchun, 130021, China.
- NHC Key Laboratory of Radiobiology, School of Public Health, Jilin University, Changchun, 130021, China.
| |
Collapse
|
462
|
Pawłowska A, Rekowska A, Kuryło W, Pańczyszyn A, Kotarski J, Wertel I. Current Understanding on Why Ovarian Cancer Is Resistant to Immune Checkpoint Inhibitors. Int J Mol Sci 2023; 24:10859. [PMID: 37446039 DOI: 10.3390/ijms241310859] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2023] [Revised: 06/21/2023] [Accepted: 06/27/2023] [Indexed: 07/15/2023] Open
Abstract
The standard treatment of ovarian cancer (OC) patients, including debulking surgery and first-line chemotherapy, is unsatisfactory because of recurrent episodes in the majority (~70%) of patients with advanced OC. Clinical trials have shown only a modest (10-15%) response of OC individuals to treatment based on immune checkpoint inhibitors (ICIs). The resistance of OC to therapy is caused by various factors, including OC heterogeneity, low density of tumor-infiltrating lymphocytes (TILs), non-cellular and cellular interactions in the tumor microenvironment (TME), as well as a network of microRNA regulating immune checkpoint pathways. Moreover, ICIs are the most efficient in tumors that are marked by high microsatellite instability and high tumor mutation burden, which is rare among OC patients. The great challenge in ICI implementation is connected with distinguishing hyper-, pseudo-, and real progression of the disease. The understanding of the immunological, molecular, and genetic mechanisms of OC resistance is crucial to selecting the group of OC individuals in whom personalized treatment would be beneficial. In this review, we summarize current knowledge about the selected factors inducing OC resistance and discuss the future directions of ICI-based immunotherapy development for OC patients.
Collapse
Affiliation(s)
- Anna Pawłowska
- Independent Laboratory of Cancer Diagnostics and Immunology, Department of Oncological Gynaecology and Gynaecology, Faculty of Medicine, Medical University of Lublin, Chodźki 1, 20-093 Lublin, Poland
| | - Anna Rekowska
- Students' Scientific Association, Independent Laboratory of Cancer Diagnostics and Immunology, Medical University of Lublin, Chodźki 1, 20-093 Lublin, Poland
| | - Weronika Kuryło
- Students' Scientific Association, Independent Laboratory of Cancer Diagnostics and Immunology, Medical University of Lublin, Chodźki 1, 20-093 Lublin, Poland
| | - Anna Pańczyszyn
- Institute of Medical Sciences, Department of Biology and Genetics, Faculty of Medicine, University of Opole, Oleska 48, 45-052 Opole, Poland
| | - Jan Kotarski
- Independent Laboratory of Cancer Diagnostics and Immunology, Department of Oncological Gynaecology and Gynaecology, Faculty of Medicine, Medical University of Lublin, Chodźki 1, 20-093 Lublin, Poland
| | - Iwona Wertel
- Independent Laboratory of Cancer Diagnostics and Immunology, Department of Oncological Gynaecology and Gynaecology, Faculty of Medicine, Medical University of Lublin, Chodźki 1, 20-093 Lublin, Poland
| |
Collapse
|
463
|
Wu Z, Cao Z, Yao H, Yan X, Xu W, Zhang M, Jiao Z, Zhang Z, Chen J, Liu Y, Zhang M, Wang D. Coupled deglycosylation-ubiquitination cascade in regulating PD-1 degradation by MDM2. Cell Rep 2023; 42:112693. [PMID: 37379210 DOI: 10.1016/j.celrep.2023.112693] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2023] [Revised: 05/02/2023] [Accepted: 06/09/2023] [Indexed: 06/30/2023] Open
Abstract
Posttranslational modifications represent a key step in modulating programmed death-1 (PD-1) functions, but the underlying mechanisms remain incompletely defined. Here, we report crosstalk between deglycosylation and ubiquitination in regulating PD-1 stability. We show that the removal of N-linked glycosylation is a prerequisite for efficient PD-1 ubiquitination and degradation. Murine double minute 2 (MDM2) is identified as an E3 ligase of deglycosylated PD-1. In addition, the presence of MDM2 facilitates glycosylated PD-1 interaction with glycosidase NGLY1 and promotes subsequent NGLY1-catalyzed PD-1 deglycosylation. Functionally, we demonstrate that the absence of T cell-specific MDM2 accelerates tumor growth by primarily upregulating PD-1. By stimulating the p53-MDM2 axis, interferon-α (IFN-α) reduces PD-1 levels in T cells, which, in turn, exhibit a synergistic effect on tumor suppression by sensitizing anti-PD-1 immunotherapy. Our study reveals that MDM2 directs PD-1 degradation via a deglycosylation-ubiquitination coupled mechanism and sheds light on a promising strategy to boost cancer immunotherapy by targeting the T cell-specific MDM2-PD-1 regulatory axis.
Collapse
Affiliation(s)
- Zhen Wu
- State Key Laboratory of Medical Molecular Biology & Department of Medical Genetics, Institute of Basic Medical Sciences & School of Basic Medicine, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100005, China
| | - Zhijie Cao
- State Key Laboratory of Medical Molecular Biology & Department of Medical Genetics, Institute of Basic Medical Sciences & School of Basic Medicine, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100005, China
| | - Han Yao
- State Key Laboratory of Medical Molecular Biology & Department of Medical Genetics, Institute of Basic Medical Sciences & School of Basic Medicine, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100005, China
| | - Xiaojun Yan
- State Key Laboratory of Medical Molecular Biology & Department of Medical Genetics, Institute of Basic Medical Sciences & School of Basic Medicine, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100005, China
| | - Wenbin Xu
- State Key Laboratory of Medical Molecular Biology & Department of Medical Genetics, Institute of Basic Medical Sciences & School of Basic Medicine, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100005, China
| | - Mi Zhang
- Department of Anatomy, Histology and Embryology, School of Basic Medicine, China Medical University, Shenyang 110122, China
| | - Zishan Jiao
- State Key Laboratory of Medical Molecular Biology & Department of Medical Genetics, Institute of Basic Medical Sciences & School of Basic Medicine, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100005, China
| | - Zijing Zhang
- State Key Laboratory of Medical Molecular Biology & Department of Medical Genetics, Institute of Basic Medical Sciences & School of Basic Medicine, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100005, China
| | - Jianyuan Chen
- State Key Laboratory of Medical Molecular Biology & Department of Medical Genetics, Institute of Basic Medical Sciences & School of Basic Medicine, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100005, China
| | - Yajing Liu
- State Key Laboratory of Medical Molecular Biology & Department of Medical Genetics, Institute of Basic Medical Sciences & School of Basic Medicine, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100005, China
| | - Meng Zhang
- State Key Laboratory of Medical Molecular Biology & Department of Medical Genetics, Institute of Basic Medical Sciences & School of Basic Medicine, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100005, China
| | - Donglai Wang
- State Key Laboratory of Medical Molecular Biology & Department of Medical Genetics, Institute of Basic Medical Sciences & School of Basic Medicine, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100005, China.
| |
Collapse
|
464
|
Kraehenbuehl L, Schneider S, Pawlik L, Mangana J, Cheng P, Dummer R, Meier-Schiesser B. Cutaneous Adverse Events of Systemic Melanoma Treatments: A Retrospective Single-Center Analysis. Pharmaceuticals (Basel) 2023; 16:935. [PMID: 37513847 PMCID: PMC10383648 DOI: 10.3390/ph16070935] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2023] [Revised: 05/28/2023] [Accepted: 06/22/2023] [Indexed: 07/30/2023] Open
Abstract
Recent progress in the treatment of advanced melanoma has led to the improved survival of affected patients. However, novel treatments also lead to considerable and distinct skin toxicity. To further characterize cutaneous adverse events (AE) of systemic treatments, we conducted a single-center retrospective study of biopsy-proven cutaneous adverse events of melanoma treatment over a period of 10 years at the University Hospital of Zurich, Switzerland. In 102 identified patients, 135 individual skin AEs developed. Immune checkpoint blockade (ICB) was causal for 81 skin AEs, and 54 were related to targeted therapies (TT). Recorded types of skin AEs included lichenoid, maculopapular, acneiform, urticarial, panniculitis, folliculitis, psoriasiform, granulomatous, eczematous, and others. The incidence of skin AEs was higher with TT (18.54%) than with ICB (9.64%, p = 0.0029). Most AEs were low-grade, although 19.21% of AEs were common terminology criteria for adverse events (CTCAE) Grades 3 or 4. A large spectrum of skin AEs was documented during treatment of advanced melanoma, and distinct phenotypes were observed, depending on treatment classes. AEs occurred earlier during treatment with TT than with ICB, and distinct types of skin AEs were associated with respective treatment classes. This study comprehensively describes skin AEs occurring during systemic treatment for melanoma at a single center.
Collapse
Affiliation(s)
- Lukas Kraehenbuehl
- Department of Dermatology, University Hospital Zurich (USZ), University of Zurich (UZH), 8091 Zurich, Switzerland
| | - Stephanie Schneider
- Department of Dermatology, University Hospital Zurich (USZ), University of Zurich (UZH), 8091 Zurich, Switzerland
| | - Laura Pawlik
- Department of Dermatology, University Hospital Zurich (USZ), University of Zurich (UZH), 8091 Zurich, Switzerland
| | - Joanna Mangana
- Department of Dermatology, University Hospital Zurich (USZ), University of Zurich (UZH), 8091 Zurich, Switzerland
| | - Phil Cheng
- Department of Dermatology, University Hospital Zurich (USZ), University of Zurich (UZH), 8091 Zurich, Switzerland
| | - Reinhard Dummer
- Department of Dermatology, University Hospital Zurich (USZ), University of Zurich (UZH), 8091 Zurich, Switzerland
| | - Barbara Meier-Schiesser
- Department of Dermatology, University Hospital Zurich (USZ), University of Zurich (UZH), 8091 Zurich, Switzerland
| |
Collapse
|
465
|
Ding L, Sun L, Bu MT, Zhang Y, Scott LN, Prins RM, Su MA, Lechner MG, Hugo W. Antigen presentation by clonally diverse CXCR5+ B cells to CD4 and CD8 T cells is associated with durable response to immune checkpoint inhibitors. Front Immunol 2023; 14:1176994. [PMID: 37435085 PMCID: PMC10330698 DOI: 10.3389/fimmu.2023.1176994] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2023] [Accepted: 05/22/2023] [Indexed: 07/13/2023] Open
Abstract
Introduction Increased T cell infiltration and interferon gamma (IFNγ) pathway activation are seen in tumors of melanoma patients who respond to ICI (immune checkpoint inhibitor) or MAPK pathway inhibitor (MAPKi) therapies. Yet, the rate of durable tumor control after ICI is almost twice that of MAPKi, suggesting that additional mechanisms may be present in patients responding to ICI therapy that are beneficial for anti-tumor immunity. Methods We used transcriptional analysis and clinical outcomes from patients treated with ICI or MAPKi therapies to delineate immune mechanisms driving tumor response. Results We discovered response to ICI is associated with CXCL13-driven recruitment of CXCR5+ B cells with significantly higher clonal diversity than MAPKi. Our in vitro data indicate that CXCL13 production was increased in human peripheral blood mononuclear cells by anti-PD1, but not MAPKi, treatment. Higher B cell infiltration and B cell receptor (BCR) diversity allows presentation of diverse tumor antigens by B cells, resulting in activation of follicular helper CD4 T cells (Tfh) and tumor reactive CD8 T cells after ICI therapy. Higher BCR diversity and IFNγ pathway score post-ICI are associated with significantly longer patient survival compared to those with either one or none. Conclusions Response to ICI, but not to MAPKi, depends on the recruitment of CXCR5+ B cells into the tumor microenvironment and their productive tumor antigen presentation to follicular helper and cytotoxic, tumor reactive T cells. Our study highlights the potential of CXCL13 and B cell based strategies to enhance the rate of durable response in melanoma patients treated with ICI.
Collapse
Affiliation(s)
- Lizhong Ding
- Department of Medicine, Division of Dermatology, University of California, Los Angeles, Los Angeles, CA, United States
- Parker Institute for Cancer Immunotherapy, University of California, Los Angeles, Los Angeles, CA, United States
| | - Lu Sun
- Parker Institute for Cancer Immunotherapy, University of California, Los Angeles, Los Angeles, CA, United States
- Department of Neurosurgery, University of California, Los Angeles, Los Angeles, CA, United States
| | - Melissa T. Bu
- Department of Medicine, Division of Dermatology, University of California, Los Angeles, Los Angeles, CA, United States
| | - Yanjun Zhang
- Department of Medicine, Division of Dermatology, University of California, Los Angeles, Los Angeles, CA, United States
- State Key Laboratory of Experimental Hematology, Institute of Hematology and Blood Diseases Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Lauren N. Scott
- Department of Medicine, Division of Endocrinology, Diabetes, and Metabolism, University of California, Los Angeles, Los Angeles, CA, United States
| | - Robert M. Prins
- Parker Institute for Cancer Immunotherapy, University of California, Los Angeles, Los Angeles, CA, United States
- Department of Neurosurgery, University of California, Los Angeles, Los Angeles, CA, United States
- Department of Molecular and Medical Pharmacology, University of California, Los Angeles, Los Angeles, CA, United States
- Jonsson Comprehensive Cancer Center, University of California, Los Angeles, Los Angeles, CA, United States
| | - Maureen A. Su
- Parker Institute for Cancer Immunotherapy, University of California, Los Angeles, Los Angeles, CA, United States
- Jonsson Comprehensive Cancer Center, University of California, Los Angeles, Los Angeles, CA, United States
- Department of Microbiology, Immunology, and Molecular Genetics, University of California, Los Angeles, Los Angeles, CA, United States
- Department of Pediatrics, Division of Pediatric Endocrinology, University of California, Los Angeles, Los Angeles, CA, United States
| | - Melissa G. Lechner
- Department of Medicine, Division of Endocrinology, Diabetes, and Metabolism, University of California, Los Angeles, Los Angeles, CA, United States
- Department of Microbiology, Immunology, and Molecular Genetics, University of California, Los Angeles, Los Angeles, CA, United States
| | - Willy Hugo
- Department of Medicine, Division of Dermatology, University of California, Los Angeles, Los Angeles, CA, United States
- Parker Institute for Cancer Immunotherapy, University of California, Los Angeles, Los Angeles, CA, United States
- Department of Microbiology, Immunology, and Molecular Genetics, University of California, Los Angeles, Los Angeles, CA, United States
| |
Collapse
|
466
|
Ciardulli MC, Mariconda A, Sirignano M, Lamparelli EP, Longo R, Scala P, D'Auria R, Santoro A, Guadagno L, Della Porta G, Longo P. Activity and Selectivity of Novel Chemical Metallic Complexes with Potential Anticancer Effects on Melanoma Cells. Molecules 2023; 28:4851. [PMID: 37375406 DOI: 10.3390/molecules28124851] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2023] [Revised: 06/07/2023] [Accepted: 06/10/2023] [Indexed: 06/29/2023] Open
Abstract
Human malignant melanoma cells from lymph node metastatic site (MeWo) were selected for testing several synthesized and purified silver(I) and gold(I) complexes stabilized by unsymmetrically substituted N-heterocyclic carbene (NHC) ligands, called L20 (N-methyl, N'-[2-hydroxy ethylphenyl]imidazol-2-ylide) and M1 (4,5-dichloro, N-methyl, N'-[2-hydroxy ethylphenyl]imidazol-2-ylide), having halogenide (Cl- or I-) or aminoacyl (Gly=N-(tert-Butoxycarbonyl)glycinate or Phe=(S)-N-(tert-Butoxycarbonyl)phenylalaninate) counterion. For AgL20, AuL20, AgM1 and AuM1, the Half-Maximal Inhibitory Concentration (IC50) values were measured, and all complexes seemed to reduce cell viability more effectively than Cisplatin, selected as control. The complex named AuM1 was the most active just after 8 h of treatment at 5 μM, identified as effective growth inhibition concentration. AuM1 also showed a linear dose and time-dependent effect. Moreover, AuM1 and AgM1 modified the phosphorylation levels of proteins associated with DNA lesions (H2AX) and cell cycle progression (ERK). Further screening of complex aminoacyl derivatives indicated that the most powerful were those indicated with the acronyms: GlyAg, PheAg, AgL20Gly, AgM1Gly, AuM1Gly, AgL20Phe, AgM1Phe, AuM1Phe. Indeed, the presence of Boc-Glycine (Gly) and Boc-L-Phenylalanine (Phe) showed an improved efficacy of Ag main complexes, as well as that of AuM1 derivatives. Selectivity was further checked on a non-cancerous cell line, a spontaneously transformed aneuploid immortal keratinocyte from adult human skin (HaCaT). In such a case, AuM1 and PheAg complexes resulted as the most selective allowing HaCaT viability at 70 and 40%, respectively, after 48 h of treatment at 5 μM. The same complexes tested on 3D MeWo static culture induced partial spheroid disaggregation after 24 h of culture, with almost half of the cells dead.
Collapse
Affiliation(s)
- Maria Camilla Ciardulli
- Department of Medicine, Surgery and Dentistry, University of Salerno, Via S. Allende, 84081 Baronissi, Italy
| | - Annaluisa Mariconda
- Department of Science, University of Basilicata, Viale dell'Ateneo Lucano 10, 85100 Potenza, Italy
| | - Marco Sirignano
- Department of Chemistry and Biology "Adolfo Zambelli", University of Salerno, Via Giovanni Paolo II, 132, 84084 Fisciano, Italy
| | - Erwin Pavel Lamparelli
- Department of Medicine, Surgery and Dentistry, University of Salerno, Via S. Allende, 84081 Baronissi, Italy
| | - Raffaele Longo
- Department of Industrial Engineering, University of Salerno, Via Giovanni Paolo II, 132, 84084 Fisciano, Italy
| | - Pasqualina Scala
- Department of Medicine, Surgery and Dentistry, University of Salerno, Via S. Allende, 84081 Baronissi, Italy
| | - Raffaella D'Auria
- Department of Medicine, Surgery and Dentistry, University of Salerno, Via S. Allende, 84081 Baronissi, Italy
| | - Antonietta Santoro
- Department of Medicine, Surgery and Dentistry, University of Salerno, Via S. Allende, 84081 Baronissi, Italy
- Interdepartment Centre BIONAM, University of Salerno, Via Giovanni Paolo II, 84084 Fisciano, Italy
| | - Liberata Guadagno
- Department of Industrial Engineering, University of Salerno, Via Giovanni Paolo II, 132, 84084 Fisciano, Italy
| | - Giovanna Della Porta
- Department of Medicine, Surgery and Dentistry, University of Salerno, Via S. Allende, 84081 Baronissi, Italy
- Interdepartment Centre BIONAM, University of Salerno, Via Giovanni Paolo II, 84084 Fisciano, Italy
| | - Pasquale Longo
- Department of Chemistry and Biology "Adolfo Zambelli", University of Salerno, Via Giovanni Paolo II, 132, 84084 Fisciano, Italy
| |
Collapse
|
467
|
Vázquez-Montero L, de la Gala MDCÁ, de la Cruz-Merino L. Nivolumab plus ipilimumab in metastatic melanoma: a critical appraisal focused on specific subpopulations. Front Oncol 2023; 13:1187840. [PMID: 37404764 PMCID: PMC10315455 DOI: 10.3389/fonc.2023.1187840] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2023] [Accepted: 05/29/2023] [Indexed: 07/06/2023] Open
Abstract
The development of immune checkpoint inhibitors has revolutionized the landscape of treatment of advanced melanoma in recent years. Based on the efficacy results of the phase III CheckMate 067 trial, nivolumab in combination with ipilimumab is one of the first-line standard options for advanced melanoma along with pembrolizumab, nivolumab, and, recently, nivolumab plus relatlimab. Counterbalancing its efficacy, nivolumab plus ipilimumab is associated with severe immune-related toxicity. This article will review the efficacy and safety of the nivolumab plus ipilimumab combination in advanced melanoma across phase I, II, and III clinical trials that evaluated this approach. We also explore the benefit of the combination schedule across different subgroups of patients and possible predictive biomarkers for efficacy outcomes in order to elucidate which patients could be the best candidates for combination or single-agent therapy. Patients with BRAF-mutant tumours, asymptomatic brain metastases, or PD-L1-negative status appear to reach better survival outcomes with the combination relative to single-agent immunotherapy.
Collapse
Affiliation(s)
| | | | - Luis de la Cruz-Merino
- Clinical Oncology Department, University Hospital Virgen Macarena, Seville, Spain
- School of Medicine. University of Seville, Seville, Spain
- Cancer Immunotherapy, Department of Oncohematology and Genetics, Biomedicine Institute of Seville (IBIS)/CSIC Spanish National Research Council, Seville, Spain
| |
Collapse
|
468
|
Younis M, Wu Y, Fang Q, Shan H, Huang X. Synergistic therapeutic antitumor effect of PD-1 blockade cellular vesicles in combination with Iguratimod and Rhodium nanoparticles. J Colloid Interface Sci 2023; 649:929-942. [PMID: 37392683 DOI: 10.1016/j.jcis.2023.06.030] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2023] [Revised: 06/01/2023] [Accepted: 06/05/2023] [Indexed: 07/03/2023]
Abstract
Immune checkpoint blockade has emerged as a significant therapeutic development in immunotherapy during the past decade. However, only a small percentage of cancer patients respond to checkpoint blockade, suggesting that a fundamental knowledge of the underlying processes of immune checkpoint receptor signaling remains elusive and that novel therapeutic medications are needed. Here, the programmed cell death protein 1(PD-1) expressing nanovesicles were developed to enhance T cell activity. Iguratimod (IGU) and Rhodium (Rh) nanoparticles (NPs) were loaded in PD-1 nanovesicles (NVs) for synergistic therapeutic antitumor effects against lung cancer and metastasis. For the first time, this study revealed that IGU exhibits an antitumor effect by inhibiting the phosphorylation of mammalian target of rapamycin (mTOR) and Rh-NPs provided a photothermal effect by improving reactive oxygen species (ROS)-dependent apoptosis in lung cancer cells. IGU-Rh-PD-1 NVs also reduced the migration ability through the epithelial-mesenchymal transition (EMT) pathway. Furthermore, IGU-Rh-PD-1 NVs reached the targeted site and inhibited tumor growth in vivo. This strategy could boost T cell performance and simultaneously possess chemotherapeutic and photothermal therapy to serve as a new combination therapy for lung cancer and potentially other aggressive cancer.
Collapse
Affiliation(s)
- Muhammad Younis
- Center for Infection and Immunity, Guangdong Provincial Engineering Research Center of Molecular Imaging, The Fifth Affiliated Hospital, Sun Yat-sen University, Zhuhai, Guangdong Province, 519000, China; Southern Marine Science and Engineering, Guangdong Laboratory, Zhuhai, Guangdong Province, 519000, China
| | - Yongjian Wu
- Center for Infection and Immunity, Guangdong Provincial Engineering Research Center of Molecular Imaging, The Fifth Affiliated Hospital, Sun Yat-sen University, Zhuhai, Guangdong Province, 519000, China; Southern Marine Science and Engineering, Guangdong Laboratory, Zhuhai, Guangdong Province, 519000, China
| | - Qiongyan Fang
- Center for Infection and Immunity, Guangdong Provincial Engineering Research Center of Molecular Imaging, The Fifth Affiliated Hospital, Sun Yat-sen University, Zhuhai, Guangdong Province, 519000, China
| | - Hong Shan
- Center for Infection and Immunity, Guangdong Provincial Engineering Research Center of Molecular Imaging, The Fifth Affiliated Hospital, Sun Yat-sen University, Zhuhai, Guangdong Province, 519000, China; Southern Marine Science and Engineering, Guangdong Laboratory, Zhuhai, Guangdong Province, 519000, China
| | - Xi Huang
- Center for Infection and Immunity, Guangdong Provincial Engineering Research Center of Molecular Imaging, The Fifth Affiliated Hospital, Sun Yat-sen University, Zhuhai, Guangdong Province, 519000, China; Southern Marine Science and Engineering, Guangdong Laboratory, Zhuhai, Guangdong Province, 519000, China.
| |
Collapse
|
469
|
Plachouri KM, Florou V, Georgiou V, Georgiou S. Cutaneous Side Effects of Modern Targeted Therapy and Immunotherapy in Patients with Dermatological Malignancies. Cancers (Basel) 2023; 15:3126. [PMID: 37370736 DOI: 10.3390/cancers15123126] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2023] [Revised: 05/24/2023] [Accepted: 06/07/2023] [Indexed: 06/29/2023] Open
Abstract
The advent of immunotherapy and targeted therapies in treating dermatological malignancies has dramatically changed the landscape of dermato-oncology in recent years. Their superior efficacy compared to previous therapeutic options, such as chemotherapy, has resulted in their use in treating devastating malignancies, such as melanoma or unresectable/metastatic basal cell and squamous cell carcinoma. Skin toxicity is a critical safety consideration, among other adverse reactions, that can occur under treatment with these agents. This article aims to summarize the cutaneous side effects of immune checkpoint inhibitors and targeted dermato-oncological therapies. Although the skin side effects of these agents are primarily mild, they can occasionally affect the decision for treatment continuation and the quality of life of the affected patients. Therefore, physicians must be acquainted with the specific cutaneous toxicity profile of such treatments to mitigate their impact on the patients and optimize the overall outcome of dermato-oncological therapy.
Collapse
Affiliation(s)
- Kerasia-Maria Plachouri
- Dermatology Department, University General Hospital of Patras, University of Patras, 265 04 Rio, Greece
| | - Vaia Florou
- Division of Oncology, Department of Medicine, Huntsman Cancer Institute, University of Utah, Salt Lake City, UT 841112, USA
| | - Vasileios Georgiou
- School of Medicine, University General Hospital of Patras, University of Patras, 265 04 Rio, Greece
| | - Sophia Georgiou
- Dermatology Department, University General Hospital of Patras, University of Patras, 265 04 Rio, Greece
| |
Collapse
|
470
|
van Zeijl MCT, van Breeschoten J, de Wreede LC, Wouters MWJM, Hilarius DL, Blank CU, Aarts MJB, van den Berkmortel FWPJ, de Groot JWB, Hospers GAP, Kapiteijn E, Piersma D, van Rijn RS, Stevense-den Boer MA, van der Veldt AAM, Vreugdenhil G, Boers-Sonderen MJ, Suijkerbuijk KPM, Haanen JBAG, van den Eertwegh AJM. Real-world Outcomes of Ipilimumab Plus Nivolumab Combination Therapy in a Nation-wide Cohort of Advanced Melanoma Patients in the Netherlands. J Immunother 2023; 46:197-204. [PMID: 37103470 DOI: 10.1097/cji.0000000000000468] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2022] [Accepted: 03/02/2023] [Indexed: 04/28/2023]
Abstract
In phase III trials, ipilimumab plus nivolumab combination therapy is highly efficacious for advanced melanoma, despite many treatment-related grades 3-4 adverse events. Here, we report real-world safety and survival outcomes of ipilimumab plus nivolumab for advanced melanoma. Patients with advanced melanoma who received first-line ipilimumab plus nivolumab between January 1, 2015 and June 30, 2021 were selected from the Dutch Melanoma Treatment Registry. We evaluated response status at 3, 6, 12, 18, and 24 months. OS and PFS were estimated with the Kaplan-Meier method. Separate analyses were performed for patients with or without brain metastases and for patients who met the inclusion criteria of the Checkmate-067 trial. In total, 709 patients received first-line ipilimumab plus nivolumab. Three hundred sixty (50.7%) patients experienced grade 3-4 adverse events, with 211 of the (58.6%) patients requiring hospital admission. The median treatment duration was 42 days (IQR = 31-139). At 24 months, disease control was achieved in 37% of patients. Median PFS since the start of treatment was 6.6 months (95% CI: 5.3-8.7), and median OS was 28.7 months (95% CI: 20.7-42.2). CheckMate-067 trial-like patients had a 4-year OS of 50% (95% CI: 43-59). Among patients with no asymptomatic or symptomatic brain metastases, the 4-year OS probabilities were 48% (95% CI: 41-55), 45% (95% CI: 35-57), and 32% (95% CI: 23-46). Ipilimumab plus nivolumab can achieve long-term survival in advanced melanoma patients in a real-world setting, including patients not represented in the CheckMate-067 trial. However, the proportion of patients with disease control in the real world is lower compared with clinical trials.
Collapse
Affiliation(s)
- Michiel C T van Zeijl
- Scientific Department, Dutch Institute for Clinical Auditing
- Department of Medical Oncology, Leiden University Medical Centre
| | - Jesper van Breeschoten
- Scientific Department, Dutch Institute for Clinical Auditing
- Department of Medical Oncology, Amsterdam UMC-location VUmc, Cancer Center Amsterdam
| | - Liesbeth C de Wreede
- Department of Biomedical Data Sciences, Leiden University Medical Centre, Leiden, The Netherlands
| | - Michel W J M Wouters
- Scientific Department, Dutch Institute for Clinical Auditing
- Department of Biomedical Data Sciences, Leiden University Medical Centre, Leiden, The Netherlands
- Department of Surgical Oncology, Netherlands Cancer Institute
| | | | - Christian U Blank
- Divisions of Medical Oncology and Molecular Oncology & Immunology, Netherlands Cancer Institute
- Division of Molecular Oncology & Immunology, Netherlands Cancer Institute, Amsterdam
| | - Maureen J B Aarts
- Department of Medical Oncology, GROW-School for Oncology and Reproduction, Maastricht University Medical Centre, Maastricht
| | | | | | - Geke A P Hospers
- Department of Medical Oncology, University Medical Centre Groningen, University of Groningen, Groningen
| | - Ellen Kapiteijn
- Department of Medical Oncology, Leiden University Medical Centre
| | - Djura Piersma
- Department of Internal Medicine, Medisch Spectrum Twente, Enschede
| | | | | | - Astrid A M van der Veldt
- Department of Medical Oncology and Radiology & Nuclear Medicine, Erasmus Medical Centre, Rotterdam
| | | | | | | | - John B A G Haanen
- Department of Medical Oncology, Leiden University Medical Centre
- Divisions of Medical Oncology and Molecular Oncology & Immunology, Netherlands Cancer Institute
- Division of Molecular Oncology & Immunology, Netherlands Cancer Institute, Amsterdam
| | | |
Collapse
|
471
|
Wang J, Hong J, Yang F, Liu F, Wang X, Shen Z, Wu D. A deficient MIF-CD74 signaling pathway may play an important role in immunotherapy-induced hyper-progressive disease. Cell Biol Toxicol 2023; 39:1169-1180. [PMID: 34797429 DOI: 10.1007/s10565-021-09672-3] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2021] [Accepted: 10/13/2021] [Indexed: 01/05/2023]
Abstract
BACKGROUND With the advent of immune checkpoint inhibitors (ICIs) therapies, a major breakthrough has been made in cancer treatment. However, instead of good results, some patients experienced a deterioration of their disease. This unexpected result is termed as hyper-progressive disease (HPD). The biology of HPD is currently not fully understood. METHODS Isolation of CD3+ cells from peripheral blood mononuclear cells (PBMC) in healthy control, tumor patients receiving immunotherapy with or without immunotherapy-induced HPD, then conducted single-cell RNA sequencing (scRNA-seq). RESULTS By analyzing scRNA-seq data, we identified 15 cell clusters. We observed developed-exhausted CD4+ T cells and regulatory T cells (Tregs) increasingly enriched in HPD group. Meanwhile, some effector T cells were decreased in HPD. The imbalance potentially contributes to the occurrence of HPD and poor clinical prognosis. In addition, we analyzed ligand-receptor interactions between subsets. The ligand-receptor interaction "CD74-MIF" was absent in HPD. However, in vitro experiment, we found that CD74 regulated effector function of effector CD8+ T cells. Overall, the article provides a primary study of immune profile in HPD.
Collapse
Affiliation(s)
- Jiahui Wang
- Department of Oncology, Affiliated Sixth People's Hospital, Shanghai Jiaotong University, Shanghai, China
| | - Jinsheng Hong
- Department of Radiotherapy, The First Affiliated Hospital of Fujian Medical University, Fuzhou, 350005, Fujian, China
- Key Laboratory of Radiation Biology of Fujian Higher Education Institutions, The First Affiliated Hospital, Fujian Medical University, Fuzhou, Fujian, China
| | - Feiyu Yang
- Emergency Department of Jinshan Hospital Affiliated to Fudan University, Shanghai, China
| | - Fangming Liu
- Institute of Clinical Science, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Xiangdong Wang
- Institute of Clinical Science, Zhongshan Hospital, Fudan University, Shanghai, China.
- Jinshan Hospital Center for Tumor Diagnosis & Therapy, Jinshan Hospital, Fudan University, Shanghai, China.
| | - Zan Shen
- Department of Oncology, Affiliated Sixth People's Hospital, Shanghai Jiaotong University, Shanghai, China.
| | - Duojiao Wu
- Institute of Clinical Science, Zhongshan Hospital, Fudan University, Shanghai, China.
- Jinshan Hospital Center for Tumor Diagnosis & Therapy, Jinshan Hospital, Fudan University, Shanghai, China.
| |
Collapse
|
472
|
Zhang Z, Zhang Y, Liu C, Shao J, Chen Y, Zhu Y, Zhang L, Qin B, Kong Z, Wang X, Wang Y, Huang D, Liu L, Zhou Y, Tao R, Yang Z, Liu M, Zhao W. A real-world study of immune checkpoint inhibitors in advanced triple-negative breast cancer. CANCER INNOVATION 2023; 2:172-180. [PMID: 38089401 PMCID: PMC10686160 DOI: 10.1002/cai2.70] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Revised: 03/08/2023] [Accepted: 03/16/2023] [Indexed: 10/15/2024]
Abstract
Background Triple-negative breast cancer (TNBC) is the most aggressive type of breast cancer. Immune checkpoint inhibitors (ICIs) have been widely used to treat various tumors and have changed the landscape of tumor management, but the data from real-world studies of ICIs for TNBC treatment remain limited. The aim of this study was to evaluate the efficacy of ICIs in the treatment of patients with advanced TNBC in a real-world setting and to explore possible correlates. Methods The clinical data of advanced TNBC patients who received ICI treatment in the Chinese People's Liberation Army (PLA) General Hospital were collected. Treatment responses, outcomes and adverse events (AEs) were assessed. Results Eighty-one patients were included in the study. The confirmed objective response rate (ORR) was 32.1%, and the disease control rate (DCR) was 64.2%. The median progression-free survival (PFS) was 4.2 months, and the median overall survival (OS) was 11.0 months. PFS and OS were longer in patients who achieved clinical benefit from ICIs and shorter in patients who received later-line ICIs and higher levels of inflammation; specifically, patients with higher TILs had longer PFS. Overall AEs were tolerable. Conclusions ICIs are effective in the treatment of advanced TNBC, and the adverse reactions are tolerable. A panel of biomarkers including LDH, ALP, and bNLR were identified to predict the efficacies of ICIs in TNBC treatment.
Collapse
Affiliation(s)
| | - Yadi Zhang
- Nankai University School of MedicineTianjinChina
| | | | | | - Yimeng Chen
- Department of Medical OncologyXi'an Jiaotong UniversityXi'anShaanxiChina
| | - Yimin Zhu
- Department of Medical Oncology, Fifth Medical CenterGeneral Hospital of the Chinese People's Liberation ArmyBeijingChina
| | - Li Zhang
- Department of Medical Oncology, First Medical CenterGeneral Hospital of the Chinese People's Liberation ArmyBeijingChina
| | - Boyu Qin
- Department of Medical Oncology, Fifth Medical CenterGeneral Hospital of the Chinese People's Liberation ArmyBeijingChina
| | | | - Xixi Wang
- Nankai University School of MedicineTianjinChina
| | | | | | - Liqun Liu
- Medical School of Chinese PLABeijingChina
| | - Yuxin Zhou
- Medical School of Chinese PLABeijingChina
| | - Ran Tao
- Department of Medical Oncology, First Medical CenterGeneral Hospital of the Chinese People's Liberation ArmyBeijingChina
| | - Zengjie Yang
- Cancer Biology ProgramFox Chase Cancer CenterPhiladelphiaPennsylvaniaUSA
| | - Mei Liu
- Department of Pathology, First Medical CenterGeneral Hospital of the Chinese People's Liberation ArmyBeijingChina
| | - Weihong Zhao
- Department of Medical Oncology, First Medical CenterGeneral Hospital of the Chinese People's Liberation ArmyBeijingChina
| |
Collapse
|
473
|
Kong X, Chen L, Su Z, Sullivan RJ, Blum SM, Qi Z, Liu Y, Huo Y, Fang Y, Zhang L, Gao J, Wang J. Toxicities associated with immune checkpoint inhibitors: a systematic study. Int J Surg 2023; 109:1753-1768. [PMID: 37132038 PMCID: PMC10389211 DOI: 10.1097/js9.0000000000000368] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2022] [Accepted: 03/12/2023] [Indexed: 05/04/2023]
Abstract
BACKGROUND Available evidence shows that the incidence of toxicities associated with cancer immunotherapy, such as programmed cell death 1 (PD-1) and programmed cell death 1 ligand 1 (PD-L1)-related toxicities, is estimated to be between 0.3 and 1.3%. OBJECTIVE This systematic review aimed to investigate cancer patients' susceptibility to toxicities associated with PD-1/PD-L1 inhibitors and establish a clinically relevant landscape of side effects of PD-1/PD-L1 inhibitors. DATA SOURCES Relevant publications from PubMed, Embase, Cochrane Library, Web of Science, and China National Knowledge Infrastructure (CNKI) between 2014 and 2019. STUDY ELIGIBILITY CRITERIA, PARTICIPANTS, AND INTERVENTIONS We searched randomized controlled trials (RCTs) reporting treatment-related toxicities associated with PD-1 and PD-L1 inhibitors in the treatment of cancers. The primary endpoint was to assess the difference in the incidences of toxicities between cancer patients who did and did not receive PD-1/PD-L1 inhibitors. A total of 29 RCTs, incorporating 8576 patients, met the eligibility criteria. STUDY APPRAISAL AND SYNTHESIS METHODS We calculated the pooled relative risks and corresponding 95% CIs using a random-effects model and assessed the heterogeneity between different groups. The subgroup analyses were conducted based on cancer type, toxicity grade (severity), system and organ, treatment regimens in the intervention arm and the control arm, PD-1/PD-L1 inhibitor drug type, and cancer type. RESULTS A total of 11 categories (e.g. endocrine toxicity), and 39 toxicity types (e.g. hyperthyroidism) were identified. For toxicities at any grade, those treated with PD-1/PD-L1 inhibitors were at lower risks for gastrointestinal toxicity, hematologic toxicity, and treatment event leading to discontinuation; and were at higher risks for respiratory toxicity (all P <0.05). Those treated with PD-1/PD-L1 inhibitors were at lower risks for fatigue, asthenia, and peripheral edema and were at higher risks for pyrexia, cough, dyspnea, pneumonitis, and pruritus. LIMITATIONS The present research is a meta-analysis at the study level rather than at the patient level; insights on risk factors associated with the development of toxicities cannot be found in our study. There was a possible overlap in Common Terminology Criteria for Adverse Events (CTCAE) definitions which prevents understanding the true rates of specific toxicities. CONCLUSIONS AND IMPLICATIONS OF KEY FINDINGS For most toxicity types based on system and organ, the incidence proportions for patients in the intervention arm were lower than those in the control arm, which suggested the general safety of PD-1/PD-L1 inhibitors against conventional chemotherapy and cytotoxic t-lymphocyte-associated protein 4 (CTLA-4) inhibitors. Future research should focus on taking effective targeted measures to decrease the risks of different toxicities for different patient populations. SYSTEMATIC REVIEW REGISTRATION NUMBER We registered the research protocol with PROSPERO (registration number CRD42019135113).
Collapse
Affiliation(s)
- Xiangyi Kong
- Department of Breast Surgical Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
- Department of Breast Surgical Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital and Shenzhen Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Shenzhen, China
| | - Li Chen
- Department of Breast Surgical Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
- Department of Thyroid and Breast Surgery, Tongji Hospital, Tongji Medical College of Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Zhaohui Su
- Center on Smart and Connected Health Technologies, Mays Cancer Center, School of Nursing, UT Health San Antonio, San Antonio,Texas, United States of America
| | - Ryan J. Sullivan
- Center for Melanoma, Massachusetts General Hospital Cancer Center, Harvard Medical School, Harvard University, Boston, Massachusetts, United States of America
| | - Steven M. Blum
- Department of Medicine-Oncology, Dana-Farber Cancer Institute, Harvard Medical School,Harvard University, Boston, Massachusetts, United States of America
| | - Zhihong Qi
- Clinical Laboratory, Peking Union Medical College Hospital, China
| | - Yulu Liu
- Fintech Lab, Department of Computer Science, Chow Yei Ching Building, The University of Hong Kong, Pokfulam, Hong Kong Special Administrative Region, China
| | - Yujia Huo
- Suzhou Industrial Park Monash Research Institute of Science and Technology, Suzhou, China
| | - Yi Fang
- Department of Breast Surgical Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Lin Zhang
- Suzhou Industrial Park Monash Research Institute of Science and Technology, Suzhou, China
- School of Population Medicine and Public Health, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
- Melbourne School of Population and Global Health, The University of Melbourne, Melbourne, Victoria, Australia
- The School of Public Health and Preventive Medicine, Monash University, Victoria, Australia
| | - Jidong Gao
- Department of Breast Surgical Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
- Department of Breast Surgical Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital and Shenzhen Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Shenzhen, China
| | - Jing Wang
- Department of Breast Surgical Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| |
Collapse
|
474
|
Wu L, Su J, Yang J, Gu L, Zhang R, Liu L, Lu H, Chen J. Use of programmed cell death protein 1 (PD-1) inhibitor therapy in HIV-infected patients with advanced cancer: a single-center study from China. Infect Agent Cancer 2023; 18:35. [PMID: 37254144 DOI: 10.1186/s13027-023-00512-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2023] [Accepted: 05/19/2023] [Indexed: 06/01/2023] Open
Abstract
BACKGROUND Anti-PD-1 antibodies have been approved for treating several cancer. However, data regarding the safety and efficacy of these agents in HIV-infected patients with cancer is lacking, because these patients are frequently omitted from clinical trials. OBJECTIVES The primary aim of our research is to assess the safety, activity, and long-term outcomes of PD-1 inhibitors in the treatment of HIV-infected patients with advanced cancer. METHOD We retrospectively analyzed data from HIV-infected patients with advanced cancers who were treated with PD-1 inhibitors at Shanghai Public Health Clinical Center, Shanghai, China. RESULTS Fifteen HIV-infected patients (all are men; asian; median age, 44) with cancer who were treated with chemotherapy and/or combined the other oncology treatments [along with combined antiretroviral therapy (cART)] prior to Sintilimab (12 out of 15) or Nivolumab (1 out of 11) or Camrelizumab (2 out of 11) injection were identified. Eight patients responded to treatment (disease control rate 53.3%), with 1 got partial response (PR) and 7 were stable. Most treatment-emergent adverse events (TEAEs) were grade 1 or 2 including anemia, leukopenia, hyperglycemia, granulocytopenia, and thrombocytopenia. Eight patients (53.3%) experienced treatment-related AEs (TRAEs) with grades 3/4including myelosuppression, infection, and neurological disorders. CD4+ T cell count and plasma HIV RNA remained stable throughout the treatment. CONCLUSIONS When used in HIV-infected patients with advanced malignancies, PD-1 inhibitors tend to have favorable efficacy, manageable side effects, and no deteriorated impacts on plasma HIV-RNA and CD4+ T cell count.
Collapse
Affiliation(s)
- Luling Wu
- Department of Infectious Diseases and Immunology, Shanghai Public Health Clinical Center, Fudan University, Shanghai, China
- Institute of Antibiotics, Huashan Hospital, Fudan University, Shanghai, China
| | - Jie Su
- State Key Laboratory of Medical Genomics, Shanghai Institute of Hematology, National Research Center for Translational Medicine, Rui-Jin Hospital, Shanghai Jiao Tong University School of Medicine and School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, China
| | - Junyang Yang
- Department of Infectious Diseases and Immunology, Shanghai Public Health Clinical Center, Fudan University, Shanghai, China
| | - Ling Gu
- Department of Infectious Diseases and Immunology, Shanghai Public Health Clinical Center, Fudan University, Shanghai, China
| | - Renfang Zhang
- Department of Infectious Diseases and Immunology, Shanghai Public Health Clinical Center, Fudan University, Shanghai, China
| | - Li Liu
- Department of Infectious Diseases and Immunology, Shanghai Public Health Clinical Center, Fudan University, Shanghai, China
| | - Hongzhou Lu
- Department of Infectious Diseases and Nursing Research Institution, National Clinical Research Center for Infectious Diseases, The Third People's Hospital of Shenzhen, Shenzhen, China.
| | - Jun Chen
- Department of Infectious Diseases and Immunology, Shanghai Public Health Clinical Center, Fudan University, Shanghai, China.
| |
Collapse
|
475
|
Shi F, Huang X, Hong Z, Lu N, Huang X, Liu L, Liang T, Bai X. Improvement strategy for immune checkpoint blockade: A focus on the combination with immunogenic cell death inducers. Cancer Lett 2023; 562:216167. [PMID: 37031916 DOI: 10.1016/j.canlet.2023.216167] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2023] [Revised: 03/19/2023] [Accepted: 04/03/2023] [Indexed: 04/11/2023]
Abstract
Cancer immunotherapies have yielded promising outcomes in various malignant tumors by blocking specific immune checkpoint molecules, such as programmed cell death 1 and cytotoxic T lymphocyte antigen 4. However, only a few patients respond to immune checkpoint blockade therapy because of the poor immunogenicity of tumor cells and immune-suppressive tumor microenvironment. Accumulating evidence suggests that chemotherapeutic agents, including oxaliplatin and doxorubicin, not only mediate direct cytotoxicity in tumor cells but also induce immunogenic cancer cell death to stimulate a powerful anti-cancer immune response in the tumor microenvironment. In this review, we summarize the recent advances in cancer combination therapy based on immune checkpoint inhibitors plus immunogenic cell death inducers. Despite some clinical failures and challenges, immunogenic cell death inducers have displayed great potential when combined with immune checkpoint inhibitors for anti-cancer treatment in both preclinical studies and clinical trials.
Collapse
Affiliation(s)
- Fukang Shi
- Department of Hepatobiliary and Pancreatic Surgery, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310003, Zhejiang, China; Zhejiang Provincial Key Laboratory of Pancreatic Disease, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310009, Zhejiang, China
| | - Xing Huang
- Department of Hepatobiliary and Pancreatic Surgery, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310003, Zhejiang, China; Zhejiang Provincial Key Laboratory of Pancreatic Disease, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310009, Zhejiang, China; Cancer Center, Zhejiang University, Hangzhou, 310058, Zhejiang, China.
| | - Zhengtao Hong
- Department of Hepatobiliary and Pancreatic Surgery, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310003, Zhejiang, China; Zhejiang Provincial Key Laboratory of Pancreatic Disease, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310009, Zhejiang, China
| | - Na Lu
- Department of Hepatobiliary and Pancreatic Surgery, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310003, Zhejiang, China; Zhejiang Provincial Key Laboratory of Pancreatic Disease, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310009, Zhejiang, China
| | - Xin Huang
- Department of Hepatobiliary and Pancreatic Surgery, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310003, Zhejiang, China; Zhejiang Provincial Key Laboratory of Pancreatic Disease, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310009, Zhejiang, China
| | - Lingyue Liu
- Department of Hepatobiliary and Pancreatic Surgery, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310003, Zhejiang, China; Zhejiang Provincial Key Laboratory of Pancreatic Disease, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310009, Zhejiang, China
| | - Tingbo Liang
- Department of Hepatobiliary and Pancreatic Surgery, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310003, Zhejiang, China; Zhejiang Provincial Key Laboratory of Pancreatic Disease, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310009, Zhejiang, China; Cancer Center, Zhejiang University, Hangzhou, 310058, Zhejiang, China.
| | - Xueli Bai
- Department of Hepatobiliary and Pancreatic Surgery, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310003, Zhejiang, China; Zhejiang Provincial Key Laboratory of Pancreatic Disease, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310009, Zhejiang, China; Cancer Center, Zhejiang University, Hangzhou, 310058, Zhejiang, China.
| |
Collapse
|
476
|
Huang C, Ren S, Chen Y, Liu A, Wu Q, Jiang T, Lv P, Song D, Hu F, Lan J, Sun L, Zheng X, Luo X, Chu Q, Jia K, Li Y, Wang J, Zou C, Hu J, Wang G. PD-L1 methylation restricts PD-L1/PD-1 interactions to control cancer immune surveillance. SCIENCE ADVANCES 2023; 9:eade4186. [PMID: 37235656 DOI: 10.1126/sciadv.ade4186] [Citation(s) in RCA: 32] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/15/2022] [Accepted: 04/21/2023] [Indexed: 05/28/2023]
Abstract
Immune checkpoint inhibitors targeting programmed cell death protein 1 (PD-1) or programmed cell death 1 ligand 1 (PD-L1) have enabled some patients with cancer to experience durable, complete treatment responses; however, reliable anti-PD-(L)1 treatment response biomarkers are lacking. Our research found that PD-L1 K162 was methylated by SETD7 and demethylated by LSD2. Furthermore, PD-L1 K162 methylation controlled the PD-1/PD-L1 interaction and obviously enhanced the suppression of T cell activity controlling cancer immune surveillance. We demonstrated that PD-L1 hypermethylation was the key mechanism for anti-PD-L1 therapy resistance, investigated that PD-L1 K162 methylation was a negative predictive marker for anti-PD-1 treatment in patients with non-small cell lung cancer, and showed that the PD-L1 K162 methylation:PD-L1 ratio was a more accurate biomarker for predicting anti-PD-(L)1 therapy sensitivity. These findings provide insights into the regulation of the PD-1/PD-L1 pathway, identify a modification of this critical immune checkpoint, and highlight a predictive biomarker of the response to PD-1/PD-L1 blockade therapy.
Collapse
Affiliation(s)
- Changsheng Huang
- GI Cancer Research Institute, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Shengxiang Ren
- Department of Medical Oncology, Shanghai Pulmonary Hospital, Tongji University School of Medicine, Shanghai 200433, China
| | - Yaqi Chen
- GI Cancer Research Institute, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Anyi Liu
- GI Cancer Research Institute, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Qi Wu
- GI Cancer Research Institute, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Tao Jiang
- Department of Medical Oncology, Shanghai Pulmonary Hospital, Tongji University School of Medicine, Shanghai 200433, China
| | - Panjing Lv
- Department of Pathogen Biology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Da Song
- GI Cancer Research Institute, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Fuqing Hu
- GI Cancer Research Institute, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Jingqing Lan
- GI Cancer Research Institute, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Li Sun
- Department of Oncology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Xue Zheng
- Wuhan Blood Center, Wuhan 430030, China
| | - Xuelai Luo
- GI Cancer Research Institute, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Qian Chu
- Department of Oncology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Keyi Jia
- Department of Medical Oncology, Shanghai Pulmonary Hospital, Tongji University School of Medicine, Shanghai 200433, China
| | - Yan Li
- Department of Pathogen Biology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Jun Wang
- Department of Pathology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Caicun Zou
- Department of Medical Oncology, Shanghai Pulmonary Hospital, Tongji University School of Medicine, Shanghai 200433, China
| | - Junbo Hu
- GI Cancer Research Institute, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Guihua Wang
- GI Cancer Research Institute, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| |
Collapse
|
477
|
Mannucci M, Fontana V, Campanella D, Filiberti RA, Pronzato P, Rosa A. A Descriptive Study of Repeated Hospitalizations and Survival of Patients with Metastatic Melanoma in the Northern Italian Region during 2004-2019. Curr Oncol 2023; 30:5266-5278. [PMID: 37366883 DOI: 10.3390/curroncol30060400] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2023] [Revised: 05/17/2023] [Accepted: 05/23/2023] [Indexed: 06/28/2023] Open
Abstract
BACKGROUND Survival rates for metastatic melanoma (MM) patients have improved in recent years, leading to major expenses and health resource use. We conducted a non-concurrent prospective study to describe the burden of hospitalization in a real-world setting for patients with MM. METHODS Patients were tracked throughout all hospital stays in 2004-2019 by means of hospital discharges. The number of hospitalizations, the rehospitalization rate, the average time spent in the hospital and the time span between consecutive admissions were evaluated. Relative survival was also calculated. RESULTS Overall, 1570 patients were identified at the first stay (56.5% in 2004-2011 and 43.7% in 2012-2019). A total of 8583 admissions were retrieved. The overall rehospitalization rate was 1.78 per patient/year (95%CI = 1.68-1.89); it increased significantly with the period of first stay (1.51, 95%CI = 1.40-1.64 in 2004-2011 and 2.11, 95%CI = 1.94-2.29 thereafter). The median time span between hospitalizations was lower for patients hospitalized after 2011 (16 vs. 26 months). An improvement in survival for males was highlighted. CONCLUSIONS The hospitalization rate of patients with MM was higher in the last years of the study. Compared with a shorter length of stay, patients were admitted to hospitals with a higher frequency. Knowledge of the burden of MM is essential for planning the allocation of healthcare resources.
Collapse
Affiliation(s)
- Matilde Mannucci
- Clinical Epidemiology Unit, IRCCS Ospedale Policlinico San Martino, 16132 Genoa, Italy
| | - Vincenzo Fontana
- Clinical Epidemiology Unit, IRCCS Ospedale Policlinico San Martino, 16132 Genoa, Italy
| | - Dalila Campanella
- Clinical Epidemiology Unit, IRCCS Ospedale Policlinico San Martino, 16132 Genoa, Italy
| | - Rosa Angela Filiberti
- Clinical Epidemiology Unit, IRCCS Ospedale Policlinico San Martino, 16132 Genoa, Italy
| | - Paolo Pronzato
- Medical Oncology Unit, IRCCS Ospedale Policlinico San Martino, 16132 Genoa, Italy
| | - Alessandra Rosa
- Clinical Epidemiology Unit, IRCCS Ospedale Policlinico San Martino, 16132 Genoa, Italy
| |
Collapse
|
478
|
Bianconi A, Palmieri G, Aruta G, Monticelli M, Zeppa P, Tartara F, Melcarne A, Garbossa D, Cofano F. Updates in Glioblastoma Immunotherapy: An Overview of the Current Clinical and Translational Scenario. Biomedicines 2023; 11:1520. [PMID: 37371615 DOI: 10.3390/biomedicines11061520] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2023] [Revised: 05/21/2023] [Accepted: 05/22/2023] [Indexed: 06/29/2023] Open
Abstract
Glioblastoma (GBM) is the most common and aggressive central nervous system tumor, requiring multimodal management. Due to its malignant behavior and infiltrative growth pattern, GBM is one of the most difficult tumors to treat and gross total resection is still considered to be the first crucial step. The deep understanding of GBM microenvironment and the possibility of manipulating the patient's innate and adaptive immune system to fight the neoplasm represent the base of immunotherapeutic strategies that currently express the future for the fight against GBM. Despite the immunotherapeutic approach having been successfully adopted in several solid and haematologic neoplasms, immune resistance and the immunosuppressive environment make the use of these strategies challenging in GBM treatment. We describe the most recent updates regarding new therapeutic strategies that target the immune system, immune checkpoint inhibitors, chimeric antigen receptor T cell therapy, peptide and oncolytic vaccines, and the relevant mechanism of immune resistance. However, no significant results have yet been obtained in studies targeting single molecules/pathways. The future direction of GBM therapy will include a combined approach that, in contrast to the inescapable current treatment modality of maximal resection followed by chemo- and radiotherapy, may combine a multifaceted immunotherapy treatment with the dual goals of directly killing tumor cells and activating the innate and adaptive immune response.
Collapse
Affiliation(s)
- Andrea Bianconi
- Neurosurgery, Department of Neurosciences, University of Turin, 10126 Turin, Italy
| | | | - Gelsomina Aruta
- Neurosurgery, Department of Neurosciences, University of Turin, 10126 Turin, Italy
| | - Matteo Monticelli
- UOC Neurochirurgia, Dipartimento di Medicina Traslazionale e per la Romagna, Università degli Studi di Ferrara, 44121 Ferrara, Italy
| | - Pietro Zeppa
- Neurosurgery, Department of Neurosciences, University of Turin, 10126 Turin, Italy
| | - Fulvio Tartara
- Headache Science and Neurorehabilitation Center, IRCCS Mondino Foundation, Department of Brain and Behavioral Sciences, University of Pavia, 27100 Pavia, Italy
| | - Antonio Melcarne
- Neurosurgery, Department of Neurosciences, University of Turin, 10126 Turin, Italy
| | - Diego Garbossa
- Neurosurgery, Department of Neurosciences, University of Turin, 10126 Turin, Italy
| | - Fabio Cofano
- Neurosurgery, Department of Neurosciences, University of Turin, 10126 Turin, Italy
- Humanitas Gradenigo, 10100 Turin, Italy
| |
Collapse
|
479
|
GE WENFEI, SONG SHIYAN, QI XIAOCHEN, CHEN FENG, CHE XIANGYU, SUN YONGHAO, WANG JIN, LI XIAOWEI, LIU NANA, WANG QIFEI, WU GUANGZHEN. Review and prospect of immune checkpoint blockade therapy represented by PD-1/PD-L1 in the treatment of clear cell renal cell carcinoma. Oncol Res 2023; 31:255-270. [PMID: 37305384 PMCID: PMC10229311 DOI: 10.32604/or.2023.027942] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2022] [Accepted: 02/02/2023] [Indexed: 06/13/2023] Open
Abstract
As a common tumor of the urinary system, the morbidity and mortality related to renal carcinoma, are increasing annually. Clear cell renal cell carcinoma (CCRCC) is the most common subtype of renal cell carcinoma, accounting for approximately 75% of the total number of patients with renal cell carcinoma. Currently, the clinical treatment of ccRCC involves targeted therapy, immunotherapy, and a combination of the two. In immunotherapy, PD-1/PD-L1 blocking of activated T cells to kill cancer cells is the most common treatment. However, as treatment progresses, some patients gradually develop resistance to immunotherapy. Meanwhile, other patients experience great side effects after immunotherapy, resulting in a survival status far lower than the expected survival rate. Based on these clinical problems, many researchers have been working on the improvement of tumor immunotherapy in recent years and have accumulated numerous research results. We hope to find a more suitable direction for future immunotherapy for ccRCC by combining these results and the latest research progress.
Collapse
Affiliation(s)
- WENFEI GE
- Department of Urology, The First Affiliated Hospital of Dalian Medical University, Dalian, 116011, China
| | - SHIYAN SONG
- Department of Urology, The First Affiliated Hospital of Dalian Medical University, Dalian, 116011, China
| | - XIAOCHEN QI
- Department of Urology, The First Affiliated Hospital of Dalian Medical University, Dalian, 116011, China
| | - FENG CHEN
- Department of Urology, The First Affiliated Hospital of Dalian Medical University, Dalian, 116011, China
| | - XIANGYU CHE
- Department of Urology, The First Affiliated Hospital of Dalian Medical University, Dalian, 116011, China
| | - YONGHAO SUN
- Department of Urology, The First Affiliated Hospital of Dalian Medical University, Dalian, 116011, China
| | - JIN WANG
- Department of Urology, The First Affiliated Hospital of Dalian Medical University, Dalian, 116011, China
| | - XIAOWEI LI
- Department of Urology, The First Hospital of Qinhuangdao, Qinhuangdao, 066000, China
| | - NANA LIU
- Department of General Surgery, The First Affiliated Hospital of Dalian Medical University, Dalian, 116011, China
| | - QIFEI WANG
- Department of Urology, The First Affiliated Hospital of Dalian Medical University, Dalian, 116011, China
| | - GUANGZHEN WU
- Department of Urology, The First Affiliated Hospital of Dalian Medical University, Dalian, 116011, China
| |
Collapse
|
480
|
Chen J, Wang D, Chan S, Yang Q, Wang C, Wang X, Sun R, Gui Y, Yu S, Yang J, Zhang H, Zhang X, Tang K, Zhang H, Liu S. Development and validation of a novel T cell proliferation-related prognostic model for predicting survival and immunotherapy benefits in melanoma. Aging (Albany NY) 2023; 15:204748. [PMID: 37227816 DOI: 10.18632/aging.204748] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Accepted: 05/09/2023] [Indexed: 05/27/2023]
Abstract
BACKGROUND T cell plays a crucial role in the occurrence and progression of Skin cutaneous melanoma (SKCM). This research aims to identify the actions of T cell proliferation-related genes (TRGs) on the prognosis and immunotherapy response of tumor patients. METHOD The clinical manifestation and gene expression data of SKCM patients were obtained from The Cancer Genome Atlas (TCGA) and Gene Expression Omnibus (GEO) databases. T cell proliferation-related molecular subtypes were identified utilizing consensus clustering. Subsequently, Cox and Lasso regression analysis was conducted to identify six prognostic genes, and a prognostic signature was constructed. A series of experiments, such as qRT-PCR, Western blotting and CCK8 assay, were then conducted to verify the reliability of the six genes. RESULTS In this study, a grading system was established to forecast survival time and responses to immunotherapy, providing an overview of the tumoral immune landscape. Meanwhile, we identified six prognostic signature genes. Notably, we also found that C1RL protein may inhibit the growth of melanoma cell lines. CONCLUSION The scoring system depending on six prognostic genes showed great efficiency in predicting survival time. The system could help to forecast prognosis of SKCM patients, characterize SKCM immunological condition, assess patient immunotherapy response.
Collapse
Affiliation(s)
- Jiajie Chen
- Department of Dermatology, The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui 230022, China
- Key Laboratory of Dermatology, Anhui Medical University, Ministry of Education, Hefei, Anhui 230022, China
- Inflammation and Immune-Mediated Diseases Laboratory of Anhui Province, Hefei, Anhui 230022, China
| | - Daiyue Wang
- Department of Dermatology, The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui 230022, China
- Key Laboratory of Dermatology, Anhui Medical University, Ministry of Education, Hefei, Anhui 230022, China
- Inflammation and Immune-Mediated Diseases Laboratory of Anhui Province, Hefei, Anhui 230022, China
| | - Shixin Chan
- Department of General Surgery, The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui 230022, China
| | - Qingqing Yang
- Department of Dermatology, The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui 230022, China
- Key Laboratory of Dermatology, Anhui Medical University, Ministry of Education, Hefei, Anhui 230022, China
- Inflammation and Immune-Mediated Diseases Laboratory of Anhui Province, Hefei, Anhui 230022, China
| | - Chen Wang
- Department of Dermatology, The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui 230022, China
- Key Laboratory of Dermatology, Anhui Medical University, Ministry of Education, Hefei, Anhui 230022, China
- Inflammation and Immune-Mediated Diseases Laboratory of Anhui Province, Hefei, Anhui 230022, China
| | - Xu Wang
- Department of General Surgery, The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui 230022, China
| | - Rui Sun
- Department of General Surgery, The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui 230022, China
| | - Yu Gui
- Department of Dermatology, The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui 230022, China
- Key Laboratory of Dermatology, Anhui Medical University, Ministry of Education, Hefei, Anhui 230022, China
- Inflammation and Immune-Mediated Diseases Laboratory of Anhui Province, Hefei, Anhui 230022, China
| | - Shuling Yu
- Department of Dermatology, The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui 230022, China
- Key Laboratory of Dermatology, Anhui Medical University, Ministry of Education, Hefei, Anhui 230022, China
- Inflammation and Immune-Mediated Diseases Laboratory of Anhui Province, Hefei, Anhui 230022, China
| | - Jinwei Yang
- Department of General Surgery, The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui 230022, China
| | - Haoxue Zhang
- Department of Dermatology, The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui 230022, China
- Key Laboratory of Dermatology, Anhui Medical University, Ministry of Education, Hefei, Anhui 230022, China
- Inflammation and Immune-Mediated Diseases Laboratory of Anhui Province, Hefei, Anhui 230022, China
| | - Xiaomin Zhang
- Department of Biochemistry and Molecular Biology, Metabolic Disease Research Center, School of Basic Medicine, Anhui Medical University, Hefei, Anhui 230022, China
| | - Kechao Tang
- Department of Biochemistry and Molecular Biology, Metabolic Disease Research Center, School of Basic Medicine, Anhui Medical University, Hefei, Anhui 230022, China
| | - Huabing Zhang
- Affiliated Chuzhou Hospital of Anhui Medical University, The First People’s Hospital of Chuzhou, Chuzhou, Anhui 230022, China
- Department of Biochemistry and Molecular Biology, Metabolic Disease Research Center, School of Basic Medicine, Anhui Medical University, Hefei, Anhui 230022, China
| | - Shengxiu Liu
- Department of Dermatology, The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui 230022, China
- Key Laboratory of Dermatology, Anhui Medical University, Ministry of Education, Hefei, Anhui 230022, China
- Inflammation and Immune-Mediated Diseases Laboratory of Anhui Province, Hefei, Anhui 230022, China
| |
Collapse
|
481
|
Rahimi A, Esmaeili Y, Dana N, Dabiri A, Rahimmanesh I, Jandaghain S, Vaseghi G, Shariati L, Zarrabi A, Javanmard SH, Cordani M. A comprehensive review on novel targeted therapy methods and nanotechnology-based gene delivery systems in melanoma. Eur J Pharm Sci 2023:106476. [PMID: 37236377 DOI: 10.1016/j.ejps.2023.106476] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2023] [Revised: 05/17/2023] [Accepted: 05/22/2023] [Indexed: 05/28/2023]
Abstract
Melanoma, a malignant form of skin cancer, has been swiftly increasing in recent years. Although there have been significant advancements in clinical treatment underlying a well-understanding of melanoma-susceptible genes and the molecular basis of melanoma pathogenesis, the permanency of response to therapy is frequently constrained by the emergence of acquired resistance and systemic toxicity. Conventional therapies, including surgical resection, chemotherapy, radiotherapy, and immunotherapy, have already been used to treat melanoma and are dependent on the cancer stage. Nevertheless, ineffective side effects and the heterogeneity of tumors pose major obstacles to the therapeutic treatment of malignant melanoma through such strategies. In light of this, advanced therapies including nucleic acid therapies (ncRNA, aptamers), suicide gene therapies, and gene therapy using tumor suppressor genes, have lately gained immense attention in the field of cancer treatment. Furthermore, nanomedicine and targeted therapy based on gene editing tools have been applied to the treatment of melanoma as potential cancer treatment approaches nowadays. Indeed, nanovectors enable delivery of the therapeutic agents into the tumor sites by passive or active targeting, improving therapeutic efficiency and minimizing adverse effects. Accordingly, in this review, we summarized the recent findings related to novel targeted therapy methods as well as nanotechnology-based gene systems in melanoma. We also discussed current issues along with potential directions for future research, paving the way for the next-generation of melanoma treatments.
Collapse
Affiliation(s)
- Azadeh Rahimi
- Applied Physiology Research Center, Cardiovascular Research Institute, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Yasaman Esmaeili
- Biosensor Research Center, School of Advanced Technologies in Medicine, Isfahan University of Medical Sciences, Isfahan 8174673461, Iran
| | - Nasim Dana
- Applied Physiology Research Center, Cardiovascular Research Institute, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Arezou Dabiri
- Applied Physiology Research Center, Cardiovascular Research Institute, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Ilnaz Rahimmanesh
- Applied Physiology Research Center, Cardiovascular Research Institute, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Setareh Jandaghain
- Applied Physiology Research Center, Cardiovascular Research Institute, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Golnaz Vaseghi
- Applied Physiology Research Center, Cardiovascular Research Institute, Isfahan University of Medical Sciences, Isfahan, Iran; Isfahan Cardiovascular Research Center, Cardiovascular Research Institute, Isfahan University of Medical Sciences, Isfahan 8158388994, Iran
| | - Laleh Shariati
- Department of Biomaterials, Nanotechnology and Tissue Engineering, School of Advanced Technologies in Medicine, Isfahan University of Medical Sciences, Isfahan 8174673461, Iran
| | - Ali Zarrabi
- Department of Biomedical Engineering, Faculty of Engineering & Natural Sciences, Istinye University, Istanbul 34396, Turkey
| | - Shaghayegh Haghjooy Javanmard
- Applied Physiology Research Center, Cardiovascular Research Institute, Isfahan University of Medical Sciences, Isfahan, Iran.
| | - Marco Cordani
- Department of Biochemistry and Molecular Biology, Faculty of Biology, Complutense University, 28040 Madrid, Spain; Instituto de Investigaciones Sanitarias San Carlos (IdISSC), 28040 Madrid, Spain.
| |
Collapse
|
482
|
Du F, Yang LH, Liu J, Wang J, Fan L, Duangmano S, Liu H, Liu M, Wang J, Zhong X, Zhang Z, Wang F. The role of mitochondria in the resistance of melanoma to PD-1 inhibitors. J Transl Med 2023; 21:345. [PMID: 37221594 DOI: 10.1186/s12967-023-04200-9] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2023] [Accepted: 05/14/2023] [Indexed: 05/25/2023] Open
Abstract
Malignant melanoma is one of the most common tumours and has the highest mortality rate of all types of skin cancers worldwide. Traditional and novel therapeutic approaches, including surgery, targeted therapy and immunotherapy, have shown good efficacy in the treatment of melanoma. At present, the mainstay of treatment for melanoma is immunotherapy combined with other treatment strategies. However, immune checkpoint inhibitors, such as PD-1 inhibitors, are not particularly effective in the clinical treatment of patients with melanoma. Changes in mitochondrial function may affect the development of melanoma and the efficacy of PD-1 inhibitors. To elucidate the role of mitochondria in the resistance of melanoma to PD-1 inhibitors, this review comprehensively summarises the role of mitochondria in the occurrence and development of melanoma, targets related to the function of mitochondria in melanoma cells and changes in mitochondrial function in different cells in melanoma resistant to PD-1 inhibitors. This review may help to develop therapeutic strategies for improving the clinical response rate of PD-1 inhibitors and prolonging the survival of patients by activating mitochondrial function in tumour and T cells.
Collapse
Affiliation(s)
- Fei Du
- School of Pharmacy, Southwest Medical University, Luzhou, 646000, Sichuan, People's Republic of China
| | - Lu-Han Yang
- School of Pharmacy, Southwest Medical University, Luzhou, 646000, Sichuan, People's Republic of China
| | - Jiao Liu
- School of Pharmacy, Southwest Medical University, Luzhou, 646000, Sichuan, People's Republic of China
- Department of Pharmacy, Affiliated Hospital of Southwest Medical University, Luzhou, 646000, China
| | - Jian Wang
- School of Pharmacy, Southwest Medical University, Luzhou, 646000, Sichuan, People's Republic of China
| | - Lianpeng Fan
- School of Pharmacy, Southwest Medical University, Luzhou, 646000, Sichuan, People's Republic of China
| | - Suwit Duangmano
- Department of Medical Technology, Faculty of Associated Medical Sciences, Chiang Mai University, Chiang Mai, 50200, Thailand
| | - Hao Liu
- School of Pharmacy, Southwest Medical University, Luzhou, 646000, Sichuan, People's Republic of China
| | - Minghua Liu
- School of Pharmacy, Southwest Medical University, Luzhou, 646000, Sichuan, People's Republic of China
| | - Jun Wang
- School of Pharmacy, Southwest Medical University, Luzhou, 646000, Sichuan, People's Republic of China
| | - Xiaolin Zhong
- Department of Pharmacy, Affiliated Hospital of Southwest Medical University, Luzhou, 646000, China
| | - Zhuo Zhang
- School of Pharmacy, Southwest Medical University, Luzhou, 646000, Sichuan, People's Republic of China.
- Department of Medical Technology, Faculty of Associated Medical Sciences, Chiang Mai University, Chiang Mai, 50200, Thailand.
| | - Fang Wang
- School of Pharmacy, Southwest Medical University, Luzhou, 646000, Sichuan, People's Republic of China.
- Department of Medical Technology, Faculty of Associated Medical Sciences, Chiang Mai University, Chiang Mai, 50200, Thailand.
| |
Collapse
|
483
|
Ai Q, Li F, Zou S, Zhang Z, Jin Y, Jiang L, Chen H, Deng X, Peng C, Mou N, Wen C, Shen B, Zhan Q. Targeting KRAS G12V mutations with HLA class II-restricted TCR for the immunotherapy in solid tumors. Front Immunol 2023; 14:1161538. [PMID: 37287989 PMCID: PMC10243368 DOI: 10.3389/fimmu.2023.1161538] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2023] [Accepted: 05/08/2023] [Indexed: 06/09/2023] Open
Abstract
KRAS mutation is a significant driving factor of tumor, and KRASG12V mutation has the highest incidence in solid tumors such as pancreatic cancer and colorectal cancer. Thus, KRASG12V neoantigen-specific TCR-engineered T cells could be a promising cancer treatment approach for pancreatic cancer. Previous studies had reported that KRASG12V-reactive TCRs originated from patients' TILs could recognized KRASG12V neoantigen presented by specific HLA subtypes and remove tumor persistently in vitro and in vivo. However, TCR drugs are different from antibody drugs in that they are HLA-restricted. The different ethnic distribution of HLA greatly limits the applicability of TCR drugs in Chinese population. In this study, we have identified a KRASG12V-specific TCR which recognized classII MHC from a colorectal cancer patient. Interestingly, we observed that KRASG12V-specific TCR-engineered CD4+ T cells, not CD8+ T cells, demonstrated significant efficacy in vitro and in xenograft mouse model, exhibiting stable expression and targeting specificity of TCR when co-cultured with APCs presenting KRASG12V peptides. TCR-engineered CD4+ T cells were co-cultured with APCs loaded with neoantigen, and then HLA subtypes were identified by the secretion of IFN-γ. Collectively, our data suggest that TCR-engineered CD4+ T cells can be used to target KRASG12V mutation presented by HLA-DPB1*03:01 and DPB1*14:01, which provide a high population coverage and are more suitable for the clinical transformation for Chinese, and mediate tumor killing effect like CD8+ T cells. This TCR hold promise for precision therapy in immunotherapy of solid tumors as an attractive candidate.
Collapse
Affiliation(s)
- Qi Ai
- Department of General Surgery, Pancreatic Disease Center, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Research Institute of Pancreatic Diseases, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- State Key Laboratory of Oncogenes and Related Genes, Institute of Translational Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Fanlu Li
- Department of General Surgery, Pancreatic Disease Center, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Research Institute of Pancreatic Diseases, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- State Key Laboratory of Oncogenes and Related Genes, Institute of Translational Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Siyi Zou
- Department of General Surgery, Pancreatic Disease Center, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Research Institute of Pancreatic Diseases, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- State Key Laboratory of Oncogenes and Related Genes, Institute of Translational Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Zehui Zhang
- Department of General Surgery, Pancreatic Disease Center, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Research Institute of Pancreatic Diseases, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- State Key Laboratory of Oncogenes and Related Genes, Institute of Translational Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Yangbing Jin
- Department of General Surgery, Pancreatic Disease Center, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Research Institute of Pancreatic Diseases, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- State Key Laboratory of Oncogenes and Related Genes, Institute of Translational Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Lingxi Jiang
- Department of General Surgery, Pancreatic Disease Center, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Research Institute of Pancreatic Diseases, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- State Key Laboratory of Oncogenes and Related Genes, Institute of Translational Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Hao Chen
- Department of General Surgery, Pancreatic Disease Center, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Research Institute of Pancreatic Diseases, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- State Key Laboratory of Oncogenes and Related Genes, Institute of Translational Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Xiaxing Deng
- Department of General Surgery, Pancreatic Disease Center, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Research Institute of Pancreatic Diseases, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- State Key Laboratory of Oncogenes and Related Genes, Institute of Translational Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Chenghong Peng
- Department of General Surgery, Pancreatic Disease Center, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Research Institute of Pancreatic Diseases, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- State Key Laboratory of Oncogenes and Related Genes, Institute of Translational Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Nan Mou
- Department of Cell Therapy, Shanghai Genbase Biotechnology Co., Ltd, Shanghai, China
| | - Chenlei Wen
- Department of General Surgery, Pancreatic Disease Center, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Research Institute of Pancreatic Diseases, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- State Key Laboratory of Oncogenes and Related Genes, Institute of Translational Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Baiyong Shen
- Department of General Surgery, Pancreatic Disease Center, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Research Institute of Pancreatic Diseases, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- State Key Laboratory of Oncogenes and Related Genes, Institute of Translational Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Qian Zhan
- Department of General Surgery, Pancreatic Disease Center, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Research Institute of Pancreatic Diseases, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- State Key Laboratory of Oncogenes and Related Genes, Institute of Translational Medicine, Shanghai Jiao Tong University, Shanghai, China
| |
Collapse
|
484
|
Stoff R, Asher N, Laks S, Steinberg Y, Schachter J, Shapira-Frommer R, Grynberg S, Ben-Betzalel G. Real world evidence of Lenvatinib + anti PD-1 as an advanced line for metastatic melanoma. Front Oncol 2023; 13:1180988. [PMID: 37274272 PMCID: PMC10233023 DOI: 10.3389/fonc.2023.1180988] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2023] [Accepted: 05/08/2023] [Indexed: 06/06/2023] Open
Abstract
Introduction Immunotherapy has revolutionized the prognosis of patients with metastatic melanoma. To date, the most active regimen is the combination of ipilimumab + nivolumab (ipi-nivo) achieving a response rate of nearly 60% and a median survival (OS) of 6 years. However, approximately 40% of patients experience primary resistance, while around 50% experience secondary resistance, highlighting the need for an effective second-line treatment option The recently published results on the use of lenvatinib + pembrolizumab in the advanced line setting led to the adoption of this regimen at our institution. Here we present our experience with this regimen, focusing on efficacy and safety. Methods Electronic medical records of patients treated at a tertiary referral melanoma center, with at least one cycle of anti PD-1 + lenvatinib from 2020 to 2023 were analyzed for baseline demographic characteristics, disease related characteristics and treatment outcomes. Results Forty-two patients were identified. The Response rate (RR) was 28% and the disease control rate was 38%. Responses were seen across different melanoma subtypes, including 67% in acral melanoma, 20% in uveal melanoma, and 25% in mucosal melanoma. Patients with a more aggressive disease manifested by elevated lactate dehydrogenase (LDH) achieved a RR of 26%, while patients with active central nervous system (CNS) metastases had a RR of 31%, and an intra-cranial RR of 23%. Responses were seen across lines of treatment, with a 25% RR in the second and third lines, and a 36% RR in the fourth and fifth lines. The median progression free survival was 3 months, and the median survival was 11 months. The treatment was not easily tolerated with 31% of the patients experiencing grade 3-4 toxicity, which was manageable through dose interruptions and reductions. Only 7% of patients discontinued the treatment due to toxicity. Conclusion Lenvatinib in combination with anti-PD1 had demonstrated both relative safety and efficacy in patients with metastatic melanoma of all subtypes in the advanced line setting. We are eagerly anticipating the mature results of the LEAP-004 study hoping that this regimen will receive regulatory approval, paving the way for its widespread adoption in daily practice worldwide.
Collapse
|
485
|
Li Z, Li Y, Tian Y, Li N, Shen L, Zhao Y. Pan-cancer analysis identifies the correlations of Thymosin Beta 10 with predicting prognosis and immunotherapy response. Front Immunol 2023; 14:1170539. [PMID: 37275863 PMCID: PMC10232749 DOI: 10.3389/fimmu.2023.1170539] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2023] [Accepted: 05/10/2023] [Indexed: 06/07/2023] Open
Abstract
INTRODUCTION The biological function and prognosis roles of thymosin β(TMSB) 10 are still unclear in pan-cancer. METHODS We retrieved The Cancer Genome Atlas and Genotype-tissue expression datasets to obtain the difference of TMSB10 expression between pan-cancer and normal tissues, and analyzed the biological function and prognosis role of TMSB10 in pan-cancer by using cBioPortal Webtool. RESULTS The expression of TMSB10 in tumor tissues was significantly higher than normal tissues, and showed the potential ability to predict the prognosis of patients in Pan-cancer. It was found that TMSB10 was significantly correlated with tumor microenvironment, immune cell infiltration and immune regulatory factor expression. TMSB10 is involved in the regulation of cellular signal transduction pathways in a variety of tumors, thereby mediating the occurrence of tumor cell invasion and metastasis. Finally, TMSB10 can not only effectively predict the anti-PD-L1 treatment response of cancer patients, but also be used as an important indicator to evaluate the sensitivity of chemotherapy. In vitro, low expression of TMSB10 inhibited clonogenic formation ability, invasion, and migration in glioma cells. Furthermore, TMSB10 may involve glioma immune regulation progression by promoting PD-L1 expression levels via activating STAT3 signaling pathway. CONCLUSIONS Our results show that TMSB10 is abnormally expressed in tumor tissues, which may be related to the infiltration of immune cells in the tumor microenvironment. Clinically, TMSB10 is not only an effective prognostic factor for predicting the clinical treatment outcome of cancer patients, but also a promising biomarker for predicting the effect of tumor immune checkpoint inhibitors (ICIs) and chemotherapy in some cancers.
Collapse
Affiliation(s)
- Zhanzhan Li
- Department of Oncology, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Yanyan Li
- Department of Nursing, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Yifu Tian
- Department of Pathology, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Na Li
- Department of Oncology, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Liangfang Shen
- Department of Oncology, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Yajie Zhao
- Department of Nuclear Medicine, Xiangya Hospital, Central South University, Changsha, Hunan, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan, China
| |
Collapse
|
486
|
Dulal D, Boring A, Terrero D, Johnson T, Tiwari AK, Raman D. Tackling of Immunorefractory Tumors by Targeting Alternative Immune Checkpoints. Cancers (Basel) 2023; 15:2774. [PMID: 37345111 PMCID: PMC10216651 DOI: 10.3390/cancers15102774] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2023] [Revised: 05/09/2023] [Accepted: 05/12/2023] [Indexed: 06/23/2023] Open
Abstract
Physiologically, well known or traditional immune checkpoints (ICs), such as CTLA-4 and PD-1, are in place to promote tolerance to self-antigens and prevent generation of autoimmunity. In cancer, the ICs are effectively engaged by the tumor cells or stromal ells from the tumor microenvironment through expression of cognate ligands for the ICs present on the cell surface of CD8+ T lymphocytes. The ligation of ICs on CD8+ T lymphocytes triggers inhibitory signaling pathways, leading to quiescence or an exhaustion of CD8+ T lymphocytes. This results in failure of immunotherapy. To overcome this, several FDA-approved therapeutic antibodies are available, but the clinical outcome is quite variable due to the resistance encountered through upregulated expression of alternate ICs such as VISTA, LAG-3, TIGIT and TIM-3. This review focuses on the roles played by the traditional as well as alternate ICs and the contribution of associated signaling pathways in generating such resistance to immunotherapy. Combinatorial targeting of traditional and alternate ICs might be beneficial for immune-refractory tumors.
Collapse
Affiliation(s)
- Dharmindra Dulal
- Department of Cell and Cancer Biology, University of Toledo Health Science Campus, Toledo, OH 43614, USA; (D.D.); (A.B.); (A.K.T.)
| | - Andrew Boring
- Department of Cell and Cancer Biology, University of Toledo Health Science Campus, Toledo, OH 43614, USA; (D.D.); (A.B.); (A.K.T.)
| | - David Terrero
- Department of Pharmacology & Experimental Therapeutics, College of Pharmacy & Pharmaceutical Sciences, University of Toledo Main Campus, Toledo, OH 43614, USA
| | - Tiffany Johnson
- Department of Cell and Cancer Biology, University of Toledo Health Science Campus, Toledo, OH 43614, USA; (D.D.); (A.B.); (A.K.T.)
| | - Amit K. Tiwari
- Department of Cell and Cancer Biology, University of Toledo Health Science Campus, Toledo, OH 43614, USA; (D.D.); (A.B.); (A.K.T.)
- Department of Pharmacology & Experimental Therapeutics, College of Pharmacy & Pharmaceutical Sciences, University of Toledo Main Campus, Toledo, OH 43614, USA
| | - Dayanidhi Raman
- Department of Cell and Cancer Biology, University of Toledo Health Science Campus, Toledo, OH 43614, USA; (D.D.); (A.B.); (A.K.T.)
| |
Collapse
|
487
|
Song SH, Ghosh T, You DG, Joo H, Lee J, Lee J, Kim CH, Jeon J, Shin S, Park JH. Functionally Masked Antibody to Uncouple Immune-Related Toxicities in Checkpoint Blockade Cancer Therapy. ACS NANO 2023. [PMID: 37184643 DOI: 10.1021/acsnano.2c12532] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/16/2023]
Abstract
Of the existing immunotherapy drugs in oncology, monoclonal antibodies targeting the immune checkpoint axis are preferred because of the durable responses observed in selected patients. However, the associated immune-related adverse events (irAEs), causing uncommon fatal events, often require specialized management and medication discontinuation. The study aim was to investigate our hypothesis that masking checkpoint antibodies with tumor microenvironment (TME)-responsive polymer chains can mitigate irAEs and selectively target tumors by limiting systemic exposure to patients. We devised a broadly applicable strategy that functionalizes immune checkpoint-blocking antibodies with a mildly acidic pH-cleavable poly(ethylene glycol) (PEG) shell to prevent inflammatory side effects in normal tissues. Conjugation of pH-sensitive PEG to anti-CD47 antibodies (αCD47) minimized antibody-cell interactions by inhibiting their binding ability and functionality at physiological pH, leading to prevention of αCD47-induced anemia in tumor-bearing mice. When conjugated to anti-CTLA-4 and anti-PD-1 antibodies, double checkpoint blockade-induced colitis was also ameliorated. Notably, removal of the protective shell in response to an acidic TME restored the checkpoint antibody activities, accompanied by effective tumor regression and long-term survival in the mouse model. Our results support a feasible strategy for antibody-based therapies to uncouple toxicity from efficacy and show the translational potential for cancer immunotherapy.
Collapse
Affiliation(s)
- Seok Ho Song
- School of Chemical Engineering, College of Engineering, Sungkyunkwan University, Suwon 16419, Republic of Korea
| | - Torsha Ghosh
- School of Chemical Engineering, College of Engineering, Sungkyunkwan University, Suwon 16419, Republic of Korea
| | - Dong Gil You
- School of Chemical Engineering, College of Engineering, Sungkyunkwan University, Suwon 16419, Republic of Korea
| | - Hyeyeon Joo
- School of Chemical Engineering, College of Engineering, Sungkyunkwan University, Suwon 16419, Republic of Korea
| | - Jeongjin Lee
- Department of Health Sciences and Technology, SAIHST, Sungkyunkwan University, Seoul 06351, Republic of Korea
| | - Jaeah Lee
- School of Chemical Engineering, College of Engineering, Sungkyunkwan University, Suwon 16419, Republic of Korea
| | - Chan Ho Kim
- School of Chemical Engineering, College of Engineering, Sungkyunkwan University, Suwon 16419, Republic of Korea
| | - Jueun Jeon
- School of Chemical Engineering, College of Engineering, Sungkyunkwan University, Suwon 16419, Republic of Korea
| | - Sol Shin
- Department of Health Sciences and Technology, SAIHST, Sungkyunkwan University, Seoul 06351, Republic of Korea
| | - Jae Hyung Park
- School of Chemical Engineering, College of Engineering, Sungkyunkwan University, Suwon 16419, Republic of Korea
- Department of Health Sciences and Technology, SAIHST, Sungkyunkwan University, Seoul 06351, Republic of Korea
- Biomedical Institute for Convergence at SKKU (BICS), Sungkyunkwan University, Suwon 16419, Republic of Korea
| |
Collapse
|
488
|
Zhao LY, Mei JX, Yu G, Lei L, Zhang WH, Liu K, Chen XL, Kołat D, Yang K, Hu JK. Role of the gut microbiota in anticancer therapy: from molecular mechanisms to clinical applications. Signal Transduct Target Ther 2023; 8:201. [PMID: 37179402 PMCID: PMC10183032 DOI: 10.1038/s41392-023-01406-7] [Citation(s) in RCA: 140] [Impact Index Per Article: 70.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2022] [Revised: 02/21/2023] [Accepted: 03/12/2023] [Indexed: 05/15/2023] Open
Abstract
In the past period, due to the rapid development of next-generation sequencing technology, accumulating evidence has clarified the complex role of the human microbiota in the development of cancer and the therapeutic response. More importantly, available evidence seems to indicate that modulating the composition of the gut microbiota to improve the efficacy of anti-cancer drugs may be feasible. However, intricate complexities exist, and a deep and comprehensive understanding of how the human microbiota interacts with cancer is critical to realize its full potential in cancer treatment. The purpose of this review is to summarize the initial clues on molecular mechanisms regarding the mutual effects between the gut microbiota and cancer development, and to highlight the relationship between gut microbes and the efficacy of immunotherapy, chemotherapy, radiation therapy and cancer surgery, which may provide insights into the formulation of individualized therapeutic strategies for cancer management. In addition, the current and emerging microbial interventions for cancer therapy as well as their clinical applications are summarized. Although many challenges remain for now, the great importance and full potential of the gut microbiota cannot be overstated for the development of individualized anti-cancer strategies, and it is necessary to explore a holistic approach that incorporates microbial modulation therapy in cancer.
Collapse
Affiliation(s)
- Lin-Yong Zhao
- Department of General Surgery & Laboratory of Gastric Cancer, State Key Laboratory of Biotherapy/Collaborative Innovation Center of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, China
- Gastric Cancer Center, West China Hospital, Sichuan University, Chengdu, China
| | - Jia-Xin Mei
- Department of General Surgery & Laboratory of Gastric Cancer, State Key Laboratory of Biotherapy/Collaborative Innovation Center of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, China
- Gastric Cancer Center, West China Hospital, Sichuan University, Chengdu, China
| | - Gang Yu
- Department of General Surgery & Laboratory of Gastric Cancer, State Key Laboratory of Biotherapy/Collaborative Innovation Center of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, China
- Gastric Cancer Center, West China Hospital, Sichuan University, Chengdu, China
| | - Lei Lei
- State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, Sichuan University; Frontier Innovation Center for Dental Medicine Plus, Sichuan University, Chengdu, China
| | - Wei-Han Zhang
- Department of General Surgery & Laboratory of Gastric Cancer, State Key Laboratory of Biotherapy/Collaborative Innovation Center of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, China
- Gastric Cancer Center, West China Hospital, Sichuan University, Chengdu, China
| | - Kai Liu
- Department of General Surgery & Laboratory of Gastric Cancer, State Key Laboratory of Biotherapy/Collaborative Innovation Center of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, China
- Gastric Cancer Center, West China Hospital, Sichuan University, Chengdu, China
| | - Xiao-Long Chen
- Department of General Surgery & Laboratory of Gastric Cancer, State Key Laboratory of Biotherapy/Collaborative Innovation Center of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, China
- Gastric Cancer Center, West China Hospital, Sichuan University, Chengdu, China
| | - Damian Kołat
- Department of Experimental Surgery, Medical University of Lodz, Lodz, Poland
| | - Kun Yang
- Department of General Surgery & Laboratory of Gastric Cancer, State Key Laboratory of Biotherapy/Collaborative Innovation Center of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, China.
- Gastric Cancer Center, West China Hospital, Sichuan University, Chengdu, China.
| | - Jian-Kun Hu
- Department of General Surgery & Laboratory of Gastric Cancer, State Key Laboratory of Biotherapy/Collaborative Innovation Center of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, China.
- Gastric Cancer Center, West China Hospital, Sichuan University, Chengdu, China.
| |
Collapse
|
489
|
Costa L, Alexandre T, Mansinho A, Sousa R, Vieira C, Hughes R, Roediger A, Pereira SM, Araújo A. Health outcomes and budget impact projection of anti-PD-(L)1s in cancer care in Portugal. Front Public Health 2023; 11:1133959. [PMID: 37250095 PMCID: PMC10215539 DOI: 10.3389/fpubh.2023.1133959] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2022] [Accepted: 04/07/2023] [Indexed: 05/31/2023] Open
Abstract
Introduction PD-[L]1 inhibitors revolutionized cancer treatment but challenge the affordability of health systems. This policy-focused model aimed to estimate the health and budget impact of anti-PD-(L)1s in Portugal and inform current discussions. Materials and methods The Health Impact Projection (HIP) model estimates clinical (life years, progression-free survival [PFS] years, and quality-adjusted life years [QALY] gained and adverse events [AEs] incurred) and economic (direct and indirect costs) outcomes in a world where cancer patients are initiating treatment with standard-of-care (SOC) versus SOC plus anti-PD-(L)1s over a 3-year time horizon. Indications included adjuvant and metastatic melanoma, non-small cell lung cancer (first and second line), metastatic triple-negative breast cancer, head and neck cancer, urothelial carcinoma, and renal cell carcinoma. Model inputs were based on publicly available literature data and expert opinion. Results The model estimated that, over 3 years, 7,773 patients would be treated with anti-PD-(L)1s, realizing a gain of 4,787 life years, 6,901 PFS years, and 4,214 QALYs and avoiding 399 AEs. The introduction of anti-PD-(L)1s had a projected average annual impact of ≈ €108 million and a share of 20% of total cancer medicines expenditure and 0.6% of total healthcare expenditure in 2021. Although higher disease management costs are expected for patients living longer with anti-PD-(L)1s and drug acquisition costs are considerable, that is partially offset by a reduction in end-of-life costs (€611,092/year) and costs associated with patient productivity lost to cancer (€9,128,142/year). Discussion This model highlights the significant survival and QoL benefit of anti-PD-(L)1s for cancer patients in Portugal, with a relatively low increased cost in total healthcare expenditure.
Collapse
Affiliation(s)
- Luís Costa
- Department of Oncology, Hospital de Santa Maria, Centro Hospitalar Lisboa Norte, Lisbon, Portugal
- Instituto de Medicina Molecular-João Lobo Antunes, Faculdade de Medicina da Universidade de Lisboa, Lisbon, Portugal
| | - Teresa Alexandre
- Department of Medical Oncology, Instituto Português de Oncologia de Lisboa Francisco Gentil, E. P. E, Lisbon, Portugal
| | - André Mansinho
- Department of Oncology, Hospital de Santa Maria, Centro Hospitalar Lisboa Norte, Lisbon, Portugal
| | - Rita Sousa
- Department of Oncology, Hospital de Santa Maria, Centro Hospitalar Lisboa Norte, Lisbon, Portugal
| | - Cláudia Vieira
- Department of Medical Oncology, Instituto Português de Oncologia do Porto Francisco Gentil, Porto, Portugal
| | | | | | | | - António Araújo
- Department of Medical Oncology, Centro Hospitalar Universitário Santo António, Porto, Portugal
| |
Collapse
|
490
|
Hunter E, Salter M, Powell R, Dring A, Naithani T, Chatziioannou ME, Gebregzabhar A, Issa M, Green J, Ng S, Lim CR, Keat CS, Suan AT, Raman R, Fatt HK, Luen FLW, Alshaker H, Pchejetski D, Blum D, Guiel T, Heaton R, Levine J, Akoulitchev A. Development and Validation of Blood-Based Predictive Biomarkers for Response to PD-1/PD-L1 Checkpoint Inhibitors: Evidence of a Universal Systemic Core of 3D Immunogenetic Profiling across Multiple Oncological Indications. Cancers (Basel) 2023; 15:2696. [PMID: 37345033 DOI: 10.3390/cancers15102696] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2023] [Revised: 05/06/2023] [Accepted: 05/08/2023] [Indexed: 06/23/2023] Open
Abstract
BACKGROUND Unprecedented advantages in cancer treatment with immune checkpoint inhibitors (ICIs) remain limited to only a subset of patients. Systemic analyses of the regulatory 3D genome architecture linked to individual epigenetic and immunogenetic controls associated with tumour immune evasion mechanisms and immune checkpoint pathways reveal a highly prevalent molecular profile predictive of response to PD-1/PD-L1 ICIs. A clinical blood test based on a set of eight (8) 3D genomic biomarkers has been developed and validated on the basis of an observational trial to predict response to ICI therapy. METHODS The predictive eight biomarker set is derived from prospective observational clinical trials, representing 280 treatments with Pembrolizumab, Atezolizumab, Durvalumab, Nivolumab, and Avelumab in a broad range of indications: melanoma, lung, hepatocellular, renal, breast, bladder, colon, head and neck, bone, brain, lymphoma, prostate, vulvar, and cervical cancers. RESULTS The 3D genomic eight biomarker panel for response to immune checkpoint therapy achieved a high accuracy of 85%, sensitivity of 93%, and specificity of 82%. CONCLUSIONS This study demonstrates that a 3D genomic approach can be used to develop a predictive clinical assay for response to PD-1/PD-L1 checkpoint inhibition in cancer patients.
Collapse
Affiliation(s)
| | | | | | - Ann Dring
- Oxford BioDynamics Plc., Oxford OX4 2WB, UK
| | | | | | | | - Mutaz Issa
- Oxford BioDynamics Plc., Oxford OX4 2WB, UK
| | | | - Serene Ng
- Oxford BioDynamics (M) Sdn Bhd, Penang 10470, Malaysia
| | - Chun Ren Lim
- Oxford BioDynamics (M) Sdn Bhd, Penang 10470, Malaysia
| | - Cheah Soon Keat
- Mount Miriam Cancer Hospital (MMCH), Penang 11200, Malaysia
- Island Hospital, Penang 10450, Malaysia
| | - Ang Tick Suan
- Mount Miriam Cancer Hospital (MMCH), Penang 11200, Malaysia
| | - Rakesh Raman
- Mount Miriam Cancer Hospital (MMCH), Penang 11200, Malaysia
| | - Ho Kean Fatt
- Mount Miriam Cancer Hospital (MMCH), Penang 11200, Malaysia
| | | | - Heba Alshaker
- School of Medicine, University of East Anglia, Norwich NR4 7TJ, UK
| | | | - Dave Blum
- Oxford BioDynamics Inc., Gaithersburg, MD 20878, USA
| | - Thomas Guiel
- Oxford BioDynamics Inc., Gaithersburg, MD 20878, USA
| | - Robert Heaton
- Oxford BioDynamics Inc., Gaithersburg, MD 20878, USA
| | - Jedd Levine
- Oxford BioDynamics Inc., Gaithersburg, MD 20878, USA
| | | |
Collapse
|
491
|
Gilbert D, Hu J, Medina T, Kessler ER, Lam ET. Safety of COVID-19 vaccines in subjects with solid tumor cancers receiving immune checkpoint inhibitors. Hum Vaccin Immunother 2023:2207438. [PMID: 37157982 PMCID: PMC10294768 DOI: 10.1080/21645515.2023.2207438] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/10/2023] Open
Abstract
The incidence of severe immune-related adverse events (irAEs) in cancer subjects receiving immune checkpoint inhibitors (ICIs) following COVID-19 vaccination and the relationship between the incidence of severe irAE and the interval between COVID-19 vaccination and ICI dose have not been established. We performed a retrospective study evaluating the incidence of irAEs in solid tumor subjects receiving ICI therapy who received any COVID-19 vaccinations since FDA authorization. irAEs were defined as severe with one or more grade 3 or above events (CTCAE v5.0), multiple organ involvement, or requiring hospitalization for management. Two hundred and eighty-four subjects who received COVID vaccinations from December 2020 and February 2022 were included in this analysis [median age at vaccination 67 years (IQR 59.0-75.0); 67.3% male]. Twenty-nine subjects (10.2%) developed severe irAEs, of which 12 subjects (41.4%) received ICI monotherapy, 10 subjects (34.5%) received combination ICI therapy with nivolumab and ipilimumab, and 7 subjects (24.1%) received ICI plus VEGFR-TKI therapy. Hospitalization occurred in 62% of subjects with severe irAEs, with a median duration of 3 days (IQR: 3.0-7.5 days). Immunosuppressive therapy was required in 79.3%, with a median duration of 103 days (IQR: 42.0-179.0). ICI therapy was discontinued in 51.7% of subjects with severe irAE; dosing was held or interrupted in 34.5%. Among severe irAEs, the median interval between vaccination and ICI treatment closest to the occurrence of severe irAE was 15.5 days (IQR: 10.0-23.0). In solid tumor cancer subjects receiving ICIs, COVID-19 vaccination is not associated with an increased incidence of severe irAEs compared to historical data and may be safely administered during ICI cancer therapy in subjects who lack contraindications.
Collapse
Affiliation(s)
- Danielle Gilbert
- Department of Internal Medicine, Division of Medical Oncology, University of Colorado Cancer Center, University of Anschutz Medical Campus, Aurora, CO, USA
| | - Junxiao Hu
- Department of Biostatistics, University of Colorado Cancer Center Biostatistics Core, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | - Theresa Medina
- Department of Internal Medicine, Division of Medical Oncology, University of Colorado Cancer Center, University of Anschutz Medical Campus, Aurora, CO, USA
| | - Elizabeth R Kessler
- Department of Internal Medicine, Division of Medical Oncology, University of Colorado Cancer Center, University of Anschutz Medical Campus, Aurora, CO, USA
| | - Elaine T Lam
- Department of Internal Medicine, Division of Medical Oncology, University of Colorado Cancer Center, University of Anschutz Medical Campus, Aurora, CO, USA
| |
Collapse
|
492
|
Koseła-Paterczyk H, Rutkowski P. Nivolumab + relatlimab for the treatment of unresectable or metastatic melanoma. Expert Opin Biol Ther 2023; 23:383-388. [PMID: 37200112 DOI: 10.1080/14712598.2023.2215922] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2023] [Revised: 05/11/2023] [Accepted: 05/16/2023] [Indexed: 05/20/2023]
Abstract
INTRODUCTION Though melanoma is one of the less common skin malignancies, it accounts for the majority of deaths due to cutaneous cancers. The recent progress and drug approvals in targeted treatment and immunotherapy revolutionized the outcome of patients with metastatic disease, and now is also changing the landscape of adjuvant treatment in melanoma. AREA COVERED A combination of anti-PD-1 and anti-CTLA-4 (nivolumab with ipilimumab) has demonstrated superior outcomes in terms of progression-free survival (PFS) and overall survival with recent data confirming median survival exceeding six years. However, the use of this immunotherapy combination is limited in routine practice to approximately half of the patients due to high toxicity with the majority of patients at risk of severe adverse events. The current efforts are to determine how best to integrate combination immunotherapy in different clinical scenarios and limit these drugs' toxicity. That is why novel strategies in immunotherapy are needed and one of the examples of such novelty are anti-LAG-3 antibodies (lymphocyte-activation gene 3). LAG-3 inhibitor (relatlimab) in combination with nivolumab significantly improved PFS as compared to anti-PD-1 monotherapy in patients with previously untreated metastatic or unresectable melanoma. We describe the current status of combination of nivolumab+ relatlimab in the treatment of advanced melanoma patients based on the available data coming from pivotal clinical trials. EXPERT OPINION The most important question to be answered is what would be the place of this novel combination in the treatment planning strategy.
Collapse
MESH Headings
- Humans
- Nivolumab/adverse effects
- Nivolumab/pharmacokinetics
- Nivolumab/therapeutic use
- Antibodies, Monoclonal, Humanized/adverse effects
- Antibodies, Monoclonal, Humanized/pharmacokinetics
- Antibodies, Monoclonal, Humanized/therapeutic use
- Melanoma/drug therapy
- Antineoplastic Agents, Immunological/adverse effects
- Antineoplastic Agents, Immunological/pharmacokinetics
- Antineoplastic Agents, Immunological/therapeutic use
- Randomized Controlled Trials as Topic
- Product Surveillance, Postmarketing
Collapse
Affiliation(s)
- Hanna Koseła-Paterczyk
- Department of Soft Tissue/Bone Sarcoma and Melanoma, Maria Sklodowska-Curie National Research Institute of Oncology, Warsaw, Poland
| | - Piotr Rutkowski
- Department of Soft Tissue/Bone Sarcoma and Melanoma, Maria Sklodowska-Curie National Research Institute of Oncology, Warsaw, Poland
| |
Collapse
|
493
|
Soto F, Torre-Sada LF, Mott FE, Kim ST, Nurieva R, Shannon VR, Faiz SA, Casal RF, Altan M, Lin J, Sheshadri A. Sarcoidosis and Airway Disease After Immune Checkpoint Inhibitor Therapy: Case Study and Review of the Literature. JOURNAL OF IMMUNOTHERAPY AND PRECISION ONCOLOGY 2023; 6:111-116. [PMID: 37214206 PMCID: PMC10195014 DOI: 10.36401/jipo-22-30] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/06/2022] [Revised: 01/11/2023] [Accepted: 01/20/2023] [Indexed: 05/24/2023]
Abstract
Pulmonary toxicity from immune checkpoint inhibitor therapy is typically a severe and potentially fatal complication, but these observations are driven by the most common toxicity, pneumonitis. Rarer pulmonary immune related adverse events, like airway disease and sarcoidosis, may have a more benign course. In this case report, we present a patient in whom therapy with the PD-1 inhibitor pembrolizumab resulted in severe eosinophilic asthma and sarcoidosis. This is the first case showing that anti-IL-5 inhibition may be safe in patients who develop eosinophilic asthma after ICI therapy. We further show that sarcoidosis does not necessarily require treatment cessation. This case highlights relevant nuances when clinicians face pulmonary toxicities other than pneumonitis.
Collapse
Affiliation(s)
- Felipe Soto
- Department of Pulmonary Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
- School of Medicine, Tecnologico de Monterrey, Monterrey, Mexico
| | - Luis F. Torre-Sada
- Department of Pulmonary Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
- School of Medicine, Tecnologico de Monterrey, Monterrey, Mexico
| | - Frank E. Mott
- Department of Thoracic Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Sang T. Kim
- Department of General Internal Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Roza Nurieva
- Department of Immunology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Vickie R. Shannon
- Department of Pulmonary Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Saadia A. Faiz
- Department of Pulmonary Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Roberto F. Casal
- Department of Pulmonary Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Mehmet Altan
- Department of Thoracic Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Julie Lin
- Department of Pulmonary Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Ajay Sheshadri
- Department of Pulmonary Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| |
Collapse
|
494
|
Tomsitz D, Ruf T, Zierold S, French LE, Heinzerling L. Steroid-Refractory Immune-Related Adverse Events Induced by Checkpoint Inhibitors. Cancers (Basel) 2023; 15:cancers15092538. [PMID: 37174003 PMCID: PMC10177379 DOI: 10.3390/cancers15092538] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2023] [Revised: 04/23/2023] [Accepted: 04/27/2023] [Indexed: 05/15/2023] Open
Abstract
The occurrence, second-line management and outcome of sr/sd-irAEs was investigated in patients with skin cancer. All skin cancer patients treated with immune checkpoint inhibitors (ICIs) between 2013 and 2021 at a tertiary care center were analyzed retrospectively. Adverse events were coded by CTCAE version 5.0. The course and frequency of irAEs were summarized using descriptive statistics. A total of 406 patients were included in the study. In 44.6% (n = 181) of patients, 229 irAEs were documented. Out of those, 146 irAEs (63.8%) were treated with systemic steroids. Sr-irAEs and sd-irAEs (n = 25) were detected in 10.9% of all irAEs, and in 6.2% of ICI-treated patients. In this cohort, infliximab (48%) and mycophenolate mofetil (28%) were most often administered as second-line immunosuppressants. The type of irAE was the most important factor associated with the choice of second-line immunosuppression. The Sd/sr-irAEs resolved in 60% of cases, had permanent sequelae in 28% of cases, and required third-line therapy in 12%. None of the irAEs were fatal. Although these side effects manifest in only 6.2% of patients under ICI therapy, they impose difficult therapy decisions, especially since there are few data to determine the optimal second-line immunosuppression.
Collapse
Affiliation(s)
- Dirk Tomsitz
- Department of Dermatology and Allergy, University Hospital, LMU Munich, 80539 Munich, Germany
| | - Theresa Ruf
- Department of Dermatology and Allergy, University Hospital, LMU Munich, 80539 Munich, Germany
- SERIO Side Effects Registry Immunooncology, 80337 Munich, Germany
| | - Sarah Zierold
- Department of Dermatology and Allergy, University Hospital, LMU Munich, 80539 Munich, Germany
- SERIO Side Effects Registry Immunooncology, 80337 Munich, Germany
| | - Lars E French
- Department of Dermatology and Allergy, University Hospital, LMU Munich, 80539 Munich, Germany
- Department of Dermatology and Cutaneous Surgery, University of Miami Miller School of Medicine, Miami, FL 33136, USA
| | - Lucie Heinzerling
- Department of Dermatology and Allergy, University Hospital, LMU Munich, 80539 Munich, Germany
- SERIO Side Effects Registry Immunooncology, 80337 Munich, Germany
- Department of Dermatology and Allergy, University Hospital Erlangen, 91054 Erlangen, Germany
| |
Collapse
|
495
|
Lazzaro A, Hartshorn KL. A Comprehensive Narrative Review on the History, Current Landscape, and Future Directions of Hepatocellular Carcinoma (HCC) Systemic Therapy. Cancers (Basel) 2023; 15:cancers15092506. [PMID: 37173972 PMCID: PMC10177076 DOI: 10.3390/cancers15092506] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2023] [Revised: 04/18/2023] [Accepted: 04/24/2023] [Indexed: 05/15/2023] Open
Abstract
We provide a comprehensive review of current approved systemic treatment strategies for advanced hepatocellular carcinoma (HCC), starting with the phase III clinical trial of sorafenib which was the first to definitively show a survival benefit. After this trial, there was an initial period of little progress. However, in recent years, an explosion of new agents and combinations of agents has resulted in a markedly improved outlook for patients. We then provide the authors' current approach to therapy, i.e., "How We Treat HCC". Promising future directions and important gaps in therapy that persist are finally reviewed. HCC is a highly prevalent cancer worldwide and the incidence is growing due not only to alcoholism, hepatitis B and C, but also to steatohepatitis. HCC, like renal cell carcinoma and melanoma, is a cancer largely resistant to chemotherapy but the advent of anti-angiogenic, targeted and immune therapies have improved survival for all of these cancers. We hope this review will heighten interest in the field of HCC therapies, provide a clear outline of the current data and strategy for treatment, and sensitize readers to new developments that are likely to emerge in the near future.
Collapse
Affiliation(s)
- Alexander Lazzaro
- Department of Medicine, Boston Medical Center, Boston, MA 02118, USA
| | - Kevan L Hartshorn
- Section of Hematology Oncology, Boston University Chobanian and Avedisian School of Medicine, Boston Medical Center, Boston, MA 02118, USA
| |
Collapse
|
496
|
Ursino C, Mouric C, Gros L, Bonnefoy N, Faget J. Intrinsic features of the cancer cell as drivers of immune checkpoint blockade response and refractoriness. Front Immunol 2023; 14:1170321. [PMID: 37180110 PMCID: PMC10169604 DOI: 10.3389/fimmu.2023.1170321] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2023] [Accepted: 04/11/2023] [Indexed: 05/15/2023] Open
Abstract
Immune checkpoint blockade represents the latest revolution in cancer treatment by substantially increasing patients' lifetime and quality of life in multiple neoplastic pathologies. However, this new avenue of cancer management appeared extremely beneficial in a minority of cancer types and the sub-population of patients that would benefit from such therapies remain difficult to predict. In this review of the literature, we have summarized important knowledge linking cancer cell characteristics with the response to immunotherapy. Mostly focused on lung cancer, our objective was to illustrate how cancer cell diversity inside a well-defined pathology might explain sensitivity and refractoriness to immunotherapies. We first discuss how genomic instability, epigenetics and innate immune signaling could explain differences in the response to immune checkpoint blockers. Then, in a second part we detailed important notions suggesting that altered cancer cell metabolism, specific oncogenic signaling, tumor suppressor loss as well as tight control of the cGAS/STING pathway in the cancer cells can be associated with resistance to immune checkpoint blockade. At the end, we discussed recent evidences that could suggest that immune checkpoint blockade as first line therapy might shape the cancer cell clones diversity and give rise to the appearance of novel resistance mechanisms.
Collapse
Affiliation(s)
| | | | | | | | - Julien Faget
- Institut de Recherche en Cancérologie de Montpellier (IRCM), Inserm U1194, Univ Montpellier, Institut du Cancer de Montpellier (ICM), Montpellier, France
| |
Collapse
|
497
|
Magagnoli J, Narendran S, Pereira F, Cummings TH, Hardin JW, Sutton SS, Ambati J. Association between Fluoxetine Use and Overall Survival among Patients with Cancer Treated with PD-1/L1 Immunotherapy. Pharmaceuticals (Basel) 2023; 16:ph16050640. [PMID: 37242422 DOI: 10.3390/ph16050640] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2023] [Revised: 04/13/2023] [Accepted: 04/17/2023] [Indexed: 05/28/2023] Open
Abstract
Checkpoint inhibitors can be a highly effective antitumor therapy but only to a subset of patients, presumably due to immunotherapy resistance. Fluoxetine was recently revealed to inhibit the NLRP3 inflammasome, and NLRP3 inhibition could serve as a target for immunotherapy resistance. Therefore, we evaluated the overall survival (OS) in patients with cancer receiving checkpoint inhibitors combined with fluoxetine. A cohort study was conducted among patients diagnosed with lung, throat (pharynx or larynx), skin, or kidney/urinary cancer treated with checkpoint inhibitor therapy. Utilizing the Veterans Affairs Informatics and Computing Infrastructure, patients were retrospectively evaluated during the period from October 2015 to June 2021. The primary outcome was overall survival (OS). Patients were followed until death or the end of the study period. There were 2316 patients evaluated, including 34 patients who were exposed to checkpoint inhibitors and fluoxetine. Propensity score weighted Cox proportional hazards demonstrated a better OS in fluoxetine-exposed patients than unexposed (HR: 0.59, 95% CI 0.371-0.936). This cohort study among cancer patients treated with checkpoint inhibitor therapy showed a significant improvement in the OS when fluoxetine was used. Because of this study's potential for selection bias, randomized trials are needed to assess the efficacy of the association of fluoxetine or another anti-NLRP3 drug to checkpoint inhibitor therapy.
Collapse
Affiliation(s)
- Joseph Magagnoli
- Dorn Research Institute, Columbia VA Health Care System, Columbia, SC 29209, USA
- Department of Clinical Pharmacy and Outcomes Sciences, College of Pharmacy, University of South Carolina, Columbia, SC 29208, USA
| | - Siddharth Narendran
- Center for Advanced Vision Science, University of Virginia School of Medicine, Charlottesville, VA 22903, USA
- Department of Ophthalmology, University of Virginia School of Medicine, Charlottesville, VA 22903, USA
| | - Felipe Pereira
- Center for Advanced Vision Science, University of Virginia School of Medicine, Charlottesville, VA 22903, USA
- Department of Ophthalmology, University of Virginia School of Medicine, Charlottesville, VA 22903, USA
| | - Tammy H Cummings
- Dorn Research Institute, Columbia VA Health Care System, Columbia, SC 29209, USA
- Department of Clinical Pharmacy and Outcomes Sciences, College of Pharmacy, University of South Carolina, Columbia, SC 29208, USA
| | - James W Hardin
- Dorn Research Institute, Columbia VA Health Care System, Columbia, SC 29209, USA
- Department of Epidemiology & Biostatistics, University of South Carolina, Columbia, SC 29208, USA
| | - S Scott Sutton
- Dorn Research Institute, Columbia VA Health Care System, Columbia, SC 29209, USA
- Department of Clinical Pharmacy and Outcomes Sciences, College of Pharmacy, University of South Carolina, Columbia, SC 29208, USA
| | - Jayakrishna Ambati
- Center for Advanced Vision Science, University of Virginia School of Medicine, Charlottesville, VA 22903, USA
- Department of Ophthalmology, University of Virginia School of Medicine, Charlottesville, VA 22903, USA
- Department of Pathology, University of Virginia School of Medicine, Charlottesville, VA 22903, USA
- Department of Microbiology, Immunology, and Cancer Biology, University of Virginia School of Medicine, Charlottesville, VA 22903, USA
| |
Collapse
|
498
|
Penninckx S, Thariat J, Mirjolet C. Radiation therapy-activated nanoparticle and immunotherapy: The next milestone in oncology? INTERNATIONAL REVIEW OF CELL AND MOLECULAR BIOLOGY 2023; 378:157-200. [PMID: 37438017 DOI: 10.1016/bs.ircmb.2023.03.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/14/2023]
Abstract
Radiotherapy (RT) is a fundamental treatment at the locoregional or oligometastatic stages of cancer. In various tumors, RT effects may be optimized using synergistic combinations that enhance tumor response. Innovative strategies have been designed that explore the radiation mechanisms, at the physical, chemical and biological levels, to propose precision RT approaches. They consist in combining RT with immunotherapy to revert radiation immunosuppressive effects or to enhance radiation-induced immune defenses against the tumor to favor immunogenic cell death. Radiotherapy-activated nanoparticles are another innovation. By increasing radiation response in situ, nanoparticles improve tumor control locally, and can trigger systemic immune reactions that may be exploited to improve the systemic efficacy of RT. Strong clinical evidence of improved outcomes is now available for combinations of RT and immunotherapy on one hand and RT and nanoparticles on the other hand. The triple combination of RT, immunotherapy and nanoparticles is promising in terms of tolerance, local and systemic anti-tumor control. Yet, significant challenges remain to unravel the complexity of the multiscale mechanisms underlying response to this combination and their associated parameters. Such parameters include patient characteristics, tumor bulk and histology, radiation technique, energy, dose, fractionation, immunotherapy targets and predictive biomarkers, nanoparticle type, size, delivery (intratumoral/intravenous), distribution. The temporal combination is another critical parameter. The mechanisms of response of the combinatorial approaches are reviewed, with a focus on underlying mechanisms based on preclinical, translational and clinical studies. Opportunities for translation of current understanding into precision RT trials combined with immunotherapy and nanoparticles are also discussed.
Collapse
Affiliation(s)
- Sébastien Penninckx
- Medical Physics Department, Institut Jules Bordet, Université Libre de Bruxelles, Brussels, Belgium.
| | - Juliette Thariat
- Laboratoire de physique Corpusculaire IN2P3/ENSICAEN/CNRS UMR 6534, Normandie Université Centre François Baclesse, Caen, France
| | - Céline Mirjolet
- Radiation Oncology Department, Preclinical Radiation Therapy and Radiobiology Unit, Centre Georges-François Leclerc, Unicancer, Dijon, France; TIReCS Team, UMR INSERM 1231, Dijon, France
| |
Collapse
|
499
|
Venzel R, Campos MCP, de Oliveira LP, Dan Lins RV, Siena ÁDD, Mesquita KT, Moreira Dos Santos TP, Nohata N, Arruda LCM, Sales-Campos H, Neto MPC. Clinical and molecular overview of immunotherapeutic approaches for malignant skin melanoma: Past, present and future. Crit Rev Oncol Hematol 2023; 186:103988. [PMID: 37086955 DOI: 10.1016/j.critrevonc.2023.103988] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2022] [Revised: 03/25/2023] [Accepted: 04/11/2023] [Indexed: 04/24/2023] Open
Abstract
Traditional therapeutic approaches for malignant melanoma, have proved to be limited and/or ineffective, especially with respect to their role in improving patient survival and tumor recurrence. In this regard, immunotherapy has been demonstrated to be a promising therapeutic alternative, boosting antitumor responses through the modulation of cell signaling pathways involved in the effector mechanisms of the immune system, particularly, the so-called "immunological checkpoints". Clinical studies on the efficacy and safety of immunotherapeutic regimens, alone or in combination with other antitumor approaches, have increased dramatically in recent decades, with very encouraging results. Hence, this review will discuss the current immunotherapeutic regimens used to treat malignant melanoma, as well as the molecular and cellular mechanisms involved. In addition, current clinical studies that have investigated the use, efficacy, and adverse events of immunotherapy in melanoma will also be discussed.
Collapse
Affiliation(s)
- Raphaelly Venzel
- Institute of Health and Biotechnology, Federal University of Amazonas, Coari, Brazil
| | | | | | | | | | | | - Tálita Pollyana Moreira Dos Santos
- Department of Oral Biology, School of Dental Medicine, University at Buffalo, Buffalo, NY, USA; Head & Neck Surgery, Roswell Park Comprehensive Cancer Center, Buffalo, NY, USA
| | - Nijiro Nohata
- Oncology Science Unit, MSD K.K, Chiyoda-ku, Tokyo, Japan
| | | | - Helioswilton Sales-Campos
- Institute of Tropical Pathology and Public Health, Federal University of Goiás, Goiânia, Goiás, GO, Brazil
| | | |
Collapse
|
500
|
Zhang H, Shi Y, Ying J, Chen Y, Guo R, Zhao X, Jia L, Xiong J, Jiang F. A bibliometric and visualized research on global trends of immune checkpoint inhibitors related complications in melanoma, 2011-2021. Front Endocrinol (Lausanne) 2023; 14:1164692. [PMID: 37152956 PMCID: PMC10158729 DOI: 10.3389/fendo.2023.1164692] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/13/2023] [Accepted: 03/31/2023] [Indexed: 05/09/2023] Open
Abstract
BACKGROUND Melanoma is a malignant tumor that originates from the canceration of melanocytes with a high rate of invasiveness and lethality. Immune escape has been regarded as an important mechanism for tumor development, while the treatment of immune checkpoint inhibitors (ICIs) is beneficial in restoring and enhancing the body's anti-tumor immune response to kill tumor cells. To date, ICIs therapy has achieved remarkable efficacy in treating melanoma patients. Despite the significant clinical benefits of ICIs, multiple complications such as rashes, thyroiditis, and colitis occur in melanoma patients. In this study, we aim to explore the development process and trends in the field of ICIs-related complications in melanoma, analyze current hot topics, and predict future research directions. METHODS We screened the most relevant literatures on ICIs-related complications in melanoma from 2011 to 2021 in the Web of Science Core Collection (WoSCC). Using VOSviewer, CiteSpace and R language packages, we analyzed the research trends in this field. RESULTS A total of 1,087 articles were screened, and the USA had the highest number of publications (publications = 454, citations = 60,483), followed by Germany (publications = 155, citations = 27,743) and Italy (publications = 139, citations = 27,837). The Memorial Sloan Kettering Cancer Center had the most publications, but the Angeles Clinic and Research Institute had the highest average citation rate. Lancet oncology (IF, 2021 = 54.43) was the most prominent of all journals in terms of average citation rate. Reference and keyword cluster analysis revealed that anti-tumor efficacy, adjuvant treatment, clinical response, clinical outcome, etc. were the hotspots and trends of research in recent years. CONCLUSIONS This study offers a comprehensive summary and analysis of global research trends on ICIs-related complications in melanoma. Over the past decade, there has been a significant increase in the number of publications on this topic. However, the safety and benefits of retreatment after the recovery of ICIs-related complications remain unknown. Therefore,the establishment of related prediction models, as well as the immunotherapy of melanoma with ICIs in combination with other adjuvant therapies, are future research hotspots.
Collapse
Affiliation(s)
- Hongyi Zhang
- Department of Plastic Surgery, Shanghai East Hospital, Tongji University School of Medicine, Shanghai, China
- Department of Breast Surgery, Yangpu Hospital, Tongji University School of Medicine, Shanghai, China
| | - Yanlong Shi
- Hepatopancreatobiliary Center, The Second Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, China
| | - Jianghui Ying
- Department of Plastic Surgery, Shanghai East Hospital, Tongji University School of Medicine, Shanghai, China
| | - Yi Chen
- Department of Biotechnology, The China-US (Henan) Hormel Cancer Institute, Zhengzhou, China
| | - Rong Guo
- Department of Plastic Surgery, Shanghai East Hospital, Tongji University School of Medicine, Shanghai, China
| | - Xin Zhao
- Department of Plastic Surgery, Shanghai East Hospital, Tongji University School of Medicine, Shanghai, China
| | - Lingling Jia
- Department of Plastic Surgery, Shanghai East Hospital, Tongji University School of Medicine, Shanghai, China
| | - Jiachao Xiong
- Department of Plastic Surgery, Shanghai East Hospital, Tongji University School of Medicine, Shanghai, China
| | - Fei Jiang
- Department of General Surgery, Fuyang Hospital of Anhui Medical University, Fuyang, China
| |
Collapse
|